WorldWideScience

Sample records for binding cassette transporter

  1. Human ATP-binding cassette (ABC transporter family

    Directory of Open Access Journals (Sweden)

    Vasiliou Vasilis

    2009-04-01

    Full Text Available Abstract There exist four fundamentally different classes of membrane-bound transport proteins: ion channels; transporters; aquaporins; and ATP-powered pumps. ATP-binding cassette (ABC transporters are an example of ATP-dependent pumps. ABC transporters are ubiquitous membrane-bound proteins, present in all prokaryotes, as well as plants, fungi, yeast and animals. These pumps can move substrates in (influx or out (efflux of cells. In mammals, ABC transporters are expressed predominantly in the liver, intestine, blood-brain barrier, blood-testis barrier, placenta and kidney. ABC proteins transport a number of endogenous substrates, including inorganic anions, metal ions, peptides, amino acids, sugars and a large number of hydrophobic compounds and metabolites across the plasma membrane, and also across intracellular membranes. The human genome contains 49 ABC genes, arranged in eight subfamilies and named via divergent evolution. That ABC genes are important is underscored by the fact that mutations in at least I I of these genes are already known to cause severe inherited diseases (eg cystic fibrosis and X-linked adrenoleukodystrophy [X-ALD]. ABC transporters also participate in the movement of most drugs and their metabolites across cell surface and cellular organelle membranes; thus, defects in these genes can be important in terms of cancer therapy, pharmacokinetics and innumerable pharmacogenetic disorders.

  2. Multidrug transport by ATP binding cassette transporters : a proposed two-cylinder engine mechanism

    NARCIS (Netherlands)

    van Veen, HW; Higgins, CF; Konings, WN

    2001-01-01

    The elevated expression of ATP binding cassette (ABC) multidrug transporters in multidrug-resistant cells interferes with the drug-based control of cancers and infectious pathogenic microorganisms. Multidrug transporters interact directly with the drug substrates. This review summarizes current insi

  3. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity

    OpenAIRE

    Rijpma, S.R.; Heuvel, J. J.; van de Velden, M.; Sauerwein, R. W.; Russel, F. G.; Koenderink, J.B.

    2014-01-01

    BACKGROUND: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceutica...

  4. Blood-Brain Barrier Active Efflux Transporters: ATP-Binding Cassette Gene Family

    OpenAIRE

    Löscher, Wolfgang; Potschka, Heidrun

    2005-01-01

    Summary: The blood-brain barrier (BBB) contributes to brain homeostasis by protecting the brain from potentially harmful endogenous and exogenous substances. BBB active drug efflux transporters of the ATP-binding cassette (ABC) gene family are increasingly recognized as important determinants of drug distribution to, and elimination from, the CNS. The ABC efflux transporter P-glycoprotein (Pgp) has been demonstrated as a key element of the BBB that can actively transport a huge variety of lip...

  5. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus

    OpenAIRE

    Yu, Fang; De Luca, Vincenzo

    2013-01-01

    The presence of biologically active monoterpenoid indole alkaloids (MIAs) on the leaf surfaces of medicinally important Catharanthus roseus has led to questions about the secretion processes involved and their prevalence within MIA-producing species of plants. This report shows that a transporter closely related to those involved in cuticle assembly in plants and belonging to the pleiotropic drug resistance family of ATP-binding cassette transporters is specialized for transport of the MIA ca...

  6. ATP binding cassette transporter gene expression in rat liver progenitor cells

    OpenAIRE

    2003-01-01

    Background and aim: Liver regeneration after severe liver damage depends in part on proliferation and differentiation of hepatic progenitor cells (HPCs). Under these conditions they must be able to withstand the toxic milieu of the damaged liver. ATP binding cassette (ABC) transporters are cytoprotective efflux pumps that may contribute to the preservation of these cells. The aim of this study was to determine the ABC transporter phenotype of HPCs.

  7. Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia

    OpenAIRE

    Heemskerk, Suzanne; van Koppen, Arianne; van den Broek, Luc; Poelen, Geert J. M.; Wouterse, Alfons C; Dijkman, Henry B. P. M.; Russel, Frans G. M.; Masereeuw, Rosalinde

    2007-01-01

    Nitric oxide (NO) is an important regulator of renal transport processes. In the present study, we investigated the role of NO, produced by inducible NO synthase (iNOS), in the regulation of renal ATP-binding cassette (ABC) transporters in vivo during endotoxemia. Wistar–Hannover rats were injected with lipopolysaccharide (LPS+) alone or in combination with the iNOS inhibitor, aminoguanidine. Controls received detoxified LPS (LPS−). After LPS+, proximal tubular damage and a reduction in renal...

  8. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast

    DEFF Research Database (Denmark)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D.;

    2014-01-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been i...... donor in ATP-binding cassette-transporter-dependent sterol uptake, a process potentially important for growth of Candida glabrata inside infected humans....... implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found that in....... cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans. Serum albumin can serve as sterol...

  9. Formation of a Chloride-conducting State in the Maltose ATP-binding Cassette (ABC) Transporter.

    Science.gov (United States)

    Carlson, Michael L; Bao, Huan; Duong, Franck

    2016-06-01

    ATP-binding cassette transporters use an alternating access mechanism to move substrates across cellular membranes. This mode of transport ensures the selective passage of molecules while preserving membrane impermeability. The crystal structures of MalFGK2, inward- and outward-facing, show that the transporter is sealed against ions and small molecules. It has yet to be determined whether membrane impermeability is maintained when MalFGK2 cycles between these two conformations. Through the use of a mutant that resides in intermediate conformations close to the transition state, we demonstrate that not only is chloride conductance occurring, but also to a degree large enough to compromise cell viability. Introduction of mutations in the periplasmic gate lead to the formation of a channel that is quasi-permanently open. MalFGK2 must therefore stay away from these ion-conducting conformations to preserve the membrane barrier; otherwise, a few mutations that increase access to the ion-conducting states are enough to convert an ATP-binding cassette transporter into a channel. PMID:27059961

  10. The saci_2123 gene of the hyperthermoacidophile Sulfolobus acidocaldarius encodes an ATP-binding cassette multidrug transporter

    NARCIS (Netherlands)

    Yang, Nuan; Driessen, Arnold J. M.

    2015-01-01

    Multidrug resistance (MDR) transporters are capable of secreting structurally and functionally unrelated toxic compounds from the cell. Among this group are ATP-binding cassette (ABC) transporters. These membrane proteins are typically arranged as either hetero- or homo-dimers of ABC half-transporte

  11. ATP-binding cassette transporters as pitfalls in selection of transgenic cells.

    Science.gov (United States)

    Theile, Dirk; Staffen, Bianca; Weiss, Johanna

    2010-04-15

    Puromycin, hygromycin, and geneticin (G418) are antibiotics frequently used to select genetically engineered eukaryotic cells after transfection or transduction. Because intrinsic or acquired high expression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp/ABCB1) and multidrug resistance-associated proteins (MRP/ABCC1), can hamper efficient selection, it is important to know whether these antibiotics are substrates and/or inducers of efflux transporters. Therefore, we investigated the influence of these antibiotics on drug transporter expression by quantitative real-time polymerase chain reaction in the induction model cell line LS180. Moreover, we assessed whether ABC transporters influence the growth inhibitory effects of these antibiotics by proliferation assays using Madin-Darby canine kidney II (MDCKII) cells overexpressing the particular transporter. The results obtained indicate that puromycin and G418 are substrates of several ABC transporters, mainly Pgp/ABCB1. In contrast, hygromycin seems to be no good substrate for any of the ABC transporters investigated. Puromycin induced ABCC1/MRP1, whereas G418 suppressed ABCB1/Pgp, at the messenger RNA (mRNA) level. In contrast, hygromycin had no effect on ABC transporter mRNA expressions. In conclusion, this study emphasizes the significance of ABC transporters for the efficacy of selection processes. Consciousness of the results is supposed to guide the molecular biologist to the right choice of adequate experimental conditions for successful selection of genetically engineered eukaryotic cells. PMID:20018165

  12. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

  13. Functional analysis of the ATP-binding cassette (ABC transporter gene family of Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Broehan Gunnar

    2013-01-01

    Full Text Available Abstract Background The ATP-binding cassette (ABC transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. Most are integral membrane proteins that transport a broad spectrum of substrates across lipid membranes. In insects, ABC transporters are of special interest because of their role in insecticide resistance. Results We have identified 73 ABC transporter genes in the genome of T. castaneum, which group into eight subfamilies (ABCA-H. This coleopteran ABC family is significantly larger than those reported for insects in other taxonomic groups. Phylogenetic analysis revealed that this increase is due to gene expansion within a single clade of subfamily ABCC. We performed an RNA interference (RNAi screen to study the function of ABC transporters during development. In ten cases, injection of double-stranded RNA (dsRNA into larvae caused developmental phenotypes, which included growth arrest and localized melanization, eye pigmentation defects, abnormal cuticle formation, egg-laying and egg-hatching defects, and mortality due to abortive molting and desiccation. Some of the ABC transporters we studied in closer detail to examine their role in lipid, ecdysteroid and eye pigment transport. Conclusions The results from our study provide new insights into the physiological function of ABC transporters in T. castaneum, and may help to establish new target sites for insect control.

  14. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori

    OpenAIRE

    Liu, Shumin; Zhou, Shun; Tian, Ling; Guo, Enen; Luan, Yunxia; Zhang, Jianzhen; Li, Sheng

    2011-01-01

    Background The ATP-binding cassette (ABC) transporter superfamily is the largest transporter gene family responsible for transporting specific molecules across lipid membranes in all living organisms. In insects, ABC transporters not only have important functions in molecule transport, but also play roles in insecticide resistance, metabolism and development. Results From the genome of the silkworm, Bombyx mori, we have identified 51 putative ABC genes which are classified into eight subfamil...

  15. Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?

    Science.gov (United States)

    Haslam, Iain S; Pitre, Aaron; Schuetz, John D; Paus, Ralf

    2013-11-01

    Currently, efficacious treatments for chemotherapy-induced alopecia (hair loss) are lacking, and incidences of permanent hair loss following high-dose chemotherapy are on the increase. In this article, we describe mechanisms by which the pharmacological defense status of the hair follicle might be enhanced, thereby reducing the accumulation of cytotoxic cancer drugs and preventing or reducing hair loss and damage. We believe this could be achieved via the selective increase in ATP-binding cassette (ABC) transporter expression within the hair follicle epithelium, following application of topical agonists for regulatory nuclear receptors. Clinical application would require the development of hair follicle-targeted formulations, potentially utilizing nanoparticle technology. This novel approach has the potential to yield entirely new therapeutic options for the treatment and management of chemotherapy-induced alopecia, providing significant psychological and physical benefit to cancer patients. PMID:24100054

  16. A novel ATP-binding cassette transporter, ABCG6 is involved in chemoresistance of Leishmania.

    Science.gov (United States)

    BoseDasgupta, Somdeb; Ganguly, Agneyo; Roy, Amit; Mukherjee, Tanmoy; Majumder, Hemanta K

    2008-04-01

    ATP-binding cassette (ABC) transporters constitute the biggest family of membrane proteins involved in drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries and in many instances it is due to overexpressed ABC efflux pumps. Progressively adapted camptothecin (CPT)-resistant parasites show overexpression of a novel ABC transporter, which was classified as ABCG6. Transfection and overexpression of LdABCG6 in wild type parasites, shows its localization primarily in the plasma membrane and flagellar pocket region. Overexpressed LdABCG6 confers substantial CPT resistance to the parasites by rapid drug efflux. Various inhibitors have been tested for their ability to revert the CPT-resistant phenotype to specifically understand the inhibition of LdABCG6 transporter. Transport experiments using everted membrane vesicles were carried out to gain an insight into the kinetics of drug transport. This study provides further knowledge of specific membrane traffic ATPase and its involvement in the chemoresistance of Leishmania. PMID:18243364

  17. Multidrug ATP-binding cassette transporters are essential for hepatic development of Plasmodium sporozoites.

    Science.gov (United States)

    Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M

    2016-03-01

    Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. PMID:26332724

  18. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Directory of Open Access Journals (Sweden)

    Flavio Alves Lara

    Full Text Available In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA, a well-known inhibitor of ATP binding cassette (ABC transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may

  19. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available ABCB6 is a member of the adenosine triphosphate (ATP-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS, can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.

  20. Molecular Events Involved in a Single Cycle of Ligand Transfer from an ATP Binding Cassette Transporter, LolCDE, to a Molecular Chaperone, LolA*

    OpenAIRE

    Taniguchi, Naohiro; Tokuda, Hajime

    2008-01-01

    An ATP binding cassette transporter LolCDE complex releases lipoproteins from the inner membrane of Escherichia coli in an ATP-dependent manner, leading to the formation of a complex between a lipoprotein and a periplasmic chaperone, LolA. LolA is proposed to undergo a conformational change upon the lipoprotein binding. The lipoprotein is then transferred from the LolA-lipoprotein complex to the outer membrane via LolB. Unlike most ATP binding cassette transporters med...

  1. Oxidized LDL upregulated ATP binding cassette transporter-1 in THP-1 macrophages

    Institute of Scientific and Technical Information of China (English)

    Chao-ke TANG; Guang-hui YI; Jun-hao YANG; Lu-shan LIU; Zuo WANG; Chang-geng RUAN; Yong-zong YANG

    2004-01-01

    AIM: To study the effect of oxidized low density lipoprotein (ox-LDL) on ATP binding cassette transporter A1 (ABCA1) in THP-1 macrophages. METHODS: After exposing the cultured THP-1 macrophages to ox-LDL for different periods, cholesterol efflux was determined by FJ-2107P type liquid scintillator. ABCA1 mRNA and protein level were determined by reverse trancriptase-polymerase chain reaction (RT-PCR) and Western blot, respectively.The cholesterol level in THP-1 macrophage foam cells was detected by high performance liquid chromatography.RESULTS: ox-LDL elevated AB CA1 in both protein and mRNA levels and increased apolipoprotein (apo) A-I-mediated cholesterol efflux in a time- and dose-dependent manner. 22(R)-hydroxyeholesterol and 9-cis-retinoic acid did significantly increase cholesterol efflux in THP-1 macrophage foam cells (P<0.05), respectively. Both of them further promoted cholesterol efflux (P<0.01). As expected, liver X receptor (LXR) agonist decreased content of esterified cholesterol in the macrophage foam cells compared with control, whereas only a slight decrease of free cholesterol was observed. LXR activity was slightly increased by oxidized LDL by 12 % at 12 h compared with 6 h.However, LXR activity was increased about 1.8 times at 24 h, and oxidized LDL further increased LXR activity by about 2.6 times at 48 h. CONCLUSION: ABCA1 gene expression was markedly increased in cholesterol-loaded cells as a result of activation of LXR/RXR. ABCA1 plays an important role in the homeostasis of cholesterol in the macrophages.

  2. ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing.

    Science.gov (United States)

    Satoh, Kanayo; Abe-Dohmae, Sumiko; Yokoyama, Shinji; St George-Hyslop, Peter; Fraser, Paul E

    2015-10-01

    The ATP-binding cassette transporter A7 (ABCA7) has been identified as a susceptibility factor of late onset Alzheimer disease in genome-wide association studies. ABCA7 has been shown to mediate phagocytosis and affect membrane trafficking. The current study examined the impact of ABCA7 loss of function on amyloid precursor protein (APP) processing and generation of amyloid-β (Aβ). Suppression of endogenous ABCA7 in several different cell lines resulted in increased β-secretase cleavage and elevated Aβ. ABCA7 knock-out mice displayed an increased production of endogenous murine amyloid Aβ42 species. Crossing ABCA7-deficient animals to an APP transgenic model resulted in significant increases in the soluble Aβ as compared with mice expressing normal levels of ABCA7. Only modest changes in the amount of insoluble Aβ and amyloid plaque densities were observed once the amyloid pathology was well developed, whereas Aβ deposition was enhanced in younger animals. In vitro studies indicated a more rapid endocytosis of APP in ABCA7 knock-out cells that is mechanistically consistent with the increased Aβ production. These in vitro and in vivo findings indicate a direct role of ABCA7 in amyloid processing that may be associated with its primary biological function to regulate endocytic pathways. Several potential loss-of-function ABCA7 mutations and deletions linked to Alzheimer disease that in some instances have a greater impact than apoE allelic variants have recently been identified. A reduction in ABCA7 expression or loss of function would be predicted to increase amyloid production and that may be a contributing factor in the associated Alzheimer disease susceptibility. PMID:26260791

  3. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism

    NARCIS (Netherlands)

    van Veen, HW; Margolles, A; Muller, M; Higgins, CF; Konings, WN

    2000-01-01

    The bacterial LmrA protein and the mammalian multidrug resistance P-glycoprotein are closely related ATP-binding cassette (ABC) transporters that confer multidrug resistance on cells by mediating the extrusion of drugs at the expense of ATP hydrolysis. The mechanisms by which transport is mediated,

  4. Domain Interactions in the Yeast ATP Binding Cassette Transporter Ycf1p: Intragenic Suppressor Analysis of Mutations in the Nucleotide Binding Domains

    OpenAIRE

    Falcón-Pérez, Juan M.; Martínez-Burgos, Mónica; Molano, Jesús; Mazón, María J.; Eraso, Pilar

    2001-01-01

    The yeast cadmium factor (Ycf1p) is a vacuolar ATP binding cassette (ABC) transporter required for heavy metal and drug detoxification. Cluster analysis shows that Ycf1p is strongly related to the human multidrug-associated protein (MRP1) and cystic fibrosis transmembrane conductance regulator and therefore may serve as an excellent model for the study of eukaryotic ABC transporter structure and function. Identifying intramolecular interactions in these transporters may help to elucidate ener...

  5. Sterol transporter adenosine triphosphate-binding cassette transporter G8, gallstones, and biliary cancer in 62,000 individuals from the general population

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2011-01-01

    Gallstone disease, a risk factor for biliary cancer, has a strong heritable component, but the underlying genes are largely unknown. To test the hypothesis that ABCG8 (adenosine triphosphate-binding cassette transporter G8) Asp19His (D19H) genotype predicted risk of gallstones and biliary cancer ...

  6. In Vivo Bioluminescent Imaging of ATP-Binding Cassette Transporter-Mediated Efflux at the Blood-Brain Barrier.

    Science.gov (United States)

    Bakhsheshian, Joshua; Wei, Bih-Rong; Hall, Matthew D; Simpson, R Mark; Gottesman, Michael M

    2016-01-01

    We provide a detailed protocol for imaging ATP-binding cassette subfamily G member 2 (ABCG2) function at the blood-brain barrier (BBB) of transgenic mice. D-Luciferin is specifically transported by ABCG2 found on the apical side of endothelial cells at the BBB. The luciferase-luciferin enzymatic reaction produces bioluminescence, which allows a direct measurement of ABCG2 function at the BBB. Therefore bioluminescence imaging (BLI) correlates with ABCG2 function at the BBB and this can be measured by administering luciferin in a mouse model that expresses luciferase in the brain parenchyma. BLI allows for a relatively low-cost alternative for studying transporter function in vivo compared to other strategies such as positron emission tomography. This method for imaging ABCG2 function at the BBB can be used to investigate pharmacokinetic inhibition of the transporter. PMID:27424909

  7. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori

    OpenAIRE

    Zhang Jianzhen; Luan Yunxia; Guo Enen; Tian Ling; Zhou Shun; Liu Shumin; Li Sheng

    2011-01-01

    Abstract Background The ATP-binding cassette (ABC) transporter superfamily is the largest transporter gene family responsible for transporting specific molecules across lipid membranes in all living organisms. In insects, ABC transporters not only have important functions in molecule transport, but also play roles in insecticide resistance, metabolism and development. Results From the genome of the silkworm, Bombyx mori, we have identified 51 putative ABC genes which are classified into eight...

  8. ATP-Binding Cassette (ABC) Transporters of the Human Respiratory Tract Pathogen, Moraxella catarrhalis: Role in Virulence.

    Science.gov (United States)

    Murphy, Timothy F; Brauer, Aimee L; Johnson, Antoinette; Kirkham, Charmaine

    2016-01-01

    Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media (middle ear infections) in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In view of the huge global burden of disease caused by M. catarrhalis, the development of vaccines to prevent these infections and better approaches to treatment have become priorities. In previous work, we used a genome mining approach that identified three substrate binding proteins (SBPs) of ATP-binding cassette (ABC) transporters as promising candidate vaccine antigens. In the present study, we performed a comprehensive assessment of 19 SBPs of 15 ABC transporter systems in the M. catarrhalis genome by engineering knockout mutants and studying their role in assays that assess mechanisms of infection. The capacity of M. catarrhalis to survive and grow in the nutrient-limited and hostile environment of the human respiratory tract, including intracellular growth, account in part for its virulence. The results show that ABC transporters that mediate uptake of peptides, amino acids, cations and anions play important roles in pathogenesis by enabling M. catarrhalis to 1) grow in nutrient-limited conditions, 2) invade and survive in human respiratory epithelial cells and 3) persist in the lungs in a murine pulmonary clearance model. The knockout mutants of SBPs and ABC transporters showed different patterns of activity in the assay systems, supporting the conclusion that different SBPs and ABC transporters function at different stages in the pathogenesis of infection. These results indicate that ABC transporters are nutritional virulence factors, functioning to enable the survival of M catarrhalis in the diverse microenvironments of the respiratory tract. Based on the role of ABC transporters as virulence factors of M. catarrhalis, these molecules represent potential drug targets to eradicate the organism from the human respiratory tract. PMID:27391026

  9. Regulation of ATP-binding cassette transporters and cholesterol efflux by glucose in primary human monocytes and murine bone marrow-derived macrophages

    Science.gov (United States)

    Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...

  10. Multidrug efflux pumps: the structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues.

    Science.gov (United States)

    Kerr, Ian D; Jones, Peter M; George, Anthony M

    2010-02-01

    One of the Holy Grails of ATP-binding cassette transporter research is a structural understanding of drug binding and transport in a eukaryotic multidrug resistance pump. These transporters are front-line mediators of drug resistance in cancers and represent an important therapeutic target in future chemotherapy. Although there has been intensive biochemical research into the human multidrug pumps, their 3D structure at atomic resolution remains unknown. The recent determination of the structure of a mouse P-glycoprotein at subatomic resolution is complemented by structures for a number of prokaryotic homologues. These structures have provided advances into our knowledge of the ATP-binding cassette exporter structure and mechanism, and have provided the template data for a number of homology modelling studies designed to reconcile biochemical data on these clinically important proteins. PMID:19961540

  11. HG-829 is a potent noncompetitive inhibitor of the ATP-binding cassette multidrug resistance transporter ABCB1.

    Science.gov (United States)

    Caceres, Gisela; Robey, Robert W; Sokol, Lubomir; McGraw, Kathy L; Clark, Justine; Lawrence, Nicholas J; Sebti, Said M; Wiese, Michael; List, Alan F

    2012-08-15

    Transmembrane drug export mediated by the ATP-binding cassette (ABC) transporter P-glycoprotein contributes to clinical resistance to antineoplastics. In this study, we identified the substituted quinoline HG-829 as a novel, noncompetitive, and potent P-glycoprotein inhibitor that overcomes in vitro and in vivo drug resistance. We found that nontoxic concentrations of HG-829 restored sensitivity to P-glycoprotein oncolytic substrates. In ABCB1-overexpressing cell lines, HG-829 significantly enhanced cytotoxicity to daunorubicin, paclitaxel, vinblastine, vincristine, and etoposide. Coadministration of HG-829 fully restored in vivo antitumor activity of daunorubicin in mice without added toxicity. Functional assays showed that HG-829 is not a Pgp substrate or competitive inhibitor of Pgp-mediated drug efflux but rather acts as a noncompetitive modulator of P-glycoprotein transport function. Taken together, our findings indicate that HG-829 is a potent, long-acting, and noncompetitive modulator of P-glycoprotein export function that may offer therapeutic promise for multidrug-resistant malignancies. PMID:22761337

  12. ATP-binding cassette transporter enhances tolerance to DDT in Tetrahymena.

    Science.gov (United States)

    Ning, YingZhi; Dang, Huai; Liu, GuangLong; Xiong, Jie; Yuan, DongXia; Feng, LiFang; Miao, Wei

    2015-03-01

    The reuse of dichlorodiphenyltrichloroethane (DDT) as an indoor residual spray was permitted by the World Health Organization in 2007, and approximately 14 countries still use DDT to control disease vectors. The extensive exposure of insects to DDT has resulted in the emergence of DDT resistance, especially in mosquitoes, and the mechanism for this resistance in mosquitoes has been widely reported. Spraying can also introduce DDT directly into surface water, and DDT can subsequently accumulate in microorganisms, but the mechanism for the resistance to DDT degradation in microorganisms is unclear. Using whole-genome microarray analysis, we detected an abcb15 gene that was up-regulated in a specific manner by DDT treatment in T. thermophile. The deduced ABCB15 peptide sequence had two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs) to form the structure TMD-NBD-TMD-NBD, and each NBD contained three conserved motifs: Walker-A, C-loop, and Walker-B, which indicated the T. thermophila abcb15 was a typical ABC transporter gene. The expression of ABCB15 fused with a C-terminal green fluorescent protein was found to be on the periphery of the cell, suggesting that ABCB15 was a membrane pump protein. In addition, cells with abcb15 partially knocked down (abcb15-KD) grew slower than wild-type cells in the presence of 256 mg L(-1) DDT, indicating the tolerance of abcb15-KD strain to DDT exposure was decreased. Thus, we suggest that in Tetrahymena, the membrane pump protein encoded by ABCT gene abcb15 can enhance the tolerance to DDT and protect cells from this exogenous toxin by efficiently pumping it to the extracellular space. PMID:25260902

  13. Ablation of the ATP-binding cassette transporter, Abca2 modifies response to estrogen-based therapies.

    Science.gov (United States)

    Mack, Jody T; Brown, Carol B; Garrett, Tracy E; Uys, Joachim D; Townsend, Danyelle M; Tew, Kenneth D

    2012-09-01

    The ATP-binding cassette transporter 2 (ABCA2) is an endolysosomal protein expressed in oligodendrocytes and Schwann cells, prostate, ovary and macrophages. In cell cultures, ABCA2 over-expression has been linked with resistance to the anticancer agent, estramustine phosphate (EMP; a nor-nitrogen mustard conjugate of estradiol). The present study shows that Abca2 knockout (KO) mice have greater sensitivity to a variety of side effects induced by EMP treatment. Chronic EMP (12×100 mg/kg body weight) produced mortality in 36% of KO mice, but only 7% of age-matched wild type (WT). Side effects of the drug were also more prevalent in the KO mouse. For example, during the first week of EMP treatments, 67% of KO males (compared to 6% of WT males) responded with episodic erectile events. In WT mice, ABCA2 protein localized within pene corpuscles, (which rely on modified Schwann cells for amplification of tactile signals) suggesting that the transporter may function in the erectile process. Endothelial nitric oxide synthase (eNOS; a source of nitric oxide during erectile response) levels were similar in WT and KO male penile tissue. Treatment with 100 mg/kg EMP (once daily for four days) elevated serum estradiol and estrone in both WT and KO. However, the circulating levels of these estrogens were higher in KO mice implying a reduced plasma clearance of estrogens as a consequence of ABCA2 ablation. Consistent with the pro-convulsant effects of estrogens, KO mice also displayed an increased incidence of seizures following EMP (14% vs. 0%). Taken together, these data indicate that ABCA2 deficiency renders mice more sensitive to EMP treatment-induced effects implying that the transporter has a role in regulating EMP transport and/or metabolism. PMID:22898081

  14. Genome-wide analysis of the ATP-binding cassette (ABC) transporter gene family in the silkworm, Bombyx mori.

    Science.gov (United States)

    Xie, Xiaodong; Cheng, Tingcai; Wang, Genhong; Duan, Jun; Niu, Weihuan; Xia, Qingyou

    2012-07-01

    The ATP-binding cassette (ABC) superfamily is a larger protein family with diverse physiological functions in all kingdoms of life. We identified 53 ABC transporters in the silkworm genome, and classified them into eight subfamilies (A-H). Comparative genome analysis revealed that the silkworm has an expanded ABCC subfamily with more members than Drosophila melanogaster, Caenorhabditis elegans, or Homo sapiens. Phylogenetic analysis showed that the ABCE and ABCF genes were highly conserved in the silkworm, indicating possible involvement in fundamental biological processes. Five multidrug resistance-related genes in the ABCB subfamily and two multidrug resistance-associated-related genes in the ABCC subfamily indicated involvement in biochemical defense. Genetic variation analysis revealed four ABC genes that might be evolving under positive selection. Moreover, the silkworm ABCC4 gene might be important for silkworm domestication. Microarray analysis showed that the silkworm ABC genes had distinct expression patterns in different tissues on day 3 of the fifth instar. These results might provide new insights for further functional studies on the ABC genes in the silkworm genome. PMID:22311044

  15. The ATP-binding Cassette Transporter OsABCG15 is Required for Anther Development and Pollen Fertility in Rice

    Institute of Scientific and Technical Information of China (English)

    Bai-Xiao Niu; Fu-Rong He; Ming He; Ding Ren; Le-Tian Chen; Yao-Guang Liu

    2013-01-01

    Plant male reproductive development is a complex biological process,but the underlying mechanism is not well understood.Here,we characterized a rice (Oryza sativa L.) male sterile mutant.Based on mapbased cloning and sequence analysis,we identified a 1,459-bp deletion in an adenosine triphosphate (ATP)-binding cassette (ABC) transporter gene,OsABCG15,causing abnormal anthers and male sterility.Therefore,we named this mutant osabcg15.Expression analysis showed that OsABCG15 is expressed specifically in developmental anthers from stage 8 (meiosis Ⅱ stage) to stage 10 (late microspore stage).Two genes CYP704B2 and WDA1,involved in the biosynthesis of very-long-chain fatty acids for the establishment of the anther cuticle and pollen exine,were downregulated in osabcg15 mutant,suggesting that OsABCG15 may play a key function in the processes related to sporopollenin biosynthesis or sporopollenin transfer from tapetal cells to anther locules.Consistently,histological analysis showed that osabcg15 mutants developed obvious abnormality in postmeiotic tapetum degeneration,leading to rapid degredation of young microspores.The results suggest that OsABCG15 plays a critical role in exine formation and pollen development,similar to the homologous gene of AtABCG26 in Arabidopsis.This work is helpful to understand the regulatory network in rice anther development.

  16. Stickleback embryos use ATP-binding cassette transporters as a buffer against exposure to maternally derived cortisol.

    Science.gov (United States)

    Paitz, Ryan T; Bukhari, Syed Abbas; Bell, Alison M

    2016-03-16

    Offspring from females that experience stressful conditions during reproduction often exhibit altered phenotypes and many of these effects are thought to arise owing to increased exposure to maternal glucocorticoids. While embryos of placental vertebrates are known to regulate exposure to maternal glucocorticoids via placental steroid metabolism, much less is known about how and whether egg-laying vertebrates can control their steroid environment during embryonic development. We tested the hypothesis that threespine stickleback (Gasterosteus aculeatus) embryos can regulate exposure to maternal steroids via active efflux of maternal steroids from the egg. Embryos rapidly (within 72 h) cleared intact steroids, but blocking ATP-binding cassette (ABC) transporters inhibited cortisol clearance. Remarkably, this efflux of cortisol was sufficient to prevent a transcriptional response of embryos to exogenous cortisol. Taken together, these findings suggest that, much like their placental counterparts, developing fish embryos can actively regulate their exposure to maternal cortisol. These findings highlight the fact that even in egg-laying vertebrates, the realized exposure to maternal steroids is mediated by both maternal and embryonic processes and this has important implications for understanding how maternal stress influences offspring development. PMID:26984623

  17. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus

    Directory of Open Access Journals (Sweden)

    Yu Lan

    2012-08-01

    Full Text Available Abstract Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877 and 1.4-fold in SR16 (P = 0.00973 duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively. Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics.

  18. ATP binding cassette transporters modulate both coelenterazine- and D-luciferin- based bioluminescence imaging

    OpenAIRE

    Huang, Ruimin; Vider, Jelena; Serganova, Inna; Blasberg, Ronald G.

    2011-01-01

    Bioluminescence imaging (BLI) of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI-readout-intensity from intact living cells.

  19. ATP-Binding-Cassette Transporters in Biliary Efflux and Drug-Induced Liver Injury

    OpenAIRE

    Pedersen, Jenny M.

    2013-01-01

    Membrane transport proteins are known to influence the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. At the onset of this thesis work, only a few structure-activity models, in general describing P-glycoprotein (Pgp/ABCB1) interactions, were developed using small datasets with little structural diversity. In this thesis, drug-transport protein interactions were explored using large, diverse datasets representing the chemical space of orally administered registe...

  20. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zhang Jianzhen

    2011-10-01

    Full Text Available Abstract Background The ATP-binding cassette (ABC transporter superfamily is the largest transporter gene family responsible for transporting specific molecules across lipid membranes in all living organisms. In insects, ABC transporters not only have important functions in molecule transport, but also play roles in insecticide resistance, metabolism and development. Results From the genome of the silkworm, Bombyx mori, we have identified 51 putative ABC genes which are classified into eight subfamilies (A-H by phylogenetic analysis. Gene duplication is very evident in the ABCC and ABCG subfamilies, whereas gene numbers and structures are well conserved in the ABCD, ABCE, ABCF, and ABCH subfamilies. Microarray analysis revealed that expression of 32 silkworm ABC genes can be detected in at least one tissue during different developmental stages, and the expression patterns of some of them were confirmed by quantitative real-time PCR. A large number of ABC genes were highly expressed in the testis compared to other tissues. One of the ABCG genes, BmABC002712, was exclusively and abundantly expressed in the Malpighian tubule implying that BmABC002712 plays a tissue-specific role. At least 5 ABCG genes, including BmABC005226, BmABC005203, BmABC005202, BmABC010555, and BmABC010557, were preferentially expressed in the midgut, showing similar developmental expression profiles to those of 20-hydroxyecdysone (20E-response genes. 20E treatment induced the expression of these ABCG genes in the midgut and RNA interference-mediated knockdown of USP, a component of the 20E receptor, decreased their expression, indicating that these midgut-specific ABCG genes are 20E-responsive. Conclusion In this study, a genome-wide analysis of the silkworm ABC transporters has been conducted. A comparison of ABC transporters from 5 insect species provides an overview of this vital gene superfamily in insects. Moreover, tissue- and stage-specific expression data of the

  1. Osimertinib (AZD9291) Attenuates the Function of Multidrug Resistance-Linked ATP-Binding Cassette Transporter ABCB1 in Vitro.

    Science.gov (United States)

    Hsiao, Sung-Han; Lu, Yu-Jen; Li, Yan-Qing; Huang, Yang-Hui; Hsieh, Chia-Hung; Wu, Chung-Pu

    2016-06-01

    The effectiveness of cancer chemotherapy is often circumvented by multidrug resistance (MDR) caused by the overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 (MDR1, P-glycoprotein). Several epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been shown previously capable of modulating the function of ABCB1 and reversing ABCB1-mediated MDR in human cancer cells. Furthermore, some TKIs are transported by ABCB1, which results in low oral bioavailability, reduced distribution, and the development of acquired resistance to these TKIs. In this study, we investigated the interaction between ABCB1 and osimertinib, a novel selective, irreversible third-generation EGFR TKI that has recently been approved by the U.S. Food and Drug Administration. We also evaluated the potential impact of ABCB1 on the efficacy of osimertinib in cancer cells, which can present a therapeutic challenge to clinicians in the future. We revealed that although osimertinib stimulates the ATPase activity of ABCB1, overexpression of ABCB1 does not confer resistance to osimertinib. Our results suggest that it is unlikely that the overexpression of ABCB1 can be a major contributor to the development of osimertinib resistance in cancer patients. More significantly, we revealed an additional action of osimertinib that directly inhibits the function of ABCB1 without affecting the expression level of ABCB1, enhances drug-induced apoptosis, and reverses the MDR phenotype in ABCB1-overexpressing cancer cells. Considering that osimertinib is a clinically approved third-generation EGFR TKI, our findings suggest that a combination therapy with osimertinib and conventional anticancer drugs may be beneficial to patients with MDR tumors. PMID:27169328

  2. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain

    OpenAIRE

    Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G.; Guizzetti, Marina

    2014-01-01

    Aims: Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cho...

  3. Disruption of lolCDE, Encoding an ATP-Binding Cassette Transporter, Is Lethal for Escherichia coli and Prevents Release of Lipoproteins from the Inner Membrane

    OpenAIRE

    Narita, Shin-ichiro; Tanaka, Kimie; Matsuyama, Shin-ichi; Tokuda, Hajime

    2002-01-01

    ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstituti...

  4. Identification and Characterization of a Brucella abortus ATP-Binding Cassette Transporter Homolog to Rhizobium meliloti ExsA and Its Role in Virulence and Protection in Mice

    OpenAIRE

    G.M.S. Rosinha; Freitas, Daniela A.; Miyoshi, Anderson; Azevedo, Vasco; Campos, Eleonora; Cravero, Silvio L; Rossetti, Osvaldo; Splitter, Gary; S.C. Oliveira

    2002-01-01

    Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. The mechanism of virulence of Brucella spp. is not fully understood yet. Furthermore, genes that allow Brucella to reach the intracellular niche and to interact with host cells need to be identified. Using the genomic survey sequence (GSS) approach, we identified the gene encoding an ATP-binding cassette (ABC) transporter of B. abortus strain S2308. The ded...

  5. Influence of ATP-Binding Cassette Transporter 1 R219K and M883I Polymorphisms on Development of Atherosclerosis: A Meta-Analysis of 58 Studies

    OpenAIRE

    Yin, Yan-Wei; Li, Jing-Cheng; Gao, Dong; Chen, Yan-Xiu; Li, Bing-Hu; Wang, Jing-Zhou; Liu, Yun; Liao, Shao-Qiong; Zhang, Ming-Jie; Chang-yue GAO; Zhang, Li-li

    2014-01-01

    Background Numerous epidemiological studies have evaluated the associations between ATP-binding cassette transporter 1 (ABCA1) R219K (rs2230806) and M883I (rs4149313) polymorphisms and atherosclerosis (AS), but results remain controversial. The purpose of the present study is to investigate whether these two polymorphisms facilitate the susceptibility to AS using a meta-analysis. Methods PubMed, Embase, Web of Science, Medline, Cochrane database, Clinicaltrials.gov, Current Controlled Trials,...

  6. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    Science.gov (United States)

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface. PMID:24019465

  7. IMB2026791, a Xanthone, Stimulates Cholesterol Efflux by Increasing the Binding of Apolipoprotein A-I to ATP-Binding Cassette Transporter A1

    Directory of Open Access Journals (Sweden)

    Zijian Xie

    2012-03-01

    Full Text Available It is known that the ATP-binding cassette transporter A1 (ABCA1 plays a major role in cholesterol homeostasis and high density lipoprotein (HDL metabolism. Several laboratories have demonstrated that ABCA1 binding to lipid-poor apolipoprotein A-I (apoA-I will mediate the assembly of nascent HDL and cellular cholesterol efflux, which suggests a possible receptor-ligand interaction between ABCA1 and apoA-I. In this study, a cell-based-ELISA-like high-throughput screening (HTS method was developed to identify the synthetic and natural compounds that can regulate binding activity of ABCA1 to apoA-I. The cell-based-ELISA-like high-throughput screen was conducted in a 96-well format using Chinese hamster ovary (CHO cells stably transfected with ABCA1 pIRE2-EGFP (Enhanced Green Fluorecence Protein expression vector and the known ABCA1 inhibitor glibenclamide as the antagonist control. From 2,600 compounds, a xanthone compound (IMB 2026791 was selected using this HTS assay, and it was proved as an apoA-I binding agonist to ABCA1 by a flow cytometry assay and western blot analysis. The [3H] cholesterol efflux assay of IMB2026791 treated ABCA1-CHO cells and PMA induced THP-1 macrophages (human acute monocytic leukemia cell further confirmed the compound as an accelerator of cholesterol efflux in a dose-dependent manner with an EC50 of 25.23 μM.

  8. Evaluation of the role of ATP-binding cassette transporters as a defence mechanism against temephos in populations of Aedes aegypti.

    Science.gov (United States)

    Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite

    2014-11-01

    The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM). The best result in the series was obtained with the addition of verapamil (40 μM), which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated. PMID:25411004

  9. Evaluation of the role of ATP-binding cassette transporters as a defence mechanism against temephos in populations of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Estelita Pereira Lima

    2014-11-01

    Full Text Available The role of ATP-binding cassette (ABC transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM. The best result in the series was obtained with the addition of verapamil (40 μM, which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.

  10. Evaluation of the role of ATP-binding cassette transporters as a defence mechanism against temephos in populations of Aedes aegypti

    OpenAIRE

    Estelita Pereira Lima; Marília Oliveira Fonseca Goulart; Modesto Leite Rolim Neto

    2014-01-01

    The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM). The best result in the series was obtained with the addition of verapamil (40 μM), which led to a 2x increase in t...

  11. Genetic Analysis of the Mode of Interplay between an ATPase Subunit and Membrane Subunits of the Lipoprotein-Releasing ATP-Binding Cassette Transporter LolCDE†

    OpenAIRE

    Ito, Yasuko; Matsuzawa, Hitomi; Matsuyama, Shin-ichi; Narita, Shin-ichiro; Tokuda, Hajime

    2006-01-01

    The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the i...

  12. The Klebsiella pneumoniae O12 ATP-binding Cassette (ABC) Transporter Recognizes the Terminal Residue of Its O-antigen Polysaccharide Substrate.

    Science.gov (United States)

    Mann, Evan; Mallette, Evan; Clarke, Bradley R; Kimber, Matthew S; Whitfield, Chris

    2016-04-29

    Export of the Escherichia coli serotype O9a O-antigenic polysaccharides (O-PS) involves an ATP-binding cassette (ABC) transporter. The process requires a non-reducing terminal residue, which is recognized by a carbohydrate-binding module (CBM) appended to the C terminus of the nucleotide-binding domain of the transporter. Here, we investigate the process in Klebsiella pneumoniae serotype O12 (and Raoultella terrigena ATCC 33257). The O12 polysaccharide is terminated at the non-reducing end by a β-linked 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue. The O12 ABC transporter also binds its cognate O-PS via a CBM, and export is dependent on the presence of the terminal β-Kdo residue. The overall structural architecture of the O12 CBM resembles the O9a prototype, but they share only weak sequence similarity, and the putative binding pocket for the O12 glycan is different. Removal of the CBM abrogated O-PS transport, but export was restored when the CBM was expressed in trans with the mutant CBM-deficient ABC transporter. These results demonstrate that the CBM-mediated substrate-recognition mechanism is evolutionarily conserved and can operate with glycans of widely differing structures. PMID:26934919

  13. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K;

    2001-01-01

    We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100...... microM. To determine putative mechanisms of resistance to flavopiridol, we exposed the human breast cancer cell line MCF-7 to incrementally increasing concentrations of flavopiridol. The resulting resistant subline, MCF-7 FLV1000, is maintained in 1,000 nM flavopiridol and was found to be 24-fold...

  14. Rice Stomatal Closure Requires Guard Cell Plasma Membrane ATP-Binding Cassette Transporter RCN1/OsABCG5.

    Science.gov (United States)

    Matsuda, Shuichi; Takano, Sho; Sato, Moeko; Furukawa, Kaoru; Nagasawa, Hidetaka; Yoshikawa, Shoko; Kasuga, Jun; Tokuji, Yoshihiko; Yazaki, Kazufumi; Nakazono, Mikio; Takamure, Itsuro; Kato, Kiyoaki

    2016-03-01

    Water stress is one of the major environmental stresses that affect agricultural production worldwide. Water loss from plants occurs primarily through stomatal pores. Here, we report that an Oryza sativa half-size ATP-binding cassette (ABC) subfamily G protein, RCN1/OsABCG5, is involved in stomatal closure mediated by phytohormone abscisic acid (ABA) accumulation in guard cells. We found that the GFP-RCN1/OsABCG5-fusion protein was localized at the plasma membrane in guard cells. The percentage of guard cell pairs containing both ABA and GFP-RCN1/OsABCG5 increased after exogenous ABA treatment, whereas they were co-localized in guard cell pairs regardless of whether exogenous ABA was applied. ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in rcn1 mutant (A684P) and RCN1-RNAi than in wild-type plants. Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in rcn1 mutants. Stomata closure mediated by exogenous ABA application was strongly reduced in rcn1 mutants. Finally, rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants. These results indicate that in response to drought stress, RCN1/OsABCG5 is involved in accumulation of ABA in guard cells, which is indispensable for stomatal closure. PMID:26708605

  15. ATP–Binding Cassette Transporter Structure Changes Detected by Intramolecular Fluorescence Energy Transfer for High-Throughput Screening

    OpenAIRE

    Iram, Surtaj H.; Gruber, Simon J.; Raguimova, Olga N.; Thomas, David D.; Seth L Robia

    2015-01-01

    Multidrug resistance protein 1 (MRP1) actively transports a wide variety of drugs out of cells. To quantify MRP1 structural dynamics, we engineered a “two-color MRP1” construct by fusing green fluorescent protein (GFP) and TagRFP to MRP1 nucleotide–binding domains NBD1 and NBD2, respectively. The recombinant MRP1 protein expressed and trafficked normally to the plasma membrane. Two-color MRP1 transport activity was normal, as shown by vesicular transport of [3H]17β-estradiol-17-β-(d-glucuroni...

  16. Construction of deletion mutants in the phosphotransferase transport system and adenosine triphosphate-binding cassette transporters in Listeria monocytogenes and analysis of their growth under different stress conditions

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2013-10-01

    Full Text Available Functional genomics approaches enable us to investigate the biochemical, cellular, and physiological properties of each gene product and are nowadays applied to enhance food safety by understanding microbial stress responses in food and host-pathogen interactions. Listeria monocytogenes is a food-borne pathogen that causes listeriosis and is difficult to eliminate this pathogen since it can survive under multiple stress conditions such as low pH and low temperature. Detailed studies are needed to determine its mode of action and to understand the mechanisms that protect the pathogen when it is subjected to stress. In this study, deletion mutants of phosphotransferase transport system genes (PTS and adenosine triphosphate(ATP-binding cassette transporters (ABC of Listeria monocytogenes F2365 were created using molecular techniques. These mutants and the wild-type were tested under different stress conditions, such as in solutions with different NaCl concentration, pH value and for nisin resistance. Results demonstrate that the behaviour of these deletion mutants is different from the wild type. In particular, deleted genes may be involved in L. monocytogenes resistance to nisin and to acid and salt concentrations. Functional genomics research on L. monocytogenes allows a better understanding of the genes related to stress responses and this knowledge may help in intervention strategies to control this food-borne pathogen. Furthermore, specific gene markers can be used to identify and subtype L. monocytogenes. Thus, future development of this study will focus on additional functional analyses of important stress response-related genes, as well as on methods for rapid and sensitive detection of L. monocytogenes such as using DNA microarrays.

  17. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice

    NARCIS (Netherlands)

    Kruit, J. K.; Kremer, P. H. C.; Dai, L.; Tang, R.; Ruddle, P.; de Haan, W.; Brunham, L. R.; Verchere, C. B.; Hayden, M. R.

    2010-01-01

    Cellular cholesterol accumulation is an emerging mechanism for beta cell dysfunction in type 2 diabetes. Absence of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) results in increased islet cholesterol and impaired insulin secretion, indicating that impaired cholesterol effl

  18. Cooperative transcriptional activation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 genes by nuclear receptors including Liver-X-Receptor

    Directory of Open Access Journals (Sweden)

    Su Sun Back

    2013-06-01

    Full Text Available The ATP-binding cassette transporters ABCG5 and ABCG8 formheterodimers that limit absorption of dietary sterols in theintestine and promote cholesterol elimination from the bodythrough hepatobiliary secretion. To identify cis-regulatoryelements of the two genes, we have cloned and analyzedtwenty-three evolutionary conserved region (ECR fragmentsusing the CMV-luciferase reporter system in HepG2 cells. TwoECRs were found to be responsive to the Liver-X-Receptor (LXR.Through elaborate deletion studies, regions containing putativeLXREs were identified and the binding of LXRα wasdemonstrated by EMSA and ChIP assay. When the LXREs wereinserted upstream of the intergenic promoter, synergisticactivation by LXRα/RXRα in combination with GATA4, HNF4α,and LRH-1, which had been shown to bind to the intergenicregion, was observed. In conclusion, we have identified twoLXREs in ABCG5/ABCG8 genes for the first time and proposethat these LXREs, especially in the ECR20, play major roles inregulating these genes. [BMB Reports 2013; 46(6: 322-327

  19. Functional expressions of adenosine triphosphate-binding cassette transporters during the development of zebrafish embryos and their effects on the detoxification of cadmium chloride and β-naphthoflavone.

    Science.gov (United States)

    Yin, Huancai; Bai, Pengli; Miao, Peng; Chen, Mingli; Hu, Jun; Deng, Xudong; Yin, Jian

    2016-07-01

    Adenosine triphosphate-binding cassette (ABC) transporters, including ABCB, ABCC and ABCG families represent general biological defenses against environmental toxicants in varieties of marine and freshwater organisms, but their physiological functions at differential developmental stages of zebrafish embryos remain undefined. In this work, functional expressions of typical ABC transporters including P-glycoprotein (Pgp), multiresistance associated protein 1 (Mrp1) and Mrp2 were studied in zebrafish embryos at 4, 24, 48 and 72 h post-fertilization (hpf). As a result, both the gene expressions and activities of Pgp and Mrps increased with the development of embryos. Correspondingly, 4-72 hpf embryos exhibited an increased tolerance to the toxicity caused by cadmium chloride (CdCl2 ) and β-naphthoflavone (BNF) with time. Such a correlation was assumed caused by the involvement of ABC transporters in the detoxification of chemicals. In addition, the assumption was supported by the fact that model efflux inhibitors of Pgp and Mrps such as reversine 205 and MK571 significantly inhibited the efflux of toxicants and increased the toxicity of Cd and BNF in zebrafish embryos. Moreover, exposure to CdCl2 and BNF induced the gene expressions of Pgp and Mrp1 in 72 hpf embryos. Thus, functional expressions of Pgp and Mrps increased with the development of zebrafish embryos, which could cause an increasing tolerance of zebrafish embryos to CdCl2 and BNF. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26387481

  20. Hernandezine, a Bisbenzylisoquinoline Alkaloid with Selective Inhibitory Activity against Multidrug-Resistance-Linked ATP-Binding Cassette Drug Transporter ABCB1.

    Science.gov (United States)

    Hsiao, Sung-Han; Lu, Yu-Jen; Yang, Chun-Chiao; Tuo, Wei-Cherng; Li, Yan-Qing; Huang, Yang-Hui; Hsieh, Chia-Hung; Hung, Tai-Ho; Wu, Chung-Pu

    2016-08-26

    The overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 (P-glycoprotein, MDR1) is the most studied mechanism of multidrug resistance (MDR), which remains a major obstacle in clinical cancer chemotherapy. Consequently, resensitizing MDR cancer cells by inhibiting the efflux function of ABCB1 has been considered as a potential strategy to overcome ABCB1-mediated MDR in cancer patients. However, the task of developing a suitable modulator of ABCB1 has been hindered mostly by the lack of selectivity and high intrinsic toxicity of candidate compounds. Considering the wide range of diversity and relatively nontoxic nature of natural products, developing a potential modulator of ABCB1 from natural sources is particularly valuable. Through screening of a large collection of purified bioactive natural products, hernandezine was identified as a potent and selective reversing agent for ABCB1-mediated MDR in cancer cells. Experimental data demonstrated that the bisbenzylisoquinoline alkaloid hernandezine is selective for ABCB1, effectively inhibits the transport function of ABCB1, and enhances drug-induced apoptosis in cancer cells. More importantly, hernandezine significantly resensitizes ABCB1-overexpressing cancer cells to multiple chemotherapeutic drugs at nontoxic, nanomolar concentrations. Collectively, these findings reveal that hernandezine has great potential to be further developed into a novel reversal agent for combination therapy in MDR cancer patients. PMID:27504669

  1. Corticotropin-Releasing Hormone (CRH Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1.

    Directory of Open Access Journals (Sweden)

    Wonkyoung Cho

    Full Text Available Atherosclerosis, the major pathology of cardiovascular disease, is caused by multiple factors involving psychological stress. Corticotropin-releasing hormone (CRH, which is released by neurosecretory cells in the hypothalamus, peripheral nerve terminals and epithelial cells, regulates various stress-related responses. Our current study aimed to verify the role of CRH in macrophage foam cell formation, the initial critical stage of atherosclerosis. Our quantitative real-time reverse transcriptase PCR (qRT-PCR, semi-quantitative reverse transcriptase PCR, and Western blot results indicate that CRH down-regulates ATP-binding cassette transporter-1 (ABCA1 and liver X receptor (LXR-α, a transcription factor for ABCA1, in murine peritoneal macrophages and human monocyte-derived macrophages. Oil-red O (ORO staining and intracellular cholesterol measurement of macrophages treated with or without oxidized LDL (oxLDL and with or without CRH (10 nM in the presence of apolipoprotein A1 (apoA1 revealed that CRH treatment promotes macrophage foam cell formation. The boron-dipyrromethene (BODIPY-conjugated cholesterol efflux assay showed that CRH treatment reduces macrophage cholesterol efflux. Western blot analysis showed that CRH-induced down-regulation of ABCA1 is dependent on phosphorylation of Akt (Ser473 induced by interaction between CRH and CRH receptor 1(CRHR1. We conclude that activation of this pathway by CRH accelerates macrophage foam cell formation and may promote stress-related atherosclerosis.

  2. MicroRNA 28-5p regulates ATP-binding cassette transporter A1 via inhibiting extracellular signal-regulated kinase 2.

    Science.gov (United States)

    Liu, Jia; Liu, Xue-Qing; Liu, Ying; Sun, Ya-Nan; Li, Si; Li, Chun-Mei; Li, Jie; Tian, Wei; Shang, Xiao-Ming; Zhou, Yun-Tao

    2016-01-01

    The biological function of the intronic microRNA-28 (miR-28) may be associated with the biological roles of its host gene, LIM domain lipoma‑preferred partner (LPP). LPP has been reported to promote smooth muscle cell migration in arterial injury and atherosclerosis. However, the mechanism of miR‑28 in atherosclerosis remains unclear. In the current study, the aim was to validate the inhibitory effect of miR‑28‑5p on extracellular signal‑regulated kinase 2 (ERK2), to investigate its biological role in atherosclerosis and its association with cardiovascular disease. Western blotting and stem‑loop reverse transcription‑quantitative polymerase chain reaction combined with TaqMAN microRNA analysis was conducted. The current study demonstrated that miR‑28‑5p upregulated the expression of ATP‑binding cassette transporter A1 (ABCA1) via the inhibition of ERK2 in HepG2 cells. In addition, increased levels of plasma miR‑28‑5p were positively correlated with the levels of high‑density lipoprotein cholesterol in patients with unstable angina. This suggests that miR-28-5p participates in atherosclerosis via ERK2-mediated upregulation of the ABCA1 pathway. PMID:26718613

  3. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  4. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma.

