WorldWideScience

Sample records for binding bt insecticidal

  1. Effectiveness of Microbial and Chemical Insecticides for Supplemental Control of Bollworm on Bt and Non-Bt Cottons.

    Science.gov (United States)

    Little, N S; Luttrell, R G; Allen, K C; Perera, O P; Parys, K A

    2017-06-01

    Laboratory and field experiments were conducted to determine the effectiveness of microbial and chemical insecticides for supplemental control of bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), on non-Bt (DP1441RF) and Bt (DP1321B2RF) cottons. Neonate and 3rd instar larvae survival was evaluated on leaf tissue treated with microbial and chemical insecticides including a commercial formulation of Bacillus thuringiensis (Dipel), a Heliothis (Helicoverpa) nuclear polyhedrosis virus (NPV; Gemstar), λ-cyhalothrin (Karate Z), and chlorantraniliprole (Prevathon). Residual activity of insecticides was measured in a small plot field experiment. The performance of microbial insecticides, with the exception of a mid-rate of Dipel with neonate larvae, was comparable with that of chemical treatments on non-Bt cotton leaves with regard to 1st and 3rd instar bollworm mortality at 10 d and pupal eclosion at 20-d post treatment. Production-level field evaluations of supplemental bollworm control in non-Bt and Bt cottons with NPV, λ-cyhalothrin, and chlorantraniliprole were also conducted. During both years of the field study, all chemical and microbial treatments were successful in suppressing bollworm larval densities in non-Bt cotton below economic threshold levels. Overall, net returns above bollworm control, regardless of treatment, were negatively correlated with larval abundance and plant damage. In addition, there was no economic benefit for supplemental control of bollworms in Bt cotton at the larval densities observed during this study. These data provide benchmark comparisons for insect resistance management with microbial and chemical insecticides in Bt and non-Bt cottons and strategic optimization of the need to spray non-Bt and Bt cotton in IRM programs. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  2. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil.

    Science.gov (United States)

    Burtet, Leonardo M; Bernardi, Oderlei; Melo, Adriano A; Pes, Maiquel P; Strahl, Thiago T; Guedes, Jerson Vc

    2017-12-01

    Maize plants expressing insecticidal proteins of Bacillus thuringiensis are valuable options for managing fall armyworm (FAW), Spodoptera frugiperda, in Brazil. However, control failures were reported, and therefore insecticides have been used to control this species. Based on these, we evaluated the use of Bt maize and its integration with insecticides against FAW in southern Brazil. Early-planted Agrisure TL, Herculex, Optimum Intrasect and non-Bt maize plants were severely damaged by FAW and required up to three insecticidal sprays. In contrast, YieldGard VT Pro, YieldGard VT Pro 3, PowerCore, Agrisure Viptera and Agrisure Viptera 3 showed little damage and did not require insecticides. Late-planted Bt maize plants showed significant damage by FAW and required up to four sprays, with the exceptions of Agrisure Viptera and Agrisure Viptera 3. Exalt (first and second sprays); Lannate + Premio (first spray) and Avatar (second spray); and Karate + Match (first spray) and Ampligo (second spray) were the most effective insecticides against FAW larvae in Bt and non-Bt maize. Maize plants expressing Cry proteins exhibited FAW control failures in southern Brazil, necessitating insecticidal sprays. In contrast, Bt maize containing the Vip3Aa20 protein remained effective against FAW. However, regardless of the insecticide used against FAW surviving on Bt maize, grain yields were similar. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm.

    Directory of Open Access Journals (Sweden)

    Josue Ocelotl

    Full Text Available Insecticidal proteins from Bacillus thuringiensis (Bt are used extensively in sprays and transgenic crops for pest control, but their efficacy is reduced when pests evolve resistance. Better understanding of the mode of action of Bt toxins and the mechanisms of insect resistance is needed to enhance the durability of these important alternatives to conventional insecticides. Mode of action models agree that binding of Bt toxins to midgut proteins such as cadherin is essential for toxicity, but some details remain unresolved, such as the role of toxin oligomers. In this study, we evaluated how Bt toxin Cry1Ac and its genetically engineered counterpart Cry1AcMod interact with brush border membrane vesicles (BBMV from resistant and susceptible larvae of Pectinophora gossypiella (pink bollworm, a global pest of cotton. Compared with Cry1Ac, Cry1AcMod lacks 56 amino acids at the amino-terminus including helix α-1; previous work showed that Cry1AcMod formed oligomers in vitro without cadherin and killed P. gossypiella larvae harboring cadherin mutations linked with >1000-fold resistance to Cry1Ac. Here we found that resistance to Cry1Ac was associated with reduced oligomer formation and insertion. In contrast, Cry1AcMod formed oligomers in BBMV from resistant larvae. These results confirm the role of cadherin in oligomerization of Cry1Ac in susceptible larvae and imply that forming oligomers without cadherin promotes toxicity of Cry1AcMod against resistant P. gossypiella larvae that have cadherin mutations.

  4. Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field.

    Science.gov (United States)

    Xue, Kai; Serohijos, Raquel C; Devare, Medha; Thies, Janice E

    2011-02-01

    Despite the rapid adoption of crops expressing the insecticidal Cry protein(s) from Bacillus thuringiensis (Bt), public concern continues to mount over the potential environmental impacts. Reduced residue decomposition rates and increased tissue lignin concentrations reported for some Bt corn hybrids have been highlighted recently as they may influence soil carbon dynamics. We assessed the effects of MON863 Bt corn, producing the Cry3Bb protein against the corn rootworm complex, on these aspects and associated decomposer communities by terminal restriction fragment length polymorphism (T-RFLP) analysis. Litterbags containing cobs, roots, or stalks plus leaves from Bt and unmodified corn with (non-Bt+I) or without (non-Bt) insecticide applied were placed on the soil surface and at a 10-cm depth in field plots planted with these crop treatments. The litterbags were recovered and analyzed after 3.5, 15.5, and 25 months. No significant effect of treatment (Bt, non-Bt, and non-Bt+I) was observed on initial tissue lignin concentrations, litter decomposition rate, or bacterial decomposer communities. The effect of treatment on fungal decomposer communities was minor, with only 1 of 16 comparisons yielding separation by treatment. Environmental factors (litterbag recovery year, litterbag placement, and plot history) led to significant differences for most measured variables. Combined, these results indicate that the differences detected were driven primarily by environmental factors rather than by any differences between the corn hybrids or the use of tefluthrin. We conclude that the Cry3Bb corn tested in this study is unlikely to affect carbon residence time or turnover in soils receiving these crop residues.

  5. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  6. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, Sari J. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)], E-mail: sari.himanen@uku.fi; Nerg, Anne-Marja [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); Nissinen, Anne [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Stewart, C. Neal [University of Tennessee, Department of Plant Sciences, Knoxville, TN 37996-4561 (United States); Poppy, Guy M. [University of Southampton, School of Biological Sciences, Southampton SO16 7PX (United Kingdom); Holopainen, Jarmo K. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)

    2009-01-15

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.

  7. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    International Nuclear Information System (INIS)

    Himanen, Sari J.; Nerg, Anne-Marja; Nissinen, Anne; Stewart, C. Neal; Poppy, Guy M.; Holopainen, Jarmo K.

    2009-01-01

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants

  8. Effects of Soil Water Deficit on Insecticidal Protein Expression in Boll Shells of Transgenic Bt Cotton and the Mechanism

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2017-12-01

    Full Text Available This study was conducted to investigate the effects of soil water deficit on insecticidal protein expression in boll shells of cotton transgenic for a Bt gene. In 2014, Bt cotton cultivars Sikang 1 (a conventional cultivar and Sikang 3 (a hybrid cultivar were planted in pots and five soil water content treatments were imposed at peak boll stage: 15% (G1, 35% (G2, 40% (G3, 60% (G4, and 75% field capacity (CK, respectively. Four treatments (G2, G3, G4, and CK were repeated in 2015 in the field. Results showed that the insecticidal protein content of boll shells decreased with increasing water deficit. Compared with CK, boll shell insecticidal protein content decreased significantly when soil water content was below 60% of maximum water holding capacity for Sikang 1 and Sikang 3. However, increased Bt gene expression was observed when boll shell insecticidal protein content was significantly reduced. Activity assays of key enzymes in nitrogen metabolism showed that boll shell protease and peptidase increased but nitrogen reductase and glutamic-pyruvic transaminase (GPT decreased. Insecticidal protein content exhibited significant positive correlation with nitrogen reductase and GPT activities; and significant negative correlation with protease and peptidase activities. These findings suggest that the decrease of insecticidal protein content associated with increasing water deficit was a net result of decreased synthesis and increased decomposition.

  9. INSECTICIDAL TOXIN FROM BACILLUS THURINGIENSIS IS RELEASED FROM ROOTS OF TRANSGENIC BT CORN IN VITRO AND IN SITU. (R826107)

    Science.gov (United States)

    AbstractThe insecticidal toxin encoded by the cry1Ab gene from Bacillus thuringiensis was released in root exudates from transgenic Bt corn during 40 days of growth in soil amended to 0, 3, 6, 9, or 12% (v/v) with montmorillonite or kaolinite in a...

  10. Soil Microbial and Faunal Community Responses to Bt-Maize and Insecticide in Two Soils

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Caul, S.; Thompson, J.

    2006-01-01

    The effects of maize (Zea mays L.), genetically modified to express the Cry1Ab protein (Bt), and an insecticide on soil microbial and faunal communities were assessed in a glasshouse experiment. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow ...

  11. Transgenic Bt Corn, Soil Insecticide, and Insecticidal Seed Treatment Effects on Corn Rootworm (Coleoptera: Chrysomelidae) Beetle Emergence, Larval Feeding Injury, and Corn Yield in North Dakota.

    Science.gov (United States)

    Calles-Torrez, Veronica; Knodel, Janet J; Boetel, Mark A; Doetkott, Curt D; Podliska, Kellie K; Ransom, Joel K; Beauzay, Patrick; French, B Wade; Fuller, Billy W

    2018-02-09

    Northern, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), and western, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), corn rootworms are economic pests of corn, Zea mays L. in North America. We measured the impacts of corn hybrids incorporated with Cry3Bb1, Cry34/35Ab1, and pyramided (Cry3Bb1 + Cry34/35Ab1) Bacillus thuringiensis Berliner (Bt) proteins, tefluthrin soil insecticide, and clothianidin insecticidal seed treatment on beetle emergence, larval feeding injury, and corn yield at five locations from 2013 to 2015 in eastern North Dakota. In most cases, emergence was significantly lower in Bt-protected corn than in non-Bt corn hybrids. Exceptions included Wyndmere, ND (2013), where D. barberi emergence from Cry34/35Ab1 plots was not different from that in the non-Bt hybrid, and Arthur, ND (2013), where D. v. virgifera emergence from Cry3Bb1 plots did not differ from that in the non-Bt hybrid. Bt hybrids generally produced increased grain yield compared with non-Bt corn where rootworm densities were high, and larval root-feeding injury was consistently lower in Bt-protected plots than in non-Bt corn. The lowest overall feeding injury and emergence levels occurred in plots planted with the Cry3Bb1 + Cry34/35Ab1 hybrid. Time to 50% cumulative emergence of both species was 5-7 d later in Bt-protected than in non-Bt hybrids. Tefluthrin and clothianidin were mostly inconsequential in relation to beetle emergence and larval root injury. Our findings could suggest that some North Dakota populations could be in early stages of increased tolerance to some Bt toxins; however, Bt corn hybrids currently provide effective protection against rootworm injury in eastern North Dakota. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Stacked Bt maize and arthropod predators: exposure to insecticidal Cry proteins and potential hazards.

    Science.gov (United States)

    Svobodová, Zdeňka; Shu, Yinghua; Skoková Habuštová, Oxana; Romeis, Jörg; Meissle, Michael

    2017-07-26

    Genetically engineered (GE) crops with stacked insecticidal traits expose arthropods to multiple Cry proteins from Bacillus thuringiensis (Bt). One concern is that the different Cry proteins may interact and lead to unexpected adverse effects on non-target species. Bi- and tri-trophic experiments with SmartStax maize, herbivorous spider mites ( Tetranychus urticae ), aphids ( Rhopalosiphum padi ), predatory spiders ( Phylloneta impressa ), ladybeetles ( Harmonia axyridis ) and lacewings ( Chrysoperla carnea ) were conducted. Cry1A.105, Cry1F, Cry3Bb1 and Cry34Ab1 moved in a similar pattern through the arthropod food chain. By contrast, Cry2Ab2 had highest concentrations in maize leaves, but lowest in pollen, and lowest acquisition rates by herbivores and predators. While spider mites contained Cry protein concentrations exceeding the values in leaves (except Cry2Ab2), aphids contained only traces of some Cry protein. Predators contained lower concentrations than their food. Among the different predators, ladybeetle larvae showed higher concentrations than lacewing larvae and juvenile spiders. Acute effects of SmartStax maize on predator survival, development and weight were not observed. The study thus provides evidence that the different Cry proteins do not interact in a way that poses a risk to the investigated non-target species under controlled laboratory conditions. © 2017 The Author(s).

  13. Managing the sugarcane borer, Diatraea saccharalis, and corn earworm, Helicoverpa zea, using Bt corn and insecticide treatments.

    Science.gov (United States)

    Farias, Juliano R; Costa, Ervandil C; Guedes, Jerson V C; Arbage, Alessandro P; Neto, Armando B; Bigolin, Mauricio; Pinto, Felipe F

    2013-01-01

    The sugarcane borer, Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) and the corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), are important pests of corn in Brazil and have not been successfully managed, because of the difficulty of managing them with pesticides. The objective of this study was to evaluate the effect of Bt corn MON810, transformed with a gene from Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) insecticide seed treatment, and foliar insecticide spray using treatments developed for control of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), which is the major pest of corn. The experiments were done under field conditions in early- and late-planted corn in the state of Rio Grande do Sul, Brazil, and in the laboratory. The MON810 corn reduced infestations and damage by D. saccharalis and H. zea. The insecticides used in seed treatments or foliar sprays did not affect D. saccharalis and H. zea infestations or damage levels. The exception was the insecticide seed treatment in non-transformed corn, which reduced early infestations of D. saccharalis. The MON810 corn, therefore, can be used for managing these two pest species, especially D. saccharalis.

  14. [Effects of Bt corn straw insecticidal proteins on enzyme activities of Eisenia fetida].

    Science.gov (United States)

    Shu, Ying-hua; Ma, Hong-hui; Du, Yan; Wang, Jian-wu

    2011-08-01

    Bacillus thuringiensis (Bt) proteins released from Bt corn can enter soil ecosystem via returning straw into field, root exudation, and pollen fluttering-down. In this study, the straws of Bt corn and its near-isogenic non-Bt line were added into soil with an application rate of 5% and 7.5% to breed Eisenia fetida, and the total protein content and the activities of acetylcholine esterase (AchE), glutathione peroxidase (GSH-PX), catalase (CAT), and superoxide dismutase (SOD) in E. fetida were determined after 7 and 14 days. Under the same application rate of the straws, the total protein content and GSH-PX activity of E. fetida decreased while the AchE, CAT, and SOD activities increased on the 14th day, compared with those on the 7th day. The Bt corn straw increased the SOD activity and decreased the AchE and GSH-PX activities, but had less effects on the total protein content and CAT activity, compared with non-Bt corn straw. All the results suggested that Bt corn straw had no inhibitory effect on E. fetida total protein but could inhibit the AchE and GSH-PX activities, and could not induce CAT activity but induce SOD activity within a short time.

  15. [Transformation and expression of specific insecticide gene Bt cry3A in resident endogenetic bacteria isolated from Apriona germari (Hope) larvae intestines].

    Science.gov (United States)

    Zhongkang, Wang; Wei, He; Guoxiong, Peng; Yuxian, Xia; Qiang, Li; Youping, Yin

    2008-09-01

    Transforming the specific insecticidal gene Bt cry3A into the dominant resident endogenetic bacteria in intestines of Apriona germari (Hope) larvae to construct transgenic bacteria that can colonize and express the insecticidal gene Bt cry3A perfectly in intestines of Apriona germari (Hope) larvae. We isolated and identified the dominant resident endogenetic bacteria by traditional methods and molecular method based of 16S rDNA analysis. Two Escherichia coli--Bacillus thuringiensis shuttle plasmid pHT305a and pHT7911 which contained specific insecticidal gene Bt cry3A were transformed into two resident endogenetic bacteria Brevibacillus brevis Ag12 and Bacillus thuringiensis Ag13 isolated from A. germari larvae intestines respectively by electro-transformation. Eighteen species of bacteria have isolated and identified from Apriona germari larvae intestines and two of them (Brevibacillus brevis Ag12 and Bacillus thuringiensis Ag13) were selected as starting bacteria to recieve the Bt cry3A. The 4 transgenic engineering strains Ag12-7911, Ag12-305a, Ag13-7911 and Ag13-305a were obtained successfully and validated by testing the plasmid stability in recombinants, transformants vegetal properties, crystal poisonous protein observation, expressional protein SDS-PAGE. The Bt cry3A gene had been transformed into Brevibacillus brevis and Bacillus thuringiensis. Both bioassay and examination of the engineering strains in intestines after feeding them to larvae showed that all these transformant strains (Brevibacillus brevis Ag12-305a, Bacillus thurigiensis Ag13-305a, Brevibacillus brevis Ag12-7911 and Bacillus thurigiensis Ag13-7911) could colonize and express 65 kDa protoxin in intestines of A. germari larvae and had insecticidal activity. We obtained four transgenic bacteria that can colonize and express the target insecticide gene Bt cry3A in A. germari larvae. They may be developed as a new insecticide.

  16. Stacked Bt maize and arthropod predators: exposure to insecticidal Cry proteins and potential hazards

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Zdeňka; Shu, Y.; Skoková Habuštová, Oxana; Romeis, J.; Meissle, M.

    2017-01-01

    Roč. 284, č. 1859 (2017), č. článku 20170440. ISSN 0962-8452 Institutional support: RVO:60077344 Keywords : Bt maize * Cry proteins * environmental risk assessment Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 4.940, year: 2016 http://rspb.royalsocietypublishing.org/content/284/1859/20170440

  17. Soil microbes and fauna under Bt maize or an isogenic control, with and without additional insecticide

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Birch, A. N. E.; Caul, S.

    The experiment described is a component of the EU-funded project entitled 'Soil ecological and economic evaluation of genetically modified crops' (ECOGEN, www.ecogen.dk). The overall project has an emphasis on maize genetically modified to express the Bacillus thuringiensis toxin (Bt maize......) and encompasses a tiered approach of single-species laboratory tests, glasshouse pot experiments, field studies at three sites, rulebased modelling and economic evaluation. This presentation details results from a glasshouse pot experiment. The experimental design was: 2 x maize lines (...

  18. Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)

    Science.gov (United States)

    Helassa, Nordine; Daudin, Gabrielle; Noinville, Sylvie; Janot, Jean-Marc; Déjardin, Philippe; Staunton, Siobhán; Quiquampoix, Hervé

    2010-06-01

    The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in "hot spots" could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.

  19. Structure of BT-3984, a member of the SusD/RagB family of nutrient-binding molecules

    International Nuclear Information System (INIS)

    Bakolitsa, Constantina; Xu, Qingping; Rife, Christopher L.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of BT-3984, a SusD-family protein, reveals a TPR N-terminal region providing support for a loop-rich C-terminal subdomain and suggests possible interfaces involved in sus complex formation. The crystal structure of the Bacteroides thetaiotaomicron protein BT-3984 was determined to a resolution of 1.7 Å and was the first structure to be determined from the extensive SusD family of polysaccharide-binding proteins. SusD is an essential component of the sus operon that defines the paradigm for glycan utilization in dominant members of the human gut microbiota. Structural analysis of BT-3984 revealed an N-terminal region containing several tetratricopeptide repeats (TPRs), while the signature C-terminal region is less structured and contains extensive loop regions. Sequence and structure analysis of BT-3984 suggests the presence of binding interfaces for other proteins from the polysaccharide-utilization complex

  20. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology.

    Science.gov (United States)

    Agrawal, Aditi; Rajamani, Vijayalakshmi; Reddy, Vanga Siva; Mukherjee, Sunil Kumar; Bhatnagar, Raj K

    2015-10-01

    The success of Bt transgenics in controlling predation of crops has been tempered by sporadic emergence of resistance in targeted insect larvae. Such emerging threats have prompted the search for novel insecticidal molecules that are specific and could be expressed through plants. We have resorted to small RNA-based technology for an investigative search and focused our attention to an insect-specific miRNA that interferes with the insect molting process resulting in the death of the larvae. In this study, we report the designing of a vector that produces artificial microRNA (amiR), namely amiR-24, which targets the chitinase gene of Helicoverpa armigera. This vector was used as transgene in tobacco. Northern blot and real-time analysis revealed the high level expression of amiR-24 in transgenic tobacco plants. Larvae feeding on the transgenic plants ceased to molt further and eventually died. Our results demonstrate that transgenic tobacco plants can express amiR-24 insectice specific to H. armigera.

  1. Host-plant diversity of the European corn borer Ostrinia nubilalis: what value for sustainable transgenic insecticidal Bt maize?

    Science.gov (United States)

    Bourguet, D; Bethenod, M T; Trouvé, C; Viard, F

    2000-01-01

    The strategies proposed for delaying the development of resistance to the Bacillus thuringiensis toxins produced by transgenic maize require high levels of gene flow between individuals feeding on transgenic and refuge plants. The European corn borer Ostrinia nubilalis (Hübner) may be found on several host plants, which may act as natural refuges. The genetic variability of samples collected on sagebrush (Artemisia sp.), hop (Humulus lupulus L.) and maize (Zea mays L.) was studied by comparing the allozyme frequencies for six polymorphic loci. We found a high level of gene flow within and between samples collected on the same host plant. The level of gene flow between the sagebrush and hop insect samples appeared to be sufficiently high for these populations to be considered a single genetic panmictic unit. Conversely, the samples collected on maize were genetically different from those collected on sagebrush and hop. Three of the six loci considered displayed greater between-host-plant than within-host-plant differentiation in comparisons of the group of samples collected on sagebrush or hop with the group of samples collected on maize. This indicates that either there is genetic isolation of the insects feeding on maize or that there is host-plant divergent selection at these three loci or at linked loci. These results have important implications for the potential sustainability of transgenic insecticidal maize. PMID:10902683

  2. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.

    Directory of Open Access Journals (Sweden)

    Silvia Caccia

    Full Text Available BACKGROUND: Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F(2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. METHODOLOGY/PRINCIPAL FINDINGS: Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with (125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in (125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. CONCLUSION/SIGNIFICANCE: This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported

  3. Bacillus thuringiensis (Bt)

    Science.gov (United States)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  4. Microimaging of Bacillus thuringiensis Toxin-binding proteins in gypsy moth larval gut using confocal fluorescence microscopy

    Science.gov (United States)

    Daniel J. Krofcheck; Algimantas P. Valaitis

    2010-01-01

    After ingestion by susceptible insect larvae, Bacillus thuringiensis (Bt) insecticidal proteins bind to the brush border membranes of gut epithelial cells and disrupt the integrity of the plasma membrane by forming...

  5. The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton

    Directory of Open Access Journals (Sweden)

    Nhan eLe Van

    2016-01-01

    Full Text Available As the demands for nanotechnology and nanoparticle (NP applications in agriculture increase, the ecological risk has drawn more attention because of the unpredictable results of interactions between NPs and transgenic crops. In this study, we investigated the effects of various concentrations of Fe2O3 NPs on Bt-transgenic cotton in comparison with conventional cotton for 10 days. Each treatment was conducted in triplicate, and each experiment was repeated three times. Results demonstrated that Fe2O3 nanoparticles (NPs inhibited the plant height and root length of Bt-transgenic cotton and promoted root hairs and biomass of non-transgenic cotton. Nutrients such as Na and K in Bt-transgenic cotton roots increased, while Zn contents decreased with Fe2O3 NPs. Most hormones in the roots of Bt-transgenic cotton increased at low Fe2O3 NP exposure (100 mg·L−1 but decreased at high concentrations of Fe2O3 NPs (1000 mg·L−1. Fe2O3 NPs increased the Bt-toxin in leaves and roots of Bt-transgenic cotton. Fe2O3 NPs were absorbed into roots, then transported to the shoots of both Bt-transgenic and non-transgenic cottons. The bioaccumulation of Fe2O3 NPs in plants might be a potential risk for agricultural crops and affect the environment and human health.

  6. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda)

    Science.gov (United States)

    Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm is a devastating pest controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein. However, fall armyworm populations ...

  7. Does Bt Corn Really Produce Tougher Residues

    Science.gov (United States)

    Bt corn hybrids produce insecticidal proteins that are derived from a bacterium, Bacillus thuringiensis. There have been concerns that Bt corn hybrids produce residues that are relatively resistant to decomposition. We conducted four experiments that examined the decomposition of corn residues und...

  8. EVALUATION OF BIOASSAYS FOR TESTING Bt SWEETPOTATO ...

    African Journals Online (AJOL)

    ACSS

    2013-07-24

    Jul 24, 2013 ... therefore, inedible by humans due to terpenoid produced in response to ... Bacillus thuringiensis (Bt) through genetic engineering. Genes expressing insecticidal crystal. (Cry) proteins from Bt have been cloned, modified for expression in ..... fold less dry matter, stressed larva, and pro-toxins which are more ...

  9. Helicoverpa zea and Bt cotton in the United States.

    Science.gov (United States)

    Luttrell, Randall G; Jackson, Ryan E

    2012-01-01

    Helicoverpa zea (Boddie), the bollworm or corn earworm, is the most important lepidopteran pest of Bt cotton in the United States. Corn is the preferred host, but the insect feeds on most flowering crops and wild host plants. As a cotton pest, bollworm has been closely linked to the insecticide-resistance prone Heliothis virescens (F.), tobacco budworm. Immature stages of the two species are difficult to separate in field environments. Tobacco budworm is very susceptible to most Bt toxins, and Bt cotton is considered to be "high dose." Bollworm is less susceptible to Bt toxins, and Bt cotton is not "high dose" for this pest. Bt cotton is routinely sprayed with traditional insecticides for bollworm control. Assays of bollworm field populations for susceptibility to Bt toxins expressed in Bt cotton have produced variable results since pre-deployment of Bt cottons in 1988 and 1992. Analyses of assay response trends have been used by others to suggest that field resistance has evolved to Bt toxins in bollworm, but disagreement exists on definitions of field resistance and confidence of variable assay results to project changes in susceptibility of field populations. Given historical variability in bollworm response to Bt toxins, erratic field control requiring supplemental insecticides since early field testing of Bt cottons, and dramatic increases in corn acreage in cotton growing areas of the Southern US, continued vigilance and concern for resistance evolution are warranted.

  10. Histopathological Effects of Bt and TcdA Insecticidal Proteins on the Midgut Epithelium of Western Corn Rootworm Larvae (Diabrotica virgifera virgifera

    Directory of Open Access Journals (Sweden)

    Andrew J. Bowling

    2017-05-01

    Full Text Available Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte is a major corn pest in the United States, causing annual losses of over $1 billion. One approach to protect against crop loss by this insect is the use of transgenic corn hybrids expressing one or more crystal (Cry proteins derived from Bacillus thuringiensis. Cry34Ab1 and Cry35Ab1 together comprise a binary insecticidal toxin with specific activity against WCR. These proteins have been developed as insect resistance traits in commercialized corn hybrids resistant to WCR feeding damage. Cry34/35Ab1 is a pore forming toxin, but the specific effects of Cry34/35Ab1 on WCR cells and tissues have not been well characterized microscopically, and the overall histopathology is poorly understood. Using high-resolution resin-based histopathology methods, the effects of Cry34/35Ab1 as well as Cry3Aa1, Cry6Aa1, and the Photorhabdus toxin complex protein TcdA have been directly visualized and documented. Clear symptoms of intoxication were observed for all insecticidal proteins tested, including swelling and sloughing of enterocytes, constriction of midgut circular muscles, stem cell activation, and obstruction of the midgut lumen. These data demonstrate the effects of these insecticidal proteins on WCR midgut cells, and the collective response of the midgut to intoxication. Taken together, these results advance our understanding of the insect cell biology and pathology of these insecticidal proteins, which should further the field of insect resistance traits and corn rootworm management.

  11. Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (CEA) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential.

    Science.gov (United States)

    Roy, Amit; Gupta, Sumanti; Hess, Daniel; Das, Kali Pada; Das, Sampa

    2014-07-01

    The insecticidal potential of Galanthus nivalis agglutinin-related lectins against hemipterans has been experimentally proven. However, the basis behind the toxicity of these lectins against hemipterans remains elusive. The present study elucidates the molecular basis behind insecticidal efficacy of Colocasia esculenta tuber agglutinin (CEA) against Bemisia tabaci and Lipaphis erysimi. Confocal microscopic analyses highlighted the binding of 25 kDa stable homodimeric lectin to insect midgut. Ligand blots followed by LC MS/MS analyses identified binding partners of CEA as vacuolar ATP synthase and sarcoplasmic endoplasmic reticulum type Ca(2+) ATPase from B. tabaci, and ATP synthase, heat shock protein 70 and clathrin heavy chain assembly protein from L. erysimi. Internalization of CEA into hemolymph was confirmed by Western blotting. Glycoprotein nature of the receptors was identified through glycospecific staining. Deglycosylation assay indicated the interaction of CEA with its receptors to be probably glycan mediated. Surface plasmon resonance analysis revealed the interaction kinetics between ATP synthase of B. tabaci with CEA. Pathway prediction study based on Drosophila homologs suggested the interaction of CEA with insect receptors that probably led to disruption of cellular processes causing growth retardation and loss of fecundity of target insects. Thus, the present findings strengthen our current understanding of the entomotoxic potentiality of CEA, which will facilitate its future biotechnological applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification and cloning of two insecticidal protein genes from ...

    African Journals Online (AJOL)

    Bacillus thuringiensis (Bt) is the most widely applied type of microbial pesticide due to its high specificity and environmental safety. The activity of Bt is largely attributed to the insecticidal crystal protein encoded by the cry genes. Different insecticidal crystal proteins of Bt have different bioactivity against distinct agricultural ...

  13. Effect of Seed Blends and Soil-Insecticide on Western and Northern Corn Rootworm Emergence from mCry3A+eCry3.1Ab Bt Maize.

    Science.gov (United States)

    Frank, Daniel L; Kurtz, Ryan; Tinsley, Nicholas A; Gassmann, Aaron J; Meinke, Lance J; Moellenbeck, Daniel; Gray, Michael E; Bledsoe, Larry W; Krupke, Christian H; Estes, Ronald E; Weber, Patrick; Hibbard, Bruce E

    2015-06-01

    Seed blends containing various ratios of transgenic Bt maize (Zea mays L.) expressing the mCry3A+eCry3.1Ab proteins and non-Bt maize (near-isoline maize) were deployed alone and in combination with a soil applied pyrethroid insecticide (Force CS) to evaluate the emergence of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in a total of nine field environments across the Midwestern United States in 2010 and 2011. Northern corn rootworm, Diabrotica barberi Smith & Lawrence emergence was also evaluated in four of these environments. Both western and northern corn rootworm beetle emergence from all Bt treatments was significantly reduced when compared with beetle emergence from near-isoline treatments. Averaged across all environments, western corn rootworm beetle emergence from 95:5, 90:10, and 80:20 seed blend ratios of mCry3A+eCry3.1Ab: near-isoline were 2.6-, 4.2-, and 6.7-fold greater than that from the 100:0 ratio treatment. Northern corn rootworm emergence from the same seed blend treatments resulted in 2.8-, 3.2-, and 4.2-fold more beetles than from the 100:0 treatment. The addition of Force CS (tefluthrin) significantly reduced western corn rootworm beetle emergence for each of the three treatments to which it was applied. Force CS also significantly delayed the number of days to 50% beetle emergence in western corn rootworms. Time to 50% beetle emergence in the 100% mCry3A+eCry3.1Ab treatment with Force CS was delayed 13.7 d when compared with western corn rootworm beetle emergence on near-isoline corn. These data are discussed in terms of rootworm resistance management. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  14. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense.

    Directory of Open Access Journals (Sweden)

    Guoxia Liu

    Full Text Available Chemosensory proteins (CSPs are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1 was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde. This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity.

  15. Fitness of Bt-resistant cabbage loopers on Bt cotton plants.

    Science.gov (United States)

    Tetreau, Guillaume; Wang, Ran; Wang, Ping

    2017-10-01

    Development of resistance to the insecticidal toxins from Bacillus thuringiensis (Bt) in insects is the major threat to the continued success of transgenic Bt crops in agriculture. The fitness of Bt-resistant insects on Bt and non-Bt plants is a key parameter that determines the development of Bt resistance in insect populations. In this study, a comprehensive analysis of the fitness of Bt-resistant Trichoplusia ni strains on Bt cotton leaves was conducted. The Bt-resistant T. ni strains carried two genetically independent mechanisms of resistance to Bt toxins Cry1Ac and Cry2Ab. The effects of the two resistance mechanisms, individually and in combination, on the fitness of the T. ni strains on conventional non-Bt cotton and on transgenic Bt cotton leaves expressing a single-toxin Cry1Ac (Bollgard I) or two Bt toxins Cry1Ac and Cry2Ab (Bollgard II) were examined. The presence of Bt toxins in plants reduced the fitness of resistant insects, indicated by decreased net reproductive rate (R 0 ) and intrinsic rate of increase (r). The reduction in fitness in resistant T. ni on Bollgard II leaves was greater than that on Bollgard I leaves. A 12.4-day asynchrony of adult emergence between the susceptible T. ni grown on non-Bt cotton leaves and the dual-toxin-resistant T. ni on Bollgard II leaves was observed. Therefore, multitoxin Bt plants not only reduce the probability for T. ni to develop resistance but also strongly reduce the fitness of resistant insects feeding on the plants. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy

    Science.gov (United States)

    Algimantas P. Valaitis

    2011-01-01

    The microbial insecticide Bacillus thuringiensis (Bt) produces Cry toxins, proteins that bind to the brush border membranes of gut epithelial cells of insects that ingest it, disrupting the integrity of the membranes, and leading to cell lysis and insect death. In gypsy moth, Lymantria dispar, two toxin-binding molecules for the...

  17. Can pyramids and seed mixtures delay resistance to Bt crops?

    Science.gov (United States)

    The primary strategy for delaying evolution of pest resistance to transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt) entails refuges of plants that do not produce Bt toxins and thus allow survival of susceptible pests. Recent advances include using refuges together...

  18. Bt pollen dispersal and Bt kernel mosaics: integrity of non-Bt refugia for lepidopteran resistance management in maize.

    Science.gov (United States)

    Burkness, Eric C; Hutchison, W D

    2012-10-01

    Field trials were conducted at Rosemount, MN in 2009 and 2010, to measure pollen movement from Bt corn to adjacent blocks of non-Bt refuge corn. As the use of Bt corn hybrids continues to increase in the United States, and new insect resistance management (IRM) plans are implemented, it is necessary to measure the efficacy of these IRM plans. In Minnesota, the primary lepidopteran pests of corn include the European corn borer, Ostrinia nubilalis (Hübner) and corn earworm, Helicoverpa zea (Boddie). The primary IRM plan in transgenic corn is the use of hybrids expressing a high dose of insecticidal proteins and an insect refuge containing hybrids not expressing insecticidal proteins that produce susceptible insects. Wind-assisted pollen movement in corn occurs readily, and is the primary method of pollination for corn. The combination of pollen movement and viability determines the potential for cross pollination of refuge corn. In 2009 and 2010, cross pollination occurred with the highest frequency on the north and east sides of Bt corn fields, but was found at some level in all directions. Highest levels of cross pollination (75%) were found within the first four rows (3 m) of non-Bt corn adjacent to Bt corn, and in general decreasing levels of cross pollination were found the further the non-Bt corn was planted from the Bt corn. A mosaic of Bt cross-pollinated kernels was found throughout the ear, but in both years the ear tip had the highest percentage of cross-pollinated kernels; this pattern may be linked to the synchrony of pollen shed and silking between Bt and non-Bt corn hybrids. The dominant wind direction in both years was from WNW. However, in both years, there were also prevailing winds from SSW and WSW. Further studies are needed to quantify Bt levels in cross-pollinated kernels, measure the Bt dose of such kernels and associated lepidopteran pest survival, and measure the impact of Bt pollen on lepidopteran pests, particularly when considering the

  19. The Halo Effect: Suppression of Pink Bollworm on Non-Bt Cotton by Bt Cotton in China

    Science.gov (United States)

    Tabashnik, Bruce E.; Huang, Minsong; Wu, Kongming

    2012-01-01

    In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this “halo effect” against pink bollworm (Pectinophora gossypiella) in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera) decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance. PMID:22848685

  20. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  1. Field-based assessment of resistance to Bt Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae)

    Science.gov (United States)

    Western corn rootworm, Diabrotica virgifera virgifera LeConte, is a serious pest of corn and is managed with Bt corn that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Beginning in 2009, severe injury to Bt corn producing Cry3Bb1 was observed in some cornfields ...

  2. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis.

    Science.gov (United States)

    Wolfenbarger, L LaReesa; Naranjo, Steven E; Lundgren, Jonathan G; Bitzer, Royce J; Watrud, Lidia S

    2008-05-07

    Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control. Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will provide researchers with information to design more robust experiments and will inform the

  3. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    L LaReesa Wolfenbarger

    Full Text Available BACKGROUND: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt. We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. METHODOLOGY/PRINCIPAL FINDINGS: We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control. CONCLUSIONS/SIGNIFICANCE: Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will

  4. Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm.

    Science.gov (United States)

    Wan, Peng; Xu, Dong; Cong, Shengbo; Jiang, Yuying; Huang, Yunxin; Wang, Jintao; Wu, Huaiheng; Wang, Ling; Wu, Kongming; Carrière, Yves; Mathias, Andrea; Li, Xianchun; Tabashnik, Bruce E

    2017-05-23

    Extensive cultivation of crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has suppressed some major pests, reduced insecticide sprays, enhanced pest control by natural enemies, and increased grower profits. However, these benefits are being eroded by evolution of resistance in pests. We report a strategy for combating resistance by crossing transgenic Bt plants with conventional non-Bt plants and then crossing the resulting first-generation (F 1 ) hybrid progeny and sowing the second-generation (F 2 ) seeds. This strategy yields a random mixture within fields of three-quarters of plants that produce Bt toxin and one-quarter that does not. We hypothesized that the non-Bt plants in this mixture promote survival of susceptible insects, thereby delaying evolution of resistance. To test this hypothesis, we compared predictions from computer modeling with data monitoring pink bollworm ( Pectinophora gossypiella ) resistance to Bt toxin Cry1Ac produced by transgenic cotton in an 11-y study at 17 field sites in six provinces of China. The frequency of resistant individuals in the field increased before this strategy was widely deployed and then declined after its widespread adoption boosted the percentage of non-Bt cotton plants in the region. The correspondence between the predicted and observed outcomes implies that this strategy countered evolution of resistance. Despite the increased percentage of non-Bt cotton, suppression of pink bollworm was sustained. Unlike other resistance management tactics that require regulatory intervention, growers adopted this strategy voluntarily, apparently because of advantages that may include better performance as well as lower costs for seeds and insecticides.

  5. Climate change and genetically modified insecticidal plants. Plant-herbivore interactions and secondary chemistry of Bt Cry1Ac-toxin producing oilseed rape (Brassica napus L.) under elevated CO{sub 2} or O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, S.

    2008-07-01

    Transgenic insect-resistant plants producing Bacillus thuringiensis (Bt) crystalline endotoxins are the first commercial applications of genetically modified crops and their use has steadily expanded over the last ten years. Together with the expanding agricultural use of transgenic crops, climate change is predicted to be among the major factors affecting agriculture in the coming years. Plants, herbivores and insects of higher trophic levels are all predicted to be affected by the current atmospheric climate change. However, only very few studies to date have addressed the sustained use and herbivore interactions of Bt-producing plants under the influence of these abiotic factors. The main objective of this study was to comparatively assess the performance of a Bt Cry1Ac toxin-producing oilseed rape line and its non-transgenic parent line in terms of vegetative growth and allocation to secondary defence compounds (glucosinolates and volatile terpenoids), and the performance of Bt-target and nontarget insect herbivores as well as tritrophic interaction functioning on these lines. For this, several growth chamber experiments with vegetative stage non-Bt and Bt plants facing exposures to doubled atmospheric CO{sub 2} level alone or together with increased temperature and different regimes of elevated O{sub 3} were conducted. The main hypothesis of this work was that Bt-transgenic plants have reduced performance or allocation to secondary compounds due to the cost of producing Bt toxin under changed abiotic environments. The Bt-transgenic oilseed rape line exhibited slightly delayed vegetative growth and had increased nitrogen and reduced carbon content compared to the non-transgenic parent line, but the physiological responses (i.e. biomass gain and photosynthesis) of the plant lines to CO{sub 2} and O{sub 3} enhancements were equal. Two aphid species, non-susceptible to Bt Cry1Ac, showed equal performance and reproduction on both plant lines under elevated CO{sub 2

  6. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers.

    Science.gov (United States)

    Hutchison, W D; Burkness, E C; Mitchell, P D; Moon, R D; Leslie, T W; Fleischer, S J; Abrahamson, M; Hamilton, K L; Steffey, K L; Gray, M E; Hellmich, R L; Kaster, L V; Hunt, T E; Wright, R J; Pecinovsky, K; Rabaey, T L; Flood, B R; Raun, E S

    2010-10-08

    Transgenic maize engineered to express insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has become widely adopted in U.S. agriculture. In 2009, Bt maize was planted on more than 22.2 million hectares, constituting 63% of the U.S. crop. Using statistical analysis of per capita growth rate estimates, we found that areawide suppression of the primary pest Ostrinia nubilalis (European corn borer) is associated with Bt maize use. Cumulative benefits over 14 years are an estimated $3.2 billion for maize growers in Illinois, Minnesota, and Wisconsin, with more than $2.4 billion of this total accruing to non-Bt maize growers. Comparable estimates for Iowa and Nebraska are $3.6 billion in total, with $1.9 billion for non-Bt maize growers. These results affirm theoretical predictions of pest population suppression and highlight economic incentives for growers to maintain non-Bt maize refugia for sustainable insect resistance management.

  7. Similar genetic basis of resistance to Bt toxin Cry1Ac in Boll-selected and diet-selected strains of pink bollworm.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Fabrick

    Full Text Available Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]. The Arizona pooled resistant strain (AZP-R was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3 in the pink bollworm cadherin gene (PgCad1 linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1 progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4 predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.

  8. Comparative analysis of Bacillus thuringiensis toxin binding to gypsy moth, browntail moth, and douglas-fir tussock moth midgut tissue sections using fluorescence microscopy

    Science.gov (United States)

    Algimantas P. Valaitis; John D. Podgwaite

    2011-01-01

    Many strains of Bacillus thuringiensis (Bt) produce insecticidal proteins, also referred to as Cry toxins, in crystal inclusions during sporulation. When ingested by insects, the Cry toxins bind to receptors on the brush border midgut epithelial cells and create pores in the epithelial gut membranes resulting in the death of...

  9. Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells

    Directory of Open Access Journals (Sweden)

    Nadarajah Vishna

    2010-11-01

    Full Text Available Abstract Background Bacillus thuringiensis (Bt, an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt parasporal protein called parasporin. However, little is known about the receptor molecules that bind parasporins and the mechanism of anti-cancer activity. A Malaysian Bt isolate, designated Bt18 produces parasporal protein that exhibit preferential cytotoxic activity for human leukaemic T cells (CEM-SS but is non-cytotoxic to normal T cells or other cancer cell lines such as human cervical cancer (HeLa, human breast cancer (MCF-7 and colon cancer (HT-29 suggesting properties similar to parasporin. In this study we aim to identify the binding protein for Bt18 in human leukaemic T cells. Methods Bt18 parasporal protein was separated using Mono Q anion exchange column attached to a HPLC system and antibody was raised against the purified 68-kDa parasporal protein. Receptor binding assay was used to detect the binding protein for Bt18 parasporal protein in CEM-SS cells and the identified protein was sent for N-terminal sequencing. NCBI protein BLAST was used to analyse the protein sequence. Double immunofluorescence staining techniques was applied to localise Bt18 and binding protein on CEM-SS cell. Results Anion exchange separation of Bt18 parasporal protein yielded a 68-kDa parasporal protein with specific cytotoxic activity. Polyclonal IgG (anti-Bt18 for the 68-kDa parasporal protein was successfully raised and purified. Receptor binding assay showed that Bt18 parasporal protein bound to a 36-kDa protein from the CEM-SS cells lysate. N-terminal amino acid sequence of the 36-kDa protein was GKVKVGVNGFGRIGG. NCBI protein BLAST revealed that the binding protein was Glyceraldehyde-3-phosphate dehydrogenase (GAPDH. Double immunofluorescence staining showed

  10. Bt crop effects on functional guilds of non-target arthropods: A meta-analysis (journal)

    Science.gov (United States)

    Background: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of...

  11. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda).

    Science.gov (United States)

    Banerjee, Rahul; Hasler, James; Meagher, Robert; Nagoshi, Rodney; Hietala, Lucas; Huang, Fangneng; Narva, Kenneth; Jurat-Fuentes, Juan Luis

    2017-09-07

    Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm (Spodoptera frugiperda) is a devastating pest of corn in the Western Hemisphere initially controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein (event TC1507). However field-evolved resistance to TC1507 was observed in Puerto Rico in 2007 and has subsequently been reported in a number of locations in North and South America. Early studies on Puerto Rico fall armyworm populations found that the resistance phenotype was associated with reduced expression of alkaline phosphatase. However, in this work we show that field-evolved resistance to Cry1Fa Bt corn in Puerto Rico is closely linked to a mutation in an ATP Binding Cassette subfamily C2 (ABCC2) gene that functions as a Cry1Fa receptor in susceptible insects. Furthermore, we report a DNA-based genotyping test used to demonstrate the presence of the resistant (SfABCC2mut) allele in Puerto Rico populations in 2007, coincident with the first reports of damage to TC1507 corn. These DNA-based field screening data provide strong evidence that resistance to TC1507 in fall armyworm maps to the SfABCC2 gene and provides a useful molecular marker for detecting the SfABCC2mut allele in resistant fall armyworm.

  12. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in India.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Fabrick

    Full Text Available Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved resistance to Bt crops remains limited. In particular, previous work has not identified the genes conferring resistance in any cases where field-evolved resistance has reduced the efficacy of a Bt crop. Here we report that mutations in a gene encoding a cadherin protein that binds Bt toxin Cry1Ac are associated with field-evolved resistance of pink bollworm (Pectinophora gossypiella in India to Cry1Ac produced by transgenic cotton. We conducted laboratory bioassays that confirmed previously reported resistance to Cry1Ac in pink bollworm from the state of Gujarat, where Bt cotton producing Cry1Ac has been grown extensively. Analysis of DNA from 436 pink bollworm from seven populations in India detected none of the four cadherin resistance alleles previously reported to be linked with resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona. However, DNA sequencing of pink bollworm derived from resistant and susceptible field populations in India revealed eight novel, severely disrupted cadherin alleles associated with resistance to Cry1Ac. For these eight alleles, analysis of complementary DNA (cDNA revealed a total of 19 transcript isoforms, each containing a premature stop codon, a deletion of at least 99 base pairs, or both. Seven of the eight disrupted alleles each produced two or more different transcript isoforms, which implicates alternative splicing of messenger RNA (mRNA. This represents the first example of alternative splicing associated with field-evolved resistance that reduced the efficacy of a Bt crop.

  13. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in India.

    Science.gov (United States)

    Fabrick, Jeffrey A; Ponnuraj, Jeyakumar; Singh, Amar; Tanwar, Raj K; Unnithan, Gopalan C; Yelich, Alex J; Li, Xianchun; Carrière, Yves; Tabashnik, Bruce E

    2014-01-01

    Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt) that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved resistance to Bt crops remains limited. In particular, previous work has not identified the genes conferring resistance in any cases where field-evolved resistance has reduced the efficacy of a Bt crop. Here we report that mutations in a gene encoding a cadherin protein that binds Bt toxin Cry1Ac are associated with field-evolved resistance of pink bollworm (Pectinophora gossypiella) in India to Cry1Ac produced by transgenic cotton. We conducted laboratory bioassays that confirmed previously reported resistance to Cry1Ac in pink bollworm from the state of Gujarat, where Bt cotton producing Cry1Ac has been grown extensively. Analysis of DNA from 436 pink bollworm from seven populations in India detected none of the four cadherin resistance alleles previously reported to be linked with resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona. However, DNA sequencing of pink bollworm derived from resistant and susceptible field populations in India revealed eight novel, severely disrupted cadherin alleles associated with resistance to Cry1Ac. For these eight alleles, analysis of complementary DNA (cDNA) revealed a total of 19 transcript isoforms, each containing a premature stop codon, a deletion of at least 99 base pairs, or both. Seven of the eight disrupted alleles each produced two or more different transcript isoforms, which implicates alternative splicing of messenger RNA (mRNA). This represents the first example of alternative splicing associated with field-evolved resistance that reduced the efficacy of a Bt crop.

  14. IT-BT convergence technology

    International Nuclear Information System (INIS)

    2012-12-01

    This book explains IT-BT convergence technology as the future technology, which includes a prolog, easy IT-BT convergence technology that has infinite potentials for new value, policy of IT-BT convergence technology showing the potential of smart Korea, IT-BT convergence opening happy future, for the new future of IT powerful nation Korea with IT-BT convergence technology and an epilogue. This book reveals the conception, policy, performance and future of IT-BT convergence technology.

  15. Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab

    Science.gov (United States)

    Evolution of resistance in pests threatens the long-term success of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and ...

  16. Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field.

    Science.gov (United States)

    Chattopadhyay, Pritam; Banerjee, Goutam

    2018-04-01

    Bacillus thuringiensis ( Bt ) is a Gram-positive, spore-forming, soil bacterium, which is very popular bio-control agent in agricultural and forestry. In general, B. thuringiensis secretes an array of insecticidal proteins including toxins produced during vegetative growth phase (such as secreted insecticidal protein, Sip; vegetative insecticidal proteins, Vip), parasporal crystalline δ-endotoxins produced during vegetative stationary phase (such as cytolytic toxin, Cyt; and crystal toxin, Cry), and β-exotoxins. Till date, a wide spectrum of Cry proteins has been reported and most of them belong to three-domain-Cry toxins, Bin-like toxin, and Etx_Mtx2-like toxins. To the best of our knowledge, neither Bt insecticidal toxins are exclusive to Bt nor all the strains of Bt are capable of producing insecticidal Bt toxins. The lacuna in their latest classification has also been discussed. In this review, the updated information regarding the insecticidal Bt toxins and their different mode of actions were summarized. Before applying the Bt toxins on agricultural field, the non-specific effects of toxins should be investigated. We also have summarized the problem of insect resistance and the strategies to combat with this problem. We strongly believe that this information will help a lot to the budding researchers in the field of modern pest control biotechnology.

  17. Impact of corn earworm injury on yield of transgenic corn producing Bt toxins in the Carolinas.

    Science.gov (United States)

    Reay-Jones, Francis P F; Reisig, Dominic D

    2014-06-01

    Transgenic corn, Zea mays L., hybrids expressing insecticidal Cry proteins from Bacillus thuringiensis (Bt) and insecticide applications to suppress injury from Helicoverpa zea (Boddie) were evaluated in Florence, SC, and in Plymouth, NC, in 2012 and 2013. Based on kernel area injured, insecticide applications (chlorantraniliprole) every 3-4 d from R1 until H. zea had cycled out of corn reduced injury by 80-93% in Florence and 94-95% in Plymouth. Despite intensive applications of insecticide (13-18 per trial), limited injury still occurred in all treated plots in 2012, except in DKC 68-03 (Genuity VT Double PRO), based on kernels injured (both locations) and proportion of injured ears (Florence only). In 2013, ear injury was low in Plymouth, with no kernel injury in any insecticide-treated plots, except P1498R (non-Bt) and P1498YHR (Optimum Intrasect). Injury in Florence in 2013 did not occur in treated plots of DKC 68-04 (non-Bt), DKC 68-03 (Genuity VT Double PRO), and N785-3111 (Agrisure Viptera). Yields were not significantly affected by insecticide treatment and were not statistically different among near-isolines with and without Bt traits. Yields were not significantly associated with kernel injury based on regression analyses. The value of using Bt corn hybrids to manage H. zea is discussed.

  18. Biosafety assessment of transgenic Bt cotton on model animals

    Directory of Open Access Journals (Sweden)

    Sadia Bano

    2016-05-01

    Full Text Available Abstract Background: To know the effects of transgenic crops on soil microorganisms, animals and other expected hazards due to the introduction of GM crops into the environment is critical both scientifically and environmentally. The work was conducted to study the effect of insecticidal Bt protein on Rats and Earthworms. Methods: For this purpose, animals like rat and soil organisms like Earthworm were selected. Rats were selected on the basis of its 95% homology on genomic, cellular and enzymatic level with human while earthworm were preferred on the basis of their direct contact with soil to evaluate the impact of Bt (Cry1AC crop field soil on earthworm, secreted by root exudates of Bt cotton. Several physical, molecular, biochemical and histological analyses were performed on both Rats/Earthworms fed on standard diet (control group as well containing Bt protein (experimental group. Results: Molecular analyses such as immune Dot blot, SDS-PAGE, ELISA and PCR, confirmed the absence of Cry1Ac protein in blood and urine samples of rats, which were fed with Bt protein in their diet. Furthermore, histological studies showed that there was no difference in cellular architecture in liver, heart, kidney and intestine of Bt and non-Bt diet fed rats. To see the effect of Bt on earthworm two different groups were studied, one with transgenic plant field soil supplemented with grinded leaves of cotton and second group with non-Bt field soil. Conclusions: No lethal effects of transgenic Bt protein on the survival of earthworm and rats were observed. Bradford assay, Dipstick assay ELISA demonstrated the absence of Cry1Ac protein in the mid-gut epithelial tissue of earthworm. The results of present study will be helpful in successful deployment and commercial release of genetically modified crop in Pakistan.

  19. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers.

    Science.gov (United States)

    Dively, Galen P; Venugopal, P Dilip; Bean, Dick; Whalen, Joanne; Holmstrom, Kristian; Kuhar, Thomas P; Doughty, Hélène B; Patton, Terry; Cissel, William; Hutchison, William D

    2018-03-27

    Transgenic crops containing the bacterium Bacillus thuringiensis (Bt) genes reduce pests and insecticide usage, promote biocontrol services, and economically benefit growers. Area-wide Bt adoption suppresses pests regionally, with declines expanding beyond the planted Bt crops into other non-Bt crop fields. However, the offsite benefits to growers of other crops from such regional suppression remain uncertain. With data spanning 1976-2016, we demonstrate that vegetable growers benefit via decreased crop damage and insecticide applications in relation to pest suppression in the Mid-Atlantic United States. We provide evidence for the regional suppression of Ostrinia nubilalis (Hübner), European corn borer, and Helicoverpa zea (Boddie), corn earworm, populations in association with widespread Bt maize adoption (1996-2016) and decreased economic levels for injury in vegetable crops [peppers ( Capsicum annuum L.), green beans ( Phaseolus vulgaris L.), and sweet corn ( Zea mays L., convar. saccharata )] compared with the pre-Bt period (1976-1995). Moth populations of both species significantly declined in association with widespread Bt maize (field corn) adoption, even as increased temperatures buffered the population reduction. We show marked decreases in the number of recommended insecticidal applications, insecticides applied, and O. nubilalis damage in vegetable crops in association with widespread Bt maize adoption. These offsite benefits to vegetable growers in the agricultural landscape have not been previously documented, and the positive impacts identified here expand on the reported ecological effects of Bt adoption. Our results also underscore the need to account for offsite economic benefits of pest suppression, in addition to the direct economic benefits of Bt crops.

  20. Dominant inheritance of field-evolved resistance to Bt corn in Busseolafusca.

    Directory of Open Access Journals (Sweden)

    Pascal Campagne

    Full Text Available Transgenic crops expressing Bacillus thuringiensis (Bt toxins have been adopted worldwide, notably in developing countries. In spite of their success in controlling target pests while allowing a substantial reduction of insecticide use, the sustainable control of these pest populations is threatened by the evolution of resistance. The implementation of the "high dose/refuge" strategy for managing insect resistance in transgenic crops aims at delaying the evolution of resistance to Bt crops in pest populations by promoting survival of susceptible insects. However, a crucial condition for the "high dose/refuge" strategy to be efficient is that the inheritance of resistance should be functionally recessive. Busseolafusca developed high levels of resistance to the Bt toxin Cry 1Ab expressed in Bt corn in South Africa. To test whether the inheritance of B. fusca resistance to the Bt toxin could be considered recessive we performed controlled crosses with this pest and evaluated its survival on Bt and non-Bt corn. Results show that resistance of B. fusca to Bt corn is dominant, which refutes the hypothesis of recessive inheritance. Survival on Bt corn was not lower than on non-Bt corn for both resistant larvae and the F1 progeny from resistant × susceptible parents. Hence, resistance management strategies of B. fusca to Bt corn must address non-recessive resistance.

  1. Dominant inheritance of field-evolved resistance to Bt corn in Busseolafusca.

    Science.gov (United States)

    Campagne, Pascal; Kruger, Marlene; Pasquet, Rémy; Le Ru, Bruno; Van den Berg, Johnnie

    2013-01-01

    Transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been adopted worldwide, notably in developing countries. In spite of their success in controlling target pests while allowing a substantial reduction of insecticide use, the sustainable control of these pest populations is threatened by the evolution of resistance. The implementation of the "high dose/refuge" strategy for managing insect resistance in transgenic crops aims at delaying the evolution of resistance to Bt crops in pest populations by promoting survival of susceptible insects. However, a crucial condition for the "high dose/refuge" strategy to be efficient is that the inheritance of resistance should be functionally recessive. Busseolafusca developed high levels of resistance to the Bt toxin Cry 1Ab expressed in Bt corn in South Africa. To test whether the inheritance of B. fusca resistance to the Bt toxin could be considered recessive we performed controlled crosses with this pest and evaluated its survival on Bt and non-Bt corn. Results show that resistance of B. fusca to Bt corn is dominant, which refutes the hypothesis of recessive inheritance. Survival on Bt corn was not lower than on non-Bt corn for both resistant larvae and the F1 progeny from resistant × susceptible parents. Hence, resistance management strategies of B. fusca to Bt corn must address non-recessive resistance.

  2. Bt rice in China - focusing the nontarget risk assessment.

    Science.gov (United States)

    Li, Yunhe; Zhang, Qingling; Liu, Qingsong; Meissle, Michael; Yang, Yan; Wang, Yanan; Hua, Hongxia; Chen, Xiuping; Peng, Yufa; Romeis, Jörg

    2017-10-01

    Bt rice can control yield losses caused by lepidopteran pests but may also harm nontarget species and reduce important ecosystem services. A comprehensive data set on herbivores, natural enemies, and their interactions in Chinese rice fields was compiled. This together with an analysis of the Cry protein content in arthropods collected from Bt rice in China indicated which nontarget species are most exposed to the insecticidal protein and should be the focus of regulatory risk assessment. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Resistance to Bt corn by western corn rootworm (Coleoptera: Chrysomelidae) in the U.S. corn belt

    Science.gov (United States)

    Transgenic Bt corn hybrids that produce insecticidal proteins from the bacterium Bacillus thuringiensis Berliner have become the standard insect management tactic across the United States Corn Belt. Widespread planting of Bt corn creates intense selection pressure for target insects to develop resis...

  4. The Cultivation of Bt Corn Producing Cry1Ac Toxins Does Not Adversely Affect Non-Target Arthropods

    OpenAIRE

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure o...

  5. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton

    Science.gov (United States)

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels. PMID:28099508

  6. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    Directory of Open Access Journals (Sweden)

    Jun-Yu Luo

    Full Text Available An increasing area of transgenic Bacillus thuringiensis (Bt cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW Helicoverpa armigera (Hübner in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]. We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  7. Does Bt rice pose risks to non-target arthropods? Results of a meta-analysis in China.

    Science.gov (United States)

    Dang, Cong; Lu, Zengbin; Wang, Long; Chang, Xuefei; Wang, Fang; Yao, Hongwei; Peng, Yufa; Stanley, David; Ye, Gongyin

    2017-08-01

    Transgenic Bt rice expressing the insecticidal proteins derived from Bacillus thuringiensis Berliner (Bt) has been developed since 1989. Their ecological risks towards non-target organisms have been investigated; however, these studies were conducted individually, yielding uncertainty regarding potential agroecological risks associated with large-scale deployment of Bt rice lines. Here, we developed a meta-analysis of the existing literature to synthesize current knowledge of the impacts of Bt rice on functional arthropod guilds, including herbivores, predators, parasitoids and detritivores in laboratory and field studies. Laboratory results indicate Bt rice did not influence survival rate and developmental duration of herbivores, although exposure to Bt rice led to reduced egg laying, which correctly predicted their reduced abundance in Bt rice agroecosystems. Similarly, consuming prey exposed to Bt protein did not influence survival, development or fecundity of predators, indicating constant abundances of predators in Bt rice fields. Compared to control agroecosystems, parasitoid populations decreased slightly in Bt rice cropping systems, while detritivores increased. We draw two inferences. One, laboratory studies of Bt rice showing effects on ecological functional groups are mainly either consistent with or more conservative than results of field studies, and two, Bt rice will pose negligible risks to the non-target functional guilds in future large-scale Bt rice agroecosystems in China. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Science.gov (United States)

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  9. Dispersal behavior of neonate European corn borer (Lepidoptera: Crambidae) on Bt corn.

    Science.gov (United States)

    Razze, J M; Mason, C E

    2012-08-01

    European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), has historically been a significant economically important insect pest of corn (Zea mays L.) in the United States and Canada. The development in the 1990s of genetically modified corn expressing genes derived from Bacillus thuringiensis (Bt) that encodes insecticidal crystalline (Cry) proteins has proven to be effective in controlling this insect as well as other corn pests. The purpose of this study was to assess the movement and dispersal behavior of neonate European corn borer on Bt corn. We examined differences in neonate European corn borer dispersal behavior for the first 4 h after eclosion in the field among a stacked pyramid (Cry1F X Cry1Ab X Cry34/35Ab1) Bt corn, a Cry1F Bt corn, and a non-Bt sweet corn; and in the laboratory among a Bt corn hybrid containing Cry1F, a hybrid containing Cry1Ab, a pyramid combining these two hybrids (Cry1F X Cry1Ab), and a non-Bt near isoline corn. In field experiments, we found that dispersal was significantly higher on Bt corn compared with sweet corn. In laboratory experiments, dispersal was significantly higher on Cry1Ab Bt corn and Cry1F X Cry1Ab Bt corn than on non-Bt near isoline corn. Results indicated that neonate dispersal may be significantly greater in Bt cornfields compared with non-Bt cornfields. The findings on dispersal behavior in this study will be useful in evaluating the efficacy of a blended seed refuge system for managing European corn borer resistance in Bt corn.

  10. Bacillus thuringiensis monogenic strains: screening and interactions with insecticides used against rice pests

    Science.gov (United States)

    Pinto, Laura M.N.; Dörr, Natália C.; Ribeiro, Ana Paula A.; de Salles, Silvia M.; de Oliveira, Jaime V.; Menezes, Valmir G.; Fiuza, Lidia M.

    2012-01-01

    The screening of Bacillus thuringiensis (Bt) Cry proteins with high potential to control insect pests has been the goal of numerous research groups. In this study, we evaluated six monogenic Bt strains (Bt dendrolimus HD-37, Bt kurstaki HD-1, Bt kurstaki HD-73, Bt thuringiensis 4412, Bt kurstaki NRD-12 and Bt entomocidus 60.5, which codify the cry1Aa, cry1Ab, cry1Ac, cry1Ba, cry1C, cry2A genes respectively) as potential insecticides for the most important insect pests of irrigated rice: Spodoptera frugiperda, Diatraea saccharalis, Oryzophagus oryzae, Oebalus poecilus and Tibraca limbativentris. We also analyzed their compatibility with chemical insecticides (thiamethoxam, labdacyhalothrin, malathion and fipronil), which are extensively used in rice crops. The bioassay results showed that Bt thuringiensis 4412 and Bt entomocidus 60.5 were the most toxic for the lepidopterans, with a 93% and 82% mortality rate for S. frugiperda and D. saccharalis, respectively. For O. oryzae, the Bt kurstaki NRD-12 (64%) and Bt dendrolimus HD-37 (62%) strains were the most toxic. The Bt dendrolimus HD-37 strain also caused high mortality (82%) to O. poecilus, however the strains assessed to T. limbativentris caused a maximum rate of 5%. The assays for the Bt strains interaction with insecticides revealed the compatibility of the six strains with the four insecticides tested. The results from this study showed the high potential of cry1Aa and cry1Ba genes for genetic engineering of rice plants or the strains to biopesticide formulations. PMID:24031872

  11. Sustainability of insect resistance management strategies for transgenic Bt corn.

    Science.gov (United States)

    Glaser, John A; Matten, Sharlene R

    2003-12-01

    Increasing interest in the responsible management of technology in the industrial and agricultural sectors of the economy has been met thorough the development of broadly applicable tools to assess the "sustainability" of new technologies. An arena ripe for application of such analysis is the deployment of transgenic crops. The new transgenic pesticidal or plant-incorporated protectant (PIP) crops have seen widespread application in the United States based on the features of higher yield, lower applications of insecticides, and control of mycotoxin content. However, open rejection of these new crops in Europe and in other countries has been a surprising message and has limited their worldwide acceptance. The US Environmental Protection Agency's (USEPA) Office of Pesticide Programs (OPP) has worked on the development and analysis of insect resistance management (IRM) strategies and has mandated specific IRM requirements for Bacillus thuringiensis (Bt) crops since 1995 under the Food, Fungicide, Insecticide, and Rodenticide Act. Improvement of data quality and sustainability of IRM strategies have been targeted in an ongoing partnership between the USEPA Office of Research and Development and the Office of Pesticide Programs that will further enhance the agency's ability to develop sustainable insect resistance management strategies for transgenic field corn (Bt corn) producing B. thuringiensis (Bt) insecticidal proteins.

  12. Feeding behavior of neonate Ostrinia nubilalis (Lepidoptera: Crambidae) on Cry1Ab Bt corn: implications for resistance management.

    Science.gov (United States)

    Razze, J M; Mason, C E; Pizzolato, T D

    2011-06-01

    The European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), is an economically important insect pest of corn, Zea mays L., in the United States and Canada. The development of genetically modified corn expressing genes derived from Bacillus thuringiensis (Bt) that encodes insecticidal crystalline (Cry) proteins has proven to be effective in controlling this insect. To assess the feeding behavior of neonate O. nubilalis on Bt corn, we examined differences in feeding behavior, based on presence of plant material in the gut, between Cry1Ab Bt corn and non-Bt near isoline corn for four intervals over a 48-h period. Feeding experiments revealed that there was significantly less feeding on Bt corn compared with non-Bt near isoline corn. The behavior of neonates on the plant corresponded with the differences in feeding on the two corn lines. The findings also showed that > 50% of the larvae initially left the plant before there was evidence in the gut of feeding regardless of whether the source was Bt or non-Bt corn. A higher quantity of plant material was found in the gut of larvae recovered from leaves of non-Bt compared with Bt corn. At the end of 48 h among the larvae that had left the plant, a greater proportion from Bt corn had plant material in the gut than did those from non-Bt corn.

  13. Diminishing returns from increased percent Bt cotton: the case of pink bollworm.

    Directory of Open Access Journals (Sweden)

    Yunxin Huang

    Full Text Available Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops.

  14. Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops.

    Directory of Open Access Journals (Sweden)

    Anthony R Ives

    Full Text Available Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.

  15. Diminishing returns from increased percent Bt cotton: the case of pink bollworm.

    Science.gov (United States)

    Huang, Yunxin; Wan, Peng; Zhang, Huannan; Huang, Minsong; Li, Zhaohua; Gould, Fred

    2013-01-01

    Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella) population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops.

  16. Insect γ-aminobutyric acid receptors and isoxazoline insecticides: toxicological profiles relative to the binding sites of [³H]fluralaner, [³H]-4'-ethynyl-4-n-propylbicycloorthobenzoate, and [³H]avermectin.

    Science.gov (United States)

    Zhao, Chunqing; Casida, John E

    2014-02-05

    Isoxazoline insecticides, such as fluralaner (formerly A1443), are noncompetitive γ-aminobutyric acid (GABA) receptor (GABA-R) antagonists with selective toxicity for insects versus mammals. The isoxazoline target in house fly ( Musca domestica ) brain has subnanomolar affinity for [³H]fluralaner and a unique pattern of sensitivity to isoxazolines and avermectin B(1a) (AVE) but not to fipronil and α-endosulfan. Inhibitor specificity profiles for 15 isoxazolines examined with Musca GABA-R and [³H]fluralaner, [³H]-4'-ethynyl-4-n-propylbicycloorthobenzoate ([³H]EBOB), and [³H]AVE binding follow the same structure-activity trends although without high correlation. The 3 most potent of the 15 isoxazolines tested in Musca [³H]fluralaner, [³H]EBOB, and [³H]AVE binding assays and in honeybee (Apis mellifera) brain [³H]fluralaner assays are generally those most toxic to Musca and four agricultural pests. Fluralaner does not inhibit [³H]EBOB binding to the human GABA-R recombinant β₃ homopentamer, which is highly sensitive to all of the commercial GABAergic insecticides. The unique isoxazoline binding site may resurrect the GABA-R as a major insecticide target.

  17. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.

    Science.gov (United States)

    Kumar, Suresh; Chandra, Amaresh; Pandey, K C

    2008-09-01

    Introduction of DDT (dichloro-diphenyl-trichloroethane) and following move towards indiscriminate use of synthetic chemical insecticides led to the contamination of water and food sources, poisoning of non-target beneficial insects and development of insect-pests resistant to the chemical insecticides. Increased public concems about the adverse environmental effects of indiscriminate use of chemical insecticides prompted search of altemative methods for insect-pest control. One of the promising alternatives has been the use of biological control agents. There is well-documented history of safe application of Bt (B. thuringiensis, a gram positive soil bacterium) as effective biopesticides and a number of reports of expression of delta-endotoxin gene(s) in crop plants are available. Only a few insecticidal sprays are required on Bt transgenic crops, which not only save cost and time, but also reduce health risks. Insects exhibit remarkable ability to develop resistance to different insecticidal compounds, which raises concern about the unsystematic use of Bt transgenic technology also. Though resistance to Bt products among insect species under field conditions has been rare, laboratory studies show that insects are capable of developing high levels of resistance to one ormore Cry proteins. Now it is generally agreed that 'high-dose/refuge strategy' is the most promising and practical approach to prolong the effectiveness of Bt toxins. Although manybiosafety concerns, ethical and moral issues exist, area under Bt transgenic crops is rapidly increasing and they are cultivated on more than 32 million hectares world over Even after reservation of European Union (EU) for acceptance of geneticaly modified (GM) crops, 6 out of 25 countries have already adopted Bt crops and many otherindustrial countries will adopt Bt transgenic crops in near future. While the modem biotechnology has been recognized to have a great potential for the promotion of human well-being, adoption

  18. Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis.

    Science.gov (United States)

    Yuan, Yihui; Peng, Qin; Gao, Meiying

    2012-12-19

    Endolysins produced by bacteriophages lyse bacteria, and are thus considered a novel type of antimicrobial agent. Several endolysins from Bacillus phages or prophages have previously been characterized and used to target Bacillus strains that cause disease in animals and humans. B. thuringiensis phage BtCS33 is a Siphoviridae family phage and its genome has been sequenced and analyzed. In the BtCS33 genome, orf18 was found to encode an endolysin protein (PlyBt33). Bioinformatic analyses showed that endolysin PlyBt33 was composed of two functional domains, the N-terminal catalytic domain and the C-terminal cell wall binding domain. In this study, the entire endolysin PlyBt33, and both the N- and C-termini,were expressed in Escherichia coli and then purified. The lytic activities of PlyBt33 and its N-terminus were tested on bacteria. Both regions exhibited lytic activity, although PlyBt33 showed a higher lytic activity than the N-terminus. PlyBt33 exhibited activity against all Bacillus strains tested from five different species, but was not active against Gram-negative bacteria. Optimal conditions for PlyBt33 reactivity were pH 9.0 and 50 °C. PlyBt33 showed high thermostability, with 40% of initial activity remaining following 1 h of treatment at 60 °C. The C-terminus of PlyBt33 bound to B. thuringiensis strain HD-73 and Bacillus subtilis strain 168. This cell wall binding domain might be novel, as its amino acid sequence showed little similarity to previously reported endolysins. PlyBt33 showed potential as a novel antimicrobial agent at a relatively high temperature and had a broad lytic spectrum within the Bacillus genus. The C-terminus of PlyBt33 might be a novel kind of cell wall binding domain.

  19. Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Yuan Yihui

    2012-12-01

    Full Text Available Abstract Background Endolysins produced by bacteriophages lyse bacteria, and are thus considered a novel type of antimicrobial agent. Several endolysins from Bacillus phages or prophages have previously been characterized and used to target Bacillus strains that cause disease in animals and humans. B. thuringiensis phage BtCS33 is a Siphoviridae family phage and its genome has been sequenced and analyzed. In the BtCS33 genome, orf18 was found to encode an endolysin protein (PlyBt33. Results Bioinformatic analyses showed that endolysin PlyBt33 was composed of two functional domains, the N-terminal catalytic domain and the C-terminal cell wall binding domain. In this study, the entire endolysin PlyBt33, and both the N- and C-termini,were expressed in Escherichia coli and then purified. The lytic activities of PlyBt33 and its N-terminus were tested on bacteria. Both regions exhibited lytic activity, although PlyBt33 showed a higher lytic activity than the N-terminus. PlyBt33 exhibited activity against all Bacillus strains tested from five different species, but was not active against Gram-negative bacteria. Optimal conditions for PlyBt33 reactivity were pH 9.0 and 50°C. PlyBt33 showed high thermostability, with 40% of initial activity remaining following 1 h of treatment at 60°C. The C-terminus of PlyBt33 bound to B. thuringiensis strain HD-73 and Bacillus subtilis strain 168. This cell wall binding domain might be novel, as its amino acid sequence showed little similarity to previously reported endolysins. Conclusions PlyBt33 showed potential as a novel antimicrobial agent at a relatively high temperature and had a broad lytic spectrum within the Bacillus genus. The C-terminus of PlyBt33 might be a novel kind of cell wall binding domain.

  20. Multi-state trials of Bt sweet corn varieties for control of the corn earworm (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Shelton, A M; Olmstead, D L; Burkness, E C; Hutchison, W D; Dively, G; Welty, C; Sparks, A N

    2013-10-01

    Field tests in 2010-2011 were performed in New York, Minnesota, Maryland, Ohio, and Georgia to compare Bt sweet corn lines expressing Cry1A.105 + Cry2Ab2 and Cry1Ab with their non-Bt isolines, with and without the use of foliar insecticides. The primary insect pest in all locations during the trial years was Heliocoverpa zea (Boddie), which is becoming the most serious insect pest of sweet corn in the United States. At harvest, the ears were measured for marketability according to fresh market and processing standards. For fresh market and processing, least squares regression showed significant effects of protein expression, state, and insecticide frequency. There was a significant effect of year for fresh market but not for processing. The model also showed significant effects of H. zea per ear by protein expression. Sweet corn containing two genes (Cry1A.105 + Cry2Ab2) and a single gene (Cry1Ab) provided high marketability, and both Bt varieties significantly outperformed the traditional non-Bt isolines in nearly all cases regardless of insecticide application frequency. For pest suppression of H. zea, plants expressing Bt proteins consistently performed better than non-Bt isoline plants, even those sprayed at conventional insecticide frequencies. Where comparisons in the same state were made between Cry1A.105 + Cry2Ab2 and Cry1Ab plants for fresh market, the product expressing Cry1A.105 + Cry2Ab2 provided better protection and resulted in less variability in control. Overall, these results indicate Cry1A.105 + Cry2Ab2 and Cry1Ab plants are suitable for fresh market and processing corn production across a diversity of growing regions and years. Our results demonstrate that Bt sweet corn has the potential to significantly reduce the use of conventional insecticides against lepidopteran pests and, in turn, reduce occupational and environmental risks that arise from intensive insecticide use.

  1. Impact of Bt-cotton on soil microbiological and biochemical attributes

    Directory of Open Access Journals (Sweden)

    Sanaullah Yasin

    2016-10-01

    Full Text Available Transgenic Bt-cotton produces Bt-toxins (Cry proteins which may accumulate and persist in soil due to their binding ability on soil components. In the present study, the potential impacts of Bt- and non-Bt genotypes of cotton on soil microbial activity, substrate use efficiency, viable microbial population counts, and nutrient dynamics were studied. Two transgenic Bt-cotton genotypes (CIM-602 CIM-599 expressing cry1 Ac gene and two non-Bt cotton genotypes (CIM-573 and CIM-591 were used to evaluate their impact on biological and chemical properties of soil across the four locations in Punjab. Field trials were conducted at four locations (Central Cotton Research Institute-Multan, Naseer Pur, Kot Lal Shah, and Cotton Research Station-Bahawalpur of different agro-ecological zones of Punjab. Rhizosphere soil samples were collected by following standard procedure from these selected locations. Results reveled that Bt-cotton had no adverse effect on microbial population (viable counts and enzymatic activity of rhizosphere soil. Bacterial population was more in Bt-cotton rhizosphere than that of non-Bt cotton rhizosphere at all locations. Phosphatase, dehydrogenase, and oxidative metabolism of rhizosphere soil were more in Bt-cotton genotypes compared with non-Bt cotton genotypes. Cation exchange capacity, total nitrogen, extractable phosphorous, extractable potassium, active carbon, Fe and Zn contents were higher in rhizosphere of Bt-cotton genotypes compared with non-Bt cotton genotypes. It can be concluded from present study that the cultivation of Bt-cotton expressing cry1 Ac had apparently no negative effect on metabolic, microbiological activities, and nutrient dynamics of soils. Further work is needed to investigate the potential impacts of Bt-cotton on ecology of soil-dwelling insects and invertebrates before its recommendation for extensive cultivation.

  2. IMPACT OF BT ( BACILLUS THURINGIENSIS ) CROPS ON BAT ACTIVITY IN SOUTH TEXAS AGROECOSYSTEMS

    Science.gov (United States)

    The widespread adoption of transgenic insecticidal crops raises concerns that nontarget species may be harmed and food webs disrupted. The goal of this research is to determine how transgenic Bt (Bacillus thuringiensis) crops impact the activity of Brazilian freetailed bats (Tada...

  3. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines

    Science.gov (United States)

    Navasero, Mario V.; Candano, Randolph N.; Hautea, Desiree M.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides. PMID:27798662

  4. Bt cotton producing Cry1Ac and Cry2Ab does not harm two parasitoids, Cotesia marginiventris and Copidosoma floridanum.

    Science.gov (United States)

    Tian, Jun-Ce; Wang, Xiang-Ping; Chen, Yang; Romeis, Jörg; Naranjo, Steven E; Hellmich, Richard L; Wang, Ping; Shelton, Anthony M

    2018-01-10

    Cabbage looper, Trichoplusia ni (Hübner) is an important lepidopteran pest on many vegetable and greenhouse crops, and some field crops. Although there are no commercial transgenic Bt vegetable or greenhouse crops, T. ni is a target of Bollgard II cotton, which produces Cry1Ac and Cry2Ab. We expand on previous work that examined the effect of Bt crops on parasitoids using Bt-resistant lepidopteran populations as hosts. Cry1Ac/Cry2Ab-resistant T. ni larvae were used to eliminate host quality effects and to evaluate the direct effects of Bt cotton on the parasitoids Copidosoma floridanum (Ashmead) and Cotesia marginiventris (Cresson). These tri-trophic studies confirm that Bt cotton had no significant impact on development, success of parasitism, survival and adult longevity of C. marginiventris when using Bt-resistant T. ni fed on Bt cotton. Similarly, this Bt cotton had no significant impact on the development, mummy weight and the number of progeny produced by C. floridanum. Our studies verified that lyophilized Bt crop tissue maintained its insecticidal bioactivity when incorporated into an artificial diet, demonstrating that hosts and parasitoids were exposed to active Cry proteins. The egg-larval parasitoid C. floridanum, or similar species that consume their entire host, should be considered useful surrogates in risk assessment of Bt crops to non-target arthropods.

  5. Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis

    Science.gov (United States)

    Leah S. Bauer

    1995-01-01

    Insecticidal crystal proteins (also known as d-endotoxins) synthesized by the bacterium Bacillus thuringiensis Berliner (Bt) are the active ingredient of various environmentally friendly insecticides that are 1) highly compatible with natural enemies and other nontarget organisms due to narrow host specificity, 2) harmless to vertebrates, 3) biodegradable in the...

  6. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    Science.gov (United States)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    plant protection schedule taken up for main crop and for intercrops, but was least in the insecticide sprayed to both the crops. Data on interaction of intercropping and plant protection schedules indicated that Bt cotton with chilli as intercrop and with zero plant protection showed the highest population of P-solubilizers, N2 fixers as well as urease and phosphatase activities at 135 days of crop growth. Similarly, population of total bacteria, fungi and actinomycetes were highest in the treatment of Bt cotton + chilli + onion with zero protection but were on par with the treatment Bt cotton + chilli with zero protection at 135 days of crop growth. Dehydrogenase activity was found to be the highest in the treatment of Bt cotton + redgram with zero protection at 135 days of crop growth. Our studies showed harmful effects of insecticide sprays on soil microflora and enzyme activities.

  7. The food and environmental safety of Bt crops.

    Science.gov (United States)

    Koch, Michael S; Ward, Jason M; Levine, Steven L; Baum, James A; Vicini, John L; Hammond, Bruce G

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.

  8. The food and environmental safety of Bt crops

    Science.gov (United States)

    Koch, Michael S.; Ward, Jason M.; Levine, Steven L.; Baum, James A.; Vicini, John L.; Hammond, Bruce G.

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms. PMID:25972882

  9. The Food and Environmental Safety of Bt Crops

    Directory of Open Access Journals (Sweden)

    Michael Stephen Koch

    2015-04-01

    Full Text Available Bt (Bacillus thuringiensis microbial pesticides have a 50-year history of safe use in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s. Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.

  10. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée, and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  11. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera, the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella, which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  12. Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton.

    Science.gov (United States)

    Hagenbucher, Steffen; Wäckers, Felix L; Romeis, Jörg

    2014-01-01

    Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.

  13. Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton.

    Directory of Open Access Journals (Sweden)

    Steffen Hagenbucher

    Full Text Available Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.

  14. Field assessment of Bt cry1Ah corn pollen on the survival, development and behavior of Apis mellifera ligustica.

    Science.gov (United States)

    Dai, Ping-Li; Zhou, Wei; Zhang, Jie; Cui, Hong-Juan; Wang, Qiang; Jiang, Wei-Yu; Sun, Ji-Hu; Wu, Yan-Yan; Zhou, Ting

    2012-05-01

    Honeybees may be exposed to insecticidal proteins from transgenic plants via pollen. An assessment of the impact of such exposures on the honeybee is an essential part of the risk assessment process for transgenic Bacillus thuringiensis corn. A field trial was conducted to evaluate the effect of transgenic Bt cry1Ah corn on the honeybee Apis mellifera ligustica. Colonies of honeybees were moved to Bt or non-Bt corn fields during anthesis and then sampled to record their survival, development and behavior. No differences in immature stages, worker survival, bee body weight, hypopharyngeal gland weight, colony performance, foraging activity or olfactory learning abilities were detected between colonies that were placed in non-Bt corn fields and those placed in Bt corn fields. We conclude that cry1Ah corn carries no risk for the survival, development, colony performance or behavior of the honeybee A. mellifera ligustica. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Genetic markers for western corn rootworm resistance to Bt toxin.

    Science.gov (United States)

    Flagel, Lex E; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L; Michel, Andrew P; Head, Graham P; Goldman, Barry S

    2015-01-07

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies. Copyright © 2015 Flagel et al.

  16. Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance.

    Science.gov (United States)

    Téllez-Rodríguez, Pilar; Raymond, Ben; Morán-Bertot, Ivis; Rodríguez-Cabrera, Lianet; Wright, Denis J; Borroto, Carlos G; Ayra-Pardo, Camilo

    2014-06-16

    Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The 'high dose/refuge strategy', in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the evolution of resistance.

  17. A high-throughput, in-vitro assay for Bacillus thuringiensis insecticidal proteins.

    Science.gov (United States)

    Izumi Willcoxon, Michi; Dennis, Jaclyn R; Lau, Sabina I; Xie, Weiping; You, You; Leng, Song; Fong, Ryan C; Yamamoto, Takashi

    2016-01-10

    A high-throughput, in-vitro assay for Bacillus thuringiensis (Bt) insecticidal proteins designated as Cry was developed and evaluated for screening a large number of Cry protein variants produced by DNA shuffling. This automation-amenable assay exploits an insect cell line expressing a single receptor of Bt Cry proteins. The Cry toxin used to develop this assay is a variant of the Cry1Ab protein called IP1-88, which was produced previously by DNA shuffling. Cell mortality caused by the activated Bt Cry toxin was determined by chemical cell viability assay in 96/384-well microtiter plates utilizing CellTiter 96(®) obtained from Promega. A widely-accepted mode-of-action theory of certain Bt Cry proteins suggests that the activated toxin binds to one or more receptors and forms a pore through the insect gut epithelial cell apical membrane. A number of insect proteins such as cadherin-like protein (Cad), aminopeptidase-N (APN), alkaline phosphatase (ALP) and ABC transporter (ABCC) have been identified as the receptors of Bt Cry toxins. In this study, Bt Cry toxin receptors Ostrinia nubilalis (European corn borer) cadherin-like protein (On-Cad) and aminopeptidase-N 1 and 3 (On-APN1, On-APN3) and Spodoptera frugiperda (fall armyworm) cadherin-like protein (Sf-Cad) were cloned in an insect cell line, Sf21, and a mammalian cell line, Expi293F. It was observed by ligand blotting and immunofluorescence microscopy that trypsin-activated IP1-88 bound to On-Cad and On-APN1, but not Sf-Cad or On-APN3. In contrast, IP1-88 bound only to APN1 in BBMV (Brush Border Membrane Vesicles) prepared from the third and fourth-instar O. nubilalis larval midgut. The sensitivity of the recombinant cells to the toxin was then tested. IP1-88 showed no toxicity to non-recombinant Sf21 and Expi293F. Toxicity was observed only when the On-Cad gene was cloned and expressed. Sf-Cad and On-APN1 were not able to make those cells sensitive to the toxin. Since the expression of On-Cad alone was

  18. WHAT IS THE VALUE OF BT CORN?

    OpenAIRE

    Hurley, Terrance M.; Mitchell, Paul D.; Rice, Marlin E.

    2001-01-01

    A common perception is that the value of Bt corn arises from two components-Bt corn increases expected profit and reduces profit variability. This perception encourages farmers and the policy makers to add a risk benefit to estimates of the value of Bt corn to account for the variability reduction. However, a conceptual model generates a useful decomposition of the value of Bt corn and a condition determining the impact of Bt corn on profit variability. An empirical model finds that Bt corn i...

  19. Evolution of Resistance by Helicoverpa zea (Lepidoptera: Noctuidae) Infesting Insecticidal Crops in the Southern United States

    Science.gov (United States)

    Onstad, David; Crain, Philip; Crespo, Andre; Hutchison, William; Buntin, David; Porter, Pat; Catchot, Angus; Cook, Don; Pilcher, Clint; Flexner, Lindsey; Higgins, Laura

    2016-01-01

    We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton. PMID:26637533

  20. High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests.

    Directory of Open Access Journals (Sweden)

    Cristina A Faria

    Full Text Available Concerns about possible undesired environmental effects of transgenic crops have prompted numerous evaluations of such crops. So-called Bt crops receive particular attention because they carry bacteria-derived genes coding for insecticidal proteins that might negatively affect non-target arthropods. Here we show a remarkable positive effect of Bt maize on the performance of the corn leaf aphid Rhopalosiphum maidis, which in turn enhanced the performance of parasitic wasps that feed on aphid honeydew. Within five out of six pairs that were evaluated, transgenic maize lines were significantly more susceptible to aphids than their near-isogenic equivalents, with the remaining pair being equally susceptible. The aphids feed from the phloem sieve element content and analyses of this sap in selected maize lines revealed marginally, but significantly higher amino acid levels in Bt maize, which might partially explain the observed increased aphid performance. Larger colony densities of aphids on Bt plants resulted in an increased production of honeydew that can be used as food by beneficial insects. Indeed, Cotesia marginiventris, a parasitoid of lepidopteran pests, lived longer and parasitized more pest caterpillars in the presence of aphid-infested Bt maize than in the presence of aphid-infested isogenic maize. Hence, depending on aphid pest thresholds, the observed increased susceptibility of Bt maize to aphids may be either a welcome or an undesirable side effect.

  1. Sustained susceptibility of pink bollworm to Bt cotton in the United States.

    Science.gov (United States)

    Tabashnik, Bruce E; Morin, Shai; Unnithan, Gopalan C; Yelich, Alex J; Ellers-Kirk, Christa; Harpold, Virginia S; Sisterson, Mark S; Ellsworth, Peter C; Dennehy, Timothy J; Antilla, Larry; Liesner, Leighton; Whitlow, Mike; Staten, Robert T; Fabrick, Jeffrey A; Li, Xianchun; Carrière, Yves

    2012-01-01

    Evolution of resistance by pests can reduce the benefits of transgenic crops that produce toxins from Bacillus thuringiensis (Bt) for insect control. One of the world's most important cotton pests, pink bollworm (Pectinophora gossypiella), has been targeted for control by transgenic cotton producing Bt toxin Cry1Ac in several countries for more than a decade. In China, the frequency of resistance to Cry1Ac has increased, but control failures have not been reported. In western India, pink bollworm resistance to Cry1Ac has caused widespread control failures of Bt cotton. By contrast, in the state of Arizona in the southwestern United States, monitoring data from bioassays and DNA screening demonstrate sustained susceptibility to Cry1Ac for 16 y. From 1996-2005, the main factors that delayed resistance in Arizona appear to be abundant refuges of non-Bt cotton, recessive inheritance of resistance, fitness costs associated with resistance and incomplete resistance. From 2006-2011, refuge abundance was greatly reduced in Arizona, while mass releases of sterile pink bollworm moths were made to delay resistance as part of a multi-tactic eradication program. Sustained susceptibility of pink bollworm to Bt cotton in Arizona has provided a cornerstone for the pink bollworm eradication program and for integrated pest management in cotton. Reduced insecticide use against pink bollworm and other cotton pests has yielded economic benefits for growers, as well as broad environmental and health benefits. We encourage increased efforts to combine Bt crops with other tactics in integrated pest management programs.

  2. Transgenic Bt Cotton Does Not Disrupt the Top-Down Forces Regulating the Cotton Aphid in Central China.

    Directory of Open Access Journals (Sweden)

    Yong-Sheng Yao

    Full Text Available Top-down force is referred to arthropod pest management delivered by the organisms from higher trophic levels. In the context of prevalent adoption of transgenic Bt crops that produce insecticidal Cry proteins derived from Bacillus thuringiensis (Bt, it still remains elusive whether the top-down forces are affected by the insect-resistant traits that introduced into the Bt crops. We explored how Bt cotton affect the strength of top-down forces via arthropod natural enemies in regulating a non-target pest species, the cotton aphid Aphis gossypii Glover, using a comparative approach (i.e. Bt cotton vs. conventional cotton under field conditions. To determine top-down forces, we manipulated predation/parasitism exposure of the aphid to their natural enemies using exclusion cages. We found that the aphid population growth was strongly suppressed by the dominant natural enemies including Coccinellids, spiders and Aphidiines parasitoids. Coccinellids, spiders and the assemblage of other arthropod natural enemies (mainly lacewings and Hemipteran bugs are similarly abundant in both plots, but with the parasitoid mummies less abundant in Bt cotton plots compared to the conventional cotton plots. However, the lower abundance of parasitoids in Bt cotton plots alone did not translate into differential top-down control on A. gossypii populations compared to conventional ones. Overall, the top-down forces were equally strong in both plots. We conclude that transgenic Bt cotton does not disrupt the top-down forces regulating the cotton aphid in central China.

  3. Characterizing indirect prey-quality mediated effects of a Bt crop on predatory larvae of the green lacewing, Chrysoperla carnea.