    Directory of Open Access Journals (Sweden)

    Yung-Kuo Lee

    Full Text Available Multidrug resistance (MDR, an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi on the β-catenin/GSK-3β pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, β-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp, MDR-associated protein (MRP 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, β-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3β, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3β and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the β-catenin/GSK-3β pathway in human colon cancer cells.

  5. Identification of Dehydroxytrichostatin A as a Novel Up-Regulator of the ATP-Binding Cassette Transporter A1 (ABCA1

    Directory of Open Access Journals (Sweden)

    Shuyi Si

    2011-08-01

    Full Text Available The ATP-binding cassette transporter A1 (ABCA1 mediates the cellular efflux of excess cholesterol and phospholipids to lipid-poor apolipoprotein A-I (apoA-I. ABCA1 plays an important role in high-density lipoprotein (HDL biogenesis and reverse cholesterol transport. By using a cell-based screening model for the ABCA1 up-regulator and column chromatography, an active compound, 9179B, was isolated. Through analysis of its NMR data, 9179B was identified as dehydroxytrichostatin A. We found that 9179B increased the transcription of ABCA1 in a cell-based reporter assay, with an EC50 value of 2.65 μM. 9179B up-regulated ABCA1 expression at both mRNA and protein levels in HepG2 and RAW264.7 cells. It also up-regulated the expression of scavenger receptor class B type I (SR-BI as well as the uptake of DiI-HDL in RAW264.7 cells. This compound stimulated ApoA-I-mediated cellular cholesterol efflux from RAW 264.7 cells. We further found that 9179B was a potent histone deacetylase (HDAC inhibitor with an IC50 value of 0.08 μM. Reporter gene assays showed that the regulation of ABCA1 transcription by 9179B was mainly mediated by the −171/−75 bp promoter region. Together, our results indicate that 9179B is an ABCA1 up-regulator and dehydroxytrichostatin A may be a novel anti-atherogenic compound.

  6. Clinical significance of high-density lipoproteins and the development of atherosclerosis: focus on the role of the adenosine triphosphate-binding cassette protein A1 transporter.

    Science.gov (United States)

    Brewer, H Bryan; Santamarina-Fojo, Silvia

    2003-08-21

    Low levels of high-density lipoprotein (HDL) cholesterol constitute a risk factor for coronary artery disease, and there is evidence that increasing HDL cholesterol levels reduces cardiovascular risk. The phenotype of low HDL cholesterol with or without elevated triglycerides is at least as common in patients hospitalized for cardiovascular disease as is hypercholesterolemia, and it is characteristic of diabetes and the metabolic syndrome, conditions associated with increased cardiovascular risk. Recent studies have elucidated mechanisms by which HDL acts to reduce cardiovascular risk, bolstering the rationale for targeting of HDL in lipid-modifying therapy. In particular, HDL (1) carries excess cholesterol from peripheral cells to the liver for removal in the process termed reverse cholesterol transport, (2) reduces oxidative modification of low-density lipoproteins (LDL), and (3) inhibits cytokine-induced expression of cellular adhesion molecules on endothelial cells. Studies of the newly described adenosine triphosphate-binding cassette protein A1 (ABCA1) transporter have established a crucial role for this transporter in modulating the levels of plasma HDL and intracellular cholesterol in the liver as well as in peripheral cells. Elevated levels of intracellular cholesterol stimulate the liver X receptor pathway, enhancing the expression of ABCA1, which increases intracellular trafficking of excess cholesterol to the cell surface for interaction with lipid-poor apolipoprotein A-I to form nascent HDL. Nascent HDL facilitates the removal of additional excess cellular cholesterol, which is esterified by lecithin-cholesterol acyltransferase with conversion of the nascent HDL to mature spherical HDL. Overexpression of ABCA1 in mice on a regular chow or Western diet results in a marked increase in plasma HDL, increased LDL, and increased transport of cholesterol to the liver. On a high cholesterol/cholate diet, transgenic mice overexpressing ABCA1 have increased HDL

  7. Pharmacophore Modeling of Nilotinib as an Inhibitor of ATP-Binding Cassette Drug Transporters and BCR-ABL Kinase Using a Three-Dimensional Quantitative Structure–Activity Relationship Approach

    OpenAIRE

    Shukla, Suneet; Kouanda, Abdul; Silverton, Latoya; Talele, Tanaji T.; Suresh V Ambudkar

    2014-01-01

    Nilotinib (Tasigna) is a tyrosine kinase inhibitor approved by the FDA to treat chronic phase chronic myeloid leukemia patients. It is also a transport substrate of the ATP-binding cassette (ABC) drug efflux transporters ABCB1 (P-glycoprotein, P-gp) and ABCG2 (BCRP), which may have an effect on the pharmacokinetics and toxicity of this drug. The goal of this study was to identify pharmacophoric features of nilotinib in order to potentially develop specific inhibitors of BCR-ABL kinase with mi...

  8. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPARγ–LXRα–ABCA1 pathway

    International Nuclear Information System (INIS)

    Highlights: ► Using an ABCA1p-LUC HepG2 cell line, we found that MPA upregulated ABCA1 expression. ► MPA induced ABCA1 and LXRα protein expression in HepG2 cells. ► PPARγ antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXRα protein expression. ► The effect of MPA upregulating ABCA1 was due mainly to activation of the PPARγ-LXRα-ABCA1 pathway. -- Abstract: ATP-binding cassette transporter A1 (ABCA1) promotes cholesterol and phospholipid efflux from cells to lipid-poor apolipoprotein A-I and plays an important role in atherosclerosis. In a previous study, we developed a high-throughput screening method using an ABCA1p-LUC HepG2 cell line to find upregulators of ABCA1. Using this method in the present study, we found that mycophenolic acid (MPA) upregulated ABCA1 expression (EC50 = 0.09 μM). MPA upregulation of ABCA1 expression was confirmed by real-time quantitative reverse transcription-PCR and Western blot analysis in HepG2 cells. Previous work has indicated that MPA is a potent agonist of peroxisome proliferator-activated receptor gamma (PPARγ; EC50 = 5.2–9.3 μM). Liver X receptor α (LXRα) is a target gene of PPARγ and may directly regulate ABCA1 expression. Western blot analysis showed that MPA induced LXRα protein expression in HepG2 cells. Addition of PPARγ antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXRα protein expression. These data suggest that MPA increased ABCA1 expression mainly through activation of PPARγ. Thus, the effects of MPA on upregulation of ABCA1 expression were due mainly to activation of the PPARγ–LXRα–ABCA1 signaling pathway. This is the first report that the antiatherosclerosis activity of MPA is due to this mechanism.

  9. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPAR{gamma}-LXR{alpha}-ABCA1 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanni; Lai, Fangfang; Xu, Yang; Wu, Yexiang; Liu, Qi; Li, Ni; Wei, Yuzhen; Feng, Tingting; Zheng, Zhihui; Jiang, Wei; Yu, Liyan; Hong, Bin [Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050 (China); Si, Shuyi, E-mail: sisyimb@hotmail.com [Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050 (China)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Using an ABCA1p-LUC HepG2 cell line, we found that MPA upregulated ABCA1 expression. Black-Right-Pointing-Pointer MPA induced ABCA1 and LXR{alpha} protein expression in HepG2 cells. Black-Right-Pointing-Pointer PPAR{gamma} antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXR{alpha} protein expression. Black-Right-Pointing-Pointer The effect of MPA upregulating ABCA1 was due mainly to activation of the PPAR{gamma}-LXR{alpha}-ABCA1 pathway. -- Abstract: ATP-binding cassette transporter A1 (ABCA1) promotes cholesterol and phospholipid efflux from cells to lipid-poor apolipoprotein A-I and plays an important role in atherosclerosis. In a previous study, we developed a high-throughput screening method using an ABCA1p-LUC HepG2 cell line to find upregulators of ABCA1. Using this method in the present study, we found that mycophenolic acid (MPA) upregulated ABCA1 expression (EC50 = 0.09 {mu}M). MPA upregulation of ABCA1 expression was confirmed by real-time quantitative reverse transcription-PCR and Western blot analysis in HepG2 cells. Previous work has indicated that MPA is a potent agonist of peroxisome proliferator-activated receptor gamma (PPAR{gamma}; EC50 = 5.2-9.3 {mu}M). Liver X receptor {alpha} (LXR{alpha}) is a target gene of PPAR{gamma} and may directly regulate ABCA1 expression. Western blot analysis showed that MPA induced LXR{alpha} protein expression in HepG2 cells. Addition of PPAR{gamma} antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXR{alpha} protein expression. These data suggest that MPA increased ABCA1 expression mainly through activation of PPAR{gamma}. Thus, the effects of MPA on upregulation of ABCA1 expression were due mainly to activation of the PPAR{gamma}-LXR{alpha}-ABCA1 signaling pathway. This is the first report that the antiatherosclerosis activity of MPA is due to this mechanism.

  10. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    International Nuclear Information System (INIS)

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance

  11. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  12. Analysis of the effect of the bovine adenosine triphosphate-binding cassette transporter G2 single nucleotide polymorphism Y581S on transcellular transport of veterinary drugs using new cell culture models.

    Science.gov (United States)

    Real, R; González-Lobato, L; Baro, M F; Valbuena, S; de la Fuente, A; Prieto, J G; Alvarez, A I; Marques, M M; Merino, G

    2011-12-01

    In commercial dairy production, the risk of drug residues and environmental pollutants in milk from ruminants has become an outstanding problem. One of the main determinants of active drug secretion into milk is the ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP). It is located in several organs associated with drug absorption, metabolism, and excretion, and its expression is highly induced during lactation in the mammary gland of ruminants, mice, and humans. As a consequence, potential contamination of milk could expose suckling infants to xenotoxins. In cows, a SNP for this protein affecting quality and quantity of milk production has been described previously (Y581S). In this study, our main purpose was to determine whether this polymorphism has an effect on transcellular transport of veterinary drugs because this could alter substrate pharmacokinetics and milk residues. We stably expressed the wild-type bovine ABCG2 and the Y581S variant in Madin-Darby canine kidney epithelial cells (MDCKII) and MEF3.8 cell lines generating cell models in which the functionality of the bovine transporter could be addressed. Functional studies confirmed the greater functional activity in mitoxantrone accumulation assays for the Y581S variant with a greater relative V(MAX) value (P = 0.040) and showed for the first time that the Y581S variant presents greater transcellular transport of the model ABCG2 substrate nitrofurantoin (P = 0.024) and of 3 veterinary antibiotics, the fluoroquinolone agents enrofloxacin (P = 0.035), danofloxacin (P = 0.001), and difloxacin (P = 0.008), identified as new substrates of the bovine ABCG2. In addition, the inhibitory effect of the macrocyclic lactone ivermectin on the activity of wild-type bovine ABCG2 and the Y581S variant was also confirmed, showing a greater inhibitory potency on the wild-type protein at all the concentrations tested (5 μM, P = 0.017; 10 μM, P = 0.001; 25 μM, P = 0.008; and 50 μM, P = 0

  13. ROLE OF ATP BINDING CASSETTE SUB-FAMILY MEMBER 2 (ABCG2) IN MOUSE EMBRYONIC STEM CELL DEVELOPMENT.

    Science.gov (United States)

    ATP binding cassette sub-family member 2 (ABCG2), is a member of the ABC transporter superfamily and a principal xenobiotic transporter. ABCG2 is also highly expressed in certain stem cell populations where it is thought to be related to stem cell plasticity, although the role o...

  14. Characterization of DalS, an ATP-binding cassette transporter for D-alanine, and its role in pathogenesis in Salmonella enterica.

    Science.gov (United States)

    Osborne, Suzanne E; Tuinema, Brian R; Mok, Mac C Y; Lau, Pui Sai; Bui, Nhat Khai; Tomljenovic-Berube, Ana M; Vollmer, Waldemar; Zhang, Kun; Junop, Murray; Coombes, Brian K

    2012-05-01

    Expansion into new host niches requires bacterial pathogens to adapt to changes in nutrient availability and to evade an arsenal of host defenses. Horizontal acquisition of Salmonella Pathogenicity Island (SPI)-2 permitted the expansion of Salmonella enterica serovar Typhimurium into the intracellular environment of host cells by allowing it to deliver bacterial effector proteins across the phagosome membrane. This is facilitated by the SsrA-SsrB two-component regulatory system and a type III secretion system encoded within SPI-2. SPI-2 acquisition was followed by evolution of existing regulatory DNA, creating an expanded SsrB regulon involved in intracellular fitness and host infection. Here, we identified an SsrB-regulated operon comprising an ABC transporter in Salmonella. Biochemical and structural studies determined that the periplasmic solute-binding component, STM1633/DalS, transports D-alanine and that DalS is required for intracellular survival of the bacteria and for fitness in an animal host. This work exemplifies the role of nutrient exchange at the host-pathogen interface as a critical determinant of disease outcome. PMID:22418438

  15. Inhibitory Potential of Antifungal Drugs on ATP-Binding Cassette Transporters P-Glycoprotein, MRP1 to MRP5, BCRP, and BSEP.

    Science.gov (United States)

    Lempers, Vincent J C; van den Heuvel, Jeroen J M W; Russel, Frans G M; Aarnoutse, Rob E; Burger, David M; Brüggemann, Roger J; Koenderink, Jan B

    2016-06-01

    Inhibition of ABC transporters is a common mechanism underlying drug-drug interactions (DDIs). We determined the inhibitory potential of antifungal drugs currently used for invasive fungal infections on ABC transporters P-glycoprotein (P-gp), MRP1 to MRP5, BCRP, and BSEP in vitro Membrane vesicles isolated from transporter-overexpressing HEK 293 cells were used to investigate the inhibitory potential of antifungal drugs (250 μM) on transport of model substrates. Concentration-inhibition curves were determined if transport inhibition was >60%. Fifty percent inhibitory concentrations (IC50s) for P-gp and BCRP were both 2 μM for itraconazole, 5 and 12 μM for hydroxyitraconazole, 3 and 6 μM for posaconazole, and 3 and 11 μM for isavuconazole, respectively. BSEP was strongly inhibited by itraconazole and hydroxyitraconazole (3 and 17 μM, respectively). Fluconazole and voriconazole did not inhibit any transport for >60%. Micafungin uniquely inhibited all transporters, with strong inhibition of MRP4 (4 μM). Anidulafungin and caspofungin showed strong inhibition of BCRP (7 and 6 μM, respectively). Amphotericin B only weakly inhibited BCRP-mediated transport (127 μM). Despite their wide range of DDIs, azole antifungals exhibit selective inhibition on efflux transporters. Although echinocandins display low potential for clinically relevant DDIs, they demonstrate potent in vitro inhibitory activity. This suggests that inhibition of ABC transporters plays a crucial role in the inexplicable (non-cytochrome P450-mediated) DDIs with antifungal drugs. PMID:27001813

  16. Genome-wide identification and evolution of ATP-binding cassette transporters in the ciliate Tetrahymena thermophila: A case of functional divergence in a multigene family

    Directory of Open Access Journals (Sweden)

    Yuan Dongxia

    2010-10-01

    Full Text Available Abstract Background In eukaryotes, ABC transporters that utilize the energy of ATP hydrolysis to expel cellular substrates into the environment are responsible for most of the efflux from cells. Many members of the superfamily of ABC transporters have been linked with resistance to multiple drugs or toxins. Owing to their medical and toxicological importance, members of the ABC superfamily have been studied in several model organisms and warrant examination in newly sequenced genomes. Results A total of 165 ABC transporter genes, constituting a highly expanded superfamily relative to its size in other eukaryotes, were identified in the macronuclear genome of the ciliate Tetrahymena thermophila. Based on ortholog comparisons, phylogenetic topologies and intron characterizations, each highly expanded ABC transporter family of T. thermophila was classified into several distinct groups, and hypotheses about their evolutionary relationships are presented. A comprehensive microarray analysis revealed divergent expression patterns among the members of the ABC transporter superfamily during different states of physiology and development. Many of the relatively recently formed duplicate pairs within individual ABC transporter families exhibit significantly different expression patterns. Further analysis showed that multiple mechanisms have led to functional divergence that is responsible for the preservation of duplicated genes. Conclusion Gene duplications have resulted in an extensive expansion of the superfamily of ABC transporters in the Tetrahymena genome, making it the largest example of its kind reported in any organism to date. Multiple independent duplications and subsequent divergence contributed to the formation of different families of ABC transporter genes. Many of the members within a gene family exhibit different expression patterns. The combination of gene duplication followed by both sequence divergence and acquisition of new patterns of

  17. The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes.

    Science.gov (United States)

    Rioult, Damien; Pasquier, Jennifer; Boulangé-Lecomte, Céline; Poret, Agnès; Abbas, Imane; Marin, Matthieu; Minier, Christophe; Le Foll, Frank

    2014-08-01

    In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis. Previous studies have also shown that these cells are able to efflux xenobiotics by means of ATP binding cassette (ABC) transporter activities conferring a multixenobiotic resistance (MXR) phenotype. ABC transporters corresponding to vertebrate class B/P-glycoprotein (P-gp) and to class C/multidrug resistance related protein (MRP) are characterized in Mytilidae. Herein, we have investigated the relative contributions of ABCB- and ABCC-mediated efflux within the different hemocyte subpopulations of Mytilus edulis mussels, collected from areas differentially impacted by chemical contaminants in Normandy (France). RT-PCR analyses provide evidence for the presence of ABCB and ABCC transporters transcripts in hemocytes. Immunodetection of ABCB/P-gp with the monoclonal antibody UIC2 in living hemocytes revealed that expression was restricted to granular structures of spread cells. Efflux transporter activities, with calcein-AM as fluorescent probe, were measured by combining flow cytometry to accurate Coulter cell size measurements in order to get a cell-volume normalized fluorescence concentration. In these conditions, basal fluorescence levels were higher in hemocytes originating from Yport (control site) than in cells collected from the harbor of Le Havre, where mussels are more exposed to with persistent pollutants. By using specific ABCB/P-gp (verapamil, PSC833, zosuquidar) and ABCC/MRP (MK

  18. Polymorphisms of ATP binding cassette G5 and G8 transporters: their effect on cholesterol metabolism after moderate weight loss in overweight and obese hyperlipidemic women

    Science.gov (United States)

    To determine the effect of polymorphisms ABCG5 and ABCG8 transporters on changes in lipid levels, cholesterol absorption rate (ABS), fractional synthesis rate (FSR), and turnover (TO) after moderate weight loss (WtL) in women. Cholesterol metabolism was measured pre and post WtL in 35 hyperlipidemic...

  19. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins

    Science.gov (United States)

    Tseng, Pei-Chi; Lee, Tzong-Shyuan; Lee, Wen-Jane; Chang, Pey-Jium; Chiang, An-Na

    2016-01-01

    Metabolic syndrome (MetS) is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR)-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1) regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3′-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes. PMID:27139226

  20. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Park, Bo-Kyoung; Hahn, Tae-Wook

    2016-06-01

    Brucella abortus RB51 is an attenuated vaccine strain that has been most frequently used for bovine brucellosis. Although it is known to provide good protection in cattle, it still has some drawbacks including resistance to rifampicin, residual virulence and pathogenicity in humans. Thus, there has been a continuous interest on new safe and effective bovine vaccine candidates. In the present study, we have constructed unmarked mutants by deleting singly cydD and cydC genes, which encode ATP-binding cassette transporter proteins, from the chromosome of the virulent Brucella abortus isolate from Korean cow (referred to as IVK15). Both IVK15ΔcydD and ΔcydC mutants showed increased sensitivity to metal ions, hydrogen peroxide and acidic pH, which are mimic to intracellular environment during host infection. Additionally, the mutants exhibited a significant growth defect in RAW264.7 cells and greatly attenuated in mice. Vaccination of mice with either IVK15ΔcydC or IVK15ΔcydD mutant could elicit an anti-Brucella specific immunoglobulin G (IgG) and IgG subclass responses as well as enhance the secretion of interferon-gamma, and provided better protection against challenge with B. abortus strain 2308 than with the commercial B. abortus strain RB51 vaccine. Collectively, these results suggest that both IVK15ΔcydC and IVK15ΔcydD mutants could be an attenuated vaccine candidate against B. abortus. PMID:27057678

  1. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    OpenAIRE

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, ...

  2. ATP-Binding Cassette Proteins: Towards a Computational View of Mechanism

    Science.gov (United States)

    Liao, Jielou

    2004-03-01

    Many large machine proteins can generate mechanical force and undergo large-scale conformational changes (LSCC) to perform varying biological tasks in living cells by utilizing ATP. Important examples include ATP-binding cassette (ABC) transporters. They are membrane proteins that couple ATP binding and hydrolysis to the translocation of substrates across membranes [1]. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated, a coarse-grained ATP-dependent harmonic network model (HNM) [2,3] is applied to the ABC protein, BtuCD. This protein machine transports vitamin B12 across membranes. The analysis shows that subunits of the protein move against each other in a concerted manner. The lowest-frequency modes of the BtuCD protein are found to link the functionally critical domains, and are suggested to be responsible for large-scale ATP-coupled conformational changes. [1] K. P. Locher, A. T. Lee and D. C. Rees. Science 296, 1091-1098 (2002). [2] Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. Biophys. J. 80, 505-515(2002); M. M Tirion, Phys. Rev. Lett. 77, 1905-1908 (1996). [3] J. -L. Liao and D. N. Beratan, 2003, to be published.

  3. 三磷酸腺苷结合盒转运体A1在巨噬细胞胆固醇流出中的作用%Effects of ATP binding cassette transporter A1 on cholesterol efflux in macrophages

    Institute of Scientific and Technical Information of China (English)

    唐朝克; 严鹏科; 杨永宗

    2003-01-01

    Tangier disease is caused by mutations in ATP binding cassette transporter AI( ABCA1).ABCA1 interacts with lipid-free apolipoproteins, promoting phospholipid and cholesterol ettlux fzom cells and giving rise to HDL particles. ABCA1 may act as a phospholipid translocase facilitating phospholipid binding to apoA-Ⅰ. ABCA1 gene expression is upregulated in cholesterol-loaded cells as a result of activation of IXR/RXR- mediated gene transcription. LXR and RXR coordinately induce a battery of genes mediating cellular cholesterol efllux, centripetal cholesterol tramport, and cholesterol excretion in bile. Small- molecule activators of LXR/RXR or other stimulators of macrophage or intestinal cholesterol efl]ux hold great promise as future treat-ments for atherosclerosis.

  4. Structure, function, and evolution of bacterial ATP-binding cassette systems

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, A.L.; Dassa, E.; Orelle, C.; Chen, J. (Purdue)

    2010-07-27

    The ATP-binding cassette (ABC) systems constitute one of the largest superfamilies of paralogous sequences. All ABC systems share a highly conserved ATP-hydrolyzing domain or protein (the ABC; also referred to as a nucleotide-binding domain [NBD]) that is unequivocally characterized by three short sequence motifs (Fig. 1): these are the Walker A and Walker B motifs, indicative of the presence of a nucleotide-binding site, and the signature motif, unique to ABC proteins, located upstream of the Walker B motif (426). Other motifs diagnostic of ABC proteins are also indicated in Fig. 1. The biological significance of these motifs is discussed in Structure, Function, and Dynamics of the ABC. ABC systems are widespread among living organisms and have been detected in all genera of the three kingdoms of life, with remarkable conservation in the primary sequence of the cassette and in the organization of the constitutive domains or subunits (203, 420). ABC systems couple the energy of ATP hydrolysis to an impressively large variety of essential biological phenomena, comprising not only transmembrane (TM) transport, for which they are best known, but also several non-transport-related processes, such as translation elongation (62) and DNA repair (174). Although ABC systems deserve much attention because they are involved in severe human inherited diseases (107), they were first discovered and characterized in detail in prokaryotes, as early as the 1970s (13, 148, 238, 468). The most extensively analyzed systems were the high-affinity histidine and maltose uptake systems of Salmonella enterica serovar Typhimurium and Escherichia coli. Over 2 decades ago, after the completion of the nucleotide sequences encoding these transporters in the respective laboratories of Giovanna Ames and Maurice Hofnung, Hiroshi Nikaido and colleagues noticed that the two systems displayed a global similarity in the nature of their components and, moreover, that the primary sequences of MalK and

  5. WBC27, an Adenosine Tri-phosphate-binding Cassette Protein, Controls Pollen Wall Formation and Patterning in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ying Dou; Ke-Zhen Yang; Yi Zhang; Wei Wang; Xiao-Lei Liu; Li-Qun Chen; Xue-Qin Zhang; De Ye

    2011-01-01

    In flowering plants, the exine components are derived from tapetum. Despite its importance to sexual plant reproduction, little is known about the translocation of exine materials from tapetum to developing microspores. Here we report functional characterization of the arabidopsis WBC27 gene. WBC27 encodes an adenosine tri-phosphate binding cassette (ABC) transporter and is expressed preferentially in tapetum. Mutation of WBC27 disrupted the exine formation. The wbc27 mutant microspores began to degenerate once released from tetrads and most of the microspores collapsed at the uninucleate stage. Only a small number of wbc27-1 microspores could develop into tricellular pollen grains. These survival pollen grains lacked exine and germinated in the anther before anthesis. All of these results suggest that the ABC transporter, WBC27 plays important roles in the formation of arabidopsis exine, possibly by translocation of lipidic precursors of sporopollenin from tapetum to developing microspores.

  6. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis.

    Science.gov (United States)

    Xue, Shanshan; Wang, Jiaxing; Zhang, Xu; Shi, Ying; Li, Bochuan; Bao, Qiankun; Pang, Wei; Ai, Ding; Zhu, Yi; He, Jinlong

    2016-08-19

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressed to investigate the mechanism in vitro. Compared with Ldlr(-/-) mouse aortas, EC-ABCG1-Tg/Ldlr(-/-) aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr(-/-) mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. PMID:27297110

  7. A Selective ATP-binding Cassette Sub-family G Member 2 Efflux Inhibitor Revealed Via High-Throughput Flow Cytometry

    OpenAIRE

    Strouse, J. Jacob; Ivnitski-Steele, Irena; Khawaja, Hadya M.; Perez, Dominique; Ricci, Jerec; Yao, Tuanli; Weiner, Warren S.; Schroeder, Chad E.; Simpson, Denise S.; Maki, Brooks E.; Li, Kelin; Golden, Jennifer E.; Foutz, Terry D.; Waller, Anna; Evangelisti, Annette M.

    2012-01-01

    Chemotherapeutics tumor resistance is a principal reason for treatment failure and clinical and experimental data indicate that multidrug transporters such as ATP-binding Cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is ...

  8. New ATP-binding cassette A3 mutation causing surfactant metabolism dysfunction pulmonary type 3.

    Science.gov (United States)

    Piersigilli, Fiammetta; Peca, Donatella; Campi, Francesca; Corsello, Mirta; Landolfo, Francesca; Boldrini, Renata; Danhaive, Olivier; Dotta, Andrea

    2015-10-01

    Respiratory distress syndrome (RDS) may occur in term and near-term infants because of mutations in surfactant-related genes. ATP-binding cassette A3 (ABCA3), a phospholipid carrier specifically expressed in the alveolar epithelium, is the most frequently involved protein. We report the case of a couple of late-preterm fraternal twin infants of opposite sex carrying the same compound heterozygous ABCA3 mutations, one of which has never been previously reported, with different disease severity, suggesting variable penetrance or sex-related differences. ABCA3 deficiency should be considered in term or near-term babies who develop unexplained RDS. PMID:26508177

  9. ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) are not primary resistance factors for cabazitaxel

    Institute of Scientific and Technical Information of China (English)

    Rishil J Kathawala; Yi-Jun Wang; Suneet Shukla; Yun-Kai Zhang; Saeed Alqahtani; Amal Kaddoumi; Suresh V Ambudkar; Charles R Ashby Jr; Zhe-Sheng Chen

    2015-01-01

    Introduction:ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substances and chemotherapeutic drugs out of cells. Cabazitaxel is a novel taxane that differs from paclitaxel by its lower affinity for ATP-binding cassette (ABC) transporters. Methods:We determined the effects of cabazitaxel, a novel tubulin-binding taxane, and paclitaxel on paclitaxel-resistant, ABCB1-overexpressing KB-C2 and LLC-MDR1-WT cells and paclitaxel-resistant, ABCC10-overexpressing HEK293/ABCC10 cells by calculating the degree of drug resistance and measuring ATPase activity of the ABCB1 transporter. Results:Decreased resistance to cabazitaxel compared with paclitaxel was observed in KB-C2, LLC-MDR1-WT, and HEK293/ABCC10 cells. Moreover, cabazitaxel had low efficacy, whereas paclitaxel had high efficacy in stimulating the ATPase activity of ABCB1, indicating a direct interaction of both drugs with the transporter. Conclusion:ABCB1 and ABCC10 are not primary resistance factors for cabazitaxel compared with paclitaxel, suggesting that cabazitaxel may have a low affinity for these efflux transporters.

  10. TSH increases synthesis of hepatic ATP-binding cassette subfamily A member 1 in hypercholesterolemia.

    Science.gov (United States)

    Zhang, Tiantian; Zhou, Lingyan; Li, Cong Cong; Shi, Hong; Zhou, Xinli

    2016-07-22

    Epidemiological evidence suggests that thyrotropin (TSH) levels are closely correlated with the severity of hypercholesterolemia. Reverse cholesterol transfer (RCT) plays an important role in regulating bloodcholesterol. However, the molecular mechanism of hypercholesterolemia in subclinical hypothyroidism (SCH) has not been fully clarified. The SCH mouse model, which is characterized by elevated serum TSH but not thyroid hormone levels, demonstrated a significant increase in plasma cholesterol compared with controls. Interestingly, Tshr KO mice, with normal thyroid hormone levels after thyroid hormone supplementation, showed lower plasma cholesterol levels compared with their wild-type littermates. ATP binding cassette subfamily A member 1(ABCA1) is a member of the ABC superfamily, which induces transfer of intracellular cholesterol to extracellular apolipoprotein. TSH upregulated hepatic ABCA1 to promote the efflux of intercellular cumulative cholesterol, resulting in increased plasma cholesterol. These data might partially explain the pathogenesis of hypercholesterolemia in SCH. PMID:27179782

  11. Localization of the ATP-binding cassette (ABC) transport proteins PfMRP1, PfMRP2, and PfMDR5 at the Plasmodium falciparum plasma membrane.

    NARCIS (Netherlands)

    Kavishe, R.A.; Heuvel, J.M.W. van den; Vegte-Bolmer, M. van de; Luty, A.J.; Russel, F.G.M.; Koenderink, J.B.

    2009-01-01

    BACKGROUND: The spread of drug resistance has been a major obstacle to the control of malaria. The mechanisms underlying drug resistance in malaria seem to be complex and multigenic. The current literature on multiple drug resistance against anti-malarials has documented PfMDR1, an ATP-binding casse

  12. Polymorphisms in ATP-binding cassette transporter genes and interaction with diet and life style factors in relation to colorectal cancer in a Danish prospective case-cohort study

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov; Andersen, Vibeke; Tjonneland, Anne;

    2015-01-01

    with IL10/rs3024505 interacted with fiber intake in relation to risk of CRC (Pint = 0.0007 and 0.009). Our results suggest that the ABC transporters P-glycoprotein/multidrug resistance 1 and BRCP, in cooperation with IL-10, are involved in the biological mechanism underlying the protective effect of...... polymorphisms were associated with CRC, but ABCB1 and ABCG2 haplotypes were associated with risk of CRC. ABCB1/rs1045642 interacted with intake of cereals and fiber (p-Value for interaction (Pint) = 0.001 and 0.01, respectively). In a three-way analysis, both ABCB1/rs1045642 and ABCG2/rs2231137 in combination...

  13. Alleviation of temperature-sensitive secretion defect of Pseudomonas fluorescens ATP-binding cassette (ABC) transporter, TliDEF, by a change of single amino acid in the ABC protein, TliD.

    Science.gov (United States)

    Eom, Gyeong Tae; Oh, Joon Young; Park, Ji Hyun; Lim, Hye Jin; Lee, So Jeong; Kim, Eun Young; Choi, Ji-Eun; Jegal, Jonggeon; Song, Bong Keun; Yu, Ju-Hyun; Song, Jae Kwang

    2016-09-01

    An ABC transporter, TliDEF, from Pseudomonas fluorescens SIK W1, mediates the secretion of its cognate lipase, TliA, in a temperature-dependent secretion manner; the TliDEF-mediated secretion of TliA was impossible at the temperatures over 33°C. To isolate a mutant TliDEF capable of secreting TliA at 35°C, the mutagenesis of ABC protein (TliD) was performed. The mutated tliD library where a random point mutation was introduced by error-prone PCR was coexpressed with the wild-type tliE, tliF and tliA in Escherichia coli. Among approximately 10,000 colonies of the tliD library, we selected one colony that formed transparent halo on LB-tributyrin plates at 35°C. At the growth temperature of 35°C, the selected mutant TliD showed 1.75 U/ml of the extracellular lipase activity, while the wild-type TliDEF did not show any detectable lipase activity in the culture supernatant of E. coli. Moreover, the mutant TliD also showed higher level of TliA secretion than the wild-type TliDEF at other culture temperatures, 20°C, 25°C and 30°C. The mutant TliD had a single amino acid change (Ser287Pro) in the predicted transmembrane region in the membrane domain of TliD, implying that the corresponding region of TliD was important for causing the temperature-dependent secretion of TliDEF. These results suggested that the property of ABC transporter could be changed by the change of amino acid in the ABC protein. PMID:27033673

  14. Expression and significance of liver X receptor -β and ATP binding cassette transport protein A1 in human glioblastoma%肝X受体-β和三磷酸腺苷结合盒转运子A1在人脑胶质母细胞瘤中的表达和意义

    Institute of Scientific and Technical Information of China (English)

    滕志朋; 王晨; 刘斌; 李昱

    2012-01-01

    目的 研究肝X受体-β(Liver X receptor-β,LXR-β)和三磷酸腺苷结合盒转运子A1( ATP binding cassette transport protein A1,ABCA1)蛋白在人脑胶质母细胞瘤(Glioblastoma,GBM)中的表达及相关性,并探讨其对GBM的意义.方法 分析48例GBM患者的资料,并取患者肿瘤组织石蜡切片,另取19份瘤旁正常脑组织石蜡切片为对照组,采用SP免疫组化法检测LXR-β和ABCA1蛋白的表达,并分析LXR-β与ABCA1表达的相关性.结果 LXR-β和ABCA1蛋白在GBM中的表达率分别为81.3%和77.1%,与对照组(15.8%和26.3%)相比,差异有统计学意义(P<0.001),且LXR-β与ABCA1的表达呈正相关(rs=0.500,P<0.05).患者性别、年龄、胶质瘤复发、手术切除范围、肿瘤最大直径、术后放化疗情况与LXR-β、ABCA1蛋白的表达差异无统计学意义(P>0.05).结论 LXR-3和ABCA1蛋白与GBM的形成和进展有一定关系,有可能成为临床诊断及治疗GBM的生物学指标.%Objective To investigate the expressions of liver X receptor-β (LXR-β) and ATP binding cassette transport protein Al (ABCA1) in human glioblastoma (GBM) and evaluate their relationship as well as their roles in GBM. Methods The clinical data on 48 cases of GBM were analyzed. The tumor tissues of patients were prepared into paraffin sections and determined for expressions of LXR-β and ABCAl by immunohistochemical assay with SP staining, using 19 sections of normal brain tissue as control, based on which the relation ship between expressions of LXR-β and ABCAl was analyzed. Results The expression rates of LXR-β and ABCAl GBM were 81- 3% and 77. 1% respectively, which showed no significant difference with those in control group (15. 8% and 26. 3% respectively )(P 0. 05). Conclusion LXR-β and ABCAl showed a certain relationship to the onset and progress of GBM, which might be used as a biological index for clinical diagnosis and treatment of GBM.

  15. Molecular Characterization of LjABCG1, an ATP-Binding Cassette Protein in Lotus japonicus.

    Directory of Open Access Journals (Sweden)

    Akifumi Sugiyama

    Full Text Available LjABCG1, a full-size ABCG subfamily of ATP-binding cassette proteins of a model legume, Lotus japonicus, was reported as a gene highly expressed during the early stages of nodulation, but have not been characterized in detail. In this study we showed that the induction of LjABCG1 expression was remarkable by methyl jasmonate treatment, and reporter gene experiments indicated that LjABCG1 was strongly expressed in the nodule parenchyma and cell layers adjacent to the root vascular tissue toward the nodule. LjABCG1 was suggested to be localized at the plasma membrane based on the fractionation of microsomal membranes as well as separation via aqueous two-phase partitioning. The physiological functions of LjABCG1 in symbiosis and pathogenesis were analyzed in homologous and heterologous systems. LjABCG1 knock-down L. japonicus plants did not show clear phenotypic differences in nodule formation, and not in defense against Pseudomonas syringae, either. In contrast, when LjABCG1 was expressed in the Arabidopsis pdr8-1 mutant, the penetration frequency of Phytophthora infestans, a potato late blight pathogen, was significantly reduced in LjABCG1/pdr8-1 than in pdr8-1 plants. This finding indicated that LjABCG1, at least partially, complemented the phenotype of pdr8 in Arabidopsis, suggesting the multiple roles of this protein in plant-microbe interactions.

  16. Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells

    Directory of Open Access Journals (Sweden)

    Angelini Giovanna

    2009-12-01

    Full Text Available Abstract Background Curcumin induces apoptosis in many cancer cells and it reduces xenograft growth and the formation of lung metastases in nude mice. Moreover, the plant derived polyphenol has been reported to be able to overcome drug resistance to classical chemotherapy. These features render the drug a promising candidate for tumor therapy especially for cancers known for their high rates concerning therapy resistance like melanoma. Results We show here that the melanoma cell line M14 is resistant to Curcumin induced apoptosis, which correlates with the absence of any effect on NFκB signaling. We show that CXCL1 a chemokine that is down regulated in breast cancer cells by Curcumin in an NFκB dependant manner is expressed at variable levels in human melanomas. Yet in M14 cells, CXCL1 expression did not change upon Curcumin treatment. Following the hypothesis that Curcumin is rapidly removed from the resistant cells, we analyzed expression of known multi drug resistance genes and cellular transporters in M14 melanoma cells and in the Curcumin sensitive breast cancer cell line MDA-MB-231. ATP-binding cassette transporter ABCA1, a gene involved in the cellular lipid removal pathway is over-expressed in resistant M14 melanoma as compared to the sensitive MDA-MB-231 breast cancer cells. Gene silencing of ABCA1 by siRNA sensitizes M14 cells to the apoptotic effect of Curcumin most likely as a result of reduced basal levels of active NFκB. Moreover, ABCA1 silencing alone also induces apoptosis and reduces p65 expression. Conclusion Resistance to Curcumin thus follows classical pathways and ABCA1 expression should be considered as response marker.

  17. Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan; Hassan, Karl A.; Di Leo, Rosa; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Chang, Changsoo; Labbate, Maurizio; Paulsen, Ian T.; Stokes, H.W.; Curmi, Paul M.G.; Mabbutt, Bridget C. (MIT); (UT-Australia); (Macquarie); (Toronto); (New South)

    2012-02-15

    The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  18. Crystal structure of an integron gene cassette-associated protein from Vibrio cholerae identifies a cationic drug-binding module.

    Directory of Open Access Journals (Sweden)

    Chandrika N Deshpande

    Full Text Available The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  19. Mechanism of ABC transporters: A molecular dynamics simulation of a well characterized nucleotide-binding subunit

    OpenAIRE

    Peter M Jones; Anthony M George

    2002-01-01

    ATP-binding cassette (ABC) transporters are membrane-bound molecular pumps that form one of the largest of all protein families. Several of them are central to phenomena of biomedical interest, including cystic fibrosis and resistance to chemotherapeutic drugs. ABC transporters share a common architecture comprising two hydrophilic nucleotide-binding domains (NBDs) and two hydrophobic transmembrane domains (TMDs) that form the substrate pathway across the membrane. The conformational changes ...

  20. Plasmodium falciparum Expressing Domain Cassette 5 Type PfEMP1 (DC5-PfEMP1) Bind PECAM1

    DEFF Research Database (Denmark)

    Berger, Sanne S; Turner, Louise; Wang, Christian W;

    2013-01-01

    Members of the Plasmodium falciparum Erythrocyte Membrane protein 1 (PfEMP1) family expressed on the surface of malaria-infected erythrocytes mediate binding of the parasite to different receptors on the vascular lining. This process drives pathologies, and severe childhood malaria has been...... associated with the expression of particular subsets of PfEMP1 molecules. PfEMP1 are grouped into subtypes based on upstream sequences and the presence of semi-conserved PfEMP1 domain compositions named domain cassettes (DCs). Earlier studies have indicated that DC5-containing PfEMP1 (DC5-PfEMP1) are more...... likely to be expressed in children with severe malaria disease than in children with uncomplicated malaria, but these PfEMP1 subtypes only dominate in a relatively small proportion of the children with severe disease. In this study, we have characterised the genomic sequence characteristic for DC5, and...

  1. Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins

    OpenAIRE

    Vigonsky, Elena; Ovcharenko, Elena; Lewinson, Oded

    2013-01-01

    In all kingdoms of life, ATP Binding Cassette (ABC) transporters participate in many physiological and pathological processes. Despite the diversity of their functions, they have been considered to operate by a largely conserved mechanism. One deviant is the vitamin B12 transporter BtuCD that has been shown to operate by a distinct mechanism. However, it is unknown if this deviation is an exotic example, perhaps arising from the nature of the transported moiety. Here we compared two ABC impor...

  2. Application of Cassette Ultracentrifugation Using Non-labeled Compounds and Liquid Chromatography-Tandem Mass Spectrometry Analysis for High-Throughput Protein Binding Determination.

    Science.gov (United States)

    Kieltyka, Kasia; McAuliffe, Brian; Cianci, Christopher; Drexler, Dieter M; Shou, Wilson; Zhang, Jun

    2016-03-01

    Membrane-based devices typically used for serum protein binding determination are not fully applicable to highly lipophilic compounds because of nonspecific binding to the device membrane. Ultracentrifugation, however, completely eliminates the issue by using a membrane-free approach, although its wide application has been limited. This lack of utilization is mainly attributed to 2 factors: the high cost in acquiring and handling of radiolabeled compounds and low assay throughput owing to the difficulties in process automation. To overcome these challenges, we report a high-throughput workflow by cassette ultracentrifugation of nonradiolabeled compounds followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Twenty compounds with diverse physicochemical and protein binding properties were selected for the evaluation of the workflow. To streamline the working process, approaches of matrix balancing for all the samples for LC-MS/MS analysis and determining free fraction without analytical calibration curves were adopted. Both the discrete ultracentrifugation of individual compounds and cassette ultracentrifugation of all the test compounds followed by simultaneous LC-MS/MS analysis exhibited a linear correlation with literature values, demonstrating respectively the validity of the ultracentrifugation process and the cassette approach. The cassette ultracentrifugation using nonradiolabeled compounds followed by LC-MS/MS analysis has greatly facilitated its application for high-throughput protein binding screening in drug discovery. PMID:26886323

  3. Rescuing Trafficking Mutants of the ATP-binding Cassette Protein, ABCA4, with Small Molecule Correctors as a Treatment for Stargardt Eye Disease.

    Science.gov (United States)

    Sabirzhanova, Inna; Lopes Pacheco, Miquéias; Rapino, Daniele; Grover, Rahul; Handa, James T; Guggino, William B; Cebotaru, Liudmila

    2015-08-01

    Stargardt disease is the most common form of early onset macular degeneration. Mutations in ABCA4, a member of the ATP-binding cassette (ABC) family, are associated with Stargardt disease. Here, we have examined two disease-causing mutations in the NBD1 region of ABCA4, R1108C, and R1129C, which occur within regions of high similarity with CFTR, another ABC transporter gene, which is associated with cystic fibrosis. We show that R1108C and R1129C are both temperature-sensitive processing mutants that engage the cellular quality control mechanism and show a strong interaction with the chaperone Hsp 27. Both mutant proteins also interact with HDCAC6 and are degraded in the aggresome. We also demonstrate that novel corrector compounds that are being tested as treatment for cystic fibrosis, such as VX-809, can rescue the processing of the ABCA4 mutants, particularly their expression at the cell surface, and can reduce their binding to HDAC6. Thus, our data suggest that VX-809 can potentially be developed as a new therapy for Stargardt disease, for which there is currently no treatment. PMID:26092729

  4. Masitinib Antagonizes ATP-Binding Cassette Subfamily C Member 10-Mediated Paclitaxel Resistance: A Preclinical Study

    OpenAIRE

    Kathawala, Rishil J; Sodani, Kamlesh; Chen, Kang; PATEL, ATISH; Abuznait, Alaa H.; Anreddy, Nagaraju; Sun, Yue-Li; Kaddoumi, Amal; Ashby, Charles R.; Chen, Zhe-Sheng

    2014-01-01

    Paclitaxel displays clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. In this study, we show that masitinib, a small molecule stem-cell growth factor receptor (c-Kit) tyrosine kinase inhibitor, at non-toxic concentrations, signif...

  5. Cloning and Characterization of the Pseudomonas fluorescens ATP-Binding Cassette Exporter, HasDEF, for the Heme Acquisition Protein HasA

    OpenAIRE

    Idei, Akiko; Kawai, Eri; Akatsuka, Hiroyuki; Omori, Kenji

    1999-01-01

    Two ATP-binding cassette (ABC) exporters are present in Pseudomonas fluorescens no. 33; one is the recently reported AprDEF system and the other is HasDEF, which exports a heme acquisition protein, HasA. The hasDEF genes were cloned by DNA hybridization with a DNA probe coding for the LipB protein, one of the components of the Serratia marcescens ABC exporter Lip system. P. fluorescens HasA showed sequence identity of 40 to 49% with HasA proteins from Pseudomonas aeruginosa and Serratia marce...

  6. The housekeeping dipeptide permease is the Escherichia coli heme transporter and functions with two optional peptide binding proteins

    OpenAIRE

    Létoffé, Sylvie; Delepelaire, Philippe; Wandersman, Cécile

    2006-01-01

    Heme, a major iron source, is transported through the outer membrane of Gram-negative bacteria by specific heme/hemoprotein receptors and through the inner membrane by heme-specific, periplasmic, binding protein-dependent, ATP-binding cassette permeases. Escherichia coli K12 does not use exogenous heme, and no heme uptake genes have been identified. Nevertheless, a recombinant E. coli strain expressing just one foreign heme outer membrane receptor can use exogenous heme as an iron source. Thi...

  7. Retinoic acid isomers up-regulate ATP binding cassette A1 and G1 and cholesterol efflux in rat astrocytes: implications for their therapeutic and teratogenic effects.

    Science.gov (United States)

    Chen, Jing; Costa, Lucio G; Guizzetti, Marina

    2011-09-01

    Recent studies suggest that retinoids may be effective in the treatment of Alzheimer's disease, although exposure to an excess of retinoids during gestation causes teratogenesis. Cholesterol is essential for brain development, but high levels of cholesterol have been associated with Alzheimer's disease. We hypothesized that retinoic acid may affect cholesterol homeostasis in rat astrocytes, which regulate cholesterol distribution in the brain, through the up-regulation of cholesterol transporters ATP binding cassette (Abc)a1 and Abcg1. Tretinoin, 13-cis retinoic acid (13-cis-RA), 9-cis-RA, and the selective retinoid X receptor (RXR) agonist methoprene significantly increased cholesterol efflux induced by cholesterol acceptors and protein levels of Abca1 by 2.3- (± 0.25), 3.6- (± 0.42), 4.1- (± 0.5), and 1.75- (± 0.43) fold, respectively, and Abcg1 by 2.1- (± 0.26), 2.2- (± 0.33), 2.5- (± 0.23), and 2.2- (± 0.21) fold, respectively. 13-cis-RA and 9-cis-RA also significantly increased mRNA levels of Abca1 (maximal induction 7.3 ± 0.42 and 2.7 ± 0.17, respectively) and Abcg1 (maximal induction 2.0 ± 0.18 and 1.8 ± 0.09, respectively), and the levels of membrane-bound Abca1 (2.5 ± 0.3 and 2.5 ± 0.40-fold increase, respectively), whereas they significantly decreased intracellular cholesterol content without affecting cholesterol synthesis. The effect of 9-cis-RA on cholesterol homeostasis in astrocytes can be ascribed to the activation of RXR, whereas the effects of 13-cis-RA and tretinoin were independent of either RXRs or retinoic acid receptors. These findings suggest that retinoids affect cholesterol homeostasis in astrocytes and that this effect may be involved in both their therapeutic and teratogenic actions. PMID:21628419

  8. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.

    2011-04-01

    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  9. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    Science.gov (United States)

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization. PMID:26595095

  10. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    A Bagaria; D Kumaran; S Burley; S Swaminathan

    2011-12-31

    The APT-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and nontransport related processes such as translation of RNA and DNA repair. typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport, and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP), and Ribose binding protein (RBP). Each of these proteins consits of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations hafve been reported and so for MBP. The closed/active form of the protein interacts with the ingral membrane component of the system in both transport and chemotaxis. Herein, they report 1.9 {angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound

  11. Solid-state NMR investigations of the ATP binding cassette multidrug transporter LmrA

    OpenAIRE

    Siarheyeva, Alena

    2006-01-01

    The development of resistance to multiple drugs is a major problem in treatment of number of infectious diseases and cancer. The phenomenon of multidrug resistance (MDR) is based on the synergetic interplay of a number of mechanisms such as target inactivation, target alteration, prevention of drug influx as well as active extrusion of drugs from the cell. The latter is mediated by over-expression of multidrug efflux pumps. The first discovered and the best characterized until now the human M...

  12. Use of Cassette Dosing in Sandwich-Cultured Rat and Human Hepatocytes to Identify Drugs that Inhibit Bile Acid Transport

    OpenAIRE

    Kristina K Wolf; Vora, Sapana; Webster, Lindsey O.; Generaux, Grant T.; Polli, Joseph W; Brouwer, Kim L.R.

    2009-01-01

    Hepatocellular accumulation of bile acids due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) is one proposed mechanism of drug-induced liver injury (DILI). Some hepatotoxic compounds also are potent inhibitors of bile acid uptake by Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1). This study used a cassette dosing approach in rat and human sandwich-cultured hepatocytes (SCH) to determine whether known or suspected hepatotoxic drugs inhibit bile acid ...

  13. Cholesterol transport via ABCA1: new insights from solid-phase binding assay.

    Science.gov (United States)

    Reboul, Emmanuelle; Dyka, Frank M; Quazi, Faraz; Molday, Robert S

    2013-04-01

    It is now well established that the ATP-binding cassette transporter A1 (ABCA1) plays a pivotal role in HDL metabolism, reverse cholesterol transport and net efflux of cellular cholesterol and phospholipids. We aimed to resolve some uncertainties related to the putative function of ABCA1 as a mediator of lipid transport by using a methodology developed in the laboratory to isolate a protein and study its interactions with other compounds. ABCA1 was tagged with the 1D4 peptide at the C terminus and expressed in human HEK 293 cells. Preliminary experiments showed that the tag modified neither the protein expression/localization within the cells nor the ability of ABCA1 to promote cholesterol cellular efflux to apolipoprotein A-I. ABCA1-1D4 was then purified and reconstituted in liposomes. ABCA1 displayed an ATPase activity in phospholipid liposomes that was significantly decreased by cholesterol. Finally, interactions with either cholesterol or apolipoprotein A-I were assessed by binding experiments with protein immobilized on an immunoaffinity matrix. Solid-phase binding assays showed no direct binding of cholesterol or apolipoprotein A-I to ABCA1. Overall, our data support the hypothesis that ABCA1 is able to mediate the transport of cholesterol from cells without direct interaction and that apo A-I primarily binds to membrane surface or accessory protein(s). PMID:23201557

  14. Plasmodium falciparum Expressing Domain Cassette 5 Type PfEMP1 (DC5-PfEMP1) Bind PECAM1

    OpenAIRE

    Berger, Sanne S.; Louise Turner; Wang, Christian W.; Petersen, Jens E V; Maria Kraft; Lusingu, John P. A.; Bruno Mmbando; Marquard, Andrea M.; Dominique B A C Bengtsson; Lars Hviid; Nielsen, Morten A; Theander, Thor G.; Thomas Lavstsen

    2013-01-01

    Members of the Plasmodium falciparum Erythrocyte Membrane protein 1 (PfEMP1) family expressed on the surface of malaria-infected erythrocytes mediate binding of the parasite to different receptors on the vascular lining. This process drives pathologies, and severe childhood malaria has been associated with the expression of particular subsets of PfEMP1 molecules. PfEMP1 are grouped into subtypes based on upstream sequences and the presence of semi-conserved PfEMP1 domain compositions named do...

  15. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Kostsin, Dzmitry G. [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Academicheskaya Str. 27, Minsk 220072 (Belarus); Kashiwayama, Yoshinori [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takanashi, Kojiro; Yazaki, Kazufumi [Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoko University, Uji, Kyoto 611-0011 (Japan); Imanaka, Tsuneo, E-mail: imanaka@pha.u-toyama.ac.jp [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Morita, Masashi [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2014-10-24

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.

  16. Role of NH2-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    International Nuclear Information System (INIS)

    Highlights: • ABCD proteins classifies based on with or without NH2-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH2-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH2-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH2-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH2-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH2-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH2-terminal H0 motif in organelle targeting is widely conserved in living organisms

  17. Radiographic film cassette

    International Nuclear Information System (INIS)

    This patent specification describes the design of a radiographic cassette which combines the advantages of a classical cassette and the polymeric bag, on the one hand having an overall rigidity, imparted by the bottom and the marginal part of the cover as they are locked together, and on the other hand the object to be radiographed can be located very close to a film/screen set in the cassette because only the thickness of a flexible foil has to intervene. The cassette has the means by which the air can be a spirated from the inside after closure, and may have an intensifying screen which contacts that side of the flexible foil which faces the interior of the cassette. A preferred field of application is for mammography techniques. (U.K.)