    Science.gov (United States)

    Lawo, Nora C; Wäckers, Felix L; Romeis, Jörg

    2010-11-01

    There is increasing evidence that insecticidal transgenic crops can indirectly cause detrimental effects on arthropod predators or parasitoids when they prey on or parasitize sublethally affected herbivores. Our studies revealed that Chrysoperla carnea is negatively affected when fed Bt-susceptible but not Cry1Ac-resistant Helicoverpa armigera larvae that had fed Bt-transgenic cotton expressing Cry1Ac. This despite the fact that the predators ingested 3.5 times more Cry1Ac when consuming the resistant caterpillars. In order to detect potential differences in the nutrient composition of prey larvae, we evaluated the glycogen and lipid content plus the sugar and free amino acid content and composition of caterpillars fed non-Bt and Bt cotton. The only change in susceptible H. armigera larvae attributable to Bt cotton feeding were changes in sugar concentration and composition. In case of the Cry1Ac-resistant H. armigera strain, feeding on Bt cotton resulted in a reduced glycogen content in the caterpillars. The predators, however, appeared to compensate for the reduced carbohydrate content of the prey by increasing biomass uptake which caused an excess intake of the other analyzed nutritional compounds. Our study clearly proves that nutritional prey-quality factors other then the Bt protein underlie the observed negative effects when C. carnea larvae are fed with Bt cotton-fed prey. Possible factors were an altered sugar composition or fitness costs associated with the excess intake of other nutrients. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Evaluation of Bt Corn with Pyramided Genes on Efficacy and Insect Resistance Management for the Asian Corn Borer in China.

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    Full Text Available A Bt corn hybrid (AcIe with two Bt genes (cry1Ie and cry1Ac was derived by breeding stack from line expressing Cry1Ie and a line expressing Cry1Ac. Efficacy of this pyramided Bt corn hybrid against the Asian corn borer (ACB, Ostrinia furnacalis, was evaluated. We conducted laboratory bioassays using susceptible and resistant ACB strains fed on artificial diet or fresh plant tissues. We also conducted field trials with artificial infestations of ACB neonates at the V6 and silk stages. The toxin-diet bioassay data indicated that mixtures of Cry1Ac and Cry1Ie proteins had synergistic insecticidal efficacy. The plant tissue bioassay data indicated that Bt corn hybrids expressing either a single toxin (Cry1Ac or Cry1Ie or two toxins had high efficacy against susceptible ACB. Damage ratings in the field trials indicated that the Bt corn hybrids could effectively protect against 1st and the 2nd generation ACB in China. The hybrid line with two Bt genes showed a higher efficacy against ACB larvae resistant to Cry1Ac or CryIe than the hybrid containing one Bt gene, and the two gene hybrid would have increased potential for managing or delaying the evolution of ACB resistance to Bt corn plants.

  5. Evaluation of Bt Corn with Pyramided Genes on Efficacy and Insect Resistance Management for the Asian Corn Borer in China.

    Science.gov (United States)

    Jiang, Fan; Zhang, Tiantao; Bai, Shuxiong; Wang, Zhenying; He, Kanglai

    2016-01-01

    A Bt corn hybrid (AcIe) with two Bt genes (cry1Ie and cry1Ac) was derived by breeding stack from line expressing Cry1Ie and a line expressing Cry1Ac. Efficacy of this pyramided Bt corn hybrid against the Asian corn borer (ACB), Ostrinia furnacalis, was evaluated. We conducted laboratory bioassays using susceptible and resistant ACB strains fed on artificial diet or fresh plant tissues. We also conducted field trials with artificial infestations of ACB neonates at the V6 and silk stages. The toxin-diet bioassay data indicated that mixtures of Cry1Ac and Cry1Ie proteins had synergistic insecticidal efficacy. The plant tissue bioassay data indicated that Bt corn hybrids expressing either a single toxin (Cry1Ac or Cry1Ie) or two toxins had high efficacy against susceptible ACB. Damage ratings in the field trials indicated that the Bt corn hybrids could effectively protect against 1st and the 2nd generation ACB in China. The hybrid line with two Bt genes showed a higher efficacy against ACB larvae resistant to Cry1Ac or CryIe than the hybrid containing one Bt gene, and the two gene hybrid would have increased potential for managing or delaying the evolution of ACB resistance to Bt corn plants.

  6. Risk and the Value of Bt Corn

    OpenAIRE

    Terrance M. Hurley; Paul D. Mitchell; Marlin E. Rice

    2004-01-01

    A conceptual model is developed to evaluate the effect of Bt corn on risk. Results highlight the importance of distinguishing between marginal and aggregate risk effects and demonstrate that the effect of Bt corn on risk depends crucially on the price paid for the technology. Empirical results show that, depending on the price, Bt corn can be marginally risk increasing or decreasing and can either increase or decrease corn acreage. Also, depending on the price, Bt corn can provide a risk bene...

  7. [Effects of insecticides on insect pest-natural enemy community in early rice fields].

    Science.gov (United States)

    Jiang, Junqi; Miao, Yong; Zou, Yunding; Li, Guiting

    2006-05-01

    This paper studied the effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid on the insect pest-natural enemy community in early rice fields in the Yangtze-Huaihe region of Anhui Province. The results showed that all of the test insecticides had significant effects in controlling the growth of major insect pest populations. The average value of insect pest-natural enemy community diversity under effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid was 1.545, 1.562, 1.691 and 1.915, respectively, while that in control plot was 1.897. After two weeks of applying insecticides, the plots applied with shachongshuang and abamectin had a similar composition of insect pest-natural enemy community, but the community composition was significantly different between the plots applied with triazophos and Bt + imidacloprid. From the viewpoints of community stability and pest control, Bt + imidacloprid had the best effect, and shachongshuang and abamectin were better than triazophos.

  8. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton.

    Directory of Open Access Journals (Sweden)

    Sharon Downes

    Full Text Available Combinations of dissimilar insecticidal proteins ("pyramids" within transgenic plants are predicted to delay the evolution of pest resistance for significantly longer than crops expressing a single transgene. Field-evolved resistance to Bacillus thuringiensis (Bt transgenic crops has been reported for first generation, single-toxin varieties and the Cry1 class of proteins. Our five year data set shows a significant exponential increase in the frequency of alleles conferring Cry2Ab resistance in Australian field populations of Helicoverpa punctigera since the adoption of a second generation, two-toxin Bt cotton expressing this insecticidal protein. Furthermore, the frequency of cry2Ab resistance alleles in populations from cropping areas is 8-fold higher than that found for populations from non-cropping regions. This report of field evolved resistance to a protein in a dual-toxin Bt-crop has precisely fulfilled the intended function of monitoring for resistance; namely, to provide an early warning of increases in frequencies that may lead to potential failures of the transgenic technology. Furthermore, it demonstrates that pyramids are not 'bullet proof' and that rapid evolution to Bt toxins in the Cry2 class is possible.

  9. Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western corn rootworm midgut membrane binding sites.

    Directory of Open Access Journals (Sweden)

    Huarong Li

    Full Text Available BACKGROUND: Bacillus thuringiensis (Bt Cry34Ab1/Cry35Ab1 are binary insecticidal proteins that are co-expressed in transgenic corn hybrids for control of western corn rootworm, Diabrotica virgifera virgifera LeConte. Bt crystal (Cry proteins with limited potential for field-relevant cross-resistance are used in combination, along with non-transgenic corn refuges, as a strategy to delay development of resistant rootworm populations. Differences in insect midgut membrane binding site interactions are one line of evidence that Bt protein mechanisms of action differ and that the probability of receptor-mediated cross-resistance is low. METHODOLOGY/PRINCIPAL FINDINGS: Binding site interactions were investigated between Cry34Ab1/Cry35Ab1 and coleopteran active insecticidal proteins Cry3Aa, Cry6Aa, and Cry8Ba on western corn rootworm midgut brush border membrane vesicles (BBMV. Competitive binding of radio-labeled proteins to western corn rootworm BBMV was used as a measure of shared binding sites. Our work shows that (125I-Cry35Ab1 binds to rootworm BBMV, Cry34Ab1 enhances (125I-Cry35Ab1 specific binding, and that (125I-Cry35Ab1 with or without unlabeled Cry34Ab1 does not share binding sites with Cry3Aa, Cry6Aa, or Cry8Ba. Two primary lines of evidence presented here support the lack of shared binding sites between Cry34Ab1/Cry35Ab1 and the aforementioned proteins: 1 No competitive binding to rootworm BBMV was observed for competitor proteins when used in excess with (125I-Cry35Ab1 alone or combined with unlabeled Cry34Ab1, and 2 No competitive binding to rootworm BBMV was observed for unlabeled Cry34Ab1 and Cry35Ab1, or a combination of the two, when used in excess with (125I-Cry3Aa, or (125I-Cry8Ba. CONCLUSIONS/SIGNIFICANCE: Combining two or more insecticidal proteins active against the same target pest is one tactic to delay the onset of resistance to either protein. We conclude that Cry34Ab1/Cry35Ab1 are compatible with Cry3Aa, Cry6Aa, or Cry8Ba

  10. Field-evolved resistance to Bt maize by western corn rootworm.

    Directory of Open Access Journals (Sweden)

    Aaron J Gassmann

    Full Text Available BACKGROUND: Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae. METHODOLOGY/PRINCIPAL FINDINGS: We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. CONCLUSIONS/SIGNIFICANCE: This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary.

  11. Field-evolved resistance to Bt maize by western corn rootworm.

    Science.gov (United States)

    Gassmann, Aaron J; Petzold-Maxwell, Jennifer L; Keweshan, Ryan S; Dunbar, Mike W

    2011-01-01

    Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary.

  12. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Directory of Open Access Journals (Sweden)

    Jenkins Jeremy L

    2001-10-01

    Full Text Available Abstract Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm aminopeptidase N (APN and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM, and unusually tight binding to the cadherin-like receptor (2.6 nM, which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research.

  13. Isolation of strains of Bacillus thuringiensis insecticidal biological activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    Hmaied, Ezzedine; Ben Mbarek, Wael

    2010-01-01

    The present work is to study the effect of toxins (δ-endotoxins) extracted from strains of Bacillus thuringiensis isolated from the mud on the fly Sabkhat Dejoumi Ceratitis capitata, a pest of citrus and fruit trees. Among 51 isolated tested, 15 showed a very significant insecticidal activity, characterized by mortality rates exceeding 80 pour cent. These mortality rates are caused by endotoxins of Bt revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by strains of Bt for large scale application.

  14. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field.

    Science.gov (United States)

    Gassmann, Aaron J

    2012-07-01

    Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) provide an effective management tool for many key insect pests. However, pest species have repeatedly demonstrated their ability to adapt to management practices. Results from laboratory selection experiments illustrate the capacity of pest species to evolve Bt resistance. Furthermore, resistance has been documented to Bt sprays in the field and greenhouse, and more recently, by some pests to Bt crops in the field. In 2009, fields were discovered in Iowa (USA) with populations of western corn rootworm, Diabrotica virgifera virgifera LeConte, that had evolved resistance to maize that produces the Bt toxin Cry3Bb1. Fields with resistant insects in 2009 had been planted to Cry3Bb1 maize for at least three consecutive years and as many as 6years. Computer simulation models predicted that the western corn rootworm might evolve resistance to Bt maize in as few as 3years. Laboratory and field data for interactions between western corn rootworm and Bt maize indicate that currently commercialized products are not high-dose events, which increases the risk of resistance evolution because non-recessive resistance traits may enhance survival on Bt maize. Furthermore, genetic analysis of laboratory strains of western corn rootworm has found non-recessive inheritance of resistance. Field studies conducted in two fields identified as harboring Cry3Bb1-resistant western corn rootworm found that survival of western corn rootworm did not differ between Cry3Bb1 maize and non-Bt maize and that root injury to Cry3Bb1 maize was higher than injury to other types of Bt maize or to maize roots protected with a soil insecticide. These first cases of field-evolved resistance to Bt maize by western corn rootworm provide an early warning and point to the need to apply better integrated pest management practices when using Bt maize to manage western corn rootworm. Copyright © 2012 Elsevier

  15. Efficacy of Bt maize producing the Cry1Ac protein against two important pests of corn in China.

    Science.gov (United States)

    Chen, Hong-Xing; Yang, Rui; Yang, Wang; Zhang, Liu; Camara, Ibrahima; Dong, Xue-Hui; Liu, Yi -Qing; Shi, Wang-Peng

    2016-11-01

    Ostrinia furnacalis (Guenée) and Helicoverpa armigera (Hübner) are the most important pests of maize in China. A laboratory study and a 2-year field study on the efficacy of transgenic maize expressing the Cry1Ac protein BT38 against O. furnacalis and H. armigera were performed. We found that the husks, kernels, and silks of BT38 showed significant efficacy against larvae of O. furnacalis and H. armigera. In the field, when neonate larvae of O. furnacalis and H. armigera were on plants at different growth stages and when levels of leaf-damage or number of damaged silks were used to score efficacy, we found that BT38 showed significant insecticidal efficacy against O. furnacalis and H. armigera, but the non-Bt maize did not show significant efficacy against either pest. These results suggest that the insecticidal efficacy of Bt maize expressing the Cry1Ac protein could be useful in the integrated pest management of these key maize pests.

  16. Western corn rootworm and Bt maize: challenges of pest resistance in the field.

    Science.gov (United States)

    Gassmann, Aaron J; Petzold-Maxwell, Jennifer L; Keweshan, Ryan S; Dunbar, Mike W

    2012-01-01

    Crops genetically engineered to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) manage many key insect pests while reducing the use of conventional insecticides. One of the primary pests targeted by Bt maize in the United States is the western corn rootworm, Diabrotica virgifera virgifera LeConte. Beginning in 2009, populations of western corn rootworm were identified in Iowa, USA that imposed severe root injury to Cry3Bb1 maize. Subsequent laboratory bioassays revealed that these populations were resistant to Cry3Bb1 maize, with survival on Cry3Bb1 maize that was three times higher than populations not associated with such injury. Here we report the results of research that began in 2010 when western corn rootworm were sampled from 14 fields in Iowa, half of which had root injury to Cry3Bb1 maize of greater than 1 node. Of these samples, sufficient eggs were collected to conduct bioassays on seven populations. Laboratory bioassays revealed that these 2010 populations had survival on Cry3Bb1 maize that was 11 times higher and significantly greater than that of control populations, which were brought into the laboratory prior to the commercialization of Bt maize for control of corn rootworm. Additionally, the developmental delays observed for control populations on Cry3Bb1 maize were greatly diminished for 2010 populations. All 2010 populations evaluated in bioassays came from fields with a history of continuous maize production and between 3 and 7 y of Cry3Bb1 maize cultivation. Resistance to Cry34/35Ab1 maize was not detected and there was no correlation between survival on Cry3Bb1 maize and Cry34/35Ab1 maize, suggesting a lack of cross resistance between these Bt toxins. Effectively dealing with the challenge of field-evolved resistance to Bt maize by western corn rootworm will require better adherence to the principles of integrated pest management.

  17. Effects of Pyramided Bt Corn and Blended Refuges on Western Corn Rootworm and Northern Corn Rootworm (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Keweshan, Ryan S; Head, Graham P; Gassmann, Aaron J

    2015-04-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, and the northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), are major pests of corn (Zea mays L). Several transgenic corn events producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) kill corn rootworm larvae and reduce injury to corn roots. However, planting of Bt corn imposes selection on rootworm populations to evolve Bt resistance. The refuge strategy and pyramiding of multiple Bt toxins can delay resistance to Bt crops. In this study, we assessed the impact of four treatments--1) non-Bt corn, 2) Cry3Bb1 corn, 3) corn pyramided with Cry3Bb1 and Cry34/35Ab1, and 4) pyramided corn with a blended refuge--on survival, time of adult emergence, and size of western and northern corn rootworm. All treatments with Bt corn led to significant reductions in the number of adults that emerged per plot. However, at one location, we identified Cry3Bb1-resistant western corn rootworm. In some cases Bt treatments reduced size of adults and delayed time of adult emergence, with effects most pronounced for pyramided corn. For both species, the number of adults that emerged from pyramided corn with a blended refuge was significantly lower than expected, based solely on emergence from pure stands of pyramided corn and non-Bt corn. The results of this study indicate that pyramided corn with a blended refuge substantially reduces survival of both western and northern corn rootworm, and as such, should be a useful tool within the context of a broader integrated pest management strategy. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Neurotoxicity of Insecticides.

    Science.gov (United States)

    Cassereau, Julien; Ferré, Marc; Chevrollier, Arnaud; Codron, Philippe; Verny, Christophe; Homedan, Chadi; Lenaers, Guy; Procaccio, Vincent; May-Panloup, Pascale; Reynier, Pascal

    2017-01-01

    Human exposure to insecticides raises serious public health concerns worldwide. Insecticides constitute a wide-ranging heterogeneous group of chemicals, most of which target the nervous system and disrupt neurometabolism and/or neurotransmission. Although the acute effects of insecticide poisoning in humans are well documented, the chronic and long-term effects remain difficult to investigate. We sought to review the present state-of-knowledge of acute, chronic, neurodevelopmental and neurological consequences of human exposure to insecticides. Animal and epidemiologic studies indicate cognitive, behavioral and psychomotor alterations in mammals chronically exposed to insecticides. Parkinson's and Alzheimer's diseases, amyotrophic lateral sclerosis, and depression, have been regularly associated with insecticide exposure. Clinical studies, supported by experiments on animal models, demonstrate the neurotoxic impact of insecticide exposure during the period of cerebral development, the developing brain being particularly vulnerable to the action of insecticides. Moreover, detoxifying systems that are highly polymorph lead to great inter-individual variability in susceptibility to the neurotoxic effects of insecticides. Studies on mild chronic exposure to insecticides suggest significant involvement in the pathogenesis of multifactorial neurological diseases. However, the tardive appearance of neurodegenerative disorders and the large variability of inter-individual susceptibility to neurotoxicants make it difficult to assess the relative contribution of insecticide exposure. Close vigilance should therefore be exercised with regard to possible exposure to insecticides, particularly during the period of cerebral development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens.

    Science.gov (United States)

    Bel, Yolanda; Sheets, Joel J; Tan, Sek Yee; Narva, Kenneth E; Escriche, Baltasar

    2017-06-01

    Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens ) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa 125 -iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both A. gemmatalis and C. includens Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops. IMPORTANCE In the present study, the toxicity and the mode of action of the Bacillus thuringiensis (Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in Anticarsia gemmatalis and Chrysodeixis includens (important defoliating pests of soybeans) have been investigated

  20. role of gamma rays and carbohydrate sources on the ability of exopolysaccharides of lactic acid bacteria to bind malathion and seliton insecticides

    International Nuclear Information System (INIS)

    Hussien, H.H.; El-Shatoury, E.H.

    2010-01-01

    six lactic acid bacterial strains were isolated from yoghurt and cottage (unfatted cheese) cheese. only three strains namely lactococcus lactis, lactobacillus helveticus and streptococcus thermophilus were able to produce exopolysaccharides (EPS) when cultured in de Man-Rogosa-Sharpe broth (MRS) medium. MRS containing sucrose, instead of the original media containing glucose was found to be the best media for EPS production . lactococcus lactis, lactobacillus helveticus and streptococcus thermophilus produced 650, 644 and 649 mg/L EPS when grown on MRS containing sucrose compared with 567, 584 and 293 mg/L when they grown on MRS containing glucose, respectively. by increasing the concentration of sucrose in the medium, significant increases in EPS production was observed. maximum EPS was produced at 15 g/L sucrose for both lactococcus lactis and streptococcus thermophilus (900 mg/L). 800 mg/L EPS was produced by lactobacillus helveticus at 20 g/L sucrose. exposing the bacterial isolates to 1 kGy increased their ability to bind malathion. malathion binding of irradiated lactococcus lactis, lactobacillus helveticus and streptococcus thermophilus cells were 30 %, 19.8 % and 13 % more than non-irradiated controls. also exposing lactococcus lactis to 1 kGy increased their binding capacity to seliton by 33.8 % on the other land irradiating lactobacillus helveticus cells caused a decrease in the binding capacity of seliton by 5 % . irradiated and non-irradiated cells of streptococcus thermophilus failed to bind the seliton.

  1. Larval development of Spodoptera eridania (Cramer fed on leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 proteins and its non-Bt isoline

    Directory of Open Access Journals (Sweden)

    Orcial Ceolin Bortolotto

    2015-03-01

    Full Text Available This study aimed to evaluate, in controlled laboratory conditions (temperature of 25±2 °C, relative humidity of 60±10%, and 14/10 h L/D photoperiod, the larval development of Spodoptera eridania (Cramer, 1784 (Lepidoptera, Noctuidae fed with leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 insecticide proteins and its non-Bt isoline. Maize leaves triggered 100% of mortality on S. eridania larvae independently of being Bt or non-Bt plants. However, it was observed that in overall Bt maize (expressing a single or pyramided protein slightly affects the larval development of S. eridania, even under reduced leaf consumption. Therefore, these results showed that Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 can affect the larval development of S. eridania, although it is not a target pest of this plant; however, more research is needed to better understand this evidence. Finally, this study confirms that non-Bt maize leaves are unsuitable food source to S. eridania larvae, suggesting that they are not a potential pest in maize fields.

  2. Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations

    Science.gov (United States)

    Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified (GM) Bt-maize offers an additional means of control against W...

  3. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants

    NARCIS (Netherlands)

    Felipe Farias, Davi; Peijnenburg, A.A.C.M.; Grossi-de-Sá, Maria F.; Carvalho, A.F.U.

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular

  4. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    Science.gov (United States)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  5. A Meta-analysis and Economic Evaluation of Neonicotinoid Seed Treatments and Other Prophylactic Insecticides in Indiana Maize From 2000-2015 With IPM Recommendations.

    Science.gov (United States)

    Alford, A M; Krupke, C H

    2018-04-02

    Corn rootworm remains the key pest of maize in the United States. It is managed largely by Bt corn hybrids, along with soil insecticides and neonicotinoid seed treatments (NSTs), the latter of which are applied to virtually all conventionally (non-Bt) produced maize. Frequently, more than one of these pest-management approaches is employed at the same time. To determine the utility and relative contributions of these various approaches, a meta-analysis was conducted on plant health and pest damage metrics from 15 yr of insecticide efficacy trials conducted on Indiana maize to compare the pest-protection potential of NSTs to that of other insecticides and Bt hybrids. The probability of recovering the insecticide cost associated with each treatment was also calculated when possible. With the exception of early-season plant health (stand counts), in which the NSTs performed better than all other insecticides, the vast majority of insecticides performed similarly in all plant health metrics, including yield. Furthermore, all tested insecticides (including NSTs) reported a high probability (>80%) of recovering treatment costs. Given the similarity in performance and probability of recovering treatment costs, we suggest NSTs be optional for producers, so that they can be incorporated into an insecticide rotation when managing for corn rootworm, the primary Indiana corn pest. This approach could simultaneously reduce costs to growers, lower the likelihood of nontarget effects, and reduce the risk of pests evolving resistance to the neonicotinoid insecticides.

  6. Transfer of Cry1Ac and Cry2Ab proteins from genetically engineered Bt cotton to herbivores and predators.

    Science.gov (United States)

    Meissle, Michael; Romeis, Jörg

    2017-04-04

    With the cultivation of Bt cotton, the produced insecticidal Cry proteins are ingested by herbivores and potentially transferred along the food chain to natural enemies, such as predators. In laboratory experiments with Bollgard II cotton, concentrations of Cry1Ac and Cry2Ab were measured in Lepidoptera larvae (Spodoptera littoralis, Heliothis virescens), plant bugs (Euschistus heros), aphids (Aphis gossypii), whiteflies (Bemisia tabaci), thrips (Thrips tabaci, Frankliniella occidentalis), and spider mites (Tetranychus urticae). Tritrophic experiments were conducted with caterpillars of S. littoralis as prey and larvae of ladybird beetles (Harmonia axyridis, Adalia bipunctata) and lacewings (Chrysoperla carnea) as predators. Immunological measurements (ELISA) indicated that herbivores feeding on Bt cotton contained 5%-50% of the Bt protein concentrations in leaves except whiteflies and aphids, which contained no or only traces of Bt protein, and spider mites, which contained 7 times more Cry1Ac than leaves. Similarly, predators contained 1%-30% of the Cry protein concentration in prey. For the nontarget risk assessment, this indicates that Bt protein concentrations decrease considerably from one trophic level to the next in the food web, except for spider mites that contain Bt protein concentrations higher than those measured in the leaves. Exposure of phloem sucking hemipterans is negligible. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  7. No Interactions of Stacked Bt Maize with the Non-target Aphid Rhopalosiphum padi and the Spider Mite Tetranychus urticae

    Directory of Open Access Journals (Sweden)

    Yinghua Shu

    2018-02-01

    Full Text Available In the agroecosystem, genetically engineered plants producing insecticidal Cry proteins from Bacillus thuringiensis (Bt interact with non-target herbivores and other elements of the food web. Stacked Bt crops expose herbivores to multiple Cry proteins simultaneously. In this study, the direct interactions between SmartStax® Bt maize producing six different Cry proteins and two herbivores with different feeding modes were investigated. Feeding on leaves of Bt maize had no effects on development time, fecundity, or longevity of the aphid Rhopalosiphum padi (Hemiptera: Aphididae, and no effects on the egg hatching time, development time, sex ratio, fecundity, and survival of the spider mite Tetranychus urticae (Acari: Tetranychidae. The results thus confirm the lack of effects on those species reported previously for some of the individual Cry proteins. In the Bt maize leaves, herbivore infestation did not result in a consistent change of Cry protein concentrations. However, occasional statistical differences between infested and non-infested leaves were observed for some Cry proteins and experimental repetitions. Overall, the study provides evidence that the Cry proteins in stacked Bt maize do not interact with two common non-target herbivores.

  8. Impact of Cry3Bb1-expressing Bt maize on adults of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Meissle, Michael; Hellmich, Richard L; Romeis, Jörg

    2011-07-01

    Genetically engineered maize producing insecticidal Cry3Bb1 protein from Bacillus thuringiensis (Bt) is protected from root damage by corn rootworm larvae. An examination was made to establish whether western corn rootworm (Diabrotica virgifera virgifera) adults are affected by Cry3Bb1-expressing maize (MON88017) when feeding on above-ground tissue. In laboratory bioassays, adult D. v. virgifera were fed for 7 weeks with silk, leaves or pollen from Bt maize or the corresponding near-isoline. Male, but not female, survival was reduced in the Bt-leaf treatment compared with the control. Female weight was lower when fed Bt maize, and egg production was reduced in the Bt-silk treatment. ELISA measurements demonstrated that beetles feeding on silk were exposed to higher Cry3Bb1 concentrations than beetles collected from Bt-maize fields in the United States. In contrast to silk and pollen, feeding on leaves resulted in high mortality and low fecundity. Females feeding on pollen produced more eggs than on silk. C:N ratios indicated that silk does not provide enough nitrogen for optimal egg production. Direct effects of Cry3Bb1 on adult beetles could explain the observed effects, but varietal differences between Bt and control maize are also possible. The impact of Bt maize on adult populations, however, is likely to be limited. Copyright © 2011 Society of Chemical Industry.

  9. Identification of relevant non-target organisms exposed to weevil-resistant Bt sweetpotato in Uganda.

    Science.gov (United States)

    Rukarwa, R J; Mukasa, S B; Odongo, B; Ssemakula, G; Ghislain, M

    2014-06-01

    Assessment of the impact of transgenic crops on non-target organisms (NTO) is a prerequisite to their release into the target environment for commercial use. Transgenic sweetpotato varieties expressing Cry proteins (Bt sweetpotato) are under development to provide effective protection against sweetpotato weevils (Coleoptera) which cause severe economic losses in sub-Saharan Africa. Like any other pest control technologies, genetically engineered crops expressing insecticidal proteins need to be evaluated to assess potential negative effects on non-target organisms that provide important services to the ecosystem. Beneficial arthropods in sweetpotato production systems can include pollinators, decomposers, and predators and parasitoids of the target insect pest(s). Non-target arthropod species commonly found in sweetpotato fields that are related taxonomically to the target pests were identified through expert consultation and literature review in Uganda where Bt sweetpotato is expected to be initially evaluated. Results indicate the presence of few relevant non-target Coleopterans that could be affected by Coleopteran Bt sweetpotato varieties: ground, rove and ladybird beetles. These insects are important predators in sweetpotato fields. Additionally, honeybee (hymenoptera) is the main pollinator of sweetpotato and used for honey production. Numerous studies have shown that honeybees are unaffected by the Cry proteins currently deployed which are homologous to those of the weevil-resistant Bt sweetpotato. However, because of their feeding behaviour, Bt sweetpotato represents an extremely low hazard due to negligible exposure. Hence, we conclude that there is good evidence from literature and expert opinion that relevant NTOs in sweetpotato fields are unlikely to be affected by the introduction of Bt sweetpotato in Uganda.

  10. Ecdysone Agonist: New Insecticides with Novel Mode of Action

    Directory of Open Access Journals (Sweden)

    Y. Andi Trisyono

    2002-12-01

    Full Text Available Development of insect resistance to insecticide has been the major driving force for the development of new insecticides. Awareness and demand from public for more environmentally friendly insecticides have contributed in shifting the trend from using broad spectrum to selective insecticides. As a result, scientists have looked for new target sites beyond the nervous system. Insect growth regulators (IGRs are more selective insecticides than conventional insecticides, and ecdysone agonists are the newest IGRs being commercialized, e.g. tebufenozide, methoxyfenozide, and halofenozide. Ecdysone agonists bind to the ecdysteroid receptors, and they act similarly to the molting hormone 20-hydroxyecdysone. The binding provides larvae or nymphs with a signal to enter a premature and lethal molting cycle. In addition, the ecdysone agonists cause a reduction in the number of eggs laid by female insects. The ecdysone agonists are being developed as selective biorational insecticides. Tebufenozide and methoxyfenozide are used to control lepidopteran insect pests, whereas halofenozide is being used to control coleopteran insect pests. Their selectivity is due to differences in the binding affinity between these compounds to the receptors in insects from different orders. The selectivity of these compounds makes them candidates to be used in combinations with other control strategies to develop integrated pest management programs in agricultural ecosystems. Key words: new insecticides, selectivity, ecdysone agonists

  11. Effects of various insecticides on the development of the egg parasitoid Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae).

    Science.gov (United States)

    Takada, Y; Kawamura, S; Tanaka, T

    2001-12-01

    The toxicity of six insecticides, acephate, methomyl, ethofenprox, cartap, chlorfluazuron, and Bacillus thuringiensis (Bt) was tested on different developmental stages of the egg parasitoid, Trichogramma dendrolimi (Matsumura). Each of the insecticides tested showed different degrees of toxicity to the parasitoid, Ethofenprox showed the highest toxicity and cartap showed relatively higher toxicity compared with the other insecticides. The development of the parasitoids treated with these two insecticides was normal, similar to that of the control group. Only the emergence of adult wasps from host eggs was disturbed. Emergence of the host, Mamestra brassicae larva was reduced following treatment with ethofenprox, cartap and methomyl. However, adult female wasps, which emerged from host eggs treated with the insecticides had the ability to oviposit normally.

  12. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem?

    Directory of Open Access Journals (Sweden)

    Daniela Chaves Resende

    2016-03-01

    Full Text Available ABSTRACT The cultivation of genetically modified crops in Brazil has led to the need to assess the impacts of this technology on non-target species. Under field conditions, the potential effect on insect biodiversity was evaluated by comparing a homogeneous corn field with conventional and transgenic maize, expressing different Bt proteins in seven counties of Minas Gerais, Brazil. The richness pattern of non-target insect species, secondary pests and natural enemies were observed. The results do not support the hypothesis that Bt protein affects insect biodiversity. The richness and diversity data of insects studied were dependent on the location and other factors, such as the use of insecticides, which may be a major factor where they are used.

  13. Persistence of Bt Bacillus thuringiensis Cry1Aa toxin in various soils determined by physicochemical reactions

    Science.gov (United States)

    Helassa, N.; Noinville, S.; Déjardin, P.; Janot, J. M.; Quiquampoix, H.; Staunton, S.

    2009-04-01

    Insecticidal Cry proteins from the soil bacterium, Bacillus thuringiensis (Bt) are produced by a class of genetically modified (GM) crops, and released into soils through root exudates and upon decomposition of residues. In contrast to the protoxin produced by the Bacillus, the protein produced in GM crops does not require activation in insect midguts and thereby potentially looses some of its species specificity. Although gene transfer and resistance emergence phenomena are well documented, the fate of these toxins in soil has not yet been clearly elucidated. Cry proteins, in common with other proteins, are adsorbed on soils and soil components. Adsorption on soil, and the reversibility of this adsorption is an important aspect of the environmental behaviour of these toxins. The orientation of the molecule and conformational changes on surfaces may modify the toxicity and confer some protection against microbial degradation. Adsorption will have important consequences for both the risk of exposition of non target species and the acquisition of resistance by target species. We have adopted different approaches to investigate the fate of Cry1Aa in soils and model minerals. In each series of experiments we endeavoured to maintain the protein in a monomeric form (pH above 6.5 and a high ionic strength imposed with 150 mM NaCl). The adsorption and the desorbability of the Cry1Aa Bt insecticidal protein were measured on two different homoionic clays: montmorillonite and kaolinite. Adsorption isotherms obtained followed a low affinity interaction for both clays and could be fitted using the Langmuir equation. Binding of the toxin decreased as the pH increased from 6.5 (close to the isoelectric point) to 9. Maximum adsorption was about 40 times greater on montmorillonite (1.71 g g-1) than on kaolinite (0.04 g g-1) in line with the contrasting respective specific surface areas of the minerals. Finally, some of the adsorbed toxin was desorbed by water and more, about 36

  14. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins.

    Science.gov (United States)

    Monnerat, Rose; Martins, Erica; Macedo, Cristina; Queiroz, Paulo; Praça, Lilian; Soares, Carlos Marcelo; Moreira, Helio; Grisi, Isabella; Silva, Joseane; Soberon, Mario; Bravo, Alejandra

    2015-01-01

    Brazil ranked second only to the United States in hectares planted to genetically modified crops in 2013. Recently corn producers in the Cerrado region reported that the control of Spodoptera frugiperda with Bt corn expressing Cry1Fa has decreased, forcing them to use chemicals to reduce the damage caused by this insect pest. A colony of S. frugiperda was established from individuals collected in 2013 from Cry1Fa corn plants (SfBt) in Brazil and shown to have at least more than ten-fold higher resistance levels compared with a susceptible colony (Sflab). Laboratory assays on corn leaves showed that in contrast to SfLab population, the SfBt larvae were able to survive by feeding on Cry1Fa corn leaves. The SfBt population was maintained without selection for eight generations and shown to maintain high levels of resistance to Cry1Fa toxin. SfBt showed higher cross-resistance to Cry1Aa than to Cry1Ab or Cry1Ac toxins. As previously reported, Cry1A toxins competed the binding of Cry1Fa to brush border membrane vesicles (BBMV) from SfLab insects, explaining cross-resistance to Cry1A toxins. In contrast Cry2A toxins did not compete Cry1Fa binding to SfLab-BBMV and no cross-resistance to Cry2A was observed, although Cry2A toxins show low toxicity to S. frugiperda. Bioassays with Cry1AbMod and Cry1AcMod show that they are highly active against both the SfLab and the SfBt populations. The bioassay data reported here show that insects collected from Cry1Fa corn in the Cerrado region were resistant to Cry1Fa suggesting that resistance contributed to field failures of Cry1Fa corn to control S. frugiperda.

  15. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins.

    Directory of Open Access Journals (Sweden)

    Rose Monnerat

    Full Text Available Brazil ranked second only to the United States in hectares planted to genetically modified crops in 2013. Recently corn producers in the Cerrado region reported that the control of Spodoptera frugiperda with Bt corn expressing Cry1Fa has decreased, forcing them to use chemicals to reduce the damage caused by this insect pest. A colony of S. frugiperda was established from individuals collected in 2013 from Cry1Fa corn plants (SfBt in Brazil and shown to have at least more than ten-fold higher resistance levels compared with a susceptible colony (Sflab. Laboratory assays on corn leaves showed that in contrast to SfLab population, the SfBt larvae were able to survive by feeding on Cry1Fa corn leaves. The SfBt population was maintained without selection for eight generations and shown to maintain high levels of resistance to Cry1Fa toxin. SfBt showed higher cross-resistance to Cry1Aa than to Cry1Ab or Cry1Ac toxins. As previously reported, Cry1A toxins competed the binding of Cry1Fa to brush border membrane vesicles (BBMV from SfLab insects, explaining cross-resistance to Cry1A toxins. In contrast Cry2A toxins did not compete Cry1Fa binding to SfLab-BBMV and no cross-resistance to Cry2A was observed, although Cry2A toxins show low toxicity to S. frugiperda. Bioassays with Cry1AbMod and Cry1AcMod show that they are highly active against both the SfLab and the SfBt populations. The bioassay data reported here show that insects collected from Cry1Fa corn in the Cerrado region were resistant to Cry1Fa suggesting that resistance contributed to field failures of Cry1Fa corn to control S. frugiperda.

  16. Field Performance of Bt Eggplants (Solanum melongena L.) in the Philippines: Cry1Ac Expression and Control of the Eggplant Fruit and Shoot Borer (Leucinodes orbonalis Guenée)

    Science.gov (United States)

    Hautea, Desiree M.; Taylo, Lourdes D.; Masanga, Anna Pauleen L.; Sison, Maria Luz J.; Narciso, Josefina O.; Quilloy, Reynaldo B.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Plants expressing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling insect pests in maize and cotton globally. However, there are few Bt vegetable crops. Eggplant (Solanum melongena) is a popular vegetable grown throughout Asia that is heavily treated with insecticides to control the eggplant fruit and shoot borer, Leucinodes orbonalis (EFSB). Herein we provide the first publicly available data on field performance in Asia of eggplant engineered to produce the Cry1Ac protein. Replicated field trials with five Bt eggplant open-pollinated (OP) lines from transformation event EE-1 and their non-Bt comparators were conducted over three cropping seasons in the Philippines from 2010–2012. Field trials documented levels of Cry1Ac protein expressed in plants and evaluated their efficacy against the primary target pest, EFSB. Cry1Ac concentrations ranged from 0.75–24.7 ppm dry weight with the highest in the terminal leaves (or shoots) and the lowest in the roots. Cry1Ac levels significantly increased from the vegetative to the reproductive stage. Bt eggplant lines demonstrated excellent control of EFSB. Pairwise analysis of means detected highly significant differences between Bt eggplant lines and their non-Bt comparators for all field efficacy parameters tested. Bt eggplant lines demonstrated high levels of control of EFSB shoot damage (98.6–100%) and fruit damage (98.1–99.7%) and reduced EFSB larval infestation (95.8–99.3%) under the most severe pest pressure during trial 2. Moths that emerged from larvae collected from Bt plants in the field and reared in their Bt eggplant hosts did not produce viable eggs or offspring. These results demonstrate that Bt eggplant lines containing Cry1Ac event EE-1 provide outstanding control of EFSB and can dramatically reduce the need for conventional insecticides. PMID:27322533

  17. Carbamate Insecticides Target Human Melatonin Receptors.

    Science.gov (United States)

    Popovska-Gorevski, Marina; Dubocovich, Margarita L; Rajnarayanan, Rajendram V

    2017-02-20

    Carbaryl (1-naphthyl methylcarbamate) and carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) are among the most toxic insecticides, implicated in a variety of diseases including diabetes and cancer among others. Using an integrated pharmacoinformatics based screening approach, we have identified these insecticides to be structural mimics of the neurohormone melatonin and were able to bind to the putative melatonin binding sites in MT 1 and MT 2 melatonin receptors in silico. Carbaryl and carbofuran then were tested for competition with 2-[ 125 I]-iodomelatonin (300 pM) binding to hMT 1 or hMT 2 receptors stably expressed in CHO cells. Carbaryl and carbofuran showed higher affinity for competition with 2-[ 125 I]-iodomelatonin binding to the hMT 2 compared to the hMT 1 melatonin receptor (33 and 35-fold difference, respectively) as predicted by the molecular modeling. In the presence of GTP (100 μM), which decouples the G-protein linked receptors to modulate signaling, the apparent efficacy of carbaryl and carbofuran for 2-[ 125 I]-iodomelatonin binding for the hMT 1 melatonin receptor was not affected but significantly decreased for the hMT 2 melatonin receptor compatible with receptor antagonist/inverse agonist and agonist efficacy, respectively. Altogether, our data points to a potentially new mechanism through which carbamate insecticides carbaryl and carbofuran could impact human health by altering the homeostatic balance of key regulatory processes by directly binding to melatonin receptors.

  18. ECONOMIC EVALUATION OF BT CORN REFUGE INSURANCE

    OpenAIRE

    Mitchell, Paul D.; Hurley, Terrance M.; Hellmich, Richard L.

    2000-01-01

    The EPA has imposed mandatory refuge requirements for Bt crops to prolong the efficacy of Bt. Growers have no economic incentive to plant the required refuge because refuge crops are on average less productive and more risky. This paper evaluates refuge insurance--insurance that pays indemnities for yield losses on refuge due to insect damage--as a tool to increase grower compliance incentives. We determine actuarially fair insurance premiums, then evaluate the feasibility of private provisio...

  19. Delaying corn rootworm resistance to Bt corn.

    Science.gov (United States)

    Tabashnik, Bruce E; Gould, Fred

    2012-06-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.

  20. Effectiveness of the high dose/refuge strategy for managing pest resistance to Bacillus thuringiensis (Bt) plants expressing one or two toxins.

    Science.gov (United States)

    Gryspeirt, Aiko; Grégoire, Jean-Claude

    2012-10-01

    To delay resistance development to Bacillus thuringiensis (Bt) plants expressing their own insecticide, the application of the Insect Resistance Management strategy called "High Dose/Refuge Strategy" (HD/R) is recommended by the US Environmental Protection Agency (US EPA). This strategy was developed for Bt plants expressing one toxin. Presently, however, new Bt plants that simultaneously express two toxins are on the market. We used a mathematical model to evaluate the efficiency of the HD/R strategy for both these Bt toxins. As the current two-toxin Bt plants do not express two new Cry toxins but reuse one toxin already in use with a one-toxin plant, we estimated the spread of resistance when the resistance alleles are not rare. This study assesses: (i) whether the two toxins have to be present in high concentration, and (ii) the impact of the relative size of the refuge zone on the evolution of resistance and population density. We concluded that for Bt plants expressing one toxin, a high concentration is an essential condition for resistance management. For the pyramided Bt plants, one toxin could be expressed at a low titer if the two toxins are used for the first time, and a small refuge zone is acceptable.

  1. Molecular Approaches to Improve the Insecticidal Activity of Bacillus thuringiensis Cry Toxins

    Directory of Open Access Journals (Sweden)

    Wagner A. Lucena

    2014-08-01

    Full Text Available Bacillus thuringiensis (Bt is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity.

  2. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance.

    Science.gov (United States)

    Dermauw, Wannes; Van Leeuwen, Thomas

    2014-02-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. 3 Insecticide Use Practice

    African Journals Online (AJOL)

    Administrator

    Chemical control of insect pests of cocoa started in 1950, and insecticides from the various classes have been recommended and used by ..... prevents the growth of offshoots (chupons). Integrating biological control with selective insecticides can minimize the likelihood of pest resurgence and possibly reduce the number of.

  4. Quantification of Bt δ-endotoxins in leaf tissues of tropical Bt maize ...

    African Journals Online (AJOL)

    In Kenya, stem borers destroy an estimated 13.5% of farmers' annual maize harvest. Maize transformed using Bacillus thuringiensis (Bt) derived genes controls stem borers without negative effects to humans, livestock or the environment. The effectiveness and sustainability of Bt transgenic technology in the control of stem ...

  5. Quantification of Bt δ-endotoxins in leaf tissues of tropical Bt maize ...

    African Journals Online (AJOL)

    Murenga Mwimali

    2012-06-26

    Jun 26, 2012 ... In Kenya, stem borers destroy an estimated 13.5% of farmers' annual maize harvest. Maize transformed using Bacillus thuringiensis (Bt) derived genes controls stem borers without negative effects to humans, livestock or the environment. The effectiveness and sustainability of Bt transgenic technology.

  6. Sublethal effects of Cry 1F Bt corn and clothianidin on black cutworm (Lepidoptera: Noctuidae) larval development.

    Science.gov (United States)

    Kullik, Sigrun A; Sears, Mark K; Schaafsma, Arthur W

    2011-04-01

    Black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is an occasional pest of maize (corn), Zea mays L., that may cause severe stand losses and injury to corn seedlings. The efficacy of the neonicotinoid seed treatment clothianidin at two commercially available rates and their interaction with a transgenic corn hybrid (Bt corn), trait expressing the Bacillus thuringiensis variety aizawai insecticidal toxin Cry 1Fa2, against black cutworm larvae was investigated. Clothianidin at a rate of 25 mg kernel(-1) on Bt corn increased larval mortality and reduced larval weight gains additively. In contrast, weights of larvae fed non-Bt corn seedlings treated with clothianidin at a rate of 25 mg kernel(-1) increased significantly, suggesting either compensatory overconsumption, hormesis, or hormoligosis. Both Bt corn alone and clothianidin at a rate of 125 mg kernel(-1) applied to non-Bt corn seedlings caused increased mortality and reduced larval weight gains. In two field trials, plots planted with Bt corn hybrids consistently had the highest plant populations and yields, regardless of whether they were treated with clothianidin at the lower commercial rate of 25 mg kernel(-1) The use of Bt corn alone or in combination with the low rate of clothianidin (25 mg kernel(-1)) seems suitable as a means of suppressing black cutworm in no-tillage cornfields, although rescue treatments may still be necessary under severe infestations. Clothianidin alone at the low rate of 25 mg kernel(-1) is not recommended for black cutworm control until further studies of its effects on larval physiology and field performance have been completed.

  7. Cannibalism of Helicoverpa zea (Lepidoptera: Noctuidae) from Bacillus thuringiensis (Bt) transgenic corn versus non-Bt corn.

    Science.gov (United States)

    Chilcutt, Charles F

    2006-06-01

    Because of the importance of cannibalism in population regulation of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in corn, Zea mays L., it is useful to understand the interactions between Bacillus thuringiensis (Bt) transgenic corn and cannibalism. To determine the effects of Bt corn on cannibalism in H. zea, pairs of the same or different instars were taken from Bt or non-Bt corn and placed on artificial diet in proximity. Cannibalism occurred in 91% of pairs and was approximately 7% greater for pairs of larvae reared from Bt transgenic corn (95%) than from non-Bt corn (88%). Also, first instar by first instar pairs had a lower rate of cannibalism than other pairs. Time until cannibalism was not different for larvae from Bt corn versus non-Bt corn. Pupation rate of cannibals and surviving victims was not different for pairs from Bt corn versus non-Bt corn. Finally, cannibalism increased pupation rate of cannibals from both Bt and non-Bt corn by approximately 23 and 12%, respectively, although the increases were not significant. Thus, negative effects of Bt on larvae were compensated by increased cannibalism in comparison with larvae reared on non-Bt corn, which increased larval survival to levels comparable with larvae reared on non-Bt plants.

  8. Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae.

    Directory of Open Access Journals (Sweden)

    Jennifer L Williams

    Full Text Available Fitness costs of resistance to Bacillus thuringiensis (Bt crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella, resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.

  9. Neurobehavioral toxicology of pyrethroid insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Crofton, K.M.

    1986-01-01

    Pyrethroid insecticides are classified as either Type I or Type II based upon in vivo toxic signs, and neurophysiological and biochemical data. Both axonal sodium channels and the ..gamma..-aminobutyric acid (GABA) receptor complex have been proposed as the major site of action of the Type II pyrethroids. This investigation characterized the behavior and biochemical effects of low dosages of pyrethroids in rats. Type I and II pyrethroids were tested for effects on figure-eight maze activity and the acoustic startle response (ASR). All compounds decreased figure-eight maze activity. Interactions of Type I and II pyrethroids with the three major binding sites on the GABA complex were determined in vivo. Radioligand binding experiments assessed in vitro interactions of pyrethroids with the three major GABA-complex binding sites. None of the pyrethroids competed for (/sup 3/H)-muscimol or (/sup 3/H)-flunitrazepam binding. Only Type II pyrethroids inhibited binding of (/sup 35/S)-t-butylbicyclophosphorothionate (TBPS) in cortical synaptosome preparations with K/sub i/ values of 5 to 10 ..mu..M. The (/sup 35/S)-TBPS data implicate the TBPS/picrotoxinin binding site in the mechanism of Type II pyrethroid toxicity. The results of these experiments support the classification of pyrethroids into two classes, and demonstrate the utility of the figure-eight maze and the ASR in studies to elucidate neurotoxic mechanisms. The interaction of the Type II pyrethroids is probably restricted to the TBPS/picrotoxinin binding domain on the GABA complex as shown by both the in vivo and in vitro studies.

  10. Current trends in Bt crops and their fate on associated microbial community dynamics: a review.

    Science.gov (United States)

    Singh, Amit Kishore; Dubey, Suresh Kumar

    2016-05-01

    Cry protein expressing insect-resistant trait is mostly deployed to control major devastating pests and minimize reliance on the conventional pesticides. However, the ethical and environmental issues are the major constraints in their acceptance, and consequently, the cultivation of genetically modified (GM) crops has invited intense debate. Since root exudates of Bacillus thuringiensis (Bt) crops harbor the insecticidal protein, there is a growing concern about the release and accumulation of soil-adsorbed Cry proteins and their impact on non-target microorganisms and soil microbial processes. This review pertains to reports from the laboratory studies and field trials to assess the Bt toxin proteins in soil microbes and the processes determining the soil quality in conjunction with the existing hypothesis and molecular approaches to elucidate the risk posed by the GM crops. Ecological perturbations hinder the risk aspect of soil microbiota in response to GM crops. Therefore, extensive research based on in vivo and interpretation of results using high-throughput techniques such as NGS on risk assessment are imperative to evaluate the impact of Bt crops to resolve the controversy related to their commercialization. But more studies are needed on the risk associated with stacked traits. Such studies would strengthen our knowledge about the plant-microbe interactions.

  11. [Research of the Bt crop biomass dynamics upon the invasion of Bt-resistant pests. A mathematical model].

    Science.gov (United States)

    Rusakov, A V; Medvinskiĭ, A B; Li, B -L; Gonik, M M

    2009-01-01

    The results of simulations of some consequences of the invasion of Bt-resistant pests into an agricultural ecosystem containing a Bt crop are presented. It is shown that the invasion of Bt-resistant pests leads to changes in the plant biomass dynamics, a decrease in the Bt crop production, and the deterioration of the predictability of the Bt crop production. We show that the parameter values at which the badly predictable Bt crop production takes place, occupy a minor area in the model parameter space. The size of the area depends on the insect reproduction period and the duration of the growing season.

  12. Insecticide Exposure in Parkinsonism

    National Research Council Canada - National Science Library

    Bloomquist, Jeffrey

    2002-01-01

    Behavioral, neurochemical, and immunocytochemical studies characterized the possible role of insecticide exposure in the etiology of Parkinson's disease as it may relate to Gulf War Syndrome. Chlorpyrifos (CP) and permethrin (PM...

  13. Insecticide Exposure in Parkinsonism

    National Research Council Canada - National Science Library

    Bloomquist, Jeffrey

    2001-01-01

    Behavioral, neurochemical, and immunocytochemical studies characterized the possible role of insecticide exposure in the etiology of Parkinson's disease as it may relate to Gulf War Syndrome. Chlorpyrifos (CP) and permethrin (PM...

  14. Insecticide Exposure in Parkinsonism

    National Research Council Canada - National Science Library

    Bloomquist, Jeffrey

    2003-01-01

    Behavioral, neurochemical, and immunocytochemical studies are characterizing the possible role of insecticide exposure in the etiology of Parkinson's disease as it may relate to Gulf War Syndrome. Chlorpyrifos (CP) and/or permethrin (PM...

  15. Insecticide Compendium. MP-29.

    Science.gov (United States)

    Spackman, Everett W.; And Others

    This document presents information on most of the known insecticides and their general usage, toxicity, formulation, compound type, manufacturers, and the chemical, trade and common names applied to each compound. (CS)

  16. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  17. Organophosphorus and carbamate insecticide poisoning.

    Science.gov (United States)

    Vale, Allister; Lotti, Marcello

    2015-01-01

    Both organophosphorus (OP) and carbamate insecticides inhibit acetylcholinesterase (AChE), which results in accumulation of acetylcholine (ACh) at autonomic and some central synapses and at autonomic postganglionic and neuromuscular junctions. As a consequence, ACh binds to, and stimulates, muscarinic and nicotinic receptors, thereby producing characteristic features. With OP insecticides (but not carbamates), "aging" may also occur by partial dealkylation of the serine group at the active site of AChE; recovery of AChE activity requires synthesis of new enzyme in the liver. Relapse after apparent resolution of cholinergic symptoms has been reported with OP insecticides and is termed the intermediate syndrome. This involves the onset of muscle paralysis affecting particularly upper-limb muscles, neck flexors, and cranial nerves some 24-96 hours after OP exposure and is often associated with the development of respiratory failure. OP-induced delayed neuropathy results from phosphorylation and subsequent aging of at least 70% of neuropathy target esterase. Cramping muscle pain in the lower limbs, distal numbness, and paresthesiae are followed by progressive weakness, depression of deep tendon reflexes in the lower limbs and, in severe cases, in the upper limbs. The therapeutic combination of oxime, atropine, and diazepam is well established experimentally in the treatment of OP pesticide poisoning. However, there has been controversy as to whether oximes improve morbidity and mortality in human poisoning. The explanation may be that the solvents in many formulations are primarily responsible for the high morbidity and mortality; oximes would not be expected to reduce toxicity in these circumstances. even if given in appropriate dose. © 2015 Elsevier B.V. All rights reserved.

  18. More about Insecticides

    Directory of Open Access Journals (Sweden)

    E.K. Hartwig

    1980-09-01

    Full Text Available An insecticide is a chemical used to kill insects. Insect control can also include other materials such as repellents, oils, antifeedants and attractants. Ideally, an insecticide would effectively control any target insect exposed to it and would be harmless to man and his domestic animals. It would also be readily available in necessary quantitie s , s table chemically, noninflammable, easily prepared and applied, noncorrosive, non-staining, and would have no undesirable odour.

  19. Poisoning by organophosphorus insecticides

    OpenAIRE

    Martínez Parra, Pedro P.

    2014-01-01

    The agricultural and industrial development that is reaching our country has conditioned the emergence of numerous types of occupational diseases, among which stand out the poison in the work environment, and within poisoning organophosphorus insecticides. Substances acting on harmful insects transmit diseases to both the man and the vegetable kingdom. The recent and ever-increasing use of new insecticides, raises the need to know the physiological actions of these products so that their bene...

  20. Use of maize pollen by adult Chrysoperla carnea (Neuroptera: Chrysopidae) and fate of Cry proteins in Bt-transgenic varieties.

    Science.gov (United States)

    Li, Yunhe; Meissle, Michael; Romeis, Jörg

    2010-02-01

    We investigated the use of maize pollen as food by adult Chrysoperla carnea under laboratory and field conditions. Exposure of the insects to insecticidal Cry proteins from Bacillus thuringiensis (Bt) contained in pollen of transgenic maize was also assessed. Female C. carnea were most abundant in a maize field when the majority of plants were flowering and fresh pollen was abundant. Field-collected females contained an average of approximately 5000 maize pollen grains in their gut at the peak of pollen shedding. Comparable numbers were found in females fed ad libitum maize pollen in the laboratory. Maize pollen is readily used by C. carnea adults. When provided with a carbohydrate source, it allowed the insects to reach their full reproductive potential. Maize pollen was digested mainly in the insect's mid- and hindgut. When Bt maize pollen passed though the gut of C. carnea, 61% of Cry1Ab (event Bt176) and 79% of Cry3Bb1 (event MON 88017) was digested. The results demonstrate that maize pollen is a suitable food source for C. carnea. Even though the pollen grains are not fully digested, the insects are exposed to transgenic insecticidal proteins that are contained in the pollen. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter.

    Science.gov (United States)

    Yang, Yong-Yi; Mei, Feng; Zhang, Wei; Shen, Zhicheng; Fang, Jun

    2014-08-01

    The insecticidal genes from Bacillus thuringiensis Berliner (Bt) have long been successfully used for development of insect-resistant rice. However, commercial planting of Bt rice has been delayed by the concern over food safety, although no scientific evidence is ever found to justify the concern. To address this safety concern, we developed a transgenic insect-resistant rice line using a green tissue promoter to minimize the Bt protein expression in the rice seeds. The Bt protein expressed in the rice was a fusion protein of two different Bt toxins, Cry1Ac and Cry1I-like protein. The fusion of the two toxins may be helpful to delay the development of insect resistance to Bt rice. Laboratory and field bioassays demonstrated that the transgenic rice plants created by this study were highly active against the rice leaf folder Cnaphalocrocis medinalis (Guenée) and the striped stem borer Chilo suppressalis (Walker). Western analysis indicated that the fusion protein was specifically expressed in green tissues but not in seeds. Therefore, the transgenic rice created in this study should be useful to mitigate the food safety concern and to delay the development of insect resistance.

  2. Ingestion of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac does not harm Propylea japonica larvae.

    Science.gov (United States)

    Liu, Yanmin; Liu, Qingsong; Wang, Yanan; Chen, Xiuping; Song, Xinyuan; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2016-03-23

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) is a prevalent pollen consumer in corn fields and is therefore exposed to insecticidal proteins contained in the pollen of insect-resistant transgenic corn cultivars expressing Cry proteins derived from Bacillus thuringiensis (Bt). In the present study, the potential effect of Cry1Ab/2Aj- or Cry1Ac-containing transgenic Bt corn pollen on the fitness of P. japonica larvae was evaluated. The results show that the larval developmental time was significantly shorter when P. japonica larvae were fed pollen from Bt corn cultivars rather than control pollen but that pupation rate, eclosion rate, and adult fresh weight were not significantly affected. In the feeding experiments, the stability of the Cry proteins in the food sources was confirmed. When Bt corn pollen passed through the gut of P. japonica, 23% of Cry1Ab/2Aj was digested. The results demonstrate that consumption of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac has no detrimental effect on P. japonica larvae; the shortened developmental time of larvae that consumed these proteins was likely attributable to unknown differences in the nutritional composition between the Bt-transgenic and control corn pollen.

  3. BACILLUS THURINGIENSIS ELASTASES WITH INSECTICIDE ACTIVITY

    Directory of Open Access Journals (Sweden)

    E. V. Matseliukh

    2015-10-01

    Full Text Available The purpose of the research was a screening of proteases with elastase activity among Bacillus thuringiensis strains, their isolation, partially purification, study of physicochemical properties and insecticide activity in relation to the larvae of the Colorado beetle. The objects of the investigation were 18 strains of B. thuringiensis, isolated from different sources: sea water, dry biological product "Bitoksibatsillin" and also from natural populations of Colorado beetles of the Crimea, Kherson, Odesa, Mykolaiv and Zaporizhiia regions of Ukraine. Purification of enzymes with elastase activity isolated from above mentioned strains was performed by gel-chromatography and insecticide activity was studied on the 3–4 larvae instar of Colorado beetle. The ability of a number of B. thuringiensis strains to synthesize the proteases with elastase activity has been established. The most active were enzymes obtained from strains IMV B-7465, IMV B-7324 isolated from sea water, and strains 9, 902, Bt-H and 0-239 isolated from Colorado beetles. The study of the physicochemical properties of the partially purified proteases of these strains showed that they belonged to enzymes of the serine type. Peptidases of a number of B. thuringiensis strains (IMV B-7324, IMV B-7465, 902, 0-239, 9 are metal-dependent enzymes. Optimal conditions of action of all tested enzymes are the neutral and alkaline рН values and the temperatures of 30–40 °С. The studies of influence of the complex enzyme preparations and partially purified ones of B. thuringiensis strains on the larvae instar of Colorado beetles indicated that enzymes with elastase activity could be responsible for insecticide action of the tested strains.

  4. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings.

    Science.gov (United States)

    Jouzani, Gholamreza Salehi; Valijanian, Elena; Sharafi, Reza

    2017-04-01

    Bacillus thuringiensis (Bt) is known as the most successful microbial insecticide against different orders of insect pests in agriculture and medicine. Moreover, Bt toxin genes also have been efficiently used to enhance resistance to insect pests in genetically modified crops. In light of the scientific advantages of new molecular biology technologies, recently, some other new potentials of Bt have been explored. These new environmental features include the toxicity against nematodes, mites, and ticks, antagonistic effects against plant and animal pathogenic bacteria and fungi, plant growth-promoting activities (PGPR), bioremediation of different heavy metals and other pollutants, biosynthesis of metal nanoparticles, production of polyhydroxyalkanoate biopolymer, and anticancer activities (due to parasporins). This review comprehensively describes recent advances in the Bt whole-genome studies, the last updated known Bt toxins and their functions, and application of cry genes in plant genetic engineering. Moreover, the review thoroughly describes the new features of Bt which make it a suitable cell factory that might be used for production of different novel valuable bioproducts.

  5. Soil microbial biomass and root growth in Bt and non-Bt cotton

    Science.gov (United States)

    Tan, D. K. Y.; Broughton, K.; Knox, O. G.; Hulugalle, N. R.

    2012-04-01

    The introduction of transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) has had a substantial impact on pest management in the cotton industry. While there has been substantial research done on the impact of Bt on the above-ground parts of the cotton plant, less is known about the effect of Bt genes on below ground growth of cotton and soil microbial biomass. The aim of this research was to test the hypothesis that Bt [Sicot 80 BRF (Bollgard II Roundup Ready Flex®)] and non-Bt [Sicot 80 RRF (Roundup Ready Flex®)] transgenic cotton varieties differ in root growth and root turnover, carbon indices and microbial biomass. A field experiment was conducted in Narrabri, north-western NSW. The experimental layout was a randomised block design and used minirhizotron and core break and root washing methods to measure cotton root growth and turnover during the 2008/09 season. Root growth in the surface 0-0.1 m of the soil was measured using the core break and root washing methods, and that in the 0.1 to 1 m depth was measured with a minirhizotron and an I-CAP image capture system. These measurements were used to calculate root length per unit area, root carbon added to the soil through intra-seasonal root death, carbon in roots remaining at the end of the season and root carbon potentially added to the soil. Microbial biomass was also measured using the ninhydrin reactive N method. Root length densities and length per unit area of non-Bt cotton were greater than Bt cotton. There were no differences in root turnover between Bt and non-Bt cotton at 0-1 m soil depth, indicating that soil organic carbon stocks may not be affected by cotton variety. Cotton variety did not have an effect on soil microbial biomass. The results indicate that while there are differences in root morphology between Bt and non-Bt cotton, these do not change the carbon turnover dynamics in the soil.

  6. Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations.

    Science.gov (United States)

    Devos, Yann; Meihls, Lisa N; Kiss, József; Hibbard, Bruce E

    2013-04-01

    Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions

  7. THE ECONOMICS OF REFUGE DESIGN FOR BT CORN

    OpenAIRE

    Hyde, Jeffrey; Martin, Marshall A.; Preckel, Paul V.; Dobbins, Craig L.; Edwards, C. Richard

    1999-01-01

    Planting Bt corn on large areas may lead to European corn borer (ECB) resistance to Bt. Scientists recommend planting a non-Bt corn refuge as part of a resistance management strategy. Different refuge configurations may impact farm profits differently. This paper analyzes the economics of alternative refuge configurations in Indiana.

  8. Characterization of NCAM expression and function in BT4C and BT4Cn glioma cells

    DEFF Research Database (Denmark)

    Andersson, A M; Moran, N; Gaardsvoll, H

    1991-01-01

    The neural cell adhesion molecule, NCAM, plays an important role in cell-cell adhesion. Therefore, we have studied NCAM expression in the glioma cell lines BT4C and BT4Cn. We demonstrate that the 2 cell lines differ in their metastatic ability; while BT4C cells have a very low capacity...... for producing experimental metastases, that of BT4Cn cells is high. In BT4C cells NCAM is synthesized as 4 polypeptides with Mr's of 190,000, 140,000, 115,000 and 97,000. The 140,000, 115,000 and 97,000 polypeptides are glycosylated and for the 140,000 and 115,000 polypeptides sulfatation is observed....... Conversely, no NCAM protein synthesis is observed in BT4Cn cells, even though NCAM mRNA is expressed. Thus, development of an increased metastatic capacity is accompanied by the disappearance of NCAM protein expression in this model system. The functional importance of NCAM expression was studied by a cell...

  9. Impact of violated high-dose refuge assumptions on evolution of Bt resistance.

    Science.gov (United States)

    Campagne, Pascal; Smouse, Peter E; Pasquet, Rémy; Silvain, Jean-François; Le Ru, Bruno; Van den Berg, Johnnie

    2016-04-01

    Transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been widely and successfully deployed for the control of target pests, while allowing a substantial reduction in insecticide use. The evolution of resistance (a heritable decrease in susceptibility to Bt toxins) can pose a threat to sustained control of target pests, but a high-dose refuge (HDR) management strategy has been key to delaying countervailing evolution of Bt resistance. The HDR strategy relies on the mating frequency between susceptible and resistant individuals, so either partial dominance of resistant alleles or nonrandom mating in the pest population itself could elevate the pace of resistance evolution. Using classic Wright-Fisher genetic models, we investigated the impact of deviations from standard refuge model assumptions on resistance evolution in the pest populations. We show that when Bt selection is strong, even deviations from random mating and/or strictly recessive resistance that are below the threshold of detection can yield dramatic increases in the pace of resistance evolution. Resistance evolution is hastened whenever the order of magnitude of model violations exceeds the initial frequency of resistant alleles. We also show that the existence of a fitness cost for resistant individuals on the refuge crop cannot easily overcome the effect of violated HDR assumptions. We propose a parametrically explicit framework that enables both comparison of various field situations and model inference. Using this model, we propose novel empiric estimators of the pace of resistance evolution (and time to loss of control), whose simple calculation relies on the observed change in resistance allele frequency.

  10. Organophosphorus Insecticide Pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Charles

    2010-01-01

    This chapter highlights a number of current and future applications of pharmacokinetics to assess organophosphate (OP) insecticide dosimetry, biological response and risk in humans exposed to these agents. Organophosphates represent a large family of pesticides where insecticidal as well as toxicological mode of action is associated with their ability to target and inhibit acetylcholinesterase (AChE). Pharmacokinetics entails the quantitative integration of physiological and metabolic processes associated with the absorption, distribution, metabolism and excretion (ADME) of drugs and xenobiotics. Pharmacokinetic studies provide important data on the amount of toxicant delivered to a target site as well as species-, age-, gender-specific and dose-dependent differences in biological response. These studies have been conducted with organophosphorus insecticides in multiple species, at various dose levels, and across different routes of exposure to understand their in vivo pharmacokinetics and how they contribute to the observed toxicological response. To access human exposure to organophosphorus insecticides, human pharmacokinetic studies have been conducted and used to develop biological monitoring strategies based on the quantitation of key metabolites in biological fluids. Pharmacokinetic studies with these insecticides are also useful to facilitate extrapolation of dosimetry and biological response from animals to humans and for the assessment of human health risk. In this regard, physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models are being utilized to assess risk and understand the toxicological implications of known or suspected exposures to various insecticides. In this chapter a number of examples are presented that illustrate the utility and limitation of pharmacokinetic studies to address human health concerns associated with organophosphorus insecticides.

  11. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng

    2016-06-15

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread.

  12. Spatial Distribution of Eggs of Alabama argillacea Hübner and Heliothis virescens Fabricius (Lepidoptera: Noctuidae on Bt and non-BtCotton

    Directory of Open Access Journals (Sweden)

    TATIANA R. RODRIGUES

    2015-12-01

    Full Text Available ABSTRACT Among the options to control Alabama argillacea (Hübner, 1818 and Heliothis virescens (Fabricius, 1781 on cotton, insecticide spraying and biological control have been extensively used. The GM'Bt' cotton has been introduced as an extremely viable alternative, but it is yet not known how transgenic plants affect populations of organisms that are interrelated in an agroecosystem. For this reason, it is important to know how the spatial arrangement of pests and beneficial insect are affected, which may call for changes in the methods used for sampling these species. This study was conducted with the goal to investigate the pattern of spatial distribution of eggs of A. argillacea and H. virescens in DeltaOpalTM (non-Bt and DP90BTMBt cotton cultivars. Data were collected during the agricultural year 2006/2007 in two areas of 5,000 m2, located in in the district of Nova América, Caarapó municipality. In each sampling area, comprising 100 plots of 50 m2, 15 evaluations were performed on two plants per plot. The sampling consisted in counting the eggs. The aggregation index (variance/mean ratio, Morisita index and exponent k of the negative binomial distribution and chi-square fit of the observed and expected values to the theoretical frequency distribution (Poisson, Binomial and Negative Binomial Positive, showed that in both cultivars, the eggs of these species are distributed according to the aggregate distribution model, fitting the pattern of negative binomial distribution.

  13. Practice Tests for the TOEFL iBT

    CERN Document Server

    Stirling, Bruce

    2012-01-01

    Practice Tests for the TOEFL iBT contains four TOEFL tests, with answer keys. Perfect for self-study and classrooms. Each TOEFL iBT Practice Test...* reflects the design of the official TOEFL internet-based test* tests academic English-language proficiency expected of university students in the United States, Canada, Australia, New Zealand, Ireland, Scotland and England* provides extra practice before you take the official TOEFL iBT* will help you identify those areas of academic English you need to improve for a higher TOEFL iBT score* will give you an unofficial, TOEFL iBT range score within

  14. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Head, Graham P; Price, Paula; Huang, Fangneng

    2017-12-01

    Gene-pyramiding by combining two or more dissimilar Bacillus thuringiensis (Bt) proteins into a crop has been used to delay insect resistance. The durability of gene-pyramiding can be reduced by cross-resistance. Fall armyworm, Spodoptera frugiperda, is a major target pest of the Cry2Ab2 protein used in pyramided Bt corn and cotton. Here, we provide the first experimental evaluation of cross-resistance in S. frugiperda selected with Cry2Ab2 corn to multiple Bt sources including purified Bt proteins, Bt corn and Bt cotton. Concentration - response bioassays showed that resistance ratios for Cry2Ab2-resistant (RR) relative to Cry2Ab2-susceptible (SS) S. frugiperda were -1.4 for Cry1F, 1.2 for Cry1A.105, >26.7 for Cry2Ab2, >10.0 for Cry2Ae and -1.1 for Vip3A. Larvae of Cry2Ab2-heterozygous (RS), SS and RR S. frugiperda were all susceptible to Bt corn and Bt cotton containing Cry1 (Cry1F or Cry1A.105) and/or Vip3A proteins. Pyramided Bt cotton containing Cry1Ac + Cry2Ab2 or Cry1Ab + Cry2Ae were also effective against SS and RS, but not RR. These findings suggest that Cry2Ab2-corn-selected S. frugiperda is not cross-resistant to Cry1F, Cry1A.105 or Vip3A protein, or corn and cotton plants containing these Bt proteins, but it can cause strong cross-resistance to Cry2Ae and Bt crops expressing similar Bt proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. BT's adoption of customer centric design.

    Science.gov (United States)

    Chamberlain, Mark; Esquivel, Jacqueline; Miller, Fiona; Patmore, Jeff

    2015-01-01

    Between 2005 and 2010 BT underwent a major transformation from a company with a special section devoted to 'older and disabled consumers' to a company with an inclusive design strategy. The mainstreaming of these issues responded to a demand for better, more user-friendly communications products and growing awareness of the importance of previously marginalised consumer groups. It also took place alongside the development and publication of BS7000-6, a guide to inclusive design management. Based on several product design case studies, this paper reflects on how and why this transformation was seen as necessary for future success, and how the transformation was achieved. The evolution of BT's approach has continued since, but this paper looks back in time, and documents the transformation up to 2010 and reflects the state of the company in 2010 rather than at the time of publication. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Botanical Insecticides in Plant Protection

    OpenAIRE

    Grdiša, Martina; Gršić, Kristina

    2013-01-01

    Botanical insecticides are natural compounds with insecticidal properties and their use in crop protection is as old as agricultural practice. Although they have been in use for over one hundred years, the advent of synthetic insecticides has unfortunately displaced their use today. Due to fast action, low cost, easy application and efficiency against a wide range of harmful species, synthetic insecticides have become an important part of pest management in modern agricultural systems....

  17. Molecular characterization and genetic diversity of insecticidal crystal protein genes in native Bacillus thuringiensis isolates.

    Science.gov (United States)

    Mahadeva Swamy, H M; Asokan, R; Mahmood, Riaz; Nagesha, S N

    2013-04-01

    The Western Ghats of Karnataka natural ecosystem are among the most diverse and is one of the eight hottest hotspots of biological diversity in the world, that runs along the western part of India through four states including Karnataka. Bacillus thuringiensis (Bt) strains were isolated from soils of Western Ghats of Karnataka and characterized by molecular and analytical methods as a result of which 28 new Bt-like isolates were identified. Bt strains were isolated from soil samples using sodium acetate selection method. The morphology of crystals was studied using light and phase contrast microscopy. Isolates were further characterized for insecticidal cry gene by PCR, composition of toxins in bacterial crystals by SDS-PAGE cloning, sequencing and evaluation of toxicity was done. As a result 28 new Bt-like isolates were identified. Majority of the isolates showed the presence of a 55 kDa protein bands on SDS-PAGE while the rest showed 130, 73, 34, and 25 kDa bands. PCR analysis revealed predominance of Coleopteran-active cry genes in these isolates. The variations in the nucleotide sequences, crystal morphology, and mass of crystal protein(s) purified from the Bt isolates revealed genetic and molecular diversity. Three strains containing Coleopteran-active cry genes showed higher activity against larvae Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) than B. thuringiensis subsp. Morrisoni. Results indicated that Bt isolates could be utilized for bioinsecticide production, aiming to reduce the use of chemical insecticide which could be useful to use in integrated pest management to control agriculturally important pests for sustainable crop production.

  18. Cellular responses in Bacillus thuringiensis CS33 during bacteriophage BtCS33 infection.

    Science.gov (United States)

    Wu, Dandan; Yuan, Yihui; Liu, Pengming; Wu, Yan; Gao, Meiying

    2014-04-14

    Bacillus thuringiensis (Bt) has been widely used for 50years as a biopesticide for controlling insect pests. However, bacteriophage infection can cause failures in 50%-80% of the batches during Bt fermentation, resulting in severe losses. In the present work, the physiological and biochemical impacts of Bt strain CS33 have been studied during bacteriophage infection. This study adopted a gel-based proteomics approach to probe the sequential changed proteins in phage-infected Bt cells. To phage, it depressed the host energy metabolism by suppressing the respiration chain, the TCA cycle, and the utilization of PHB on one hand; on the other hand, it hijacked the host translational machine for its own macromolecular synthesis. To host, superinfection exclusion might be triggered by the changes of S-layer protein and flagella related proteins, which were located on the cell surface and might play as the candidates for the phage recognition. More importantly, the growth rate, cell mass, and ICPs yield were significantly decreased. The low yield of ICPs was mainly due to the suppressed utilization of PHB granules. Further functional study on these altered proteins may lead to a better understanding of the pathogenic mechanisms and the identification of new targets for phage control. B. thuringiensis (Bt) has been widely used for 50years as a safe biopesticide for controlling agricultural and sanitary insect pests. However, bacteriophage infection can cause severe losses during B. thuringiensis fermentation. The processes and consequences of interactions between bacteriophage and Bt were still poorly understood, and the molecular mechanisms involved were more unknown. This study adopted a gel-based proteomics approach to probe the physiological and biochemical impacts of Bt strain CS33 after phage-infection. The interactions between phage BtCS33 and its host Bt strain CS33 occurred mainly on four aspects. First, phage synthesized its nucleic acids through metabolic

  19. A case to study population dynamics of bemisia tabaci and thrips tabaci on bt and non-bt cotton genotypes

    International Nuclear Information System (INIS)

    Akram, M.; Hussain, M.; Ahmed, S.; Hafeez, F.; Farooq, M.; Arshad, M.

    2013-01-01

    Studies were conducted to investigate the performance of eight bt and five non-bt cotton genotypes against whitefly and thrips and impact of abiotic factors on the population fluctuation of these sucking pests, at cotton research station, multan, during 2010 and 2011. The results exhibited that bt genotypes found more susceptible host for the whitefly and thirps than non-bt genotypes, during the course of years of study. Among bt genotypes, maximum and minimum temperature showed significant and positive effect on whitefly population whereas relative humidity exerted negative effect during 2010. During 2011, the effect of all the factors was non significant. On cumulative basis, there was positive correlation between population of whitefly and minimum temperature. But in case of non-bt, it has negative with maximum temperature whereas relative humidity had a positive effect on whitefly population. similar trend was observed for thrips population on bt varieties during both years but on non-bt varieties only minimum temperature exerted strong positive impact on thrips population. Hierarchical regression models for whitefly and thrips revealed that minimum temperature was the most important factor (Bt and non-Bt varieties). Maximum temperature was the major contributing factor for whitefly fluctuation on bt varieties during 2010. (author)

  20. Highly toxic and broad-spectrum insecticidal local Bacillus strains engineered using protoplast fusion.

    Science.gov (United States)

    El-Kawokgy, Tahany M A; Hussein, Hashem A; Aly, Nariman A H; Mohamed, Shereen A H

    2015-01-01

    Protoplast fusion was performed between a local Bacillus thuringiensis UV-resistant mutant 66/1a (Bt) and Bacillus sphaericus GHAI (Bs) to produce new Bacillus strains with a wider spectrum of action against different insects. Bt is characterized as sensitive to polymyxin and streptomycin and resistant to rifampicin and has shown 87% mortality against Spodoptera littoralis larvae at concentration of 1.5 × 10(7) cells/mL after 7 days of feeding; Bs is characterized as resistant to polymyxin and streptomycin and sensitive to rifampicin and has been shown to have 100% mortality against Culex pipiens after 1 day of feeding at the same concentration as that of Bt. Among a total of 64 Bt::Bs fusants produced on the selective medium containing polymyxin, streptomycin, and rifampicin, 17 fusants were selected because of their high mortality percentages against S. littoralis (Lepidoptera) and C. pipiens (Diptera). While Bt harboured 3 plasmids (600, 350, and 173 bp) and Bs had 2 plasmids (544 and 291 bp), all the selected fusants acquired plasmids from both parental strains. SDS-PAGE protein analysis of the 17 selected fusants and their parental strains confirmed that all fusant strains acquired and expressed many specific protein bands from the 2 parental strains, especially the larvicidal proteins to both lepidopteran and dipteran species with molecular masses of 65, 70, 80, 88, 100, and 135 kDa. Four protein bands with high molecular masses of 281, 263, 220, and 190 kDa, which existed in the Bt parental strain and did not exist in the Bs parental strain, and 2 other protein bands with high molecular masses of 185 and 180 kDa, which existed in the Bs parental strain and did not exist in the Bt parental strain, were expressed in most fusants. The results indicated the expression of some cry genes encoded for insecticidal crystal proteins from Bt and the binary toxin genes from Bs in all fusant strains. The recombinant fusants have more efficient and potential values for

  1. Dispersal and movement behavior of neonate European corn borer (Lepidoptera: Crambidae) on non-Bt and transgenic Bt corn.

    Science.gov (United States)

    Goldstein, Jessica A; Mason, Charles E; Pesek, John

    2010-04-01

    Neonate movement and dispersal behavior of the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), were investigated under controlled conditions on Bacillus thuringiensis (Bt) and non-Bt corn, Zea mays L., to assess plant abandonment, dispersal from their natal plant, and silking behavior after Bt and non-Bt preexposure. With continuous airflow, neonates on a Bt corn plant for 24 h abandoned that plant 1.78 times more frequently than neonates on a non-Bt corn plant. Indirect evidence indicated that at least one third of the neonates were capable of ballooning within 24 h. In the greenhouse, some neonates were recovered after 24 h from plants 76 and 152 cm away that likely ballooned from their natal plant. After 1 h of preexposure on a Bt corn leaf, neonates placed on a new corn leaf and observed for 10 min began silking off of a new Bt leaf significantly sooner than a new non-Bt leaf. Results suggest that neonates are unable to detect Bt in the corn within 10 min but that they can detect it within the first hour.

  2. Occurrence and larval movement of Diatraea saccharalis (Lepidoptera: Crambidae) in seed mixes of non-Bt and Bt pyramid corn.

    Science.gov (United States)

    Wangila, David S; Leonard, B Rogers; Ghimire, Mukti N; Bai, Yaoyu; Zhang, Liping; Yang, Yunlong; Emfinger, Karla D; Head, Graham P; Yang, Fei; Niu, Ying; Huang, Fangneng

    2013-10-01

    Larval movement of target pest populations among Bt and non-Bt plants is a major concern in the use of a seed mixture refuge strategy for Bt resistance management. In this study, occurrence and larval movement of the sugarcane borer, Diatraea saccharalis (F.), were evaluated in four planting patterns of non-Bt and Bt plants containing Genuity® SmartStax(TM) traits in 2009-2011. The four planting patterns were: (1) a pure stand of 27 Bt plants; (2) one non-Bt plant in the center, surrounded by 26 Bt plants; (3) a pure stand of 27 non-Bt plants; (4) one Bt plant in the center, surrounded by 26 non-Bt plants. Studies were conducted under four conditions: (1) open field with natural infestation; (2) greenhouse with artificial infestations; open field with artificial infestations (3) on the center plants only and (4) on every plant. The major objective of this study was to determine whether refuge plants in a seed mixture strategy could provide a comparable refuge population of D. saccharalis to a 'structured refuge' planting. Larvae of D. saccharalis showed the ability to move from infested plants to at least four plants away, as well as to adjacent rows, but the majority remained within the infested row. However, the number of larvae found on the non-Bt plants in the mixture plantings was not significantly reduced compared with the pure stand of non-Bt corn. The results of this study show that refuge plants in a seed mixture may be able to provide a comparable refuge population of D. saccharalis to a structured refuge planting. © 2013 Society of Chemical Industry.

  3. Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green Lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae.

    Directory of Open Access Journals (Sweden)

    Yunhe Li

    Full Text Available Adults of the common green lacewing, Chrysoperla carnea (Stephens (Neuroptera: Chrysopidae, are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt. Laboratory experiments were conducted to evaluate the impact of Cry3Bb1 or Cry1Ab-expressing transgenic maize (MON 88017, Event Bt176 pollen on fitness parameters of adult C. carnea. Adults were fed pollen from Bt maize varieties or their corresponding near isolines together with sucrose solution for 28 days. Survival, pre-oviposition period, fecundity, fertility and dry weight were not different between Bt or non-Bt maize pollen treatments. In order to ensure that adults of C. carnea are not sensitive to the tested toxins independent from the plant background and to add certainty to the hazard assessment, adult C. carnea were fed with artificial diet containing purified Cry3Bb1 or Cry1Ab at about a 10 times higher concentration than in maize pollen. Artificial diet containing Galanthus nivalis agglutinin (GNA was included as a positive control. No differences were found in any life-table parameter between Cry protein containing diet treatments and control diet. However, the pre-oviposition period, daily and total fecundity and dry weight of C. carnea were significantly negatively affected by GNA-feeding. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources as well as the uptake by C. carnea was confirmed. These results show that adults of C. carnea are not affected by Bt maize pollen and are not sensitive to Cry1Ab and Cry3Bb1 at concentrations exceeding the levels in pollen. Consequently, Bt maize pollen consumption will pose a negligible risk to adult C. carnea.

  4. Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green Lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae).

    Science.gov (United States)

    Li, Yunhe; Meissle, Michael; Romeis, Jörg

    2008-08-06

    Adults of the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt). Laboratory experiments were conducted to evaluate the impact of Cry3Bb1 or Cry1Ab-expressing transgenic maize (MON 88017, Event Bt176) pollen on fitness parameters of adult C. carnea. Adults were fed pollen from Bt maize varieties or their corresponding near isolines together with sucrose solution for 28 days. Survival, pre-oviposition period, fecundity, fertility and dry weight were not different between Bt or non-Bt maize pollen treatments. In order to ensure that adults of C. carnea are not sensitive to the tested toxins independent from the plant background and to add certainty to the hazard assessment, adult C. carnea were fed with artificial diet containing purified Cry3Bb1 or Cry1Ab at about a 10 times higher concentration than in maize pollen. Artificial diet containing Galanthus nivalis agglutinin (GNA) was included as a positive control. No differences were found in any life-table parameter between Cry protein containing diet treatments and control diet. However, the pre-oviposition period, daily and total fecundity and dry weight of C. carnea were significantly negatively affected by GNA-feeding. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources as well as the uptake by C. carnea was confirmed. These results show that adults of C. carnea are not affected by Bt maize pollen and are not sensitive to Cry1Ab and Cry3Bb1 at concentrations exceeding the levels in pollen. Consequently, Bt maize pollen consumption will pose a negligible risk to adult C. carnea.

  5. TRANSGENIC PLANTS - INSECTICIDAL TOXIN IN ROOT EXUDATES FROM BT CORN. (R826107)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. TOEFL strategies a complete guide to the iBT

    CERN Document Server

    Stirling, Bruce

    2016-01-01

    TOEFL students all ask: How can I get a high TOEFL iBT score? Answer: Learn argument scoring strategies. Why? Because the TOEFL iBT recycles opinion-based and fact-based arguments for testing purposes from start to finish. In other words, the TOEFL iBT is all arguments. That's right, all arguments. If you want a high score, you need essential argument scoring strategies. That is what TOEFL STRATEGIES A COMPLETE GUIDE gives you, and more!

  7. A conformational switch in the active site of BT_2972, a methyltransferase from an antibiotic resistant pathogen B. thetaiotaomicron.

    Directory of Open Access Journals (Sweden)

    Veerendra Kumar

    Full Text Available Methylation is one of the most common biochemical reactions involved in cellular and metabolic functions and is catalysed by the action of methyltransferases. Bacteroides thetaiotaomicron is an antibiotic-resistant bacterium that confers resistance through methylation, and as yet, there is no report on the structure of methyltransferases from this bacterium. Here, we report the crystal structure of an AdoMet-dependent methyltransferase, BT_2972 and its complex with AdoMet and AdoHcy for B. thetaiotaomicron VPI-5482 strain along with isothermal titration calorimetric assessment of the binding affinities. Comparison of the apo and complexed BT_2972 structures reveals a significant conformational change between open and closed forms of the active site that presumably regulates the association with cofactors and may aid interaction with substrate. Together, our analysis suggests that BT_2972 is a small molecule methyltransferase and might catalyze two O-methylation reaction steps involved in the ubiquinone biosynthesis pathway.

  8. Characterization of NCAM expression and function in BT4C and BT4Cn glioma cells

    DEFF Research Database (Denmark)

    Andersson, A M; Moran, N; Gaardsvoll, H

    1991-01-01

    . Conversely, no NCAM protein synthesis is observed in BT4Cn cells, even though NCAM mRNA is expressed. Thus, development of an increased metastatic capacity is accompanied by the disappearance of NCAM protein expression in this model system. The functional importance of NCAM expression was studied by a cell...

  9. Field Studies to Evaluate Potential Differences between Bt and non-Bt Corn Residue

    Science.gov (United States)

    Some reports suggest that the genetically-modified Bt corn residue may have higher lignin content and that the residue may be more resistant to decomposition. If true, then there are implications for both farming practices, e.g., tillage and planting, as well as global carbon budgets. We conducted ...

  10. TMD factorization and evolution at large $b_T$

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John [Pennsylvania State Univ., University Park, PA (United States); Rogers, Ted [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2015-07-20

    In using transverse-momentum-dependent (TMD) parton densities and fragmentation functions, important non-perturbative information is at large transverse position $b_T$. This concerns both the TMD functions and their evolution. Fits to high energy data tend to predict too rapid evolution when extrapolated to low energies where larger values of $b_T$ dominate. I summarize a new analysis of the issues. It results in a proposal for much weaker $b_T$ dependence at large $b_T$ for the evolution kernel, while preserving the accuracy of the existing fits. The results are particularly important for using transverse-spin-dependent functions like the Sivers function.

  11. Host Recognition Responses of Western (Family: Chrysomelidae) Corn Rootworm Larvae to RNA Interference and Bt Corn.

    Science.gov (United States)

    Zukoff, Sarah N; Zukoff, Anthony L

    2017-01-01

    Western corn rootworm Diabrotica virgifera virgifera LeConte is an important pest of corn whose larvae exhibit particular quantifiable patterns of locomotion after exposure to, and removal from, host roots and nonhost roots. Using EthoVision software, the behavior and locomotion of the western corn rootworm larvae was analyzed to determine the level of host recognition to germinated roots of differing corn hybrids containing either rootworm targeted Bt genes, RNA interference (RNAi) technology, the stack of both Bt and RNAi, or the isoline of these. The behavior of the rootworm larvae indicated a significant host preference response to all corn hybrids (with or without insecticidal traits) compared to the filter paper and oat roots. A weaker host response to the RNAi corn roots was observed in the susceptible larvae when compared to the resistant larvae, but not for the Bt + RNAi vector stack. Additionally, the resistant larvae demonstrated a weaker host response to the isoline corn roots when compared to the susceptible larvae. Although weaker, these host responses were significantly different from those observed in the negative controls, indicating that all hybrids tested do contain the contact cues necessary to elicit a host preference response by both Cry3Bb1-resistant and Cry3Bb1-susceptible larvae that would work to hinder resistance development in refuge in a bag fields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  12. Mesoionic insecticides: a novel class of insecticides that modulate nicotinic acetylcholine receptors.

    Science.gov (United States)

    Holyoke, Caleb W; Cordova, Daniel; Zhang, Wenming; Barry, James D; Leighty, Robert M; Dietrich, Robert F; Rauh, James J; Pahutski, Thomas F; Lahm, George P; Tong, My-Hanh Thi; Benner, Eric A; Andreassi, John L; Smith, Rejane M; Vincent, Daniel R; Christianson, Laurie A; Teixeira, Luis A; Singh, Vineet; Hughes, Kenneth A

    2017-04-01

    As the world population grows towards 9 billion by 2050, it is projected that food production will need to increase by 60%. A critical part of this growth includes the safe and effective use of insecticides to reduce the estimated 20-49% loss of global crop yields owing to pests. The development of new insecticides will help to sustain this protection and overcome insecticide resistance. A novel class of mesoionic compounds has been discovered, with exceptional insecticidal activity on a range of Hemiptera and Lepidoptera. These compounds bind to the orthosteric site of the nicotinic acetylcholine receptor and result in a highly potent inhibitory action at the receptor with minimal agonism. The synthesis, biological activity, optimization and mode of action will be discussed. Triflumezopyrim insect control will provide a powerful tool for control of hopper species in rice throughout Asia. Dicloromezotiaz can provide a useful control tool for lepidopteran pests, with an underexploited mode of action among these pests. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Is the Cry1Ab protein from Bacillus thuringiensis (Bt) taken up by plants from soils previously planted with Bt corn and by carrot from hydroponic culture?

    Science.gov (United States)

    Icoz, I; Andow, D; Zwahlen, C; Stotzky, G

    2009-07-01

    The uptake of the insecticidal Cry1Ab protein from Bacillus thuringiensis (Bt) by various crops from soils on which Bt corn had previously grown was determined. In 2005, the Cry1Ab protein was detected by Western blot in tissues (leaves plus stems) of basil, carrot, kale, lettuce, okra, parsnip, radish, snap bean, and soybean but not in tissues of beet and spinach and was estimated by enzyme-linked immunosorbent assay (ELISA) to be 0.05 +/- 0.003 ng g(-1) of fresh plant tissue in basil, 0.02 +/- 0.014 ng g(-1) in okra, and 0.34 +/- 0.176 ng g(-1) in snap bean. However, the protein was not detected by ELISA in carrot, kale, lettuce, parsnip, radish, and soybean or in the soils by Western blot. In 2006, the Cry1Ab protein was detected by Western blot in tissues of basil, carrot, kale, radish, snap bean, and soybean from soils on which Bt corn had been grown the previous year and was estimated by ELISA to be 0.02 +/- 0.014 ng g(-1) of fresh plant tissue in basil, 0.19 +/- 0.060 ng g(-1) in carrot, 0.05 +/- 0.018 ng g(-1) in kale, 0.04 +/- 0.022 ng g(-1) in radish, 0.53 +/- 0.170 ng g(-1) in snap bean, and 0.15 +/- 0.071 ng g(-1) in soybean. The Cry1Ab protein was also detected by Western blot in tissues of basil, carrot, kale, radish, and snap bean but not of soybean grown in soil on which Bt corn had not been grown since 2002; the concentration was estimated by ELISA to be 0.03 +/- 0.021 ng g(-1) in basil, 0.02 +/- 0.008 ng g(-1) in carrot, 0.04 +/- 0.017 ng g(-1) in kale, 0.02 +/- 0.012 ng g(-1) in radish, 0.05 +/- 0.004 ng g(-1) in snap bean, and 0.09 +/- 0.015 ng g(-1) in soybean. The protein was detected by Western blot in 2006 in most soils on which Bt corn had or had not been grown since 2002. The Cry1Ab protein was detected by Western blot in leaves plus stems and in roots of carrot after 56 days of growth in sterile hydroponic culture to which purified Cry1Ab protein had been added and was estimated by ELISA to be 0.08 +/- 0.021 and 0.60 +/- 0.148 ng g(-1) of

  14. Field evaluation of arbuscular mycorrhizal fungal colonization in Bacillus thuringiensis toxin-expressing (Bt) and non-Bt maize.