  18. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert; Rydström, Jan

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  19. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na+, Cl- and K+ to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na+. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na+ and Cl-, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na+ binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl-. Cl- enhances the transporters affinity for imipramine, as well as for Na+. At concentrations in the range of its KM for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na+-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [3H]imipramine binding and [3H]serotonin transport

  20. A Cassette Based System for Hydrogen Storage and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Britton Wayne E.

    2006-11-29

    A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

  1. DMPD: Lipopolysaccharide-binding molecules: transporters, blockers and sensors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15241548 Lipopolysaccharide-binding molecules: transporters, blockers and sensors. ...binding molecules: transporters, blockers and sensors. PubmedID 15241548 Title Lipopolysaccharide-binding mo...lecules: transporters, blockers and sensors. Authors Chaby R. Publication Cell Mo

  2. Radiographic film cassette unloading apparatus

    International Nuclear Information System (INIS)

    Apparatus for unloading cassettes, containing exposed radiographic films, has means for unfastening the cassettes, an inclined pathway for gravity feeding and rotating feed members (rollers or belts) to propel the films into the processor. (UK)

  3. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1).

    Science.gov (United States)

    Chufan, Eduardo E; Kapoor, Khyati; Sim, Hong-May; Singh, Satyakam; Talele, Tanaji T; Durell, Stewart R; Ambudkar, Suresh V

    2013-01-01

    P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [(125)I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each

  4. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1.

    Directory of Open Access Journals (Sweden)

    Eduardo E Chufan

    Full Text Available P-glycoprotein (Pgp, ABCB1 is an ATP-Binding Cassette (ABC transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982 with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [(125I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available

  5. Binding-Induced Fluorescence of Serotonin Transporter Ligands

    DEFF Research Database (Denmark)

    Wilson, James; Ladefoged, Lucy Kate; Babinchak, Michael;

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has...

  6. Linoleic acid suppresses cholesterol efflux and ATP-binding cassette transporters in murine bone marrow-derived macrophages

    Science.gov (United States)

    Individuals with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease (CVD), possibly associated with elevated plasma free fatty acid concentrations. Paradoxically, evidence suggests that unsaturated, compared to saturated fatty acids, suppress macrophage chole...

  7. Regulation of Yeast Nutrient Permease Endocytosis by ATP-binding Cassette Transporters and a Seven-transmembrane Protein, RSB1*

    OpenAIRE

    Johnson, Soraya S.; Hanson, Pamela K.; Manoharlal, Raman; Brice, Sarah E.; Cowart, L. Ashley; Moye-Rowley, W. Scott

    2010-01-01

    Ceramide is produced by the condensation of a long chain base with a very long chain fatty acid. In Saccharomyces cerevisiae, one of the two major long chain bases is called phytosphingosine (PHS). PHS has been shown to cause toxicity in tryptophan auxotrophic strains of yeast because this bioactive ceramide precursor causes diversion of the high affinity tryptophan permease Tat2 to the vacuole rather than the plasma membrane. Loss of the integral membrane protein Rsb1 increased PHS sensitivi...

  8. 14C-glucose binding assay of the glucose transporter binding sites in muscular cell membrane

    International Nuclear Information System (INIS)

    A method of determining the binding sites of glucose transporter in rat muscular cell membrane was introduced. The crude products of cell membrane form the skeletal muscle of control and insulin treated rats were prepared, and then fractionated in sucrose gradient. Both plasma membrane and microsome membrane were incubated with D-[U-14C] glucose respectively for the measurement of radioactivity and Scatchard plot analysis. It was found that the binding sites of glucose transporter in plasma membrane and intracellular membrane were 5.6 nmol 14C-glucose/mg protein and 8.7 nmol 14C-glucose-mg protein respectively at basic state. Insulin treatment in experimental groups caused approximately 146% increase in plasma membrane fraction and 88% decrease in intracellular membrane fraction. Moreover, the kinetic data of Scatchard plot curve were similar to those of the [3H]-cytochalasin B binding assay. D-[U-14C] glucose binding assay of glucose transporter binding sites in muscular cell membrane is simple, easy and practicable. The D-[U-14C] glucose is commercially available

  9. Genetic Association Analysis of ATP Binding Cassette Protein Family Reveals a Novel Association of ABCB1 Genetic Variants with Epilepsy Risk, but Not with Drug-Resistance

    OpenAIRE

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to vari...

  10. Towards predictable transmembrane transport: QSAR analysis of anion binding and anion transport

    OpenAIRE

    Gale, Philip A.; Busschaert, Nathalie; Bradberry, Samuel J.; Wenzel, Marco; Haynes, Cally; Hiscock, Jennifer R.; Kirby, Isabelle; Karagiannidis, Louise E.; Moore, Stephen J.; Wells, Neil; Herniman, Julie; Langley, John; Horton, Peter; Mark E. Light; Marques, Igor

    2013-01-01

    The transport of anions across biological membranes by small molecules is a growing research field due to the potential therapeutic benefits of these compounds. However, little is known about the exact mechanism by which these drug-like molecules work and which molecular features make a good transporter. An extended series of 1-hexyl-3-phenylthioureas were synthesized, fully characterized (NMR, mass spectrometry, IR and single crystal diffraction) and their anion binding and anion transport p...

  11. Sunshine and specific binding of serotonin transporters in Finnish man

    International Nuclear Information System (INIS)

    Aim: Visible light (400-700 nm) exposure decreases melatonin, norepinephrine, and acetylcholine whereas cortisol, serotonin, CABA, and dopamine levels increase. Light could be of particular relevance in the pathophysiology of neuropsychiatric disorders such as winter type affective disorder. The aim of the present study was to measure seasonal variation of specific binding of serotonin transporters (SERT) in man. Material and Methods: Thirty six white Caucasian males were studied. Their mean age was 38 years (range: 19-64 years). All subjects were medically health. A dose of 185 MBq of [123I]nor-b-CIT (supplied by MAP Medical Technologies Oy, Tikkakoski, Finland) was intravenously injected. SPECT scans were performed on a triple-head Siemens Multi SPECT 3 gamma camera equipped with fan-beam collimators. Regions of interest were drawn onto the midbrain (free + non-specific + specific binding) and onto the cerebellum (free + non-specific binding). The specific binding of the midbrain was calculated as (midbrain-cerebellum)/cerebellum. The findings of the study subjects were grouped onto the 6 sub-groups (six subjects per sub-group: January, March, May, July, September and November). In addition, blood platelets content was followed up for 12 months in 18 healthy males. The maximal binding potential (Bmax: fmol/mg protein) of platelets was determined. Results: Dependence of the specific binding of SERT in the midbrain and Bmax of human blood platelets on daily sunshine is presented. The data suggest lower specific binding of SERT in summer than in winter although this difference did not reach a statistical significance due to a small number of study subjects. Conclusion: Visible light exposure can alter specific binding of SERT in Finnish healthy males. The findings of in vivo molecular imaging support seasonal variation of human blood platelets content

  12. Tandutinib (MLN518/CT53518) targeted to stem-like cells by inhibiting the function of ATP-binding cassette subfamily G member 2.

    Science.gov (United States)

    Zhao, Xiao-qin; Dai, Chun-ling; Ohnuma, Shinobu; Liang, Yong-ju; Deng, Wen; Chen, Jun-Jiang; Zeng, Mu-Sheng; Ambudkar, Suresh V; Chen, Zhe-Sheng; Fu, Li-Wu

    2013-06-14

    Tandutinib is a novel inhibitor of tyrosine kinases FLT3, PDGFR and KIT. Our study was to explore the capability of tandutinib to reverse ABC transporter-mediated multidrug resistance. Tandutinib reversed ABCG2-mediated drug resistance in ABCG2-482-R2, ABCG2-482-G2, ABCG2-482-T7 and S1-M1-80 cells and increased the accumulation of doxorubicin, rhodamine 123 and [H(3)] mitoxantrone in ABCG2-overexpressing cells. Importantly, tandutinib selectively sensitized side population cells to mitoxantrone. Taken together, our results advocate the potency of tandutinib as an ABCG2 modulator and stem-like cells targeted agent to increase efficiency of anticancer drugs. PMID:23619284

  13. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Directory of Open Access Journals (Sweden)

    Shabeesh Balan

    Full Text Available Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS (prototype for AED-resistant epilepsy; juvenile myoclonic epilepsy (JME (prototype for AED-responsive epilepsy; and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004. This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004 and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05 cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency

  14. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Science.gov (United States)

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE

  15. Genetic Association Analysis of ATP Binding Cassette Protein Family Reveals a Novel Association of ABCB1 Genetic Variants with Epilepsy Risk, but Not with Drug-Resistance

    Science.gov (United States)

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with

  16. Purification, crystallization and preliminary X-ray diffraction analysis of the putative ABC transporter ATP-binding protein from Thermotoga maritima

    International Nuclear Information System (INIS)

    The putative ABC transporter ATP-binding protein TM0222 from T. maritima was cloned, overproduced, purified and crystallized. A complete MAD diffraction data set has been collected to 2.3 Å resolution. Adenosine triphosphate (ATP) binding cassette transporters (ABC transporters) are ATP hydrolysis-dependent transmembrane transporters. Here, the overproduction, purification and crystallization of the putative ABC transporter ATP-binding protein TM0222 from Thermotoga maritima are reported. The protein was crystallized in the hexagonal space group P6422, with unit-cell parameters a = b = 148.49, c = 106.96 Å, γ = 120.0°. Assuming the presence of two molecules in the asymmetric unit, the calculated VM is 2.84 Å3 Da−1, which corresponds to a solvent content of 56.6%. A three-wavelength MAD data set was collected to 2.3 Å resolution from SeMet-substituted TM0222 crystals. Data sets were collected on the BL38B1 beamline at SPring-8, Japan

  17. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  18. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters.

    Science.gov (United States)

    Singh, Satinder K; Yamashita, Atsuko; Gouaux, Eric

    2007-08-23

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 A above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of

  19. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  20. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    NARCIS (Netherlands)

    Hollenstein, K.; Comellas-Bigler, M.; Bevers, L.E.; Feiters, M.C.; Meyer-Klaucke, W.; Hagedoorn, P.-L.; Locher, K.P.

    2009-01-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2−) and tungstate (WO4 2−). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across th

  1. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    Science.gov (United States)

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome. PMID:23934110

  2. Structural basis for the hydrolysis of ATP by a nucleotide binding subunit of an amino acid ABC transporter from Thermus thermophilus.

    Science.gov (United States)

    Devi, Seenivasan Karthiga; Chichili, Vishnu Priyanka Reddy; Jeyakanthan, J; Velmurugan, D; Sivaraman, J

    2015-06-01

    ATP-binding cassette (ABC) transporters are a major family of small molecule transporter proteins, and their deregulation is associated with several diseases, including cancer. Here, we report the crystal structure of the nucleotide binding domain (NBD) of an amino acid ABC transporter from Thermus thermophilus (TTHA1159) in its apo form and as a complex with ADP along with functional studies. TTHA1159 is a putative arginine ABC transporter. The apo-TTHA1159 was crystallized in dimeric form, a hitherto unreported form of an apo NBD. Structural comparison of the apo and ADP-Mg(2+) complexes revealed that Phe14 of TTHA1159 undergoes a significant conformational change to accommodate ADP, and that the bound ADP interacts with the P-loop (Gly40-Thr45). Modeling of ATP-Mg(2+):TTHA1159 complex revealed that Gln86 and Glu164 are involved in water-mediated hydrogen bonding contacts and Asp163 in Mg(2+) ion-mediated hydrogen bonding contacts with the γ-phosphate of ATP, consistent with the findings of other ABC transporters. Mutational studies confirmed the necessity of each of these residues, and a comparison of the apo/ADP Mg(2+):TTHA1159 with its ATP-complex model suggests the likelihood of a key conformational change to the Gln86 side chain for ATP hydrolysis. PMID:25916755

  3. Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

    Directory of Open Access Journals (Sweden)

    Sandra Pritzkow

    2015-05-01

    Full Text Available Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves. These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

  4. Grass plants bind, retain, uptake, and transport infectious prions.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. PMID:25981035

  5. Drug transporters in breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Stenvang, Jan; Moreira, José;

    2015-01-01

    basis. Although effective, their usefulness is limited by the inevitable development of resistance, a lack of response to drug-induced cancer cell death. A large body of research has resulted in the characterization of a plethora of mechanisms involved in resistance; ATP-binding cassette transporter...... proteins, through their function in xenobiotic clearance, play an important role in resistance. We review here the current evidence for drug transporters as biomarkers and the benefit of adding drug transporter modulators to conventional chemotherapy....

  6. Construction of deletion mutants in the phosphotransferase transport system and adenosine triphosphate-binding cassette transporters in Listeria monocytogenes and analysis of their growth under different stress conditions

    OpenAIRE

    Marina Ceruso; Pina Fratamico; Claudia Chirollo; Rosanna Taglialatela; Maria Luisa Cortesi; Tiziana Pepe

    2013-01-01

    Functional genomics approaches enable us to investigate the biochemical, cellular, and physiological properties of each gene product and are nowadays applied to enhance food safety by understanding microbial stress responses in food and host-pathogen interactions. Listeria monocytogenes is a food-borne pathogen that causes listeriosis and is difficult to eliminate this pathogen since it can survive under multiple stress conditions such as low pH and low temperature. Detailed studies are neede...

  7. Transport Gap and exciton binding energy determination in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Stefan; Schoell, Achim; Reinert, Friedrich; Umbach, Eberhard [University of Wuerzburg (Germany). Experimental Physics II; Casu, Benedetta [Inst. f. Physik. u. Theor. Chemie, Tuebingen (Germany)

    2008-07-01

    The transport gap of an organic semiconductor is defined as the energy difference between the HOMO and LUMO levels in the presence of a hole or electron, respectively, after relaxation has occurred. Its knowledge is mandatory for the optimisation of electronic devices based on these materials. UV photoelectron spectroscopy (UPS) and inverse photoelectron spectroscopy (IPES) are routinely applied to measure these molecular levels. However, the precise determination of the transport gap on the basis of the respective data is not an easy task. It involves fundamental questions about the properties of organic molecules and their condensates, about their reaction on the experimental probe, and on the evaluation of the spectroscopic data. In particular electronic relaxation processes, which occur on the time scale of the photo excitation, have to be considered adequately. We determined the transport gap for the organic semiconductors PTCDA, Alq3, DIP, CuPc, and PBI-H4. After careful data analysis and comparison to the respective values for the optical gap we obtain values for the exciton binding energies between 0.1-0.5 eV. This is considerably smaller than commonly believed and indicates a significant delocalisation of the excitonic charge over various molecular units.

  8. Apparatus for unloading radiographic cassettes in daylight

    International Nuclear Information System (INIS)

    Mechanism, for automatically opening and unloading cassettes of exposed radiographic films, is contructed to unfasten them in inverted position and open them by hinging the container part of the cassette upwardly relative to the lid. (UK)

  9. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed

    DEFF Research Database (Denmark)

    Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Park, Chankyu;

    2010-01-01

    ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-r...

  10. A specific interdomain interaction preserves the structural and binding properties of the ModA protein from the phytopathogen Xanthomonas citri domain interaction and transport in ModA.

    Science.gov (United States)

    Santacruz-Perez, Carolina; Pegos, Vanessa Rodrigues; Honorato, Rodrigo V; Verli, Hugo; Lindahl, Erik; Barbosa, João Alexandre Ribeiro Gonçalves; Balan, Andrea

    2013-11-01

    The periplasmic-binding proteins in ATP-binding cassette systems (ABC Transporters) are responsible for the capture and delivery of ligands to their specific transporters, triggering a series of ATP-driven conformational changes that leads to the transport of the ligand. Structurally consisting of two lobes, the proteins change conformation after interaction with the ligand. The structure of the molybdate-binding protein (ModA) from Xanthomonas citri, bound to molybdate, was previously solved by our group and an interdomain interaction, mediated by a salt bridge between K127 and D59, apparently supports the binding properties and keeps the domains closed. To determinate the importance of this interaction, we built two ModA mutants, K127S and D59A, and analysed their functional and structural properties. Based on a set of spectroscopic experiments, crystallisation trials, structure determination and molecular dynamics (MD) simulations, we showed that the salt bridge is essential to maintain the structure and binding properties. Additionally, the MD simulations revealed that this mutant adopted a more compact structure that packed down the ligand-binding pocket. From the closed bound to open structure, the positioning of the helices forming the dipole and the salt bridge are essential to induce an intermediate state. PMID:24035743

  11. Magnetic cassette for radiographic film material

    International Nuclear Information System (INIS)

    A radiographic film cassette having a plurality of magnet components integral with the cassette holder for adhering the cassette to ferrous material in X-raying for defects in welds or fissures in shipyards, pipe lines, or the like. What is provided is a substantially flexible cassette envelope comprising first and second layers of radiographic intensifying screens with a sheet of radiographic film positioned therebetween. The cassette would be a cassette envelope constructed of waterproof fabric or other suitable material providing a light-free environment, and having the ability to flex around the curvature of the surface of a pipe or the like to be x-rayed. There is further provided a plurality of magnet components, preferably situated in each corner of the cassette envelope and flexibly attached thereto for overall adherence of the envelope to the surface of the pipe or the like to be x-rayed during the process

  12. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    OpenAIRE

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L; Shi, Lei; Gracia, Luis; Raniszewska, Klaudia; Newman, Amy Hauck; Javitch, Jonathan A.; Weinstein, Harel; Gether, Ulrik; Loland, Claus J

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopami...

  13. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    NARCIS (Netherlands)

    Konings, WN; Poelarends, GJ

    2002-01-01

    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural a

  14. The role of ABCG-type ABC transporters in phytohormone transport

    OpenAIRE

    Borghi, Lorenzo; Kang, Joohyun; Ko, Donghwi; Lee, Youngsook; Martinoia, Enrico

    2015-01-01

    Plant hormones (phytohormones) integrate endogenous and exogenous signals thus synchronizing plant growth with environmental and developmental changes. Similar to animals, phytohormones have distinct source and target tissues, hence controlled transport and focused targeting are required for their functions. Many evidences accumulated in the last years about the regulation of long-distance and directional transport of phytohormones. ATP-binding cassette (ABC) transporters turned out to play m...

  15. Heteronuclear multidimensional NMR and homology modelling studies of the C-terminal nucleotide-binding domain of the human mitochondrial ABC transporter ABCB6

    International Nuclear Information System (INIS)

    Human ATP-binding cassette, sub-family B, member 6 (ABCB6) is a mitochondrial ABC transporter, and presumably contributes to iron homeostasis. Aimed at understanding the structural basis for the conformational changes accompanying the substrate-transportation cycle, we have studied the C-terminal nucleotide-binding domain of ABCB6 (ABCB6-C) in both the nucleotide-free and ADP-bound states by heteronuclear multidimensional NMR and homology modelling. A non-linear sampling scheme was utilised for indirectly acquired 13C and 15N dimensions of all 3D triple-resonance NMR experiments, in order to overcome the instability and the low solubility of ABCB6-C. The backbone resonances for approximately 25% of non-proline residues, which are mostly distributed around the functionally important loops and in the Helical domain, were not observed for nucleotide-free form of ABCB6-C. From the pH, temperature and magnetic field strength dependencies of the resonance intensities, we concluded that this incompleteness in the assignments is mainly due to the exchange between multiple conformations at an intermediate rate on the NMR timescale. These localised conformational dynamics remained in ADP-bound ABCB6-C except for the loops responsible for adenine base and α/β-phosphate binding. These results revealed that the localised dynamic cooperativity, which was recently proposed for a prokaryotic ABC MJ1267, also exists in a higher eukaryotic ABC, and is presumably shared by all members of the ABC family. Since the Helical domain is the putative interface to the transmembrane domain, this cooperativity may explain the coupled functions between domains in the substrate-transportation cycle

  16. ABC transporters from Botrytis cinerea in biotic and abiotic interactions

    NARCIS (Netherlands)

    Schoonbeek, H.

    2004-01-01

    Botrytis cinereais the causal agent of grey mould disease on a wide variety of crop plants. It is relatively insensitive to natural and synthetic fungitoxic compounds. This thesis describes how ABC (ATP-binding cassette) transporters contribute to protection by actively secre

  17. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)

    DEFF Research Database (Denmark)

    Scholz, C.; Parcej, D.; Ejsing, C. S.; Robenek, H.; Urbatsch, I. L.; Tampe, R.

    2011-01-01

    structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture...

  18. Grass plants bind, retain, uptake and transport infectious prions

    OpenAIRE

    Sandra Pritzkow; Rodrigo Morales; Fabio Moda; Uffaf Khan; Glenn C. Telling; Edward Hoover; Claudio Soto

    2015-01-01

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc) to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-...

  19. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L; Shi, Lei; Gracia, Luis; Raniszewska, Klaudia; Newman, Amy Hauck; Javitch, Jonathan A; Weinstein, Harel; Gether, Ulrik; Løland, Claus Juul

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive...

  20. Conformational Motions and Functionally Key Residues for Vitamin B12 Transporter BtuCD–BtuF Revealed by Elastic Network Model with a Function-Related Internal Coordinate

    OpenAIRE

    Ji-Guo Su; Xiao Zhang; Shu-Xin Zhao; Xing-Yuan Li; Yan-Xue Hou; Yi-Dong Wu; Jian-Zhuo Zhu; Hai-Long An

    2015-01-01

    BtuCD–BtuF from Escherichia coli is a binding protein-dependent adenosine triphosphate (ATP)-binding cassette (ABC) transporter system that uses the energy of ATP hydrolysis to transmit vitamin B12 across cellular membranes. Experimental studies have showed that during the transport cycle, the transporter undergoes conformational transitions between the “inward-facing” and “outward-facing” states, which results in the open–closed motions of the cytoplasmic gate of the transport channel. The ...

  1. Functional analysis of ABC transporter genes from Botrytis cinerea identifies BcatrB as a transporter of eugenol

    NARCIS (Netherlands)

    Schoonbeek, H.; Nistelrooy, van J.G.M.; Waard, de M.A.

    2003-01-01

    The role of multiple ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes from the plant pathogenic fungus Botrytis cinerea in protection against natural fungitoxic compounds was studied by expression analysis and phenotyping of gene-replacement mutants. The expressio

  2. Predictive Computational Models of Substrate Binding by a Nucleoside Transporter*

    OpenAIRE

    Collar, Catharine J.; Al-Salabi, Mohammed I.; Stewart, Mhairi L.; Barrett, Michael P; Wilson, W. David; Koning, Harry P. de

    2009-01-01

    Transporters play a vital role in both the resistance mechanisms of existing drugs and effective targeting of their replacements. Melarsoprol and diamidine compounds similar to pentamidine and furamidine are primarily taken up by trypanosomes of the genus Trypanosoma brucei through the P2 aminopurine transporter. In standardized competition experiments with [3H]adenosine, P2 transporter inhibition constants (Ki) have been determined for a diverse dataset of adenosine analogs, diamidines, Food...

  3. Fluoxetine (Prozac) Binding to Serotonin Transporter Is Modulated by Chloride and Conformational Changes

    OpenAIRE

    Tavoulari, Sotiria; Forrest, Lucy R.; Rudnick, Gary

    2009-01-01

    Serotonin transporter (SERT) is the main target for widely used antidepressant agents. Several of these drugs, including imipramine, citalopram, sertraline, and fluoxetine (Prozac), bound more avidly to SERT in the presence of Cl–. In contrast, Cl– did not enhance cocaine or paroxetine binding. A Cl– binding site recently identified in SERT, and shown to be important for Cl– dependent transport, was also critical for the Cl– dependence of antidepressant affinity. Mutation of the residues cont...

  4. Plant pleiotropic drug resistance transporters:Transport mechanism, gene expression, and function

    Institute of Scientific and Technical Information of China (English)

    Mohammed Nuruzzaman; Ru Zhang; Hong-Zhe Cao; Zhi-Yong Luo

    2014-01-01

    Pleiotropic drug resistance (PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette (ABC) transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of molecules across membranes. Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones, and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.

  5. Corticotropin-Releasing Hormone (CRH) Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1)

    OpenAIRE

    Cho, Wonkyoung; Kang, Jihee Lee; Park, Young Mi

    2015-01-01

    Atherosclerosis, the major pathology of cardiovascular disease, is caused by multiple factors involving psychological stress. Corticotropin-releasing hormone (CRH), which is released by neurosecretory cells in the hypothalamus, peripheral nerve terminals and epithelial cells, regulates various stress-related responses. Our current study aimed to verify the role of CRH in macrophage foam cell formation, the initial critical stage of atherosclerosis. Our quantitative real-time reverse transcrip...

  6. Tiaozhi Tongmai Granules reduce atherogenesis and promote the expression of ATP-binding cassette transporter A1 in rabbit atherosclerotic plaque macrophages and the liver

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-07-01

    Conclusions: Tiaozhi Tongmai Granules appear to have an anti-atherogenic effect that is most likely mediated by simultaneously upregulating the protein expression of ABCA1 in rabbit atherosclerotic plaque macrophages and in the liver.

  7. Variants in the ATP-Binding Cassette Transporter (ABCA7), Apolipoprotein E ε4, and the Risk of Late-Onset Alzheimer Disease in African Americans

    Science.gov (United States)

    Reitz, Christiane; Jun, Gyungah; Naj, Adam; Rajbhandary, Ruchita; Vardarajan, Badri Narayan; Wang, Li-San; Valladares, Otto; Lin, Chiao-Feng; Larson, Eric B.; Graff-Radford, Neill R.; Evans, Denis; De Jager, Philip L.; Crane, Paul K.; Buxbaum, Joseph D.; Murrell, Jill R.; Raj, Towfique; Ertekin-Taner, Nilufer; Logue, Mark; Baldwin, Clinton T.; Green, Robert C.; Barnes, Lisa L.; Cantwell, Laura B.; Fallin, M. Daniele; Go, Rodney C. P.; Griffith, Patrick; Obisesan, Thomas O.; Manly, Jennifer J.; Lunetta, Kathryn L.; Kamboh, M. Ilyas; Lopez, Oscar L.; Bennett, David A.; Hendrie, Hugh; Hall, Kathleen S.; Goate, Alison M.; Byrd, Goldie S.; Kukull, Walter A.; Foroud, Tatiana M.; Haines, Jonathan L.; Farrer, Lindsay A.; Pericak-Vance, Margaret A.; Schellenberg, Gerard D.; Mayeux, Richard

    2013-01-01

    Importance Genetic variants associated with susceptibility to late-onset Alzheimer disease are known for individuals of European ancestry, but whether the same or different variants account for the genetic risk of Alzheimer disease in African American individuals is unknown. Identification of disease-associated variants helps identify targets for genetic testing, prevention, and treatment. Objective To identify genetic loci associated with late-onset Alzheimer disease in African Americans. Design, Setting, and Participants The Alzheimer Disease Genetics Consortium (ADGC) assembled multiple data sets representing a total of 5896 African Americans (1968 case participants, 3928 control participants) 60 years or older that were collected between 1989 and 2011 at multiple sites. The association of Alzheimer disease with genotyped and imputed single-nucleotide polymorphisms (SNPs) was assessed in case-control and in family-based data sets. Results from individual data sets were combined to perform an inverse variance–weighted meta-analysis, first with genome-wide analyses and subsequently with gene-based tests for previously reported loci. Main Outcomes and Measures Presence of Alzheimer disease according to standardized criteria. Results Genome-wide significance in fully adjusted models (sex, age, APOE genotype, population stratification) was observed for a SNP in ABCA7 (rs115550680, allele = G; frequency, 0.09 cases and 0.06 controls; odds ratio [OR], 1.79 [95% CI, 1.47-2.12]; P = 2.2 × 10–9), which is in linkage disequilibrium with SNPs previously associated with Alzheimer disease in Europeans (0.8

  8. Intragenic Suppressing Mutations Correct the Folding and Intracellular Traffic of Misfolded Mutants of Yor1p, a Eukaryotic Drug Transporter*

    OpenAIRE

    Pagant, Silvere; Halliday, John J.; Kougentakis, Christos; Miller, Elizabeth A.

    2010-01-01

    ATP-binding cassette (ABC) transporters play pivotal physiological roles in substrate transport across membranes, and defective assembly of these proteins can cause severe disease associated with improper drug or ion flux. The yeast protein Yor1p is a useful model to study the biogenesis of ABC transporters; deletion of a phenylalanine residue in the first nucleotide-binding domain (NBD1) causes misassembly and retention in the endoplasmic reticulum (ER) of the resulting protein Yor1p-ΔF670, ...

  9. An ambiguous interface – on the transport mechanism of the ABC transport complex TAP

    OpenAIRE

    Großmann, Nina

    2012-01-01

    The adaptive immune system protects against daily infections and malignant transformation. In this, the translocation of antigenic peptides by the transporter associated with antigen processing (TAP) into the ER lumen is an essential step in the antigen presentation by MHC I molecules. The heterodimeric ATP-binding cassette transporter (ABC) TAP consist of the two halftransporters TAP1 and TAP2. Each monomer contains an N-terminal transmembrane domain (TMD) and a conserved C-terminal nucleoti...

  10. Virtual screening of ABCC1 transporter nucleotidebinding domains as a therapeutic target in multidrug resistant cancer

    OpenAIRE

    Rungsardthong, Kanin; Mares- Sámano, Sergio; Penny, Jeffrey

    2012-01-01

    ABCC1 is a member of the ATP-binding Cassette super family of transporters, actively effluxes xenobiotics from cells. Clinically, ABCC1 expression is linked to cancer multidrug resistance. Substrate efflux is energised by ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) and inhibition of these events may help combat drug resistance. The aim of this study is to identify potential inhibitors of ABCC1 through virtual screening of National Cancer Institute (NCI) compounds. A th...

  11. Impact of disruption of secondary binding site S2 on dopamine transporter function.

    Science.gov (United States)

    Zhen, Juan; Reith, Maarten E A

    2016-09-01

    The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. PMID

  12. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    Science.gov (United States)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  13. A single-molecule approach to explore binding, uptake and transport of cancer cell targeting nanotubes

    International Nuclear Information System (INIS)

    In the past decade carbon nanotubes (CNTs) have been widely studied as a potential drug-delivery system, especially with functionality for cellular targeting. Yet, little is known about the actual process of docking to cell receptors and transport dynamics after internalization. Here we performed single-particle studies of folic acid (FA) mediated CNT binding to human carcinoma cells and their transport inside the cytosol. In particular, we employed molecular recognition force spectroscopy, an atomic force microscopy based method, to visualize and quantify docking of FA functionalized CNTs to FA binding receptors in terms of binding probability and binding force. We then traced individual fluorescently labeled, FA functionalized CNTs after specific uptake, and created a dynamic ‘roadmap’ that clearly showed trajectories of directed diffusion and areas of nanotube confinement in the cytosol. Our results demonstrate the potential of a single-molecule approach for investigation of drug-delivery vehicles and their targeting capacity. (paper)

  14. A single-molecule approach to explore binding, uptake and transport of cancer cell targeting nanotubes

    Science.gov (United States)

    Lamprecht, C.; Plochberger, B.; Ruprecht, V.; Wieser, S.; Rankl, C.; Heister, E.; Unterauer, B.; Brameshuber, M.; Danzberger, J.; Lukanov, P.; Flahaut, E.; Schütz, G.; Hinterdorfer, P.; Ebner, A.

    2014-03-01

    In the past decade carbon nanotubes (CNTs) have been widely studied as a potential drug-delivery system, especially with functionality for cellular targeting. Yet, little is known about the actual process of docking to cell receptors and transport dynamics after internalization. Here we performed single-particle studies of folic acid (FA) mediated CNT binding to human carcinoma cells and their transport inside the cytosol. In particular, we employed molecular recognition force spectroscopy, an atomic force microscopy based method, to visualize and quantify docking of FA functionalized CNTs to FA binding receptors in terms of binding probability and binding force. We then traced individual fluorescently labeled, FA functionalized CNTs after specific uptake, and created a dynamic ‘roadmap’ that clearly showed trajectories of directed diffusion and areas of nanotube confinement in the cytosol. Our results demonstrate the potential of a single-molecule approach for investigation of drug-delivery vehicles and their targeting capacity.

  15. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Jensen, Heidi Bisgaard; Larsen, M Andreas B; Mazier, Sonia;

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational...... with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine....

  16. Drosophila ABC Transporter DmHMT-1 Confers Tolerance to Cadmium.

    Science.gov (United States)

    Half molecule ATP-binding cassette transporters of the HMT1(heavy metal tolerance factor 1)subfamily are required for Cd2+ tolerance in Schizosaccharomyces pombe, Caenorhabditis elegans and Chlamydomonas reinhardtii, and have homologs in other species, including plants and humans. Based on studies i...

  17. Binding of f-elements to the iron-transport protein transferrin

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.M.; Yule, L.; Gaskin, P.W.; Unalkat, P. (Kernforschungszentrum Karlsruhe, GmbH (DE). Inst. fuer Genetik und Toxikologie von Sfaltstoffen); Taylor, D.M. (Heidelberg Univ. (DE)); Duffield, J.R.; Williams, D.R.; Yule, L.; Gaskin, P.W.; Unalkat, P. (University Coll. of Cardiff (UK)); Duffield, J.R. (Manchester Polytechnic, (UK). Dept. of Chemistry)

    1991-01-01

    Chromatographic studies of in vivo and in vitro labelled blood serum indicate that the f-elements Th(IV), Pu(IV), Np(IV, V), Am(III), Cm(III), Eu(III), Gd(III) and Yb(III) bind to and are transported on transferrin (Tf). Spectroscopic studies indicate that 2 f-metal atoms are bound to each Tf molecule, thus implicating the N- and C-terminal iron binding sites of transferrin in f-element binding. However, the stability of the f-metal-Tf complexes, especially those with M(III), is lower than that of the Fe(III) complex. In some cells Fe(III) binding to transferrin facilitates cellular iron uptake via a receptor mechanism, but with Pu(IV) transferrin binding appears to inhibit cellular uptake.

  18. Identification of a chloride ion binding site in Na+/Cl−-dependent transporters

    OpenAIRE

    Forrest, Lucy R.; Tavoulari, Sotiria; Zhang, Yuan-Wei; Rudnick, Gary; Honig, Barry

    2007-01-01

    The recent determination of the crystal structure of the leucine transporter from Aquifex aeolicus (aaLeuT) has provided significant insights into the function of neurotransmitter:sodium symporters. Transport by aaLeuT is Cl− independent, whereas many neurotransmitter:sodium symporters from higher organisms depend on Cl− ions. However, the only Cl− ion identified in the aaLeuT structure interacts with nonconserved residues in extracellular loops, and thus the relevance of this binding site is...

  19. A potential role for guanine nucleotide-binding protein in the regulation of endosomal proton transport.

    OpenAIRE

    Gurich, R W; Codina, J; DuBose, T D

    1991-01-01

    The effects of guanosine 5'-triphosphate (GTP) and GTP-gamma-S, known activators of GTP binding proteins, on proton transport were investigated in endosome-enriched vesicles (endosomes). Endosomes were prepared from rabbit renal cortex following the intravenous injection of FITC-dextran. The rate of intravesicular acidification was determined by measuring changes in fluorescence of FITC-dextran. Both GTP and GTP-gamma-S stimulated significantly the initial rate of proton transport. In contras...

  20. Serotonin Transporter Genotype Affects Serotonin 5-HT1A Binding in Primates

    OpenAIRE

    Christian, Bradley T; Wooten, Dustin W.; Hillmer, Ansel T; Tudorascu, Dana L.; Converse, Alexander K.; Moore, Colleen F.; Ahlers, Elizabeth O.; Barnhart, Todd E; Kalin, Ned H.; Barr, Christina S.; Schneider, Mary L.

    2013-01-01

    Disruption of the serotonin system has been implicated in anxiety and depression and a related genetic variation has been identified that may predispose individuals for these illnesses. The relationship of a functional variation of the serotonin transporter promoter gene (5-HTTLPR) on serotonin transporter binding using in vivo imaging techniques have yielded inconsistent findings when comparing variants for short (s) and long (l) alleles. However, a significant 5-HTTLPR effect on receptor bi...

  1. Possible involvement of lipoic acid in binding protein-dependent transport systems in Escherichia coli.

    OpenAIRE

    Richarme, G

    1985-01-01

    We describe the properties of the binding protein dependent-transport of ribose, galactose, and maltose and of the lactose permease, and the phosphoenolpyruvate-glucose phosphotransferase transport systems in a strain of Escherichia coli which is deficient in the synthesis of lipoic acid, a cofactor involved in alpha-keto acid dehydrogenation. Such a strain can grow in the absence of lipoic acid in minimal medium supplemented with acetate and succinate. Although the lactose permease and the p...

  2. NasFED Proteins Mediate Assimilatory Nitrate and Nitrite Transport in Klebsiella oxytoca (pneumoniae) M5al

    OpenAIRE

    Wu, Qitu; Stewart, Valley

    1998-01-01

    Klebsiella oxytoca can use nitrate and nitrite as sole nitrogen sources. The enzymes required for nitrate and nitrite assimilation are encoded by the nasFEDCBA operon. We report here the complete nasFED sequence. Sequence comparisons indicate that the nasFED genes encode components of a conventional periplasmic binding protein-dependent transport system consisting of a periplasmic binding protein (NasF), a homodimeric intrinsic membrane protein (NasE), and a homodimeric ATP-binding cassette (...

  3. Metaphit inhibits dopamine transport and binding of [3H]methylphenidate, a proposed marker for the dopamine transport complex

    International Nuclear Information System (INIS)

    Metaphit, an acylating derivative of phencyclidine, was shown to interact with components of the dopamine nerve terminal in rat striatal tissue. This compound, previously demonstrated to be an irreversible inhibitor at the phencyclidine receptor, was shown in these experiments to irreversibly inhibit synaptosomal [3H]dopamine uptake. It also inhibited binding of [3H]methylphenidate to its recognition site, which is thought to be a subunit of the dopamine transporter. Although the inhibition was due primarily to a reduction in the binding and transport capacity of the systems studied, increases in the apparent KD of [3H]methylphenidate and the Km of [3H]dopamine were also observed. Differences in the behavior of Metaphit and phencylidine in these dopaminergic systems compared to their effects on the NMDA receptor-linked phencyclidine receptor suggest that Metaphit may be interacting with two distinct molecular sites in the rat striatum

  4. Metaphit inhibits dopamine transport and binding of ( sup 3 H)methylphenidate, a proposed marker for the dopamine transport complex

    Energy Technology Data Exchange (ETDEWEB)

    Schweri, M.M. (Mercer Univ. School of Medicine, Macon, GA (USA)); Jacobson, A.E.; Rice, K.C. (National Institutes of Health, Bethesda, MD (USA)); Lessor, R.A.

    1989-01-01

    Metaphit, an acylating derivative of phencyclidine, was shown to interact with components of the dopamine nerve terminal in rat striatal tissue. This compound, previously demonstrated to be an irreversible inhibitor at the phencyclidine receptor, was shown in these experiments to irreversibly inhibit synaptosomal ({sup 3}H)dopamine uptake. It also inhibited binding of ({sup 3}H)methylphenidate to its recognition site, which is thought to be a subunit of the dopamine transporter. Although the inhibition was due primarily to a reduction in the binding and transport capacity of the systems studied, increases in the apparent K{sub D} of ({sup 3}H)methylphenidate and the K{sub m} of ({sup 3}H)dopamine were also observed. Differences in the behavior of Metaphit and phencylidine in these dopaminergic systems compared to their effects on the NMDA receptor-linked phencyclidine receptor suggest that Metaphit may be interacting with two distinct molecular sites in the rat striatum.

  5. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains.

    Directory of Open Access Journals (Sweden)

    Peter M Jones

    Full Text Available ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs, which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration 'sandwich' dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD 'Switch' mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.

  6. Cerebral serotonin transporter binding is inversely related to body mass index

    DEFF Research Database (Denmark)

    Erritzoe, D; Frokjaer, V G; Haahr, M T;

    2010-01-01

    ) in animal models is inversely related to food intake and body weight and some effective anti-obesity agents involve blockade of the serotonin transporter (SERT). We investigated in 60 healthy volunteers body mass index (BMI) and regional cerebral SERT binding as measured with [(11)C]DASB PET. In a linear...

  7. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    International Nuclear Information System (INIS)

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg2+. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg2+, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics

  8. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongshan [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom); College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Xiang, Quanju [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000 (China); Zhu, Xiaofeng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Dong, Haohao [Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); He, Chuan [School of Electronics and Information, Wuhan Technical College of Communications, No. 6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065 (China); Wang, Haiyan; Zhang, Yizheng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Wang, Wenjian, E-mail: Wenjian166@gmail.com [Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080 (China); Dong, Changjiang, E-mail: C.Dong@uea.ac.uk [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom)

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  9. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  10. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer

    DEFF Research Database (Denmark)

    Hedditch, Ellen L; Gao, Bo; Russell, Amanda J;

    2014-01-01

    BACKGROUND: ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. METHODS: The relationship between clinical outcomes and ABC transporter gene expression in two...... cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. CONCLUSIONS: Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid trafficking as a potentially important process in EOC....

  11. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    International Nuclear Information System (INIS)

    We have characterized the interaction of the serotonin transporter ligand [3H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [3H]-DASB, a tritiated version of the widely used [11C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K d=0.20±0.04 nM). The serotonin transporter density (B max) obtained for rhesus frontal cortex was found to be 66±8 fmol/mg protein using [3H]-DASB, similar to the B max value obtained using the reference radioligand [3H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83±22 fmol/mg protein). Specific binding sites of both [3H]-DASB and [3H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [3H]-citalopram binding in a competition autoradiographic study, with K i values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [3H]-DASB and [3H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [11C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates

  12. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhizhen [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)]. E-mail: zhizhen_zeng@merck.com; Chen, T.-B. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Miller, Patricia J. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Dean, Dennis [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Tang, Y.S. [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Sur, Cyrille [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Williams, David L. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)

    2006-05-15

    We have characterized the interaction of the serotonin transporter ligand [{sup 3}H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [{sup 3}H]-DASB, a tritiated version of the widely used [{sup 11}C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K {sub d}=0.20{+-}0.04 nM). The serotonin transporter density (B {sub max}) obtained for rhesus frontal cortex was found to be 66{+-}8 fmol/mg protein using [{sup 3}H]-DASB, similar to the B {sub max} value obtained using the reference radioligand [{sup 3}H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83{+-}22 fmol/mg protein). Specific binding sites of both [{sup 3}H]-DASB and [{sup 3}H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [{sup 3}H]-citalopram binding in a competition autoradiographic study, with K {sub i} values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [{sup 3}H]-DASB and [{sup 3}H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [{sup 11}C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates.

  13. Phloem RNA-binding proteins as potential components of the long-distance RNA transport system.

    Directory of Open Access Journals (Sweden)

    VICENTE ePALLAS

    2013-05-01

    Full Text Available RNA-binding proteins (RBPs govern a myriad of different essential processes in eukaryotic cells. Recent evidence reveals that apart from playing critical roles in RNA metabolism and RNA transport, RBPs perform a key function in plant adaption to various environmental conditions. Long distance RNA transport occurs in land plants through the phloem, a conducting tissue that integrates the wide range of signalling pathways required to regulate plant development and response to stress processes. The macromolecules in the phloem pathway vary greatly and include defence proteins, transcription factors, chaperones acting in long distance trafficking, and RNAs (mRNAs, siRNAs and miRNAs. How these RNA molecules translocate through the phloem is not well understood, but recent evidence indicates the presence of translocatable RNA-binding proteins in the phloem, which act as potential components of long distance RNA transport system. This review updates our knowledge on the characteristics and functions of RBPs present in the phloem.

  14. Prognostic impact of high ABC transporter activity in 111 adult acute myeloid leukemia patients with normal cytogenetics when compared to FLT3, NPM1, CEBPA and BAALC.

    Science.gov (United States)

    Hirsch, Pierre; Tang, Ruoping; Marzac, Christophe; Perrot, Jean-Yves; Fava, Fanny; Bernard, Chantal; Jeziorowska, Dorota; Marie, Jean Pierre; Legrand, Ollivier

    2012-02-01

    ATP-binding cassette transporter (and specially P-glycoprotein) activity is a well known prognostic factor in acute myeloid leukemia, but when compared to other molecular markers its prognostic value has not been well studied. Here we study relationships between this activity, fms-like tyro-sine kinase 3(FLT3/ITD), nucleophosmin(NPM1), CAAT-enhancer binding protein alpha(CEBPα), and brain and acute leukemia cytoplasmic protein (BAALC), in 111 patients with normal cytogenetics who underwent the same treatment, and evaluate its prognostic impact. Independent factors for survival were age (P=0.0126), ATP-binding cassette transporter activity (P=0.018) and duplications in the fms-like tyrosine kinase 3 (P=0.0273). In the 66 patients without fms-like tyrosine kinase 3 duplication and without nucleophosmin mutation, independent prognostic factors for complete remission achievement and survival were age and ATP-binding cassette transporter activity. In conclusion, ATP-binding cassette transporter activity remains an independent prognostic factor, and could assist treatment decisions in patients with no nucleophosmin mutation and no fms-like tyrosine kinase 3 duplication. PMID:22058196

  15. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling

    Directory of Open Access Journals (Sweden)

    Shirmohammadi Adel

    2006-10-01

    Full Text Available Abstract Background Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP is becoming more important. Methods and results The Osborne-Moré extended version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the Fluorescence Recovery after Photobleaching (FRAP protocol, and the numerical solution of a set of two partial differential equations governing macromolecule mass transport and reaction in living cells, to inversely estimate optimized values of the molecular diffusion coefficient and binding rate parameters of GFP-tagged glucocorticoid receptor. The results indicate that the FRAP protocol provides enough information to estimate one parameter uniquely using a nonlinear optimization technique. Coupling FRAP experimental data with the inverse modeling strategy, one can also uniquely estimate the individual values of the binding rate coefficients if the molecular diffusion coefficient is known. One can also simultaneously estimate the dissociation rate parameter and molecular diffusion coefficient given the pseudo-association rate parameter is known. However, the protocol provides insufficient information for unique simultaneous estimation of three parameters (diffusion coefficient and binding rate parameters owing to the high intercorrelation between the molecular diffusion coefficient and pseudo-association rate parameter. Attempts to estimate macromolecule mass transport and binding rate parameters simultaneously from FRAP data result in misleading conclusions regarding concentrations of free macromolecule and bound complex inside the cell, average binding time per vacant site, average time for diffusion of macromolecules from one site to the next, and slow or rapid mobility of biomolecules in cells. Conclusion To obtain unique values for molecular diffusion coefficient and

  16. Tissue Distribution, Gender-Divergent Expression, Ontogeny, and Chemical Induction of Multidrug Resistance Transporter Genes (Mdr1a, Mdr1b, Mdr2) in Mice

    OpenAIRE

    Cui, Yue Julia; Cheng, Xingguo; Weaver, Yi Miao; Klaassen, Curtis D.

    2008-01-01

    Multidrug resistance (Mdr) transporters are ATP-binding cassette transporters that efflux amphipathic cations from cells and protect tissues from xenobiotics. Unfortunately, Mdr transporters also efflux anticancer drugs from some tumor cells, resulting in multidrug resistance. There are two groups of Mdrs in mice: group I includes Mdr1a and Mdr1b that transport xenobiotics, whereas group II is Mdr2, a flipase that facilitates phospholipid excretion into bile. Little is...

  17. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles

    International Nuclear Information System (INIS)

    The purpose of this study was to compare the effects of a high-fat, high-sucrose diet (HFS) and a low-fat, high-complex carbohydrate diet (LFC) on glucose tolerance, insulin binding, and glucose transport in rat skeletal muscle. During the intravenous glucose tolerance test, peak glucose values at 5 min were significantly higher in the HFS group; 0-, 20-, and 60-min values were similar. Insulin values were significantly higher in the HFS group at all time points (except 60 min), indicating whole-body insulin resistance. Skeletal muscle was responsible, in part, for this insulin resistance, because specific D-glucose transport in isolated sarcolemmal (SL) vesicles under basal conditions was similar between LFC and HFS rats, despite the higher plasma insulin levels. Scatchard analyses of insulin binding curves to sarcolemmal vesicles revealed that the K/sub a/ of the high-affinity binding sites was significantly reduced by the HFS diet; no other binding changes were noted. Specific D-glucose transport in SL vesicles after maximum insulin stimulation (1 U/kg) was significantly depressed in the HFS group, indicating that HFS feeding also caused a postbinding defect. These results indicate that the insulin resistance in skeletal muscle associated with a HFS diet is due to both a decrease in the K/sub a/ of the high-affinity insulin receptors and a postbinding defect

  18. Mutations in the carboxyl-terminal SEC24 binding motif of the serotonin transporter impair folding of the transporter.

    Science.gov (United States)

    El-Kasaby, Ali; Just, Herwig; Malle, Elisabeth; Stolt-Bergner, Peggy C; Sitte, Harald H; Freissmuth, Michael; Kudlacek, Oliver

    2010-12-10

    The serotonin transporter (SERT) is a member of the SLC6 family of solute carriers. SERT plays a crucial role in synaptic neurotransmission by retrieving released serotonin. The intracellular carboxyl terminus of various neurotransmitter transporters has been shown to be important for the correct delivery of SLC6 family members to the cell surface. Here we studied the importance of the C terminus in trafficking and folding of human SERT. Serial truncations followed by mutagenesis identified sequence spots (PG(601,602), RII(607-609)) within the C terminus relevant for export of SERT from the endoplasmic reticulum (ER). RI(607,608) is homologous to the RL-motif that in other SLC6 family members provides a docking site for the COPII component Sec24D. The primary defect resulting from mutation at PG(601,602) and RI(607,608) was impaired folding, because mutated transporters failed to bind the inhibitor [(3)H]imipramine. In contrast, when retained in the ER (e.g. by dominant negative Sar1) the wild type transporter bound [(3)H]imipramine with an affinity comparable to that of the surface-expressed transporter. SERT-RI(607,608)AA and SERT-RII(607-609)AAA were partially rescued by treatment of cells with the nonspecific chemical chaperone DMSO or the specific pharmacochaperone ibogaine (which binds to the inward facing conformation of SERT) but not by other classes of ligands (inhibitors, substrates, amphetamines). These observations (i) demonstrate an hitherto unappreciated role of the C terminus in the folding of SERT, (ii) indicates that the folding trajectory proceeds via an inward facing intermediate, and (iii) suggest a model where the RI-motif plays a crucial role in preventing premature Sec24-recruitment and export of incorrectly folded transporters. PMID:20889976

  19. Books (on Cassette) Are Better Than Ever.

    Science.gov (United States)

    Davis, Bryan

    1984-01-01

    Describes introduction of books on tape at Oskaloosa (Iowa) Public Library, highlighting determination of audience and use, display of recorded books, packaging of tapes, cataloging, and quality of tapes. A list of 19 production companies and six distributors noting address, telephone number, type of cassettes, and price range is included. (EJS)

  20. Homology Modelling of the GABA Transporter and Analysis of Tiagabine Binding

    DEFF Research Database (Denmark)

    Skovstrup, S.; Taboureau, Olivier; Bräuner-Osborne, H.;

    2010-01-01

    A homology model of the human GABA transporter (GAT-1) based on the recently reported crystal structures of the bacterial leucine transporter from Aquifex aeolicus (LeuT) was developed. The stability of the resulting model embedded in a membrane environment was analyzed by extensive molecular...... dynamics (MD) simulations. Based on docking studies and subsequent MD simulations of three compounds, the endogenous ligand GABA and two potent inhibitors, (R)-nipecotic acid and the anti-epilepsy drug tiagabine, various binding modes were identified and are discussed. Whereas GABA and (R)-nipecotic acid...

  1. Pharmacological characterization of axonally transported (125I)-alpha-bungatoxin binding sites in rat sciatic nerve

    International Nuclear Information System (INIS)

    The authors attempt to label the putative receptors as they are axonally transported in peripheral nerves. With the use of an innovative autoradiographic technique, this approach as enabled the investigation of the pharmacological properties of the toxin-binding site interaction. The tissue sections from adult male rat sciatic nerves were incubated for 60 min at room temperature in phosphate buffer saline containing 2 nM I 125-alpha-BuTX with or without displacer. A bright field micrograph as well as dark field autoradiograph is illustrated of a ligated (12 hr.) rat sciatic nerve section incubated with I 125-alpha-BuTX. If one presumes that axonally transported I 125-alpha-BuTX binding sites correspond to receptors whose destination is the presynaptic membrane, then the data presented in this study may provide a pharmacological basis for differentiating pre- and postsynaptic sites of action of cholinergic drugs on the mammalian neuromuscular junction

  2. Novel mechanisms of intracellular cholesterol transport: oxysterol-binding proteins and membrane contact sites.

    Science.gov (United States)

    Du, Ximing; Brown, Andrew J; Yang, Hongyuan

    2015-08-01

    Cholesterol is an essential membrane constituent, and also plays a key role in cell signalling. Within a cell, how cholesterol is transported and how its heterogeneous distribution is maintained are poorly understood. Recent advances have identified novel pathways and regulators of cholesterol trafficking. Sterol transfer by lipid-binding proteins, such as OSBP (oxysterol-binding protein), coupled with phosphatidylinositol 4-phosphate exchange at membrane contact sites (MCSs) has emerged as a new theme of cholesterol transport between organellar membranes. Moreover, a previously unappreciated role of peroxisomes in cholesterol trafficking has been revealed recently. These discoveries highlight the crucial role of MCSs, or junctions, in facilitating lipid movement, and provide mechanistic insights into how cholesterol is sorted in cells. PMID:25932595

  3. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David;

    2009-01-01

    Mood disorders are elicited through a combination of genetic and environmental stress factors, and treatment with selective serotonin reuptake inhibitors ameliorates depressive symptoms. Changes in the serotonin transporter (SERT) binding may therefore occur in depressive patients and in subjects...... measured with [(11)C]DASB PET. The volumes of interest included the orbitofrontal cortex, the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain. We found that individuals at high familial risk for mood disorders had a 35...

  4. High-Dose Testosterone Treatment Increases Serotonin Transporter Binding in Transgender People

    OpenAIRE

    Kranz, Georg S.; Wadsak, Wolfgang; Kaufmann, Ulrike; Savli, Markus; Baldinger, Pia; Gryglewski, Gregor; Haeusler, Daniela; Spies, Marie; Mitterhauser, Markus; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    Background Women are two times more likely to be diagnosed with depression than men. Sex hormones modulating serotonergic transmission are proposed to partly underlie these epidemiologic findings. Here, we used the cross-sex steroid hormone treatment of transsexuals seeking sex reassignment as a model to investigate acute and chronic effects of testosterone and estradiol on serotonin reuptake transporter (SERT) binding in female-to-male and male-to-female transsexuals. Methods Thirty-three tr...