    Science.gov (United States)

    Cheeke, Tanya E; Cruzan, Mitchell B; Rosenstiel, Todd N

    2013-07-01

    The cultivation of genetically engineered Bacillus thuringiensis toxin-expressing (Bt) maize continues to increase worldwide, yet the effects of Bt crops on arbuscular mycorrhizal fungi (AMF) in soil are poorly understood. In this field experiment, we investigated the impact of seven different genotypes of Bt maize and five corresponding non-Bt parental cultivars on AMF and evaluated plant growth responses at three different physiological time points. Plants were harvested 60 days (active growth), 90 days (tasseling and starting to produce ears), and 130 days (maturity) after sowing, and data on plant growth responses and percent AMF colonization of roots at each harvest were collected. Spore abundance and diversity were also evaluated at the beginning and end of the field season to determine whether the cultivation of Bt maize had a negative effect on AMF propagules in the soil. Plant growth and AMF colonization did not differ between Bt and non-Bt maize at any harvest period, but AMF colonization was positively correlated with leaf chlorophyll content at the 130-day harvest. Cultivation of Bt maize had no effect on spore abundance and diversity in Bt versus non-Bt plots over one field season. Plot had the most significant effect on total spore counts, indicating spatial heterogeneity in the field. Although previous greenhouse studies demonstrated that AMF colonization was lower in some Bt maize lines, our field study did not yield the same results, suggesting that the cultivation of Bt maize may not have an impact on AMF in the soil ecosystem under field conditions.

  15. Lepidoptera (Crambidae, Noctuidae, and Pyralidae) Injury to Corn Containing Single and Pyramided Bt Traits, and Blended or Block Refuge, in the Southern United States.

    Science.gov (United States)

    Reisig, D D; Akin, D S; All, J N; Bessin, R T; Brewer, M J; Buntin, D G; Catchot, A L; Cook, D; Flanders, K L; Huang, F-N; Johnson, D W; Leonard, B R; Mcleod, P J; Porter, R P; Reay-Jones, F P F; Tindall, K V; Stewart, S D; Troxclair, N N; Youngman, R R; Rice, M E

    2015-02-01

    Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae); corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae); southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae); sugarcane borer, Diatraea saccharalis F. (Lepidoptera: Crambidae); and lesser cornstalk borer, Elasmopalpus lignosellus Zeller (Lepidoptera: Pyralidae), are lepidopteran pests of corn, Zea mays L., in the southern United States. Blended refuge for transgenic plants expressing the insecticidal protein derivative from Bacillus thuringiensis (Bt) has recently been approved as an alternative resistance management strategy in the northern United States. We conducted a two-year study with 39 experiments across 12 states in the southern United States to evaluate plant injury from these five species of Lepidoptera to corn expressing Cry1F and Cry1Ab, as both single and pyramided traits, a pyramid of Cry1Ab×Vip3Aa20, and a pyramid of Cry1F×Cry1Ab plus non-Bt in a blended refuge. Leaf injury and kernel damage from corn earworm and fall armyworm, and stalking tunneling by southwestern corn borer, were similar in Cry1F×Cry1Ab plants compared with the Cry1F×Cry1Ab plus non-Bt blended refuge averaged across five-plant clusters. When measured on an individual plant basis, leaf injury, kernel damage, stalk tunneling (southwestern corn borer), and dead or injured plants (lesser cornstalk borer) were greater in the blended non-Bt refuge plants compared to Cry1F×Cry1Ab plants in the non-Bt and pyramided Cry1F×Cry1Ab blended refuge treatment. When non-Bt blended refuge plants were compared to a structured refuge of non-Bt plants, no significant difference was detected in leaf injury, kernel damage, or stalk tunneling (southwestern corn borer). Plant stands in the non-Bt and pyramided Cry1F×Cry1Ab blended refuge treatment had more stalk tunneling from sugarcane borer and plant death from lesser cornstalk borer compared to a pyramided Cry1F×Cry1Ab structured refuge

  16. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management.

    Science.gov (United States)

    Burkness, Eric C; Dively, Galen; Patton, Terry; Morey, Amy C; Hutchison, William D

    2010-01-01

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie). Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE(®), Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hübner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other insect pests) was recorded. Hybrids expressing only Cry1Ab incurred a moderate level of H. zea feeding damage, with surviving larvae mostly limited to the first or second instar as a result of previously documented growth inhibition from Cry1Ab. These results suggest that the Vip3A protein, pyramided with Cry1Ab, appears to provide the first "high-dose" under field conditions and will be valuable for ongoing resistance management.

  17. Coping with Ex-ante Regulations for Planting Bt Maize: The Portuguese Experience

    NARCIS (Netherlands)

    Skevas, T.; Wesseler, J.H.H.; Fevereiro, P.

    2009-01-01

    This article investigates the attitude and practices of Bt and non-Bt maize farmers in Portugal. Thirty-seven Bt maize farmers were interviewed, representing 22.5% of the total number of Bt maize notifications in the country and 31.5% of the total area planted with Bt maize in 2007. Additionally, 66

  18. Effects of the insecticide

    Directory of Open Access Journals (Sweden)

    VESELA YANCHEVA

    2012-01-01

    Full Text Available The main goal of the present work is to study the effects of the new neonicotinoid insecticide „Actara 25 WG" on the intensity of expression of glycogen in the liver of common carp (Cyprinus carpio L. by using PAS-reaction on cryosections. Common carp is an economically important fish species, which is widely used as a bioindicator for the health of freshwater basins since it could also survive at very contaminated sites. We have used 6.6 mg/L, 10 mg/L and 20 mg/L of the test chemical under laboratory conditions. The results demonstrated that the intensity of staining of the PAS-reaction is directly proportional to the increasing concentration of the insecticide. In addition, this indicates that the amount of glycogen in hepatocytes also increased. Conglomerates of accumulated glycogen in certain hepatocytes were found at the highest concentration of the insecticide. Therefore, we consider that under the influence of „Actara 25 WG" the process of glyconeogenesis in the liver of the studied fish accelerates.

  19. Leaf tissue assay for lepidopteran pests of Bt cotton

    Science.gov (United States)

    Laboratory measurements of susceptibility to Bt toxins can be a poor indicator of the ability of an insect to survive on transgenic crops. We investigated the potential of using cotton leaf tissue for evaluating heliothine susceptibilities to two dual-gene Bt cottons. A preliminary study was conduct...

  20. Assessing the potential economic impact of Bacillus thuringiensis (Bt ...

    African Journals Online (AJOL)

    The Insect Resistant Maize for Africa (IRMA) project is currently developing Bt maize for Kenya. So far, Bt genes with resistance to Chilo partellus, Chilo orichalcociliellus, Eldana sacharina, and Sesamia calamistis, four of the five major stemborers were successfully incorporated into elite CIMMYT maize inbred line ...

  1. Evaluation of stem borer resistance management strategies for Bt ...

    African Journals Online (AJOL)

    Stem borers are the major insect pests of maize in Kenya. The use of Bacillus thuringiensis (Bt) technology is an effective way of controlling lepidopteran pests. However, the likelihood of development of resistance to the Bt toxins by the target stem borer species is a concern. Forages, sorghum and maize varieties were ...

  2. Evaluation of stem borer resistance management strategies for Bt ...

    African Journals Online (AJOL)

    GREGORY

    2011-06-01

    Jun 1, 2011 ... Stem borers are the major insect pests of maize in Kenya. The use of Bacillus thuringiensis (Bt) technology is an effective way of controlling lepidopteran pests. However, the likelihood of development of resistance to the Bt toxins by the target stem borer species is a concern. Forages, sorghum and maize ...

  3. Comparison of rhizosphere properties as affected by different Bt- and non-Bt-cotton (Gossypium hirsutum L.) genotypes and fertilization.

    Science.gov (United States)

    Ahamd, Maqshoof; Abbasi, Waleed Mumtaz; Jamil, Moazzam; Iqbal, Muhammad; Hussain, Azhar; Akhtar, Muhammad Fakhar-U-Zaman; Nazli, Farheen

    2017-06-01

    Incorporation of genetically modified crops in the cropping system raises the need for studying the effect of these crops on the soil ecosystem. The current study aimed to compare the effect of Bacillus thuringiensis (Bt)- and non-Bt-cotton (Gossypium hirsutum L.) genotypes on rhizosphere properties under fertilized and unfertilized soil conditions. One non-Bt-cotton (IUB 75) and four Bt-cotton varieties (IUB-222, MM-58, IUB-13, FH-142) were sown in a Randomized Complete Block Design (RCBD) in a factorial fashion with three replications under unfertilized (T1) and fertilized (T2 at NPK 310-170-110 kg ha -1 ) soil conditions. The culturable soil bacterial population was recorded at flowering, boll opening, and harvesting stages, while other rhizosphere biological and chemical properties were recorded at harvesting. Results revealed that Bt-cotton genotypes IUB-222 and FH-142 showed significantly higher rhizosphere total nitrogen, NH 4 + -N, available phosphorus, and available potassium. Total organic carbon and microbial biomass carbon was also maximum in the rhizosphere of IUB-222 under fertilized conditions. Similarly, bacterial population (CFU g -1 ) at flowering stage and at harvesting was significantly higher in the rhizosphere of IUB-222 as compared to non-Bt- (IUB-75) and other Bt-cotton genotypes under same growth conditions. It showed that Bt genotypes can help in maintaining soil macronutrients (total nitrogen, available phosphorus, and available potassium) under proper nutrient management. Moreover, Bt-cotton genotypes seem to strengthen certain biological properties of the soil, thus increasing the growth and yield capability, maintaining available nutrients in the soil as compared to non-Bt cotton, while no harmful effects of Bt cotton on soil properties was detected.

  4. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  5. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides

    Science.gov (United States)

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  6. Biodiversity of ground beetles (Coleoptera: Carabidae) in genetically modified (Bt) and conventional (non-Bt) potato fields in Bulgaria

    Czech Academy of Sciences Publication Activity Database

    Kalushkov, P.; Gueorguiev, B.; Spitzer, L.; Nedvěd, Oldřich

    2009-01-01

    Roč. 23, č. 3 (2009), s. 1346-1350 ISSN 1310-2818 Grant - others:Bulgarian National Research Fund(BG) B-1508; Bulgarian National Research Fund(BG) B-1105 Institutional research plan: CEZ:AV0Z50070508 Keywords : ground beetles * Bt potatoes * non-Bt potatoes Subject RIV: EH - Ecology, Behaviour Impact factor: 0.291, year: 2009

  7. In-silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against Lepidopteran targets using molecular docking

    Directory of Open Access Journals (Sweden)

    Aftab eAhmad

    2015-12-01

    Full Text Available Study and research of Bt (Bacillus thuringiensis transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac insecticidal protein and vegetative insecticidal protein (Vip3Aa have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua and Spodoptera litura revealed that the Ser290, Ser293, Leu337, Thr340 and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein.

  8. Bacterial insecticides and inert materials

    Science.gov (United States)

    The term “novel insecticides” can be regarded as a category that includes the insecticides with novel mode of action, but also insecticides that are novel in terms of their low mammalian toxicity and environmental-friendly profiles. Under this context, it is difficult to identify active ingredients ...

  9. Les cotonniers (Gossypium hirsutum L. génétiquement modifiés, Bt : quel avenir pour la petite agriculture familiale en Afrique francophone ?

    Directory of Open Access Journals (Sweden)

    Berti F.

    2006-01-01

    Full Text Available Gnetically modifi ed cotton (Gossypium hirsutum L. Bt.: what future for small family farms in French-speaking Africa?After a massive adoption in South Africa, genetically modifi ed cultivars are at the door step of francophone Africa. In order toanticipate the impact of Bt cotton on small-scale farming we propose a simple profi t analysis of the crop based on our resultsfound in South Africa and data collected by our colleagues in Mali. Whereas the introduction of Bt cotton can be justifi ed bya threat of the appearance of the bollworm resistance to insecticides, its profi tability seems to be uncertain. The farmer profi tmargin depends on yield level linked with climatic, agricultural and environmental conditions and with the technology feewhich the farmer must be charged for. With a 210 FCFA purchase price for raw cotton, a 25 USD fee per hectare seems to bethe upper limit for which the farmer wouldnʼt be exposed to fi nancial risk. Given the recent drop of the purchase price, theexistence of a technology fee supported by the small-scale farmer is very questionable. At a more general level of the cottonsector, the success of Bt adoption rests on several keys: 1 the prevention of the Bt-toxin resistance; 2 the strengthening of thecontrol of stinging pests; 3 the updating of the seed production sector and 4 the improvement of the extension and trainingnetwork. Bt cotton must be considered as a tool which is part of the integrated crop management but not as the solution of thepoverty alleviation.

  10. A comprehensive assessment of the effects of Bt cotton on Coleomegilla maculata demonstrates no detrimental effects by Cry1Ac and Cry2Ab.

    Directory of Open Access Journals (Sweden)

    Yunhe Li

    Full Text Available The ladybird beetle, Coleomegilla maculata (DeGeer, is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt. A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non

  11. Short-term assessment of bt maize on non-target arthropods in Brazil Avaliação do efeito de milho bt sobre artrópodos não alvo no Brasil

    Directory of Open Access Journals (Sweden)

    Odair Aparecido Fernandes

    2007-06-01

    Full Text Available Although not yet available for cultivation in Brazil, the effect of Bt maize hybrids on natural enemies and soil dwelling arthropods should be assessed prior to its release to growers. Trials were carried out during one growing season in two different locations with the genetically modified maize hybrids 7590-Bt11 and Avant-ICP4, comparing with their respective non-Bt isogenic hybrids. Arthropods were evaluated through direct observation on plants and pitfall traps. In general, no differences were observed between populations of earwig (Dermaptera: Forficulidae, lady beetles (Coleptera: Coccinellidae, minute pirate bug (Coleoptera: Anthocoridae, ground beetles (Carabidae, tiger beetles (Cicindelidae, and spiders (Araneae. There was no difference in egg parasitism of Helicoverpa zea (Boddie by Trichogramma sp. (Hymenoptera: Trichogrammatidae. Thus, Bt maize hybrids expressing insecticide proteins Cry1A(b and VIP 3A do not cause reduction of the main maize dweeling predators and parasitoids.Embora não haja cultivos comerciais de milho geneticamente modificado no Brasil, o efeito de híbridos de milho Bt sobre inimigos naturais e artrópodos de solo deve ser avaliado antes da liberação aos produtores. Assim, ensaios foram conduzidos durante uma safra em duas localidades. Os híbridos de milho modificado geneticamente 7590-Bt11 e Avant-ICP4 foram comparados com seus respectivos isogênicos não transgênicos. Os artrópodes foram avaliados através de observação direta nas plantas e armadilhas de alçapão. De modo geral, não se observaram diferenças entre as populações de tesourinha (Dermaptera: Forficulidae, joaninhas (Coleptera: Coccinellidae, percevejo-pirata (Coleoptera: Anthocoridae, carabídeos (Carabidae, cicindelídeos (Cicindelidae e aranhas (Araneae. Também não houve diferença no parasitismo de ovos de Helicoverpa zea (Boddie por Trichogramma sp. (Hymenoptera: Trichogrammatidae. Assim, milho geneticamente modificado

  12. Survival of Corn Earworm (Lepidoptera: Noctuidae) on Bt Maize and Cross-Pollinated Refuge Ears From Seed Blends.

    Science.gov (United States)

    Crespo, André Luiz Barreto; Alves, Analiza Piovesan; Wang, Yiwei; Hong, Bonnie; Flexner, John Lindsey; Catchot, Angus; Buntin, David; Cook, Donald

    2016-02-01

    Refuge is mandated in the United States where genetically modified maize (Zea mays L.) expressing insecticidal proteins derived from Bacillus thuringiensis Berliner (Bt) are cultivated. Currently, refuge is deployed in different ways including blocks, field strips, or seed blends containing Bt and non-Bt maize. Seed blends provide practical advantages for refuge implementation. However, concerns related to the movement of insect larvae, potential differential survival of heterozygous resistant larvae, reduction in insect production, and cross-pollination of ears resulting in sublethal selection, have delayed seed blend use for Lepidoptera in the southern United States, where maize plantings are used as refuge for Helicoverpa zea (Boddie). In this study, we evaluated the relative survival of H. zea in Bt events and in seed blends compared with pure stand refuge and the relative survival of H. zea on the individual components of the pyramid 1507xMON810xMIR162. The results showed variation on the production of H. zea in refuge plants from seed blends compared with pure stand refuge plants. The relative survival of H. zea on the events 1507, MON810, MIR162, and 1507xMON810xMIR162 ranked similarly across the three locations tested. These results can be used in computer simulation modeling efforts to evaluate the feasibility of seed blends as a refuge deployment strategy with the pyramid 1507xMON810xMIR162. Because the reduction on survival of H. zea due to blending was variable, a sensitivity analysis that includes all possible scenarios of reduction in survival should be considered. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Study on radioimmunoassay of Bt Cry1Ac protein

    International Nuclear Information System (INIS)

    Pan Jiarong; Zhang Wei; Lin Min; Zhang Jie; Qiao Yanhong

    2006-01-01

    Bt Cry1Ac protein was extracted from incubation of Bacillus thuringiensis HD-73, and cutting into more specific protein segment with high insect-resistance. High-affinity multi-colonial antibodies of Bt Cry1 Ac protein were obtained after injected it into New Zealand rabbits. By 125 I labeling of Bt Cry1 Ac protein, a RIA kit was established. In this method, centrifuge for separation was not necessary due to the use of magnetic micro-particle and the specifications of the kit were found equal to those of imported ELISA. (authors)

  14. Comparative data concerning aflatoxin contents in Bt maize and non-Bt isogenic maize in relation to human and animal health – a review

    Directory of Open Access Journals (Sweden)

    Vladimír Ostrý

    2015-01-01

    Full Text Available Transgenic Bt maize is a potentially important tool against insect pest in the EU and other countries. Bt maize (e.g. MON 810, Bt 11 which carries the Bt gene is highly resistant to larval feeding of European corn borer, stalk borer, and Southwestern corn borer, depending on Bt toxin (δ toxin production. Effective measures used to fight pests may often have positive side-effects in that they may also contribute to reducing mycotoxin concentrations. A systematic review has been used for the purposes of evaluating the studies on the reduction of aflatoxins in Bt maize. According to five studies, Bt maize has significantly lower concentrations of aflatoxins than non-Bt maize hybrids, only one study has shown no significant effect of Bt maize. Other studies have shown mixed results (four studies. The results of these studies were influenced by the year of sampling or by using maize breeding lines selected for resistance to aflatoxin accumulation.

  15. Monitoring of Bt11 and Bt176 genetically modified maize in food sold commercially in Brazil from 2005 to 2007.

    Science.gov (United States)

    Dinon, Andréia Z; Bosco, Kenia T; Arisi, Ana Carolina M

    2010-07-01

    The first genetically modified (GM) maize lines were approved for trading in Brazil after December 2007 and they were T25, MON810, Bt11, NK603 and GA21. The polymerase chain reaction (PCR) method was employed to monitor the presence of Bt11 and nested PCR was used to detect the presence of Bt176 in 81 maize-derived products (maize flour, corn meal, maize flour flakes and polenta) that were sold in Brazilian market from 2005 to 2007, before the release of GM maize in Brazil. The PCR detection limit for Bt11 was 10 g kg(-1) and for nested PCR of Bt176 it was 1 g kg(-1). All Brazilian samples analyzed showed no positive signal for these GM maize events. Bt11 and Bt176 GM maize lines were not detected by specific PCR in 81 maize-derived food samples sold in Brazil from 2005 to 2007, before the commercial release of GM maize in Brazil. These Brazilian food industries were in compliance with the rules stipulated by the current legislation with respect to consumer requirements about GMO labeling.

  16. Baculoviral polyhedrin-Bacillus thuringiensis toxin fusion protein: a protein-based bio-insecticide expressed in Escherichia coli.

    Science.gov (United States)

    Seo, Jeong Hyun; Yeo, Joo Sang; Cha, Hyung Joon

    2005-10-20

    Previously, we found that baculoviral polyhedrin (Polh) used as a fusion partner for recombinant expression in Escherichia coli showed almost the same characteristics (rapid solubilization under alkaline conditions and specific degradation by specific alkaline proteases in insect midgut) as the native baculoviral Polh, and formed easily isolatable inclusion bodies. Here, Polh derived from the Autographa californica nuclear polyhedrosis virus (AcNPV) was fused with a Bacillus thuringiensis (Bt) toxin protein (truncated Cry1Ac having toxin region as a model Bt toxin) for the novel generation of a new bio-insecticide. The Polh-Cry1Ac fusion protein (approximately 99 kDa) was highly expressed (3.6-fold induction as compared to E. coli-derived single Cry1Ac (approximately 68 kDa)) as an insoluble inclusion body fraction in E. coli. Trypsin and alpha-chymotrypsin, which have similar properties to the insect midgut alkaline proteases, rapidly degraded the Polh portion in vitro, leaving only the toxic Cry1Ac protein behind. In vivo, the Polh-Cry1Ac fusion protein showed high insecticidal activity against the pest, Plutella xylostella. Because this novel bio-insecticide employs E. coli as the host, mass production at a low cost should be possible. Also, since this is a protein-based insecticide, living modified organism (LMO) issues such as environmental and ecological safety can be avoided. Copyright 2005 Wiley Periodicals, Inc.

  17. Modes of Action, Resistance and Toxicity of Insecticides Targeting Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-01-01

    Nicotinic acetylcholine receptors (nAChRs) of insects play a key role in fast excitatory neurotransmission. Several classes of insecticides target insect nAChRs, which are composed of subunit members of a family of multiple subunit encoding genes. Alternative splicing and RNA A-to-I editing can add further to receptor diversity. Native and recombinant receptors have been explored as sites of insecticide action using radioligands, electrophysiology and site-directed mutagenesis. We have reviewed the properties of native and recombinant insect nAChRs, the challenges of functional recombinant insect nAChR expression, nAChR interactions with ligands acting at orthosteric and allosteric sites and in particular their interactions with insecticides. Actions on insect nAChRs of cartap, neonicotinoids, spinosyns, sulfoxamines, butenolides and mesoionic insecticides are reviewed and current knowledge of their modes of action are addressed. Mutations that add to our understanding of insecticide action and those leading to resistance are discussed. Co-crystallisation of neonicotinoids with the acetylcholine binding protein (AChBP), a surrogate for the nAChR ligand binding domain, has proved instructive. Toxicity issues relating to insecticides targeting nAChRs are also considered. An overview of insecticide classes targeting insect nAChRs has enhanced our understanding of these important receptors and their insecticide binding sites. However, the subunit composition of native nAChRs remains poorly understood and functional expression still presents difficulties. These topics together with improved understanding of the precise sites of insecticide actions on insect nAChRs will be the subject of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Harmonia axyridis (Coleoptera: Coccinellidae exhibits no preference between Bt and non-Bt maize fed Spodoptera frugiperda (Lepidoptera: Noctuidae.

    Directory of Open Access Journals (Sweden)

    Carla C Dutra

    Full Text Available A recent shift in managing insect resistance to genetically engineered (GE maize consists of mixing non-GE seed with GE seed known as "refuge in a bag", which increases the likelihood of predators encountering both prey fed Bt and prey fed non-Bt maize. We therefore conducted laboratory choice-test feeding studies to determine if a predator, Harmonia axyridis, shows any preference between prey fed Bt and non-Bt maize leaves. The prey species was Spodoptera frugiperda, which were fed Bt maize (MON-810, expressing the single Cry1Ab protein, or non-Bt maize. The predators were third instar larvae and female adults of H. axyridis. Individual predators were offered Bt and non-Bt fed prey larvae that had fed for 24, 48 or 72 h. Ten and 15 larvae of each prey type were offered to third instar and adult predators, respectively. Observations of arenas were conducted at 1, 2, 3, 6, 15 and 24 h after the start of the experiment to determine the number and type of prey eaten by each individual predator. Prey larvae that fed on non-Bt leaves were significantly larger than larvae fed Bt leaves. Both predator stages had eaten nearly all the prey by the end of the experiment. However, in all combinations of predator stage and prey age, the number of each prey type consumed did not differ significantly. ELISA measurements confirmed the presence of Cry1Ab in leaf tissue (23-33 µg/g dry weight and S. frugiperda (2.1-2.2 µg/g, while mean concentrations in H. axyridis were very low (0.01-0.2 µg/g. These results confirm the predatory status of H. axyridis on S. frugiperda and that both H. axyridis adults and larvae show no preference between prey types. The lack of preference between Bt-fed and non-Bt-fed prey should act in favor of insect resistance management strategies using mixtures of GE and non-GE maize seed.

  19. Effects of ensiling of Bacillus thuringiensis (Bt) maize (MON810) on ...

    African Journals Online (AJOL)

    The study investigated the degradation of the Bt protein (Cry1Ab) in Bt maize during ensiling and chemical composition of the silage. Two laboratory studies were conducted at the University of Fort Hare. One Bacillus thuringiensis (Bt) maize cultivar (DKC80-12B) and its isoline (DKC80-10) in the 2008/2009 study and two Bt ...

  20. A renaissance for botanical insecticides?

    Science.gov (United States)

    Isman, Murray B

    2015-12-01

    Botanical insecticides continue to be a subject of keen interest among the international research community, reflected in the steady growth in scientific publications devoted to the subject. Until very recently though, the translation of that theory to practice, i.e. the commercialisation and adoption of new botanical insecticides in the marketplace, has seriously lagged behind. Strict regulatory regimes, long the bane of small pesticide producers, are beginning to relax some of the data requirements for 'low-risk' pesticide products, facilitating movement of more botanicals into the commercial arena. In this paper I discuss some of the jurisdictions where botanicals are increasingly finding favour, some of the newer botanical insecticides in the plant and animal health arsenal and some of the specific sectors where botanicals are most likely to compete effectively with other types of insecticidal product. © 2015 Society of Chemical Industry.

  1. Neurotoxicology of insecticides and pheromones

    National Research Council Canada - National Science Library

    Narahashi, Toshio

    1979-01-01

    The purpose of this symposium was to provide a forum where a variety of scientists who were interested in the interactions of insecticides and pheromones with the nervous system got together to exchange their views...

  2. Developing Analytic Rating Guides for "TOEFL iBT"® Integrated Speaking Tasks. "TOEFL iBT"® Research Report, TOEFL iBT-20. ETS Research Report. RR-13-13

    Science.gov (United States)

    Jamieson, Joan; Poonpon, Kornwipa

    2013-01-01

    Research and development of a new type of scoring rubric for the integrated speaking tasks of "TOEFL iBT"® are described. These "analytic rating guides" could be helpful if tasks modeled after those in TOEFL iBT were used for formative assessment, a purpose which is different from TOEFL iBT's primary use for admission…

  3. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    International Nuclear Information System (INIS)

    Hofmann, C.; Vanderbruggen, H.; Hoefte, H.; Van Rie, J.; Jansens, S.; Van Mellaert, H.

    1988-01-01

    Binding studies were performed with two 125 I-labeled Bacillus thuringiensis δ-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One δ-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other δ-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis δ-endotoxins active against M. sexta compete for binding of 125 I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles

  4. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    Science.gov (United States)

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  5. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Science.gov (United States)

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  6. Diatomaceous Earths - Natural Insecticides

    Directory of Open Access Journals (Sweden)

    Zlatko Korunić

    2013-01-01

    Full Text Available The regulatory issues for diatomaceous earth (DE cover three fields: consumer safety,worker safety, and proof of efficacy against pests. For consumer safety, regulatory issuesare similar to those for other additives, and a principal benefit of DEs is their removal bynormal processing methods. For worker safety, regulatory issues are similar to those forother dusts, such as lime. The proof of potential insecticide values of DE may be assessedby using the analysis of physical and chemical properties of DE and its effect on grainproperties and the proof of efficacy may be regulated by bioassay of standard design.Integrated pest management (IPM, a knowledge-based system, is rapidly providing aframework to reduce dependence on synthetic chemical pesticides. The main principleof post-harvest IPM is to prevent problems rather than to react to them. The specificcurative measures using synthetic pesticides should be applied only when infestationoccurs. DE and enhanced diatomaceous earth (EDE formulations hold significant promiseto increase the effectiveness and broaden the adoption of IPM strategies, thereby reducingthe need for synthetic pesticides. By incorporating DE in an effective IPM program,grain is protected against infestation, loss caused by insects is prevented and grain qualityis maintained until the grain is processed. Cases study data on the use of DE for commodityand structural treatment show that DE is already a practical alternative to syntheticpesticides in some applications.

  7. [Change of Bt protein in soil after growing Bt corns and returning corn straws to soil and its effects on soil nutrients].

    Science.gov (United States)

    Zeng, Ping; Feng, Yuan-Jiao; Zhang, Wan-Chun; Zhang, Yan-Fei; Dong, Wen-Chao; Wang, Jian-Wu

    2014-07-01

    The spatiotemporal dynamics of Bt protein in soil and the change of soil nutrients in rhizosphere soil, root surface soil and soils at 0-20, 20-40 and 40-60 cm were measured in greenhouse experiments. Two Bt corns, 5422Bt1 and 5422CBCL, and their near isogenic non-Bt variety 5422 were grown for 90 days and the crop residues were retained to soil. Results showed that 1.59 and 2.78 ng x g(-1) Bt protein were detected in the rhizosphere soil with Bt corns 5422Bt1 and 5422CBCL immediately after harvest. However, there were only trace amounts of Bt protein (Bt corn treatments after 30, 60 and 90 days. When corn residues returned to soil, Bt protein declined rapidly within 3 days and only trace amounts of Bt protein were measured after 7 days. There were no sig- nificant differences in organic matter, available nutrient (alkaline hydrolytic N, available P, available K) or total nutrient (total N, total P, total K) in root surface soils and soils at 0-20 cm, 20-40 cm and 40-60 cm among the Bt and non-Bt corns after 90 days. Sixty days after returning crop residues of 5422Btl to soil, the contents of organic matter and total N increased and the content of available K reduced significantly in the 0-20 cm soil depth. There were no significant differences in any other parameter at the 0-20 cm depth, neither for any parameter in the 20-40 cm and 40-60 cm soil depths compared to those in the non-Bt corn 5422 treatment. There were no significant differences in soil nutrient contents in Bt corn 5422CBCL treatment compared to those in non-Bt corn 5422 treatment except that available phosphorus content was reduced in root surface soils, and total P content increased at the 0-20 cm soil depth after 90 days. When crop residues of Bt corn 5422 CBCL were returned to soil, only available P content in the 0-20 cm soil layer was evidently higher compared to the soil receiving crop residues of non-Bt corn 5422. Results suggested that Bt protein released from root and crop residues of Bt

  8. Actions of insecticides on the insect GABA receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J. (School of Biological and Molecular Sciences, Oxford Polytechnic, Headington, Oxford (England))

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using (35S)t-butylbicyclophosphorothionate (( 35S)TBPS) binding and voltage-clamp techniques. Specific binding of (35S)TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 {plus minus} 2.9 nM and a Bmax value of 1770 {plus minus} 40 fmol/mg protein. (35S)TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of (35S)TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on (35S)TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.

  9. Actions of insecticides on the insect GABA receptor complex

    International Nuclear Information System (INIS)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J.

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using [35S]t-butylbicyclophosphorothionate [( 35S]TBPS) binding and voltage-clamp techniques. Specific binding of [35S]TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 ± 2.9 nM and a Bmax value of 1770 ± 40 fmol/mg protein. [35S]TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of [35S]TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on [35S]TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current

  10. Transgenic Bacillus thuringiensis (Bt rice is safer to aquatic ecosystems than its non-transgenic counterpart.

    Directory of Open Access Journals (Sweden)

    Guangsheng Li

    Full Text Available Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.

  11. Open Services Innovation: The Case of BT in the UK

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Yamasaki Sato

    2014-06-01

    Full Text Available Open innovation was conceptualised by Chesbrough (2003, p. 34 using cases from the ICT (Information and Communications Technologies sector, more specifically equipment and component suppliers such as Lucent, IBM and Intel. Subsequently, the vast majority of the case studies in open innovation emphasised innovation processes in goods-based firms, not in service firms. Open systems innovation was well known in the telecommunications industry well before Chesbrough’s conceptualisation of open innovation. However, subsequent research has not paid much attention on its adoption by incumbent telecommunications operators. This paper investigates how open innovation was adopted by the incumbent telecommunications operator BT in the UK, using the case study as the research method. BT used open innovation as a management injunction to systematise innovation under a common framework to leverage and integrate technology and knowledge in order to address customer needs, and to change the way of thinking about innovation within BT.

  12. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  13. Insecticide Exposure in Parkinsonism

    Science.gov (United States)

    2006-01-01

    National Meeting of the American Chemical Society, Division of Agrochemicals , Philadelphia, Pennsylvania. J. Kou, and J. R. Bloomquist. Interactions on...characterize the time and dose dependence of PM’s effects on transporter ligand binding and DAT protein expression. Moreover, because mutations in the...regulation of -synuclein protein was not a persistent effect, and it had returned to normal levels in the 14- and 28-day treatment groups. Mutations

  14. Scoring Strategies for the TOEFL iBT A Complete Guide

    CERN Document Server

    Stirling, Bruce

    2012-01-01

    TOEFL students all ask: How can I get a high TOEFL iBT score? Answer: Learn argument scoring strategies. Why? Because the TOEFL iBT recycles opinion-based and fact-based arguments for testing purposes from start to finish. In other words, the TOEFL iBT is all arguments. That's right, all arguments. If you want a high score, you need essential argument scoring strategies. That is what Scoring Strategies for the TOEFL iBT gives you, and more!. TEST-PROVEN STRATEGIES. Learn essential TOEFL iBT scoring strategies developed in American university classrooms and proven successful on the TOEFL iBT. R

  15. Draft Genome Sequences of Two Bacillus thuringiensis Strains and Characterization of a Putative 41.9-kDa Insecticidal Toxin

    Science.gov (United States)

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins. PMID:24784323

  16. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria.

    Science.gov (United States)

    Hendriksma, Harmen P; Küting, Meike; Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B; Steffan-Dewenter, Ingolf; Tebbe, Christoph C

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  17. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica and their gut bacteria.

    Directory of Open Access Journals (Sweden)

    Harmen P Hendriksma

    Full Text Available Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1. Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis. Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  18. Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting.

    Science.gov (United States)

    Gao, Yu-Lin; Feng, Hong-Qiang; Wu, Kong-Ming

    2010-08-01

    Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.

  19. De novo amplification within a silent human cholinesterase gene in a family subjected to prolonged exposure to organophosphorus insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Prody, C.A.; Dreyfus, P.; Soreq, H. (Hebrew Univ., Jerusalem (Israel)); Zamir, R. (Hebrew Univ., Jerusalem (Israel) Tel-Aviv Univ. (Israel)); Zakut, H. (Tel-Aviv Univ. (Israel))

    1989-01-01

    A 100-fold DNA amplification in the CHE gene, coding for serum butyrylcholinesterase (BtChoEase), was found in a farmer expressing silent CHE phenotype. Individuals homozygous for this gene display a defective serum BtChoEase and are particularly vulnerable to poisoning by agricultural organophosphorus insecticides, to which all members of this family had long been exposed. DNA blot hybridization with regional BtChoEase cDNA probes suggested that the amplification was most intense in regions encoding central sequences within BtChoEase cDNA, whereas distal sequences were amplified to a much lower extent. This is in agreement with the onion skin model, based on amplification of genes in cultured cells and primary tumors. The amplification was absent in the grandparents but present at the same extent in one of their sons and in a grandson, with similar DNA blot hybridization patterns. In situ hybridization experiments localized the amplified sequences to the long arm of chromosome 3, close to the site where the authors previously mapped the CHE gene. Altogether, these observations suggest that the initial amplification event occurred early in embryogenesis, spermatogenesis, or oogenesis, where the CHE gene is intensely active and where cholinergic functioning was indicated to be physiologically necessary. These findings demonstrate a de novo amplification in apparently healthy individuals within an autosomal gene producing a target protein to an inhibitor.

  20. De novo amplification within a silent human cholinesterase gene in a family subjected to prolonged exposure to organophosphorus insecticides

    International Nuclear Information System (INIS)

    Prody, C.A.; Dreyfus, P.; Soreq, H.; Zamir, R.; Zakut, H.

    1989-01-01

    A 100-fold DNA amplification in the CHE gene, coding for serum butyrylcholinesterase (BtChoEase), was found in a farmer expressing silent CHE phenotype. Individuals homozygous for this gene display a defective serum BtChoEase and are particularly vulnerable to poisoning by agricultural organophosphorus insecticides, to which all members of this family had long been exposed. DNA blot hybridization with regional BtChoEase cDNA probes suggested that the amplification was most intense in regions encoding central sequences within BtChoEase cDNA, whereas distal sequences were amplified to a much lower extent. This is in agreement with the onion skin model, based on amplification of genes in cultured cells and primary tumors. The amplification was absent in the grandparents but present at the same extent in one of their sons and in a grandson, with similar DNA blot hybridization patterns. In situ hybridization experiments localized the amplified sequences to the long arm of chromosome 3, close to the site where the authors previously mapped the CHE gene. Altogether, these observations suggest that the initial amplification event occurred early in embryogenesis, spermatogenesis, or oogenesis, where the CHE gene is intensely active and where cholinergic functioning was indicated to be physiologically necessary. These findings demonstrate a de novo amplification in apparently healthy individuals within an autosomal gene producing a target protein to an inhibitor

  1. Voltage-gated sodium channels as targets for pyrethroid insecticides.

    Science.gov (United States)

    Field, Linda M; Emyr Davies, T G; O'Reilly, Andrias O; Williamson, Martin S; Wallace, B A

    2017-10-01

    The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity.

  2. Pyrethrum flowers and pyrethroid insecticides.

    OpenAIRE

    Casida, J E

    1980-01-01

    The natural pyrethrins from the daisy-like flower, Tanacetum or Chrysanthemum cinerariifolium, are nonpersistent insecticides of low toxicity to mammals. Synthetic analogs or pyrethroids, evolved from the natural compounds by successive isosteric modifications, are more potent and stable and are the newest important class of crop protection chemicals. They retain many of the favorable properties of the pyrethrins.

  3. Limonene--A Natural Insecticide.

    Science.gov (United States)

    Beatty, Joseph H.

    1986-01-01

    Describes a high school chemistry student's research project in which limonene was isolated from the oil of lemons and oranges. Outlines the students' tests on the use of this chemical as an insecticide. Discusses possible extensions of the exercises based on questions generated by the students. (TW)

  4. Bioassays for monitoring insecticide resistance.

    Science.gov (United States)

    Miller, Audra L E; Tindall, Kelly; Leonard, B Rogers

    2010-12-30

    Pest resistance to pesticides is an increasing problem because pesticides are an integral part of high-yielding production agriculture. When few products are labeled for an individual pest within a particular crop system, chemical control options are limited. Therefore, the same product(s) are used repeatedly and continual selection pressure is placed on the target pest. There are both financial and environmental costs associated with the development of resistant populations. The cost of pesticide resistance has been estimated at approximately $ 1.5 billion annually in the United States. This paper will describe protocols, currently used to monitor arthropod (specifically insects) populations for the development of resistance. The adult vial test is used to measure the toxicity to contact insecticides and a modification of this test is used for plant-systemic insecticides. In these bioassays, insects are exposed to technical grade insecticide and responses (mortality) recorded at a specific post-exposure interval. The mortality data are subjected to Log Dose probit analysis to generate estimates of a lethal concentration that provides mortality to 50% (LC(50) of the target populations and a series of confidence limits (CL's) as estimates of data variability. When these data are collected for a range of insecticide-susceptible populations, the LC(50) can be used as baseline data for future monitoring purposes. After populations have been exposed to products, the results can be compared to a previously determined LC(50) using the same methodology.

  5. Bt Sweet Corn: What Is It and Why Should We Use It?

    OpenAIRE

    Barlow, Vonny M.; Kuhar, Thomas Patrick, 1969-; Speese, John

    2009-01-01

    This publication reviews Transgenic Bt sweet corn hybrids which are a genetically modified organism (GMO) that are the result of combining commercially available sweet corn varieties with genes from a naturally occurring soil bacterium called Bacillus thuringiensis Berliner or Bt.

  6. Gene pyramiding as a Bt resistance management strategy: How ...

    African Journals Online (AJOL)

    Reports on the emergence of insect resistance to Bacillus thuringiensis delta endotoxins have raised doubts on the sustainability of Bt-toxin based pest management technologies. Corporate industry has responded to this challenge with innovations that include gene pyramiding among others. Pyramiding entails stacking ...

  7. Insect communities on maize expressing a Bt-toxin

    Czech Academy of Sciences Publication Activity Database

    Habuštová, Oxana; Sehnal, František; Hussein, Hany

    2005-01-01

    Roč. 1, - (2005), s. 9-11 ISSN 1335-258X R&D Projects: GA AV ČR(CZ) KJB6007304 Institutional research plan: CEZ:AV0Z50070508 Keywords : GMO * arthropod communities * Bt maize Subject RIV: EH - Ecology, Behaviour

  8. A biannual study on the environmental impact of Bt maize

    Czech Academy of Sciences Publication Activity Database

    Sehnal, František; Habuštová, Oxana; Spitzer, L.; Hussein, Hany; Růžička, Vlastimil

    2004-01-01

    Roč. 27, č. 3 (2004), s. 147-160 [Ecological Impact of Genetically Modified Organisms. Praha, 26.11.2003-29.11.2003] R&D Projects: GA ČR GA522/02/1507 Institutional research plan: CEZ:AV0Z5007907 Keywords : Bt maize * GM crops * European corn borer Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  9. Management practices to control premature senescence in bt cotton

    Science.gov (United States)

    Commercial cultivation of Bt cotton produced higher boll load which led to stiff inter-organal competition for photosynthates resulting in early cessation of growth (premature senescence) due to more availability of sink and less sources. To overcome this problem field experiment was conducted durin...

  10. Evaluation of stem borer resistance management strategies for Bt ...

    African Journals Online (AJOL)

    GREGORY

    2011-06-01

    Jun 1, 2011 ... However, for successful management of a refugia strategy, strict stewardship is required from appropriate government or community institutions. Key words: Refugia, cost-benefit analysis, Bt-maize, insect pest resistance management. INTRODUCTION. Maize is the leading staple food in the world with two-.

  11. Evaluation of bioassays for testing Bt sweetpotato events against ...

    African Journals Online (AJOL)

    Sweetpotato weevil (Cylas puncticollis) Boheman is a serious pest throughout Sub-Saharan Africa region and is a big threat to sweetpotato cultivation. Ten transgenic sweetpotato events expressing Cry7Aa1, Cry3Ca1, and ET33-34 proteins from Bacillus thuringiensis (Bt) were evaluated for resistance against C.

  12. Reproduction of root knot nematode (Meloidogyne incognita) on Bt ...

    African Journals Online (AJOL)

    SARAH

    2013-09-30

    Sep 30, 2013 ... ABSTRACT. Objective: The sedentary endoparasite Meloidogyne incognita is an important plant parasitic nematode that infects cotton causing significant yield losses. The objective of this study was to evaluate reproduction of M. incognita in Bt cotton (06Z604D), isoline (99M03) and HART 89M (local ...

  13. Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment.

    Science.gov (United States)

    Sarkar, Binoy; Patra, Ashok K; Purakayastha, T J; Megharaj, Mallavarapu

    2009-09-01

    There is concern that transgenic Bt-crops carry genes that could have undesirable effects on natural and agro-ecosystem functions. We investigated the effect of Bt-cotton (expressing the Cry 1Ac protein) on several microbial and biochemical indicators in a sandy loam soil. Bt-cotton (MRC-6301Bt) and its non-transgenic near-isoline (MRC-6301) were grown in a net-house on a sandy clay loam soil. Soil and root samples were collected 60, 90, and 120 days after sowing. Soil from a control (no-crop) treatment was also included. Samples were analysed for microbial biomass C, N and P (MBC, MBN, MBP), total organic carbon (TOC), and several soil enzyme activities. The microbial quotient (MQ) was calculated as the ratio of MBC-to-TOC. The average of the three sampling events revealed a significant increase in MBC, MBN, MBP and MQ in the soil under Bt-cotton over the non-Bt isoline. The TOC was similar in Bt and non-Bt systems. Potential N mineralization, nitrification, nitrate reductase, and acid and alkaline phosphatase activities were all higher in the soil under Bt-cotton. Root dry weights were not different (P > 0.05), but root volume of Bt-cotton was higher on 90 and 120 days than that of non-Bt cotton. The time of sampling strongly affected the above parameters, with most being highest on 90 days after sowing. We concluded from the data that there were some positive or no negative effects of Bt-cotton on the studied indicators, and therefore cultivation of Bt-cotton appears to be no risk to soil ecosystem functions.

  14. Developmental neurotoxicity of succeeding generations of insecticides.

    Science.gov (United States)

    Abreu-Villaça, Yael; Levin, Edward D

    2017-02-01

    Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Efficiency of mannose-binding plant lectins in controlling a homopteran insect, the red cotton bug.

    Science.gov (United States)

    Roy, Anita; Banerjee, Santanu; Majumder, Pralay; Das, Sampa

    2002-11-06

    Yield losses of different crops due to the attack of various classes of insects are a worldwide problem. Sucking type homopteran pests causing damage to many crop species are not controlled by commonly known insecticidal proteins, namely, Bacillus thuringiensis delta-endotoxin (Bt). This study describes the purification of mannose-binding lectins from three different monocotyledonous plants (Allium sativum, Colocasia esculenta, and Diffenbachia sequina) and their effects on a homopteran insect, the red cotton bug. All of them had a detrimental effect on the growth and development of the insect, where A. sativum bulb lectin showed the highest mortality of all, in particular. The same bulb lectin not only affected the growth and fecundity of the insect but also imparted drastic changes in the color, weight, and size, even on the second generation of the insects which have been reared on artificial diet supplemented with a sublethal dose of the lectin. Thus, this finding opens up a possibility of using this lectin as an important component in crop management.

  16. ESTIMATING THE VALUE OF BT CORN: A MULTI-STATE COMPARISON

    OpenAIRE

    Hyde, Jeffrey; Martin, Marshall A.; Preckel, Paul V.; Edwards, C. Richard; Dobbins, Craig L.

    2000-01-01

    Bt corn offers a powerful tool to control European corn borers and some other pests. Because pest infestations and farming practices differ across the Corn Belt, economic benefits also differ. This research estimates the value of Bt corn across the Corn Belt. Results identify areas where Bt adoption is economically justified.

  17. Effects of Bt-maize material on the life cycle of the land snail Cantareus aspersus

    DEFF Research Database (Denmark)

    Kramarz, Paulina; de Vaufleury, Annette; Gimbert, Frédéric

    2009-01-01

    Insect resistant Bt-maize (MON 810) expresses active Cry1Ab endotoxin derived from Bacillus thuringiensis (Bt). Snails constitute non-target soil species potentially exposed to Bt-toxin through consumption of plant material and soil in fields where transgenic plants have been grown. We studied th...

  18. Evaluation for the retention of reproductive structures by Bt and non ...

    African Journals Online (AJOL)

    MRC 6301 also behaved like RCH group hybrids. Bt hybrids of all the three establishments had more reproductive structure retentivity than their non-Bt hybrids counterparts in early, closer inter row and wider intra row sowing except for Bt hybrid RCH134 which had the highest bearing in the late sowing with wider inter row ...

  19. Test Takers' Attitudes about the TOEFL iBT[TM]. TOEFL iBT Research Report. RR-10-2

    Science.gov (United States)

    Stricker, Lawrence J.; Attali, Yigal

    2010-01-01

    The principal aims of this study, a conceptual replication of an earlier investigation of the TOEFL[R] computer-based test, or TOEFL CBT, in Buenos Aires, Cairo, and Frankfurt, were to assess test takers' reported acceptance of the TOEFL Internet-based test, or TOEFL iBT[TM], and its associations with possible determinants of this acceptance and…

  20. Carbon isotope ratios document that the elytra of western corn rootworm (Coleoptera: Chrysomelidae) reflects adult versus larval feeding and later instar larvae prefer Bt corn to alternate hosts.

    Science.gov (United States)

    Hiltpold, Ivan; Adamczyk, John J; Higdon, Matthew L; Clark, Thomas L; Ellersieck, Mark R; Hibbard, Bruce E

    2014-06-01

    In much of the Corn Belt and parts of Europe, the western corn rootworm, Diabrotica virgifera virgifera LeConte, is the most important insect pest of maize. The need for additional basic knowledge of this pest has been highlighted while developing resistance management plans for insecticidal genetically modified crops. This study evaluated the possibility of tracking feeding habits of western corn rootworm larvae using stable carbon isotope signatures. Plants accumulate different ratios of (13)C:(12)C isotopes, usually expressed as δ(13)C, according to whether they use the C3 or C4 photosynthetic pathway. Herbivore biomass is expected to reflect the δ(13)C of the food they eat. For the current experiment, western corn rootworm larvae were grown on different species of plants exhibiting different δ(13)C values. The δ(13)C values were then measured in elytra of emerged beetles. When beetles were unfed, biomass reflected larval feeding. When beetles were fed for 31 d postemergence, δ(13)C values of elytra almost exclusively reflected adult feeding. These results suggest the use of caution in the interpretation of δ(13)C data aiming to document larval diet history when adult feeding history is unknown. The technique was also used to evaluate western corn rootworm larval choice between alternate hosts and maize with and without genetically modified (Bt) traits aimed at their control. Propensity for feeding on alternate hosts versus maize was biased toward feeding on maize regardless whether the maize had Bt or not, suggesting western corn rootworm larvae were not repelled by Bt. These data will be helpful for regulators in interpreting western corn rootworm feeding data on Bt maize.

  1. FUM gene expression profile and fumonisin production by Fusarium verticillioides inoculated in Bt and non-Bt maize

    Directory of Open Access Journals (Sweden)

    Liliana Oliveira Rocha

    2016-01-01

    Full Text Available This study aimed to determine the levels of fumonisins produced by F. verticillioides and FUM gene expression on Bt (Bacillus thuringiensis and non-Bt maize, post harvest, during different periods of incubation. Transgenic hybrids 30F35 YG, 2B710 Hx and their isogenic (30F35 and 2B710 were collected from the field and a subset of 30 samples selected for the experiments. Maize samples were sterilized by gamma radiation at a dose of 20 kGy. Samples were then inoculated with Fusarium verticillioides and analysed under controlled conditions of temperature and relative humidity for fumonisin B1 and B2 (FB¬1 and FB2 production and FUM1, FUM3, FUM6, FUM7, FUM8, FUM13, FUM14, FUM15 and FUM19 expression. 2B710 Hx and 30F35 YG kernel samples were virtually intact when compared to the non-Bt hybrids that came from the field. Statistical analysis showed that FB¬1 production was significantly lower in 30F35 YG and 2B710 Hx than in the 30F35 and 2B710 hybrids (P 0.05. The kernel injuries observed in the non-Bt samples have possibly facilitated F. verticillioides penetration and promoted FB1 production under controlled conditions. FUM genes were expressed by F. verticillioides in all of the samples. However, there was indication of lower expression of a few FUM genes in the Bt hybrids; and a weak association between FB1 production and the relative expression of some of the FUM genes were observed in the 30F35 YG hybrid.

  2. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  3. Field-evolved resistance to Bt maize in sugarcane borer (Diatraea saccharalis) in Argentina.

    Science.gov (United States)

    Grimi, Damián A; Parody, Betiana; Ramos, María Laura; Machado, Marcos; Ocampo, Federico; Willse, Alan; Martinelli, Samuel; Head, Graham

    2018-04-01

    Maize technologies expressing Bacillus thuringiensis (Bt) insecticidal proteins are widely used in Argentina to control sugarcane borer (Diatraea saccharalis Fabricius). Unexpected D. saccharalis damage was observed to Bt maize events TC1507 (expressing Cry1F) and MON 89034 × MON 88017 (expressing Cry1A.105 and Cry2Ab2) in an isolated area of San Luis Province. Diatraea saccharalis larvae were sampled from MON 89034 × MON 88017 fields in the area to generate a resistant strain (RR), which was subsequently characterized in plant and diet bioassays. Survivorship of the RR strain was high on TC1507 leaf tissue, intermediate on MON 89034 × MON 88017, and low on MON 810 (expressing Cry1Ab). The RR strain had high resistance to Cry1A.105 (186.74-fold) and no resistance to Cry2Ab2 in diet bioassays. These results indicate resistance to Cry1F and Cry1A.105 (and likely cross-resistance between them) but not to Cry1Ab or Cry2Ab2. Resistance to MON 89034 × MON 88017 was functionally recessive. Reviews of grower records suggest that resistance initially evolved to Cry1F, conferring cross-resistance to Cry1A.105, with low refuge compliance as the primary cause. A mitigation plan was implemented in San Luis that included technology rotation, field monitoring, and grower education on best management practices (BMPs) including refuges. In the affected area, the resistance to Cry1F and Cry1A.105 is being managed effectively through use of MON 89034 × MON 88017 and MON 810 in combination with BMPs, and no spread of resistance to other regions has been observed. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  4. Effects of MON810 Bt field corn on adult emergence of Helicoverpa zea (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Horner, T A; Dively, G P; Herbert, D A

    2003-06-01

    A 3-yr study (1996-1998) was conducted to evaluate the effects of MON810 Bt corn on Helicoverpa zea (Boddie) emergence and to determine whether delayed larval development as a result of Bt intoxication results in higher levels of diapause induction and pupal mortality. In the 1997 study, there was no difference in prepupal mortality between corn types, although significantly more prepupae from Bt plots than from non-Bt plots died in emergence buckets before constructing pupal chambers in 1998. In all years, significantly fewer moths emerged from prepupae collected from Bt plots, suggesting that effects of the expressed Cry1Ab extended to the prepupal and pupal stages. Late plantings of corn showed the greatest reductions in moth emergence from Bt corn because environmental conditions were more conducive to trigger diapause at the time H. zea was developing in these plantings. This was supported by a significantly greater proportion of diapausing pupae remaining in the ground in the late plantings of both Bt and non-Bt corn. For April and early May plantings, larval feeding on Bt corn delayed the time to pupation, although there was no significant difference in moth emergence between corn types for those larvae that successfully pupated. Although Bt expression had less impact on the proportion of moths emerging, the actual number of moths emerging from Bt corn was significantly reduced because fewer larvae reached pupation. Delays in adult emergence, along with significant reductions in adult emergence from MON810 Bt corn, should reduce the rates of colonization in soybean and other late host crops but may also result in asynchrony of mating between individuals emerging from Bt and non-Bt corn. This, in turn, may contribute to the evolution of resistance to Bt corn.

  5. Spiroindolines identify the vesicular acetylcholine transporter as a novel target for insecticide action.

    Directory of Open Access Journals (Sweden)

    Ann Sluder

    Full Text Available The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.

  6. Changes in bacillus thuringiensis tolerance levels due to hybridization of Bt-tolerant and susceptible silkworm populations

    International Nuclear Information System (INIS)

    Begumad, H.A.; Hassana, E.; Dingleb, J.; Alshehic, A.A.

    2012-01-01

    Males and females of a Bt-tolerant mulberry silkworm (Bombyx mori L.) population were crossed with females and males of a Bt-susceptible population, to produce Bt-tolerant silkworm hybrids, and to determine the expression of the Bt-tolerance pattern in the F 1 hybrids. It was observed that when a Bt-tolerant (42% larval mortality) female (BtT ) silkworm was crossed with a Bt-susceptible (85% larval mortality) male (BtS ), the resultant F 1 offspring showed lower levels of Bt-tolerance (87% larval mortality). On the other hand, when a Bt-tolerant male (BtT ) was crossed with a Bt-susceptible female (BtS ), the F 1 hybrid showed higher levels of Bt-tolerance (35% larval mortality) characteristic. The probit statistics showed that both hybrids expressed Bt-tolerance or susceptible levels similar to their male parents. These different patterns of Bt-tolerance in F 1 hybrids might be due to the transferring of a Bt-tolerant gene, from the parents to offspring, through the homozygotic male (ZZ) silkworm. (author)

  7. Discourse Characteristics of Writing and Speaking Task Types on the "TOEFL iBT"® Test: A Lexico-Grammatical Analysis. "TOEFL iBT"® Research Report. TOEFL iBT-19. Research Report. RR-13-04

    Science.gov (United States)

    Biber, Douglas; Gray, Bethany

    2013-01-01

    One of the major innovations of the "TOEFL iBT"® test is the incorporation of integrated tasks complementing the independent tasks to which examinees respond. In addition, examinees must produce discourse in both modes (speech and writing). The validity argument for the TOEFL iBT includes the claim that examinees vary their discourse in…

  8. Investigating the Value of Section Scores for the "TOEFL iBT"® Test. "TOEFL iBT"® Research Report. TOEFL iBT-21. ETS Research Report RR-13-35

    Science.gov (United States)

    Sawaki, Yasuyo; Sinharay, Sandip

    2013-01-01

    This study investigates the value of reporting the reading, listening, speaking, and writing section scores for the "TOEFL iBT"® test, focusing on 4 related aspects of the psychometric quality of the TOEFL iBT section scores: reliability of the section scores, dimensionality of the test, presence of distinct score profiles, and the…

  9. Decrease in catalase activity of Folsomia candida fed a Bt rice diet

    International Nuclear Information System (INIS)

    Yuan Yiyang; Ke Xin; Chen Fajun; Krogh, Paul Henning; Ge Feng

    2011-01-01

    Here we report the effects of three Bt-rice varieties and their non-Bt conventional isolines on biological traits including survival, reproduction, and the activities of three antioxidant enzymes superoxide dismutase, catalase and peroxidase, in the Collembolan, Folsomia candida. The reproduction was significantly lower when fed Kemingdao and Huahui1 than those feeding on their non-GM near-isogenic varieties Xiushui and Minghui63 respectively, this can be explained by the differences of plant compositions depended on variety of rice. The catalase activity of F. candida was significantly lower when fed the Bt-rice variety Kemingdao compared to the near-isogenic non-Bt-rice variety Xiushui. This suggests that some Bt-rice varieties may impose environmental stress to collembolans. We emphasize that changes in activity of antioxidant enzymes of non-target organisms are important in understanding the ecological consequences for organisms inhabiting transgenic Bt-rice plantations. - Highlights: → We examine the effects of Bt-rice on Folsomia candida with laboratory test. → The reproduction of F. candida was decreased by two Bt-rice varieties. → Decreased reproduction caused by the differences of varieties or C/N ratio of rice. → The catalase activity was decreased by Bt-rice Kemingdao. → Some Bt-rice may impose environmental stress on NTOs. - The catalase of the collembolan (Folsomia candida) was decreased when fed Bt-rice, Kemingdao.

  10. Molecular Mechanisms of Pyrethroid Insecticide Neurotoxicity: Recent Advances

    Science.gov (United States)

    Soderlund, David M.

    2011-01-01

    Synthetic pyrethroid insecticides were introduced into widespread use for the control of insect pests and disease vectors more than three decades ago. In addition to their value in controlling agricultural pests, pyrethroids are at the forefront of efforts to combat malaria and other mosquito-borne diseases and are also common ingredients of household insecticide and companion animal ectoparasite control products. The abundance and variety of pyrethroid uses contribute to the risk of exposure and adverse effects in the general population. The insecticidal actions of pyrethroids depend on their ability to bind to and disrupt voltage-gated sodium channels of insect nerves. Sodium channels are also important targets for the neurotoxic effects of pyrethroids in mammals but other targets, particularly voltage-gated calcium and chloride channels, have been implicated as alternative or secondary sites of action for a subset of pyrethroids. This review summarizes information published during the past decade on the action of pyrethroids on voltage-gated sodium channels as well as on voltage-gated calcium and chloride channels and provides a critical re-evaluation of the role of these three targets in pyrethroid neurotoxicity based on this information. PMID:21710279

  11. Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and cry2Ab2 expressed in Smartstax corn hybrids against lepidopteran insect pests in the northern United States.

    Science.gov (United States)

    Rule, D M; Nolting, S P; Prasifka, P L; Storer, N P; Hopkins, B W; Scherder, E F; Siebert, M W; Hendrix, W H

    2014-02-01

    Commercial field corn (Zea mays L.) hybrids transformed to express some or all of the lepidopteran insect-resistant traits present in SmartStax corn hybrids were evaluated for insecticidal efficacy against a wide range oflepidopteran corn pests common to the northern United States, during 2008 to 2011 at locations in 15 states. SmartStax hybrids contain a pyramid of two Bacillus thuringiensis (Bt) derived events for lepidopteran control: event TC1507 expressing Cry1F protein and MON 89034 expressing CrylA.105 + Cry2Ab2. These studies focused on characterization of the relative efficacy of each event when expressed alone or in combination, and compared with non-Bt hybrid. Corn hybrids containing pyramided insecticidal proteins Cry1F + Cry1A.105 + Cry2Ab2 (SmartStax) consistently showed reduced plant feeding damage by a wide range of lepidopteran larvae compared with single event and non-Bt hybrids. Corn hybrids expressing TC1507 or MON 89034 as single or pyramided events were consistently efficacious against Ostrinia nubilalis (Hübner). SmartStax hybrids had less injury from Agrotis ipsilon (Hufnagel) and Striacosta albicosta (Smith) than corn hybrids containing only event MON 89034 but were not more efficacious than single event TC1507 hybrids. Corn hybrids with event MON 89034 provided better control of Helicoverpa zea (Boddie), than event TC1507 alone. Spodoptera frugiperda (J.E. Smith) efficacy was higher for hybrids with pyramid events and single events compared with the non-Bt hybrids. The spectra of activity of events TC1507 and MON 89034 differed. The combination of TC1507 + MON 89034 provided redundant control of some pests where the spectra overlapped and thereby are expected to confer a resistance management benefit.

  12. Insecticide use: context and ecological consequences

    OpenAIRE

    Devine, Gregor J.; Plant and Invertebrate Ecology Division, Rothamsted Research. Harpenden, United Kingdom. Investigador entomólogo.; Eza, Dominique; Proyecto Dengue, Universidad de California-Davis. Iquitos, Perú. Médica patóloga.; Ogusuku, Elena; Dirección General de Salud Ambiental, Ministerio de Salud. Lima, Perú. Bióloga.; Furlong, Michael J.; Department of Zoology and Entomology, School of Life Sciences, University of Queensland. Queensland, Australia. Profesor entomólogo.

    2008-01-01

    Constraints to the sustainability of insecticide use include effects on human health, agroecosystems (e.g., beneficial insects), the wider environment (e.g., non-target species, landscapes and communities) and the selection of insecticide- resistant traits. It is possible to find examples where insecticides have impacted disastrously on all these variables and others where the hazards posed have been (through accident or design) ameliorated. In this review, we examine what can currently be su...

  13. Impactos econômicos da introdução do milho Bt11 no Brasil: uma abordagem de equilíbrio geral inter-regional

    Directory of Open Access Journals (Sweden)

    Andressa Rodrigues Pavão

    2011-03-01

    Full Text Available Este trabalho analisa os impactos econômicos da adoção do milho Bt11 no Brasil, bem como as consequências da proibição deste cultivo apenas no Paraná, caso a lei estadual nº 14.162/03 entrasse em vigor. Para tal, utiliza-se um modelo computável de equilíbrio geral inter-regional, calibrado para 2001, simulando a redução de inseticida, mão de obra, combustível e lubrificantes, bem como o aumento de produtividade observado em lavouras de milho Bt11. Ao analisar a adoção nas regiões brasileiras "tecnificadas", observa-se o deslocamento de estoque de capital e mão de obra de todas as regiões para o Sul do País. Considerando-se que apenas o Paraná não adota milho Bt11, observa-se que tanto a mão de obra quanto o estoque de capital se deslocam do Sul e Sudeste para o Centro-Oeste do Brasil. Os resultados mais expressivos ocorrem no próprio estado do Paraná, onde não apenas o setor de milho, como também os setores a jusante perdem competitividade, reduzindo o nível de atividade, emprego e consumo das famílias. De forma geral, os efeitos da adoção do milho Bt11 são transmitidos ao longo da sua cadeia produtiva, gerando aumento do PIB, das exportações e do consumo das famílias, sendo mais expressivos nos setores e regiões diretamente relacionados com a cadeia de comercialização do milho, tais como os de criação animal e carnes, localizados, em sua maioria, no Sul do País.This study aims to analyze the economic impacts of the adoption of Bt11 corn in Brazil, as well as the consequences of the prohibition of the cultivation only in the Paraná state, if the state law number 14.162/03 would start to be active. For this purpose, an inter-regional general equilibrium computable model is used, gauged for 2001, simulating the reduction of insecticide, labor force, fuel and lubricants, as well as the increase in the yield observed in crops which use Bt11 corn. When the adoption of Bt11 corn in "technified" Brazilian

  14. Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical inceptisol.

    Science.gov (United States)

    Singh, Raman Jeet; Ahlawat, I P S; Singh, Surender

    2013-01-01

    Although there is large-scale adoption of Bt cotton by the farmers because of immediate financial gain, there is concern that Bt crops release Bt toxins into the soil environment which reduces soil chemical and biological activities. However, the majorities of such studies were mainly performed under pot experiments, relatively little research has examined the direct and indirect effects of associated cover crop of peanut with fertilization by combined application of organic and inorganic sources of nitrogen under field conditions. We compared soil chemical and biological parameters of Bt cotton with pure crop of peanut to arrive on a valid conclusion. Significantly higher dehydrogenase enzyme activity and KMnO(4)-N content of soil were observed in Bt cotton with cover crop of peanut over pure Bt cotton followed by pure peanut at all the crop growth stages. However, higher microbial population was maintained by pure peanut over intercropped Bt cotton, but these differences were related to the presence of high amount of KMnO(4)-N content of soil. By growing cover crop of peanut between Bt cotton rows, bacteria, fungi, and actinomycetes population increased by 60%, 14%, and 10%, respectively, over Bt cotton alone. Bt cotton fertilized by combined application of urea and farm yard manure (FYM) maintained higher dehydrogenase enzyme activity, KMnO(4)-N content of soil and microbial population over urea alone. Significant positive correlations were observed for dry matter accumulation, dehydrogenase enzyme activity, KMnO(4)-N content, and microbial population of soil of Bt cotton, which indicates no harmful effects of Bt cotton on soil biological parameters and associated cover crop. Our results suggest that inclusion of cover crop of peanut and FYM in Bt cotton enhanced soil chemical and biological parameters which can mask any negative effect of the Bt toxin on microbial activity and thus on enzymatic activities.

  15. Effect of Bt cotton on nutrient dynamics under varied soil type

    Directory of Open Access Journals (Sweden)

    Kasturikasen Beura

    2011-12-01

    Full Text Available Since transgenic cotton was first grown commercially in India in 1996, the areas cultivated have increased rapidly around the world. Bt cotton is produced by inserting a synthetic version of a gene from the naturally occurring soil bacterium Bacillus thuringiensis into cotton. Bt cotton may affect nutrient dynamics in many ways during its life-span with regard to the temporal-spatial relevance of Bt proteins. Given this, we aimed to evaluate nutrient availability under both Bt and non-Bt systems and varied soil type. The study was conducted during the 2010 wet season (July to December in a net-house at the Institute of Agricultural Sciences of Banaras Hindu University. It was carried out on three different soil orders i.e. entisol, inceptisol and alfisol. Bt-cotton (cvNCS-138 and its non-transgenic isoline (cvNCS-138 were grown until maturity. A no crop pot was maintained with three replications for all the three soil orders. Study design was a factorial experiment under a completely randomized block design with three replications. The study concludes that available N was reduced by 12-13% under Bt-cotton compared to non-Bt isoline and no crop treatment whereas it showed a significant increase in available P in the soil under Bt-cotton (7.8% increase compared to non-Bt isoline and no crop treatment. Furthermore, it has been observed that available K value varied from 82.88 kg ha-1 to 76.88 kg ha-1 in the soil under Bt-cotton and from 90.33 kg hato-1 83.55 kg ha-1 in the non-Bt crops and a significant increase in the Avalaible Zn in the soil under Bt-cotton compared to non-Bt isoline and no crop treatment.

  16. Humoral and cellular immune responses to Blomia tropicalis and concanavalin A-binding fractions in atopic patients

    Directory of Open Access Journals (Sweden)

    R. Alves

    2008-09-01

    Full Text Available Blomia tropicalis, Dermatophagoides pteronyssinus and D. farinae are prevalent house dust mites. Concanavalin A-binding components derived from B. tropicalis (Bt-ConA extract are highly immunogenic in allergic diseases. The aim of the present study was to evaluate the humoral and cellular immune responses to B. tropicalis in mite-sensitized patients. A total of 137 patients with allergic rhinitis with/without asthma and 109 non-atopic subjects were selected and analyzed by the skin prick test, and for total serum IgE and specific IgE levels to both Bt-total and Bt-ConA extracts, their proliferative response and cytokine (IFN-γ and IL-5 production by peripheral blood mononuclear cells (PBMC stimulated with both extracts. Skin prick test showed that 70% of the patients were sensitized to Bt (Bt+ and similar levels of specific IgE to Bt-total and Bt-ConA extracts were demonstrable in Bt+ patients. Significant PBMC proliferation was observed in response to Bt-total extract in Bt+, but not in Bt- patients and non-atopic subjects (P < 0.001. Bt-ConA extract induced increased proliferative responses in all patient groups compared to medium alone (P < 0.05, but these responses were significantly decreased in the presence of the mannopyranoside ConA inhibitor (P < 0.05. Significant IFN-γ production was observed after Bt-ConA stimulation of Bt+ patients (P < 0.05, while Bt-total extract had no effect. IL-5 production was consistently detected in Bt+ patients after allergen-specific stimulation or with no stimulus, indicating that PBMC from allergic patients are prone to produce Th2 profile cytokines, spontaneously or inductively by allergen restimulation. These data showed that ConA-binding components isolated from B. tropicalis may contain relevant antigens that are involved in both humoral and cellular immune responses. However, without an additional purification procedure to eliminate the residual contamination with ConA, its use in immunotherapeutic

  17. Pyrethroid insecticide exposure and reproductive hormone levels in healthy Japanese male subjects

    DEFF Research Database (Denmark)

    Yoshinaga, J; Imai, K; Shiraishi, H

    2014-01-01

    The associations between serum levels of reproductive hormones (follicle-stimulating hormone, luteinizing hormone, testosterone, sex hormone-binding globulin, inhibin B and calculated free testosterone) and urinary metabolite concentration of pyrethroid insecticides [3-phenoxybenzoic acid (3-PBA...... composition of pyrethroid insecticides to which the subjects were exposed; 3-PBA is a common metabolite of a number of pyrethroids and thus lacks specificity to compounds that may have different potentials of reproductive toxicity. Another reason might be related to the fact that our subjects were university...

  18. The impact of common smut(Ustilago maydis) on aflatoxin and fumonisin in transgenic Bt and non-Bt maize (Zea mays)

    Science.gov (United States)

    Corn infected with Ustilago maydis (common smut), produces galls that are valued food in certain cultures, but may be contaminated with mycotoxins. Field studies conducted in Elizabeth, Mississippi used near-isogenic Bt and non-Bt corn hybrids. The levels of aflatoxin and fumonisin were determined ...

  19. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  20. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  1. Insecticidal toxins from black widow spider venom.

    Science.gov (United States)

    Rohou, A; Nield, J; Ushkaryov, Y A

    2007-03-15

    The biological effects of Latrodectus spider venom are similar in animals from different phyla, but these symptoms are caused by distinct phylum-specific neurotoxins (collectively called latrotoxins) with molecular masses ranging from 110 to 140 kDa. To date, the venom has been found to contain five insecticidal toxins, termed alpha, beta, gamma, delta and epsilon-latroinsectotoxins (LITs). There is also a vertebrate-specific neurotoxin, alpha-latrotoxin (alpha-LTX), and one toxin affecting crustaceans, alpha-latrocrustatoxin (alpha-LCT). These toxins stimulate massive release of neurotransmitters from nerve terminals and act (1) by binding to specific receptors, some of which mediate an exocytotic signal, and (2) by inserting themselves into the membrane and forming ion-permeable pores. Specific receptors for LITs have yet to be identified, but all three classes of vertebrate receptors known to bind alpha-LTX are also present in insects. All LTXs whose structures have been elucidated (alpha-LIT, delta-LIT, alpha-LTX and alpha-LCT) are highly homologous and have a similar domain architecture, which consists of a unique N-terminal sequence and a large domain composed of 13-22 ankyrin repeats. Three-dimensional (3D) structure analysis, so far done for alpha-LTX only, has revealed its dimeric nature and an ability to form symmetrical tetramers, a feature probably common to all LTXs. Only tetramers have been observed to insert into membranes and form pores. A preliminary 3D reconstruction of a delta-LIT monomer demonstrates the spatial similarity of this toxin to the monomer of alpha-LTX.

  2. Dynamics of mycotoxin and Aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions.

    Science.gov (United States)

    Abbas, Hamed K; Accinelli, Cesare; Zablotowicz, Robert M; Abel, Craig A; Bruns, H Arnold; Dong, Yanhong; Shier, W Thomas

    2008-08-27

    Mycotoxin and Aspergillus flavus levels in soil-surface corn debris left by no-till agriculture methods (stover, cobs, and cobs with grain) were determined during the December-March fallow period for near-isogenic Bt and non-Bt hybrid corn. By December, average mycotoxin levels in non-Bt corn were many times higher in cobs with grain than in grain harvested in September (total aflatoxins, 774 vs 211 ng/g; total fumonisins, 216 vs 3.5 microg/g; cyclopiazonic acid, 4102 vs 72.2 microg/g; zearalenone, 0.2 vs corn debris fractions decreased during winter but began to rise in March. Levels of all mycotoxins and A. flavus propagules were lower in harvested grain and debris from Bt than non-Bt corn, but differences were significant (p < 0.05) only for aflatoxins.

  3. Effects of temperature on the feeding behavior of Alabama argillacea (Hübner (Lepidoptera: Noctuidae on Bt and non-Bt cotton plants

    Directory of Open Access Journals (Sweden)

    FRANCISCO S. RAMALHO

    2017-12-01

    Full Text Available ABSTRACT The host acceptance behavior and environmental factors as temperature affect the feeding behavior of Lepidoptera pests. Thus, they must be considered in studies about the risk potential of resistance evolution. The current study sets the differences in the feeding behavior of neonate Alabama argillacea (Hübner (Lepidoptera: Noctuidae larvae exposed to Bt and non-Bt cotton plants, under different temperatures and time gap after hatching. Two cotton cultivars were used: the Bt (DP 404 BG - bollgard and the non-transformed isoline, DP 4049. We found that the feeding behavior of neonate A. argillacea is significantly different between Bt and non-Bt cotton. Based on the number of larvae with vegetal tissue in their gut found on the plant and in the organza as well as on the amount of vegetal tissue ingested by the larvae. A. argillacea shows feeding preference for non-Bt cotton plants, in comparison to that on the Bt. However, factors such as temperature and exposure time may affect detection capacity and plant abandonment by the larvae and it results in lower ingestion of vegetal tissue. Such results are relevant to handle the resistance of Bt cotton cultivars to A. argillacea and they also enable determining how the cotton seeds mix will be a feasible handling option to hold back resistance evolution in A. argillacea populations on Bt cotton, when it is compared to other refuge strategies. The results can also be useful to determine which refuge distribution of plants is more effective for handling Bt cotton resistance to A. argillacea.

  4. Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV: Natural occurrence and efficacy as a biological insecticide on young banana plants in greenhouse and open-field conditions on the Canary Islands.

    Directory of Open Access Journals (Sweden)

    Ernesto Gabriel Fuentes

    Full Text Available Chrysodeixis chalcites, an important pest of banana crops on the Canary Islands, is usually controlled by chemical insecticides. The present study aimed to evaluate the efficacy of the most prevalent isolate of the Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV, Baculoviridae as a biological insecticide. Overall the prevalence of ChchNPV infection in C. chalcites populations was 2.3% (103 infected larvae out of 4,438 sampled, but varied from 0-4.8% on Tenerife and was usually low (0-2% on the other islands. On Tenerife, infected larvae were present at 11 out of 17 plantations sampled. The prevalence of infection in larvae on bananas grown under greenhouse structures was significantly higher (3% than in open-field sites (1.4%. The ChchNPV-TF1 isolate was the most abundant and widespread of four genetic variants of the virus. Application of 1.0x109 viral occlusion bodies (OBs/l of ChchNPV-TF1 significantly reduced C. chalcites foliar damage in young banana plants as did commonly used pesticides, both in greenhouse and open-field sites. The insecticidal efficacy of ChchNPV-TF1 was similar to that of indoxacarb and a Bacillus thuringiensis (Bt-based insecticide in one year of trials and similar to Bt in the following year of trails in greenhouse and field crops. However, larvae collected at different time intervals following virus treatments and reared in the laboratory experienced 2-7 fold more mortality than insects from conventional insecticide treatments. This suggests that the acquisition of lethal dose occurred over an extended period (up to 7 days compared to a brief peak in larvae on plants treated with conventional insecticides. These results should prove useful for the registration of a ChchNPV-based insecticide for integrated management of this pest in banana crops on the Canary Islands.

  5. counter pyrethroid insecticide product in Nigeria

    African Journals Online (AJOL)

    We evaluated the brain, lung, and heart oxidative stress in rats exposed to aerosol of an over-thecounter pyrethroid insecticide product in Nigeria. The experimental animals were randomly divided into four groups: group I (control) was not exposed to the insecticide aerosol, while groups II, III, and IV were exposed to 6.0 mL ...

  6. Insecticidal compounds from Kalanchoe daigremontiana x tubiflora.

    Science.gov (United States)

    Supratman, U; Fujita, T; Akiyama, K; Hayashi, H

    2001-09-01

    Methyl daigremonate, an insecticidal bufadienolide, was isolated from the leaves of Kalanchoe daigremontianaxtubiflora (Crassulaceae) along with four known bufadienolides. Its structure was established by spectroscopic analysis, and insecticidal activities were assessed against the third instar larvae of silkworm (Bombyx mori). The results suggest that the orthoester and alpha-pyrone moieties played an important role in the activity.

  7. Preliminary assessment of insecticidal activity of Moroccan ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-03-11

    Mar 11, 2015 ... Key words: Moroccan actinobacteria, insecticidal activity, biological screening, chemical screening, Ceratitis capitata. ... pest. They have less impact on the environment and water quality, and they offer more environmentally friendly alternative to chemical insecticides. They could ..... Invasive insects in plant.

  8. Insecticide Resistance Reducing Effectiveness of Malaria Control

    Centers for Disease Control (CDC) Podcasts

    2007-01-24

    Malaria prevention is increasingly insecticide based. Dr. John Gimnig, an entomologist with the Division of Parasitic Diseases, CDC, discusses evidence that mosquito resistance to insecticides, which is measured in the laboratory, could compromise malaria prevention in the field.  Created: 1/24/2007 by Emerging Infectious Diseases.   Date Released: 3/13/2007.

  9. Insecticide Recommendations for Arkansas. MP 144.

    Science.gov (United States)

    Jones, Bill F.; Barnes, Gordon

    This publication gives, in chart form, insecticides for use on animals, field crops, fruits, flowers, trees and shrubs, household pests, recreation areas, lawn and turf grass, pecans, stored grain, and vegetables. Included in the charts are the insecticides recommended for each insect, formulation to be used, amount, time to apply, and other…

  10. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    Directory of Open Access Journals (Sweden)

    Chandrashekhar D Patil

    2014-06-01

    Full Text Available We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi.Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay.LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4(th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2(nd and 3(rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2(nd and 3(rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi, respectively.Leaves extracts of Go. hirsutum (Bt is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management.

  11. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    Science.gov (United States)

    Patil, Chandrashekhar D; Borase, Hemant P; Salunkhe, Rahul B; Suryawanshi, Rahul K; Narkhade, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-01-01

    We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4(th) instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2(nd) and 3(rd) instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2(nd) and 3(rd) instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2(nd), 3(rd) and 4(th) instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2(nd), 3(rd) and 4(th) instars of Ae. aegypti and An. stephensi, respectively. Leaves extracts of Go. hirsutum (Bt) is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management.

  12. Effect of Bt-cotton on chrysopids, ladybird beetles and their prey: aphids and whiteflies.

    Science.gov (United States)

    Mellet, M A; Schoeman, A S

    2007-06-01

    The effect of Bt-cotton, i.e. genetically modified cotton that contain genes expressing delta-endotoxin, on aphid, whitefly, chrysopid and coccinellid populations was determined with a two-year field study at a cotton farm near Marble Hall, South Africa. Although Bt-cotton is lepidopteran specific, non-lepidopteran arthropod populations may be indirectly influenced by the endotoxin. Abundance of aphid, whitefly, chrysopid and coccinellid populations and predator-prey interactions were used as measures to determine possible effects on the populations under investigation. The cultivation of Bt-cotton had no effect on aphid, whitefly, chrysopid or coccinellid abundance. Positive density dependent interactions occurred between aphids and coccinellids which were not influenced by Bt-cotton. A significant relationship between whitefly and coccinellid abundance, i.e. predator-prey reaction, occurred in the control and sprayed non-Bt cotton fields but was absent from the Bt-cotton fields.

  13. of Several Organophosphorus Insecticide Metabolites

    Directory of Open Access Journals (Sweden)

    Russell L. Carr

    2015-01-01

    Full Text Available Paraoxonase (PON1 is a calcium dependent enzyme that is capable of hydrolyzing organophosphate anticholinesterases. PON1 activity is present in most mammals and previous research established that PON1 activity differs depending on the species. These studies mainly used the organophosphate substrate paraoxon, the active metabolite of the insecticide parathion. Using serum PON1 from different mammalian species, we compared the hydrolysis of paraoxon with the hydrolysis of the active metabolites (oxons of two additional organophosphorus insecticides, methyl parathion and chlorpyrifos. Paraoxon hydrolysis was greater than that of methyl paraoxon, but the level of activity between species displayed a similar pattern. Regardless of the species tested, the hydrolysis of chlorpyrifos-oxon was significantly greater than that of paraoxon or methyl paraoxon. These data indicate that chlorpyrifos-oxon is a better substrate for PON1 regardless of the species. The pattern of species differences in PON1 activity varied with the change in substrate to chlorpyrifos-oxon from paraoxon or methyl paraoxon. For example, the sex difference observed here and reported elsewhere in the literature for rat PON1 hydrolysis of paraoxon was not present when chlorpyrifos-oxon was the substrate.

  14. Natural factors as potential insecticides

    International Nuclear Information System (INIS)

    Bueds, H.; Pycke, C.; Loof, A. de

    1993-01-01

    In order to reduce environmental pollution, it is of great interest to find alternative methods for controlling insect pests. With the progress made in the isolation and identification of peptides and endogenous toxins from insects, the question can be raised whether or not these natural factors are potentially useful as insecticides. The aim of the present study was to test certain toxins and myotropic peptides isolated from insects for their usefulness as insecticides. Over twenty neuropeptides isolated from different insect species have been isolated and identified in the laboratory. To date, tests have been carried out on the influence of four neuropeptides on the food intake of L 1 larvae of Mamestra brassicae. Also, the crude haemolymph, as well as some of the purified fractions of the Colorado potato beetle, have been tested. At least one of the neuropeptides and some of the compounds present in the haemolymph and the purified fraction D have a negative influence on the development of L 1 larvae of M. brassicae after oral intake. (author). 6 refs, 1 fig

  15. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2017-01-01

    Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log K ow ) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log K ow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Valuing financial, health and environmental benefits of Bt cotton in Pakistan

    OpenAIRE

    Kouser, Shahzad; Qaim, Matin

    2012-01-01

    Data from a farm survey and choice experiment are used to value the benefits of Bt cotton in Pakistan. Unlike previous research on the economic impacts of Bt, which mostly concentrated on financial benefits in terms of gross margins, we also quantify and monetize positive externalities associated with technology adoption. Due to lower chemical pesticide use on Bt cotton plots, there are significant health advantages in terms of reduced incidence of acute pesticide poisoning, and environmental...

  17. Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize.

    Science.gov (United States)

    Cheeke, Tanya E; Rosenstiel, Todd N; Cruzan, Mitchell B

    2012-04-01

    Insect-resistant Bacillus thuringiensis (Bt) maize is widely cultivated, yet few studies have examined the interaction of symbiotic arbuscular mycorrhizal fungi (AMF) with different lines of Bt maize. As obligate symbionts, AMF may be sensitive to genetic changes within a plant host. Previous evaluations of the impact of Bt crops on AMF have been inconsistent, and because most studies were conducted under disparate experimental conditions, the results are difficult to compare. We evaluate AMF colonization in nine Bt maize lines, differing in number and type of engineered trait, and five corresponding near-isogenic parental (P) base hybrids in greenhouse microcosms. Plants were grown in 50% local agricultural soil with low levels of fertilization, and AMF colonization was evaluated at 60 and 100 d. Nontarget effects of Bt cultivation on AMF colonization were tested in a subsequently planted crop, Glycine max, which was seeded into soil that had been preconditioned for 60 d with Bt or P maize. We found that Bt maize had lower levels of AMF colonization in their roots than did the non-Bt parental lines. However, reductions in AMF colonization were not related to the expression of a particular Bt protein. There was no difference in AMF colonization in G. max grown in the Bt- or P-preconditioned soil. These findings are the first demonstration of a reduction in AMF colonization in multiple Bt maize lines grown under the same experimental conditions and contribute to the growing body of knowledge examining the unanticipated effects of Bt crop cultivation on nontarget soil organisms.

  18. Cry1F Resistance in Fall Armyworm Spodoptera frugiperda: Single Gene versus Pyramided Bt Maize

    OpenAIRE

    Huang, Fangneng; Qureshi, Jawwad A.; Meagher, Robert L.; Reisig, Dominic D.; Head, Graham P.; Andow, David A.; Ni, Xinzi; Kerns, David; Buntin, G. David; Niu, Ying; Yang, Fei; Dangal, Vikash

    2014-01-01

    Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southea...

  19. Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn.

    Science.gov (United States)

    Kang, J; Huang, F; Onstad, D W

    2014-08-01

    Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of population dynamics and genetics of D. saccharalis to 1) study the effect of interfield dispersal, the first date that larvae enter diapause for overwintering, toxin mortality, the proportion of non-Bt corn in the corn patch, and the area of a crop patch on Bt resistance evolution; and 2) to identify gaps in empirical knowledge for managing D. saccharalis resistance to Bt corn. Increasing, the proportion of corn refuge did not always improve the durability of Bt corn if the landscape also contained sugarcane, sorghum, or rice. In the landscape, which consisted of 90% corn area, 5% sorghum area, and 5% rice area, the durability of single-protein Bt corn was 40 yr when the proportion of corn refuge was 0.2 but 16 yr when the proportion of corn refuge was 0.5. The Bt resistance evolution was sensitive to a change (from Julian date 260 to 272) in the first date larvae enter diapause for overwintering and moth movement. In the landscapes with Bt corn, non-Bt corn, sugarcane, sorghum, and rice, the evolution of Bt resistance accelerated when larvae entered diapause for overwintering early. Intermediate rates of moth movement delayed evolution of resistance more than either extremely low or high rates. This study suggested that heterogeneity in the agrolandscapes may complicate the strategy for managing Bt resistance in D. saccharalis, and designing a Bt resistance management strategy for D. saccharalis is challenging because of a lack of empirical data about overwintering and moth movement.

  20. Measuring the contribution of Bt cotton adoption to India's cotton yields leap:

    OpenAIRE

    Gruere, Guillaume P.; Sun, Yan

    2012-01-01

    While a number of empirical studies have demonstrated the role of Bt cotton adoption in increasing Indian cotton productivity at the farm level, there has been questioning around the overall contribution of Bt cotton to the average cotton yield increase observed these last ten years in India. This study examines the contribution of Bt cotton adoption to long- term average cotton yields in India using a panel data analysis of production variables in nine Indian cotton-producing states from 197...

  1. Enhanced depolarization temperature in 0.90NBT-0.05KBT-0.05BT ceramics induced by BT nanowires

    Science.gov (United States)

    Cao, W. P.; Li, W. L.; Feng, Y.; Xu, D.; Wang, W.; Hou, Y. F.; Zhang, T. D.; Fei, W. D.

    2015-03-01

    The depolarization temperature (Td) of piezoelectric materials is an important figure of merit for their application at elevated temperatures. This study focuses on the effect of BaTiO3 (BT) nanowires on Td and piezoelectric properties of morphotropic-phase-boundary 0.90NBT-0.05KBT-0.05BT ceramics. The results reveal that BaTiO3 nanowires can pin the domain wall, leading to the increase of coercive field (Ec) from 21.06 kV/cm to 34.99 kV/cm. The Td value of 0.90NBT-0.05KBT-0.05BT ceramics can be enhanced approximately 20 °C when using BT nanowires instead of BT solution as the raw material. Meanwhile, at the same polarization conditions, the piezoelectric constant of the ceramic added BT nanowires (172 pC/N) is decreased but still remains a larger value compared with those of other lead-free ceramics. The results imply that the addition of BT nanowires into NBT-KBT is a very effective route to improve Td.

  2. Mode of Action of the Natural Insecticide, Decaleside Involves Sodium Pump Inhibition.

    Science.gov (United States)

    Rajashekar, Yallappa; Shivanandappa, Thimmappa

    2017-01-01

    Decalesides are a new class of natural insecticides which are toxic to insects by contact via the tarsal gustatory chemosensilla. The symptoms of their toxicity to insects and the rapid knockdown effect suggest neurotoxic action, but the precise mode of action and the molecular targets for decaleside action are not known. We have presented experimental evidence for the involvement of sodium pump inhibition in the insecticidal action of decaleside in the cockroach and housefly. The knockdown effect of decaleside is concomitant with the in vivo inhibition of Na+, K+ -ATPase in the head and thorax. The lack of insecticidal action by experimental ablation of tarsi or blocking the tarsal sites with paraffin correlated with lack of inhibition of Na+- K+ ATPase in vivo. Maltotriose, a trisaccharide, partially rescued the toxic action of decaleside as well as inhibition of the enzyme, suggesting the possible involvement of gustatory sugar receptors. In vitro studies with crude insect enzyme preparation and purified porcine Na+, K+ -ATPase showed that decaleside competitively inhibited the enzyme involving the ATP binding site. Our study shows that the insecticidal action of decaleside via the tarsal gustatory sites is causally linked to the inhibition of sodium pump which represents a unique mode of action. The precise target(s) for decaleside in the tarsal chemosensilla and the pathway linked to inhibition of sodium pump and the insecticidal action remain to be understood.

  3. Mode of Action of the Natural Insecticide, Decaleside Involves Sodium Pump Inhibition.

    Directory of Open Access Journals (Sweden)

    Yallappa Rajashekar

    Full Text Available Decalesides are a new class of natural insecticides which are toxic to insects by contact via the tarsal gustatory chemosensilla. The symptoms of their toxicity to insects and the rapid knockdown effect suggest neurotoxic action, but the precise mode of action and the molecular targets for decaleside action are not known. We have presented experimental evidence for the involvement of sodium pump inhibition in the insecticidal action of decaleside in the cockroach and housefly. The knockdown effect of decaleside is concomitant with the in vivo inhibition of Na+, K+ -ATPase in the head and thorax. The lack of insecticidal action by experimental ablation of tarsi or blocking the tarsal sites with paraffin correlated with lack of inhibition of Na+- K+ ATPase in vivo. Maltotriose, a trisaccharide, partially rescued the toxic action of decaleside as well as inhibition of the enzyme, suggesting the possible involvement of gustatory sugar receptors. In vitro studies with crude insect enzyme preparation and purified porcine Na+, K+ -ATPase showed that decaleside competitively inhibited the enzyme involving the ATP binding site. Our study shows that the insecticidal action of decaleside via the tarsal gustatory sites is causally linked to the inhibition of sodium pump which represents a unique mode of action. The precise target(s for decaleside in the tarsal chemosensilla and the pathway linked to inhibition of sodium pump and the insecticidal action remain to be understood.

  4. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  5. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Science.gov (United States)

    Arora, Naresh; Sachdev, Bindiya; Gupta, Rani; Vimala, Y; Bhatnagar, Raj K

    2013-01-01

    Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD) and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  6. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1

    Science.gov (United States)

    Gupta, Rani; Vimala, Y.; Bhatnagar, Raj K.

    2013-01-01

    Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD) and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi. PMID:23824872

  7. SNS ønsker kommentarer om oplysninger fra Syngenta Seeds vedr forurening med Bt10 i Bt11-majsen ændrer konklusionerne i risikovurderingen. Zea mays (Bt11) . Supplerende informationer om Bt11 - evt. konsekvenser for tidligere vurderinger. Modtaget 04-05-2005, deadline 06-06-2005, svar 24-05-2005

    DEFF Research Database (Denmark)

    Kjellsson, Gøsta

    2012-01-01

    "Vedr. oplysningerne om iblanding af Bt-10 majsen i Bt-11 viser det tilsendte materiale, at Syngenta har undersøgt og fået bekræftet at undersøgelserne til grundlag for risikovurderingen blev foretaget på Bt-11 majs. DMU ser derfor ingen grund til at ændre konklusionerne i den tidligere...... risikovurdering af Bt-11 majsen. Imidlertid viser denne sag vigtigheden af at majspartierne også overvåges med hensyn til utilsigtet iblanding af andre genmodificerede majstyper."...

  8. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Eunseong Kim

    Full Text Available Oral toxicity of double-stranded RNA (dsRNA specific to integrin β1 subunit (SeINT was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT.The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt.This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.

  9. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua.