  5. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    OpenAIRE

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state l...

  6. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    OpenAIRE

    Fürst, Joachim Alexander; J Hashemi; Markussen, Troels; Brandbyge, Mads; Jauho, Antti-Pekka; Nieminen, R. M.

    2009-01-01

    Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy...

  7. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    OpenAIRE

    Fürst, J. A.; J Hashemi; Markussen, T.; Brandbyge, M.; Jauho, A.P.; Nieminen, Risto M.

    2009-01-01

    Fullerene functionalized carbon nanotubes—NanoBuds—form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio techniques and tight-binding calculations to illustrate these materials’ transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy...

  8. A New Metal Binding Domain Involved in Cadmium, Cobalt and Zinc Transport

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron T. [Northwestern Univ., Evanston, IL (United States); Barupala, Dulmini [Wayne State Univ., Detroit, MI (United States); Stemmler, Timothy L. [Wayne State Univ., Detroit, MI (United States); Rosenzweig, Amy C. [Northwestern Univ., Evanston, IL (United States)

    2015-07-20

    In the P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+ or Zn2+ ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Moreover, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.

  9. A single intact ATPase site of the ABC transporter BtuCD drives 5% transport activity yet supports full in vivo vitamin B12 utilization

    OpenAIRE

    Tal, Nir; Ovcharenko, Elena; Lewinson, Oded

    2013-01-01

    In all kingdoms of life, ATP binding cassette (ABC) transporters are essential to many cellular functions. In this large superfamily of proteins, two catalytic sites hydrolyze ATP to power uphill substrate translocation. A central question in the field concerns the relationship between the two ATPase catalytic sites: Are the sites independent of one another? Are both needed for function? Do they function cooperatively? These issues have been resolved for type I ABC transporters but never for ...

  10. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Hansen, Freja Herborg; Sørensen, Gunnar;

    2013-01-01

    The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequenc...

  11. Borreliacidal activity of Borrelia metal transporter A (BmtA binding small molecules by manganese transport inhibition

    Directory of Open Access Journals (Sweden)

    Wagh D

    2015-02-01

    Full Text Available Dhananjay Wagh,* Venkata Raveendra Pothineni,* Mohammed Inayathullah, Song Liu, Kwang-Min Kim, Jayakumar Rajadas Biomaterials and Advanced Drug Delivery Laboratory, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA *These authors contributed equally to this work  Abstract: Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA, a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 µg/mL (250 µM. Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia.  Keywords: Lyme disease, BmtA, Borrelia burgdorferi, desloratadine, Bac Titer-Glo assay

  12. High-Dose Testosterone Treatment Increases Serotonin Transporter Binding in Transgender People

    Science.gov (United States)

    Kranz, Georg S.; Wadsak, Wolfgang; Kaufmann, Ulrike; Savli, Markus; Baldinger, Pia; Gryglewski, Gregor; Haeusler, Daniela; Spies, Marie; Mitterhauser, Markus; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    Background Women are two times more likely to be diagnosed with depression than men. Sex hormones modulating serotonergic transmission are proposed to partly underlie these epidemiologic findings. Here, we used the cross-sex steroid hormone treatment of transsexuals seeking sex reassignment as a model to investigate acute and chronic effects of testosterone and estradiol on serotonin reuptake transporter (SERT) binding in female-to-male and male-to-female transsexuals. Methods Thirty-three transsexuals underwent [11C]DASB positron emission tomography before start of treatment, a subset of which underwent a second scan 4 weeks and a third scan 4 months after treatment start. SERT nondisplaceable binding potential was quantified in 12 regions of interest. Treatment effects were analyzed using linear mixed models. Changes of hormone plasma levels were correlated with changes in regional SERT nondisplaceable binding potential. Results One and 4 months of androgen treatment in female-to-male transsexuals increased SERT binding in amygdala, caudate, putamen, and median raphe nucleus. SERT binding increases correlated with treatment-induced increases in testosterone levels, suggesting that testosterone increases SERT expression on the cell surface. Conversely, 4 months of antiandrogen and estrogen treatment in male-to-female transsexuals led to decreases in SERT binding in insula, anterior, and mid-cingulate cortex. Increases in estradiol levels correlated negatively with decreases in regional SERT binding, indicating a protective effect of estradiol against SERT loss. Conclusions Given the central role of the SERT in the treatment of depression and anxiety disorders, these findings may lead to new treatment modalities and expand our understanding of the mechanism of action of antidepressant treatment properties. PMID:25497691

  13. The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp

    OpenAIRE

    Lei Benfang; Liu Mengyao; Zhu Hui

    2008-01-01

    Abstract Background The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established. Results The objective of this study was to determine whether Shr binds heme and is a heme source of Shp. To achieve the objective, ...

  14. Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells

    OpenAIRE

    Ayako Nakano; Daisuke Tsuji; Hirokazu Miki; Qu Cui; Salah Mohamed El Sayed; Akishige Ikegame; Asuka Oda; Hiroe Amou; Shingen Nakamura; Takeshi Harada; Shiro Fujii; Kumiko Kagawa; Kyoko Takeuchi; Akira Sakai; Shuji Ozaki

    2011-01-01

    Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubic...

  15. ABC Transporters and their Role in Nucleoside and Nucleotide Drug Resistance

    OpenAIRE

    Fukuda, Yu; Schuetz, John D.

    2012-01-01

    ATP-binding cassette (ABC) transporters confer drug resistance against a wide range of chemotherapeutic agents, including nucleoside and nucleotide based drugs. While nucleoside based drugs have been used for many years in the treatment of solid and hematological malignancies as well as viral and autoimmune diseases, the potential contribution of ABC transporters has only recently been recognized. This neglect is likely because activation of nucleoside derivatives require an initial carrier-m...

  16. Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Olsen, Lars; Hansen, Kasper B.;

    2010-01-01

    , and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT...... (hSERT) using mutational and computational approaches. Comparative modeling and ligand docking reveal that (S)-citalopram fits into the hSERT substrate binding pocket, where (S)-citalopram can adopt a number of different binding orientations. We find, however, that only one of these binding modes is...... functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to hSERT and...

  17. The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter.

    Science.gov (United States)

    Sarker, Subhodeep; Weissensteiner, René; Steiner, Ilka; Sitte, Harald H; Ecker, Gerhard F; Freissmuth, Michael; Sucic, Sonja

    2010-12-01

    The structure of the bacterial leucine transporter from Aquifex aeolicus (LeuT(Aa)) has been used as a model for mammalian Na(+)/Cl(-)-dependent transporters, in particular the serotonin transporter (SERT). The crystal structure of LeuT(Aa) liganded to tricyclic antidepressants predicts simultaneous binding of inhibitor and substrate. This is incompatible with the mutually competitive inhibition of substrates and inhibitors of SERT. We explored the binding modes of tricyclic antidepressants by homology modeling and docking studies. Two approaches were used subsequently to differentiate between three clusters of potential docking poses: 1) a diagnostic SERT(Y95F) mutation, which greatly reduced the affinity for [(3)H]imipramine but did not affect substrate binding; 2) competition binding experiments in the presence and absence of carbamazepine (i.e., a tricyclic imipramine analog with a short side chain that competes with [(3)H]imipramine binding to SERT). Binding of releasers (para-chloroamphetamine, methylene-dioxy-methamphetamine/ecstasy) and of carbamazepine were mutually exclusive, but Dixon plots generated in the presence of carbamazepine yielded intersecting lines for serotonin, MPP(+), paroxetine, and ibogaine. These observations are consistent with a model, in which 1) the tricyclic ring is docked into the outer vestibule and the dimethyl-aminopropyl side chain points to the substrate binding site; 2) binding of amphetamines creates a structural change in the inner and outer vestibule that precludes docking of the tricyclic ring; 3) simultaneous binding of ibogaine (which binds to the inward-facing conformation) and of carbamazepine is indicative of a second binding site in the inner vestibule, consistent with the pseudosymmetric fold of monoamine transporters. This may be the second low-affinity binding site for antidepressants. PMID:20829432

  18. A C-terminal PDZ domain binding sequence is required for striatal distribution of the dopamine transporter

    OpenAIRE

    Rickhag, Mattias; Hansen, Freja Herborg; Sørensen, Gunnar; Strandfelt, Kristine Nørgaard; Andresen, Bjørn; Gotfryd, Kamil; Madsen, Kenneth L; Vestergaard-Klewe, Ib; Ammendrup-Johnsen, Ina; Eriksen, Jacob; Füchtbauer, Ernst-Martin; Gomeza, Jesus; Woldbye, David P.D.; Wörtwein, Gitta; Gether, Ulrik

    2013-01-01

    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling DAT levels in striatal nerve terminals remain poorly understood. DAT contains a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different DAT knock-in mice with disrupted PDZ-binding motifs (DAT-AAA and DAT+Ala) are characterized by dr...

  19. Assessment of the in vitro binding of JHW 007, a dopamine transport inhibitor that blocks the effects of cocaine

    Science.gov (United States)

    Benztropine (BZT) and its analogues, like cocaine, bind to the dopamine transporter and block dopamine uptake. However, while BZT analogues bind the DAT with high affinity, they generally do not have cocaine-like behavioral effects. JHW 007 is a BZT analogue that displaces [3H]WIN 35,428 from the D...

  20. Coupling between insulin binding and activation of glucose transport in rat adipocytes

    International Nuclear Information System (INIS)

    Previous studies have shown that the kinetics of binding of insulin (I) to its receptor (R) in isolated rat adipocytes at 150C, where insulin degradation was observed to be negligible, could best be described by the model: R+I ↔ RI ↔ R'I. According to this model, bound insulin is distributed between two kinetically distinct states of the occupied receptor, RI and R'I. The quantities of RI and R'I contributing to the observed total binding of insulin to cells can be obtained from the four rate constants describing the model. In order to examine the possible roles of RI and R'I in mediating hormone action, insulin stimulation of carrier-mediated 3-0-methyl-[U-14C] glucose transport at 150C was studied. The results show that insulin activation of the rate of glucose transport was sigmoidal with time, and this was qualitatively similar to the formation of R'I with time. In contrast, formation of RI was described by an exponential approach to a plateau. This finding raises the possibility that R'I is the form of the insulin receptor directly mediating insulin activation of glucose transport

  1. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites.

    Science.gov (United States)

    Lipka, Joanna; Kapitein, Lukas C; Jaworski, Jacek; Hoogenraad, Casper C

    2016-02-01

    In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule-binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin-3 (KIF1) and kinesin-4 (KIF21) subfamily that can also target dendrites. We found that microtubule-binding protein doublecortin-like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1-dependent dense-core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule-binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport. PMID:26758546

  2. An integrated model for the nucleo-cytoplasmic transport of cytoplasmic poly(A)-binding proteins.

    Science.gov (United States)

    Burgess, Hannah M; Gray, Nicola K

    2012-05-01

    Cytoplasmic poly(A)-binding proteins (PABPs) regulate mRNA stability and translation. Although predominantly localized in the cytoplasm, PABP proteins also cycle through the nucleus. Recent work has established that their steady-state localization can be altered by cellular stresses such as ultraviolet (UV) radiation, and infection by several viruses, resulting in nuclear accumulation of PABPs. Here, we present further evidence that their interaction with and release from mRNA and translation complexes are important in determining their sub-cellular distribution and propose an integrated model for regulated nucleo-cytoplasmic transport of PABPs. PMID:22896784

  3. A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    DEFF Research Database (Denmark)

    Skovstrup, Soren; David, Laurent; Taboureau, Olivier;

    2012-01-01

    The entire substrate translocation pathway in the human GABA transporter (GAT-1) was explored for the endogenous substrate GABA and the anti-convulsive drug tiagabine. Following a steered molecular dynamics (SMD) approach, in which a harmonic restraining potential is applied to the ligand...... residues in the extracellular vestibule including two lysines (K76 (TM1) and K448 (TM10)) and a TM6-triad (D281, E283, and D287) in attracting and relocating substrates towards the secondary/interim substrate-binding site (S2). Likewise, E101 is highlighted as essential for the relocation of the substrate...

  4. Relationships between serotonin transporter promoter polymorphism, platelet serotonin transporter binding and clinical phenotype in suicidal and non-suicidal adolescent inpatients.

    Science.gov (United States)

    Zalsman, G; Anderson, G M; Peskin, M; Frisch, A; King, R A; Vekslerchik, M; Sommerfeld, E; Michaelovsky, E; Sher, L; Weizman, A; Apter, A

    2005-02-01

    Relationships between the serotonin transporter promoter polymorphism (5-HTTLPR), platelet serotonin transporter (SERT) binding and clinical phenotype were examined in 32 suicidal and 28 non-suicidal Ashkenazi Israeli adolescent psychiatric inpatients. The 5-HTTLPR polymorphism was not associated with transporter binding or with suicidality or other clinical phenotypes. However, in the suicidal group, a significant positive correlation between platelet SERT density and anger scores (n=32, r=.40; p=.027) and a negative correlation between platelet count and trait anxiety (n=32, r=-.42; p=.034) were observed. PMID:15657646

  5. Copper transport and its defect in Wilson disease: characterization of the copper-binding domain of Wilson disease ATPase.

    Science.gov (United States)

    Sarkar, B

    2000-04-01

    Copper is an essential trace element which forms an integral component of many enzymes. While trace amounts of copper are needed to sustain life, excess copper is extremely toxic. An attempt is made here to present the current understanding of the normal transport of copper in relation to the absorption, intracellular transport and toxicity. Wilson disease is a genetic disorder of copper transport resulting in the accumulation of copper in organs such as liver and brain which leads to progressive hepatic and neurological damage. The gene responsible for Wilson disease (ATP7B) is predicted to encode a putative copper-transporting P-type ATPase. An important feature of this ATPase is the presence of a large N-terminal domain that contains six repeats of a copper-binding motif which is thought to be responsible for binding this metal prior to its transport across the membrane. We have cloned, expressed and purified the N-terminal domain (approximately 70 kD) of Wilson disease ATPase. Metal-binding properties of the domain showed the protein to bind several metals besides copper; however, copper has a higher affinity for the domain. The copper is bound to the domain in Cu(I) form with a copper: protein ratio of 6.5:1. X-ray absorption studies strongly suggest Cu(I) atoms are ligated to cysteine residues. Circular dichroism spectral analyses suggest both secondary and tertiary structural changes upon copper binding to the domain. Copper-binding studies suggest some degree of cooperativity in binding of copper. These studies as well as detailed structural information of the copper-binding domain will be crucial in determining the specific role played by the copper-transporting ATPase in the homeostatic control of copper in the body and how the transport of copper is interrupted by mutations in the ATPase gene. PMID:10830865

  6. Choroid plexus transport: gene deletion studies

    Directory of Open Access Journals (Sweden)

    Keep Richard F

    2011-11-01

    Full Text Available Abstract This review examines the use of transporter knockout (KO animals to evaluate transporter function at the choroid plexus (the blood-CSF barrier; BCSFB. Compared to the blood-brain barrier, there have been few such studies on choroid plexus (CP function. These have primarily focused on Pept2 (an oligopeptide transporter, ATP-binding cassette (ABC transporters, Oat3 (an organic anion transporter, Svct2 (an ascorbic acid transporter, transthyretin, ion transporters, and ion and water channels. This review focuses on the knowledge gained from such studies, both with respect to specific transporters and in general to the role of the CP and its impact on brain parenchyma. It also discusses the pros and cons of using KO animals in such studies and the technical approaches that can be used.

  7. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding.

    Science.gov (United States)

    Fischer, Marcus; Hopkins, Adam P; Severi, Emmanuele; Hawkhead, Judith; Bawdon, Daniel; Watts, Andrew G; Hubbard, Roderick E; Thomas, Gavin H

    2015-11-01

    Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates. PMID:26342690

  8. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters

    DEFF Research Database (Denmark)

    Løland, Claus Juul

    2015-01-01

    -function relationships on mammalian NSS proteins has so far been unsuccessful. The crystal structure of the bacterial NSS protein, LeuT, has been a turning point in structural investigations. SCOPE OF REVIEW: To provide an update on what is known about the binding sites for substrates and inhibitors in the LeuT. The...... different binding modes and binding sites will be discussed with special emphasis on the possible existence of a second substrate binding site. It is the goal to give an insight into how investigations on ligand binding in LeuT have provided basic knowledge about transporter conformations and translocation......T is a suitable model for the molecular mechanisms behind substrate translocation. GENERAL SIGNIFICANCE: Structure and functional aspects of NSS proteins are central for understanding synaptic transmission. With the purification and crystallization of LeuT as well as the dopamine transporter from...

  9. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K; Færgeman, Nils J.; Neergaard, T B; Gaigg, B

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport and ......) [4]. Additional factors affecting the concentration of free LCA include feed back inhibition of the acylCoA synthetase [5], binding to acylCoA receptors (LCA-regulated molecules and enzymes), binding to membranes and the activity of acylCoA hydrolases [6]....

  10. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor.

    Science.gov (United States)

    Van Zeebroeck, Griet; Bonini, Beatriz Monge; Versele, Matthias; Thevelein, Johan M

    2009-01-01

    Transporter-related nutrient sensors, called transceptors, mediate nutrient activation of signaling pathways through the plasma membrane. The mechanism of action of transporting and nontransporting transceptors is unknown. We have screened 319 amino acid analogs to identify compounds that act on Gap1, a transporting amino acid transceptor in yeast that triggers activation of the protein kinase A pathway. We identified competitive and noncompetitive inhibitors of transport, either with or without agonist action for signaling, including nontransported agonists. Using substituted cysteine accessibility method (SCAM) analysis, we identified Ser388 and Val389 as being exposed into the amino acid binding site, and we show that agonist action for signaling uses the same binding site as used for transport. Our results provide the first insight, to our knowledge, into the mechanism of action of transceptors. They indicate that signaling requires a ligand-induced specific conformational change that may be part of but does not require the complete transport cycle. PMID:19060912

  11. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding.

    Science.gov (United States)

    Huang, Yun-Tzu; Liu, Tseng-Huang; Lin, Shih-Ming; Chen, Yen-Wei; Pan, Yih-Jiuan; Lee, Ching-Hung; Sun, Yuh-Ju; Tseng, Fan-Gang; Pan, Rong-Long

    2013-07-01

    Homodimeric proton-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H(+)-PPase consists of 14-16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H(+)-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H(+)-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H(+)-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H(+)-PPase upon substrate binding. PMID:23720778

  12. Selective binding of 2-[{sup 125}I]iodo-nisoxetine to norepinephrine transporters in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Kung, M.-P.; Choi, Seok-Rye; Hou, Catherine; Zhuang, Z.-P.; Foulon, Catherine; Kung, Hank F. E-mail: kunghf@sunmac.spect.upenn.edu

    2004-07-01

    A radioiodinated ligand, (R)-N-methyl-(2-[{sup 125}I]iodo-phenoxy)-3-phenylpropylamine, [{sup 125}I]2-INXT, targeting norepinephrine transporters (NET), was successfully prepared. A no-carrier-added product, [{sup 125}I]2-INXT, displayed a saturable binding with a high affinity (K{sub d}=0.06 nM) in the homogenates prepared from rat cortical tissues as well as from LLC-PK{sub 1} cells expressing NET. A relatively low number of binding sties (B{sub max}=55 fmol/mg protein) measured with [{sup 125}I]2-INXT in rat cortical homogenates is consistent with the value reported for a known NET ligand, [{sup 3}H]nisoxetine. Competition studies with various compounds on [{sup 125}I]2-INXT binding clearly confirmed the pharmacological specificity and selectivity for NET binding sites. Following a tail-vein injection of [{sup 125}I]2-INXT in rats, a good initial brain uptake was observed (0.56% dose at 2 min) followed by a slow washout from the brain (0.2% remained at 3 hours post-injection). The hypothalamus (a NET-rich region) to striatum (a region devoid of NET) ratio was 1.5 at 3 hours post-i.v. injection. Pretreatment of rats with nisoxetine significantly inhibited the uptake of [{sup 125}I]2-INXT (70-100% inhibition) in locus coeruleus, hypothalamus and raphe nuclei, regions known to have a high density of NET; whereas escitalopram, a serotonin transporter ligand, did not show a similar effect. Ex vivo autoradiography of rat brain sections of [{sup 125}I]2-INXT (at 3 hours after an i.v. injection) displayed an excellent regional brain localization pattern corroborated to the specific NET distribution in the brain. The specific brain localization was significantly reduced by a dose of nisoxetine pretreatment. Taken together, the data suggest that [{sup 123}I]2-INXT may be useful for mapping NET binding sites in the brain.

  13. Conformational coupling of the nucleotide-binding and the transmembrane domains in ABC transporters.

    Science.gov (United States)

    Wen, Po-Chao; Tajkhorshid, Emad

    2011-08-01

    Basic architecture of ABC transporters includes two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). Although the transport process takes place in the TMDs, which provide the substrate translocation pathway across the cell membrane and control its accessibility between the two sides of the membrane, the energy required for the process is provided by conformational changes induced in the NBDs by binding and hydrolysis of ATP. Nucleotide-dependent conformational changes in the NBDs, therefore, need to be coupled to structural changes in the TMDs. Using molecular dynamics simulations, we have investigated the structural elements involved in the conformational coupling between the NBDs and the TMDs in the Escherichia coli maltose transporter, an ABC importer for which an intact structure is available both in inward-facing and outward-facing conformations. The prevailing model of coupling is primarily based on a single structural motif, known as the coupling helices, as the main structural element for the NBD-TMD coupling. Surprisingly, we find that in the absence of the NBDs the coupling helices can be conformationally decoupled from the rest of the TMDs, despite their covalent connection. That is, the structural integrity of the coupling helices and their tight coupling to the core of the TMDs rely on the contacts provided by the NBDs. Based on the conformational and dynamical analysis of the simulation trajectories, we propose that the core coupling elements in the maltose transporter involve contributions from several structural motifs located at the NBD-TMD interface, namely, the EAA loops from the TMDs, and the Q-loop and the ENI motifs from the NBDs. These three structural motifs in small ABC importers show a high degree of correlation in motion and mediate the necessary conformational coupling between the core of TMDs and the helical subdomains of NBDs. A comprehensive analysis of the structurally known ABC transporters shows a high degree

  14. Prognostic impact of high ABC transporter activity in 111 adult acute myeloid leukemia patients with normal cytogenetics when compared to FLT3, NPM1, CEBPA and BAALC

    OpenAIRE

    Hirsch, Pierre; Tang, Ruoping; Marzac, Christophe; Perrot, Jean-Yves; FAVA, FANNY; Bernard, Chantal; Jeziorowska, Dorota; MARIE, JEAN PIERRE; Legrand, Ollivier

    2012-01-01

    ATP-binding cassette transporter (and specially P-glycoprotein) activity is a well known prognostic factor in acute myeloid leukemia, but when compared to other molecular markers its prognostic value has not been well studied. Here we study relationships between this activity, fms-like tyro-sine kinase 3(FLT3/ITD), nucleophosmin(NPM1), CAAT-enhancer binding protein alpha(CEBPα), and brain and acute leukemia cytoplasmic protein (BAALC), in 111 patients with normal cytogenetics who underwent th...

  15. A reciprocating twin-channel model for ABC transporters.

    Science.gov (United States)

    Jones, Peter M; George, Anthony M

    2014-08-01

    ABC transporters comprise a large, diverse, and ubiquitous superfamily of membrane active transporters. Their core architecture is a dimer of dimers, comprising two transmembrane (TM) domains that bind substrate, and two ATP-binding cassettes, which use the cell's energy currency to couple substrate translocation to ATP hydrolysis. Despite the availability of over a dozen resolved structures and a wealth of biochemical and biophysical data, this field is bedeviled by controversy and long-standing mechanistic questions remain unresolved. The prevailing paradigm for the ABC transport mechanism is the Switch Model, in which the ATP-binding cassettes dimerize upon binding two ATP molecules, and thence dissociate upon sequential ATP hydrolysis. This cycle of nucleotide-binding domain (NBD) dimerization and dissociation is coupled to a switch between inward- or outward facing conformations of a single TM channel; this alternating access enables substrate binding on one face of the membrane and its release at the other. Notwithstanding widespread acceptance of the Switch Model, there is substantial evidence that the NBDs do not separate very much, if at all, and thus physical separation of the ATP cassettes observed in crystallographic structures may be an artefact. An alternative Constant Contact Model has been proposed, in which ATP hydrolysis occurs alternately at the two ATP-binding sites, with one of the sites remaining closed and containing occluded nucleotide at all times. In this model, the cassettes remain in contact and the active sites swing open in an alternately seesawing motion. Whilst the concept of NBD association/dissociation in the Switch Model is naturally compatible with a single alternating-access channel, the asymmetric functioning proposed by the Constant Contact model suggests an alternating or reciprocating function in the TMDs. Here, a new model for the function of ABC transporters is proposed in which the sequence of ATP binding, hydrolysis, and

  16. Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family.

    Science.gov (United States)

    Tong, Junsen; Manik, Mohammad Kawsar; Yang, Huiseon; Im, Young Jun

    2016-08-01

    Sterols such as cholesterol in mammals and ergosterol in fungi are essential membrane components and play a key role in membrane function and in cell signaling. The intracellular distribution and processing of sterols and other phospholipids are in part carried out by oxysterol binding protein-related proteins (ORPs) in eukaryotes. Seven ORPs (Osh1-Osh7 proteins) in yeast have distinct functions in maintaining distribution, metabolism and signaling of intracellular lipids but they share at least one essential function. Significant progress has been made in understanding the ligand specificity and mechanism of non-vesicular lipid transport by ORPs. The unique structural features of Osh proteins explain the diversity and specificity of functions in PI(4)P-coupled lipid transport optimized in membrane contact sites. This review discusses the current advances in structural biology regarding this protein family and its potential functions, introducing them as the key players in the novel pathways of phosphoinositide-coupled directional transport of various lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26784528

  17. The trp RNA-binding attenuation protein of Bacillus subtilis regulates translation of the tryptophan transport gene trpP (yhaG) by blocking ribosome binding.

    Science.gov (United States)

    Yakhnin, Helen; Zhang, Hong; Yakhnin, Alexander V; Babitzke, Paul

    2004-01-01

    Expression of the Bacillus subtilis tryptophan biosynthetic genes (trpEDCFBA and pabA [trpG]) is regulated in response to tryptophan by TRAP, the trp RNA-binding attenuation protein. TRAP-mediated regulation of the tryptophan biosynthetic genes includes a transcription attenuation and two distinct translation control mechanisms. TRAP also regulates translation of trpP (yhaG), a single-gene operon that encodes a putative tryptophan transporter. Its translation initiation region contains triplet repeats typical of TRAP-regulated mRNAs. We found that regulation of trpP and pabA is unaltered in a rho mutant strain. Results from filter binding and gel mobility shift assays demonstrated that TRAP binds specifically to a segment of the trpP transcript that includes the untranslated leader and translation initiation region. While the affinities of TRAP for the trpP and pabA transcripts are similar, TRAP-mediated translation control of trpP is much more extensive than for pabA. RNA footprinting revealed that the trpP TRAP binding site consists of nine triplet repeats (five GAG, three UAG, and one AAG) that surround and overlap the trpP Shine-Dalgarno (S-D) sequence and translation start codon. Results from toeprint and RNA-directed cell-free translation experiments indicated that tryptophan-activated TRAP inhibits TrpP synthesis by preventing binding of a 30S ribosomal subunit. Taken together, our results establish that TRAP regulates translation of trpP by blocking ribosome binding. Thus, TRAP coordinately regulates tryptophan synthesis and transport by three distinct mechanisms: attenuation transcription of the trpEDCFBA operon, promoting formation of the trpE S-D blocking hairpin, and blocking ribosome binding to the pabA and trpP transcripts. PMID:14702295

  18. Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation.

    Science.gov (United States)

    Singh, Shailza; Mandlik, Vineetha

    2015-05-01

    , the relevant structural motifs and domains may help to understand the allosteric relation with the substrate and the cofactors. The dynamics of a protein molecule ultimately defines the functional mechanism involving excursions of multiple conformational states. To understand these functional mechanisms of transporter proteins, computational modeling and simulations will be carried out with the goal of elucidating the atomistic details of allosteric conformational transitions and propagations during the transport processes. In particular these studies are designed to investigate the critical structural and dynamic elements that determine individual and combined ligand-binding specificities, the interactions among transporters, their coupled-proteins and the associations of transporters within the lipid bilayer. The nature of results from such studies also makes it possible to rationally optimize existing ligands for these proteins and develop some new compounds that can shift the conformational equilibrium of transporters which may aid in functional studies leading to drug discovery. PMID:25761976

  19. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  20. Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding π-bond model

    OpenAIRE

    Chin, Sai-Kong; Lam, Kai-Tak; Seah, Dawei; Liang, Gengchiau

    2012-01-01

    We present an efficient approach to study the carrier transport in graphene nanoribbon (GNR) devices using the non-equilibrium Green's function approach (NEGF) based on the Dirac equation calibrated to the tight-binding π-bond model for graphene. The approach has the advantage of the computational efficiency of the Dirac equation and still captures sufficient quantitative details of the bandstructure from the tight-binding π-bond model for graphene. We demonstrate how the exact self-energies ...

  1. X-ray film cassette and method of making

    International Nuclear Information System (INIS)

    An x-ray film cassette which is capable of providing forces on the film that vary across the surface of the cassette is described. Methods of manufacture are discussed. The system is of particular use when large area films are used in conjunction with intensifying screens. (U.K.)

  2. 21 CFR 892.1850 - Radiographic film cassette.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic film cassette. 892.1850 Section 892.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1850 Radiographic film cassette....

  3. Midbrain serotonin transporter binding potential measured with [11C]DASB is affected by serotonin transporter genotype

    International Nuclear Information System (INIS)

    Homozygote carriers of two long (L) alleles of the serotonin transporter (5-HTT) regulatory region displayed in vitro a twofold increase in 5-HTT expression compared with carriers of one or two short (S) alleles. However, in vivo imaging studies yielded contradictory results. Recently, an A > G exchange leading to differential transcriptional activation of 5-HTT mRNA in lymphobalstoid cell lines was discovered in the 5-HTT regulatory region. In vitro and in vivo evidence suggests that [11C]DASB, a new 5-HTT ligand offers some advantages over the ligands used in previous studies in measuring 5-HTT density independent of synaptic levels of serotonin. We assessed 5-HTT binding potential (BP 2) in the midbrain of 19 healthy subjects with positron emission tomography and [11C]DASB. Accounting for the hypothesized functional similarity of LG and S in driving 5-HTT transcription, we assessed whether LALA homozygotes display increased midbrain BP2 compared with carriers of at least one S allele. BP2 in the midbrain was significantly increased in LALA homozygotes compared with carriers of at least one S allele. Interestingly, the genotype effect on the midbrain was significantly different from that on the thalamus and the amygdala where no group differences were detected. This in vivo study provides further evidence that subjects homozygous for the LA allele display increased expression of 5-HTT in the midbrain, the origin of central serotonergic projections. (author)

  4. Quantification of [{sup 123}I]PE2I binding to dopamine transporters with SPET

    Energy Technology Data Exchange (ETDEWEB)

    Pinborg, Lars H.; Videbaek, Charlotte; Svarer, Claus; Yndgaard, Stig; Paulson, Olaf B.; Knudsen, Gitte M. [Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen (Denmark)

    2002-05-01

    The iodinated cocaine derivative [{sup 123}I]PE2I is a new selective ligand for in vivo studies of the dopamine transporter (DAT) with single-photon emission tomography (SPET). The aim of the present study was to describe a method for accurate quantification of binding data following a bolus injection of [{sup 123}I]PE2I. Six healthy subjects (age 51{+-}24 years) underwent xenon-133 SPET for quantification of regional CBF and [{sup 123}I]PE2I SPET for quantification of DAT binding. rCBFs were within normal limits in all subjects. Fitting data to a two-tissue compartment model resulted in striatal K{sub 1} values of 0.39{+-}0.08 ml ml{sup -1} min{sup -1}, equal to a first-pass extraction fraction of 0.72{+-}0.13. Distribution volumes (DVs) were calculated using compartment analysis, area under the curve analysis and Logan analysis. Logan analysis is preferred since stable DV values were already obtained 120 min after [{sup 123}I]PE2I injection. Mean striatal DV was 37.9{+-}9.6 ml ml{sup -1} and mean occipital cortex DV was 5.5{+-}0.7 ml ml{sup -1}. In the absence of local pathology in a reference tissue, Logan analysis without blood sampling is an attractive method for accurate quantification of striatal [{sup 123}I]PE2I binding. The distribution volume ratio (DVR) (6.6{+-}1.4) was in good agreement with the DVR calculated with blood (6.7{+-}1.4). (orig.)

  5. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    OpenAIRE

    Teixeira Miguel C; Godinho Cláudia P; Cabrito Tânia R; Mira Nuno P; Sá-Correia Isabel

    2012-01-01

    Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene...

  6. Quality assurance tests of the NRPB dental monitoring cassette

    International Nuclear Information System (INIS)

    This report describes the tests designed to assess the performance of the NRPB dental monitoring cassette; it complements NRPB-R164. Measurements have been made for both the original and new cassettes with film manufactured by Kodak Ltd and Agfa-Gevaert Ltd. The performance parameters investigated were the ability to measure the X-ray tube potential, the filtration of the X-ray beam, the exposure given to the cassette, and the diameter of the beam. The consistency between different cassette inserts was also assessed. The values given by the processing laboratory and the values from the irradiating laboratory are presented, and the results are then analysed statistically to determine the influence of the various parameters on the assessment of individual parameters. The performance of the cassette was found to be satisfactory. (author)

  7. Electron transport across a metal/MoS$_2$ interface: dependence on contact area and binding distance

    OpenAIRE

    Bai, Zhaoqiang; Markussen, Troels; Thygesen, Kristian S.

    2013-01-01

    We investigate the nature of electron transport through monolayer molybdenum dichalcogenides (MoX$_2$, X=S, Se) suspended between Au and Ti metallic contacts. The monolayer is placed ontop of the close-packed surfaces of the metal electrodes and we focus on the role of the metal-MoX$_2$ binding distance and the contact area. Based on \\emph{ab initio} transport calculations we identify two different scattering mechanisms which depend differently on the metal-MoX$_2$ binding distance: (i) An in...

  8. Docking of the Periplasmic FecB Binding Protein to the FecCD Transmembrane Proteins in the Ferric Citrate Transport System of Escherichia coli▿

    OpenAIRE

    Braun, Volkmar; Herrmann, Christina

    2007-01-01

    Citrate-mediated iron transport across the cytoplasmic membrane is catalyzed by an ABC transporter that consists of the periplasmic binding protein FecB, the transmembrane proteins FecC and FecD, and the ATPase FecE. Salt bridges between glutamate residues of the binding protein and arginine residues of the transmembrane proteins are predicted to mediate the positioning of the substrate-loaded binding protein on the transmembrane protein, based on the crystal structures of the ABC transporter...

  9. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter

    DEFF Research Database (Denmark)

    Plenge, Per; Shi, Lei; Beuming, Thijs;

    2012-01-01

    The serotonin transporter (SERT) controls synaptic serotonin levels and is the primary target for antidepressants, including selective serotonin reuptake inhibitors (e.g. (S)-citalopram) and tricyclic antidepressants (e.g. clomipramine). In addition to a high affinity binding site, SERT possesses a...... involved in the allosteric binding in the extracellular vestibule located above the central substrate binding (S1) site. Indeed, mutagenesis of selected residues in the vestibule reduces the allosteric potency of (S)-citalopram and clomipramine. The identified site is further supported by the inhibitory...

  10. Mapping the functional yeast ABC transporter interactome.

    Science.gov (United States)

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D; San Luis, Bryan-Joseph; Shevelev, Igor; Sturley, Stephen L; Boone, Charles; Greenblatt, Jack F; Zhang, Zhaolei; Paumi, Christian M; Babu, Mohan; Park, Hay-Oak; Michaelis, Susan; Stagljar, Igor

    2013-09-01

    ATP-binding cassette (ABC) transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used membrane yeast two-hybrid technology to map the protein interactome of all of the nonmitochondrial ABC transporters in the model organism Saccharomyces cerevisiae and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated 'interactome'. We show that ABC transporters physically associate with proteins involved in an unexpectedly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters. PMID:23831759

  11. ABC transporters in CSCs membranes as a novel target for treating tumour relapse

    OpenAIRE

    LAURA eZINZI; Marialessandra eContino; Mariangela eCantore; Elena eCapparelli; Marcello eLeopoldo; Nicola Antonio Colabufo

    2014-01-01

    CSCs are responsible for the high rate of recurrence and chemoresistance of different type of cancers. The current antineoplastic agents, able to inhibit bulk replicating cancer cells and radiation treatment, were found inefficacious towards CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC) transporters family and the activation of different signaling pathway (such as Wnt/β-catenin signaling, Hedg...

  12. ABC transporters in CSCs membranes as a novel target for treating tumor relapse

    OpenAIRE

    Zinzi, Laura; Contino, Marialessandra; Cantore, Mariangela; Capparelli, Elena; Leopoldo, Marcello; Nicola A. Colabufo

    2014-01-01

    CSCs are responsible for the high rate of recurrence and chemoresistance of different types of cancer. The current antineoplastic agents able to inhibit bulk replicating cancer cells and radiation treatment are not efficacious toward CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC) transporters family and the activation of different signaling pathways (such as Wnt/β-catenin signaling, Hedgehog, N...

  13. Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy

    OpenAIRE

    Cronin-Fenton, Deirdre P; Damkier, Per; Lash, Timothy L

    2014-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review tamoxifen's clinical pharmacology and use meta-analyses to evaluate the clinical epidemiology studies conducted to date on the association between CYP2D6 inhibition and tamoxifen effectiveness. Our find...

  14. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport

    OpenAIRE

    Yeung, Catherine K.; Shen, Danny D.; Thummel, Kenneth E; Himmelfarb, Jonathan

    2013-01-01

    The pharmacokinetics of non-renally cleared drugs in patients with chronic kidney disease is often unpredictable. Some of this variability may be due to alterations in the expression and activity of extra-renal drug metabolizing enzymes and transporters, primarily localized in the liver and intestine. Studies conducted in rodent models of renal failure have shown decreased mRNA and protein expression of many members of the cytochrome P450 enzyme (CYP) gene family and the ATP-Binding Cassette ...

  15. Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter*

    OpenAIRE

    Andersen, Jacob; Olsen, Lars; Hansen, Kasper B.; Taboureau, Olivier; Jørgensen, Flemming S.; Jørgensen, Anne Marie; Bang-Andersen, Benny; Egebjerg, Jan; Strømgaard, Kristian; Kristensen, Anders S.

    2009-01-01

    The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine, and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of struct...

  16. 中国人内源性高甘油三酯血症患者ATP结合盒转运子A1基因R219K多态性研究%Analysis of ATP binding cassette A1 gene R219K polymorphism in patients with endogenous hypertriglyceridemia in Chinese population

    Institute of Scientific and Technical Information of China (English)

    吴银; 白怀; 刘瑞; 刘宇; 刘秉文

    2007-01-01

    目的 研究ATP结合盒转运子A1(ATP binding cassette A1, ABCA1)基因R219K多态性是否与中国人内源性高甘油三酯血症(hypertriglyceridemia, HTG)有关联,为探讨本病的分子遗传基础提供依据.方法 应用聚合酶链反应-限制性片段长度多态性分析法,对成都地区309名汉族人(200名正常人和109例内源性高甘油三酯血症患者)ABCA1基因R219K多态性位点进行分析.结果 中国人ABCA1基因R219K多态位点K等位基因频率在对照组和HTG组分别为0.472与0.436; HTG组和对照组R219K位点之间基因型和等位基因的频率差异无统计学意义.对照组和HTG组KK基因型携带者血清高密度脂蛋白胆固醇(high density lipoprotein-cholesterol, HDL-C)水平均较相应组RR基因型携带者显著升高[(1.48±0.45) mmol/L vs (1.27±0.29) mmol/L, P<0.05;(1.07±0.30) mmol/L vs (0.87±0.19) mmol/L, P<0.05];对照组RK型携带者血清甘油三酯水平较RR型携带者显著降低[(1.22±0.37) mmol/L vs (1.41±0.84) mmol/L, P<0.05],HTG组血清甘油三酯在RR、RK、KK型之间有逐渐降低的趋势[(3.82±2.02) mmol/L vs (3.42±1.67) mmol/L vs (3.33±1.43) mmol/L, P>0.05]; HTG组K等位基因携带者(RK或KK型者)总胆固醇(total cholesterol, TC)/HDL-C比值均较RR型携带者显著降低(KK vs RK vs RR:4.82±1.28 vs 5.42±1.62 vs 6.33±1.70, P<0.05).结论 ABCA1基因R219K多态性不仅与中国成都地区正常汉族人血清HDL-C、甘油三酯含量有关,而且还与内源性高甘油三酯血症患者血清HDL-C水平、TC/HDL-C比值相关联.

  17. Distinct functions and cooperative interaction of the subunits of the transporter associated with antigen processing (TAP)

    OpenAIRE

    Karttunen, Jaana T.; Lehner, Paul J.; Gupta, Soma Sen; Hewitt, Eric W.; Cresswell, Peter

    2001-01-01

    The ATP-binding cassette (ABC) transporter TAP translocates peptides from the cytosol to awaiting MHC class I molecules in the endoplasmic reticulum. TAP is made up of the TAP1 and TAP2 polypeptides, which each possess a nucleotide binding domain (NBD). However, the role of ATP in peptide binding and translocation is poorly understood. We present biochemical and functional evidence that the NBDs of TAP1 and TAP2 are non-equivalent. Photolabeling experiments with 8-azido-ATP demonstrate a coop...

  18. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    The 5-HT(4) receptor is a new potential target for antidepressant treatment and may be implicated in the pathogenesis of depression. This study investigated differences in 5-HT(4) receptor and 5-HT transporter (5-HTT) binding by quantitative autoradiography of [(3)H]SB207145 and (S)-[N-methyl-(3)...

  19. Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding π-bond model.

    Science.gov (United States)

    Chin, Sai-Kong; Lam, Kai-Tak; Seah, Dawei; Liang, Gengchiau

    2012-01-01

    We present an efficient approach to study the carrier transport in graphene nanoribbon (GNR) devices using the non-equilibrium Green's function approach (NEGF) based on the Dirac equation calibrated to the tight-binding π-bond model for graphene. The approach has the advantage of the computational efficiency of the Dirac equation and still captures sufficient quantitative details of the bandstructure from the tight-binding π-bond model for graphene. We demonstrate how the exact self-energies due to the leads can be calculated in the NEGF-Dirac model. We apply our approach to GNR systems of different widths subjecting to different potential profiles to characterize their device physics. Specifically, the validity and accuracy of our approach will be demonstrated by benchmarking the density of states and transmissions characteristics with that of the more expensive transport calculations for the tight-binding π-bond model. PMID:22325480

  20. Serendipitous discovery and X-ray structure of a human phosphate binding apolipoprotein.

    Science.gov (United States)

    Morales, Renaud; Berna, Anne; Carpentier, Philippe; Contreras-Martel, Carlos; Renault, Frédérique; Nicodeme, Murielle; Chesne-Seck, Marie-Laure; Bernier, François; Dupuy, Jérôme; Schaeffer, Christine; Diemer, Hélène; Van-Dorsselaer, Alain; Fontecilla-Camps, Juan C; Masson, Patrick; Rochu, Daniel; Chabriere, Eric

    2006-03-01

    We report the serendipitous discovery of a human plasma phosphate binding protein (HPBP). This 38 kDa protein is copurified with the enzyme paraoxonase. Its X-ray structure is similar to the prokaryotic phosphate solute binding proteins (SBPs) associated with ATP binding cassette transmembrane transporters, though phosphate-SBPs have never been characterized or predicted from nucleic acid databases in eukaryotes. However, HPBP belongs to the family of ubiquitous eukaryotic proteins named DING, meaning that phosphate-SBPs are also widespread in eukaryotes. The systematic absence of complete genes for eukaryotic phosphate-SBP from databases is intriguing, but the astonishing 90% sequence conservation between genes belonging to evolutionary distant species suggests that the corresponding proteins play an important function. HPBP is the only known transporter capable of binding phosphate ions in human plasma and may become a new predictor of or a potential therapeutic agent for phosphate-related diseases such as atherosclerosis. PMID:16531243

  1. The H-loop in the Second Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator is Required for Efficient Chloride Channel Closing

    OpenAIRE

    Kloch, Monika; Milewski, Michał; Nurowska, Ewa; Dworakowska, Beata; Cutting, Garry R; Dołowy, Krzysztof

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a cAMP-activated chloride channel. The recent model of CFTR gating predicts that the ATP binding to both nucleotide-binding domains (NBD1 and NBD2) of CFTR is required for the opening of the channel, while the ATP hydrolysis at NBD2 induces subsequent channel closing. In most ABC proteins, efficient hydrolysis of ATP requires the presence of the invariant histidine res...

  2. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ''transporter''

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.M.; Rehavi, M.; Skolnick, P.; Ballenger, J.C.; Goodwin, F.K.

    1981-12-01

    The high-affinity tritiated (3H) imipramine binding sites are functionally (and perhaps structurally) associated with the presynaptic neuronal and platelet uptake sites for serotonin. Since there is an excellent correlation between the relative potencies of a series of antidepressants in displacing 3H-imipramine from binding sites in human brain and platelet, we have examined the binding of 3H-imipramine to platelets from 14 depressed patients and 28 age- and sex-matched controls. A highly significant decrease in the number of 3H-imipramine binding sites, with no significant change in the apparent affinity constants, was observed in platelets from the depressed patients compared with the controls. These results, coupled with previous studies showing a significant decrease in the maximal uptake of serotonin in platelets from depressed patients, suggest that an inherited or acquired deficiency of the serotonin transport protein or proteins may be involved in the pathogenesis of depression.

  3. Cellular pathways controlling integron cassette site folding.

    Science.gov (United States)

    Loot, Céline; Bikard, David; Rachlin, Anna; Mazel, Didier

    2010-08-01

    By mobilizing small DNA units, integrons have a major function in the dissemination of antibiotic resistance among bacteria. The acquisition of gene cassettes occurs by recombination between the attI and attC sites catalysed by the IntI1 integron integrase. These recombination reactions use an unconventional mechanism involving a folded single-stranded attC site. We show that cellular bacterial processes delivering ssDNA, such as conjugation and replication, favour proper folding of the attC site. By developing a very sensitive in vivo assay, we also provide evidence that attC sites can recombine as cruciform structures by extrusion from double-stranded DNA. Moreover, we show an influence of DNA superhelicity on attC site extrusion in vitro and in vivo. We show that the proper folding of the attC site depends on both the propensity to form non-recombinogenic structures and the length of their variable terminal structures. These results draw the network of cell processes that regulate integron recombination. PMID:20628355

  4. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien;

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit...

  5. Synthesis and characterization of a BODIPY conjugate of the BCR-ABL kinase inhibitor Tasigna® (Nilotinib): Evidence for transport of Tasigna® and its fluorescent derivative by ABC drug transporters

    OpenAIRE

    Shukla, Suneet; Skoumbourdis, Amanda P.; Walsh, Martin J.; Hartz, Anika M. S.; Fung, King Leung; Wu, Chung-pu; Gottesman, Michael M.; Bauer, Björn; Thomas, Craig J.; Suresh V Ambudkar

    2011-01-01

    Tasigna® (Nilotinib) is a recently approved BCR-ABL kinase inhibitor by the Food and Drug Administration, which is indicated for the treatment of drug-resistant chronic myelogenous leukemia (CML). The efflux of tyrosine kinase inhibitors by ATP-binding cassette (ABC) drug transporters, which actively pump these drugs out of cells utilizing ATP as an energy source, has been linked to the development of drug resistance in CML patients. We report here synthesis and characterization of a fluoresc...

  6. Observing cassette culture: user interface implications for digital music libraries

    OpenAIRE

    Toal, Jason

    2007-01-01

    Many people keep their collections of music on cassette tape even if they rarely listen to them. Images of these collections can be found online on photo sharing websites. What can we learn from such collections and what might they tell us about designing interfaces for new digital music libraries? The author conducts an online ethnographic study of over two hundred cassette tape collections, and over sixty participants with the aim of guiding future design of music collections. The author pr...

  7. Detection of oral Helicobacter Pylori infection using saliva test cassette

    OpenAIRE

    Yu, Min; Zhang, Xue-Yan; Yu, Qing

    2015-01-01

    Objective: To investigate the incidence of oral infection with Helicobacter pylori (H. pylori) and identify related epidemiological factors among freshmen of four colleges in Yancheng. Methods: The data, scored positive or negative, were collected on 160 individuals who had been diagnosed by H. pylori Saliva Test Cassette (HPS) during October 2013 to October 2014. H. pylori Saliva Test Cassette (HPS) is to use colloidal gold technique to specifically identify urease in saliva. A standard ques...

  8. Transcription, Processing, and Function of CRISPR Cassettes in Escherichia coli

    OpenAIRE

    Pougach, Ksenia; Semenova, Ekaterina; Bogdanova, Ekaterina; Datsenko, Kirill A.; Djordjevic, Marko; Wanner, Barry L.; Severinov, Konstantin

    2010-01-01

    CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laborato...

  9. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis

    Czech Academy of Sciences Publication Activity Database

    Kubeš, Martin; Yang, H.; Richter, G.L.; Cheng, Y.; Młodzińska, E.; Wang, X.; Blakeslee, J.J.; Carraro, N.; Petrášek, Jan; Zažímalová, Eva; Hoyerová, Klára; Ann Peer, W.; Murphy, A. S.

    2012-01-01

    Roč. 69, č. 4 (2012), s. 640-654. ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin transporters * ATP-binding cassette B4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.582, year: 2012

  10. Identification of the tliDEF ABC Transporter Specific for Lipase in Pseudomonas fluorescens SIK W1

    OpenAIRE

    Ahn, Jung Hoon; Pan, Jae Gu; Rhee, Joon Shick

    1999-01-01

    Pseudomonas fluorescens, a gram-negative psychrotrophic bacterium, secretes a thermostable lipase into the extracellular medium. In our previous study, the lipase of P. fluorescens SIK W1 was cloned and expressed in Escherichia coli, but it accumulated as inactive inclusion bodies. Amino acid sequence analysis of the lipase revealed a potential C-terminal targeting sequence recognized by the ATP-binding cassette (ABC) transporter. The genetic loci around the lipase gene were searched, and a s...

  11. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA

    OpenAIRE

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W.

    2011-01-01

    molA(HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB2C2 (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7-Å resolution, respectively. The MolA binding protein binds molybdate and tungstate but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate binding protein structurally solved. The ~100 μM binding affinity...

  12. Reproducibility of [{sup 123}I]PE2I binding to dopamine transporters with SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, Morten; Thomsen, Gerda; Knudsen, Gitte M.; Nijs, Robin de; Svarer, Claus; Pinborg, Lars H. [Rigshospitalet, Neurobiology Research Unit, Copenhagen (Denmark); Wagner, Aase [University Hospital Rigshospitalet, Diagnostic Radiology, Copenhagen (Denmark)

    2007-01-15

    The iodinated cocaine derivative [{sup 123}I]PE2I is a new selective ligand for in vivo studies of the dopamine transporter (DAT) with SPECT. Recently, a bolus/infusion (B/I) protocol for [{sup 123}I]PE2I measurements of DAT density was established [Pinborg LH et al. J Nucl Med 2005;46:1119-271]. The aims of this study were, firstly, to evaluate the test-retest variability using the B/I protocol and, secondly, to evaluate the B/I approach in a new group of healthy subjects using two outcome parameters, BP{sub 1} (C{sub ROI}/C{sub plasma}) and BP{sub 2} (C{sub ROI}/C{sub REF}). Seven healthy subjects were subjected to [{sup 123}I]PE2I SPECT scanning twice. For both studies, the two outcome parameters BP{sub 1} and BP{sub 2} were calculated based on two different methods for region of interest (ROI) delineation, namely manual delineation and probability map-based automatic delineation with MRI co-registration. With manual delineation, striatal test-retest variability (absolute difference between first and second scan as a percentage of the mean) of BP{sub 1} and BP{sub 2} was 13.9% (range 1.8-35.7%) and 4.1% (range 0.5-9.7%) respectively. The probability map-based automatic delineation resulted in striatal test-retest variability of 17.2% (range 4.3-40.5%) and 5.2% (range 0.1-10.9%) respectively. The B/I approach provided stable brain activity from 120 to 180 min post injection in both high- and low-count regions with a mean % change/hour in striatal BP{sub 2} of 10.6. [{sup 123}I]PE2I SPECT with the B/I approach yields a highly reproducible measure of striatal dopamine transporter binding. The appropriateness of a B/I protocol with a B/I ratio of 2.7 h (i.e. with a bolus worth 2.7 h of infusion) was confirmed in an independent sample of healthy subjects. (orig.)

  13. Reproducibility of [123I]PE2I binding to dopamine transporters with SPECT

    International Nuclear Information System (INIS)

    The iodinated cocaine derivative [123I]PE2I is a new selective ligand for in vivo studies of the dopamine transporter (DAT) with SPECT. Recently, a bolus/infusion (B/I) protocol for [123I]PE2I measurements of DAT density was established [Pinborg LH et al. J Nucl Med 2005;46:1119-271]. The aims of this study were, firstly, to evaluate the test-retest variability using the B/I protocol and, secondly, to evaluate the B/I approach in a new group of healthy subjects using two outcome parameters, BP1 (CROI/Cplasma) and BP2 (CROI/CREF). Seven healthy subjects were subjected to [123I]PE2I SPECT scanning twice. For both studies, the two outcome parameters BP1 and BP2 were calculated based on two different methods for region of interest (ROI) delineation, namely manual delineation and probability map-based automatic delineation with MRI co-registration. With manual delineation, striatal test-retest variability (absolute difference between first and second scan as a percentage of the mean) of BP1 and BP2 was 13.9% (range 1.8-35.7%) and 4.1% (range 0.5-9.7%) respectively. The probability map-based automatic delineation resulted in striatal test-retest variability of 17.2% (range 4.3-40.5%) and 5.2% (range 0.1-10.9%) respectively. The B/I approach provided stable brain activity from 120 to 180 min post injection in both high- and low-count regions with a mean % change/hour in striatal BP2 of 10.6. [123I]PE2I SPECT with the B/I approach yields a highly reproducible measure of striatal dopamine transporter binding. The appropriateness of a B/I protocol with a B/I ratio of 2.7 h (i.e. with a bolus worth 2.7 h of infusion) was confirmed in an independent sample of healthy subjects. (orig.)