    Science.gov (United States)

    Kim, Eunseong; Park, Youngjin; Kim, Yonggyun

    2015-01-01

    Oral toxicity of double-stranded RNA (dsRNA) specific to integrin β1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt). This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.

  10. Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system.

    Science.gov (United States)

    Wang, Jing; Zhang, Haonan; Wang, Huidong; Zhao, Shan; Zuo, Yayun; Yang, Yihua; Wu, Yidong

    2016-09-01

    Cadherins have been identified as receptors of Bacillus thuringiensis (Bt) Cry1A toxins in several lepidopteran insects including the cotton bollworm, Helicoverpa armigera. Disruption of the cadherin gene HaCad has been genetically linked to resistance to Bt toxin Cry1Ac in H. armigera. By using the CRISPR/Cas9 genome editing system (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9), HaCad from the Cry1Ac-susceptible SCD strain of H. armigera was successfully knocked out. A single positive CRISPR event with a frame shift deletion of 4 nucleotides was identified and made homozygous to create a knockout line named SCD-Cad. Western blotting confirmed that HaCad was no longer expressed in the SCD-Cad line while an intact HaCad of 210 kDa was present in the parental SCD strain. Insecticide bioassays were used to show that SCD-Cad exhibited 549-fold resistance to Cry1Ac compared with SCD, but no significant change in susceptibility to Cry2Ab. Our results not only provide strong reverse genetics evidence for HaCad as a functional receptor of Cry1Ac, but also demonstrate that the CRISPR/Cas9 technique can act as a powerful and efficient genome editing tool to study gene function in a global agricultural pest, H. armigera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Bt Cry1Ie Toxin Does Not Impact the Survival and Pollen Consumption of Chinese Honey Bees, Apis cerana cerana (Hymenoptera, Apidae).

    Science.gov (United States)

    Dai, Ping-Li; Jia, Hui-Ru; Jack, Cameron J; Geng, Li-Li; Liu, Feng; Hou, Chun-Sheng; Diao, Qing-Yun; Ellis, James D

    2016-12-01

    The cry1Ie gene may be a good candidate for the development of Bt maize because over-expression of Cry1Ie is highly toxic to Lepidopteran pests such as Heliothis armigera Hübner and Ostrinia furnacalis Guenée. The Bt cry1Ie gene also has no cross resistance with other insecticidal proteins such as Cry1Ab, Cry1Ac, Cry1Ah, or Cry1F. Chinese honey bees (Apis cerana cerana) are potentially exposed to insect-resistant genetically modified (IRGM) crops expressing Cry1Ie toxin via the collection of IRGM crop pollen. In this study, we tested whether Chinese honey bee workers are negatively affected by sugar syrup containing 20, 200, or 20,000 ng/ml Cry1Ie toxin and 48 ng/ml imidacloprid under controlled laboratory conditions. Our results demonstrated that the Cry1Ie toxin does not adversely impact survival and pollen consumption of Chinese honey bees. However, imidacloprid decreases Chinese honey bee survival and the total pollen consumption on the 5th, 6th, and 18th d of exposure. The described bioassay is suitable to assess the effects of GM expressed toxins against honey bee. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe

    Science.gov (United States)

    Perry, J. N.; Devos, Y.; Arpaia, S.; Bartsch, D.; Gathmann, A.; Hails, R. S.; Kiss, J.; Lheureux, K.; Manachini, B.; Mestdagh, S.; Neemann, G.; Ortego, F.; Schiemann, J.; Sweet, J. B.

    2010-01-01

    Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality–dose relationship was integrated with a dose–distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth. PMID:20053648

  13. Interactions of pyrethroid insecticides with GABA sub A and peripheral-type benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Devaud, L.L.

    1988-01-01

    Pyrethroid insecticides are potent proconvulsants in the rat. All pyrethroids evincing proconvulsant activity elicited a similar 25-30% maximal reduction of seizure threshold. The Type II pyrethroids were the most potent proconvulsants with 1R{alpha}S, cis cypermethrin having an ED{sub 50} value of 6.3 nmol/kg. The proconvulsant activity of both Type I and Type II pyrenthroids was blocked by pretreatment with PK 11195, the peripheral-type benzodiazepine receptor (PTBR) antagonist. In contrast, phenytoin did not antagonize the proconvulsant activity of either deltamethrin or permethrin. Pyrethroids displaced the specific binding of ({sup 3}H)Ro5-4864 to rat brain membranes with a significant correlation between the log EC{sub 50} values for their activities as proconvulsants and the log IC{sub 50} values for their inhibition of ({sup 3}H)Ro5-4864 binding. Both Ro5-4864 and pyrethroid insecticides were found to influence specific ({sup 35}S)TBPS binding in a GABA-dependent manner. PK 11195 and the Type II pyrethroid, deltamethrin antagonized the Ro5-4864-induced modulation of ({sup 35}S)TBPS binding. Pyrethroid insecticides, Ro5-4864 and veratridine influenced GABA-gated {sup 36}Chloride influx. Moreover, the Type II pyrethroids elicited an increase in {sup 36}chloride influx in the absence of GABA-stimulation. Both of these actions were antagonized by PK 11195 and tetrodotoxin.

  14. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M. (Cornell Univ., Geneva, NY (USA))

    1990-08-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate (({sup 3}H)BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of ({sup 3}H)BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited ({sup 3}H)BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealed that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents.

  15. Mechanisms of the insecticidal action of TEL (Talisia esculenta lectin) against Callosobruchus maculatus (Coleoptera: Bruchidae).

    Science.gov (United States)

    Macedo, Maria Lígia Rodrigues; de Castro, Márcia Mota; Freire, Maria das Graças Machado

    2004-06-01

    Plant lectins have insecticidal activity that is probably mediated through their ability to bind carbohydrates. To examine the influence of sugars on the insecticidal activity of a lectin from Talisia esculenta seeds (TEL), the lectin was mixed with mannose, glucose, or mannose plus glucose. Mannose abolished the insecticidal activity. Affinity chromatography showed that TEL bound to midgut proteins of the insect Callosobruchus maculatus. Immunoblotting showed that TEL recognized some proteins, probably glycoproteins, present in the midgut membrane of this insect. The principal proteases responsible for digestive proteolysis in fourth instar larvae of C. maculatus were purified by chromatography on activated thiol-Sepharose. These purified proteases were unable to digest TEL after a 15-h incubation. These results suggest that the insecticidal activity of TEL involves a specific carbohydrate-lectin interaction with glycoconjugates on the surface of digestive tract epithelial cells, as well as binding to assimilatory glycoproteins present in midgut extracts and resistance to enzymatic digestion by cysteine proteinases. Copyright 2004 Wiley-Liss, Inc.

  16. Qualitative and event-specific real-time PCR detection methods for Bt brinjal event EE-1.

    Science.gov (United States)

    Randhawa, Gurinder Jit; Sharma, Ruchi; Singh, Monika

    2012-01-01

    Bt brinjal event EE-1 with cry1Ac gene, expressing insecticidal protein against fruit and shoot borer, is the first genetically modified food crop in the pipeline for commercialization in India. Qualitative polymerase chain reaction (PCR) along with event-specific conventional as well as real-time PCR methods to characterize the event EE-1 is reported. A multiplex (pentaplex) PCR system simultaneously amplifying cry1Ac transgene, Cauliflower Mosaic Virus (CaMV) 35S promoter, nopaline synthase (nos) terminator, aminoglycoside adenyltransferase (aadA) marker gene, and a taxon-specific beta-fructosidase gene in event EE-1 has been developed. Furthermore, construct-specific PCR, targeting the approximate 1.8 kb region of inserted gene construct comprising the region of CaMV 35S promoter and cry1Ac gene has also been developed. The LOD of developed EE-1 specific conventional PCR assay is 0.01%. The method performance of the reported real-time PCR assay was consistent with the acceptance criteria of Codex Alimentarius Commission ALINORM 10/33/23, with the LOD and LOQ values of 0.05%. The developed detection methods would not only facilitate effective regulatory compliance for identification of genetic traits, risk assessment, management, and postrelease monitoring, but also address consumer concerns and resolution of legal disputes.

  17. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. [Notre Dame Univ., IN (United States); Kakar, S.N.; Coleman, R.D. [Argonne National Lab., IL (United States)

    1992-07-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  18. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. (Notre Dame Univ., IN (United States)); Kakar, S.N.; Coleman, R.D. (Argonne National Lab., IL (United States))

    1992-01-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  19. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera, in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  20. The effects of bt corn on rusty crayfish (Orconectes rusticus) growth and survival.

    Science.gov (United States)

    Linn, Matthew D; Moore, Paul A

    2014-10-01

    Bt crops are one of the most commonly used genetically modified crops worldwide. Bt crops contain a gene that is derived from the bacteria Bacillus thuringiensis, which produces the Cry1Ab toxin. Bt corn that contains the Cry1Ab toxin is used throughout the Midwest United States to control crop pests such as the European corn borer (Ostrinia nubilalis). Headwater streams in regions known for intensive agriculture receive Bt corn detritus after the fall harvest, which is then consumed by a diverse community of stream invertebrates. The rusty crayfish (Orconectes rusticus) is a common invertebrate detritivore in these headwater streams. Both isogenic and Bt corn were grown under the controlled environmental conditions of a greenhouse and, after senescence, were tested for nutritional equality. Rusty crayfish were exposed to one of several detrital treatments composed of Bt corn, Bt corn plus American sycamore (Platanus occidentalis), isogenic corn alone, isogenic corn plus P. occidentalis, or P. occidentalis alone for 8 weeks. Both strains of corn were grown under the controlled environmental conditions in a greenhouse and were tested for nutritional equality after senescence. Crayfish were housed in live streams with a water temperature of 12.8 °C and a 12:12 h light-to-dark photoperiod. Survival and growth of animals within each experimental treatment were monitored each week. After 8 weeks of exposure, there was no statistically significant difference in growth between crayfish in Bt and isogenic treatments. However, survivorship was 31 % lower in the Bt treatment compared with the isogenic treatment. These results suggest that the Bt corn and isogenic corn were of equivalent nutritional value but that Bt corn does have a toxic effect on rusty crayfish during long-term exposure.

  1. Transgenic Bt rice does not challenge host preference of the target pest of rice leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae.

    Directory of Open Access Journals (Sweden)

    Xiao Sun

    Full Text Available BACKGROUND: Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée (Lepidoptera: Pyralidae. Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites. RESULTS: The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines. CONCLUSIONS: There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior.

  2. Transgenic Bt Rice Does Not Challenge Host Preference of the Target Pest of Rice Leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    Science.gov (United States)

    Sun, Xiao; Zhou, Wen; Liu, Hao; Zhang, Aijun; Ai, Chao-Ren; Zhou, Shuang-Shuang; Zhou, Chang-Xiang; Wang, Man-Qun

    2013-01-01

    Background Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites. Results The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines. Conclusions There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior. PMID:24244410

  3. Cross-pollination of nontransgenic corn ears with transgenic Bt corn: efficacy against lepidopteran pests and implications for resistance management.

    Science.gov (United States)

    Burkness, E C; O'Rourke, P K; Hutchison, W D

    2011-10-01

    The efficacy of nontransgenic sweet corn, Zea mays L., hybrids cross-pollinated by Bacillus thuringiensis (Bt) sweet corn hybrids expressing Cry1Ab toxin was evaluated in both field and laboratory studies in Minnesota in 2000. Non-Bt and Bt hybrids (maternal plants) were cross-pollinated with pollen from both non-Bt and Bt hybrids (paternal plants) to create four crosses. Subsequent crosses were evaluated for efficacy in the field against European corn borer, Ostrinia nubilalis (Hübner), and corn earworm, Helicoverpa zea (Boddie), and in laboratory bioassays against O. nubilalis. Field studies indicated that crosses with maternal Bt plants led to low levels of survival for both O. nubilalis and H. zea compared with the non-Bt x non-Bt cross. However, the cross between non-Bt ears and Bt pollen led to survival rates of 43 and 63% for O. nubilalis and H. zea larvae, respectively. This intermediate level of survival also was reflected in the number of kernels damaged. Laboratory bioassays for O. nubilalis, further confirmed field results with larval survival on kernels from the cross between non-Bt ears and Bt pollen reaching 60% compared with non-Bt crossed with non-Bt. These results suggest that non-Bt refuge plants, when planted in proximity to Bt plants, and cross-pollinated, can result in sublethal exposure of O. nubilalis and H. zea larvae to Bt and may undermine the high-dose/refuge resistance management strategy for corn hybrids expressing Cry1Ab.

  4. Using mass-release of engineered insects to manage insecticide resistance

    International Nuclear Information System (INIS)

    Alphey, Nina; Coleman, Paul G.; Donnelly, Christl A.

    2006-01-01

    Transgenic crops expressing insecticidal toxins derived from Bacillus thuringiensis (Bt) are widely used to control insect pests. The benefits of such crops would be lost if resistance to the toxins spread to a significant proportion of the pest population. The main resistance management method, mandatory in the US, is the high-dose/refuge strategy, requiring nearby refuges of toxin-free crops, and the use of toxin doses sufficiently high to kill not only wild type insects but also insects heterozygous for a resistance allele, thereby rendering the resistance functionally recessive. We propose that mass-release of harmless toxin-sensitive insects could substantially delay or even reverse the spread of resistance. Mass-release of such insects is an integral part of RIDL, a genetics-based method of pest control related to the Sterile Insect Technique. We used a population genetic mathematical model to analyze the effects of releasing male insects homozygous for a female-specific dominant lethal genetic construct, and concluded that this RIDL strategy could form an effective component of a resistance management scheme for insecticidal plants and other toxins. (author)

  5. Using mass-release of engineered insects to manage insecticide resistance

    Energy Technology Data Exchange (ETDEWEB)

    Alphey, Nina [University of Oxford (United Kingdom). Dept. of Zoology; Alphey, Luke [Oxitec Limited, Oxford (United Kingdom); Coleman, Paul G. [London School of Hygiene and Tropical Medicine (United Kingdom). Dept. of Infectious and Tropical Diseases; Donnelly, Christl A. [Imperial College Faculty of Medicine, London (United Kingdom). Dept. of Infectious Disease Epidemiology

    2006-07-01

    Transgenic crops expressing insecticidal toxins derived from Bacillus thuringiensis (Bt) are widely used to control insect pests. The benefits of such crops would be lost if resistance to the toxins spread to a significant proportion of the pest population. The main resistance management method, mandatory in the US, is the high-dose/refuge strategy, requiring nearby refuges of toxin-free crops, and the use of toxin doses sufficiently high to kill not only wild type insects but also insects heterozygous for a resistance allele, thereby rendering the resistance functionally recessive. We propose that mass-release of harmless toxin-sensitive insects could substantially delay or even reverse the spread of resistance. Mass-release of such insects is an integral part of RIDL, a genetics-based method of pest control related to the Sterile Insect Technique. We used a population genetic mathematical model to analyze the effects of releasing male insects homozygous for a female-specific dominant lethal genetic construct, and concluded that this RIDL strategy could form an effective component of a resistance management scheme for insecticidal plants and other toxins. (author)

  6. Advances in managing pest resistance to Bt crops: Pyramids and seed mixtures

    Science.gov (United States)

    Transgenic crops producing toxins from the soil bacterium Bacillus thuringiensis (Bt) have been widely used for the control of insect pests during the last 20 years. Although Bt crops have provided significant environmental and economic benefits, sustainable use of these crops is threatened by the r...

  7. Effects of ensiling of Bacillus thuringiensis (Bt) maize (MON810) on ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... Cry1Ab protein, neutral detergent fiber, acid detergent fiber, acid detergent lignin and crude protein. Silage from two of the Bt maize varieties had ... Mechanical disruption of cell walls and membranes during ... study was to determine the effects of ensiling Bt maize on concentration of the Cry1Ab protein and ...

  8. Interpreting the Relationships between TOEFL iBT Scores and GPA: Language Proficiency, Policy, and Profiles

    Science.gov (United States)

    Ginther, April; Yan, Xun

    2018-01-01

    This study examines the predictive validity of the TOEFL iBT with respect to academic achievement as measured by the first-year grade point average (GPA) of Chinese students at Purdue University, a large, public, Research I institution in Indiana, USA. Correlations between GPA, TOEFL iBT total and subsection scores were examined on 1990 mainland…

  9. Delta's Key to the TOEFL iBT[R]: Advanced Skill Practice. Revised Edition

    Science.gov (United States)

    Gallagher, Nancy

    2012-01-01

    Delta's Key to the TOEFL iBT: Advanced Skill Practice is a revised and updated edition of Delta's Key to the Next Generation TOEFL Test. Since the introduction of the TOEFL iBT in 2005, there have been significant changes to some of the test questions, particularly the integrated writing and integrated speaking tasks. The new 2011 edition of…

  10. Application of Cry1Ab/Ac Bt strip for screening of resistance for ...

    African Journals Online (AJOL)

    In this study, the efficacy of using Cry1Ab/Ac Bt strip for detecting Maruca resistant transgene in transgenic cowpea was systematically investigated for the first time through field derived progenies. The results show ... Keywords: Bacillus thuriengiensis, Cry1Ab/Ac Bt strips, transgenic cowpea, Maruca vitrata. African Journal of ...

  11. screening of new isolates of bt and cloning of their dna amplicons

    African Journals Online (AJOL)

    NEMAPPA

    2012-09-18

    Sep 18, 2012 ... Nine new indigenous isolates of Bacillus thuringiensis (Bt) were characterized for their colony type, crystal inclusion and toxicity ... from new isolates of Bt. New gene sequences encoding more active toxins could be ..... (2009). Toxicity of a Bacillus thuringiensis israelensis-like strain against Spodoptera ...

  12. Adaptation by western corn rootworm to Bt corn: characterizing inheritance, fitness costs, and feeding preference

    Science.gov (United States)

    In this study, we used a laboratory-selected, Bt-resistant strain of western corn rootworm, Diabrotica virgifera virgifera Le Conte, to characterize inheritance of resistance, feeding behavior, and fitness costs associated with resistance to maize producing the Bacillus thuringiensis (Bt) toxin Cry3...

  13. FARMER DEMAND FOR CORN ROOTWORM BT CORN: DO INSECT RESISTANCE MANAGEMENT GUIDELINES MATTER?

    OpenAIRE

    Langrock, Ines; Hurley, Terrance M.; Ostlie, Kenneth

    2003-01-01

    Farmer adoption of Bt corn and compliance with insect resistance management (IRM) regulations will influence the success of these regulations. The purpose of this paper is to use farmer survey data to estimate the demand for new corn rootworm Bt corn and the cost of complying with proposed IRM regulations.

  14. Relevance of Bt toxin interaction studies for environmental risk assessment of genetically modified crops

    NARCIS (Netherlands)

    Schrijver, De Adinda; Clercq, De Patrick; Maagd, de R.A.; Frankenhuyzen, van Kees

    2015-01-01

    In recent years, different Bacillus thuringiensis (Bt) toxin-encoding genes have been combined or 'stacked' in genetically modified (GM) crops. Synergism between Bt proteins may occur and thereby increase the impact of the stacked GM event on nontarget invertebrates compared to plants expressing

  15. Testing public Bt maize events for control of stem borers in the first ...

    African Journals Online (AJOL)

    Transgenic maize (Zea mays L), developed using modified genes from the bacterium Bacillus thuringiensis (Bt), controls stem borers without observable negative effects to humans, livestock or the environment, and is now sown on 134 million hectares globally. Bt maize could contribute to increasing maize production in ...

  16. Multi-Toxin Resistance Enables Pink Bollworm Survival on Pyramided Bt Cotton.

    Science.gov (United States)

    Fabrick, Jeffrey A; Unnithan, Gopalan C; Yelich, Alex J; DeGain, Ben; Masson, Luke; Zhang, Jie; Carrière, Yves; Tabashnik, Bruce E

    2015-11-12

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins kill key insect pests, providing economic and environmental benefits. However, the evolution of pest resistance threatens the continued success of such Bt crops. To delay or counter resistance, transgenic plant "pyramids" producing two or more Bt proteins that kill the same pest have been adopted extensively. Field populations of the pink bollworm (Pectinophora gossypiella) in the United States have remained susceptible to Bt toxins Cry1Ac and Cry2Ab, but field-evolved practical resistance to Bt cotton producing Cry1Ac has occurred widely in India. Here we used two rounds of laboratory selection to achieve 18,000- to 150,000-fold resistance to Cry2Ab in pink bollworm. Inheritance of resistance to Cry2Ab was recessive, autosomal, conferred primarily by one locus, and independent of Cry1Ac resistance. We created a strain with high resistance to both toxins by crossing the Cry2Ab-resistant strain with a Cry1Ac-resistant strain, followed by one selection with Cry2Ab. This multi-toxin resistant strain survived on field-collected Bt cotton bolls producing both toxins. The results here demonstrate the risk of evolution of resistance to pyramided Bt plants, particularly when toxins are deployed sequentially and refuges are scarce, as seen with Bt cotton and pink bollworm in India.

  17. History of insecticide resistance of Triatominae vectors.

    Science.gov (United States)

    Pessoa, Grasielle Caldas Dávila; Vinãs, Pedro Albajar; Rosa, Aline Cristine Luiz; Diotaiuti, Liléia

    2015-01-01

    In the last 15 years, different types of Triatominae resistance to different insecticides have been reported; thus, resistance may be more widespread than known, requiring better characterization and delimitation, which was the aim of this review. This review was structured on a literature search of all articles from 1970 to 2015 in the PubMed database that contained the keywords Insecticide resistance and Triatominae . Out of 295 articles screened by title, 33 texts were selected for detailed analysis. Insecticide resistance of Triatomines is a complex phenomenon that has been primarily reported in Argentina and Bolivia, and is caused by different factors (associated or isolated). Insecticide resistance of Triatominae is a characteristic inherited in an autosomal and semi-dominant manner, and is polygenic, being present in both domestic and sylvatic populations. The toxicological profile observed in eggs cannot be transposed to different stages of evolution. Different toxicological profiles exist at macro- and microgeographical levels. The insecticide phenotype has both reproductive and developmental costs. Different physiological mechanisms are involved in resistance. Studies of Triatomine resistance to insecticides highlight three deficiencies in interpreting the obtained results: I) the vast diversity of methodologies, despite the existence of a single guiding protocol; II) the lack of information on the actual impact of resistance ratios in the field; and III) the concept of the susceptibility reference lineage. Research on the biological and behavioral characteristics of each Triatominae species that has evolved resistance is required in relation to the environmental conditions of each region.

  18. The natural refuge policy for Bt cotton (Gossypium L. in Pakistan – a situation analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad Ali

    2013-07-01

    Full Text Available Bt cotton (event Cry1Ac was formally commercialized in Pakistan in 2010. However, there has been an increasing trend of planting unauthorized Bt cotton germplasm in farmers' fields since 2003 with a high rate of adoption in the core cotton areas especially in the province Punjab. The transgenic cotton technology has provided the growers with substantial economic benefits and has reduced their dependence on pesticides for pest control, especially against Helicoverpa armigera (Hubner. However, keeping in view the capacity of this insect to develop resistance against novel chemical formulations, it is easily speculated that Bt toxin, too, is no exception. Refuge crop policy for mono transgenic crop events has helped in delaying the rate of resistance evolution in the target pests. Thus, in Pakistan, where planting of structured refuge crops along Bt cotton fields is not mandatory, the effectiveness and durability of Bt cotton technology may decrease due to a number of factors which are discussed in this review.

  19. The end of a myth – Bt (Cry1Ab maize does not harm green lacewings

    Directory of Open Access Journals (Sweden)

    Joerg eRomeis

    2014-08-01

    Full Text Available A concern with Bt-transgenic insect-resistant plants is their potential to harm non-target organisms. Early studies reported that Cry1Ab-producing Bt maize and purified Cry1Ab harmed larvae of the green lacewing, Chrysoperla carnea. Although these effects could not be confirmed in subsequent studies, some authors still refer to them as evidence that Bt maize harms beneficial species. We provide a comprehensive review of the studies evaluating the effects of Bt (Cry1Ab maize on C. carnea. The evidence indicates that this important predator is not affected by Bt maize or by the produced Cry1Ab protein. We discuss how conceptual models can assist environmental risk assessments, and we emphasize the importance of robust and reproducible studies.

  20. The end of a myth-Bt (Cry1Ab) maize does not harm green lacewings.

    Science.gov (United States)

    Romeis, Jörg; Meissle, Michael; Naranjo, Steven E; Li, Yunhe; Bigler, Franz

    2014-01-01

    A concern with Bt-transgenic insect-resistant plants is their potential to harm non-target organisms. Early studies reported that Cry1Ab-producing Bt maize and purified Cry1Ab harmed larvae of the green lacewing, Chrysoperla carnea. Although these effects could not be confirmed in subsequent studies, some authors still refer to them as evidence that Bt maize harms beneficial species. We provide a comprehensive review of the studies evaluating the effects of Bt (Cry1Ab) maize on C. carnea. The evidence indicates that this important predator is not affected by Bt maize or by the produced Cry1Ab protein. We discuss how conceptual models can assist environmental risk assessments, and we emphasize the importance of robust and reproducible studies.

  1. The end of a myth—Bt (Cry1Ab) maize does not harm green lacewings

    Science.gov (United States)

    Romeis, Jörg; Meissle, Michael; Naranjo, Steven E.; Li, Yunhe; Bigler, Franz

    2014-01-01

    A concern with Bt-transgenic insect-resistant plants is their potential to harm non-target organisms. Early studies reported that Cry1Ab-producing Bt maize and purified Cry1Ab harmed larvae of the green lacewing, Chrysoperla carnea. Although these effects could not be confirmed in subsequent studies, some authors still refer to them as evidence that Bt maize harms beneficial species. We provide a comprehensive review of the studies evaluating the effects of Bt (Cry1Ab) maize on C. carnea. The evidence indicates that this important predator is not affected by Bt maize or by the produced Cry1Ab protein. We discuss how conceptual models can assist environmental risk assessments, and we emphasize the importance of robust and reproducible studies. PMID:25161661

  2. Does Bt rice pose risks to non-target arthropods? Results of a meta-analysis in China

    Science.gov (United States)

    Transgenic Bt rice expressing the protoxin proteins derived from Bacillus thuringiensis Berliner (Bt) have been developed since 1989. Their ecological risks toward non-target organisms have been investigated. However, these studies were conducted individually, yielding inconsistent conclusions and u...

  3. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation.

    Science.gov (United States)

    Fu, Wei; Wang, Huiyu; Wang, Chenguang; Mei, Lin; Lin, Xiangmei; Han, Xueqing; Zhu, Shuifang

    2016-03-15

    The number of species and planting areas of genetically modified organisms (GMOs) has been rapidly developed during the past ten years. For the purpose of GMO inspection, quarantine and manipulation, we have now devised a high-throughput Bt-based GMOs screening method based on the liquid bead array. This novel method is based on the direct competitive recognition between biotinylated antibodies and beads-coupled antigens, searching for Bt presence in samples if it contains Bt Cry1 Aa, Bt Cry1 Ab, Bt Cry1 Ac, Bt Cry1 Ah, Bt Cry1 B, Bt Cry1 C, Bt Cry1 F, Bt Cry2 A, Bt Cry3 or Bt Cry9 C. Our method has a wide GMO species coverage so that more than 90% of the whole commercialized GMO species can be identified throughout the world. Under our optimization, specificity, sensitivity, repeatability and availability validation, the method shows a high specificity and 10-50 ng/mL sensitivity of quantification. We then assessed more than 1800 samples in the field and food market to prove capacity of our method in performing a high throughput screening work for GMO manipulation. Our method offers an applicant platform for further inspection and research on GMO plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Impact of 9 years of Bt-maize cultivation on the distribution of maize viruses.

    Science.gov (United States)

    Achon, Maria Angeles; Alonso-Dueñas, Natalia

    2009-06-01

    This study assesses the effect of Bt-maize on the distribution of maize viruses. Random surveys were conducted in Spain between 2001 and 2006 to evaluate the occurrence of maize viruses in Bt-maize cultivation areas and in areas where this crop had not been introduced. Maize dwarf mosaic virus (MDMV) was the predominant virus in Bt-areas, and Maize rough dwarf virus (MRDV) was the most predominant one in non-Bt-areas, with MRDV an emergent virus in both types of areas. A decline in the occurrence of MDMV and an increase in that of Sugarcane mosaic virus was observed in Bt-areas. Additionally, data obtained over 6 years in experimental fields showed non-significant differences between the infection rates exhibited by two generations of Bt varieties and the non-transformed isogenics varieties for any of the viruses. Our data suggest that differences in virus distribution are linked to the genetic background of the maize varieties and the distribution of virus reservoirs rather than to Bt-maize cultivation.

  6. New Coll–HA/BT composite materials for hard tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zanfir, Andrei Vlad [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, 1-7 Gh. Polizu Street, RO-011061 Bucharest (Romania); Voicu, Georgeta, E-mail: getav2001@yahoo.co.uk [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, 1-7 Gh. Polizu Street, RO-011061 Bucharest (Romania); Busuioc, Cristina; Jinga, Sorin Ion [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, 1-7 Gh. Polizu Street, RO-011061 Bucharest (Romania); Albu, Madalina Georgiana [Department of Collagen, Branch of Leather and Footwear Research, National Institute of Research and Development for Textile and Leather, 93 I. Minulescu Street, RO-031215 Bucharest (Romania); Iordache, Florin [Department of Fetal and Adult Stem Cell Therapy, “Nicolae Simionescu” Institute of Cellular Biology and Pathology of Romanian Academy, 8 B.P. Hasdeu Street, RO-050568 Bucharest (Romania)

    2016-05-01

    The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen–hydroxyapatite/barium titanate (Coll–HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol–gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll–HA and Coll–HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll–HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT. - Highlights: • Collagen–hydroxyapatite/barium titanate composite materials were synthesized. • Barium titanate was produced by combining the sol–gel and hydrothermal methods. • The in vitro tests highlight excellent osteoinductive properties for all samples.

  7. Multi Stakeholders' Attitudes toward Bt rice in Southwest, Iran: Application of TPB and Multi Attribute Models.

    Science.gov (United States)

    Ghoochani, Omid M; Ghanian, Mansour; Baradaran, Masoud; Azadi, Hossein

    2017-03-01

    Organisms that have been genetically engineered and modified (GM) are referred to as genetically modified organisms (GMOs). Bt crops are plants that have been genetically modified to produce certain proteins from the soil bacteria Bacillus thuringiensis (Bt), which makes these plants resistant to certain lepidopteran and coleopteran species. Genetically Modified (GM) rice was produced in 2006 by Iranian researchers from Tarom Mowla'ii and has since been called 'Bt rice'. As rice is an important source of food for over 3 billion inhabitants on Earth, this study aims to use a correlational survey in order to shed light on the predicting factors relating to the extent of stakeholders' behavioral intentions towards Bt rice. It is assumed and the results confirm that "attitudes toward GM crops" can be used as a bridge in the Attitude Model and the Behavioral Intention Model in order to establish an integrated model. To this end, a case study was made of the Southwest part of Iran in order to verify this research model. This study also revealed that as a part of the integrated research framework in the Behavior Intention Model both constructs of attitude and the subjective norm of the respondents serve as the predicting factors of stakeholders' intentions of working with Bt rice. In addition, the Attitude Model, as the other part of the integrated research framework, showed that the stakeholders' attitudes toward Bt rice can only be determined by the perceived benefits (e.g. positive outcomes) of Bt rice.

  8. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongbo, E-mail: liuyb@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Liu, Fang [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Chao [Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380 (China); Quan, Zhanjun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Junsheng, E-mail: lijsh@creas.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. - Highlights: • We detect fusion Cry1Ab/1Ac proteins from Bt rice entering into aquatic ecosystems. • Bt-transgenic rice cultivation have no significant effect on zooplankton community. • Bt-transgenic rice cultivation have indirect effect on phytoplankton community. • Water quality explains the difference of plankton communities in adjacent ditches.

  9. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches

    International Nuclear Information System (INIS)

    Liu, Yongbo; Liu, Fang; Wang, Chao; Quan, Zhanjun; Li, Junsheng

    2016-01-01

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. - Highlights: • We detect fusion Cry1Ab/1Ac proteins from Bt rice entering into aquatic ecosystems. • Bt-transgenic rice cultivation have no significant effect on zooplankton community. • Bt-transgenic rice cultivation have indirect effect on phytoplankton community. • Water quality explains the difference of plankton communities in adjacent ditches.

  10. Indian Bt Cotton Varieties Do Not Affect the Performance of Cotton Aphids

    Science.gov (United States)

    Lawo, Nora C.; Wäckers, Felix L.; Romeis, Jörg

    2009-01-01

    Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt) are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae) when grown on three Indian Bt (Cry1Ac) cotton varieties (MECH 12, MECH 162, MECH 184) and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields. PMID:19279684

  11. Insecticide discovery: an evaluation and analysis.

    Science.gov (United States)

    Sparks, Thomas C

    2013-09-01

    There is an on-going need for the discovery and development of new insecticides due to the loss of existing products through the development of resistance, the desire for products with more favorable environmental and toxicological profiles, shifting pest spectrums, and changing agricultural practices. Since 1960, the number of research-based companies in the US and Europe involved in the discovery of new insecticidal chemistries has been declining. In part this is a reflection of the increasing costs of the discovery and development of new pesticides. Likewise, the number of compounds that need to be screened for every product developed has, until recently, been climbing. In the past two decades the agrochemical industry has been able to develop a range of new products that have more favorable mammalian vs. insect selectivity. This review provides an analysis of the time required for the discovery, or more correctly the building process, for a wide range of insecticides developed during the last 60 years. An examination of the data around the time requirements for the discovery of products based on external patents, prior internal products, or entirely new chemistry provides some unexpected observations. In light of the increasing costs of discovery and development, coupled with fewer companies willing or able to make the investment, insecticide resistance management takes on greater importance as a means to preserve existing and new insecticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Fumonisin B1 toxicity in grower-finisher pigs: a comparative analysis of genetically engineered Bt corn and non-Bt corn by using quantitative dietary exposure assessment modeling.

    Science.gov (United States)

    Delgado, James E; Wolt, Jeffrey D

    2011-08-01

    In this study, we investigate the long-term exposure (20 weeks) to fumonisin B(1) (FB(1)) in grower-finisher pigs by conducting a quantitative exposure assessment (QEA). Our analytical approach involved both deterministic and semi-stochastic modeling for dietary comparative analyses of FB(1) exposures originating from genetically engineered Bacillus thuringiensis (Bt)-corn, conventional non-Bt corn and distiller's dried grains with solubles (DDGS) derived from Bt and/or non-Bt corn. Results from both deterministic and semi-stochastic demonstrated a distinct difference of FB(1) toxicity in feed between Bt corn and non-Bt corn. Semi-stochastic results predicted the lowest FB(1) exposure for Bt grain with a mean of 1.5 mg FB(1)/kg diet and the highest FB(1) exposure for a diet consisting of non-Bt grain and non-Bt DDGS with a mean of 7.87 mg FB(1)/kg diet; the chronic toxicological incipient level of concern is 1.0 mg of FB(1)/kg of diet. Deterministic results closely mirrored but tended to slightly under predict the mean result for the semi-stochastic analysis. This novel comparative QEA model reveals that diet scenarios where the source of grain is derived from Bt corn presents less potential to induce FB(1) toxicity than diets containing non-Bt corn.

  13. Fumonisin B1 Toxicity in Grower-Finisher Pigs: A Comparative Analysis of Genetically Engineered Bt Corn and non-Bt Corn by Using Quantitative Dietary Exposure Assessment Modeling

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Wolt

    2011-07-01

    Full Text Available In this study, we investigate the long-term exposure (20 weeks to fumonisin B1 (FB1 in grower-finisher pigs by conducting a quantitative exposure assessment (QEA. Our analytical approach involved both deterministic and semi-stochastic modeling for dietary comparative analyses of FB1 exposures originating from genetically engineered Bacillus thuringiensis (Bt-corn, conventional non-Bt corn and distiller’s dried grains with solubles (DDGS derived from Bt and/or non-Bt corn. Results from both deterministic and semi-stochastic demonstrated a distinct difference of FB1 toxicity in feed between Bt corn and non-Bt corn. Semi-stochastic results predicted the lowest FB1 exposure for Bt grain with a mean of 1.5 mg FB1/kg diet and the highest FB1 exposure for a diet consisting of non-Bt grain and non-Bt DDGS with a mean of 7.87 mg FB1/kg diet; the chronic toxicological incipient level of concern is 1.0 mg of FB1/kg of diet. Deterministic results closely mirrored but tended to slightly under predict the mean result for the semi-stochastic analysis. This novel comparative QEA model reveals that diet scenarios where the source of grain is derived from Bt corn presents less potential to induce FB1 toxicity than diets containing non-Bt corn.

  14. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    Science.gov (United States)

    Sousa, Fernanda F; Mendes, Simone M; Santos-Amaya, Oscar F; Araújo, Octávio G; Oliveira, Eugenio E; Pereira, Eliseu J G

    2016-01-01

    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations

  15. Biological activity of Bt proteins expressed in different structures of transgenic corn against Spodoptera frugiperda

    OpenAIRE

    Bernardi, Daniel; Bernardi, Oderlei; Horikoshi, Renato Jun; Salmeron, Eloisa; Okuma, Daniela Miyuki; Omoto, Celso

    2016-01-01

    ABSTRACT: Spodoptera frugiperda (J. E. Smith) is the main target pest of Bt corn technologies, such as YieldGard VT PRO(tm) (Cry1A.105/Cry2Ab2) and PowerCore(tm) (Cry1A.105/Cry2Ab2/Cry1F). In this study, it was evaluated the biological activity of Bt proteins expressed in different plant structures of YieldGard VT PRO(tm) and PowerCore(tm) corn against S. frugiperda . Complete mortality of S. frugiperda neonates was observed on leaf-disc of both Bt corn technologies. However, the mortality ...

  16. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    Directory of Open Access Journals (Sweden)

    Fernanda F Sousa

    Full Text Available Exposure to Bacillus thuringiensis (Bt toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in

  17. ECONOMIC VIABILITY OF BT-CORN IN THE U.S.

    OpenAIRE

    Kim, Hong Jin; Konyar, Kazim; Sargent, Keith

    2002-01-01

    Bt-corn, a genetically engineered insect resistant variety, has been adopted by almost one-quarter of all corn farmers, resulting in economic impacts on both conventional corn growers and Bt-corn growers. we estimate changes in profits for both types of farmers with different levels of seed premiums, yield increases and adoption rates. We find that Bt-corn growers will see their profits decline when the adoption rate and seed premium are high, if they are not offset by higher yields. Conventi...

  18. Cross-generational feeding of Bt (Bacillus thuringiensis)-maize to zebrafish (Danio rerio) showed no adverse effects on the parental or offspring generations.

    Science.gov (United States)

    Sanden, Monica; Ornsrud, Robin; Sissener, Nini H; Jorgensen, Susanne; Gu, Jinni; Bakke, Anne Marie; Hemre, Gro-Ingunn

    2013-12-01

    In the present study, zebrafish (Danio rerio) were fed casein/gelatin-based diets containing either 19% Bt (Bacillus thuringiensis)-maize or its parental non-Bt (nBt)-maize control for two generations (F0: sixty fish; F1: forty-two to seventy fish per treatment). The study focused on growth and reproductive performance, liver CuZn superoxide dismutase (SOD) enzyme activity, gene transcript levels targeting important cellular pathways in the liver and mid-intestine, histomorphological evaluation of the intestine, differential leucocyte counts, offspring larva swimming activity and global DNA methylation in offspring embryos. No significant effects were observed in the parental generation. The offspring were either fed the same diets as those fed to their parents (Bt-Bt or nBt-nBt) or switched from the Bt diet to the nBt diet (Bt-nBt). The Bt-Bt offspring exhibited a significantly higher body mass increase, specific growth rate and feed utilisation than fish fed the nBt-nBt diet and/or fish fed the Bt-nBt diet. Liver and mid-intestinal gene transcript levels of CuZn SOD were significantly higher in fish fed the nBt-nBt diet than in those fed the Bt-Bt diet. Liver gene transcript levels of caspase 6 were significantly lower for the nBt-nBt group than for the Bt-Bt group. Overall, enhanced growth performance was observed in fish fed the Bt diet for two generations than in those fed the nBt diet for one and two generations. Effects observed on gene biomarkers for oxidative stress and the cell cycle (apoptosis) may be related to the contamination of nBt-maize with fumonisin B1 and aflatoxin B1. In conclusion, it is suggested that Bt-maize is as safe and nutritious as its nBt control when fed to zebrafish for two generations.

  19. Resistance of diamondback moth to insecticides in selected ...

    African Journals Online (AJOL)

    Resistance of diamondback moth (DBM), Plutella xylostella (L.) to insecticides applied for its control on cabbage was evaluated. DBM populations were tested for susceptibility to three pyrethroids (delatamethrin, lambdacyhalothrin, cypermethrin) and an organophosphate (chlorpyrifos-methyl) insecticide using larvae

  20. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    Science.gov (United States)

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of Bacillus thuringiensis (Bt) corn on soil Folsomia fimetaria, Folsomia candida (Collembola), Hypoaspis aculeifer (Acarina) and Enchytraeus crypticus (Oligochaeta)

    DEFF Research Database (Denmark)

    Ke, X.; Krogh, P. H.

    The effects of the Cry1Ab toxin from Bacillus thuringiensis (corn variety Cascade Bt MON810 and DeKalb variety 618 Bt) were studied on survival and reproduction of the soil collembolan Folsomia fimetaria, Folsomia candida, the collembolan predator mite Hypoaspis aculeifer and enchytraeids....... There was a weak significant reduction by 30% on the reproduction of F. fimetaria fed Bt corn in Petri dishes for 21 days. Likewise there was a weak significant reduction by 40% of the reproduction of H. aculeifer by Bt corn in amounts corresponding to 20 g plant material kg-1 soil in the two species soil......-litter microcosm systems. There were no effects of Bt corn materials on the reproduction of F. fimetaria and E. crypticus in the single species soil-litter microcosms. No effects of Bt corn materials on mortality of all the 4 species were observed in all treatments. The tendency of effects of the Bt corn...

  2. Microbes as interesting source of novel insecticides: A review ...

    African Journals Online (AJOL)

    ... strains with good insecticidal properties can be identified, evaluated and utilized for pest control. This paper reviews the insecticidal properties of microbes and their potential utility in pest management. Keywords: Microbes, insecticides, metabolites, pest management. African Journal of Biotechnology, Vol 13(26) 2582- ...

  3. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays.

    Science.gov (United States)

    Kirchberger, Simon; Leroch, Michaela; Huynen, Martijn A; Wahl, Markus; Neuhaus, H Ekkehard; Tjaden, Joachim

    2007-08-03

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous synthesis of ZmBT1 in Escherichia coli cells leads to the functional integration of ZmBT1 into the bacterial cytoplasmic membrane. ZmBT1 transports ADP-Glc in counterexchange with ADP with apparent affinities of about 850 and 465 mum, respectively. Recently, a complete ferredoxin/thioredoxin system has been identified in cereal amyloplasts and BT1 has been proposed as a potential Trx target protein (Balmer, Y., Vensel, W. H., Cai, N., Manieri, W., Schurmann, P., Hurkman, W. J., and Buchanan, B. B. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 2988-2993). Interestingly, we revealed that the transport activity of ZmBT1 is reversibly regulated by redox reagents such as diamide and dithiothreitol. The expression of ZmBT1 is restricted to endosperm tissues during starch synthesis, whereas a recently identified BT1 maize homologue, the ZmBT1-2, exhibits a ubiquitous expression pattern in hetero- and autotrophic tissues indicating different physiological roles for both maize BT1 isoforms. BT1 homologues are present in both mono- and dicotyledonous plants. Phylogenetic analyses classify the BT1 family into two phylogenetically and biochemically distinct groups. The first group comprises BT1 orthologues restricted to cereals where they mediate the ADP-Glc transport into cereal endosperm storage plastids during starch synthesis. The second group occurs in mono- and dicotyledonous plants and is most probably involved in the export of adenine nucleotides synthesized inside plastids.

  4. Bt Maize Seed Mixtures for Helicoverpa zea (Lepidoptera: Noctuidae): Larval Movement, Development, and Survival on Non-transgenic Maize.

    Science.gov (United States)

    Burkness, Eric C; Cira, T M; Moser, S E; Hutchison, W D

    2015-12-01

    In 2012 and 2013, field trials were conducted near Rosemount, MN, to assess the movement and development of Helicoverpa zea (Boddie) larvae on non-Bt refuge corn plants within a seed mixture of non-Bt and Bt corn. The Bt corn hybrid expressed three Bt toxins-Cry1Ab, Cry1F, and Vip3A. As the use of seed mixtures for insect resistance management (IRM) continues to be implemented, it is necessary to further characterize how this IRM approach impacts resistance development in ear-feeding Lepidopteran pests. The potential for Bt pollen movement and cross pollination of the non-Bt ears in a seed mixture may lead to Bt toxin exposure to larvae developing on those refuge ears. Larval movement and development by H. zea, feeding on non-Bt refuge plants adjacent to either transgenic Bt or non-Bt plants, were measured to investigate the potential for unintended Bt exposure. Non-Bt plants were infested with H. zea eggs and subplots were destructively sampled twice per week within each treatment to assess larval development, location, and kernel injury. Results indicate that H. zea larval movement between plants is relatively low, ranging from 2-16% of larvae, and occurs mainly after reaching the second instar. Refuge plants in seed mixtures did not produce equivalent numbers of H. zea larvae, kernel injury, and larval development differed as compared with a pure stand of non-Bt plants. This suggests that there may be costs to larvae developing on refuge plants within seed mixtures and additional studies are warranted to define potential impacts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Stakeholders' Beliefs about the "TOEFL iBT"® Test as a Measure of Academic Language Ability. "TOEFL iBT"® Research Report. TOEFL iBT-22. ETS Research Report. RR-14-42

    Science.gov (United States)

    Malone, Margaret E.; Montee, Megan

    2014-01-01

    The "TOEFL iBT"® test presents test takers with tasks meant to simulate the tasks required of students in English-medium universities. Research establishing the validity argument for the test provides evidence for score interpretation and the use of the test for university admissions and placement. Now that the test has been operational…

  6. Test Takers' Writing Activities during the "TOEFL iBT"® Writing Tasks: A Stimulated Recall Study. "TOEFL iBT"® Research Report. TOEFL iBT-25. ETS Research Report No. RR-15-04

    Science.gov (United States)

    Barkaoui, Khaled

    2015-01-01

    This study aimed to describe the writing activities that test takers engage in when responding to the writing tasks in the "TOEFL iBT"[superscript R] test and to examine the effects of task type and test-taker English language proficiency (ELP) and keyboarding skills on the frequency and distribution of these activities. Each of 22 test…

  7. The Effects of Different Levels of Performance Feedback on "TOEFL iBT"® Reading Practice Test Performance. TOEFL iBT Research Report. TOEFL iBT-29. ETS Research Report. RR-17-31

    Science.gov (United States)

    Sawaki, Yasuyo

    2017-01-01

    The purpose of the present study is to examine whether performance on the "TOEFL iBT"® Reading practice test is affected by 3 different levels of feedback provided to learners upon completion of reading exercises: (a) correctness of learner response (the knowledge of correct results [KCR] feedback), (b) KCR feedback and rationales for…

  8. Impact of Bt crops on non-target organisms – 3 systematic reviews

    Science.gov (United States)

    The cultivation of genetically modified (GM) crops producing Cry toxins, originating from the bacterium Bacillus thuringiensis (Bt), has raised environmental concerns over their sustainable use and consequences for biodiversity and ecosystem services in agricultural land. During the last two decades...