  14. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens

    OpenAIRE

    Gonzalez, Daniel; Richez, Magali; Bergonzi, Celine; Chabriere, Eric; Elias, Mikael

    2014-01-01

    Phosphate limitation is an important environmental stress that affects the metabolism of various organisms and, in particular, can trigger the virulence of numerous bacterial pathogens. Clostridium perfringens, a human pathogen, is one of the most common causes of enteritis necroticans, gas gangrene and food poisoning. Here, we focused on the high affinity phosphate-binding protein (PBP-1) of an ABC-type transporter, responsible for cellular phosphate uptake. We report the crystal structure (...

  15. Repellent Taxis in Response to Nickel Ion Requires neither Ni2+ Transport nor the Periplasmic NikA Binding Protein▿

    OpenAIRE

    Englert, Derek L.; Adase, Christopher A.; Jayaraman, Arul; Manson, Michael D.

    2010-01-01

    Ni2+ and Co2+ are sensed as repellents by the Escherichia coli Tar chemoreceptor. The periplasmic Ni2+ binding protein, NikA, has been suggested to sense Ni2+. We show here that neither NikA nor the membrane-bound NikB and NikC proteins of the Ni2+ transport system are required for repellent taxis in response to Ni2+.

  16. Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p

    OpenAIRE

    Shah, Abdul Haseeb; Rawal, Manpreet Kaur; Dhamgaye, Sanjiveeni; Komath, Sneha Sudha; Saxena, Ajay Kumar; Prasad, Rajendra

    2015-01-01

    The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was an...

  17. Evaluation of Adenosine Triphosphate-Binding Cassette Transporter A1 (ABCA1) R219K and C-Reactive Protein Gene (CRP) +1059G/C Gene Polymorphisms in Susceptibility to Coronary Heart Disease.

    Science.gov (United States)

    Li, Jing-Fang; Peng, Dian-Ying; Ling, Mei; Yin, Yong

    2016-01-01

    BACKGROUND This meta-analysis investigated the correlation of ABCA1 R219K and C-Reactive Protein Gene (CRP) +1059G/C gene polymorphisms with susceptibility to coronary heart disease (CHD). MATERIAL AND METHODS We searched PubMed, Springer link, Wiley, EBSCO, Ovid, Wanfang database, VIP database, and China National Knowledge Infrastructure (CNKI) databases to retrieve published studies by keyword. Searches were filtered using our stringent inclusion and exclusion criteria. Resultant high-quality data collected from the final selected studies were analyzed using Comprehensive Meta-analysis 2.0 software. Eleven case-control studies involving 3053 CHD patients and 3403 healthy controls met our inclusion criteria. Seven studies were conducted in Asian populations, 3 studies were done in Caucasian populations, and 1 was in an African population. RESULTS Our major finding was that ABCA1 R219K polymorphism increased susceptibility to CHD in allele model (OR=0.729, 95% CI=0.559~0.949, P=0.019) and dominant model (OR=0.698, 95% CI=0.507~0.961, P=0.027). By contrast, we were unable to find any significant association between the CRP +1059G/C polymorphism and susceptibility to CHD (allele model: OR=1.170, 95% CI=0.782~1.751, P=0.444; dominant model: OR=1.175, 95% CI=0.768~1.797, P=0.457). CONCLUSIONS This meta-analysis provides convincing evidence that polymorphism of ABCA1 R219K is associated with susceptibility to CHD while the CRP +1059G/C polymorphism appears to have no correlation with susceptibility to CHD. PMID:27560308

  18. Inhibiting NF-K B increases cholesterol efflux from THP-1 derived- foam cells treated with Angll via up-regulating the expression of ATP-binding cassette transporter A1

    Institute of Scientific and Technical Information of China (English)

    Kun Liu; Yanfu Wang; Zhijian Chen; Yuhua Liao; Xiang Gao; Jian Chen

    2008-01-01

    Objective:To study the role of nuclear factor-kappa B(NF- K B) in cholesterol efflux from THP-I derived-foam cells treated with Angiotensin Ⅱ (Ang Ⅱ ). Methods:Cultured THP-l derived-foam cells were treated with Ang Ⅱ or preincubated with tosyl-phenylalan inechloromethyl-ketone(TPCK) NF-K B inhibitor. The levels of activated NF-K B in the cells were examined by sandwich ELISA. Cellular cholesterol content was studied by electron microscopy scanning and zymochemistry via fluorospectrophotometer and cholesterol efflux was detected by scintillation counting technique. ABCAI mRNA and protein were quantified by RT-PCR and Western blotting. Results:Addition of TPCK to the cells before Ang Ⅱ stimulation attenuated the response of NF- K B p65 nuclear translocation induced by Ang Ⅱ and showed no peak in foam cells group and caused a reduction in cholesterol content and an increase in cholesterol effiux by 24.1%(P < 0.05) and 41.1%(P < 0.05) respectively, when compared with Ang Ⅱ group. In accordance, the ABCAl mRNA and protein were increased by 30% and 19%(P< 0.05) respectively, when compared with Ang Ⅱ group. Conclusion:Ang Ⅱ can down- regulate ABCAI in THP-l derived-foam cells via NF- K B, which leads to less cholesterol effiux and the increase of cholesterol content with the consequence of the promotion of atherosclerosis.

  19. Evaluation of Adenosine Triphosphate-Binding Cassette Transporter A1 (ABCA1) R219K and C-Reactive Protein Gene (CRP) +1059G/C Gene Polymorphisms in Susceptibility to Coronary Heart Disease

    Science.gov (United States)

    Li, Jing-Fang; Peng, Dian-Ying; Ling, Mei; Yin, Yong

    2016-01-01

    Background This meta-analysis investigated the correlation of ABCA1 R219K and CRP +1059G/C gene polymorphisms with susceptibility to coronary heart disease (CHD). Material/Methods We searched PubMed, Springer link, Wiley, EBSCO, Ovid, Wanfang database, VIP database, and China National Knowledge Infrastructure (CNKI) databases to retrieve published studies by keyword. Searches were filtered using our stringent inclusion and exclusion criteria. Resultant high-quality data collected from the final selected studies were analyzed using Comprehensive Meta-analysis 2.0 software. Eleven case-control studies involving 3053 CHD patients and 3403 healthy controls met our inclusion criteria. Seven studies were conducted in Asian populations, 3 studies were done in Caucasian populations, and 1 was in an African population. Results Our major finding was that ABCA1 R219K polymorphism increased susceptibility to CHD in allele model (OR=0.729, 95% CI=0.559~0.949, P=0.019) and dominant model (OR=0.698, 95% CI=0.507~0.961, P=0.027). By contrast, we were unable to find any significant association between the CRP +1059G/C polymorphism and susceptibility to CHD (allele model: OR=1.170, 95% CI=0.782~1.751, P=0.444; dominant model: OR=1.175, 95% CI=0.768~1.797, P=0.457). Conclusions This meta-analysis provides convincing evidence that polymorphism of ABCA1 R219K is associated with susceptibility to CHD while the CRP +1059G/C polymorphism appears to have no correlation with susceptibility to CHD. PMID:27560308

  20. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W. (CIT); (NWU)

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  1. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA.

    Science.gov (United States)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C; Pinkett, Heather W

    2011-11-01

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 Å resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ∼100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus. PMID:22078568

  2. Binding site residues control inhibitor selectivity in the human norepinephrine transporter but not in the human dopamine transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ringsted, Kristoffer B; Bang-Andersen, Benny; Strømgaard, Kristian; Kristensen, Anders S

    2015-01-01

    in the central site of DAT to the corresponding residues in NET had modest effects on the same inhibitors, suggesting that non-conserved binding site residues in DAT play a minor role for selective inhibitor recognition. Our data points towards distinct structural determinants governing inhibitor...

  3. Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system.

    Science.gov (United States)

    Tarry, Michael J; Schäfer, Eva; Chen, Shuyun; Buchanan, Grant; Greene, Nicholas P; Lea, Susan M; Palmer, Tracy; Saibil, Helen R; Berks, Ben C

    2009-08-11

    The Tat system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. In Escherichia coli substrate proteins initially bind to the integral membrane TatBC complex which then recruits the protein TatA to effect translocation. Overproduction of TatBC and the substrate protein SufI in the absence of TatA led to the accumulation of TatBC-SufI complexes that could be purified using an affinity tag on the substrate. Three-dimensional structures of the TatBC-SufI complexes and unliganded TatBC were obtained by single-particle electron microscopy and random conical tilt reconstruction. Comparison of the structures shows that substrate molecules bind on the periphery of the TatBC complex and that substrate binding causes a significant reduction in diameter of the TatBC part of the complex. Although the TatBC complex contains multiple copies of the signal peptide-binding TatC protomer, purified TatBC-SufI complexes contain only 1 or 2 SufI molecules. Where 2 substrates are present in the TatBC-SufI complex, they are bound at adjacent sites. These observations imply that only certain TatC protomers within the complex interact with substrate or that there is a negative cooperativity of substrate binding. Similar TatBC-substrate complexes can be generated by an alternative in vitro reconstitution method and using a different substrate protein. PMID:19666509

  4. Mutations in the Carboxyl-terminal SEC24 Binding Motif of the Serotonin Transporter Impair Folding of the Transporter*

    OpenAIRE

    El-Kasaby, Ali; Just, Herwig; Malle, Elisabeth; Stolt-Bergner, Peggy C.; Sitte, Harald H; Freissmuth, Michael; Kudlacek, Oliver

    2010-01-01

    The serotonin transporter (SERT) is a member of the SLC6 family of solute carriers. SERT plays a crucial role in synaptic neurotransmission by retrieving released serotonin. The intracellular carboxyl terminus of various neurotransmitter transporters has been shown to be important for the correct delivery of SLC6 family members to the cell surface. Here we studied the importance of the C terminus in trafficking and folding of human SERT. Serial truncations followed by mutagenesis identified s...

  5. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    OpenAIRE

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2007-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plu...

  6. A Bacitracin-Resistant Bacillus subtilis Gene Encodes a Homologue of the Membrane-Spanning Subunit of the Bacillus licheniformis ABC Transporter

    OpenAIRE

    Ohki, Reiko; Tateno, Kozue; Okada, Youji; Okajima, Haruo; Asai, Kei; Sadaie, Yoshito; Murata, Makiko; Aiso, Toshiko

    2003-01-01

    Bacitracin is a peptide antibiotic nonribosomally produced by Bacillus licheniformis. The bcrABC genes which confer bacitracin resistance to the bacitracin producer encode ATP binding cassette (ABC) transporter proteins, which are hypothesized to pump out bacitracin from the cells. Bacillus subtilis 168, which has no bacitracin synthesizing operon, has several genes homologous to bcrABC. It was found that the disruption of ywoA, a gene homologous to bcrC, resulted in hypersensitivity to bacit...

  7. The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves

    NARCIS (Netherlands)

    Stergiopoulos, I.; Zwiers, L.H.; Waard, de M.A.

    2003-01-01

    The role in virulence of the ATP-binding cassette (ABC) transporters MgAtr1, MgAtr2, MgAtr3, MgAtr4, and MgAtr5 from Mycosphaerella graminicola was analyzed by gene disruption or replacement on seedlings of the susceptible wheat cultivar Obelisk. Disruption strains of MgAtr1 and MgAtr2 and replaceme

  8. Putative sugar transporters of the the mustard leaf beetle Phaedon cochleariae: their phylogeny and role for nutrient supply in larval defensive glands

    OpenAIRE

    Magdalena Stock; René R Gretscher; Marco Groth; Simone Eiserloh; Wilhelm Boland; Antje Burse

    2013-01-01

    BACKGROUND: Phytophagous insects have emerged successfully on the planet also because of the development of diverse and often astonishing defensive strategies against their enemies. The larvae of the mustard leaf beetle Phaedon cochleariae, for example, secrete deterrents from specialized defensive glands on their back. The secretion process involves ATP-binding cassette transporters. Therefore, sugar as one of the major energy sources to fuel the ATP synthesis for the cellular metabolism and...

  9. Flavin binding to the high affinity riboflavin transporter RibU

    NARCIS (Netherlands)

    Duurkens, Hinderika; Tol, Menno B.; Geertsma, Eric R.; Permentier, Hjalmar P.; Slotboom, Dirk Jan

    2007-01-01

    The first biochemical and spectroscopic characterization of a purified membrane transporter for riboflavin ( vitamin B-2) is presented. The riboflavin transporter RibU from the bacterium Lactococcus lactis was overexpressed, solubilized, and purified. The purified transporter was bright yellow when

  10. Influence of serotonin transporter gene polymorphism (5-HTTLPR polymorphism on the relation between brain 5-HT transporter binding and heart rate corrected cardiac repolarization interval.

    Directory of Open Access Journals (Sweden)

    Esa Kauppila

    Full Text Available OBJECTIVE: Serotonin transporter gene polymorphism (5-HTTLPR polymorphism predicts the degree of structural and functional connectivity in the brain, and less consistently the degree of vulnerability for anxiety and depressive disorders. It is less known how 5-HTTLPR polymorphism influences on the coupling between brain and neuronal cardiovascular control. The present study demonstrates the impact of 5-HTTLPR polymorphism on the relations between heart rate (HR corrected cardiac repolarization interval (QTc interval and the brain 5-HTT binding. MATERIAL AND METHODS: Thirty healthy young adults (fifteen monozygotic twin pairs (mean age 26±1.3 years, 16 females were imagined with single-photon emission computed tomography (SPECT using iodine-123 labeled 2β-carbomethoxy-3β-(4-iodophenyl nortropane (nor-β-CIT. Continuous ECG recording was obtained from each participant at supine rest. Signal averaged QTc interval on continuous ECG was calculated and compared with the brain imaging results. RESULTS: In the two groups [l homozygotes (n = 16, 10 females, s carriers (n = 14, 8 female] HR and the length of QTc interval were not influenced by 5-HTTLPR polymorphism. There were no significant relations between HR and 5-HTT binding in the brain. There were significant associations between QTc interval and nor-β-CIT binding in the brain in l homozygotes, but not in s carriers (correlations for QTc interval and nor-β-CIT binding of striatum, thalamus and right temporal region were -0.8--0.9, (p<0.0005, respectively. CONCLUSION: The finding of longer QTc interval with less 5-HTT binding availability in major serotonergic binding sites in l homozygotes, but not in s carriers, implicate to differentiated control of QTc interval by 5-HTTLPR polymorphism.

  11. Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells.

    Science.gov (United States)

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients. PMID:24253450

  12. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel alpha-glucosides through reverse phosphorolysis by maltose phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Baumann, Martin; Petersen, B.O.;

    2009-01-01

    A gene cluster involved in maltodextrin transport and metabolism was identified in the genome of Lactobacillus acidophilus NCFM, which encoded a maltodextrin-binding protein, three maltodextrin ATP-binding cassette transporters and five glycosidases, all under the control of a transcriptional...... regulator of the LacI-GalR family. Enzymatic properties are described for recombinant maltose phosphorylase (MalP) of glycoside hydrolase family 65 (GH65), which is encoded by malP (GenBank: AAV43670.1) of this gene cluster and produced in Escherichia coli. MalP catalyses phosphorolysis of maltose with...

  13. Fatigue analysis of steam generator cassette parts based on CAE

    International Nuclear Information System (INIS)

    Fatigue analysis has been performed for steam generator nozzle header and tube based on CAE. Three dimensional model was produced using the commercial CAD program, IDEAS and the geometry and boundary condition information have been transformed into input format of ABAQUS for thermal analysis, stress analysis, and fatigue analysis. Cassette nozzle, which has a complex geometry, has been analysed by using the three dimensional model. But steam generator tube has been analysed according to ASME procedure since it can be modelled as a two dimensional finite element model. S-N curve for the titanium alloy of the steam generator tube material was obtained from the material tests. From the analysis, it has been confirmed that these parts of the steam generator cassette satisfy the lifetime of the steam generator cassette. Three dimensional modelling strategy from the thermal analysis to fatigue analysis should be implemented into the design of reactor major components to enhance the efficiency of design procedure

  14. Role of ATP binding and hydrolysis in the gating of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    Taras Gout

    2012-01-01

    Full Text Available The CFTR gene is unique within the ATP-binding cassette (ABC protein family, predominantly of transporters, by coding a chloride channel. The gating mechanism of ABC proteins has been characterized by the ATP Switch model in terms cycles of dimer formation and dissociation linked to ATP binding and hydrolysis, respectively. It would be of interest to assess the extent that Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, a functional channel, fits the ATP Switch model for ABC transporters. Additional transporter mechanisms, namely those of Pgp and HlyB, are discussed for perspective. Literature search of databases selected key references in comparing and contrasting the gating mechanism. CFTR is a functional chloride channel facilitating transmembrane anion flow down electrochemical gradients. A dysfunctional CFTR protein results in cystic fibrosis, a fatal pleiotropic disease currently managed symptomatically. Understanding the gating mechanism will help target drug development aimed at alleviating and curing the disease.

  15. Binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenzazine (AV-133) to the vesicular monoamine transporter type 2 in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, H.-H. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Lin, K.-J. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Department of Nuclear Medicine, Chang Gung University and Memorial Hospital, Taoyuan, Taiwan (China); Juang, J.-H. [Division of Endocrinology and Metabolism, Chung Gung University and Chung Gung Memorial Hospital, Taoyuan, Taiwan (China); Skovronsky, Daniel M. [Avid Radiopharmaceuticals, Philadelphia, PA (United States); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Yen, T.-C. [Department of Nuclear Medicine, Chang Gung University and Memorial Hospital, Taoyuan, Taiwan (China); Wey, S.-P. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Kung, M.-P. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: kungmp@sunmac.spect.upenn.edu

    2010-05-15

    The vesicular monoamine transporter type 2 (VMAT2) is highly expressed in pancreatic {beta}-cells and thus has been proposed to be a potential target for measuring {beta}-cell mass (BCM) by molecular imaging. C-11- and F-18-labeled tetrabenazine derivatives targeting VMAT2 have shown some promising results as potential biomarkers for BCM. In the present study, we examined the binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenzazine ([{sup 18}F]AV-133), a potential PET tracer for BCM imaging, in rat pancreas and rat brain. Methods: Pancreatic exocrine cells and pancreatic islet cells were isolated and purified from Sprague-Dawley rats. Membrane homogenates, prepared from both pancreatic exocrine and islet cells as well as from brain striatum and hypothalamus regions, were used for in vitro binding studies. In vitro and ex vivo autoradiography studies with [{sup 18}F]AV-133 were performed on rat brain and rat pancreas sections. Immunohistochemistry studies were performed to confirm the distribution of VMAT2 on islet {beta}-cells. Results: Excellent binding affinities of [{sup 18}F]AV-133 were observed in rat striatum and hypothalamus homogenates with K{sub d} values of 0.19 and 0.25 nM, respectively. In contrast to single-site binding observed in rat striatum homogenates, rat islet cell homogenates showed two saturable binding sites (site A: K{sub d}=6.76 nM, B{sub max}=60 fmol/mg protein; site B: K{sub d}=241 nM, B{sub max}=1500 fmol/mg protein). Rat exocrine pancreas homogenates showed only a single low-affinity binding site (K{sub d}=209 nM), which was similar to site B in islet cells. In vitro autoradiography of [{sup 18}F]AV-133 using frozen sections of rat pancreas showed specific labeling of islets, as evidenced by co-localization with anti-insulin antibody. Ex vivo VMAT2 pancreatic autoradiography in the rat, however, was not successful, in contrast to the excellent ex vivo autoradiography of VMAT2 binding sites in the brain. In vivo/ex vivo islet

  16. Synthesis, in vitro binding studies and docking of long-chain arylpiperazine nitroquipazine analogues, as potential serotonin transporter inhibitors.

    Science.gov (United States)

    Jarończyk, Małgorzata; Wołosewicz, Karol; Gabrielsen, Mari; Nowak, Gabriel; Kufareva, Irina; Mazurek, Aleksander P; Ravna, Aina W; Abagyan, Ruben; Bojarski, Andrzej J; Sylte, Ingebrigt; Chilmonczyk, Zdzisław

    2012-03-01

    It is well known that 6-nitroquipazine exhibits about 150-fold higher affinity for the serotonin transporter (SERT) than quipazine and recently we showed quipazine buspirone analogues with high to moderate SERT affinity. Now we have designed and synthesized several 6-nitroquipazine buspirone derivatives. Unexpectedly, their SERT binding affinities were moderate, and much lower than that of the previously studied quipazine buspirone analogues. To explain these findings, docking studies of both groups of compounds into two different homology models of human SERT was performed using a flexible target-ligand docking approach (4D docking). The crystal structures of leucine transporter from Aquifex aeolicus in complex with leucine and with tryptophan were used as templates for the SERT models in closed and outward-facing conformations, respectively. We found that the latter conformation represents the most reliable model for binding of buspirone analogues. Docking into that model showed that the nitrated compounds acquire a rod like shape in the binding pocket with polar groups (nitro- and imido-) at the ends of the rod. 6-Nitro substituents gave steric clashes with amino acids located at the extracellular loop 4, which may explain their lower affinity than corresponding quipazine buspirone analogues. The results from the present study may suggest chemical design strategies to improve the SERT modulators. PMID:22309909

  17. An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin.

    Science.gov (United States)

    Karpowich, Nathan K; Song, Jinmei; Wang, Da-Neng

    2016-07-31

    ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein-substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters. PMID:27312125

  18. Homology modeling of the serotonin transporter: Insights into the primary escitalopram-binding Site

    DEFF Research Database (Denmark)

    Jørgensen, Anne Marie; Tagmose, L.; Jørgensen, A.M.M.;

    2007-01-01

    -ray structure of the closely related amino acid transporter, Aquifex aeolicus leucine transporter (LeuT), provides an opportunity to develop a three-dimensional model of the structure of SERT. We present herein a homology model of SERT using LeuT as the template and containing escitalopram as a bound ligand...

  19. Homology modeling of the serotonin transporter: Insights into the primary escitalopram-binding Site

    DEFF Research Database (Denmark)

    Jørgensen, Anne Marie; Tagmose, L.; Jørgensen, A.M.M.; Topiol, S.; Sabio, M.; Gundertofte, K.; Bøgesø, K.P.; Peters, Günther H.j.

    2007-01-01

    The serotonin transporter (SERT) is one of the neurotransmitter transporters that plays a critical role in the regulation of endogenous amine concentrations and therefore is an important target for therapeutic agents affecting the central nervous system. The recently published, high resolution X-ray....... Our model explains selectivities known from mutational studies and varying ligand data, which are discussed and illustrated in the paper....

  20. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    Science.gov (United States)

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins. PMID:24903815

  1. Brain Serotonin Transporter Binding In a Minipig Model of Parkinson's Disease

    DEFF Research Database (Denmark)

    Lillethorup, Thea Pinholt; Glud, Andreas Nørgaard; Sørensen, Jens Christian Hedemann;

    ) as a marker of serotonergic neurons. In this study, we use the in vivo capabilities of PET imaging to study serotonin neurotransmission in a minipig model of PD induced by the intracerebroventricular injection of lactacystin, an inhibitor of the ubiquitin proteasome system. Methods: Five female Göttingen...... with DASB again after a cumulative dose of 200μg lactacystin. PET data were registered to an average minipig MRI atlas and processed using PMOD software. The binding potential (BPND) of DASB was obtained with the Logan graphical analysis and cerebellum activity as a region of non-displaceable binding...... a loss of brain serotonergic innervation in response to protein aggregation. The decreased striatal binding of DASB observed in this minipig model of PD is to some extend consistent with previous studies done in PD patients2. The proteasome inhibition model may therefore be useful in the investigation...

  2. Transport processes of radiopharmaceuticals and -modulators

    International Nuclear Information System (INIS)

    Radiotherapy and radiology have been indispensable components in cancer care for many years. The detection limit of small tumor foci as well as the development of radio-resistance and severe side effects towards normal tissues led to the development of strategies to improve radio-diagnostic and -therapeutic approaches by pharmaceuticals. The term 'radiopharmaceutical' has been used for drugs labeled with radioactive tracers for therapy or diagnosis. In addition, drugs have been described to sensitize tumor cells to radiotherapy (radiosensitizers) or to protect normal tissues from detrimental effects of radiation (radioprotectors). The present review summarizes recent concepts on the transport of radiopharmaceuticals, radiosensitizers, and radioprotectors in cells and tissues, e.g. by ATP-binding cassette transporters such as P-glycoprotein. Strengths and weaknesses of current strategies to improve transport-based processes are discussed

  3. Effect of Walker A mutation (K86M) on oligomerization and surface targeting of the multidrug resistance transporter ABCG2

    DEFF Research Database (Denmark)

    Henriksen, Ulla Birk; Gether, Ulrik; Litman, Thomas

    The ATP binding cassette (ABC) half-transporter ABCG2 (MXR/BCRP/ABCP) is associated with mitoxantrone resistance accompanied by cross-resistance to a broad spectrum of cytotoxic drugs. Here we investigate the functional consequences of mutating a highly conserved lysine in the Walker A motif of the...... nucleotide binding domain (NBD) known to be critical for ATP binding and/or hydrolysis in ABC transporters. The mutant (ABCG2-K86M) was inactive as expected but was expressed at similar levels as the wild-type (wt) protein. The mutation did not affect the predicted oligomerization properties of the...... transporter; hence, co-immunoprecipitation experiments using differentially tagged transporters showed evidence for oligomerization of both ABCG2-wt and of ABCG2-wt with ABCG2-K86M. We also obtained evidence that both ABCG2-wt and ABCG2-K86M exist in the cells as disulfide-linked dimers. Moreover, measurement...

  4. 21 CFR 892.1860 - Radiographic film/cassette changer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic film/cassette changer. 892.1860 Section 892.1860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1860 Radiographic...

  5. Metabolism and transport of tamoxifen in relation to its effectiveness

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Damkier, Per; Lash, Timothy L

    2014-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review...... tamoxifen's clinical pharmacology and use meta-analyses to evaluate the clinical epidemiology studies conducted to date on the association between CYP2D6 inhibition and tamoxifen effectiveness. Our findings indicate that the effect of both drug-induced and/or gene-induced inhibition of CYP2D6 activity is...

  6. Effects of norepinephrine transporter gene variants on NET binding in ADHD and healthy controls investigated by PET

    Science.gov (United States)

    Sigurdardottir, Helen L.; Kranz, Georg S.; Rami‐Mark, Christina; James, Gregory M.; Vanicek, Thomas; Gryglewski, Gregor; Kautzky, Alexander; Hienert, Marius; Traub‐Weidinger, Tatjana; Mitterhauser, Markus; Wadsak, Wolfgang; Hacker, Marcus; Rujescu, Dan; Kasper, Siegfried

    2016-01-01

    Abstract Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with a strong genetic component. The norepinephrine transporter (NET) is a key target for ADHD treatment and the NET gene has been of high interest as a possible modulator of ADHD pathophysiology. Therefore, we conducted an imaging genetics study to examine possible effects of single nucleotide polymorphisms (SNPs) within the NET gene on NET nondisplaceable binding potential (BPND) in patients with ADHD and healthy controls (HCs). Twenty adult patients with ADHD and 20 HCs underwent (S,S)‐[18F]FMeNER‐D2 positron emission tomography (PET) and were genotyped on a MassARRAY MALDI‐TOF platform using the Sequenom iPLEX assay. Linear mixed models analyses revealed a genotype‐dependent difference in NET BPND between groups in the thalamus and cerebellum. In the thalamus, a functional promoter SNP (−3081 A/T) and a 5′‐untranslated region (5′UTR) SNP (−182 T/C), showed higher binding in ADHD patients compared to HCs depending on the major allele. Furthermore, we detected an effect of genotype in HCs, with major allele carriers having lower binding. In contrast, for two 3′UTR SNPs (*269 T/C, *417 A/T), ADHD subjects had lower binding in the cerebellum compared to HCs depending on the major allele. Additionally, symptoms of hyperactivity and impulsivity correlated with NET BPND in the cerebellum depending on genotype. Symptoms correlated positively with cerebellar NET BPND for the major allele, while symptoms correlated negatively to NET BPND in minor allele carriers. Our findings support the role of genetic influence of the NE system on NET binding to be pertubated in ADHD. Hum Brain Mapp 37:884–895, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26678348

  7. Staphylococcus aureus manganese transport protein C (MntC is an extracellular matrix- and plasminogen-binding protein.

    Directory of Open Access Journals (Sweden)

    Natália Salazar

    Full Text Available Infections caused by Staphylococcus aureus--particularly nosocomial infections--represent a great concern. Usually, the early stage of pathogenesis consists on asymptomatic nasopharynx colonization, which could result in dissemination to other mucosal niches or invasion of sterile sites, such as blood. This pathogenic route depends on scavenging of nutrients as well as binding to and disrupting extracellular matrix (ECM. Manganese transport protein C (MntC, a conserved manganese-binding protein, takes part in this infectious scenario as an ion-scavenging factor and surprisingly as an ECM and coagulation cascade binding protein, as revealed in this work. This study showed a marked ability of MntC to bind to several ECM and coagulation cascade components, including laminin, collagen type IV, cellular and plasma fibronectin, plasminogen and fibrinogen by ELISA. The MntC binding to plasminogen appears to be related to the presence of surface-exposed lysines, since previous incubation with an analogue of lysine residue, ε-aminocaproic acid, or increasing ionic strength affected the interaction between MntC and plasminogen. MntC-bound plasminogen was converted to active plasmin in the presence of urokinase plasminogen activator (uPA. The newly released plasmin, in turn, acted in the cleavage of the α and β chains of fibrinogen. In conclusion, we describe a novel function for MntC that may help staphylococcal mucosal colonization and establishment of invasive disease, through the interaction with ECM and coagulation cascade host proteins. These data suggest that this potential virulence factor could be an adequate candidate to compose an anti-staphylococcal human vaccine formulation.

  8. DIY series of genetic cassettes useful in construction of versatile vectors specific for Alphaproteobacteria.

    Science.gov (United States)

    Dziewit, Lukasz; Adamczuk, Marcin; Szuplewska, Magdalena; Bartosik, Dariusz

    2011-08-01

    We have developed a DIY (Do It Yourself) series of genetic cassettes, which facilitate construction of novel versatile vectors for Alphaproteobacteria. All the cassettes are based on defined genetic modules derived from three natural plasmids of Paracoccus aminophilus JCM 7686. We have constructed over 50 DIY cassettes, which differ in structure and specific features. All of them are functional in eight strains representing three orders of Alphaproteobacteria: Rhodobacterales, Rhizobiales and Caulobacterales. Besides various replication and stabilization systems, many of the cassettes also contain selective markers appropriate for Alphaproteobacteria (40 cassettes) and genetic modules responsible for mobilization for conjugal transfer (24 cassettes). All the DIY cassettes are bordered by different types of polylinkers, which facilitate vector construction. Using these DIY cassettes, we have created a set of compatible Escherichia coli-Alphaproteobacteria mobilizable shuttle vectors (high or low copy number in E. coli), which will greatly assist the genetic manipulation of Alphaproteobacteria. PMID:21569803

  9. Characterisation of the zebrafish serotonin transporter functionally links TM10 to the ligand binding site

    DEFF Research Database (Denmark)

    Severinsen, Kasper; Müller, Heidi Kaastrup; Wiborg, Ove;

    2008-01-01

    [(3)H]-escitalopram binding in transiently transfected human embryonic kidney cells; HEK-293-MSR. Residues responsible for altered affinities inhibitors were pinpointed by generating cross-species chimeras and subsequent point mutations by site directed mutagenesis. drSERT has a higher affinity...

  10. Carboxyl Terminus of Apolipoprotein A-I (ApoA-I) Is Necessary for the Transport of Lipid-free ApoA-I but Not Prelipidated ApoA-I Particles through Aortic Endothelial Cells*

    OpenAIRE

    Ohnsorg, P M; Rohrer, L.; Perisa, D.; Kateifides, A; Chroni, A; D. Kardassis; Zannis, V I; von Eckardstein, Arnold

    2011-01-01

    High density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) must leave the circulation and pass the endothelium to exert their atheroprotective actions in the arterial wall. We previously demonstrated that the transendothelial transport of apoA-I involves ATP-binding cassette transporter (ABC) A1 and re-secretion of lipidated particles. Transendothelial transport of HDL is modulated by ABCG1 and the scavenger receptor BI (SR-BI). We hypothesize that apoA-I transport is started by the ABCA...

  11. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder

    DEFF Research Database (Denmark)

    Mc Mahon, Brenda; Andersen, Sofie B; Madsen, Martin K.;

    2016-01-01

    Cross-sectional neuroimaging studies in non-depressed individuals have demonstrated an inverse relationship between daylight minutes and cerebral serotonin transporter; this relationship is modified by serotonin-transporter-linked polymorphic region short allele carrier status. We here present da...... exposure to the environmental stress of winter, especially in individuals with high predisposition to affective disorders.media-1vid110.1093/brain/aww043_video_abstractaww043_video_abstract....

  12. 1.55 Å Structure of the Ectoine Binding Protein TeaA of the Osmoregulated TRAP-Transporter TeaABC from Halomonas elongata

    NARCIS (Netherlands)

    Kuhlmann, Sonja I.; Terwisscha van Scheltinga, Anke C.; Bienert, Ralf; Kunte, Hans-Jörg; Ziegler, Christine

    2008-01-01

    TeaABC from the moderate halophilic bacterium Halomonas elongata belongs to the tripartite ATP-independent periplasmic transporters (TRAP-T), a family of secondary transporters functioning in conjunction with periplasmic substrate binding proteins. TeaABC facilitates the uptake of the compatible sol

  13. Co-assortment in integron-associated gene cassette assemblages in environmental DNA samples

    Directory of Open Access Journals (Sweden)

    Michael Carolyn A

    2010-08-01

    Full Text Available Abstract Background It has been shown that integron-associated gene cassettes exist largely in tandem arrays of variable size, ranging from antibiotic resistance arrays of three to five cassettes up to arrays of more than 100 cassettes associated with the vibrios. Further, the ecology of the integron/gene cassette system has been investigated by showing that very many different cassettes are present in even small environmental samples. In this study, we seek to extend the ecological perspective on the integron/gene cassette system by investigating the way in which this diverse cassette metagenome is apportioned amongst prokaryote lineages in a natural environment. Results We used a combination of PCR-based techniques applied to environmental DNA samples and ecological analytical techniques to establish co-assortment within cassette populations, then establishing the relationship between this co-assortment and genomic structures. We then assessed the distribution of gene cassettes within the environment and found that the majority of gene cassettes existed in large co-assorting groups. Conclusions Our results suggested that the gene cassette diversity of a relatively pristine sampling environment was structured into co-assorting groups, predominantly containing large numbers of cassettes per group. These co-assorting groups consisted of different gene cassettes in stoichiometric relationship. Conservatively, we then attributed co-assorting cassettes to the gene cassette complements of single prokaryote lineages and by implication, to large integron-associated arrays. The prevalence of large arrays in the environment raises new questions about the assembly, maintenance and utility of large cassette arrays in prokaryote populations.

  14. Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.; (Duke)

    2010-05-25

    Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T. maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.

  15. Heme Transfer from Streptococcal Cell Surface Protein Shp to HtsA of Transporter HtsABC

    OpenAIRE

    Liu, Mengyao; Lei, Benfang

    2005-01-01

    Human pathogen group A streptococcus (GAS) can take up heme from host heme-containing proteins as a source of iron. Little is known about the heme acquisition mechanism in GAS. We recently identified a streptococcal cell surface protein (designated Shp) and the lipoprotein component (designated HtsA) of an ATP-binding cassette (ABC) transporter made by GAS as heme-binding proteins. In an effort to delineate the molecular mechanism involved in heme acquisition by GAS, heme-free Shp (apo-Shp) a...

  16. In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B-12 uptake

    OpenAIRE

    Borths, EL; Poolman, B; Hvorup, RN; Locher, KP; Rees, DC; Hvorup, Rikki N.; Locher, Kaspar P.; Rees, Douglas C.

    2005-01-01

    BtuCD is an ATP binding cassette (ABC) transporter that facilitates uptake of vitamin B-12 into the cytoplasm of Escherichia coli. The crystal structures of BtuCD and its cognate periplasmic binding protein BtuF have been recently determined. We have now explored BtuCD-F function in vitro, both in proteoliposomes and in various detergents. BtuCD reconstituted into proteoliposomes has a significant basal ATP hydrolysis rate that is stimulated by addition of BtuF and inhibited by sodium ortho-v...

  17. Pharmacological treatment with L-DOPA may reduce striatal dopamine transporter binding in in vivo imaging studies.

    Science.gov (United States)

    Nikolaus, S; Antke, C; Hautzel, H; Mueller, H-W

    2016-01-01

    Numerous neurologic and psychiatric conditions are treated with pharmacological compounds, which lead to an increase of synaptic dopamine (DA) levels. One example is the DA precursor L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted to DA in the presynaptic terminal. If the increase of DA concentrations in the synaptic cleft leads to competition with exogenous radioligands for presynaptic binding sites, this may have implications for DA transporter (DAT) imaging studies in patients under DAergic medication. This paper gives an overview on those findings, which, so far, have been obtained on DAT binding in human Parkinson's disease after treatment with L-DOPA. Findings, moreover, are related to results obtained on rats, mice or non-human primates. Results indicate that DAT imaging may be reduced in the striata of healthy animals, in the unlesioned striata of animal models of unilateral Parkinson's disease and in less severly impaired striata of Parkinsonian patients, if animal or human subjects are under acute or subchronic treatment with L-DOPA. If also striatal DAT binding is susceptible to alterations of synaptic DA levels, this may allow to quantify DA reuptake in analogy to DA release by assessing the competition between endogenous DA and the administered exogenous DAT radioligand. PMID:26642370

  18. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED50 = 70 ng/ml at 240C and 7 ng/ml at 370C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  19. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein

    DEFF Research Database (Denmark)

    Staresincic, Lidija; Walker, Jane; Dirac-Svejstrup, A Barbara; Mitter, Richard; Svejstrup, Jesper Q

    2011-01-01

    We identified XAB1 in a proteomic screen for factors that interact with human RNA polymerase II (RNAPII). Because XAB1 has a conserved Saccharomyces cerevisiae homologue called Npa3, yeast genetics and biochemical analysis were used to dissect the significance of the interaction. Degron-dependent......We identified XAB1 in a proteomic screen for factors that interact with human RNA polymerase II (RNAPII). Because XAB1 has a conserved Saccharomyces cerevisiae homologue called Npa3, yeast genetics and biochemical analysis were used to dissect the significance of the interaction. Degron...... in yeast extracts. Indeed, Npa3 depletion in vivo affects nuclear localization of RNAPII; the polymerase accumulates in the cytoplasm. Npa3 is a member of the GPN-LOOP family of GTPases. Npa3 mutants that either cannot bind GTP or that bind but cannot hydrolyze it are inviable and unable to support...

  20. Tight Binding Model of Mn12 Single Molecule Magnets: Electronic and Magnetic Structure and Transport Properties

    OpenAIRE

    Renani, Fatemeh Rostamzadeh; Kirczenow, George

    2012-01-01

    We describe and analyze a tight-binding model of single molecule magnets (SMMs) that captures both the spin and spatial aspects of the SMM electronic structure. The model generalizes extended Huckel theory to include the effects of spin polarization and spin-orbit coupling. For neutral and negatively charged Mn12 SMMs with acetate or benzoate ligands the model yields the total SMM spin, the spins of the individual Mn ions, the magnetic easy axis orientation, the size of the magnetic anisotrop...

  1. Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding

    DEFF Research Database (Denmark)

    Loland, Claus Juul; Grånäs, Charlotta; Javitch, Jonathan A;

    2004-01-01

    I155C, this inactivation was protected by dopamine and enhanced by cocaine. These data are consistent with a Zn(2+)-dependent partial reversal of a constitutively altered conformational equilibrium in the mutant transporters. They also suggest that the conformational equilibrium produced by the......, Asp-345, and Asp-436, the mutation of which to alanine produces a phenotype similar to that of Y335A. Like Y335A, the mutants (K264A, D345A, and D436A) were characterized by low uptake capacity that was potentiated by Zn(2+). Moreover, the mutants displayed lower affinity for cocaine and other...... observed upon treatment with MTSET in the presence of dopamine, cocaine, or Zn(2+). Without Zn(2+), E2C I159C/K264A, E2C I159C/Y335A, and E2C I159C/D345A were also not inactivated by MTSET. In the presence of Zn(2+) (10 microm), however, MTSET (0.5 mm) caused up to approximately 60% inactivation. As in NET...

  2. Binding of the Multimodal Antidepressant Drug Vortioxetine to the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Wang, Danyang;

    2015-01-01

    Selective inhibitors of the human serotonin transporter (hSERT) have been first-line treatment against depression for several decades. Recently, vortioxetine was approved as a new therapeutic option for the treatment of depression. Vortioxetine represents a new class of antidepressant drugs...

  3. Reproducibility of [123I]PE2I binding to dopamine transporters with SPECT

    DEFF Research Database (Denmark)

    Ziebell, Morten; Thomsen, Gerda; Knudsen, Gitte M; de Nijs, Robin; Svarer, Claus; Wagner, Aase; Pinborg, Lars H

    2007-01-01

    The iodinated cocaine derivative [(123)I]PE2I is a new selective ligand for in vivo studies of the dopamine transporter (DAT) with SPECT. Recently, a bolus/infusion (B/I) protocol for [(123)I]PE2I measurements of DAT density was established [Pinborg LH et al. J Nucl Med 2005;46:1119-271]. The aims...

  4. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels;

    2009-01-01

    Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab init...

  5. Multinuclear magnetic resonance studies of lithium binding and transport in human erythrocytes

    International Nuclear Information System (INIS)

    Abnormalities in lithium (Li+) transport across the red blood cell (RBC) membranes have been linked to manic-depression. Discrimination between intra- and extracellular Li+ pools in Li+-loaded human red blood cells (RBCs) was achieved by two distinct 7Li nuclear magnetic resonance (NMR) methods. One NMR method involves the incorporation in the RBC suspension of a cell-impermeable shift reagent and recording a standard one-dimensional Fourier transform (FT)-NMR spectrum of the 7Li+ nucleus. The other NMR approach takes advantage of the different relaxation properties of the two Li+ pools and requires a modified inversion recovery (MIR) sequence. Although both 7Li NMR methods have distinct advantages over atomic absorption, such as visualization of Li+ transport and time efficiency, the addition of shift reagents to the cell suspension changes the Li+ transport rates and ratios in RBCs. Thus, the MIR approach was used to monitor non-invasively Li+ transport in RBCs from manic-depressive patients and normal controls

  6. Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver.

    Science.gov (United States)

    Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, Baodong

    2016-08-01

    A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. PMID:27358407

  7. PROPOFOL DECREASES ~(125)I-β-CIT BINDING TO THE DOPAMINE TRANSPORTER

    Institute of Scientific and Technical Information of China (English)

    孙国勤; 徐惠芳; 江伟; 孙文善; 孙大金

    2000-01-01

    ffeStUn6 Objectif ho sites de binding laal-ACIT out did oforrvds aux differents temps afin de determiner ies changements du tra~teur dopeminique cerebral chez la souris ~ l' anesthae an Prodal. met~ 1. 27 souris Kunmingnodales furent portag4es d' une maniers randomiz6e en 3 groupo dont 9 chaque. ho anintaux des 3 grouch furent. iniectdsintrartritowhlement PrOPOfol Iap, 20()mg/kg et 10% intralipai (~ tdmoin ). Dens ies 10min qui suivent l' injection iesmoments de pete de rdfiexe devout et d' excitation scut ...

  8. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  9. Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant's Lifestyle.

    Science.gov (United States)

    Hwang, Jae-Ung; Song, Won-Yong; Hong, Daewoong; Ko, Donghwi; Yamaoka, Yasuyo; Jang, Sunghoon; Yim, Sojeong; Lee, Eunjung; Khare, Deepa; Kim, Kyungyoon; Palmgren, Michael; Yoon, Hwan Su; Martinoia, Enrico; Lee, Youngsook

    2016-03-01

    Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental processes and functions necessary for life on dry land. These results suggest that ABC transporters multiplied during evolution and assumed novel functions that allowed plants to adapt to terrestrial environmental conditions. Examining the literature on plant ABC transporters from this viewpoint led us to propose that diverse ABC transporters enabled many unique and essential aspects of a terrestrial plant's lifestyle, by transporting various compounds across specific membranes of the plant. PMID:26902186

  10. Serotonin and Dopamine Transporter Binding in Children with Autism Determined by SPECT

    Science.gov (United States)

    Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M.; Kuikka, Jyrki T.

    2008-01-01

    Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8y 8mo [SD 3y 10mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9y 10mo [SD 2y 8mo]) using…

  11. Sterol Transport In Yeast and the Oxysterol Binding Protein Homologue (OSH) Family

    OpenAIRE

    Schulz, Timothy A.; Prinz, William A.

    2007-01-01

    Sterols such as cholesterol are a significant component of eukaryotic cellular membranes, and their unique physical properties influence a wide variety of membrane processes. It is known that the concentration of sterol within the membrane varies widely between organelles, and that the cell actively maintains this distribution through various transport processes. Vesicular pathways such as secretion or endocytosis may account for this traffic, but increasing evidence highlights the importance...

  12. Serotonin transporter binding of [123I]ADAM in bulimic women, their healthy twin sisters, and healthy women: a SPET study

    OpenAIRE

    Kaprio Jaakko; Kauppinen Tomi; Sihvola Elina; Keski-Rahkonen Anna; Koskela Anu K; Ahonen Aapo; Rissanen Aila

    2007-01-01

    Abstract Background Bulimia Nervosa (BN) is believed to be caused by an interaction of genetic and environmental factors. Previous studies support the existence of a bulimia-related endophenotype as well as disturbances in serotonin (5-HT) transmission. We studied serotonin transporter (SERT) binding in BN, and to investigate the possibility of a SERT-related endophenotype for BN, did this in a sample of female twins. We hypothesized clearly reduced SERT binding in BN women as opposed to heal...

  13. Processivity factor of KSHV contains a nuclear localization signal and binding domains for transporting viral DNA polymerase into the nucleus

    International Nuclear Information System (INIS)

    Kaposi's sarcoma-associated human herpesvirus (KSHV) encodes a processivity factor (PF-8, ORF59) that forms homodimers and binds to viral DNA polymerase (Pol-8, ORF9). PF-8 is essential for stabilizing Pol-8 on template DNA so that Pol-8 can incorporate nucleotides continuously. Here, the intracellular interaction of these two viral proteins was examined by confocal immunofluorescence microscopy. When individually expressed, PF-8 was observed exclusively in the nucleus, whereas Pol-8 was found only in the cytoplasm. However, when co-expressed, Pol-8 was co-translocated with PF-8 into the nucleus. Mutational analysis revealed that PF-8 contains a nuclear localization signal (NLS) as well as domains located at the N-terminus and the C-proximal regions that are required for Pol-8 binding. This study suggests that the mechanism that enables PF-8 to transport Pol-8 into the nucleus is the first critical step required for Pol-8 and PF-8 to function processively in KSHV DNA synthesis

  14. ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled

    Science.gov (United States)

    Singh, Himansha; Velamakanni, Saroj; Deery, Michael J.; Howard, Julie; Wei, Shen L.; van Veen, Hendrik W.

    2016-01-01

    ATP-binding cassette transporters mediate the transbilayer movement of a vast number of substrates in or out of cells in organisms ranging from bacteria to humans. Current alternating access models for ABC exporters including the multidrug and Lipid A transporter MsbA from Escherichia coli suggest a role for nucleotide as the fundamental source of free energy. These models involve cycling between conformations with inward- and outward-facing substrate-binding sites in response to engagement and hydrolysis of ATP at the nucleotide-binding domains. Here we report that MsbA also utilizes another major energy currency in the cell by coupling substrate transport to a transmembrane electrochemical proton gradient. The dependence of ATP-dependent transport on proton coupling, and the stimulation of MsbA-ATPase by the chemical proton gradient highlight the functional integration of both forms of metabolic energy. These findings introduce ion coupling as a new parameter in the mechanism of this homodimeric ABC transporter. PMID:27499013

  15. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David; Haugbol, Steven; Madsen, Jacob; Baaré, William; Aznar, Susana; Knudsen, Gitte M

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding.......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...

  16. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane.

    Science.gov (United States)

    Mills, Kate M; Brocardo, Mariana G; Henderson, Beric R

    2016-02-01

    Mutations in adenomatous polyposis coli (APC) disrupt regulation of Wnt signaling, mitosis, and the cytoskeleton. We describe a new role for APC in the transport of mitochondria. Silencing of wild-type APC by small interfering RNA caused mitochondria to redistribute from the cell periphery to the perinuclear region. We identified novel APC interactions with the mitochondrial kinesin-motor complex Miro/Milton that were mediated by the APC C-terminus. Truncating mutations in APC abolished its ability to bind Miro/Milton and reduced formation of the Miro/Milton complex, correlating with disrupted mitochondrial distribution in colorectal cancer cells that could be recovered by reconstitution of wild-type APC. Using proximity ligation assays, we identified endogenous APC-Miro/Milton complexes at mitochondria, and live-cell imaging showed that loss of APC slowed the frequency of anterograde mitochondrial transport to the membrane. We propose that APC helps drive mitochondria to the membrane to supply energy for cellular processes such as directed cell migration, a process disrupted by cancer mutations. PMID:26658612

  17. 1.55 Å Structure of the Ectoine Binding Protein TeaA of the Osmoregulated TRAP-Transporter TeaABC from Halomonas elongata

    OpenAIRE

    Kuhlmann, Sonja I.; Terwisscha van Scheltinga, Anke C; Bienert, Ralf; Kunte, Hans-Jörg; Ziegler, Christine

    2008-01-01

    TeaABC from the moderate halophilic bacterium Halomonas elongata belongs to the tripartite ATP-independent periplasmic transporters (TRAP-T), a family of secondary transporters functioning in conjunction with periplasmic substrate binding proteins. TeaABC facilitates the uptake of the compatible solutes ectoine and hydroxyectoine that are accumulated in the cytoplasm under hyperosmotic stress to protect the cell from dehydration. TeaABC is the only known TRAP-T activated by osmotic stress. Cu...

  18. The lysis cassette of DLP12 defective prophage is regulated by RpoE.

    Science.gov (United States)

    Rueggeberg, Karl-Gustav; Toba, Faustino A; Bird, Jeremy G; Franck, Nathan; Thompson, Mitchell G; Hay, Anthony G

    2015-08-01

    Expression of the lysis cassette (essD, ybcT, rzpD/rzoD) from the defective lambdoid prophage at the 12th minute of Escherichia coli's genome (DLP12) is required in some strains for proper curli expression and biofilm formation. Regulating production of the lytic enzymes encoded by these genes is critical for maintaining cell wall integrity. In lambdoid phages, late-gene regulation is mediated by the vegetative sigma factor RpoD and the lambda antiterminator Qλ. We previously demonstrated that DLP12 contains a Q-like protein (QDLP12) that positively regulates transcription of the lysis cassette, but the sigma factor responsible for this transcription initiation remained to be elucidated. In silico analysis of essDp revealed the presence of a putative - 35 and - 10 sigma site recognized by the extracytoplasmic stress response sigma factor, RpoE. In this work, we report that RpoE overexpression promoted transcription from essDp in vivo, and in vitro using purified RNAP. We demonstrate that the - 35 region is important for RpoE binding in vitro and that this region is also important for QDLP12-mediated transcription of essDp in vivo. A bacterial two-hybrid assay indicated that QDLP12 and RpoE physically interact in vivo, consistent with what is seen for Qλ and RpoD. We propose that RpoE regulates transcription of the DLP12 lysis genes through interaction with QDLP12 and that proper expression is dependent on an intact - 35 sigma region in essDp. This work provides evidence that the unique Q-dependent regulatory mechanism of lambdoid phages has been co-opted by E. coli harbouring defective DLP12 and has been integrated into the tightly controlled RpoE regulon. PMID:25998262

  19. Disinfection efficacy of an ultraviolet light on film cassettes for preventive of the nosocomial infection

    International Nuclear Information System (INIS)

    The bacterial infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient prevention from nosocomial infection and for improvement of the hospital environment. The laboratory result was identified non-pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection is proven suitable for bacterial. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In addition education of nosocomial infection for radiographers will be required. In conclusion, ultraviolet is considered effective to irradiate bacterial. Additionally, two minutes are required to sterilize film cassettes

  20. The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane

    OpenAIRE

    Garrigues, Alexia; Escargueil, Alexandre E.; Orlowski, Stéphane

    2002-01-01

    P-glycoprotein (P-gp) is a plasma membrane ATP-binding cassette transporter, responsible for multidrug resistance in tumor cells. P-gp catalyzes the ATP hydrolysis-dependent efflux of numerous amphiphilic compounds of unrelated chemical structures. In the absence of any identified substrate, P-gp exhibits an apparently futile, basal ATPase activity. By using native membrane vesicles containing high amounts of P-gp, we show here that (i) this basal ATPase activity is tightly dependent on the p...

  1. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.;

    2011-01-01

    assess the differential effects of MDMA and hallucinogen use on cerebral serotonin transporter (SERT) and serotonin(2A) receptor binding.Design: A positron emission tomography study of 24 young adult drug users and 21 nonusing control participants performed with carbon 11 (C-11)-labeled 3-amino-4-[2-[(di(methyl...

  2. Balloon-borne video cassette recorders for digital data storage

    International Nuclear Information System (INIS)

    A high-speed, high-capacity digital data storage system has been developed for a new balloon-borne gamma-ray telescope. The system incorporates sophisticated, yet easy to use and economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts

  3. Chromosome inversions, adaptive cassettes and the evolution of species' ranges.

    Science.gov (United States)

    Kirkpatrick, Mark; Barrett, Brian

    2015-05-01

    A chromosome inversion can spread when it captures locally adapted alleles or when it is introduced into a species by hybridization with adapted alleles that were previously absent. We present a model that shows how both processes can cause a species range to expand. Introgression of an inversion that carries novel, locally adapted alleles is a particularly powerful mechanism for range expansion. The model supports the earlier proposal that introgression of an inversion triggered a large range expansion of a malaria mosquito. These results suggest a role for inversions as cassettes of genes that can accelerate adaptation by crossing species boundaries, rather than protecting genomes from introgression. PMID:25583098

  4. Effects of ATP-binding cassette exporters on virulence factors in Streptococcus mutans%三磷酸腺苷结合盒外排子对变异链球菌毒力因子影响的研究进展

    Institute of Scientific and Technical Information of China (English)

    曾荟荟; 凌均棨

    2015-01-01

    ABC transporters have been proved to be integral membrane proteins that actively transported a diverse range of substrates across cell membranes. ABC transporters had varied functions, and took part in gene competence, (p)ppGpp accumulation, bacteriocin secretion and immunity in Streptococcus mutans. The structures, functions, mechanisms and inhibitors of the known ABC exporters in Streptococcus mutans were summarized.%三磷酸腺苷结合盒(ABC)转运子是膜蛋白的一部分,透过细胞膜转运各种生物分子,参与多种生理功能。在变异链球菌中,ABC外排子与基因感受态、四(五)磷酸鸟苷[(p)ppGpp]累积、细菌素分泌与免疫密切相关。本文就变异链球菌ABC外排子的结构、生理功能、作用机制和抑制剂作一综述。

  5. The SPECT tracer [123I]ADAM binds selectively to serotonin transporters: a double-blind, placebo-controlled study in healthy young men

    International Nuclear Information System (INIS)

    The tracer 123I-2-([2-({dimethylamino}methyl)phenyl]thio)-5-iodophenylamine ([123I]ADAM) has been developed to image serotonin transporters (SERTs) with SPECT. Preclinical studies have shown that [123I]ADAM binds selectively to SERTs. Moreover, initial human studies have shown that [123I]ADAM binding could be blocked by selective serotonin reuptake inhibitors (SSRIs). However, in humans it has not been proven that [123I]ADAM binds selectively to SERTs. We examined the in vivo availability of SERTs in 12 healthy young volunteers 5 h after bolus injection of [123I]ADAM. To evaluate the selectivity of binding, four participants were pretreated (double-blinded design) with placebo, four with paroxetine (20 mg) and four with the dopamine/norepinephrine blocker methylphenidate (20 mg). SPECT studies were performed on a brain-dedicated system (Neurofocus), and the SPECT images were coregistered with individual MR scans of the brain. ADAM binding in SERT-rich brain areas and cerebellar cortex (representing non-specific binding) was assessed by drawing regions of interest (ROIs) on the individual MR images. Specific to non-specific ratios were used as the outcome measure. We found that specific to non-specific ratios were statistically significantly lower in paroxetine-pretreated participants than in placebo- or methylphenidate-pretreated participants. No such difference was found between groups pretreated with placebo or methylphenidate. Our preliminary findings suggest that [123I]ADAM binds selectively to SERTs in human brain. (orig.)

  6. An investigation of infection control for x-ray cassettes in a diagnostic imaging department

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Matthew [School of Allied Health Professions and Science, Faculty of Health, Wellbeing and Science, University Campus Suffolk, Rope Walk, Ipswich, Suffolk, IP4 1LT (United Kingdom); Harvey, Jane M. [School of Allied Health Professions and Science, Faculty of Health, Wellbeing and Science, University Campus Suffolk, Rope Walk, Ipswich, Suffolk, IP4 1LT (United Kingdom)], E-mail: j.harvey@ucs.ac.uk

    2008-11-15

    Introduction: This research was conducted to investigate if X-ray cassettes could be a possible source of pathogens capable of causing nosocomial infections, and if they could be a possible vector for cross infection within the hospital environment. Method: The research involved the swabbing of X-ray cassettes in a Diagnostic Imaging Department of a large hospital in the east of England. Two areas of the Diagnostic Imaging Department were included in the study. Research concentrated on X-ray cassettes used for mobile radiography, accident and emergency and inpatient use. Forty cassettes were swabbed in total specifically for general levels of bacterial contamination, also for the presence or absence of methicillin-resistant Staphylococcus aureus (MRSA). A mapping exercise was completed following the location of an X-ray cassette typically used in mobile radiography. The exercise noted the level of direct contact with patient's skin and other possible routes of infection. Results: The results demonstrated that there were large levels of growth of samples taken from cassettes and developed in the Microbiology Department. Coagulase-negative Staphylococcus, Micrococci, Diptheroids and species of Bacillus were all identified. The mapping exercise in which the journey of a 35/43 cm cassette used for mobile radiography was tracked found that contact with patient's skin and potential pathogens or routes of cross infection was a common occurrence whilst undertaking mobile radiography. Conclusion: The research has identified the presence of bacterial contamination on cassettes. The research established that X-ray cassettes/imaging plates are often exposed to pathogens and possible routes of cross infection; also that patient's skin often comes directly in contact with the X-ray cassette/imaging plate. The research also shows that as cassettes/imaging plates are a potential source of cross infection, the Diagnostic Imaging Department may be partly responsible

  7. An investigation of infection control for x-ray cassettes in a diagnostic imaging department

    International Nuclear Information System (INIS)

    Introduction: This research was conducted to investigate if X-ray cassettes could be a possible source of pathogens capable of causing nosocomial infections, and if they could be a possible vector for cross infection within the hospital environment. Method: The research involved the swabbing of X-ray cassettes in a Diagnostic Imaging Department of a large hospital in the east of England. Two areas of the Diagnostic Imaging Department were included in the study. Research concentrated on X-ray cassettes used for mobile radiography, accident and emergency and inpatient use. Forty cassettes were swabbed in total specifically for general levels of bacterial contamination, also for the presence or absence of methicillin-resistant Staphylococcus aureus (MRSA). A mapping exercise was completed following the location of an X-ray cassette typically used in mobile radiography. The exercise noted the level of direct contact with patient's skin and other possible routes of infection. Results: The results demonstrated that there were large levels of growth of samples taken from cassettes and developed in the Microbiology Department. Coagulase-negative Staphylococcus, Micrococci, Diptheroids and species of Bacillus were all identified. The mapping exercise in which the journey of a 35/43 cm cassette used for mobile radiography was tracked found that contact with patient's skin and potential pathogens or routes of cross infection was a common occurrence whilst undertaking mobile radiography. Conclusion: The research has identified the presence of bacterial contamination on cassettes. The research established that X-ray cassettes/imaging plates are often exposed to pathogens and possible routes of cross infection; also that patient's skin often comes directly in contact with the X-ray cassette/imaging plate. The research also shows that as cassettes/imaging plates are a potential source of cross infection, the Diagnostic Imaging Department may be partly responsible for adding to

  8. Tyrosine hydroxylase immunoreactivity and [3H]WIN 35,428 binding to the dopamine transporter in a hamster model of idiopathic paroxysmal dystonia

    International Nuclear Information System (INIS)

    Recent pharmacological studies and receptor analyses have suggested that dopamine neurotransmission is enhanced in mutant dystonic hamsters (dtsz), a model of idiopathic paroxysmal dystonia which displays attacks of generalized dystonia in response to mild stress. In order to further characterize the nature of dopamine alterations, the present study investigated possible changes in the number of dopaminergic neurons, as defined by tyrosine hydroxylase immunohistochemistry, as well as binding to the dopamine transporter labelled with [3H]WIN 35,428 in dystonic hamsters. No differences in the number of tyrosine hydroxylase-immunoreactive neurons were found within the substantia nigra and ventral tegmental area of mutant hamsters compared to non-dystonic control hamsters. Similarly, under basal conditions, i.e. in the absence of a dystonic episode, no significant changes in [3H]WIN 35,428 binding were detected in dystonic brains. However, in animals killed during the expression of severe dystonia, significant decreases in dopamine transporter binding became evident in the nucleus accumbens and ventral tegmental area in comparison to controls exposed to the same external stimulation. Since stimulation tended to increase [3H]WIN 35,428 binding in control brains, the observed decrease in the ventral tegmental area appeared to be due primarily to the fact that binding was increased less in dystonic brains than in similarly stimulated control animals.This finding could reflect a diminished ability of the dopamine transporter to undergo adaptive changes in response to external stressful stimulation in mutant hamsters. The selective dopamine uptake inhibitor GBR 12909 (20 mg/kg) aggravated dystonia in mutant hamsters, further suggesting that acute alterations in dopamine transporter function during stimulation may be an important component of dystonia in this model. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis.

    Science.gov (United States)

    Mueckler, Mike; Makepeace, Carol

    2009-06-30

    Transmembrane helix 9 of the Glut1 glucose transporter was analyzed by cysteine-scanning mutagenesis and the substituted cysteine accessibility method (SCAM). A cysteine-less (C-less) template transporter containing amino acid substitutions for the six native cysteine residues present in human Glut1 was used to generate a series of 21 mutant transporters by substituting each successive residue in predicted transmembrane segment 9 with a cysteine residue. The mutant proteins were expressed in Xenopus oocytes, and their specific transport activities were directly compared to that of the parental C-less molecule whose function has been shown to be indistinguishable from that of native Glut1. Only a single mutant (G340C) had activity that was reduced (by 75%) relative to that of the C-less parent. These data suggest that none of the amino acid side chains in helix 9 is absolutely required for transport function and that this helix is not likely to be directly involved in substrate binding or translocation. Transport activity of the cysteine mutants was also tested after incubation of oocytes in the presence of the impermeant sulfhydryl-specific reagent, p-chloromercuribenzene sulfonate (pCMBS). Only a single mutant (T352C) exhibited transport inhibition in the presence of pCMBS, and the extent of inhibition was minimal (11%), indicating that only a very small portion of helix 9 is accessible to the external solvent. These results are consistent with the conclusion that helix 9 plays an outer stabilizing role for the inner helical bundle predicted to form the exofacial substrate-binding site. All 12 of the predicted transmembrane segments of Glut1 encompassing 252 amino acid residues and more than 50% of the complete polypeptide sequence have now been analyzed by scanning mutagenesis and SCAM. An updated model is presented for the outward-facing substrate-binding site and relative orientation of the 12 transmembrane helices of Glut1. PMID:19449892

  10. Nucleotide-induced conformational dynamics in ABC transporters from structure-based coarse grained modelling.

    Science.gov (United States)

    Flechsig, Holger

    2016-02-01

    ATP-binding cassette (ABC) transporters are integral membrane proteins which mediate the exchange of diverse substrates across membranes powered by ATP molecules. Our understanding of their activity is still hampered since the conformational dynamics underlying the operation of such proteins cannot yet be resolved in detailed molecular dynamics studies. Here a coarse grained model which allows to mimic binding of nucleotides and follow subsequent conformational motions of full-length transporter structures in computer simulations is proposed and implemented. To justify its explanatory quality, the model is first applied to the maltose transporter system for which multiple conformations are known and we find that the model predictions agree remarkably well with the experimental data. For the MalK subunit the switching from open to the closed dimer configuration upon ATP binding is reproduced and, moreover, for the full-length maltose transporter, progression from inward-facing to the outward-facing state is correctly obtained. For the heme transporter HmuUV, for which only the free structure could yet be determined, the model was then applied to predict nucleotide-induced conformational motions. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact, while, at the same time, a pronounced rotation of the transmembrane domains was observed. This finding is supported by normal mode analysis, and, comparison with structural data of the homologous vitamin B12 transporter BtuCD suggests that the observed rotation mechanism may contribute a common functional aspect for this class of ABC transporters. Although in HmuuV noticeable rearrangement of essential transmembrane helices was detected, there are no indications from our simulations that ATP binding alone may facilitate propagation of substrate molecules in this transporter

  11. In abstinent MDMA users the cortisol awakening response is off-set but associated with prefrontal serotonin transporter binding as in non-users

    DEFF Research Database (Denmark)

    Frokjaer, Vibe Gedsoe; Erritzoe, David; Holst, Klaus Kähler;

    2014-01-01

    Serotonergic signaling is considered critical for an appropriate adaptation to stress. We have previously observed that in healthy volunteers, prefrontal serotonin transporter (SERT) binding is positively associated with hypothalamic-pituitary-adrenal (HPA)-axis output in terms of the cortisol...... underwent SERT brain imaging with [11C]DASB-PET, and performed home-sampling of CAR, defined as the area under curve with respect to cortisol increase from awakening level. When adjusting for age and group, CAR was positively coupled to prefrontal SERT binding (p = 0.006) and MDMA users showed significantly...

  12. 5'-azido-N-1-naphthylphthalamic acid, a photolabile analog of the auxin transport inhibitor, N-1-naphthylphthalamic acid: synthesis and binding properties

    Energy Technology Data Exchange (ETDEWEB)

    Voet, J.G.; Howley, K.; Shumsky, J.S.

    1987-05-01

    The polar transport of the plant growth regulator, auxin (indole-3-acetic acid, IAAH), is thought to involve the participation of several proteins in the plasma membrane, including a specific, saturable, voltage independent H/sup +//IAA/sup -/ efflux carrier located preferentially at the basal end of each cell. Auxin transport is specifically inhibited by the herbicide, N-1-naphthylphthalamic acid (NPA), which binds specifically to a protein in the plasma membrane, thought to be either the IAA/sup -/ efflux carrier or an allosteric effector protein. They have synthesized and characterized a photolabile analog of NPA, 5'-azido-N-1-naphthylphthalamic acid (Az-NPA). This potential photoaffinity label for the NPA binding protein competes with /sup 3/H-NPA for binding sites on Curcurbita pepo L. (zucchini) stem cell membranes with K/sub j/ = 1.5 x 10/sup -7/ M. The K/sub i/ for NPA under these conditions is 2 x 10/sup -8/M, indicating that the affinity of Az-NPA for the membranes is only 7.5 fold lower than NPA. While the binding of 4.6 x 10/sup -6/ M Az-NPA to NPA binding sites is reversible in the dark, exposure to light results in a 30% loss in /sup 3/H-NPA binding ability. Pretreatment with 10/sup -4/ M NPA protects the membranes against photodestruction of /sup 3/H-NPA binding sites by Az-NPA, supporting the conclusion that Az-NPA destroys these sites by specific covalent attachment.

  13. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Directory of Open Access Journals (Sweden)

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  14. Integrones y cassettes genéticos de resistencia a antimicrobianos en cepas de Shigella flexneri Integrons and antimicrobial resistance gene cassettes in Shigella flexneri strains

    OpenAIRE

    Jeannette Muñoz A; Helia Bello T; Mariana Domínguez Y; Sergio Mella M; Raúl Zemelman Z; Gerardo González R

    2003-01-01

    Background: The resistance of Shigella flexneri to antimicrobial agents can be associated to the presence of integrons that may contain and express antimicrobial resistance gene cassettes. Aim: To study antimicrobial resistance and the presence of integrons and antimicrobial gene cassettes in Shigella flexneri strains. Material and methods: In vitro susceptibility to 27 antimicrobials was studied in twenty four Shigella flexneri strains isolated from stools. The presence of integrons class 1,...

  15. On design and development of additional End-Effectors for the Cassette Multifunctional Mover

    International Nuclear Information System (INIS)

    The divertor area of ITER Vacuum Vessel (VV) consists of 54 modular cassettes which must be replaced three times during the estimated 20 years of operation of the ITER. Cassette Multifunctional Mover (CMM) and Cassette Toroidal Mover (CTM) are used in the cassette remote handling (RH). In this paper we discuss the design and development process for the RH equipment to be used in the ITER environment. Design concepts for the Standard Cassette End-Effector and Central Cassette End-Effector are described and the conceptual design phase methodology is presented. The main improvements of the new End-Effector concept designs are more robust and reliable assembly process with reduced CMM mover assembly accuracy requirement. New Central Cassette locking system was developed to address the high forces and contact pressures emerging during the Central Cassette installation. The chosen design concepts are verified with virtual reality simulations and are fulfilling the requirements defined in the concept design phase, including structural, assembly sequence, safety and reliability.

  16. Efficient and stable reconstitution of the ABC transporter BmrA for solid-state NMR studies

    OpenAIRE

    Kunert, Britta; Gardiennet, Carole; Lacabanne, Denis; Calles-Garcia, Daniel; Falson, Pierre; Jault, Jean-Michel; Meier, Beat H; Penin, François; Böckmann, Anja

    2014-01-01

    We present solid-state NMR sample preparation and first 2D spectra of the Bacillus subtilis ATP-binding cassette (ABC) transporter BmrA, a membrane protein involved in multidrug resistance. The homodimeric 130-kDa protein is a challenge for structural characterization due to its membrane-bound nature, size, inherent flexibility and insolubility. We show that reconstitution of this protein in lipids from Bacillus subtilis at a lipid-protein ratio of 0.5 w/w allows for optimal protein insertion...

  17. Association between two common polymorphisms in ATP-binding cassette A1 gene and coronary heart disease complicated with diabetes in Chinese Han people%三磷酸腺苷结合盒转运子A1启动子区及7外显子基因突变与合并糖尿病的冠心病关联研究

    Institute of Scientific and Technical Information of China (English)

    祁莉萍; 严晓伟; 叶平; 党爱民

    2010-01-01

    Objective The promoter-565C/T variant and the 7exon R219K variant are associated with risk of Coronary heart disease (CAD), but the association also remains controversial. At present, there are few studies focusing on the associations between ATP-binding cassette A1 (ABCA1), and CAD with Diabetes mellitus (DM) in Chinese population. Since decreased serum level of HDL-C is often observed in DM,it is natural to hypothesize that polymorphisms of the ABCA1 gene might be related to CAD complicated with DM. Objective To study the mutations and genetic characteristics of ABCA1 promoter -565C/T and 7Exon R219K in CAD with DM patients in Chinese Han people. Methods One hundred and seventy-three patients of CAD with DM and 389 controls were genotyped for-565C/T, R219K used with LDR. Genetic association analysis was performed. Results The frequencies of the CC, CT, and TT genotypes in CAD with DM were 0.360(n=63), 0.482 (n=83) and 0.157 (n=27), respectively. The frequency of the TT genotype and T allele at the-565C/T locus had no significant alterations between CAD with DM patients and Controls (0.157 vs 0.163; 0.398 vs 0.409,P>0.05). The frequency of the AA and GA geno-type at the R219K locus was lower in CAD patients compared with diabetes (0.65 vs 0.73,P=0.079). Logistic re-gression model were performed, revealed no interaction between 2 SNPs and traditional risk factors, but R219K had a protection effect, OR=0.428 (95%CI 0.227-0.603), P=0.009. Conclusions ABCA1 the T allele of-565 C/T SNP has no significant association with CAD with DM. R219K SNP predicts differences in CAD with diabetes. The AA genotype may protect against subclinical cardiovascular disease.%目的 首次研究汉族人群冠心病合并糖尿病与三磷酸腺苷结合盒转运子A1(ABCA1)基因启动子区-565C/T及7外显子R219K基因多态性关联分析.方法 应用连接酶检测反应法对172例合并糖尿病冠心病患者及393例对照组测试-565C/T及R219K基因型.结果

  18. Recombinogenic engineering of conjugative plasmids with fluorescent marker cassettes

    DEFF Research Database (Denmark)

    Reisner, A.; Molin, Søren; Zechner, E.L.

    2002-01-01

    An efficient approach for the insertion of fluorescent marker genes with sequence specificity into conjugative plasmids in Escherichia coli is described. For this purpose, homologous recombination of linear double-stranded targeting DNA was mediated by the bacteriophage lambda recombination...... functions using very short regions of homology. Initial manipulation of the IncFII target plasmids R1 and R1drd19 indicated that the linear targeting DNA should be devoid of all extraneous homologies to. the target molecule for optimal insertion specificity. Indeed, a simple recombination assay proved...... resistance genes and fluorescent markers. The choice of 5' non-homologous extensions in primer pairs used for amplifying the marker cassettes determines the site specificity of the targeting DNA. This methodology is applicable to the modification of all plasmids that replicate in E coli and is not restricted...

  19. Oxidation of p53 through DNA charge transport involves a network of disulfides within the DNA-binding domain.

    Science.gov (United States)

    Schaefer, Kathryn N; Geil, Wendy M; Sweredoski, Michael J; Moradian, Annie; Hess, Sonja; Barton, Jacqueline K

    2015-01-27

    Transcription factor p53 plays a critical role in the cellular response to stress stimuli. We have seen that p53 dissociates selectively from various promoter sites as a result of oxidation at long-range through DNA-mediated charge transport (CT). Here, we examine this chemical oxidation and determine the residues in p53 that are essential for oxidative dissociation, focusing on the network of cysteine residues adjacent to the DNA-binding site. Of the eight mutants studied, only the C275S mutation shows decreased affinity for the Gadd45 promoter site. However, both mutations C275S and C277S result in substantial attenuation of oxidative dissociation, with C275S causing the most severe attenuation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide-labeled, whereas oxidized cysteines participating in disulfide bonds were (13)C2D2-iodoacetamide-labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed by mass spectrometry. A distinct shift in peptide labeling toward (13)C2D2-iodoacetamide-labeled cysteines is observed in oxidized samples, confirming that chemical oxidation of p53 occurs at long range. All observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds among the cysteine network. On the basis of these data, it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA. PMID:25584637

  20. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen....... In comparison, GR(+/-) mice had increased 5-HT(4) receptor (11%) binding in the caudal caudate putamen and decreased 5-HTT binding in the frontal caudate putamen but no changes in dorsal and ventral hippocampus. Post hoc analysis showed increased 5-HT(4) receptor binding in the olfactory tubercles of GR...

  1. Long-term effect of insulin on glucose transport and insulin binding in cultured adipocytes from normal and obese humans with and without non-insulin-dependent diabetes.

    OpenAIRE

    Sinha, M K; Taylor, L G; Pories, W J; Flickinger, E G; Meelheim, D; Atkinson, S.; Sehgal, N S; Caro, J F

    1987-01-01

    We have tested the hypothesis that in vitro exposure of insulin-resistant adipocytes with insulin results in improved insulin action. A primary culture system of adipocytes from obese subjects with or without non-insulin-dependent diabetes mellitus (NIDDM) and nonobese control subjects has been developed. The adipocytes when cultured in serum-free medium do not lose their original characteristics in regard to insulin binding and glucose transport. The adipocytes from three groups were incubat...

  2. [{sup 123}I]IPT binding to the presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R.; Gostomzyk, J.; Hahn, K.; Tatsch, K. [Department of Nuclear Medicine, University of Munich (Germany)

    2000-12-01

    Imaging the presynaptic dopamine transporter with cocaine analogues and single-photon emission tomography (SPET) has proven to be a potential diagnostic tool for classifying the extent and degree of dopaminergic nerve cell loss. For correct interpretation of scan results, however, knowledge of the intra-/interobserver variation of data evaluation is mandatory. Iodine-123 labelled N-(3-iodopropen-2-yl)-2{beta}-carbomethoxy-3{beta}-(chlorophenyl)tropane ([{sup 123}I]IPT) SPET data of 10 controls and 30 parkinsonian patients with varying degrees of reduced IPT binding were analysed twice by an expert (intraobserver) and once by a less experienced physician in training (interobserver). For semiquantitative evaluation of specific IPT binding, ratios between total striatum, caudate and putamen and a background region were calculated. No significant differences were observed for either the intra- or the interobserver analyses. Variation was lower in controls than in the patient group. Overall variation indices were below 5%. Variation in interobserver results was only slightly higher than that in intraobserver results. The intra-/interobserver results showed highly significant correlations (r=0.99). The intraclass correlation was higher than 0.9 for all evaluations. Our results indicate that the specific presynaptic striatal dopamine transporter binding assessed with IPT-SPET may be reproducibly analysed by the same and different observers in controls as well as in patients with varying degrees of reduced binding. (orig.)

  3. [123I]IPT binding to the presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls

    International Nuclear Information System (INIS)

    Imaging the presynaptic dopamine transporter with cocaine analogues and single-photon emission tomography (SPET) has proven to be a potential diagnostic tool for classifying the extent and degree of dopaminergic nerve cell loss. For correct interpretation of scan results, however, knowledge of the intra-/interobserver variation of data evaluation is mandatory. Iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(chlorophenyl)tropane ([123I]IPT) SPET data of 10 controls and 30 parkinsonian patients with varying degrees of reduced IPT binding were analysed twice by an expert (intraobserver) and once by a less experienced physician in training (interobserver). For semiquantitative evaluation of specific IPT binding, ratios between total striatum, caudate and putamen and a background region were calculated. No significant differences were observed for either the intra- or the interobserver analyses. Variation was lower in controls than in the patient group. Overall variation indices were below 5%. Variation in interobserver results was only slightly higher than that in intraobserver results. The intra-/interobserver results showed highly significant correlations (r=0.99). The intraclass correlation was higher than 0.9 for all evaluations. Our results indicate that the specific presynaptic striatal dopamine transporter binding assessed with IPT-SPET may be reproducibly analysed by the same and different observers in controls as well as in patients with varying degrees of reduced binding. (orig.)

  4. The deviant ATP-binding site of the multidrug efflux pump Pdr5 plays an active role in the transport cycle.

    Science.gov (United States)

    Furman, Christopher; Mehla, Jitender; Ananthaswamy, Neeti; Arya, Nidhi; Kulesh, Bridget; Kovach, Ildiko; Ambudkar, Suresh V; Golin, John

    2013-10-18

    Pdr5 is the founding member of a large subfamily of evolutionarily distinct, clinically important fungal ABC transporters containing a characteristic, deviant ATP-binding site with altered Walker A, Walker B, Signature (C-loop), and Q-loop residues. In contrast to these motifs, the D-loops of the two ATP-binding sites have similar sequences, including a completely conserved aspartate residue. Alanine substitution mutants in the deviant Walker A and Signature motifs retain significant, albeit reduced, ATPase activity and drug resistance. The D-loop residue mutants D340A and D1042A showed a striking reduction in plasma membrane transporter levels. The D1042N mutation localized properly had nearly WT ATPase activity but was defective in transport and was profoundly hypersensitive to Pdr5 substrates. Therefore, there was a strong uncoupling of ATPase activity and drug efflux. Taken together, the properties of the mutants suggest an additional, critical intradomain signaling role for deviant ATP-binding sites. PMID:24019526

  5. A two-cassette reporter system for assessing target gene translation and target gene product inclusion body formation

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a dual cassette reporter system capable of assessing target gene translation and target gene product folding. The present invention further relates to vectors and host cells comprising the dual cassette reporter system. In addition the invention relates to the use...... of the dual cassette reporter system for assessing target gene translation and target gene product folding....

  6. Serotonin transporter binding of [123I]ADAM in bulimic women, their healthy twin sisters, and healthy women: a SPET study

    Directory of Open Access Journals (Sweden)

    Kaprio Jaakko

    2007-05-01

    Full Text Available Abstract Background Bulimia Nervosa (BN is believed to be caused by an interaction of genetic and environmental factors. Previous studies support the existence of a bulimia-related endophenotype as well as disturbances in serotonin (5-HT transmission. We studied serotonin transporter (SERT binding in BN, and to investigate the possibility of a SERT-related endophenotype for BN, did this in a sample of female twins. We hypothesized clearly reduced SERT binding in BN women as opposed to healthy women, and intermediate SERT binding in unaffected co-twins. Methods We studied 13 female twins with BN (9 with purging and 4 with non-purging BN and 25 healthy women, including 6 healthy twin sisters of BN patients and 19 women from 10 healthy twin pairs. [123I]ADAM, a selective SERT radioligand for single photon emission tomography (SPET imaging, was used to assess SERT availability in the midbrain and the thalamus. Results No differences in SERT binding were evident when comparing the BN women, their unaffected co-twins and the healthy controls (p = 0.14. The healthy sisters of the BN patients and the healthy control women had similar SERT binding in both brain regions. In a post hoc subgroup analysis, the purging bulimics had higher SERT binding than the healthy women in the midbrain (p = 0.03, but not in the thalamus. Conclusion Our finding of increased SERT binding in the midbrain in the purging BN women raises the possibility that this subgroup of bulimics might differ in serotonergic function from the non-purging ones. The similarity of the unaffected co-twins and the healthy controls doesn't support our initial assumption of a SERT-related endophenotype for BN. Due to the small sample size, our results need to be interpreted with caution and verified in a larger sample.

  7. The SPECT tracer [{sup 123}I]ADAM binds selectively to serotonin transporters: a double-blind, placebo-controlled study in healthy young men

    Energy Technology Data Exchange (ETDEWEB)

    Giessen, Elsmarieke van de [University of Amsterdam, Academic Medical Center, Graduate School Neurosciences Amsterdam, Department of Nuclear Medicine, Amsterdam (Netherlands); Booij, Jan [University of Amsterdam, Academic Medical Center, Graduate School Neurosciences Amsterdam, Department of Nuclear Medicine, Amsterdam (Netherlands); University of Amsterdam, Academic Medical Center, Department of Nuclear Medicine, F2-236, Amsterdam (Netherlands)

    2010-08-15

    The tracer {sup 123}I-2-([2-({l_brace}dimethylamino{r_brace}methyl)phenyl]thio)-5-iodophenylamine ([{sup 123}I]ADAM) has been developed to image serotonin transporters (SERTs) with SPECT. Preclinical studies have shown that [{sup 123}I]ADAM binds selectively to SERTs. Moreover, initial human studies have shown that [{sup 123}I]ADAM binding could be blocked by selective serotonin reuptake inhibitors (SSRIs). However, in humans it has not been proven that [{sup 123}I]ADAM binds selectively to SERTs. We examined the in vivo availability of SERTs in 12 healthy young volunteers 5 h after bolus injection of [{sup 123}I]ADAM. To evaluate the selectivity of binding, four participants were pretreated (double-blinded design) with placebo, four with paroxetine (20 mg) and four with the dopamine/norepinephrine blocker methylphenidate (20 mg). SPECT studies were performed on a brain-dedicated system (Neurofocus), and the SPECT images were coregistered with individual MR scans of the brain. ADAM binding in SERT-rich brain areas and cerebellar cortex (representing non-specific binding) was assessed by drawing regions of interest (ROIs) on the individual MR images. Specific to non-specific ratios were used as the outcome measure. We found that specific to non-specific ratios were statistically significantly lower in paroxetine-pretreated participants than in placebo- or methylphenidate-pretreated participants. No such difference was found between groups pretreated with placebo or methylphenidate. Our preliminary findings suggest that [{sup 123}I]ADAM binds selectively to SERTs in human brain. (orig.)

  8. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters

    DEFF Research Database (Denmark)

    Løland, Claus Juul

    2015-01-01

    Background: The mammalian neurotransmitter transporters are complex proteins playing a central role in synaptic transmission between neurons by rapid reuptake of neurotransmitters. The proteins which transport dopamine, noradrenaline and serotonin belong to the Neurotransmitter:Sodium Symporters...

  9. Natural polyphenols: Influence on membrane transporters

    Directory of Open Access Journals (Sweden)

    Saad Abdulrahman Hussain

    2016-03-01

    Full Text Available Accumulated evidences have focused on the use of natural polyphenolic compounds as nutraceuticals, since they showed a wide range of bioactivities and exhibited protection against variety of age related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as ATP-Binding Cassette transporters, like multidrug resistance protein (MDRP, and p-glycoprotein (P-gp. Some of the efflux transporters are generally linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. Additionally, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. [J Intercult Ethnopharmacol 2016; 5(1.000: 97-104

  10. A clinical trial of a rare earth screen/film system in a periapical cassette

    International Nuclear Information System (INIS)

    In a clinical trial, a slow rare earth screen/film system (Siemens Titan 2D/Kodak XG) was used to obtain intraoral radiographs at conventional monitoring stages in endodontic treatment. The screen film image proved to be an effective substitute for the direct-exposure Ultraspeed periapical film. The intraoral cassettes, designed and fabricated for the study, were an adaptation of the flexible, vacuum-sealed cassettes used in mammography. It is believed that when a practicable periapical cassette is manufactured, many additional indications for the system are probable. Major reductions in patient exposure of at least 85% to 90% per periapical film would be effected

  11. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery

    International Nuclear Information System (INIS)

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette

  12. Functions of the conserved thrombospondin carboxy-terminal cassette in cell-extracellular matrix interactions and signaling.

    Science.gov (United States)

    Adams, Josephine C

    2004-06-01

    Thrombospondins (TSPs) are extracellular, multidomain, calcium-binding glycoproteins that function at cell surfaces, in extracellular matrix (ECM) and as bridging molecules in cell-cell interactions. TSPs are multifunctional and modulate cell behavior during development, wound-healing, immune response, tumor growth and in the homeostasis of adult tissues. TSPs are assembled as oligomers that are composed of homologous polypeptides. In all the TSP polypeptides, the most highly-conserved region is the carboxyl-region, which contains a characteristic set of domains comprising EGF domains, TSP type 3 repeats and a globular carboxy-terminal domain. This large region is termed here the thrombospondin carboxy-terminal cassette (TSP-CTC). The strong conservation of the TSP-CTC suggests that it may mediate ancestral functions that are shared by all TSPs. This review summarizes the current knowledge of the TSP-CTC and areas of future interest. PMID:15094125

  13. Genetic Variation of the Borrelia burgdorferi Gene vlsE Involves Cassette-Specific, Segmental Gene Conversion

    OpenAIRE

    Zhang, Jing-Ren; Norris, Steven J

    1998-01-01

    The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5′ and 3′ coding sequences of vlsE that flank the cassette region are not subject to sequence variation...

  14. Predicting P-Glycoprotein-Mediated Drug Transport Based On Support Vector Machine and Three-Dimensional Crystal Structure of P-glycoprotein

    OpenAIRE

    Bikadi, Zsolt; Hazai, Istvan; Malik, David; Jemnitz, Katalin; Veres, Zsuzsa; Hari, Peter; Ni, Zhanglin; Loo, Tip W.; Clarke, David M.; Hazai, Eszter; Mao, Qingcheng

    2011-01-01

    Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics,...

  15. Phosphorylation-independent dual-site binding of the FHA domain of KIF13 mediates phosphoinositide transport via centaurin [alpha]1

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yufeng; Tempel, Wolfram; Wang, Hui; Yamada, Kaori; Shen, Limin; Senisterra, Guillermo A.; MacKenzie, Farrell; Chishti, Athar H.; Park, Hee-Won (Toronto); (UICM)

    2011-11-07

    Phosphatidylinositol 3,4,5-triphosphate (PIP3) plays a key role in neuronal polarization and axon formation. PIP3-containing vesicles are transported to axon tips by the kinesin KIF13B via an adaptor protein, centaurin {alpha}1 (CENTA1). KIF13B interacts with CENTA1 through its forkhead-associated (FHA) domain. We solved the crystal structures of CENTA1 in ligand-free, KIF13B-FHA domain-bound, and PIP3 head group (IP4)-bound conformations, and the CENTA1/KIF13B-FHA/IP4 ternary complex. The first pleckstrin homology (PH) domain of CENTA1 specifically binds to PIP3, while the second binds to both PIP3 and phosphatidylinositol 3,4-biphosphate (PI(3,4)P2). The FHA domain of KIF13B interacts with the PH1 domain of one CENTA1 molecule and the ArfGAP domain of a second CENTA1 molecule in a threonine phosphorylation-independent fashion. We propose that full-length KIF13B and CENTA1 form heterotetramers that can bind four phosphoinositide molecules in the vesicle and transport it along the microtubule.

  16. Pharmacological effects of dopaminergic drugs on in vivo binding of [99mTc]TRODAT-1 to the central dopamine transporters in rats

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the influence of drugs competing for the dopamine transporter (DAT) or changing intra- and/or extracellular dopamine levels on the binding of a novel technetium-99m labeled tropane derivative, technetium, [2-[[2-[[[3-(4-chloro-phenyl)-8-methyl-8-azabicyclo[3, 2, 1]oct-2-yl]methyl] (2-mercaptoethyl)amino]ethyl]amino]ethanethiolato(3)]-oxo-[1R-(exo-exo)]-, [99mTc]TRODAT-1, to DAT. This paper describes the further characterization of [99mTc]TRODAT-1 binding sites in rats under conditions which may exist in patients receiving various drug treatments. All experiments were carried out using an i.v. injection of [99mTc]TRODAT-1 into male Sprague-Dawley rats. The biodistribution studies were performed in the presence of drugs which compete for the binding site. Additionally, the influence of dopamine receptor agonists, such as apomorphine and (+)bromocriptine, on biodistribution was tested. It is likely that a low dose of l-DOPA (normally needed in the treatment of Parkinson's disease) will not affect the results on [99mTc]TRODAT-1 single-photon emission tomographic (SPET) imaging studies. In conclusion, the results clearly demonstrate the specificity of [99mTc]TRODAT-1 binding to DAT in vivo. Competition for [99mTc]TRODAT-1 binding was observed only with drug treatment that significantly increases dopamine levels or actively competes for binding at DAT. The results suggest that prior knowledge of whether patients are receiving various drug treatments may assist in the interpretation of DAT status as assessed by SPET imaging studies using [99mTc]TRODAT-1. (orig.)

  17. Quantitative analyses of regional [11C]PE2I binding to the dopamine transporter in the human brain: a PET study

    International Nuclear Information System (INIS)

    The dopamine transporter (DAT) is a plasma membrane protein of central interest in the pathophysiology of neuropsychiatric disorders and is known to be a target for psychostimulant drugs. [11C]PE2I is a new radioligand which binds selectively and with moderate affinity to central DAT, as has been demonstrated in vitro by autoradiography and in vivo by positron emission tomography (PET). The aims of the present PET study were to quantify regional [11C]PE2I binding to DAT in the human brain and to compare quantitative methods with regard to suitability for applied clinical studies. One PET measurement was performed in each of eight healthy male subjects. The binding potential (BP) values were obtained by applying kinetic compartment analysis, which uses the metabolite-corrected arterial plasma curve as an input function. They were compared with the BP values quantified by two reference tissue approaches, using cerebellum as a reference region representing free and non-specific radioligand binding. The radioactivity concentration was highest in the striatum, lower in the midbrain and very low in the cerebellum. The regional [11C]PE2I binding could be interpreted by kinetic compartment models. However, the BP values in the striatum obtained by the compartment analyses were about 30% higher than the BP values obtained using reference tissue methods. We suggest that the difference may be explained by the inaccurate metabolite correction, small amounts of radioactive metabolites that could account for the presence of non-specific binding in the cerebellum and insufficient data acquisition time. (orig.)

  18. Pharmacological effects of dopaminergic drugs on in vivo binding of [{sup 99m}Tc]TRODAT-1 to the central dopamine transporters in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, S.H.J.; Kung, M.P.; Ploessl, K.; Meegalla, S.K. [Department of Radiology, University of Pennsylvania, Philadelphia (United States); Kung, H.F. [Department of Radiology, University of Pennsylvania, Philadelphia (United States)]|[Department of Pharmacology, University of Pennsylvania, Philadelphia (United States)

    1998-01-01

    The purpose of this study was to investigate the influence of drugs competing for the dopamine transporter (DAT) or changing intra- and/or extracellular dopamine levels on the binding of a novel technetium-99m labeled tropane derivative, technetium, [2-[[2-[[[3-(4-chloro- phenyl)-8-methyl-8-azabicyclo[3, 2, 1]oct-2-yl]methyl] (2-mercaptoethyl)amino]ethyl]amino]ethanethiolato(3)]-oxo-[1R-(exo-exo)]-, [{sup 99m}Tc]TRODAT-1, to DAT. This paper describes the further characterization of [{sup 99m}Tc]TRODAT-1 binding sites in rats under conditions which may exist in patients receiving various drug treatments. All experiments were carried out using an i.v. injection of [{sup 99m}Tc]TRODAT-1 into male Sprague-Dawley rats. The biodistribution studies were performed in the presence of drugs which compete for the binding site. Additionally, the influence of dopamine receptor agonists, such as apomorphine and (+)bromocriptine, on biodistribution was tested. It is likely that a low dose of l-DOPA (normally needed in the treatment of Parkinson`s disease) will not affect the results on [{sup 99m}Tc]TRODAT-1 single-photon emission tomographic (SPET) imaging studies. In conclusion, the results clearly demonstrate the specificity of [{sup 99m}Tc]TRODAT-1 binding to DAT in vivo. Competition for [{sup 99m}Tc]TRODAT-1 binding was observed only with drug treatment that significantly increases dopamine levels or actively competes for binding at DAT. The results suggest that prior knowledge of whether patients are receiving various drug treatments may assist in the interpretation of DAT status as assessed by SPET imaging studies using [{sup 99m}Tc]TRODAT-1. (orig.) With 4 figs., 1 tab., 73 refs.

  19. Kinetic analysis of transport and opioid receptor binding of [3H](-)-cyclofoxy in rat brain in vivo: Implications for human studies

    International Nuclear Information System (INIS)

    [3H]Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB); estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using [18F]CF and positron emission tomography

  20. Seasonal Changes in Brain Serotonin Transporter Binding in Short Serotonin Transporter Linked Polymorphic Region-Allele Carriers but Not in Long-Allele Homozygotes

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Erritzoe, David; Holst, Klaus K;

    2010-01-01

    ) binding in 57 healthy Scandinavians and related the outcome to season of the year and to the 5-HTTLPR carrier status. Results: We found that the number of daylight minutes at the time of scanning correlated negatively with 5-HTT binding in the putamen and the caudate, with a similar tendency...... of the short 5-HTTLPR allele but not in homozygote carriers of the long allele. Conclusions: Our findings are in line with S-carriers having an increased response in neural circuits involved in emotional processing to stressful environmental stimuli but here demonstrated as a endophenotype with dynamic changes...

  1. `Tight Binding' methods in quantum transport through molecules and small devices: From the coherent to the decoherent description

    OpenAIRE

    Pastawski, Horacio M.; Medina, Ernesto

    2001-01-01

    We discuss the steady-state electronic transport in solid-state and molecular devices in the quantum regime. The decimation technique allows a comprehensive description of the electronic structure. Such a method is used, in conjunction with the generalizations of Landauer's tunneling formalism, to describe a wide range of transport regimes. We analize mesoscopic and semiclassical metallic transport, the metal-insulator transition, and the resonant tunneling regime. The effects of decoherence ...

  2. Transport

    International Nuclear Information System (INIS)

    Transport is one of the major causes of environmental damage in Austria. Energy consumption, pollutants emissions, noise emissions, use of surfaces, sealing of surfaces, dissection of ecosystems and impact on landscape are the most significant environmental impacts caused by it. An overview of the transport development of passengers and freight in Austria is presented. Especially the energy consumption growth, carbon dioxide and nitrogen oxide emissions by type of transport, and the emissions development (HC, particle and carbon monoxide) of goods and passengers transport are analyzed covering the years 1980 - 1999. The health cost resulting from transport-related air pollution in Austria is given and measures to be taken for an effective control of the transport sector are mentioned. Figs. 8, Table 1. (nevyjel)

  3. Effects of estrogen and testosterone treatment on serotonin transporter binding in the brain of surgically postmenopausal women--a PET study.

    Science.gov (United States)

    Jovanovic, Hristina; Kocoska-Maras, Ljiljana; Rådestad, Angelique Flöter; Halldin, Christer; Borg, Jacqueline; Hirschberg, Angelica Lindén; Nordström, Anna-Lena

    2015-02-01

    Sex hormones and the serotonergic system interact in the regulation of mood, learning, memory and sexual behaviour. However, the mechanisms have not been fully explored. The serotonin transporter protein (5-HTT) regulates synaptic concentrations of serotonin and is a primary target for selective serotonin reuptake inhibitors. The aim of this study was to explore how estrogen treatment alone or in combination with testosterone affects 5-HTT binding potentials measured by positron emission tomography (PET) in specific brain regions of postmenopausal women. Ten healthy surgically postmenopausal women (years since oophorectomy 7.5 ± 4.0, mean ± SD) underwent PET examinations at baseline, after three months of estrogen treatment (transdermal estradiol 100 μg/24 hours) and after another three months of combined estrogen and testosterone (testosterone undecanoate 40 mg daily) treatment using the radioligand [(11)C] MADAM developed for examination of the serotonin transporter. The 5-HTT binding potentials decreased significantly in several cortical regions, as well as in limbic and striatal regions after both estrogen treatment alone and combined estrogen/testosterone treatment in comparison to baseline. The observed decrease in 5-HTT could either be due to direct effects on serotonin transporter expression or be the result of indirect adaptation to estrogen and /or testosterone effects on synaptic serotonin levels. Although the mechanism still needs further exploration, the study supports the view that gonadal hormones play a role in serotonin regulated mood disorders. PMID:25462800

  4. PbWoxT1 mRNA from pear (Pyrus betulaefolia) undergoes long-distance transport assisted by a polypyrimidine tract binding protein.

    Science.gov (United States)

    Duan, Xuwei; Zhang, Wenna; Huang, Jing; Hao, Li; Wang, Shengnan; Wang, Aide; Meng, Dong; Zhang, Qiulei; Chen, Qiuju; Li, Tianzhong

    2016-04-01

    Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety 'Du Li' (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL-RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1). A 548-bp fragment of PbWoxT1 is critical in long-distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild-type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co-overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long-distance transport. We provide novel information that adds a new mechanism with which to explain the noncell-autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species. PMID:26661583

  5. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane

    OpenAIRE

    Mills, Kate M.; Brocardo, Mariana G.; Henderson, Beric R.

    2016-01-01

    The role of adenomatous polyposis coli (APC) tumor suppressor at mitochondria is unclear. We show that APC associates with the Miro/Milton/kinesin complex to stimulate anterograde transport of mitochondria. This identifies the first regulatory role of APC in organelle transport. APC cancer mutations block this activity.

  6. The cost-effectiveness of carbon-fibre cassettes in mobile chest radiography

    International Nuclear Information System (INIS)

    Employment of carbon fibre materials is an effective method of reducing radiation dose, yet the increased associated costs have led to a reluctance in implementation. This study investigates the level of dose reduction achievable, while maintaining image quality, in mobile chest radiography using carbon-fibre cassettes, compared with plastic cassettes, and balances this against increased expense of the cassettes. Dose measurements using thermoluminescent dosimeters were carried out on intensive therapy unit (ITU) patients undergoing an anteroposterior chest X-ray examination. Resultant image quality was assessed using objective Commission of European Communities (CEC) criteria. A retrospective audit recorded number of ITU patients currently having chest X-rays to determine total dose savings over the life of the cassettes. The results show significant reductions (p < 0.0001) of 32 % for entrance surface and effective dose with carbon-fibre cassettes. No deterioration in total image quality was noted. The added expense of ≤ 2260 per personSievert (calculated from the effective dose reduction) for employing carbon-fibre cassettes is minimal compared with the estimated cost of manSievert exposures reported by other workers. (orig.)

  7. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter.

    Science.gov (United States)

    Hohl, Michael; Hürlimann, Lea M; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G; Bordignon, Enrica; Seeger, Markus A

    2014-07-29

    ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5'-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport. PMID:25030449

  8. Use of chimeric proteins to investigate the role of transporter associated with antigen processing (TAP) structural domains in peptide binding and translocation

    OpenAIRE

    Arora, Shikha; Lapinski, Philip Edward; Raghavan, Malini

    2001-01-01

    The transporter associated with antigen processing (TAP) comprises two subunits, TAP1 and TAP2, each containing a hydrophobic membrane-spanning region (MSR) and a nucleotide binding domain (NBD). The TAP1/TAP2 complex is required for peptide translocation across the endoplasmic reticulum membrane. To understand the role of each structural unit of the TAP1/TAP2 complex, we generated two chimeras containing TAP1 MSR and TAP2 NBD (T1MT2C) or TAP2 MSR and TAP1 NBD (T2MT1C). We show that TAP1/T2MT...

  9. Attention deficit hyperactivity disorder: binding of [{sup 99m}Tc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, S.; LaFougere, C.; Brinkbaeumer, K.; Hahn, K.; Tatsch, K. [Dept. of Nuclear Medicine, Univ. of Munich (Germany); Krause, J.; Krause, K.-H. [Inst. for Psychiatry and Psychotherapy, Ottobrunn (Germany); Friedrich Baur Inst., Univ. of Munich (Germany); Kung, H.F. [Dept. of Radiology, Univ. of Pennsylvania (United States)

    2000-10-01

    Involvement of the dopaminergic system has been suggested in patients suffering from attention deficit hyperactivity disorder (ADHD) since the symptoms can be successfully treated with methylphenidate, a potent blocker of the dopamine transporter (DAT). This study reports the findings on the status of the DAT in adults with ADHD before and after commencement of treatment with methylphenidate, as measured using [{sup 99m}Tc]TRODAT-1. Seventeen patients (seven males, ten females, aged 21-64 years, mean 38 years) were examined before and after the initiation of methylphenidate treatment (3 x 5 mg/day). All subjects were injected with 800 MBq [{sup 99m}Tc]TRODAT-1 and imaged 3 h p.i. Single-photon emission tomography (SPET) scans were acquired using a triple-headed gamma camera. For semi-quantitative evaluation of the DAT, transverse slices corrected for attenuation were used to calculate specific binding in the striatum, with the cerebellum used as background [(STR-BKG)/BKG]. Data were compared with an age-matched control group. It was found that untreated patients presented with a significantly increased specific binding of [{sup 99m}Tc]TRODAT-1 to the DAT as compared with normal controls [(STR-BKG)/BKG: 1.43{+-}0.18 vs 1.22{+-}0.06, P<0.001]. Under treatment with methylphenidate, specific binding decreased significantly in all patients [(STR-BKG)/BKG: 1.00{+-}0.14, P<0.001]. Our findings suggest that the number of DAT binding sites is higher in drug-naive patients suffering from ADHD than in normal controls. The decrease in available DAT binding sites under treatment with methylphenidate correlates well with the improvement in clinical symptoms. The data of this study help to elucidate the complex dysregulation of the dopaminergic neurotransmitter system in patients suffering from ADHD and the effect of treatment with psychoactive drugs. (orig.)

  10. Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment

    International Nuclear Information System (INIS)

    Involvement of the dopaminergic system has been suggested in patients suffering from attention deficit hyperactivity disorder (ADHD) since the symptoms can be successfully treated with methylphenidate, a potent blocker of the dopamine transporter (DAT). This study reports the findings on the status of the DAT in adults with ADHD before and after commencement of treatment with methylphenidate, as measured using [99mTc]TRODAT-1. Seventeen patients (seven males, ten females, aged 21-64 years, mean 38 years) were examined before and after the initiation of methylphenidate treatment (3 x 5 mg/day). All subjects were injected with 800 MBq [99mTc]TRODAT-1 and imaged 3 h p.i. Single-photon emission tomography (SPET) scans were acquired using a triple-headed gamma camera. For semi-quantitative evaluation of the DAT, transverse slices corrected for attenuation were used to calculate specific binding in the striatum, with the cerebellum used as background [(STR-BKG)/BKG]. Data were compared with an age-matched control group. It was found that untreated patients presented with a significantly increased specific binding of [99mTc]TRODAT-1 to the DAT as compared with normal controls [(STR-BKG)/BKG: 1.43±0.18 vs 1.22±0.06, P<0.001]. Under treatment with methylphenidate, specific binding decreased significantly in all patients [(STR-BKG)/BKG: 1.00±0.14, P<0.001]. Our findings suggest that the number of DAT binding sites is higher in drug-naive patients suffering from ADHD than in normal controls. The decrease in available DAT binding sites under treatment with methylphenidate correlates well with the improvement in clinical symptoms. The data of this study help to elucidate the complex dysregulation of the dopaminergic neurotransmitter system in patients suffering from ADHD and the effect of treatment with psychoactive drugs. (orig.)

  11. Sugar Binding Residue Affects Apparent Na+ Affinity and Transport Stoichiometry in Mouse Sodium/Glucose Cotransporter Type 3B*

    OpenAIRE

    Díez-Sampedro, Ana; Barcelona, Stephanie

    2010-01-01

    SGLT1 is a sodium/glucose cotransporter that moves two Na+ ions with each glucose molecule per cycle. SGLT3 proteins belong to the same family and are described as glucose sensors rather than glucose transporters. Thus, human SGLT3 (hSGLT3) does not transport sugar, but extracellular glucose depolarizes the cell in which it is expressed. Mouse SGLT3b (mSGLT3b), although it transports sugar, has low apparent sugar affinity and partially uncoupled stoichiometry compared with SGLT1, suggesting t...

  12. Binding Model and 3D-QSAR of 3-(2-Chloropyrid-5-ylmethylamino)-2-cyanoacrylates as PSⅡ Electron Transport Inhibitor

    Institute of Scientific and Technical Information of China (English)

    HAN,Xiao-Feng; LIU,Yu-Xiu; LIU,Ying; LAI,Lu-Hua; HUANG,Run-Qiu; WANG,Qing-Min

    2007-01-01

    The binding model of 3-(2-chloropyrid-5-ylmethylamino)-2-cyanoacrylate photosystem Ⅱ (PSⅡ) electron transport inhibitors with the D1 protein of PSⅡ was built. The high herbicidal activity of this kind of inhibitors was explained by docking studies: in addition to usual factors, the N atom on the pyridine ring could form an H-bond with the backbone amide of Phe265 on the D1 protein. 3D-QSAR analysis on sixteen 3-(2-chloropyrid-5-ylmethylamino)-2-cyanoacrylate compounds was performed using CoMFA method to explain the nature of interactions between the compounds and D1 protein. These studies may provide useful insights for designing new PSⅡ electron transport inhibitors.

  13. Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis.

    Science.gov (United States)

    Goldman, B S; Beckman, D L; Bali, A; Monika, E M; Gabbert, K K; Kranz, R G

    1997-05-16

    The helABC genes are predicted to encode an ATP-binding cassette (ABC) transporter necessary for heme export for ligation in bacterial cytochrome c biogenesis. The recent discoveries of homologs of the helB and helC genes in plant mitochondrial genomes suggest this is a highly conserved transporter in prokaryotes and some eukaryotes with the HelB and HelC proteins comprising the transmembrane components. Molecular genetic analysis in the Gram-negative bacterium Rhodobacter capsulatus was used to show that the helABC and helDX genes are part of an operon linked to the secDF genes. To facilitate analysis of this transporter, strains with non-polar deletions in each gene, epitope and reporter-tagged HelABCD proteins, and antisera specific to the HelA and HelX proteins were generated. We directly demonstrate that this transporter is present in the cytoplasmic membrane as an HelABCD complex. The HelB and HelC but not HelD proteins are necessary for the binding and stability of the HelA protein, the cytoplasmic subunit containing the ATP-binding region. In addition we show that the HelA protein co-immunoprecipitates with either the HelC or HelD proteins. Thus, the HelABCD heme export complex is distinguished by the presence of four membrane-associated subunits and represents a unique subfamily of ABC transporters. PMID:9175857

  14. NCBI nr-aa BLAST: CBRC-TTRU-01-0272 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0272 ref|ZP_03055167.1| cyclodextrin ... ABC superfamily ATP binding cassette transport ... rotein [Bacillus pumilus ATCC 7061] gb|EDW21594.1| cyclodextrin ... ABC superfamily ATP binding cassette transporter, ...

  15. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...... occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions....... Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in...

  16. The S-enantiomer of R,S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors

    DEFF Research Database (Denmark)

    Chen, Fenghua; Larsen, Mads Breum; Sánchez, Connie;

    2005-01-01

    The interaction of the S- and R-enantiomers (escitalopram and R-citalopram) of citalopram, with high- and low-affinity binding sites in COS-1 cell membranes expressing human SERT (hSERT) were investigated. Escitalopram affinity for hSERT and its 5-HT uptake inhibitory potency was in the nanomolar...... range and approximately 40-fold more potent than R-citalopram. Escitalopram considerably stabilised the [3H]-escitalopram/SERT complex via an allosteric effect at a low-affinity binding site. The stereoselectivity between escitalopram and R-citalopram was approximately 3:1 for the [3H]-escitalopram....../hSERT complex. The combined effect of escitalopram and R-citalopram was additive. Paroxetine and sertraline mainly stabilised the [3H]-paroxetine/hSERT complex. Fluoxetine, duloxetine and venlafaxine have only minor effects. 5-HT stabilised the [125I]-RTI-55, [3H]-MADAM, [3H]-paroxetine, [3H]-fluoxetine and [3H...

  17. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    Science.gov (United States)

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins. PMID:24891160

  18. The ABCs of Candida albicans Multidrug Transporter Cdr1.

    Science.gov (United States)

    Prasad, Rajendra; Banerjee, Atanu; Khandelwal, Nitesh Kumar; Dhamgaye, Sanjiveeni

    2015-12-01

    In the light of multidrug resistance (MDR) among pathogenic microbes and cancer cells, membrane transporters have gained profound clinical significance. Chemotherapeutic failure, by far, has been attributed mainly to the robust and diverse array of these proteins, which are omnipresent in every stratum of the living world. Candida albicans, one of the major fungal pathogens affecting immunocompromised patients, also develops MDR during the course of chemotherapy. The pivotal membrane transporters that C. albicans has exploited as one of the strategies to develop MDR belongs to either the ATP binding cassette (ABC) or the major facilitator superfamily (MFS) class of proteins. The ABC transporter Candida drug resistance 1 protein (Cdr1p) is a major player among these transporters that enables the pathogen to outplay the battery of antifungals encountered by it. The promiscuous Cdr1 protein fulfills the quintessential need of a model to study molecular mechanisms of multidrug transporter regulation and structure-function analyses of asymmetric ABC transporters. In this review, we cover the highlights of two decades of research on Cdr1p that has provided a platform to study its structure-function relationships and regulatory circuitry for a better understanding of MDR not only in yeast but also in other organisms. PMID:26407965

  19. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel

    OpenAIRE

    Tsai, Ming-Feng; Li, Min; Hwang, Tzyh-Chang

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, is an ATP-gated chloride channel. Like other ABC proteins, CFTR encompasses two nucleotide binding domains (NBDs), NBD1 and NBD2, each accommodating an ATP binding site. It is generally accepted that CFTR’s opening–closing cycles, each completed within 1 s, are driven by rapid ATP binding and hydrolysis events in NBD2. Here, by recording CFTR currents in...

  20. Influence of Serotonin Transporter Gene Polymorphism (5-HTTLPR Polymorphism) on the Relation between Brain 5-HT Transporter Binding and Heart Rate Corrected Cardiac Repolarization Interval

    OpenAIRE

    Kauppila, Esa; Vanninen, Esko; Kaurijoki, Salla; Karhunen, Leila; Pietiläinen, Kirsi H.; Rissanen, Aila; Tiihonen, Jari; Pesonen, Ullamari; Kaprio, Jaakko

    2013-01-01

    Objective Serotonin transporter gene polymorphism (5-HTTLPR polymorphism) predicts the degree of structural and functional connectivity in the brain, and less consistently the degree of vulnerability for anxiety and depressive disorders. It is less known how 5-HTTLPR polymorphism influences on the coupling between brain and neuronal cardiovascular control. The present study demonstrates the impact of 5-HTTLPR polymorphism on the relations between heart rate (HR) corrected cardiac repolarizati...

  1. Relationship between clinical features of Parkinson`s disease and presynaptic dopamine transporter binding assessed with [{sup 123}I]IPT and single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tatsch, K. [Department of Nuclear Medicine, University of Munich (Germany); Schwarz, J. [Department of Neurology, University of Munich (Germany); Mozley, P.D. [Department of Radiology, University of Pennsylvania (United States)]|[Department of Psychiatry, University of Pennsylvania (United States); Linke, R. [Department of Nuclear Medicine, University of Munich (Germany); Pogarell, O. [Department of Neurology, University of Munich (Germany); Oertel, W.H. [Department of Neurology, University of Munich (Germany); Fieber, R.S. [Department of Nuclear Medicine, University of Munich (Germany); Hahn, K. [Department of Nuclear Medicine, University of Munich (Germany); Kung, H.F. [Department of Radiology, University of Pennsylvania (United States)

    1997-04-01

    IPT [N-(3-iodopropen-2-yl)-2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl) tropane] is a new cocain analogue which allows the presynaptic dopamine transporters to be imaged with single-photon emission tomography (SPET) as early as 1-2 h post injection. In the present study [{sup 123}I]IPT SPET was performed in patients with Parkinson`s disease (PD) to analyse the relationship between specific dopamine tansporter binding and clinical features of the disease. Twenty-six PD patients (Hoehn and Yahr stages I-IV, age range 40-79 years) and eight age-matched controls were studied. SPET imaging was performed 90-120 min after injection of 160-185 MBq [{sup 123}I]IPT using a triple-head camera. For semiquantitative evaluation of specific [{sup 123}I]IPT binding, ratios between caudate, putamen and background regions were calculated. Specific [{sup 123}I]IPT uptake was significantly reduced in PD patients compared to controls. Most patients showed a marked asymmetry with a more pronounced decrease in [{sup 123}I]IPT binding on the side contralateral to the predominant clinical findings. The putamen was always more affected than the caudate. [{sup 123}I]IPT binding was significantly correlated with disease duration (r=-0.7, P<0.0001) but not with the age of PD patients (r=-0.10, P=0.61). Specific [{sup 123}I]IPT uptake in the caudate and putamen, and putamen to caudate ratios, decreased with increasing Hoehn and Yahr stage. (orig./AJ). With 2 figs., 2 tabs.

  2. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Zhu, Xinna; Long, Fei; Chen, Yonghui;

    2008-01-01

    Listeria monocytogenes may persist for long periods in food processing environments. In some instances, this may be due to aggregation or biofilm formation. To investigate the mechanism controlling biofilm formation in the food-borne pathogen L. monocytogenes, we characterized LM-49, a mutant with...... enhanced ability of biofilm-formation generated via transposon Tn917 mutagenesis of L. monocytogenes 4b G. In this mutant, a Tn917 insertion has disrupted the coding region of the gene encoding a putative ATP binding cassette (ABC) transporter permease identical to Lmof2365_1771 (a putative ABC......-transporter permease) presented in the sequenced strain L. monocytogenes str. 4b F2365. This disrupted gene, denoted lm.G_1771, encoded a protein with 10 transmembrane helixes. The revertant, LM-49RE, was obtained by replacing lm.G_1771::Tn917 with lm.G_1771 via homologous recombination. We found that LM-49RE formed...

  3. Transport inhibition of digoxin using several common P-gp expressing cell lines is not necessarily reporting only on inhibitor binding to P-gp.

    Directory of Open Access Journals (Sweden)

    Annie Albin Lumen

    Full Text Available We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918 to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health, Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown. These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1 bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin's cellular uptake; (2 partition into the basolateral membrane and directly reduce membrane permeability; (3 aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while

  4. Development of a full-size divertor cassette prototype for ITER

    International Nuclear Information System (INIS)

    Production of a full-size divertor cassette for the International Thermonuclear Experimental Reactor (ITER) involves eight major components. All of the components are mounted on the cassette body. Inner divertor channel components for both the vertical target and the gas box design are being provided by the Japan Home Team. Outer divertor channel components for the vertical target design are being provided by the European and United States Home Teams. Gas box liners are being provided by the Russian Home Team. The full-size components manufactured by the four parties will be shipped to the US Home Team for assembly into a full-size divertor cassette. The techniques for assembly and maintenance for the cassette will be demonstrated during this process. The assembled cassette will be tested for proper flow distribution and proof of the filling and draining procedures. The testing will include vacuum leak, cyclic heating to 150 deg. C, and verification of dimensional accuracy of the assembled components. The development of the divertor for ITER depends on successful R and D efforts on materials, joining and plasma-materials interactions. Results of the development program are presented. The scale-up of the process developed in the basic R and D tasks is accomplished by producing medium and full-scale mock-ups and testing them at high heat flux. The design of these mock-ups is discussed. (author). 18 refs, 3 figs

  5. Development of a full-size divertor cassette prototype for ITER

    International Nuclear Information System (INIS)

    Production of a full-size divertor cassette involves eight major components. All of the components are mounted on the cassette body. Inner divertor channel components for the vertical target design are being provided by the Japan Home Team. Outer divertor channel components for the vertical target design are being provided by the European and United States Home Teams. Gas box liners are being provided by the Russian Home Team. The full-size components manufactured by the four parties will be shipped to the US Home Team for assembly into a full size divertor cassette. The techniques for assembly and maintenance of the cassette will be demonstrated during this process. The assembled cassette will be tested for proper flow distribution and proof of the filling and draining procedures. The testing will include vacuum leak tightness at full temperature and pressure, cyclic heating to 150 degrees C, verification of dimensional accuracy of the assembled components, and application of thermal gradients to measure dimensional stability. The development of the divertor for the International Thermonuclear Experimental Reactor (ITER) depends on successful R ampersand D efforts on materials, joining, and plasma materials interactions. Results of the development program are presented. The scale-up of the processes developed in the basic research and development tasks is accomplished by producing and high-heat-flux testing medium and full-scale mock- ups. The design of the mock-ups is discussed

  6. Functionally Relevant Residues of Cdr1p: A Multidrug ABC Transporter of Human Pathogenic Candida albicans

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2011-01-01

    Full Text Available Reduced intracellular accumulation of drugs (due to rapid efflux mediated by the efflux pump proteins belonging to ABC (ATP Binding Cassette and MFS (Major Facilitators superfamily is one of the most common strategies adopted by multidrug resistance (MDR pathogenic yeasts. To combat MDR, it is essential to understand the structure and function of these transporters so that inhibitors/modulators to these can be developed. The sequence alignments of the ABC transporters reveal selective divergence within much conserved domains of Nucleotide-Binding Domains (NBDs which is unique to all fungal transporters. Recently, the role of conserved but divergent residues of Candida Drug Resistance 1 (CDR1, an ABC drug transporter of human pathogenic Candida albicans, has been examined with regard to ATP binding and hydrolysis. In this paper, we focus on some of the recent advances on the relevance of divergent and conserved amino acids of CaCdr1p and also discuss as to how drug interacts with Trans Membrane Domains (TMDs residues for its extrusion from MDR cells.

  7. The brain serotonin transporter binding in young adults; methodological considerations and association with Bulimia Nervosa and acquired obesity

    OpenAIRE

    Koskela, Anu

    2008-01-01

    The neurotransmitter serotonin (5-HT) modulates many functions important for life, e.g., appetite and body temperature, and controls development of the neural system. Disturbed 5-HT function has been implicated in mood, anxiety and eating disorders. The serotonin transporter (SERT) controls the amount of effective 5-HT by removing it from the extracellular space. Radionuclide imaging methods single photon emission tomography (SPET) and positron emission tomography (PET) enable studies on the ...

  8. SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT. Binding kinetics in the human brain

    International Nuclear Information System (INIS)

    Single photon emission computerized tomography (SPECT) studies in non-human primates have previously shown that the cocaine derivative [123I]-2-β-carbomethoxy-3-β-(4-iodophenyl)-tropane ([123I]β-CIT) labels dopamine transporters in the striatum and serotonin transporters in the hypothalamus-midbrain area. Here, we report on the regional kinetic uptake of [123I]β-CIT in the brain of 4 normal volunteers and 2 patients with Parkinson's disease. In healthy subjects striatal activity increased slowly to reach peak values at about 20 hours post injection. In the hypothalamus-midbrain area peak activities were observed at about 4 hours with a slow decrease thereafter. Low activity was observed in cortical and cerebellar areas. The striatal to cerebellar ratio was about 4 after 5 hours and 9 after 20 hours. In 2 patients with idiopathic Parkinson's disease striatal activity was markedly decreased while the activity in hypothalamus-midbrain areas was only diminished. Uptake into cortical and cerebellar areas appeared to be unchanged in Parkinson's disease. Consequently, in Parkinson's disease the striatal to cerebellar ratio was decreased to values around 2.5 after 20 hours. These preliminary methodological studies suggest that [123I]β-CIT is a useful SPECT ligand for studying dopamine and possibly also serotonin transporters in the living human brain

  9. NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al.

    Science.gov (United States)

    Wu, Q; Stewart, V

    1998-03-01

    Klebsiella oxytoca can use nitrate and nitrite as sole nitrogen sources. The enzymes required for nitrate and nitrite assimilation are encoded by the nasFEDCBA operon. We report here the complete nasFED sequence. Sequence comparisons indicate that the nasFED genes encode components of a conventional periplasmic binding protein-dependent transport system consisting of a periplasmic binding protein (NasF), a homodimeric intrinsic membrane protein (NasE), and a homodimeric ATP-binding cassette (ABC) protein (NasD). The NasF protein and the related NrtA and CmpA proteins of cyanobacteria contain leader (signal) sequences with the double-arginine motif that is hypothesized to direct prefolded proteins to an alternate protein export pathway. The NasE protein and the related NrtB and CmpB proteins of cyanobacteria contain unusual variants of the EAA loop sequence that defines membrane-intrinsic proteins of ABC transporters. To characterize nitrate and nitrite transport, we constructed in-frame nonpolar deletions of the chromosomal nasFED genes. Growth tests coupled with nitrate and nitrite uptake assays revealed that the nasFED genes are essential for nitrate transport and participate in nitrite transport as well. Interestingly, the delta nasF strain exhibited leaky phenotypes, particularly at elevated nitrate concentrations, suggesting that the NasED proteins are not fully dependent on the NasF protein. PMID:9495773

  10. Antitubercular Agent Delamanid and Metabolites as Substrates and Inhibitors of ABC and Solute Carrier Transporters.

    Science.gov (United States)

    Sasabe, Hiroyuki; Shimokawa, Yoshihiko; Shibata, Masakazu; Hashizume, Kenta; Hamasako, Yusuke; Ohzone, Yoshihiro; Kashiyama, Eiji; Umehara, Ken

    2016-06-01

    Delamanid (Deltyba, OPC-67683) is the first approved drug in a novel class of nitro-dihydro-imidazooxazoles developed for the treatment of multidrug-resistant tuberculosis. Patients with tuberculosis require treatment with multiple drugs, several of which have known drug-drug interactions. Transporters regulate drug absorption, distribution, and excretion; therefore, the inhibition of transport by one agent may alter the pharmacokinetics of another, leading to unexpected adverse events. Therefore, it is important to understand how delamanid affects transport activity. In the present study, the potencies of delamanid and its main metabolites as the substrates and inhibitors of various transporters were evaluated in vitro Delamanid was not transported by the efflux ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), solute carrier (SLC) transporters, organic anion-transporting polypeptides, or organic cation transporter 1. Similarly, metabolite 1 (M1) was not a substrate for any of these transporters except P-gp. Delamanid showed no inhibitory effect on ABC transporters MDR1, BCRP, and bile salt export pump (BSEP; ABCB11), SLC transporters, or organic anion transporters. M1 and M2 inhibited P-gp- and BCRP-mediated transport but did so only at the 50% inhibitory concentrations (M1, 4.65 and 5.71 μmol/liter, respectively; M2, 7.80 and 6.02 μmol/liter, respectively), well above the corresponding maximum concentration in plasma values observed following the administration of multiple doses in clinical trials. M3 and M4 did not affect the activities of any of the transporters tested. These in vitro data suggest that delamanid is unlikely to have clinically relevant interactions with drugs for which absorption and disposition are mediated by this group of transporters. PMID:27021329

  11. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Larsen, Morten K; Tuck, Simon; Færgeman, Nils J.;

    2006-01-01

    The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydro......The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted......-CoA in vitro and that this ligand-binding ability is important for its function in vivo. Our results are consistent with a role for MAA-1 in an acyl-CoA-dependent process during vesicle formation....

  12. Studies on the binding and transport processes of americium-241 hydroxide polymers in rat lung and bovine alveolar macrophages

    International Nuclear Information System (INIS)

    The binding of Am-241 hydroxide polymers to the cell components of rat lung was investigated using differential centrifugation, density gradient centrifugation with different media, gel chromatography, free flow electrophoresis and electron microscopic autoradiography with Pu-241. The bovine alveolar macrophage cultures were introduced as an in vitro test system for Am-241 uptake. Form the biochemical and electron microscopic studies it can be concluded that Am-241 is taken up by pulmonary macrophages, where its first storage site is probably the lysosome. Then the Am-241 seems to be solubilized in the lysosomes and to be bound to the cytosolic ferritin of macrophages. Am-241 might be released from the cells and crosses the alveolar membranes as bound to transferrin or as low molecular weight form. (orig.)

  13. Effects of atrial and brain natriuretic peptides upon cyclic GMP levels, potassium transport, and receptor binding in rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, K.; Tan, P.K. (Univ. of California, San Diego, La Jolla (USA))

    1990-02-01

    The ability of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) to alter cyclic GMP levels and NaKCl cotransport in rat neocortical astrocytes was determined. At concentrations of 10(-9)-10(-6) M, rat ANP99-126 (rANF), rat ANP102-126 (auriculin B), and rat ANP103-126 (atriopeptin III) stimulated 6- to 100-fold increases in cyclic GMP levels. Porcine BNP (pBNP) and rat BNP (rBNP) were 20%-90% as effective as rANF over most of this concentration range, although 10(-6) M pBNP produced a greater effect than rANF. NaKCl cotransport as measured by bumetanide-sensitive 86Rb+ influx was not altered by exposure of astrocytes to 10(-6)M rANF, pBNP, or rBNP. Both pBNP and rBNP, as well as rat ANP103-123 (atriopeptin I) and des(gl18, ser19, gly20, leu21, gly22) ANF4-23-NH2 (C-ANF4-23) strongly competed for specific 125I-rANF binding sites in astrocyte membranes with affinities ranging from 0.03 to 0.4 nM, suggesting that virtually all binding sites measured at subnanomolar concentrations of 125I-rANF were of the ANP-C (ANF-R2) receptor subtype. These receptors are thought to serve a clearance function and may be linked to a guanylate cyclase activity that is chemically and pharmacologically distinct from that coupled to ANP-A (ANF-R1) receptors. ANP receptors on astrocytes may function in limiting the access of ANP and BNP to neurons involved in body fluid and cardiovascular regulation.

  14. Effects of atrial and brain natriuretic peptides upon cyclic GMP levels, potassium transport, and receptor binding in rat astrocytes

    International Nuclear Information System (INIS)

    The ability of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) to alter cyclic GMP levels and NaKCl cotransport in rat neocortical astrocytes was determined. At concentrations of 10(-9)-10(-6) M, rat ANP99-126 (rANF), rat ANP102-126 (auriculin B), and rat ANP103-126 (atriopeptin III) stimulated 6- to 100-fold increases in cyclic GMP levels. Porcine BNP (pBNP) and rat BNP (rBNP) were 20%-90% as effective as rANF over most of this concentration range, although 10(-6) M pBNP produced a greater effect than rANF. NaKCl cotransport as measured by bumetanide-sensitive 86Rb+ influx was not altered by exposure of astrocytes to 10(-6)M rANF, pBNP, or rBNP. Both pBNP and rBNP, as well as rat ANP103-123 (atriopeptin I) and des[gl18, ser19, gly20, leu21, gly22] ANF4-23-NH2 (C-ANF4-23) strongly competed for specific 125I-rANF binding sites in astrocyte membranes with affinities ranging from 0.03 to 0.4 nM, suggesting that virtually all binding sites measured at subnanomolar concentrations of 125I-rANF were of the ANP-C (ANF-R2) receptor subtype. These receptors are thought to serve a clearance function and may be linked to a guanylate cyclase activity that is chemically and pharmacologically distinct from that coupled to ANP-A (ANF-R1) receptors. ANP receptors on astrocytes may function in limiting the access of ANP and BNP to neurons involved in body fluid and cardiovascular regulation

  15. Integrones y cassettes genéticos de resistencia: estructura y rol frente a los antibacterianos Integrons and resistance gene cassettes: structure and role against antimicrobials

    OpenAIRE

    Gerardo González R; Sergio Mella M; Raúl Zemelman Z; Helia Bello T; Mariana Domínguez Y

    2004-01-01

    Bacteria have developed sophisticated and successful genetic mechanisms to evade the action of antimicrobials. Bacterial multiresistance has caused serious problems in the treatment of nosocomial infections. Integrons and gene cassettes are considered the main genetic elements in the evolution of plasmids and transposons that actively participate in the mobilization of genes, codifying different bacterial resistance mechanisms. This article reviews the historical and structural aspects of int...

  16. Interplay of metabolizing enzymes and transporter of xenobiotics.

    Science.gov (United States)

    Lim, Hwee Ying; Ho, Qin Shi; Wong, Kim Ping

    2016-01-01

    1. Xenobiotics are metabolized and eliminated through the coordinated interplay of their metabolizing enzymes and transporters. However, these two activities in vitro are measured separately, with the addition of ATP as a pre-requisite. 2. We propose a human renal cell-line model which integrates the sulfate and glutathione conjugation of xenobiotics with the efflux of their respective conjugates. Sulfation and glutathionylation represent two major Phase II detoxification of xenobiotics in man. The reactions are catalyzed, respectively, by phenolsulfotransferase and glutathione-S-transferase followed by extrusion of their respective conjugates. 3. Using Ko-143, a specific inhibitor of breast cancer resistance protein (BCRP), an ATP-binding cassette (ABC) transporter, we identified this transporter to be responsible for the efflux of p-cresol sulfate, harmol sulfate and the glutathione conjugate of 1-chloro-2,4-dinitrobenzene. 4. The conjugation-cum-efflux was inhibited by oligomycin and uncouplers, which highlights the role of cellular mitochondria in providing ATP for the biosynthesis of their conjugating agents, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) and reduced glutathione as well as for the transport function of BCRP. 5. The human 786-O renal cell-line provides a "3-in-1" system linking ATP biosynthesis to metabolism of xenobiotics and their ultimate transport and elimination by BCRP; this integrated system was not apparent in other human cell-lines examined. PMID:26226519

  17. Expression of heterologous genes from an IRES translational cassette in replication competent murine leukemia virus vectors

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Duch, Mogens R.; Carrasco, M L;

    1999-01-01

    of neo or the enhanced green fluorescence protein gene (EGFP). Akv-MLV's with IRES-neo and IRES-EGFP cassettes replicated with titers of about 10(6) infectious units/ml while SL3-3-MLV with IRES-neo gave about 10(3)-fold lower titers. Interestingly, RNA analysis showed a drastic reduction in the amount...... of spliced env mRNA for the SL3-3 derived vector relative to the Akv derived vectors, seemingly contributing to its low replication capacity. The EGFP expressing Akv-MLV was genetically stable for multiple rounds of infection; marker-cassette deletion revertants appeared after several replication rounds...

  18. The capsid protein of beak and feather disease virus binds to the viral DNA and is responsible for transporting the replication-associated protein into the nucleus.

    Science.gov (United States)

    Heath, Livio; Williamson, Anna-Lise; Rybicki, Edward P

    2006-07-01

    Circoviruses lack an autonomous DNA polymerase and are dependent on the replication machinery of the host cell for de novo DNA synthesis. Accordingly, the viral DNA needs to cross both the plasma membrane and the nuclear envelope before replication can occur. Here we report on the subcellular distribution of the beak and feather disease virus (BFDV) capsid protein (CP) and replication-associated protein (Rep) expressed via recombinant baculoviruses in an insect cell system and test the hypothesis that the CP is responsible for transporting the viral genome, as well as Rep, across the nuclear envelope. The intracellular localization of the BFDV CP was found to be directed by three partially overlapping bipartite nuclear localization signals (NLSs) situated between residues 16 and 56 at the N terminus of the protein. Moreover, a DNA binding region was also mapped to the N terminus of the protein and falls within the region containing the three putative NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. Interestingly, whereas Rep expressed on its own in insect cells is restricted to the cytoplasm, coexpression with CP alters the subcellular localization of Rep to the nucleus, strongly suggesting that an interaction with CP facilitates movement of Rep into the nucleus. PMID:16809327

  19. Ferrocenyl 2,5-Piperazinediones as Tubulin-Binding Organometallic ABCB1 and ABCG2 Inhibitors Active against MDR Cells.

    Science.gov (United States)

    Wieczorek, Anna; Błauż, Andrzej; Zakrzewski, Janusz; Rychlik, Błażej; Plażuk, Damian

    2016-06-01

    The tubulin-microtubule system is a common target of many anticancer drugs. However, the use of chemotherapeutics frequently leads to the development of a clinically relevant phenomenon of multidrug resistance (MDR). One of the basic mechanisms involved in MDR involves elevated expression and/or activity of several ATP-binding cassette superfamily members (ABC transporters) which are normally responsible for the efflux of xenobiotics or secondary metabolites outside the cell. Here we present the synthesis and biological characteristics of ferrocenyl analogues of plinabulin, i.e. one of the so-called "spindle poisons". We found that replacement of the phenyl group of plinabulin by the ferrocenyl moiety turns this compound into a potent inhibitor of ABCB1 and ABCG2, thus making it possible to overcome the multidrug resistance phenomenon. We also demonstrated that the alkyl group attached to the imidazole moiety of ferrocenyl analogues of plinabulin strongly affects their potency to inhibit tubulin polymerization. PMID:27326336

  20. Ligand binding analyses of the putative peptide transporter YjdL from E. coli display a significant selectivity towards dipeptides

    International Nuclear Information System (INIS)

    Proton-dependent oligopeptide transporters (POTs) are secondary active transporters that couple the inwards translocation of di- and tripeptides to inwards proton translocation. Escherichia coli contains four genes encoding the putative POT proteins YhiP, YdgR, YjdL and YbgH. We have over-expressed the previously uncharacterized YjdL and investigated the peptide specificity by means of uptake inhibition. The IC50 value for the dipeptide Ala-Ala was measured to 22 mM while Ala-Ala-Ala was not able to inhibit uptake. In addition, IC50 values of 0.3 mM and 1.5 mM were observed for Ala-Lys and Tyr-Ala, respectively, while the alanyl-extended tripeptides Ala-Lys-Ala, Ala-Ala-Lys, Ala-Tyr-Ala and Tyr-Ala-Ala displayed values of 8, >50, 31 and 31 mM, respectively. These results clearly indicate that unlike most POT members characterized to date, including YdgR and YhiP, YjdL shows significantly higher specificity towards dipeptides.

  1. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    International Nuclear Information System (INIS)

    Highlights: ► We truncated the signal peptide of OppATTE0054 to make it express in Escherichia coli as a soluble protein. ► Crystals of OppATTE0054 were grown by sitting-drop vapor diffusion method. ► The crystal of OppATTE0054 diffracted to 2.25 Å. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS–PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 Å. The crystal belonged to space group C2221, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 Å, and α = β = γ = 90°.

  2. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinlan; Li, Xiaolu [State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People' s Republic of China (China); Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People' s Republic of China (China); Feng, Yue; Zhang, Bo [Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People' s Republic of China (China); Miao, Shiying [State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People' s Republic of China (China); Wang, Linfang, E-mail: lfwangz@yahoo.com [State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People' s Republic of China (China); Wang, Na, E-mail: nawang@tsinghua.edu.cn [Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People' s Republic of China (China)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .

  3. Mobility gaps in disordered graphene-based materials: an ab initio -based tight-binding approach to mesoscopic transport

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Blanca [Dpto. Electronica y Tecnologia de Computadores, Facultad de Ciencias, and CITIC, Universidad de Granada (Spain); Cresti, Alessandro; Triozon, Francois [CEA, LETI, MINATEC, Grenoble (France); Avriller, Remi [Departamento de Fysica Teorica de la Materia Condensada C-V, Facultad de Ciencias, Universidad Autonoma de Madrid (Spain); Dubois, Simon; Charlier, Jean-Christophe [PCPM and ETSF, Universit' e Catholique de Louvain (Belgium); Lopez-Bezanilla, Alejandro [CEA, INAC, SPSMS, Grenoble (France); Blase, X. [Institut N' eel, CNRS et Universit' e Joseph Fourier, Grenoble (France); Roche, Stephan [CIN2 (CSIC-ICN), Campus UAB, Barcelona (Spain); CEA, INAC, SP2M, Grenoble (France)

    2010-11-15

    As is common knowledge, armchair graphene nanoribbons (aGNRs) share many electronic features with carbon nanotubes (CNTs). Nevertheless, crucial differences emerge when disorder comes into play. It is thus instructive, both from a theoretical and a technological perspective, to analyze the impact of possible types of disorder on the transport properties of these graphene-based materials. Here we report such a comparative study between CNTs and GNRs, which points out the similarities and differences emerging as a consequence of doping by substitutional boron and nitrogen impurities. The role of edge defects (absent in CNTs) is also contrasted with chemical doping disorder. All disorder models have been derived from accurate ab initio calculations of the electronic structures (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Maternal-fetal immunoglobulin transport: Studies on the binding, internalization, and release of IgG by chick yolk sac tissue and cultured cells

    International Nuclear Information System (INIS)

    Immunoglobulin G (IgG) is transported from the yolk across the endodermal cells of the yolk sac and into the fetal circulation during chick embryonic development, thus providing the chick with passive immunity until it becomes immunocompetent. Saturable, Fc-specific receptors are present on the endodermal cells and are believed to mediate this transfer. In this study, IgG receptors were shown to be present on the yolk sac endodermal cells throughout the 21 days of development, although most of the transport occurs during the last 3 days prior to hatching. Fluorescently conjugated IgG was internalized by a receptor mechanism into small apical vesicles in yolk sac endoderm throughout, but cells from 19 day yolk sacs internalized more conjugate than those from 14 day yolk sacs. This was confirmed and quantitated by assaying the internalization of 125I-IgG into yolk sac tissue. IgG was internalized by a receptor mediated mechanism, reaching a steady state level after 1 to 2 hours. Although both ages of yolk sac tissue possessed the same number of surface IgG receptors, as measured by equilibrium binding assays at 4 degree C, 19 day yolk sac had the capacity to internalize six times as much IgG by a receptor mechanism as 14 day yolk sac

  5. TupA: A Tungstate Binding Protein in the Periplasm of Desulfovibrio alaskensis G20

    Directory of Open Access Journals (Sweden)

    Ana Rita Otrelo-Cardoso

    2014-07-01

    Full Text Available The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component. We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234 was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC expression vector, and the construct was used to transform BL21 (DE3 cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P21 space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, β = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement.

  6. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy.

    Science.gov (United States)

    Díaz, Paula; Harris, Jessica; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-12-15

    Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver. PMID:26491104

  7. Rat MHC-linked peptide transporter alleles strongly influence peptide binding by HLA-B27 but not B27-associated inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, W.A.; Satumtira, Nimman; Taurog, J.D. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States)] [and others

    1996-02-15

    Rats transgenic for the human MHC molecule HLA-B27 were used to study the effect of two alleles, cim{sup a} and cim{sup b}, which are associated with peptide transport by the MHC-encoded Tap2 transporter, on the function of HLA-B27 as a restriction element for CTL recognition of the male H-Y minor H Ag and on the multisystem inflammatory disease characteristic of B27 transgenic rats. Anti-H-Y CTL generated in cim{sup a} B27 transgenic rats lysed male B27 cim{sup b/b} targets significantly less well than cim{sup a/a} or cim{sup a/b} targets. Addition of exogenous H-Y peptides to male B27 cim{sup b/b} targets increased susceptibility to lysis to the level of cim{sup a/a} targets sensitized with exogenous H-Y peptides. {sup 3}H-labeled peptides eluted from B27 molecules of lymphoblasts from rats of two cim{sup b} and three cim{sup a} RT1 haplotypes showed that the cim{sup b} peptide pool favors comparatively longer and/or more hydrophobic peptides. These results indicate that RT1-linked Tap2 polymorphism in the rat strongly influences peptide loading of HLA-B27. Nonetheless, the prevalence and severity of multisystem inflammatory lesions were comparable in backcross rats bearing either cim{sup a/b} or cim{sup b/b}. It thus appears either that binding of specific peptides to B27 is unimportant in the pathogenesis of B27-associated disease or that the critical peptides, unlike H-Y and many others, are not influenced by Tap transporter polymorphism. 42 refs., 6 figs., 3 tabs.

  8. 21 CFR 892.1880 - Wall-mounted radiographic cassette holder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wall-mounted radiographic cassette holder. 892.1880 Section 892.1880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1880...

  9. Film cassette for quality assurance of dental X-ray tubes

    International Nuclear Information System (INIS)

    In this brief technical note, the authors describe a film cassette to enable routine quality assurance checks of equipment to be made by dental staff without the use of an ion chamber. The film is sent to the Physics Department of Guys Hospital, London, for processing and densitometric analysis. (UK)

  10. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    Science.gov (United States)

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources. PMID:26780375

  11. Stacking multiple transgenes at a selected genomic site via repeated recombinase-mediated DNA cassette exchanges.

    Science.gov (United States)

    Li, Zhongsen; Moon, Bryan P; Xing, Aiqiu; Liu, Zhan-Bin; McCardell, Richard P; Damude, Howard G; Falco, S Carl

    2010-10-01

    Recombinase-mediated DNA cassette exchange (RMCE) has been successfully used to insert transgenes at previously characterized genomic sites in plants. Following the same strategy, groups of transgenes can be stacked to the same site through multiple rounds of RMCE. A gene-silencing cassette, designed to simultaneously silence soybean (Glycine max) genes fatty acid ω-6 desaturase 2 (FAD2) and acyl-acyl carrier protein thioesterase 2 (FATB) to improve oleic acid content, was first inserted by RMCE at a precharacterized genomic site in soybean. Selected transgenic events were subsequently retransformed with the second DNA construct containing a Yarrowia lipolytica diacylglycerol acyltransferase gene (DGAT1) to increase oil content by the enhancement of triacylglycerol biosynthesis and three other genes, a Corynebacterium glutamicum dihydrodipicolinate synthetase gene (DHPS), a barley (Hordeum vulgare) high-lysine protein gene (BHL8), and a truncated soybean cysteine synthase gene (CGS), to improve the contents of the essential amino acids lysine and methionine. Molecular characterization confirmed that the second RMCE successfully stacked the four overexpression cassettes to the previously integrated FAD2-FATB gene-silencing cassette. Phenotypic analyses indicated that all the transgenes expressed expected phenotypes. PMID:20720171

  12. Identification of a novel streptococcal gene cassette mediating SOS mutagenesis in Streptococcus uberis

    NARCIS (Netherlands)

    Varhimo, Emilia; Savijoki, Kirsi; Jalava, Jari; Kuipers, Oscar P.; Varmanen, Pekka

    2007-01-01

    Streptococci have been considered to lack the classical SOS response, defined by increased mutation after UV exposure and regulation by LexA. Here we report the identification of a potential self-regulated SOS mutagenesis gene cassette in the Streptococcaceae family. Exposure to UV light was found t

  13. Temperature variations around medication cassette and carry bag in routine use of epoprostenol administration in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Yuichi Tamura

    Full Text Available BACKGROUND: According to several treatment guidelines, epoprostenol is an important treatment option for pulmonary arterial hypertension. However, the pharmacokinetic characteristics and poor stability of epoprostenol at room temperature make its administration challenging. We therefore studied temperature fluctuations between the drug administration cassette and atmosphere to promote the safe use of epoprostenol. METHODS AND FINDINGS: Five healthy volunteers carried a portable intravenous infusion pump attached to a medication cassette containing saline in a bag during their ordinary activities over 16 days during which the mean atmospheric temperature was 29.6 ± 1.5°C. The temperature around the medication cassette was not less than 25°C on any occasion, and the mean period over 24 h during which the temperature around the cassette exceeded 35°C and 40°C was 96.9 ± 156.4 min and 24.4 ± 77.3 min, respectively. Significant correlations were observed between the temperatures outside the bag and around the cassette, as well as between temperatures around the cassette and of the saline solution in the cassette (r = 0.9258 and 0.8276, respectively. There were no differences in the temperatures outside the bag or around the cassette with respect to the bag material. CONCLUSIONS: Temperatures around a medication cassette and outside the bag containing the medication increase with sunlight exposure. The temperature around cassettes used for administering epoprostenol must therefore be kept low for as long as possible during hot summer conditions to maintain the drug stability.

  14. Utilizing ARC EMCS Seedling Cassettes as Highly Versatile Miniature Growth Chambers for Model Organism Experiments

    Science.gov (United States)

    Freeman, John L.; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David; Reinsch, S.; DeSimone, Julia C.; Myers, Zachary A.

    2014-01-01

    The aim of our ground testing was to demonstrate the capability of safely putting specific model organisms into dehydrated stasis, and to later rehydrate and successfully grow them inside flight proven ARC EMCS seedling cassettes. The ARC EMCS seedling cassettes were originally developed to support seedling growth during space flight. The seeds are attached to a solid substrate, launched dry, and then rehydrated in a small volume of media on orbit to initiate the experiment. We hypothesized that the same seedling cassettes should be capable of acting as culture chambers for a wide range of organisms with minimal or no modification. The ability to safely preserve live organisms in a dehydrated state allows for on orbit experiments to be conducted at the best time for crew operations and more importantly provides a tightly controlled physiologically relevant growth experiment with specific environmental parameters. Thus, we performed a series of ground tests that involved growing the organisms, preparing them for dehydration on gridded Polyether Sulfone (PES) membranes, dry storage at ambient temperatures for varying periods of time, followed by rehydration. Inside the culture cassettes, the PES membranes were mounted above blotters containing dehydrated growth media. These were mounted on stainless steel bases and sealed with plastic covers that have permeable membrane covered ports for gas exchange. The results showed we were able to demonstrate acceptable normal growth of C.elegans (nematodes), E.coli (bacteria), S.cerevisiae (yeast), Polytrichum (moss) spores and protonemata, C.thalictroides (fern), D.discoideum (amoeba), and H.dujardini (tardigrades). All organisms showed acceptable growth and rehydration in both petri dishes and culture cassettes initially, and after various time lengths of dehydration. At the end of on orbit ISS European Modular Cultivation System experiments the cassettes could be frozen at ultra-low temperatures, refrigerated, or chemically

  15. Sulfate-binding protein, CysP, is a candidate vaccine antigen of Moraxella catarrhalis.

    Science.gov (United States)

    Murphy, Timothy F; Kirkham, Charmaine; Johnson, Antoinette; Brauer, Aimee L; Koszelak-Rosenblum, Mary; Malkowski, Michael G

    2016-07-19

    Moraxella catarrhalis causes otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD). A vaccine to prevent M. catarrhalis infections would have an enormous impact globally in preventing morbidity caused by M. catarrhalis in these populations. Using a genome mining approach we have identified a sulfate binding protein, CysP, of an ATP binding cassette (ABC) transporter system as a novel candidate vaccine antigen. CysP expresses epitopes on the bacterial surface and is highly conserved among strains. Immunization with CysP induces potentially protective immune responses in a murine pulmonary clearance model. In view of these features that indicate CysP is a promising vaccine antigen, we conducted further studies to elucidate its function. These studies demonstrated that CysP binds sulfate and thiosulfate ions, plays a nutritional role for the organism and functions in intracellular survival of M. catarrhalis in human respiratory epithelial cells. The observations that CysP has features of a vaccine antigen and also plays an important role in growth and survival of the organism indicate that CysP is an excellent candidate vaccine antigen to prevent M. catarrhalis otitis media and infections in adults with COPD. PMID:27265455

  16. [Role of ABC efflux transporters in the oral bioavailability and drug-induced intestinal toxicity].

    Science.gov (United States)

    Yokooji, Tomoharu

    2013-01-01

    The gastrointestinal tract is the organ that absorbs nutrients and water from foods and drinks. This organ is often exposed to various harmful xenobiotics, and therefore possesses various detoxification/barrier systems, including metabolizing enzymes and efflux transporters. Intestinal epithelial cells express ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein, in addition to various solute carrier (SLC) influx transporters. These transporters are expressed site- and membrane-specifically in enterocytes, which affects the bioavailability of ingested substrate drugs. Expression and/or function of transporters can be modulated by various compounds, including therapeutic drugs, herbal products, some foods, and by disease states. The modulation of transporters could cause unexpectedly higher or lower blood concentrations, marked inter- and intra-individual variations in pharmacokinetics, and unreliable pharmacological actions in association with toxicities of substrates. Recently, we found that hyperbilirubinemia, which occurs in some disease states, increased intestinal accumulation and toxicity of methotrexate, an MRP substrate, because of the suppression of MRP function by high plasma concentrations of conjugated bilirubin. We also attempted to ameliorate the intestinal toxicity of irinotecan hydrochloride by modulating the hepatic and intestinal functions of MRP2. This review summarizes our findings regarding the role of ABC transporters, especially MRPs, in oral bioavailability and in drug-induced intestinal toxicity. Our approach to treat intestinal toxicity using an MRP2 modulator is also described. PMID:23811769

  17. Genetic organisation of the capsule transport gene region from Haemophilus paragallinarum

    Directory of Open Access Journals (Sweden)

    O. De Smidt

    2004-11-01

    Full Text Available The region involved in export of the capsule polysaccharides to the cell surface of Haemophilus paragallinarum was cloned and the genetic organisation determined. Degenerate primers designed from sequence alignment of the capsule transport genes of Haemophilus influenzae, Pasteurella multocida and Actinobacillus pleuropneumoniae were used to amplify a 2.6 kb fragment containing a segment of the H. paragallinarum capsule transport gene locus. This fragment was used as a digoxigenin labelled probe to isolate the complete H. paragallinarum capsule transport gene locus from genomic DNA. The sequence of the cloned DNA was determined and analysis revealed the presence of four genes, each showing high homology with known capsule transport genes. The four genes were designated hctA, B, C and D (for H. paragallinarum capsule transport genes and the predicted products of these genes likely encode an ATP-dependent export system responsible for transport of the capsule polysaccharides to the cell surface, possibly a member of a super family designated ABC (ATP-binding cassette transporters.

  18. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  19. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    Science.gov (United States)

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-06-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO. PMID:26554512

  20. Evaluating the accuracy of technicians and pharmacists in checking unit dose medication cassettes.

    Science.gov (United States)

    Ambrose, Peter J; Saya, Frank G; Lovett, Larry T; Tan, Sandy; Adams, Dale W; Shane, Rita

    2002-06-15

    The accuracy rates of board-registered pharmacy technicians and pharmacists in checking unit dose medication cassettes in the inpatient setting at two separate institutions were examined. Cedars-Sinai Medical Center and Long Beach Memorial Medical Center, both in Los Angeles county, petitioned the California State Board of Pharmacy to approve a waiver of the California Code of Regulations to conduct an experimental program to compare the accuracy of unit dose medication cassettes checked by pharmacists with that of cassettes checked by trained, certified pharmacy technicians. The study consisted of three parts: assessing pharmacist baseline checking accuracy (Phase I), developing a technician-training program and certifying technicians who completed the didactic and practical training (Phase II), and evaluating the accuracy of certified technicians checking unit dose medication cassettes as a daily function (Phase III). Twenty-nine pharmacists and 41 technicians (3 of whom were pharmacy interns) participated in the study. Of the technicians, all 41 successfully completed the didactic and practical training, 39 successfully completed the audits and became certified checkers, and 2 (including 1 of the interns) did not complete the certification audits because they were reassigned to another work area or had resigned. In Phase II, the observed accuracy rate and its lower confidence limit exceeded the predetermined minimum requirement of 99.8% for a certified checker. The mean accuracy rates for technicians were identical at the two institutions (p = 1.0). The difference in mean accuracy rates between pharmacists (99.52%; 95% confidence interval [CI] 99.44-99.58%) and technicians, (99.89%; 95% CI 99.87-99.90%) was significant (p medication cassettes filled by other technicians. PMID:12073859

  1. Ground Testing of the EMCS Seed Cassette for Biocompatibility with the Cellular Slime Mold, Dictyostelium Discoideum

    Science.gov (United States)

    Hanely, Julia C.; Reinsch, Sigrid; Myers, Zachary A.; Freeman, John; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David G.

    2014-01-01

    The European Modular Cultivation System, EMCS, was developed by ESA for plant experiments. To expand the use of flight verified hardware for various model organisms, we performed ground experiments to determine whether ARC EMCS Seed Cassettes could be adapted for use with cellular slime mold for future space flight experiments. Dictyostelium is a cellular slime mold that can exist both as a single-celled independent organism and as a part of a multicellular colony which functions as a unit (pseudoplasmodium). Under certain stress conditions, individual amoebae will aggregate to form multicellular structures. Developmental pathways are very similar to those found in Eukaryotic organisms, making this a uniquely interesting organism for use in genetic studies. Dictyostelium has been used as a genetic model organism for prior space flight experiments. Due to the formation of spores that are resistant to unfavorable conditions such as desiccation, Dictyostelium is also a good candidate for use in the EMCS Seed Cassettes. The growth substratum in the cassettes is a gridded polyether sulfone (PES) membrane. A blotter beneath the PES membranes contains dried growth medium. The goals of this study were to (1) verify that Dictyostelium are capable of normal growth and development on PES membranes, (2) develop a method for dehydration of Dictyostelium spores with successful recovery and development after rehydration, and (3) successful mock rehydration experiments in cassettes. Our results show normal developmental progression in two strains of Dictyostelium discoideum on PES membranes with a bacterial food source. We have successfully performed a mock rehydration of spores with developmental progression from aggregation to slug formation, and production of morphologically normal spores within 9 days of rehydration. Our results indicate that experiments on the ISS using the slime mold, Dictyostelium discoideum could potentially be performed in the flight verified hardware of

  2. Functional importance of different patterns of correlation between adjacent cassette exons in human and mouse

    Directory of Open Access Journals (Sweden)

    Zhang Xuegong

    2008-04-01

    Full Text Available Abstract Background Alternative splicing expands transcriptome diversity and plays an important role in regulation of gene expression. Previous studies focus on the regulation of a single cassette exon, but recent experiments indicate that multiple cassette exons within a gene may interact with each other. This interaction can increase the potential to generate various transcripts and adds an extra layer of complexity to gene regulation. Several cases of exon interaction have been discovered. However, the extent to which the cassette exons coordinate with each other remains unknown. Results Based on EST data, we employed a metric of correlation coefficients to describe the interaction between two adjacent cassette exons and then categorized these exon pairs into three different groups by their interaction (correlation patterns. Sequence analysis demonstrates that strongly-correlated groups are more conserved and contain a higher proportion of pairs with reading frame preservation in a combinatorial manner. Multiple genome comparison further indicates that different groups of correlated pairs have different evolutionary courses: (1 The vast majority of positively-correlated pairs are old, (2 most of the weakly-correlated pairs are relatively young, and (3 negatively-correlated pairs are a mixture of old and young events. Conclusion We performed a large-scale analysis of interactions between adjacent cassette exons. Compared with weakly-correlated pairs, the strongly-correlated pairs, including both the positively and negatively correlated ones, show more evidence that they are under delicate splicing control and tend to be functionally important. Additionally, the positively-correlated pairs bear strong resemblance to constitutive exons, which suggests that they may evolve from ancient constitutive exons, while negatively and weakly correlated pairs are more likely to contain newly emerging exons.

  3. Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Mette Burmølle

    Full Text Available Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids into a laboratory strain (Escherichia coli Genehogs® for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54 and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33 were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer.

  4. Novel regulation of equlibrative nucleoside transporter 1 (ENT1) by receptor-stimulated Ca2+-dependent calmodulin binding.

    Science.gov (United States)

    Bicket, Alex; Mehrabi, Pedram; Naydenova, Zlatina; Wong, Victoria; Donaldson, Logan; Stagljar, Igor; Coe, Imogen R

    2016-05-15

    Equilibrative nucleoside transporters (ENTs) facilitate the flux of nucleosides, such as adenosine, and nucleoside analog (NA) drugs across cell membranes. A correlation between adenosine flux and calcium-dependent signaling has been previously reported; however, the mechanistic basis of these observations is not known. Here we report the identification of the calcium signaling transducer calmodulin (CaM) as an ENT1-interacting protein, via a conserved classic 1-5-10 motif in ENT1. Calcium-dependent human ENT1-CaM protein interactions were confirmed in human cell lines (HEK293, RT4, U-87 MG) using biochemical assays (HEK293) and the functional assays (HEK293, RT4), which confirmed modified nucleoside uptake that occurred in the presence of pharmacological manipulations of calcium levels and CaM function. Nucleoside and NA drug uptake was significantly decreased (∼12% and ∼39%, respectively) by chelating calcium (EGTA, 50 μM; BAPTA-AM, 25 μM), whereas increasing intracellular calcium (thapsigargin, 1.5 μM) led to increased nucleoside uptake (∼26%). Activation of N-methyl-d-aspartate (NMDA) receptors (in U-87 MG) by glutamate (1 mM) and glycine (100 μM) significantly increased nucleoside uptake (∼38%) except in the presence of the NMDA receptor antagonist, MK-801 (50 μM), or CaM antagonist, W7 (50 μM). These data support the existence of a previously unidentified novel receptor-dependent regulatory mechanism, whereby intracellular calcium modulates nucleoside and NA drug uptake via CaM-dependent interaction of ENT1. These findings suggest that ENT1 is regulated via receptor-dependent calcium-linked pathways resulting in an alteration of purine flux, which may modulate purinergic signaling and influence NA drug efficacy. PMID:27009875

  5. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes.

    Science.gov (United States)

    Igarashi, Kazuei; Kashiwagi, Keiko

    2010-07-01

    Polyamine content in cells is regulated by biosynthesis, degradation and transport. In Escherichia coli, there are two polyamine uptake systems, namely spermidine-preferential (PotABCD) and putrescine-specific (PotFGHI), which belong to the family of ATP binding cassette transporters. Putrescine-ornithine and cadaverine-lysine antiporters, PotE and CadB, each consisting of 12 transmembrane segments, are important for cell growth at acidic pH. Spermidine excretion protein (MdtJI) was also recently identified. When putrescine was used as energy source, PuuP functioned as a putrescine transporter. In Saccharomyces cerevisiae, there are four kinds of polyamine uptake proteins (DUR3, SAM3, GAP1 and AGP2), consisting of either 12 or 16 transmembrane segments. Among them, DUR3 and SAM3 mostly contribute to polyamine uptake. There are also five kinds of polyamine excretion proteins (TPO1-5), consisting of 12 transmembrane segments. Among them, TPO1 and TPO5 are the most active proteins. Since a polyamine metabolizing enzyme, spermidine/spermine N(1)-acetyltransferase, is not present in yeast, five kinds of excretion proteins may exist. The current status of polyamine transport in mammalian and plant cells are reviewed. PMID:20159658

  6. Design and synthesis of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile (citalopram) analogues as novel probes for the serotonin transporter S1 and S2 binding sites

    DEFF Research Database (Denmark)

    Banala, Ashwini K; Zhang, Peng; Plenge, Per;

    2013-01-01

    The serotonin transporter (SERT) is the primary target for antidepressant drugs. The existence of a high affinity primary orthosteric binding site (S1) and a low affinity secondary site (S2) has been described, and their relation to antidepressant pharmacology has been debated. Herein, structural...

  7. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water.

    Science.gov (United States)

    Matsuo, Aline Y O; Wood, Chris M; Val, Adalberto L

    2005-09-30

    Metal toxicity in fish is expected to be most severe in soft waters because of the low availability of cations (particularly Ca(2+)) to out-compete the metal forms for binding sites on the gills. Natural waters in the Amazon basin are typically soft due to regional geochemistry, but few studies have focused on metal toxicity in fish native to the basin. We assessed the ionoregulatory effects of waterborne copper (Cu) and cadmium (Cd) on tambaqui (Colossoma macropomum) in extremely soft water (10 micromoll(-1) Ca(2+)). Tambaqui had a very high tolerance to Cu (50-400 microgl(-1)), as indicated by a complete lack of inhibition of Na(+) uptake and an ability to gradually recover over 6h from elevated diffusive Na(+) losses caused by Cu. The insensitivity of active Na(+) influx to Cu further supports the notion that Amazonian fish may have a unique Na(+) transport system. Addition of 5-10 mgCl(-1) of dissolved organic matter (DOM) did not prevent initial (0-3h) negative Na(+) balance in tambaqui exposed to Cu. Exposure to 40 mgCl(-1) DOM prevented Na(+) losses in tambaqui even at 400 microgl(-1) Cu, probably because most Cu was complexed to DOM. Tambaqui exposed to waterborne Cd (10-80 microgl(-1)) experienced an average of 42% inhibition in whole body Ca(2+) uptake relative to controls within 3h of exposure to the metal. Inhibition of Ca(2+) uptake increased over time and, at 24h, Ca(2+) uptake was suppressed by 51% and 91% in fish exposed to 10 and 80 microgl(-1) Cd, respectively. Previous acclimation of fish to either elevated [Ca(2+)] or elevated [DOM] proved to be very effective in protecting against acute short-term metal accumulation at the gills of tambaqui in soft water (in the absence of the protective agent during metal exposure), suggesting a conditioning effect on gill metal binding physiology. PMID:16051381

  8. Serotonin transporter binding with [{sup 123}I]{beta}-CIT SPECT in major depressive disorder versus controls: effect of season and gender

    Energy Technology Data Exchange (ETDEWEB)

    Ruhe, Henricus G. [University of Amsterdam, Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, Amsterdam (Netherlands); Academic Medical Center, Department of Psychiatry, P.O. Box 22660, Amsterdam (Netherlands); Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Reitsma, Johannes B. [University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam (Netherlands); Schene, Aart H. [University of Amsterdam, Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, Amsterdam (Netherlands)

    2009-05-15

    The serotonin system is undoubtedly involved in the pathogenesis of major depressive disorder (MDD). More specifically the serotonin transporter (SERT) serves as a major target for antidepressant drugs. There are conflicting results about SERT availability in depressed patients versus healthy controls. We aimed to measure SERT availability and study the effects of age, gender and season of scanning in MDD patients in comparison to healthy controls. We included 49 depressed outpatients (mean{+-}SD 42.3 {+-} 8.3 years) with a Hamilton depression rating scale score above 18, who were drug-naive or drug-free for {>=}4 weeks, and 49 healthy controls matched for age ({+-}2 years) and sex. Subjects were scanned with single photon emission computed tomography (SPECT) using [{sup 123}I]{beta}-CIT. SERT availability was expressed as specific to nonspecific binding ratios (BP{sub ND}) in the midbrain and diencephalon with cerebellar binding as a reference. In crude comparisons between patients and controls, we found no significant differences in midbrain or diencephalon SERT availability. In subgroup analyses, depressed males had numerically lower midbrain SERT availability than controls, whereas among women SERT availability was not different (significant diagnosis x gender interaction; p = 0.048). In the diencephalon we found a comparable diagnosis x gender interaction (p = 0.002) and an additional smoking x gender (p = 0.036) interaction. In the midbrain the season of scanning showed a significant main effect (p = 0.018) with higher SERT availability in winter. Differences in SERT availability in the midbrain and diencephalon in MDD patients compared with healthy subjects are affected by gender. The season of scanning is a covariate in the midbrain. The diagnosis x gender and gender x smoking interactions in SERT availability should be considered in future studies of the pathogenesis of MDD. (orig.)

  9. Serotonin transporter binding with [123I]β-CIT SPECT in major depressive disorder versus controls: effect of season and gender

    International Nuclear Information System (INIS)

    The serotonin system is undoubtedly involved in the pathogenesis of major depressive disorder (MDD). More specifically the serotonin transporter (SERT) serves as a major target for antidepressant drugs. There are conflicting results about SERT availability in depressed patients versus healthy controls. We aimed to measure SERT availability and study the effects of age, gender and season of scanning in MDD patients in comparison to healthy controls. We included 49 depressed outpatients (mean±SD 42.3 ± 8.3 years) with a Hamilton depression rating scale score above 18, who were drug-naive or drug-free for ≥4 weeks, and 49 healthy controls matched for age (±2 years) and sex. Subjects were scanned with single photon emission computed tomography (SPECT) using [123I]β-CIT. SERT availability was expressed as specific to nonspecific binding ratios (BPND) in the midbrain and diencephalon with cerebellar binding as a reference. In crude comparisons between patients and controls, we found no significant differences in midbrain or diencephalon SERT availability. In subgroup analyses, depressed males had numerically lower midbrain SERT availability than controls, whereas among women SERT availability was not different (significant diagnosis x gender interaction; p = 0.048). In the diencephalon we found a comparable diagnosis x gender interaction (p = 0.002) and an additional smoking x gender (p = 0.036) interaction. In the midbrain the season of scanning showed a significant main effect (p = 0.018) with higher SERT availability in winter. Differences in SERT availability in the midbrain and diencephalon in MDD patients compared with healthy subjects are affected by gender. The season of scanning is a covariate in the midbrain. The diagnosis x gender and gender x smoking interactions in SERT availability should be considered in future studies of the pathogenesis of MDD. (orig.)

  10. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model [v1; ref status: indexed, http://f1000r.es/41n

    Directory of Open Access Journals (Sweden)

    Sergi Vaquer

    2014-08-01

    Full Text Available Abstract Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay® (Solvo Biotechnology, Hungary was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2 trans-membrane estradiol-17-β-glucuronide (E17βG transport activity, when activated by adenosine-tri-phosphate (ATP during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology

  11. Substrate-specific effects of pirinixic acid derivatives on ABCB1-mediated drug transport.

    Science.gov (United States)

    Michaelis, Martin; Rothweiler, Florian; Wurglics, Mario; Aniceto, Natália; Dittrich, Michaela; Zettl, Heiko; Wiese, Michael; Wass, Mark; Ghafourian, Taravat; Schubert-Zsilavecz, Manfred; Cinatl, Jindrich

    2016-03-01

    Pirinixic acid derivatives, a new class of drug candidates for a range of diseases, interfere with targets including PPARα, PPARγ, 5-lipoxygenase (5-LO), and microsomal prostaglandin and E2 synthase-1 (mPGES1). Since 5-LO, mPGES1, PPARα, and PPARγ represent potential anti-cancer drug targets, we here investigated the effects of 39 pirinixic acid derivatives on prostate cancer (PC-3) and neuroblastoma (UKF-NB-3) cell viability and, subsequently, the effects of selected compounds on drug-resistant neuroblastoma cells. Few compounds affected cancer cell viability in low micromolar concentrations but there was no correlation between the anti-cancer effects and the effects on 5-LO, mPGES1, PPARα, or PPARγ. Most strikingly, pirinixic acid derivatives interfered with drug transport by the ATP-binding cassette (ABC) transporter ABCB1 in a drug-specific fashion. LP117, the compound that exerted the strongest effect on ABCB1, interfered in the investigated concentrations of up to 2μM with the ABCB1-mediated transport of vincristine, vinorelbine, actinomycin D, paclitaxel, and calcein-AM but not of doxorubicin, rhodamine 123, or JC-1. In silico docking studies identified differences in the interaction profiles of the investigated ABCB1 substrates with the known ABCB1 binding sites that may explain the substrate-specific effects of LP117. Thus, pirinixic acid derivatives may offer potential as drug-specific modulators of ABCB1-mediated drug transport. PMID:26887049

  12. Diversity of gene cassettes and the abundance of the class 1 integron-integrase gene in sediment polluted by metals.

    Science.gov (United States)

    Oliveira-Pinto, Clarisse; Costa, Patrícia S; Reis, Mariana P; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2016-05-01

    The integron-gene cassette system has typically been associated with antibiotic-resistant pathogens. However, the diversity of gene cassettes and the abundance of class 1 integrons outside of the clinical context are not fully explored. Primers targeting the conserved segments of attC recombination sites were used to amplify gene cassettes from the sediment of the Mina stream, which exhibited a higher degree of stress to metal pollution in the dry season than the rainy season. Of the 143 total analyzed sequences, 101 had no matches to proteins in the database, where cassette open reading frames could be identified by homology with database entries. There was a predominance of sequences encoding essential cellular functions. Each season that was sampled yielded a specific pool of gene cassettes. Real-time PCR revealed that 8.5 and 41.6 % of bacterial cells potentially harbored a class 1 integron in the rainy and dry seasons, respectively. In summary, our findings demonstrate that most of the gene cassettes have no ascribable function and, apparently, historically metal-contaminated sediment favors the maintenance of bacteria containing the intI1 gene. Thus, the diversity of gene cassettes is far from being fully explored deserving further attention. PMID:26961777

  13. Role of ABCB1, ABCG2, ABCC2 and ABCC5 transporters in placental passage of zidovudine.

    Science.gov (United States)

    Neumanova, Zuzana; Cerveny, Lukas; Ceckova, Martina; Staud, Frantisek

    2016-01-01

    Zidovudine (AZT) is one of the most frequently used antiretroviral drugs in prevention of perinatal transmission of HIV. However, safety concerns on AZT use in pregnancy still persist as severe side effects are associated with AZT exposure in children. In our study we aimed to contribute to current knowledge on AZT transplacental transport and to evaluate potential involvement of the main human drug efflux ATP-binding cassette (ABC) transporters, p-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2) and multidrug resistance-associated proteins 2 and 5 (ABCC2 and ABCC5) in the disposition of AZT between mother and fetus. In order to elucidate this issue we investigated the effect of selected ABC transporters on AZT transepithelial transport across MDCKII cell monolayers. In addition we used the in situ method of dually perfused rat term placenta to further study the role of ABC transporters in AZT transplacental transport. In vitro studies revealed significant effect of ABCB1 and ABCG2 on AZT transport which was subsequently confirmed also on organ level. Lamivudine, an antiretroviral agent commonly co-administered with AZT, did not affect ABC transporter-mediated AZT transfer. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26390406

  14. Pro Isomerization in MLL1 PHD3-Bromo Cassette Connects H3K4me Readout to CyP33 and HDAC-Mediated Repression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhanxin; Song, Jikui; Milne, Thomas A.; Wang, Gang G.; Li, Haitao; Allis, C. David; Patel, Dinshaw J. (MSKCC); (Rockefeller)

    2010-09-13

    The MLL1 gene is a frequent target for recurrent chromosomal translocations, resulting in transformation of hematopoietic precursors into leukemia stem cells. Here, we report on structure-function studies that elucidate molecular events in MLL1 binding of histone H3K4me3/2 marks and recruitment of the cyclophilin CyP33. CyP33 contains a PPIase and a RRM domain and regulates MLL1 function through HDAC recruitment. We find that the PPIase domain of CyP33 regulates the conformation of MLL1 through proline isomerization within the PHD3-Bromo linker, thereby disrupting the PHD3-Bromo interface and facilitating binding of the MLL1-PHD3 domain to the CyP33-RRM domain. H3K4me3/2 and CyP33-RRM target different surfaces of MLL1-PHD3 and can bind simultaneously to form a ternary complex. Furthermore, the MLL1-CyP33 interaction is required for repression of HOXA9 and HOXC8 genes in vivo. Our results highlight the role of PHD3-Bromo cassette as a regulatory platform, orchestrating MLL1 binding of H3K4me3/2 marks and cyclophilin-mediated repression through HDAC recruitment.

  15. An Electrically Tight In Vitro Blood-Brain Barrier Model Displays Net Brain-to-Blood Efflux of Substrates for the ABC Transporters, P-gp, Bcrp and Mrp-1

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella;

    2014-01-01

    Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp's/Abcc's) are expressed in the blood-brain barrier (BBB). The aim of this study was to investigate if a......143, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp's and etoposide via P-gp and Mrp's. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at...... least one isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport....

  16. Transmembrane transporters ABCC – structure, function and role in multidrug resistance of cancer cells

    Directory of Open Access Journals (Sweden)

    Sylwia Dębska

    2011-08-01

    Full Text Available Resistance to cytotoxic drugs is a significant problem of systemic treatment of cancers. Apart from drug inactivation, changes in target enzymes and proteins, increased DNA repair and suppression of apoptosis, an important mechanism of resistance is an active drug efflux from cancer cells. Drug efflux across the cell membrane is caused by transport proteins such as ABC proteins (ATP-binding cassette. This review focuses on the ABCC protein subfamily, whose members are responsible for multidrug cross-resistance of cancer cells to cytotoxic agents. The authors discuss the structure of ABCC proteins, their physiological function and diseases provoked by mutations of respective genes, their expression in many different malignancies and its connection with resistance to anticancer drugs, as well as methods of reversion of such resistance.

  17. ABCA1基因启动子区-191G/C单核苷酸多态性在冠心病中的意义%Significance of - 191G/C single nucleotide polymorphisms in the promoter region of ATP-binding cassette transporter gene in coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    刘凌; 郭志刚; 王琦光; 刘胜林; 赖文岩; 屠燕

    2005-01-01

    目的研究ABCA1基因启动子区-191G/C单核苷酸多态性(SNP)对血脂的影响及其在冠心病中的意义.方法 用聚合酶链反应-限制性片段长度多态性法(PCR-RFLP)探讨204例冠心病患者和114例正常人的ABCA1基因启动子区-191位点G/C SNP在两组间、冠心病组不同临床表现型之间分布的差异及3种等位基因型与冠心病相关临床指标的关系.结果冠心病组与正常人组比较,3种等位基因型GG、GC、CC分布频率差异具有显著性,CC基因型在冠心病组中的分布频率明显高于正常人组(P<0.05),C等位基因在冠心病组中的分布频率明显高于正常人组(P<0.01).在稳定性心绞痛组(SAP)和急性冠脉综合征组(ACS),3种等位基因型GG、GC、CC分布频率差异也具有显著性,ACS组CC基因型明显高于SAP组(P<0.05),C等位基因在ACS组中分布频率明显高于SAP组(P<0.01).在冠心病组中,3种等位基因型间体重指数、总胆固醇、总甘油三脂、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇、极低密度脂蛋白胆固醇等临床指标的比较无显著性差异.结论 ABCA1基因启动子区-191G/C SNP在不影响中国冠心病人群血脂水平的情况下增加冠心病的发生,C等位基因与冠心病的稳定性相关.

  18. A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus.

    Science.gov (United States)

    Shulami, Smadar; Zaide, Galia; Zolotnitsky, Gennady; Langut, Yael; Feld, Geoff; Sonenshein, Abraham L; Shoham, Yuval

    2007-02-01

    Geobacillus stearothermophilus T-6 utilizes an extensive and highly regulated hemicellulolytic system. The genes comprising the xylanolytic system are clustered in a 39.7-kb chromosomal segment. This segment contains a 6-kb transcriptional unit (xynDCEFG) coding for a potential two-component system (xynDC) and an ATP-binding cassette (ABC) transport system (xynEFG). The xynD promoter region contains a 16-bp inverted repeat resembling the operator site for the xylose repressor, XylR. XylR was found to bind specifically to this sequence, and binding was efficiently prevented in vitro in the presence of xylose. The ABC transport system was shown to comprise an operon of three genes (xynEFG) that is transcribed from its own promoter. The nonphosphorylated fused response regulator, His6-XynC, bound to a 220-bp fragment corresponding to the xynE operator. DNase I footprinting analysis showed four protected zones that cover the -53 and the +34 regions and revealed direct repeat sequences of a GAAA-like motif. In vitro transcriptional assays and quantitative reverse transcription-PCR demonstrated that xynE transcription is activated 140-fold in the presence of 1.5 microM XynC. The His6-tagged sugar-binding lipoprotein (XynE) of the ABC transporter interacted with different xylosaccharides, as demonstrated by isothermal titration calorimetry. The change in the heat capacity of binding (DeltaCp) for XynE with xylotriose suggests a stacking interaction in the binding site that can be provided by a single Trp residue and a sugar moiety. Taken together, our data show that XynEFG constitutes an ABC transport system for xylo-oligosaccharides and that its transcription is negatively regulated by XylR and activated by the response regulator XynC, which is part of a two-component sensing system. PMID:17142383

  19. Export of recombinant proteins in Escherichia coli using ABC transporter with an attached lipase ABC transporter recognition domain (LARD

    Directory of Open Access Journals (Sweden)

    Moon Yuseok

    2009-01-01

    Full Text Available Abstract Background ATP binding cassette (ABC transporter secretes the protein through inner and outer membranes simultaneously in gram negative bacteria. Thermostable lipase (TliA of Pseudomonas fluorescens SIK W1 is secreted through the ABC transporter. TliA has four glycine-rich repeats (GGXGXD in its C-terminus, which appear in many ABC transporter-secreted proteins. From a homology model of TliA derived from the structure of P. aeruginosa alkaline protease (AprA, lipase ABC transporter domains (LARDs were designed for the secretion of fusion proteins. Results The LARDs included four glycine-rich repeats comprising a β-roll structure, and were added to the C-terminus of test proteins. Either Pro-Gly linker or Factor Xa site was added between fusion proteins and LARDs. We attached different length of LARDs such as LARD0, LARD1 or whole TliA (the longest LARD to three types of proteins; green fluorescent protein (GFP, epidermal growth factor (EGF and cytoplasmic transduction peptide (CTP. These fusion proteins were expressed in Escherichia coli together with ABC transporter of either P. fluorescens or Erwinia chrysanthemi. Export of fusion proteins with the whole TliA through the ABC transporter was evident on the basis of lipase enzymatic activity. Upon supplementation of E. coli with ABC transporter, GFP-LARDs and EGF-LARDs were excreted into the culture supernatant. Conclusion The LARDs or whole TliA were attached to C-termini of model proteins and enabled the export of the model proteins such as GFP and EGF in E. coli supplemented with ABC transporter. These results open the possibility for the extracellular production of recombinant proteins in Pseudomonas using LARDs or TliA as a C-terminal signal sequence.

  20. Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2015-12-01

    ABC (ATP-binding cassette) transporters are clinically important because drug pumps like P-glycoprotein (P-gp, ABCB1) confer multidrug resistance and mutant ABC proteins are responsible for many protein-folding diseases such as cystic fibrosis. Identification of the tariquidar-binding site has been the subject of intensive molecular modeling studies because it is the most potent inhibitor and corrector of P-gp. Tariquidar is a unique P-gp inhibitor because it locks the pump in a conformation that blocks drug efflux but activates ATPase activity. In silico docking studies have identified several potential tariquidar-binding sites. Here, we show through cross-linking studies that tariquidar most likely binds to sites within the transmembrane (TM) segments located in one wing or at the interface between the two wings (12 TM segments form 2 divergent wings). We then introduced arginine residues at all positions in the 12 TM segments (223 mutants) of P-gp. The rationale was that a charged residue in the drug-binding pocket would disrupt hydrophobic interaction with tariquidar and inhibit its ability to rescue processing mutants or stimulate ATPase activity. Arginines introduced at 30 positions significantly inhibited tariquidar rescue of a processing mutant and activation of ATPase activity. The results suggest that tariquidar binds to a site within the drug-binding pocket at the interface between the TM segments of both structural wings. Tariquidar differed from other drug substrates, however, as it stabilized the first TM domain. Stabilization of the first TM domain appears to be a key mechanism for high efficiency rescue of ABC processing mutants that cause disease. PMID:26507655

  1. A trial manufacture of cassette tape to standard MT data processing system controlled by microcomputer

    International Nuclear Information System (INIS)

    The data processing system controlled by a microcomputer has been developed for the purpose of data handling of cassette magnetic tape used as a recorder of pulse hight analyzer in market. This system has the following features; (1) This data acquisition system consists of a portable pulse hight analyzer and an audio-cassette magnetic tape recorder, which is low in price, light in weight and portable. (2) As the data processing part is composed by a microcomputer, one can easily deal with a different type of data code by a slight modification of a process program. (3) The processed output can be taken out to a standard 9 track 1600 BPI PE mode magnetic tape by a magnetic tape handler, and be available for a generally used bach-process computer. This report describes the hardware configuration and the process program in detail. Moreover, the operational manual, a sample operation and program lists are described in the appendix. (author)

  2. The linker region of breast cancer resistance protein ABCG2 is critical for coupling of ATP-dependent drug transport.

    Science.gov (United States)

    Macalou, S; Robey, R W; Jabor Gozzi, G; Shukla, S; Grosjean, I; Hegedus, T; Ambudkar, S V; Bates, S E; Di Pietro, A

    2016-05-01

    The ATP-binding cassette (ABC) transporters of class G display a different domain organisation than P-glycoprotein/ABCB1 and bacterial homologues with a nucleotide-binding domain preceding the transmembrane domain. The linker region connecting these domains is unique and its function and structure cannot be predicted. Sequence analysis revealed that the human ABCG2 linker contains a LSGGE sequence, homologous to the canonical C-motif/ABC signature present in all ABC nucleotide-binding domains. Predictions of disorder and of secondary structures indicated that this C2-sequence was highly mobile and located between an α-helix and a loop similarly to the C-motif. Point mutations of the two first residues of the C2-sequence fully abolished the transport-coupled ATPase activity, and led to the complete loss of cell resistance to mitoxantrone. The interaction with potent, selective and non-competitive, ABCG2 inhibitors was also significantly altered upon mutation. These results suggest an important mechanistic role for the C2-sequence of the ABCG2 linker region in ATP binding and/or hydrolysis coupled to drug efflux. PMID:26708291

  3. Integration of multiple expression cassettes into mammalian genomes in a single step

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Andrijana Kriz, Katharina Schmid, Kurt Ballmer & Philipp Berger ### Abstract The modification of mammalian cells by the expression of multiple genes is a crucial technology in modern biological research. MultiLabel allows the modular assembly of independent expression units in a single plasmid which can be used for transient and stable modification of cells. In contrast to other methods, the assembly of the expression cassettes does not require restriction enzymes since i...

  4. Identification of a Novel Cassette Array in Integronbearing Helicobacter Pylori Strains Isolated from Iranian Patients.

    Science.gov (United States)

    Goudarzi, Mehdi; Seyedjavadi, Sima Sadat; Fazeli, Maryam; Roshani, Maryam; Azad, Mehdi; Heidary, Mohsen; Navidinia, Masoumeh; Goudarzi, Hossein

    2016-01-01

    Helicobacter pylori as the second most common cause of gastric cancer in the world infects approximately half of the developed countries population and 80% of the population living in developing countries. Integrons as genetic reservoirs play major roles in dissemination of antimicrobial resistance genes. To the best of our knowledge, this is the first study to report carriage of class 1 and 2 integrons and associated gene cassettes in H. pylori isolates from Iran. This crosssectional study was conducted in Tehran among 110 patients with H. pylori infection. Antimicrobial susceptibility testing (AST) for H. pylori strains were assessed by the micro broth dilution method. Class 1 and 2 integrons were detected using PCR. In order to determine gene cassettes, amplified fragments were subjected to DNA sequencing of both amplicon strands. The prevalence of resistance to clarithromycin, metronidazole, clarithromycin, tetracycline, amoxicillin, rifampin, and levofloxacin were 68.2% (n=75), 25.5% (n=28), 24.5% (n=27), 19.1% (n=21), 18.2% (n=20) and 16.4% (n=18), respectively. Frequency of multidrug resistance among H. pylori isolates was 12.7%. Class 2 integron was detected in 50 (45.5%) and class 1 integron in 10 (9.1%) H. pylori isolates. The most predominant gene cassette arrays in class 2 integron bearing H. pylori were included sateraaadA1, dfrA1sat2aadA1, blaoxa2 and, aadB whereas common gene cassette arrays in class 1 integron were aadBaadA1cmlA6, aacA4, blaoxa2, and catB3. The high frequency of class 2 integron and multidrug resistance in the present study should be considered as a warning for clinicians that continuous surveillance is necessary to prevent the further spread of resistant isolates. PMID:27509968

  5. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    International Nuclear Information System (INIS)

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics

  6. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    Energy Technology Data Exchange (ETDEWEB)

    Feder, R.; Ellis, R.; Johnson, D.; Park, H.; Lee, H. G.

    2005-09-26

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics.

  7. Conservation of gene cassettes among diverse viruses of the human gut.

    Directory of Open Access Journals (Sweden)

    Samuel Minot

    Full Text Available Viruses are a crucial component of the human microbiome, but large population sizes, high sequence diversity, and high frequencies of novel genes have hindered genomic analysis by high-throughput sequencing. Here we investigate approaches to metagenomic assembly to probe genome structure in a sample of 5.6 Gb of gut viral DNA sequence from six individuals. Tests showed that a new pipeline based on DeBruijn graph assembly yielded longer contigs that were able to recruit more reads than the equivalent non-optimized, single-pass approach. To characterize gene content, the database of viral RefSeq proteins was compared to the assembled viral contigs, generating a bipartite graph with functional cassettes linking together viral contigs, which revealed a high degree of connectivity between diverse genomes involving multiple genes of the same functional class. In a second step, open reading frames were grouped by their co-occurrence on contigs in a database-independent manner, revealing conserved cassettes of co-oriented ORFs. These methods reveal that free-living bacteriophages, while usually dissimilar at the nucleotide level, often have significant similarity at the level of encoded amino acid motifs, gene order, and gene orientation. These findings thus connect contemporary metagenomic analysis with classical studies of bacteriophage genomic cassettes. Software is available at https://sourceforge.net/projects/optitdba/.

  8. Antimicrobial resistance, class 1 and 2 integrons and gene cassettes in avian Escherichia coli

    Directory of Open Access Journals (Sweden)

    Patrizia Robino

    2010-01-01

    Full Text Available Seventy-four Escherichia coli isolates were collected from domestic, synanthropic free living birds as well as wild and exotic birds, all living in captivity. Antimicrobial susceptibility was tested against a panel of 9 antibiotics, and presence of integrons (Class 1 and Class 2 and gene cassettes was analysed by PCR and sequencing, respectively. Twenty-eight isolates proved positive for Class 1 integrons and 19 for Class 2. Gene cassette arrangements were determined in 23 integron-positive isolates, which harboured one (aadA1 two (dfrA1-aadA1 or three (dfrA7-dfrA1-aadA1, dfrA1-sat1-aadA1 cassettes in their variable region. E. coli multiresistance to antimicrobials was observed in all groups examined, in particular domestic and synanthropic birds showed resistance to at least 4 antibiotics. A large number of isolates from domestic and synantropic birds proved to be Class 1 integron- positive, but unexpectedly, we observed many Class 2 integrons, usually considered less frequent.

  9. Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation.

    Science.gov (United States)

    Cheng, Yun-Qing; Yang, Jun; Xu, Feng-Ping; An, Li-Jia; Liu, Jian-Feng; Chen, Zhi-Wen

    2009-12-01

    A new method without any special devices for direct transformation of linear gene cassettes was developed. Its feasibility was verified through 5'-fluorescent dye (fluorescein isothiocyanate, FITC)-labeled fluorescent tracing and transient expression of a gus reporter gene. Minimal linear gene cassettes, containing necessary regulation elements and a gus reporter gene, was prepared by polymerase chain reaction and dissolved in transformation buffer solution to 100 ng/mL. The basic transformation solution used was Murashige and Skoog basal salt mixture (MS) liquid medium. Hypertonic pretreatment of explants and transformation cofactors, including Ca(2+), surfactant assistants, Agrobacterium LBA4404 cell culture on transformation efficiency were evaluated. Prior to the incubation of the explants and target linear cassette in each designed transformation solution for 3 h, the onion low epidermal explants were pre-cultured in darkness at 27 degrees C for 48 h and then transferred to MS solid media for 72 h. FITC-labeled linear DNA was used to trace the delivery of DNA entry into the cell and the nuclei. By GUS staining and flow-cytometry-mediated fluorescent detection, a significant increase of the ratios of fluorescent nuclei as well as expression of the gus reporter gene was observed by each designed transformation solution. This potent and feasible method showed prospective applications in plant transgenic research. PMID:19255730

  10. Molecular dynamics simulations of the bacterial ABC transporter SAV1866 in the closed form.

    Science.gov (United States)

    St-Pierre, Jean-François; Bunker, Alex; Róg, Tomasz; Karttunen, Mikko; Mousseau, Normand

    2012-03-01

    The ATP binding cassette (ABC) transporter family of proteins contains members involved in ATP-mediated import or export of ligands at the cell membrane. For the case of exporters, the translocation mechanism involves a large-scale conformational change that involves a clothespin-like motion from an inward-facing open state, able to bind ligands and adenosine triphosphate (ATP), to an outward-facing closed state. Our work focuses on SAV1866, a bacterial member of the ABC transporter family for which the structure is known for the closed state. To evaluate the ability of this protein to undergo conformational changes at physiological temperature, we first performed conventional molecular dynamics (MD) on the cocrystallized adenosine diphosphate (ADP)-bound structure and on a nucleotide-free structure. With this assessment of SAV1866's stability, conformational changes were induced by steered molecular dynamics (SMD), in which the nucleotide binding domains (NBD) were pushed apart, simulating the ATP hydrolysis energy expenditure. We found that the transmembrane domain is not easily perturbed by large-scale motions of the NBDs. PMID:22339391

  11. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    Science.gov (United States)

    Ernst, S.; Verhalen, B.; Zarrabi, N.; Wilkens, S.; Börsch, M.

    2011-03-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBDs undergo significant movements during catalysis. Duty cycle-optimized alternating laser excitation (DCO-ALEX) is applied to minimize FRET artifacts and to select the appropriate molecules. The data show that Pgp is a highly dynamic enzyme that appears to fluctuate between at least two major conformations during steady state turnover.

  12. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water

    International Nuclear Information System (INIS)

    Metal toxicity in fish is expected to be most severe in soft waters because of the low availability of cations (particularly Ca2+) to out-compete the metal forms for binding sites on the gills. Natural waters in the Amazon basin are typically soft due to regional geochemistry, but few studies have focused on metal toxicity in fish native to the basin. We assessed the ionoregulatory effects of waterborne copper (Cu) and cadmium (Cd) on tambaqui (Colossoma macropomum) in extremely soft water (10 μmol l-1 Ca2+). Tambaqui had a very high tolerance to Cu (50-400 μg l-1), as indicated by a complete lack of inhibition of Na+ uptake and an ability to gradually recover over 6 h from elevated diffusive Na+ losses caused by Cu. The insensitivity of active Na+ influx to Cu further supports the notion that Amazonian fish may have a unique Na+ transport system. Addition of 5-10 mg C l-1 of dissolved organic matter (DOM) did not prevent initial (0-3 h) negative Na+ balance in tambaqui exposed to Cu. Exposure to 40 mg C l-1 DOM prevented Na+ losses in tambaqui even at 400 μg l-1 Cu, probably because most Cu was complexed to DOM. Tambaqui exposed to waterborne Cd (10-80 μg l-1) experienced an average of 42% inhibition in whole body Ca2+ uptake relative to controls within 3 h of exposure to the metal. Inhibition of Ca2+ uptake increased over time and, at 24 h, Ca2+ uptake was suppressed by 51% and 91% in fish exposed to 10 and 80 μg l-1 Cd, respectively. Previous acclimation of fish to either elevated [Ca2+] or elevated [DOM] proved to be very effective in protecting against acute short-term metal accumulation at the gills of tambaqui in soft water (in the absence of the protective agent during metal exposure), suggesting a conditioning effect on gill metal binding physiology

  13. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Aline Y.O. [Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Av. Andre Araujo, 2936 Aleixo, Manaus, Amazonas 69083-000 (Brazil)]. E-mail: matsuoaline@aol.com; Wood, Chris M. [Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ont., L8S 4K1 (Canada); Val, Adalberto L. [Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Av. Andre Araujo, 2936 Aleixo, Manaus, Amazonas 69083-000 (Brazil)

    2005-09-30

    Metal toxicity in fish is expected to be most severe in soft waters because of the low availability of cations (particularly Ca{sup 2+}) to out-compete the metal forms for binding sites on the gills. Natural waters in the Amazon basin are typically soft due to regional geochemistry, but few studies have focused on metal toxicity in fish native to the basin. We assessed the ionoregulatory effects of waterborne copper (Cu) and cadmium (Cd) on tambaqui (Colossoma macropomum) in extremely soft water (10 {mu}mol l{sup -1} Ca{sup 2+}). Tambaqui had a very high tolerance to Cu (50-400 {mu}g l{sup -1}), as indicated by a complete lack of inhibition of Na{sup +} uptake and an ability to gradually recover over 6 h from elevated diffusive Na{sup +} losses caused by Cu. The insensitivity of active Na{sup +} influx to Cu further supports the notion that Amazonian fish may have a unique Na{sup +} transport system. Addition of 5-10 mg C l{sup -1} of dissolved organic matter (DOM) did not prevent initial (0-3 h) negative Na{sup +} balance in tambaqui exposed to Cu. Exposure to 40 mg C l{sup -1} DOM prevented Na{sup +} losses in tambaqui even at 400 {mu}g l{sup -1} Cu, probably because most Cu was complexed to DOM. Tambaqui exposed to waterborne Cd (10-80 {mu}g l{sup -1}) experienced an average of 42% inhibition in whole body Ca{sup 2+} uptake relative to controls within 3 h of exposure to the metal. Inhibition of Ca{sup 2+} uptake increased over time and, at 24 h, Ca{sup 2+} uptake was suppressed by 51% and 91% in fish exposed to 10 and 80 {mu}g l{sup -1} Cd, respectively. Previous acclimation of fish to either elevated [Ca{sup 2+}] or elevated [DOM] proved to be very effective in protecting against acute short-term metal accumulation at the gills of tambaqui in soft water (in the absence of the protective agent during metal exposure), suggesting a conditioning effect on gill metal binding physiology.

  14. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex.

    Science.gov (United States)

    Bondage, Devanand D; Lin, Jer-Sheng; Ma, Lay-Sun; Kuo, Chih-Horng; Lai, Erh-Min

    2016-07-01

    Type VI secretion system (T6SS) is a macromolecular machine used by many Gram-negative bacteria to inject effectors/toxins into eukaryotic hosts or prokaryotic competitors for survival and fitness. To date, our knowledge of the molecular determinants and mechanisms underlying the transport of these effectors remains limited. Here, we report that two T6SS encoded valine-glycine repeat protein G (VgrG) paralogs in Agrobacterium tumefaciens C58 specifically control the secretion and interbacterial competition activity of the type VI DNase toxins Tde1 and Tde2. Deletion and domain-swapping analysis identified that the C-terminal extension of VgrG1 specifically confers Tde1 secretion and Tde1-dependent interbacterial competition activity in planta, and the C-terminal variable region of VgrG2 governs this specificity for Tde2. Functional studies of VgrG1 and VgrG2 variants with stepwise deletion of the C terminus revealed that the C-terminal 31 aa (C31) of VgrG1 and 8 aa (C8) of VgrG2 are the molecular determinants specifically required for delivery of each cognate Tde toxin. Further in-depth studies on Tde toxin delivery mechanisms revealed that VgrG1 interacts with the adaptor/chaperone-effector complex (Tap-1-Tde1) in the absence of proline-alanine-alanine-arginine (PAAR) and the VgrG1-PAAR complex forms independent of Tap-1 and Tde1. Importantly, we identified the regions involved in these interactions. Although the entire C31 segment is required for binding with the Tap-1-Tde1 complex, only the first 15 aa of this region are necessary for PAAR binding. These results suggest that the VgrG1 C terminus interacts sequentially or simultaneously with the Tap-1-Tde1 complex and PAAR to govern Tde1 translocation across bacterial membranes and delivery into target cells for antibacterial activity. PMID:27313214

  15. Coping with depression: a pilot study to assess the efficacy of a self-help audio cassette.

    OpenAIRE

    Blenkiron, P

    2001-01-01

    BACKGROUND: The self-help audio cassette 'Coping with Depression' was produced and widely distributed as part of the national Defeat Depression Campaign. A central aim was to improve public understanding and encourage the use of cognitive-behavioural techniques. AIM: To formally assess the ability of the audio cassette to change attitudes to depression in primary care and the degree to which patients are motivated to practice its recommended coping strategies. DESIGN OF STUDY: Comparison of L...

  16. Novel streptomycin and spectinomycin resistance gene as a gene cassette within a class 1 integron isolated from Escherichia coli

    DEFF Research Database (Denmark)

    Sandvang, D.

    1999-01-01

    The aadA genes, encoding resistance to streptomycin and spectinomycin, have been found as gene cassettes in different gram-negative and gram-positive bacterial species. The present study has revealed the sequence of a new gene, aadA5, integrated as a gene cassette together with the trimethoprim r...... resistance gene dfr7 in a class 1 integron. The integron was located on a plasmid and was identified in a pathogenic porcine Escherichia coli isolate....

  17. The role of auxin transporters in monocots development.

    Science.gov (United States)

    Balzan, Sara; Johal, Gurmukh S; Carraro, Nicola

    2014-01-01

    Auxin is a key regulator of plant growth and development, orchestrating cell division, elongation and differentiation, embryonic development, root and stem tropisms, apical dominance, and transition to flowering. Auxin levels are higher in undifferentiated cell populations and decrease following organ initiation and tissue differentiation. This differential auxin distribution is achieved by polar auxin transport (PAT) mediated by auxin transport proteins. There are four major families of auxin transporters in plants: PIN-FORMED (PIN), ATP-binding cassette family B (ABCB), AUXIN1/LIKE-AUX1s, and PIN-LIKES. These families include proteins located at the plasma membrane or at the endoplasmic reticulum (ER), which participate in auxin influx, efflux or both, from the apoplast into the cell or from the cytosol into the ER compartment. Auxin transporters have been largely studied in the dicotyledon model species Arabidopsis, but there is increasing evidence of their role in auxin regulated development in monocotyledon species. In monocots, families of auxin transporters are enlarged and often include duplicated genes and proteins with high sequence similarity. Some of these proteins underwent sub- and neo-functionalization with substantial modification to their structure and expression in organs such as adventitious roots, panicles, tassels, and ears. Most of the present information on monocot auxin transporters function derives from studies conducted in rice, maize, sorghum, and Brachypodium, using pharmacological applications (PAT inhibitors) or down-/up-regulation (over-expression and RNA interference) of candidate genes. Gene expression studies and comparison of predicted protein structures have also increased our knowledge of the role of PAT in monocots. However, knockout mutants and functional characterization of single genes are still scarce and the future availability of such resources will prove crucial to elucidate the role of auxin transporters in monocots

  18. Dopamine transporter binding in rat striatum: a comparison of [O-methyl-{sup 11}C]{beta}-CFT and [N-methyl-{sup 11}C]{beta}-CFT

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Karmen K.; Hutchins, Gary D.; Mock, Bruce H.; Fei, Xiangshu; Winkle, Wendy L. [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States); Gitter, Bruce D.; Territo, Paul R. [Lilly Center for Anatomical and Molecular Imaging, Integrative Biology Division, Lilly Research Laboratories, Greenfield, IN 46140 (United States); Zheng Qihuang [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States)], E-mail: qzheng@iupui.edu

    2009-01-15

    Introduction: Positron emission tomography scanning with radiolabeled phenyltropane cocaine analogs is important for quantifying the in vivo density of monoamine transporters, including the dopamine transporter (DAT). [{sup 11}C]{beta}-CFT is useful for studying DAT as a marker of dopaminergic innervation in animal models of psychiatric and neurological disorders. [{sup 11}C]{beta}-CFT is commonly labeled at the N-methyl position. However, labeling of [{sup 11}C]{beta}-CFT at the O-methyl position is a simpler procedure and results in a shorter synthesis time [desirable in small-animal studies, where specific activity (SA) is crucial]. In this study, we sought to validate that the O-methylated form of [{sup 11}C]{beta}-CFT provides equivalent quantitative results to that of the more commonly reported N-methyl form. Methods: Four female Sprague-Dawley rats were scanned twice on the IndyPET II small-animal scanner, once with [N-methyl-{sup 11}C]{beta}-CFT and once with [O-methyl-{sup 11}C]{beta}-CFT. DAT binding potentials (BP{identical_to}B'{sub avail}/K{sub d}) were estimated for right and left striata with a nonlinear least-squares algorithm, using a reference region (cerebellum) as the input function. Results: [N-Methyl-{sup 11}C]{beta}-CFT and [O-methyl-{sup 11}C]{beta}-CFT were synthesized with 40-50% radiochemical yields (HPLC purification). Radiochemical purity was >99%. SA at end of bombardment was 258{+-}30 GBq/{mu}mol. Average BP values for right and left striata with [N-methyl-{sup 11}C]{beta}-CFT were 1.16{+-}0.08 and 1.23{+-}0.14, respectively. BP values for [O-methyl-{sup 11}C]{beta}-CFT were 1.18{+-}0.08 (right) and 1.22{+-}0.16 (left). Paired t tests demonstrated that labeling position did not affect striatal DAT BP. Conclusions: These results suggest that [O-methyl-{sup 11}C]{beta}-CFT is quantitatively equivalent to [N-methyl-{sup 11}C]{beta}-CFT in the rat striatum.

  19. Regulation of drug transporter expression by oncostatin M in human hepatocytes.

    Science.gov (United States)

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2011-08-01

    The cytokine oncostatin M (OSM) is a member of the interleukin (IL)-6 family, known to down-regulate expression of drug metabolizing cytochromes P-450 in human hepatocytes. The present study was designed to determine whether OSM may also impair expression of sinusoidal and canalicular drug transporters, which constitute important determinants of drug hepatic clearance. Exposure of primary human hepatocytes to OSM down-regulated mRNA levels of major sinusoidal solute carrier (SLC) influx transporters, including sodium-taurocholate co-transporting polypeptide (NTCP), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1, organic cation transporter 1 and organic anion transporter 2. OSM also repressed mRNA expressions of ATP binding cassette (ABC) efflux transporters such as multidrug resistance protein (MRP) 2/ABCC2 and breast cancer resistance protein/ABCG2, without however impairing those of multidrug resistance gene 1/P-glycoprotein/ABCB1, MRP3/ABCC3, MRP4/ABCC4 and bile salt export pump/ABCB11. The cytokine concomitantly reduced NTCP, OATP1B1, OATP2B1 and ABCG2 protein expression and NTCP and OATP transport activities. OSM effects towards transporters were found to be dose-dependent and highly correlated with those of IL-6, but not with those of other inflammatory cytokines such as tumor necrosis factor-α or interferon-γ. In addition, OSM-mediated repression of some transporters such as NTCP, OATP1B1 and OATP2B1, was counteracted by knocking-down expression of the type II OSM receptor subunits through siRNA transfection. This OSM-mediated down-regulation of drug SLC transporters and ABCG2 in human hepatocytes may contribute to alterations of pharmacokinetics in patients suffering from diseases associated with increased production of OSM. PMID:21570956

  20. Mutant cycles at CFTR’s non-canonical ATP-binding site support little interface separation during gating

    OpenAIRE

    Szollosi, A; Muallem, D. R.; Csanady, L.; P.; Vergani

    2011-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the adenosine triphosphate (ATP)-binding cassette (ABC) superfamily. ABC proteins share a common molecular mechanism that couples ATP binding and hydrolysis at two nucleotide-binding domains (NBDs) to diverse functions. This involves formation of NBD dimers, with ATP bound at two composite interfacial sites. In CFTR, intramolecular NBD dimerization is coupled to channel opening. Channel closing is tr...

  1. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells.

    Directory of Open Access Journals (Sweden)

    Ayako Nakano

    Full Text Available Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2, KG-1 (ABCB1 and HepG2 cells (ABCB1 and ABCG2. Interestingly, although side population (SP cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.

  2. ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria.

    Science.gov (United States)

    Narita, Shin-ichiro

    2011-01-01

    The outer membrane of gram-negative bacteria is an asymmetric lipid bilayer with phospholipids and lipopolysaccharides (LPSs). β-Barreled outer membrane proteins and lipoproteins are embedded in the outer membrane. All of these constituents are essential to the function of the outer membrane. The transport systems for lipoproteins have been characterized in detail. An ATP-binding cassette (ABC) transporter, LolCDE, initiates sorting by mediating the detachment of lipoproteins from the inner membrane to form a water-soluble lipoprotein-LolA complex in the periplasm. Lipoproteins are then transferred to LolB at the outer membrane and are incorporated into the lipid bilayer. A model analogous to the Lol system has been suggested for the transport of LPS, where an ABC transporter, LptBFG, mediates the detachment of LPS from the inner membrane. Recent developments in the functional characterization of ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria are discussed. PMID:21670534

  3. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa.

    Science.gov (United States)

    Adewoye, L O; Worobec, E A

    2000-08-01

    The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins. PMID:10940570

  4. Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life.

    Science.gov (United States)

    Mooij, Miriam G; van de Steeg, Evita; van Rosmalen, Joost; Windster, Jonathan D; de Koning, Barbara A E; Vaes, Wouter H J; van Groen, Bianca D; Tibboel, Dick; Wortelboer, Heleen M; de Wildt, Saskia N

    2016-07-01

    Human hepatic membrane-embedded transporter proteins are involved in trafficking endogenous and exogenous substrates. Even though impact of transporters on pharmacokinetics is recognized, little is known on maturation of transporter protein expression levels, especially during early life. We aimed to study the protein expression of 10 transporters in liver tissue from fetuses, infants, and adults. Transporter protein expression levels [ATP-binding cassette transporter (ABC)B1, ABCG2, ABCC2, ABCC3, bile salt efflux pump, glucose transporter 1, monocarboxylate transporter 1, organic anion transporter polypeptide (OATP)1B1, OATP2B1, and organic cation/carnitine transporter 2) were quantified using ultraperformance liquid chromatography tandem mass spectrometry in snap-frozen postmortem fetal, infant, and adult liver samples. Protein expression was quantified in isolated crude membrane fractions. The possible association between postnatal and postmenstrual age versus protein expression was studied. We studied 25 liver samples, as follows: 10 fetal [median gestational age 23.2 wk (range 16.4-37.9)], 12 infantile [gestational age at birth 35.1 wk (27.1-41.0), postnatal age 1 wk (0-11.4)], and 3 adult. The relationship of protein expression with age was explored by comparing age groups. Correlating age within the fetal/infant age group suggested four specific protein expression patterns, as follows: stable, low to high, high to low, and low-high-low. The impact of growth and development on human membrane transporter protein expression is transporter-dependent. The suggested age-related differences in transporter protein expression may aid our understanding of normal growth and development, and also may impact the disposition of substrate drugs in neonates and young infants. PMID:27103634

  5. Cell differentiation and infectivity of Leishmania mexicana are inhibited in a strain resistant to an ABC-transporter blocker.

    Science.gov (United States)

    Silva, N; Camacho, N; Figarella, K; Ponte-Sucre, A

    2004-06-01

    We analysed whether markers of cell differentiation and infectivity differed when compared to the parental sensitive strain [NR(Gs)] in an in vitro selected Leishmania strain [NR(Gr)] resistant to Glibenclamide, an ATP-binding-cassette (ABC)-transporter blocker. The data show that the cell body area was larger in NR(Gr) compared to NR(Gs) and that functional characters associated with an infective metacyclic phenotype, such as resistance to the lytic effect of the alternative complement pathway and expression of the Meta-1 protein, were reduced. The infectivity of NR(Gr) to J774.1 macrophages was also significantly reduced. These results suggest that resistance in Leishmania against Glibenclamide, a general blocker of P-glycoproteins, could produce functional modifications that may be relevant for Leishmania differentiation, infectivity and survival. PMID:15206465

  6. Expression and regulation of transmembrane transporters in healthy intestine and gastrointestinal diseases

    OpenAIRE

    Hruz, Petr

    2006-01-01

    Transmembrane transporters mediate energy dependent or independent translocation of drugs, potentially toxic compounds, and of various endogenous substrates such as bile acids and bilirubin across membranes. In this thesis the focus is on two classes of transporters, the ATPbinding cassette (ABC) transporters, which mediate ATP dependent transport and the solute carriers (SLC) which use electrochemical gradients for their transport. The transporters are expressed on membranes o...

  7. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    Science.gov (United States)

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. PMID:26953208

  8. Know your ABCs: Characterization and gene expression dynamics of ABC transporters in the polyphagous herbivore Helicoverpa armigera.

    Science.gov (United States)

    Bretschneider, Anne; Heckel, David G; Vogel, Heiko

    2016-05-01

    Polyphagous insect herbivores are adapted to many different secondary metabolites of their host plants. However, little is known about the role of ATP-binding cassette (ABC) transporters, a multigene family involved in detoxification processes. To study the larval response of the generalist Helicoverpa armigera (Lepidoptera) and the putative role of ABC transporters, we performed developmental assays on artificial diet supplemented with secondary metabolites from host plants (atropine-scopolamine, nicotine and tomatine) and non-host plants (taxol) in combination with a replicated RNAseq experiment. A maximum likelihood phylogeny identified the subfamily affiliations of the ABC transporter sequences. Larval performance was equal on the atropine-scopolamine diet and the tomatine diet. For the latter we could identify a treatment-specific upregulation of five ABC transporters in the gut. No significant developmental difference was detected between larvae fed on nicotine or taxol. This was also mirrored in the upregulation of five ABC transporters when fed on either of the two diets. The highest number of differentially expressed genes was recorded in the gut samples in response to feeding on secondary metabolites. Our results are consistent with the expectation of a general detoxification response in a polyphagous herbivore. This is the first study to characterize the multigene family of ABC transporters and identify gene expression changes across different developmental stages and tissues, as well as the impact of secondary metabolites in the agricultural pest H. armigera. PMID:26951878

  9. Vacuolar Transport of the Medicinal Alkaloids from Catharanthus roseus Is Mediated by a Proton-Driven Antiport1[W

    Science.gov (United States)

    Carqueijeiro, Inês; Noronha, Henrique; Duarte, Patrícia; Gerós, Hernâni; Sottomayor, Mariana

    2013-01-01

    Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3′,4′-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4+ and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H+ gradient preestablished across the tonoplast by either vacuolar H+-ATPase or vacuolar H+-pyrophosphatase. The initial rates of H+ gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H+ antiport system and not by an ion-trap mechanism or ABC transporters. PMID:23686419

  10. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport.

    Science.gov (United States)

    Carqueijeiro, Inês; Noronha, Henrique; Duarte, Patrícia; Gerós, Hernâni; Sottomayor, Mariana

    2013-07-01

    Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3',4'-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4(+) and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H(+) gradient preestablished across the tonoplast by either vacuolar H(+)-ATPase or vacuolar H(+)-pyrophosphatase. The initial rates of H(+) gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H(+) antiport system and not by an ion-trap mechanism or ABC transporters. PMID:23686419

  11. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    International Nuclear Information System (INIS)

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL)2 and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation

  12. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Bente, E-mail: Bente.Halvorsen@rr-research.no [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Holm, Sverre [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Yndestad, Arne [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Scholz, Hanne [Section for Transplantation, Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo (Norway); Sagen, Ellen Lund [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Nebb, Hilde [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Holven, Kirsten B. [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Dahl, Tuva B. [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Aukrust, Pål [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway)

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  13. Hygromycin B and apramycin antibiotic resistance cassettes for use in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Andrew Cameron

    Full Text Available Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium.

  14. Evaluation of retroviral vector design in defined chromosomal loci by Flp-mediated cassette replacement.

    Science.gov (United States)

    Verhoeyen, E; Hauser, H; Wirth, D

    2001-05-20

    Successful retroviral vector construction is still empirical. Test systems for vector efficiency are based on statistical comparison of numerous infectants with single proviral integrates, since their expression depends on the chromosomal surroundings. More reliable data would be obtained if different vector constructs were studied in an identical chromosomal context. Here, we demonstrate the use of a new method, in which chromosomal sites are provirally tagged in such a way that they can be targeted with other expression cassettes. The original tagging integrate is replaced in one step by the targeting element. This permits a reliable comparison of different retroviral vector configurations, eliminating the influence of neighboring chromosomal elements. We compared different retroviral vector types for coexpression of two genes: a vector containing an internal promoter and a vector with an internal ribosome entry site (IRES) element. In contrast to bicistronic retroviral vectors, dual-promoter proviruses exhibited rapid inactivation of the long terminal repeat (LTR)-driven gene expression. Targeted exchange of the dual-promoter provirus with a bicistronic retroviral cassette resulted in gain of expression stability. The reverse experiment confirmed this promoter interaction phenomenon since initial expression stability from a single-promoter bicistronic provirus was lost by targeted exchange with a dual-promoter cassette. In addition, targeting exchange of the dual-promoter provirus, replacing the LTR with an artificial (Tet) promoter restored expression stability. These observations, valid for various integration sites, prove the strong interaction between the LTR and the internal promoter. Our results have implications for retroviral vector design and suggest that retroviral coexpression of two genes is more predictable in the bicistronic configuration. PMID:11387058

  15. The Leucine transporter from Aquifex aeolicus as a model for the Neurotransmitter Sodium Symporters – insights into function and ligand binding

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova

    In her PhD studies, Adriana K. Kantcheva looked into the structural perspective of a bacterial transporter – the leucine transporter from Aquifex aeolicus (LeuT) – which is a homologue to neurotransmitter sodium symporters (NSS) found in humans, such as the serotonin transporter. Two crystal...

  16. Protein contacts and ligand binding in the inward-facing model of human P-glycoprotein.

    Science.gov (United States)

    Pajeva, Ilza K; Hanl, Markus; Wiese, Michael

    2013-05-01

    The primary aim of this work was to analyze the contacts between residues in the nucleotide binding domains (NBDs) and at the interface between the transmembrane domains (TMDs) and the NBDs in the inward-open homology model of human P-glycoprotein (P-gp). The analysis revealed communication nets through hydrogen bonding in the NBD and at the NBD-TMD interface of each half involving residues from the adenosine triphosphate (ATP) motifs and the coupling helices of the intracellular loops. Similar networks have been identified in P-gp conformations generated by molecular dynamics simulation. Differences have been recorded in the networking between both halves of P-gp. Many of the residue contacts have also been observed in the X-ray crystal structures of other ATP binding cassette (ABC) transporters, which confirms their validity. Next, possible binding pockets involving residues of importance for the TMD-NBD communication were identified. By studying these pockets, binding sites were suggested for rhodamine 123 (R-site) and prazosin (regulatory site) at the NBD-TMD interface that agreed with the experimental data on their location. Additionally, one more R-site in the protein cavity was proposed, in accordance with the available biochemical data. Together with the previously suggested Hoechst 33342 site (H-site), all sites were interpreted with respect to their effects on the protein ATPase activity, in correspondence with the experimental observations. Several residues involved in key contacts in the P-gp NBDs were proposed for further targeted mutagenesis experiments. PMID:23564544

  17. Generation of Cell Lines to Complement Adenovirus Vectors using Recombination-Mediated Cassette Exchange

    Directory of Open Access Journals (Sweden)

    Farley Daniel C

    2010-12-01

    Full Text Available Abstract Background Adenovirus serotype 5 (Ad5 has many favourable characteristics for development as a gene therapy vector. However, the utility of current Ad5 vectors is limited by transient transgene expression, toxicity and immunogenicity. The most promising form of vector is the high capacity type, which is deleted for all viral genes. However, these vectors can only be produced to relatively low titres and with the aid of helper virus. Therefore a continuing challenge is the generation of more effective Ad5 vectors that can still be grown to high titres. Our approach is to generate complementing cell lines to support the growth of Ad5 vectors with novel late gene deficiencies. Results We have used LoxP/Cre recombination mediated cassette exchange (RMCE to generate cell lines expressing Ad5 proteins encoded by the L4 region of the genome, the products of which play a pivotal role in the expression of Ad5 structural proteins. A panel of LoxP parent 293 cell lines was generated, each containing a GFP expression cassette under the control of a tetracycline-regulated promoter inserted at a random genome location; the cassette also contained a LoxP site between the promoter and GFP sequence. Clones displayed a variety of patterns of regulation, stability and level of GFP expression. Clone A1 was identified as a suitable parent for creation of inducible cell lines because of the tight inducibility and stability of its GFP expression. Using LoxP-targeted, Cre recombinase-mediated insertion of an L4 cassette to displace GFP from the regulated promoter in this parent clone, cell line A1-L4 was generated. This cell line expressed L4 100K, 22K and 33K proteins at levels sufficient to complement L4-33K mutant and L4-deleted viruses. Conclusions RMCE provides a method for rapid generation of Ad5 complementing cell lines from a pre-selected parental cell line, chosen for its desirable transgene expression characteristics. Parent cell lines can be

  18. Repression of a mating type cassette in the fission yeast by four DNA elements

    DEFF Research Database (Denmark)

    Ekwall, K; Nielsen, O; Ruusala, T;

    1991-01-01

    difference between the active and the silent stage of the P determinant is controlled by four repressive elements that are located at the silent locus. There are two elements to the left and two to the right of the mating type cassette. Both elements to the left and either one of the two elements to the...... right are required for an effective blockage of transcription. When they are combined, the four elements define a highly efficient silencer functionally similar to the HMRE and HMLE and HMLI silencers in Saccharomyces cerevisiae. In addition, the DNA surrounding the silent P locus confers symmetric...

  19. Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding

    International Nuclear Information System (INIS)

    The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.

  20. Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding

    Energy Technology Data Exchange (ETDEWEB)

    Lasry, Inbal; Berman, Bluma [The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Glaser, Fabian [Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion, Haifa 32000 (Israel); Jansen, Gerrit [Department of Rheumatology, VU University Medical Center, Amsterdam (Netherlands); Assaraf, Yehuda G., E-mail: assaraf@tx.technion.ac.il [The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2009-08-28

    The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.