  9. Isolation of a novel uric-acid-degrading microbe Comamonas sp. BT ...

    Indian Academy of Sciences (India)

    2014-10-20

    Wallrath and Friedman. 1991; Yamamoto et al. 1996; Montalbini et al. ..... utilis uricase, recombinant, expressed in Escherichia coli;. Sigma EC 1.7.3.3) to compare performances. The sensitivity of BT UA uricase was much higher, ...

  10. Natural refuge crops, buildup of resistance, and zero-refuge strategy for Bt cotton in China.

    Science.gov (United States)

    Qiao, FangBin; Huang, JiKun; Rozelle, Scott; Wilen, James

    2010-10-01

    In the context of genetically modified crops expressing the Bacillus thuringiensis (Bt) toxin, a 'refuge' refers to a crop of the same or a related species that is planted nearby to enable growth and reproduction of the target pest without the selection pressure imposed by the Bt toxin. The goal of this study is to discuss the role of natural refuge crops in slowing down the buildup of resistance of cotton bollworm (CBW), and to evaluate China's no-refuge policy for Bt cotton. We describe in detail the different factors that China should consider in relation to the refuge policy. Drawing on a review of scientific data, economic analyses of other cases, and a simulation exercise using a bio-economic model, we show that in the case of Bt cotton in China, the no-refuge policy is defensible.

  11. Adoption of Bt Cotton: Threats and Challenges Adopción de Algodón Bt: Desafíos y Amenazas

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal Bilal

    2012-09-01

    Full Text Available Adopting new technology always involves advantages and risks; Bt cotton (Gossypium hirsutum L. is a new technology well known in developed countries for its many advantages, such as reduced pesticide application, better insect pest control, and higher lint yield. However, its success in developing countries is still a question mark. Global adoption of Bt cotton has risen dramatically from 0.76 million ha when introduced in 1996 to 7.85 million ha in the 2005 cotton-growing season where 54% of the cotton crops in the USA, 76% in China, and 80% in Australia were grown with single or multiple Bt genes. Bollworms are serious cotton pests causing 30-40% yield reduction in Pakistan and 20-66% potential crop losses in India. The major advances shown in this review include: (1 Evolution of Bt cotton may prove to be a green revolution to enhance cotton yield; (2 adoption of Bt cotton by farmers is increasing due to its beneficial environmental effects by reducing pesticide application: however, a high seed price has compelled farmers to use illegal non-approved Bt causing huge damage to crops because of low tolerance to insect pests; and (3 some factors responsible for changes in the efficiency of the Bt gene and Bt cotton yield include internal phenology (genetics, atmospheric changes (CO2 concentration, nutrition, insect pests, boll distribution pattern, disease and nematodes, removal of fruiting branch and/or floral bud, introduction of Bt gene, and terpenoids and tannin production in the plant body.La adopción de nueva tecnología siempre involucra ventajas y riesgos; algodón Bt (Gossypium hirsutum L. es una nueva tecnología bien conocida en países desarrollados por muchas ventajas como reducida aplicación de pesticidas, mejor control de insectos plaga, y mayor producción de fibra, pero su éxito en países en desarrollo aún conlleva dudas. La adopción global de algodón Bt ha aumentado dramáticamente de 0,76 millones de hectáreas en su

  12. The effect of feeding Bt MON810 maize to pigs for 110 days on intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Stefan G Buzoianu

    Full Text Available OBJECTIVE: To assess the effects of feeding Bt MON810 maize to pigs for 110 days on the intestinal microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Forty male pigs (∼40 days old were blocked by weight and litter ancestry and assigned to one of four treatments; 1 Isogenic maize-based diet for 110 days (Isogenic; 2 Bt maize-based diet (MON810 for 110 days (Bt; 3 Isogenic maize-based diet for 30 days followed by a Bt maize-based diet for 80 days (Isogenic/Bt; 4 Bt maize-based diet for 30 days followed by an isogenic maize-based diet for 80 days (Bt/Isogenic. Enterobacteriaceae, Lactobacillus and total anaerobes were enumerated in the feces using culture-based methods on days 0, 30, 60 and 100 of the study and in ileal and cecal digesta on day 110. No differences were found between treatments for any of these counts at any time point. The relative abundance of cecal bacteria was also determined using high-throughput 16 S rRNA gene sequencing. No differences were observed in any bacterial taxa between treatments, with the exception of the genus Holdemania which was more abundant in the cecum of pigs fed the isogenic/Bt treatment compared to pigs fed the Bt treatment (0.012 vs 0.003%; P≤0.05. CONCLUSIONS/SIGNIFICANCE: Feeding pigs a Bt maize-based diet for 110 days did not affect counts of any of the culturable bacteria enumerated in the feces, ileum or cecum. Neither did it influence the composition of the cecal microbiota, with the exception of a minor increase in the genus Holdemania. As the role of Holdemania in the intestine is still under investigation and no health abnormalities were observed, this change is not likely to be of clinical significance. These results indicate that feeding Bt maize to pigs in the context of its influence on the porcine intestinal microbiota is safe.

  13. The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides.

    Science.gov (United States)

    Zhang, Yongqiang; Du, Yuzhe; Jiang, Dingxin; Behnke, Caitlyn; Nomura, Yoshiko; Zhorov, Boris S; Dong, Ke

    2016-09-16

    Sodium channels are excellent targets of both natural and synthetic insecticides with high insect selectivity. Indoxacarb, its active metabolite DCJW, and metaflumizone (MFZ) belong to a relatively new class of sodium channel blocker insecticides (SCBIs) with a mode of action distinct from all other sodium channel-targeting insecticides, including pyrethroids. Electroneutral SCBIs preferably bind to and trap sodium channels in the inactivated state, a mechanism similar to that of cationic local anesthetics. Previous studies identified several SCBI-sensing residues that face the inner pore of sodium channels. However, the receptor site of SCBIs, their atomic mechanisms, and the cause of selective toxicity of MFZ remain elusive. Here, we have built a homology model of the open-state cockroach sodium channel BgNav1-1a. Our computations predicted that SCBIs bind in the inner pore, interact with a sodium ion at the focus of P1 helices, and extend their aromatic moiety into the III/IV domain interface (fenestration). Using model-driven mutagenesis and electrophysiology, we identified five new SCBI-sensing residues, including insect-specific residues. Our study proposes the first three-dimensional models of channel-bound SCBIs, sheds light on the molecular basis of MFZ selective toxicity, and suggests that a sodium ion located in the inner pore contributes to the receptor site for electroneutral SCBIs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Determining the major Bt refuge crops for cotton bollworm in North China.

    Science.gov (United States)

    Ye, Le-Fu; Fu, Xue; Ouyang, Fang; Xie, Bao-Yu; Ge, Feng

    2015-12-01

    Evaluation of the effectiveness of refuge strategies involved in cotton bollworm Bt resistance management would be aided by technologies that allow monitoring and quantification of key factors that affect the process under field conditions. We hypothesized that characterization of stable carbon and nitrogen isotopes in adult bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) moths may aid in determining the larval host that they developed upon. We found moths reared from larvae fed on peanut, soybean or cotton, respectively, could be differentiated using isotopic analyses that also corresponded to their respective larval host origins. These techniques were then used to classify feral second-generation bollworm moths caught in Bt cotton (Gossypium hirsutum) fields into different populations based on their isotopic signatures. In 2006-2007 feral moths captured in Bt cotton fields predominantly correlated with the peanut (Arachis hypogea) having served as their larval host, indicating this is the most important refuge crop for Bt-susceptible bollworm individuals (providing 58%-64% individuals) during independent moth peaks for the second generation in North China. The remaining feral moths correlated with soybean (Glycine max) (0-10%); other C3 plant (20%-22%) and non-C3 plant (12%-14%) host types also provided some Bt-sensitive moths. Field observations showed that peanut constitutes the primary refuge crop contributing to sustaining Bt-susceptible moths dispersing into cotton in North China. These results suggest that peanut may be a more effective refuge to sustain Bt-susceptible bollworm individuals and reduce the risk of development of a Bt-resistant biotype. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  15. Early Detection and Mitigation of Resistance to Bt Maize by Western Corn Rootworm (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Andow, David A; Pueppke, Steven G; Schaafsma, Arthur W; Gassmann, Aaron J; Sappington, Thomas W; Meinke, Lance J; Mitchell, Paul D; Hurley, Terrance M; Hellmich, Richard L; Porter, R Pat

    2016-02-01

    Transgenic Bt maize that produces less than a high-dose has been widely adopted and presents considerable insect resistance management (IRM) challenges. Western corn rootworm, Diabrotica virgifera virgifera LeConte, has rapidly evolved resistance to Bt maize in the field, leading to local loss of efficacy for some corn rootworm Bt maize events. Documenting and responding to this resistance has been complicated by a lack of rapid diagnostic bioassays and by regulatory triggers that hinder timely and effective management responses. These failures are of great concern to the scientific and agricultural community. Specific challenges posed by western corn rootworm resistance to Bt maize, and more general concerns around Bt crops that produce less than a high-dose of Bt toxin, have caused uncertainty around current IRM protocols. More than 15 years of experience with IRM has shown that high-dose and refuge-based IRM is not applicable to Bt crops that produce less than a high-dose. Adaptive IRM approaches and pro-active, integrated IRM-pest management strategies are needed and should be in place before release of new technologies that produce less than a high-dose. We suggest changes in IRM strategies to preserve the utility of corn rootworm Bt maize by 1) targeting local resistance management earlier in the sequence of responses to resistance and 2) developing area-wide criteria to address widespread economic losses. We also favor consideration of policies and programs to counteract economic forces that are contributing to rapid resistance evolution. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  16. Development, survival and fitness performance of Helicoverpa zea (Lepidoptera: Noctuidae) in MON810 Bt field corn.

    Science.gov (United States)

    Horner, T A; Dively, G P; Herbert, D A

    2003-06-01

    Helicoverpa zea (Boddie) development, survival, and feeding injury in MON810 transgenic ears of field corn (Zea mays L.) expressing Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins were compared with non-Bt ears at four geographic locations over two growing seasons. Expression of Cry1Ab endotoxin resulted in overall reductions in the percentage of damaged ears by 33% and in the amount of kernels consumed by 60%. Bt-induced effects varied significantly among locations, partly because of the overall level and timing of H. zea infestations, condition of silk tissue at the time of egg hatch, and the possible effects of plant stress. Larvae feeding on Bt ears produced scattered, discontinuous patches of partially consumed kernels, which were arranged more linearly than the compact feeding patterns in non-Bt ears. The feeding patterns suggest that larvae in Bt ears are moving about sampling kernels more frequently than larvae in non-Bt ears. Because not all kernels express the same level of endotoxin, the spatial heterogeneity of toxin distribution within Bt ears may provide an opportunity for development of behavioral responses in H. zea to avoid toxin. MON810 corn suppressed the establishment and development of H. zea to late instars by at least 75%. This level of control is considered a moderate dose, which may increase the risk of resistance development in areas where MON810 corn is widely adopted and H. zea overwinters successfully. Sublethal effects of MON810 corn resulted in prolonged larval and prepupal development, smaller pupae, and reduced fecundity of H. zea. The moderate dose effects and the spatial heterogeneity of toxin distribution among kernels could increase the additive genetic variance for both physiological and behavioral resistance in H. zea populations. Implications of localized population suppression are discussed.

  17. Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China.

    Science.gov (United States)

    Zhao, Jennifer H; Ho, Peter; Azadi, Hossein

    2011-02-01

    In the past, scientific research has predicted a decrease in the effectiveness of Bt cotton due to the rise of secondary and other sucking pests. It is suspected that once the primary pest is brought under control, secondary pests have a chance to emerge due to the lower pesticide applications in Bt cotton cultivars. Studies on this phenomenon are scarce. This article furnishes empirical evidence that farmers in China perceive a substantial increase in secondary pests after the introduction of Bt cotton. The research is based on a survey of 1,000 randomly selected farm households in five provinces in China. We found that the reduction in pesticide use in Bt cotton cultivars is significantly lower than that reported in research elsewhere. This is consistent with the hypothesis suggested by recent studies that more pesticide sprayings are needed over time to control emerging secondary pests, such as aphids, spider mites, and lygus bugs. Apart from farmers' perceptions of secondary pests, we also assessed their basic knowledge of Bt cotton and their perceptions of Bt cotton in terms of its strengths and shortcomings (e.g., effectiveness, productivity, price, and pesticide use) in comparison with non-transgenic cotton.

  18. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    Full Text Available To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0% compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  19. Organophosphorus insecticides: Toxic effects and bioanalytical tests for evaluating toxicity during degradation processes

    Directory of Open Access Journals (Sweden)

    Čolović Mirjana B.

    2013-01-01

    Full Text Available Organophosphorus insecticides have been the most applied group of insecticides for the last two decades. Their main toxic effects are related to irreversible inactivation of acetylcholinesterase (AChE. Actually, they covalently bind to serine OH group in the enzyme active site forming phosphorylated enzyme that cannot hydrolyze acetylcholine. Organophosphorus insecticides in the environment undergo the natural degradation pathway including mainly homogeneous and heterogeneous hydrolysis (especially at high pH generating non-inhibiting products. Additionally, thio organophosphates are easily oxidized by naturally present oxidants and UV light, forming more toxic and stable oxons. Thus, oxidative degradation procedures, generally referred as advanced oxidation processes (AOP, have been applied for their efficient removal from contaminated waters. The most applied bioassays to monitor the organophosphate toxicity i.e. the detoxification degree during AOP are Vibrio fischeri and AChE bioassays. Vibrio fischeri toxicity test exploits bioluminescence as the measure of luciferase activity of this marine bacterium, whereas AChE bioassay is based on AChE activity inhibition. Both bioanalytical techniques are rapid (several minutes, simple, sensitive and reproducible. Vibrio fischeri test seems to be a versatile indicator of toxic compounds generated in AOP for organophosphorus insecticides degradation. However, detection of neurotoxic AChE inhibitors, which can be formed in AOP of some organophosphates, requires AChE bioassays. Therefore, AChE toxicity test is more appropriate for monitoring the degradation processes of thio organophosphates, because more toxic oxo organophosphates might be formed and overlooked by Vibrio fischeri bioluminescence inhibition. In addition, during organophosphates removal by AOP, compounds with strong genotoxic potential may be formed, which cannot be detected by standard toxicity tests. For this reason, determination of

  20. Surveillance and insecticide susceptibility status of Culicine ...

    African Journals Online (AJOL)

    Vector control programs in Nigeria are mostly targeted towards reducing the burden of malaria with less emphasis placed on other debilitating vector borne diseases such as dengue, yellow fever and filariasis. This study assessed the indoor resting densities and insecticide susceptibility status of Culex and Aedes ...

  1. Possibilities of Botanical Insecticides in Plant Protection

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Sajfrtová, Marie; Sovová, Helena; Bárnet, M.

    2008-01-01

    Roč. 2, č. 1 (2008), s. 16-23 ISSN 1313-2563 Grant - others:GA MŠMT(CZ) 2B08049 Institutional research plan: CEZ:AV0Z40720504 Keywords : botanical insecticides * plant exctracts * supercritical fluid extraction Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  2. Possibilities of Botanical Insecticides in Plant Protection

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Sajfrtová, Marie; Sovová, Helena; Bárnet, M.

    2008-01-01

    Roč. 2, č. 1 (2008), s. 16-23 ISSN 1313-2563 Grant - others:MŠk(CZ) 2B08049 Institutional support: RVO:67985858 Keywords : botanical insecticides * plant extracts * supercritical fluid extraction Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  3. Radical Scavenging, Antimicrobial and Insecticidal Efficacy of ...

    African Journals Online (AJOL)

    Lichens are self-supporting symbiotic association of mycobiont and photobiont. The present study was conducted to investigate antimicrobial, insecticidal and radical scavenging potential of methanol extract of two macrolichens viz. Parmotrema cristiferum (Taylor) Hale and Dirinaria applanata (Fée) D.D. Awasthi.

  4. Storage crambe seed treated with insecticides

    Directory of Open Access Journals (Sweden)

    Geraldo Cabral e Souza

    2014-02-01

    Full Text Available The use of low quality seeds with a lower physiological reflects one of the major causes of low productivity. Thus the storage conditions of seed must be taken into consideration. This research aimed to evaluate the influence of natural and synthetic insecticides on emergence and seed storage of crambe, as these substances are essential to prevent infestation of seeds of other species by harmful organisms. The experimental design was a randomized block in factorial 3 x 8 ( 8 substances and 3 storage times with 4 replications. We assessed the following natural insecticides: saffron, lime, ash, neem, diatomaceous earth, and synthetic: chlorpyrifos and deltamethrin; besides the control consisting of seeds without any treatment. We evaluated the percentage of emergence, speed of emergence index and time to reach 50 % of emergency. In all characteristics, it was found that no influence of neem on seed vigor. There are disadvantages in the application of the insecticides chlorpyrifos and diatomaceous earth, which interfered with the emergence rate of seeds of crambe. The seeds treated with other insecticides had different behavior of untreated seeds after 120 days of storage to assess the time that they take to reach 50 % germination.

  5. Fungicide and insecticide residues in rice grains

    Directory of Open Access Journals (Sweden)

    Gustavo Mack Teló

    2017-01-01

    Full Text Available The objective of this study was to analyse residues of fungicides and insecticides in rice grains that were subjected to different forms of processing. Field work was conducted during three crop seasons, and fungicides and insecticides were applied at different crop growth stages on the aerial portion of the rice plants. Azoxystrobin, difenoconazole, propiconazole, tebuconazole, and trifloxystrobin fungicides were sprayed only once at the R2 growth stage or twice at the R2 and R4 growth stages; cypermethrin, lambda-cyhalothrin, permethrin, and thiamethoxam insecticides were sprayed at the R2 growth stage; and permethrin was sprayed at 5-day intervals from the R4 growth stage up to one day prior to harvest. Pesticide residues were analysed in uncooked, cooked, parboiled, polished and brown rice grains as well as rice hulls during the three crop seasons, for a total of 1458 samples. The samples were analysed by gas chromatography with electron capture detection (GC-ECD using modified QuEChERS as the extraction method. No fungicide or insecticide residues were detected in rice grain samples; however, azoxystrobin and cypermethrin residues were detected in rice hull samples.

  6. Insecticides for suppression of Nylanderia fulva

    Science.gov (United States)

    Nylanderia fulva (Mayr) is an invasive ant that is a serious pest in the southern United States. Pest control operators and homeowners are challenged to manage pest populations below acceptable thresholds. Contact and bait insecticides are key components of an Integrated Pest Management (IPM) strate...

  7. Variation among conventional cultivars could be used as a criterion for environmental safety assessment of Bt rice on nontarget arthropods

    Science.gov (United States)

    Wang, Fang; Dang, Cong; Chang, Xuefei; Tian, Junce; Lu, Zengbin; Chen, Yang; Ye, Gongyin

    2017-02-01

    The current difficulty facing risk evaluations of Bacillus thuringiensis (Bt) crops on nontarget arthropods (NTAs) is the lack of criteria for determining what represents unacceptable risk. In this study, we investigated the biological parameters in the laboratory and field population abundance of Nilaparvata lugens (Hemiptera: Delphacidae) on two Bt rice lines and the non-Bt parent, together with 14 other conventional rice cultivars. Significant difference were found in nymphal duration and fecundity of N. lugens fed on Bt rice KMD2, as well as field population density on 12 October, compared with non-Bt parent. However, compared with the variation among conventional rice cultivars, the variation of each parameter between Bt rice and the non-Bt parent was much smaller, which can be easily seen from low-high bar graphs and also the coefficient of variation value (C.V). The variation among conventional cultivars is proposed to be used as a criterion for the safety assessment of Bt rice on NTAs, particularly when statistically significant differences in several parameters are found between Bt rice and its non-Bt parent. Coefficient of variation is suggested as a promising parameter for ecological risk judgement of IRGM rice on NTAs.

  8. Current European corn borer, Ostrinia nubilalis, injury levels in the northeastern United States and the value of Bt field corn.

    Science.gov (United States)

    Bohnenblust, Eric W; Breining, James A; Shaffer, John A; Fleischer, Shelby J; Roth, Gregory W; Tooker, John F

    2014-11-01

    Recent evidence indicates that some populations of European corn borer (ECB), Ostrinia nubilalis (Hübner), have declined to historic lows owing to widespread adoption of Bt corn hybrids. To understand current ECB populations in Pennsylvania field corn, the authors assessed larval damage in Bt and non-Bt corn hybrids at 29 sites over 3 years. The influence of Bt adoption rates, land cover types and moth activity on levels of ECB damage was also considered. Bt hybrids reduced ECB damage when compared with non-Bt, but these differences inconsistently translated to higher yields and, because of higher seed costs, rarely improved profits. No relationships were detected between land use or Bt adoption and ECB damage rates, but positive relationships were found between plant damage and captures of Z-race ECB moths in pheromone traps in the PestWatch network. ECB damage levels were generally low and appear to be declining across Pennsylvania. In many locations, farmers may gain greater profits by planting competitive non-Bt hybrids; however, Bt hybrids remain valuable control options, particularly in the parts of Pennsylvania where ECB populations persist. Moth captures from PestWatch appear to provide insight into where Bt hybrids are most valuable. © 2013 Society of Chemical Industry.

  9. Is Apis mellifera more sensitive to insecticides than other insects?

    Science.gov (United States)

    Hardstone, Melissa C; Scott, Jeffrey G

    2010-11-01

    Honey bees (Apis mellifera L.) are among the most important pollinators in natural and agricultural settings. They commonly encounter insecticides, and the effects of insecticides on honey bees have been frequently noted. It has been suggested that honey bees may be (as a species) uniquely sensitive to insecticides, although no comparative toxicology study has been undertaken to examine this claim. An extensive literature review was conducted, using data in which adult insects were topically treated with insecticides. The goal of this review was to summarize insecticide toxicity data between A. mellifera and other insects to determine the relative sensitivity of honey bees to insecticides. It was found that, in general, honey bees were no more sensitive than other insect species across the 62 insecticides examined. In addition, honey bees were not more sensitive to any of the six classes of insecticides (carbamates, nicotinoids, organochlorines, organophosphates, pyrethroids and miscellaneous) examined. While honey bees can be sensitive to individual insecticides, they are not a highly sensitive species to insecticides overall, or even to specific classes of insecticides. However, all pesticides should be used in a way that minimizes honey bee exposure, so as to minimize possible declines in the number of bees and/or honey contamination. Copyright © 2010 Society of Chemical Industry.

  10. Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist

    Science.gov (United States)

    Shao, Xusheng; Xia, Shanshan; Durkin, Kathleen A.; Casida, John E.

    2013-01-01

    The nicotinic acetylcholine (ACh) receptor (nAChR) is the principal insecticide target. Nearly half of the insecticides by number and world market value are neonicotinoids acting as nAChR agonists or organophosphorus (OP) and methylcarbamate (MC) acetylcholinesterase (AChE) inhibitors. There was no previous evidence for in vivo interactions of the nAChR agonists and AChE inhibitors. The nitromethyleneimidazole (NMI) analog of imidacloprid, a highly potent neonicotinoid, was used here as a radioligand, uniquely allowing for direct measurements of house fly (Musca domestica) head nAChR in vivo interactions with various nicotinic agents. Nine neonicotinoids inhibited house fly brain nAChR [3H]NMI binding in vivo, corresponding to their in vitro potency and the poisoning signs or toxicity they produced in intrathoracically treated house flies. Interestingly, nine topically applied OP or MC insecticides or analogs also gave similar results relative to in vivo nAChR binding inhibition and toxicity, but now also correlating with in vivo brain AChE inhibition, indicating that ACh is the ultimate OP- or MC-induced nAChR active agent. These findings on [3H]NMI binding in house fly brain membranes validate the nAChR in vivo target for the neonicotinoids, OPs and MCs. As an exception, the remarkably potent OP neonicotinoid synergist, O-propyl O-(2-propynyl) phenylphosphonate, inhibited nAChR in vivo without the corresponding AChE inhibition, possibly via a reactive ketene metabolite reacting with a critical nucleophile in the cytochrome P450 active site and the nAChR NMI binding site. PMID:24108354

  11. Does Content Knowledge Affect TOEFL iBT[TM] Reading Performance? A Confirmatory Approach to Differential Item Functioning. TOEFL iBT Research Report. RR-09-29

    Science.gov (United States)

    Liu, Ou Lydia; Schedl, Mary; Malloy, Jeanne; Kong, Nan

    2009-01-01

    The TOEFL iBT[TM] has increased the length of the reading passages in the reading section compared to the passages on the TOEFL[R] computer-based test (CBT) to better approximate academic reading in North American universities, resulting in a reduced number of passages in the reading test. A concern arising from this change is whether the decrease…

  12. Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, and GA21 maize and transgenic GT73 canola.

    Science.gov (United States)

    Taverniers, Isabel; Windels, Pieter; Vaïtilingom, Marc; Milcamps, Anne; Van Bockstaele, Erik; Van den Eede, Guy; De Loose, Marc

    2005-04-20

    Since the 18th of April 2004, two new regulations, EC/1829/2003 on genetically modified food and feed products and EC/1830/2003 on traceability and labeling of GMOs, are in force in the EU. This new, comprehensive regulatory framework emphasizes the need of an adequate tracing system. Unique identifiers, such as the transgene genome junction region or a specific rearrangement within the transgene DNA, should form the basis of such a tracing system. In this study, we describe the development of event-specific tracing systems for transgenic maize lines Bt11, Bt176, and GA21 and for canola event GT73. Molecular characterization of the transgene loci enabled us to clone an event-specific sequence into a plasmid vector, to be used as a marker, and to develop line-specific primers. Primer specificity was tested through qualitative PCRs and dissociation curve analysis in SYBR Green I real-time PCRs. The primers were then combined with event-specific TaqMan probes in quantitative real-time PCRs. Calibration curves were set up both with genomic DNA samples and the newly synthesized plasmid DNA markers. It is shown that cloned plasmid GMO target sequences are perfectly suitable as unique identifiers and quantitative calibrators. Together with an event-specific primer pair and a highly specific TaqMan probe, the plasmid markers form crucial components of a unique and straighforward tracing system for Bt11, Bt176, and GA21 maize and GT73 canola events.

  13. Bistand til risikovurdering Supplerende oplysninger fra Syngenta Seeds om overvågningsplanen (evt. ændret risikovurdering). Zea mays (Bt11). Supplerende materiale om Bt11

    DEFF Research Database (Denmark)

    Kjellsson, Gøsta; Strandberg, Morten Tune; Damgaard, Christian

    2005-01-01

    "Mail: Den supplerende information om Bt-11 majsen (C/F/96/05-10) der er modtaget d. 02-03-2005, indeholder en ny udgave af den generelle overvågningsplan med enkelte ændringer (forbedringer) i forhold til forrige udgave (kommenteret 24-02-2005). Vi har ikke fundet nogen nye oplysninger der ændrer...

  14. Effects of Bt Corn and Egg Density on Western Corn Rootworm (Coleoptera: Chrysomelidae) Adult Emergence and Estimation of Effective Bt Dose.

    Science.gov (United States)

    Campbell, L A; Prasifka, P L; Storer, N P; Rule, D M; Hendrix, W H

    2017-04-01

    Since 2003, rootworm-protected transgenic corn has been commercially deployed in the United States as a principal method of control of western corn rootworm, Diabrotica virgifera virgifera LeConte. Durability of this technology depends partly on larval mortality ("dose") exerted by the traits, but density-dependent mortality can confound calculations of dose. Research reported here examined the effects of density-dependent mortality on adult emergence and estimates of trait dose. At sites in Illinois and Indiana, western corn rootworm eggs were infested at four densities on non-Bt corn and at a single density on corn hybrids with transgenic events MON 88017 (VT Triple PRO), DAS-59122-7 (Herculex Insect Protection), and MON 88017 × DAS-59122-7 (SmartStax corn). Beetles were collected weekly in large emergence cages. Density-dependent mortality and the effect of Bt traits were examined using percent survival from egg to adult, sex ratio, and beetle mass. Beetle emergence from Bt treatments was very low, and percent survival from non-Bt treatments was greatest at the lowest egg density (410 eggs per row-meter). Therefore, emergence from the lowest infestation density on non-Bt corn was used to estimate the effective dose of the Bt treatments. Sex ratio and beetle mass were unaffected by density-dependent effects and were not consistently affected by Bt traits. Dose was estimated at 97.4-99.3% for MON 88017, 98.8-99.9% for DAS-59122-7, and 99.7-100.0% for MON 88017 × DAS-59122-7. This study confirms the need to account for density-dependent mortality when estimating dose of corn rootworm protection events even at relatively low egg infestation densities. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re

  15. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize.

    Directory of Open Access Journals (Sweden)

    Fangneng Huang

    Full Text Available Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith, to Cry1F maize (TC 3507 in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293 Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012-2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.

  16. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize.

    Science.gov (United States)

    Huang, Fangneng; Qureshi, Jawwad A; Meagher, Robert L; Reisig, Dominic D; Head, Graham P; Andow, David A; Ni, Xinzi; Kerns, David; Buntin, G David; Niu, Ying; Yang, Fei; Dangal, Vikash

    2014-01-01

    Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293) Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012-2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.

  17. Fumonisin B1 Toxicity in Grower-Finisher Pigs: A Comparative Analysis of Genetically Engineered Bt Corn and non-Bt Corn by Using Quantitative Dietary Exposure Assessment Modeling

    OpenAIRE

    Delgado, James E.; Wolt, Jeffrey D.

    2011-01-01

    In this study, we investigate the long-term exposure (20 weeks) to fumonisin B1 (FB1) in grower-finisher pigs by conducting a quantitative exposure assessment (QEA). Our analytical approach involved both deterministic and semi-stochastic modeling for dietary comparative analyses of FB1 exposures originating from genetically engineered Bacillus thuringiensis (Bt)-corn, conventional non-Bt corn and distiller’s dried grains with solubles (DDGS) derived from Bt and/or non-Bt corn. Results from bo...

  18. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus.

    Science.gov (United States)

    Patil, Chandrashekhar D; Patil, Satish V; Salunke, Bipinchandra K; Salunkhe, Rahul B

    2012-05-01

    The tremendous worldwide efforts to isolate novel mosquito larvicidal bacteria with improved efficacy present significant promise to control vector-borne diseases of public health importance. In the present study, two native bacterial isolates, Bacillus thuringiensis (Bt SV2) and Serratia species (SV6) were evaluated for mosquito larvicidal potential against the early fourth instar larvae of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus with reference to B. thuringiensis subsp. israelensis (Bti) H 14. The native Gram-positive, spore-forming Bt SV2 isolate showed 100% mortality against early fourth instars of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, in parallel to Bti H14 strain. After 24 h, Bt SV2 showed 98%, 89%, and 80.67%, and Bti H14 showed 92%, 98.33%, and 60% mortality against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, respectively. Serratia SV6 showed highest activity against Culex quinquefasciatus (100%) followed by Anopheles stephensi (95%) and Aedes aegypti (91%) after 48 h of exposure. The Gram-negative Serratia SV6 showed delayed toxicity compared to Bti H14 and Bt SV2 against early fourth instars of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. The relative mortality of all treatments after 12-h exposures showed the varied toxicity with respect to exposure time, bacterial treatment, and mosquito species. Genetic relatedness of the strains was confirmed on the basis of phylogenetic reconstructions based on alignment of 16S rRNA gene sequences which indicated a strong clustering of the strain SV2 with B. thuringiensis and the strain SV6 with Serratia nematodiphila. In conclusion, the native isolate B. thuringiensis SV2 showed significant toxicity while Serratia SV6 showed less and delayed toxicity against several mosquito species compared with BtiH14. They may be used as novel bacterial insecticidal agents in mosquito vector-borne disease control. To our knowledge, this is the

  19. Test Review: Test of English as a Foreign Language[TM]--Internet-Based Test (TOEFL iBT[R])

    Science.gov (United States)

    Alderson, J. Charles

    2009-01-01

    In this article, the author reviews the TOEFL iBT which is the latest version of the TOEFL, whose history stretches back to 1961. The TOEFL iBT was introduced in the USA, Canada, France, Germany and Italy in late 2005. Currently the TOEFL test is offered in two testing formats: (1) Internet-based testing (iBT); and (2) paper-based testing (PBT).…

  20. Target and nontarget effects of novel "triple-stacked" Bt-transgenic cotton 1: canopy arthropod communities.

    Science.gov (United States)

    Whitehouse, M E A; Wilson, L J; Davies, A P; Cross, D; Goldsmith, P; Thompson, A; Harden, S; Baker, G

    2014-02-01

    Transgenic cotton varieties (Bollgard II) expressing two proteins (Cry1Ac and Cry2Ab) from Bacillus thuringiensis (Bt) have been widely adopted in Australia to control larvae of Helicoverpa. A triple-stacked Bt-transgenic cotton producing Cry1Ac, Cry2Ab, and Vip3A proteins (Genuity Bollgard III) is being developed to reduce the chance that Helicoverpa will develop resistance to the Bt proteins. Before its introduction, nontarget effects on the agro-ecosystem need to be evaluated under field conditions. By using beatsheet and suction sampling methods, we compared the invertebrate communities of unsprayed non-Bt-cotton, Bollgard II, and Bollgard III in five experiments across three sites in Australia. We found significant differences between invertebrate communities of non-Bt and Bt (Bollgard II and Bollgard III) cotton only in experiments where lepidopteran larval abundance was high. In beatsheet samples where lepidopterans were absent (Bt crops), organisms associated with flowers and bolls in Bt-cotton were more abundant. In suction samples, where Lepidoptera were present (i.e., in non-Bt-cotton), organisms associated with damaged plant tissue and frass were more common. Hence in our study, Bt- and non-Bt-cotton communities only differed when sufficient lepidopteran larvae were present to exert both direct and indirect effects on species assemblages. There was no overall significant difference between Bollgard II and III communities, despite the addition of the Vip gene in Bollgard III. Consequently, the use of Bollgard III in Australian cotton provides additional protection against the development of resistance by Helicoverpa to Bt toxins, while having no additional effect on cotton invertebrate communities.

  1. Emergence and Abundance of Western Corn Rootworm (Coleoptera: Chrysomelidae) in Bt Cornfields With Structured and Seed Blend Refuges.

    Science.gov (United States)

    Hughson, Sarah A; Spencer, Joseph L

    2015-02-01

    To slow evolution of western corn rootworm (Diabrotica virgifera virgifera LeConte) resistance to Bt (Bacillus thuringiensis Berliner) corn hybrids, non-Bt "refuges" must be planted within or adjacent to Bt cornfields, allowing susceptible insects to develop without exposure to Bt toxins. Bt-susceptible adults from refuges are expected to find and mate with resistant adults that have emerged from Bt corn, reducing the likelihood that Bt-resistant offspring are produced. The spatial and temporal distribution of adults in four refuge treatments (20, 5, and 0% structured refuges and 5% seed blend) and adjacent soybean fields was compared from 2010 to 2012. Adult emergence (adults/trap/day) from refuge corn in structured refuge treatments was greater than that from Bt corn, except during the post-pollination period of corn phenology when emergence from refuge and Bt plants was often the same. Abundance of free-moving adults was greatest in and near refuge rows in structured refuge treatments during vegetative and pollination periods. By post-pollination, adult abundance became evenly distributed. In contrast, adult abundance in 5% seed blends and 0% refuges was evenly distributed, or nearly so, across plots throughout the season. The persistent concentration of adults in refuge rows suggests that structured refuge configurations may not facilitate the expected mixing of adults from refuge and Bt corn. Seed blends produce uniform distributions of adults across the field that may facilitate mating between Bt and refuge adults and ultimately delay the evolution of Bt resistance. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effect of irradiation on physiological and biochemical properties of Bt rice seedlings

    International Nuclear Information System (INIS)

    Wang Zhonghua; Chen Xiaojian; Bao Xusheng; Chen Yuling; Gu Qinqin

    2011-01-01

    The seeds of two varieties of Bt rice were treated by 60 Co γ-rays at the doses of 50, 100, 150, 250 and 350 Gy, respectively, their original parent was used as control material. The seedlings cultured from above seeds were used to detect the root activity, seedling growth, chlorophyll content,activities of phenylalanine ammonialyase (PAL), polyphenol oxidase (PPO), catalase(CAT), superoxide dismutase (SOD) and amylase to investigate the effect of irradiation treatment on the physiological and biochemical properties of Bt rice. The results showed that root activity, chlorophyll content, activities of PAL, PPO, CAT, SOD of Bt rice seedlings and amylase of germinating seeds were lower than those of the control group after irradiation treatment of < 250 Gy, but the differences were not significant, which was similar to those of original parent. Meanwhile, it was found that with dose increasing, the seedling height was increased, suggesting that irradiation treatment could stimulate the seedling growth. Therefore, Bt transgene can not change the irradiation sensitivity of rice and the conventional method of rice can be used in Bt rice irradiation mutation breeding. (authors)

  3. Dielectric properties of BNT-xBT prepared by hydrothermal process

    Directory of Open Access Journals (Sweden)

    Natheer B. Mahmood

    2017-06-01

    Full Text Available The BNT ceramic sample might be a good replacement for PZT piezoelectric in industrial applications, especially in energy harvesting from crystal vibrations. In order to enhance the performance of BNT ceramic, the solid solution was chosen by substitution with Ba+2 at Morphtropic Phase Boundary (MPB. The BNT-xBT powders with x=1, 0.07, 0.06 and 0 were prepared by the hydrothermal method with average particle size (65–150nm at (90∘C/72h. The ceramic disc was sintered at (1150∘C/4h and showed excellent relative density of about 96%. The results of X-ray diffraction (XRD confirmed the MPB for x=0.06 and 0.07, while the BNT had a rhombohedral structure and BT had a tetragonal structure. The dielectric measurements showed that BNT, BNT-7BT, BNT-6BT behave as the relaxator ferroelectric and showed a strong dependence on frequency, especially in the MPB region while BT behaves as a normal ferroelectric. Both the Curie temperature and depolarization temperature decrease at the MPB region and showed strong dependency on frequency.

  4. Biological activity of Bt proteins expressed in different structures of transgenic corn against Spodoptera frugiperda

    Directory of Open Access Journals (Sweden)

    Daniel Bernardi

    2016-06-01

    Full Text Available ABSTRACT: Spodoptera frugiperda (J. E. Smith is the main target pest of Bt corn technologies, such as YieldGard VT PRO(tm (Cry1A.105/Cry2Ab2 and PowerCore(tm (Cry1A.105/Cry2Ab2/Cry1F. In this study, it was evaluated the biological activity of Bt proteins expressed in different plant structures of YieldGard VT PRO(tm and PowerCore(tm corn against S. frugiperda . Complete mortality of S. frugiperda neonates was observed on leaf-disc of both Bt corn technologies. However, the mortality in silks and grains was lower than 50 and 6%, respectively. In addition, more than 49% of the surviving larvae in silks and grains completed the biological cycle. However, all life table parameters were negatively affected in insects that developed in silks and grains of both Bt corn events. In summary, the low biological activity of Bt proteins expressed on silks and grains of YieldGard VT PRO(tm and PowerCore(tm corn can contribute to the resistance evolution in S. frugiperda populations.

  5. Insect Damage, Aflatoxin Content, and Yield of Bt Corn in Alabama.

    Science.gov (United States)

    Bowen, K L; Flanders, K L; Hagan, A K; Ortiz, B

    2014-10-01

    Isoline pairs of hybrid corn, similar except for presence or absence of a Bt trait, were planted at eight sites across Alabama over three years. This study evaluated insect damage, yield, and aflatoxin levels as affected by the Bt traits, YieldGard Corn Borer (expressing Cry1Ab), Herculex I (expressing Cry1F), Genuity VT Triple PRO (expressing Cry1A.105 and Cry2Ab2), Agrisure Viptera 3111 (expressing Vip3Aa20 and Cry1Ab), and Genuity SmartStax (expressing Cry1A.105, Cry2Ab2, and Cry1F). When examined over all sites and years, hybrids with any of the included Bt traits had lower insect damage and higher yields. However, insect damage was not consistently correlated to yield. Bt traits expressing multiple proteins provided greater protection from corn earworm feeding than did traits for single proteins. Yields and aflatoxin levels were highly variable among sites although irrigated sites had higher yields than nonirrigated sites. Aflatoxins commonly accumulate in corn in the southeastern United States because of prevailing high temperatures and frequent dry conditions. Aflatoxin levels were not consistently associated with any factors that were evaluated, including Bt traits. © 2014 Entomological Society of America.

  6. Larval Dispersal of Spodoptera frugiperda Strains on Bt Cotton: A Model for Understanding Resistance Evolution and Consequences for its Management

    OpenAIRE

    Malaquias, José B.; Godoy, Wesley A. C.; Garcia, Adriano G.; Ramalho, Francisco de S.; Omoto, Celso

    2017-01-01

    High dispersal of Lepidoptera larvae between non-Bt and Bt cotton plants can favour the evolution of insect resistance; however, information on host acceptance of neonates in tropical transgenic crops is scarce. Therefore, the purposes of this study were as follows: (i) to investigate the feeding behaviour of susceptible and Cry1F-resistant strains of Spodoptera frugiperda (J.E. Smith) on Bt and non-Bt cotton (Gossypium hirsutum L.) varieties and (ii) to understand the possible effects of cot...

  7. Modeling a western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), maturation delay and resistance evolution in Bt corn.

    Science.gov (United States)

    Kang, Jung Koo; Krupke, Christian H; Murphy, Alexzandra F; Spencer, Joseph L; Gray, Michael E; Onstad, David W

    2014-06-01

    Emergence delay and female-skewed sex ratios among adults of Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) from Bt corn have been reported in field studies. The authors used a simulation model to study the effect of a maturation delay and a female-skewed sex ratio for D. v. virgifera emerging from Bt corn on the evolution of Bt resistance. The effect of skewed toxin mortality in one sex on evolution of Bt resistance was insignificant. An emergence delay among resistant beetles from Bt corn slowed resistance evolution. A shift in the time of emergence for homozygous susceptible beetles from Bt corn did not have a significant effect on the evolution of Bt resistance in D. v. virgifera. This simulation study suggested that skewed toxin mortality in one sex and an emergence delay for beetles in Bt corn are not major concerns for managing resistance by D. v. virgifera to single-toxin or pyramided Bt corn. © 2013 Society of Chemical Industry.

  8. Exploration of Novel Botanical Insecticide Leads: Synthesis and Insecticidal Activity of β-Dihydroagarofuran Derivatives.

    Science.gov (United States)

    Zhao, Ximei; Xi, Xin; Hu, Zhan; Wu, Wenjun; Zhang, Jiwen

    2016-02-24

    The discovery of novel leads and new mechanisms of action is of vital significance to the development of pesticides. To explore lead compounds for botanical insecticides, 77 β-dihydroagarofuran derivatives were designed and synthesized. Their structures were mainly confirmed by (1)H NMR, (13)C NMR, DEPT-135°, IR, MS, and HRMS. Their insecticidal activity was evaluated against the third-instar larvae of Mythimna separata Walker, and the results indicated that, of these derivatives, eight exhibited more promising insecticidal activity than the positive control, celangulin-V. Particularly, compounds 5.7, 6.6, and 6.7 showed LD50 values of 37.9, 85.1, and 21.1 μg/g, respectively, which were much lower than that of celangulin-V (327.6 μg/g). These results illustrated that β-dihydroagarofuran ketal derivatives can be promising lead compounds for developing novel mechanism-based and highly effective botanical insecticides. Moreover, some newly discovered structure-activity relationships are discussed, which may provide some important guidance for insecticide development.

  9. Ion channels: molecular targets of neuroactive insecticides.

    Science.gov (United States)

    Raymond-Delpech, Valérie; Matsuda, Kazuhiko; Sattelle, Benedict M; Rauh, James J; Sattelle, David B

    2005-11-01

    Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p'-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); gamma-aminobutyric acid (GABA) receptors (cyclodienes, gamma-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.

  10. 2 Assessmen of the Efficiency of Insecticide

    African Journals Online (AJOL)

    Administrator

    Assessment of the Efficiency of Insecticide Paint and. Impregnated Nets on Tsetse Populations: Preliminary. Study in Forest Relics of Abidjan, Côte d' ..... au 43ème BIMA, Abidjan Port-Bouët, Côte d'Ivoire, Mémoire de DEA, CEMV. 70 pp. Kaba D., Ravel S., Acapovi-Yao G., Solano P., Allou. K., Bosson-Vanga H., Gardes L., ...

  11. Insecticidal activity of certain medicinal plants.

    Science.gov (United States)

    Pavela, Roman

    2004-12-01

    The methanol extracts of eight species of medicinal plants were tested for insecticidal activity in third instar larvae of Egyptian cottonworm (Spodoptera littoralis). All extracts showed a certain degree of larval toxicity. The extracts of Ocimum basilicum, Origanum majorana and Salvia officinalis appeared to be highly toxic. The extracts significantly affected the growth indexes [relative growth rate (RGR), efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD)].

  12. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae.

    Directory of Open Access Journals (Sweden)

    Alin M Puinean

    2010-06-01

    Full Text Available The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs, have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold of a single P450 gene (CYP6CY3; and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold, and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.

  13. Streptomyces sp. 173, an insecticidal micro-organism from marine.

    Science.gov (United States)

    Xiong, L; Li, J; Kong, F

    2004-01-01

    To find new insecticidal antibiotics from marine micro-organisms. Strains isolated from seawater and sea sediments from Beidiahe and Dagang of the east coast of China were screened for their insecticidal qualities. The screening was carried out using bioassay of brine shrimp and the insect pest Helicoverpa armigera. The fermentation, preliminary extraction and isolation of Streptomyces sp.173 were carried out. In total 331 isolates were examined through bioassay of brine shrimp and 40 isolates (12.08%) showed potential insecticidal activities. Of the 40 isolates, one isolate, designated Streptomyces sp.173, was found to have strong insecticidal activity against both brine shrimp and H. armigera, similar to that of avermectin B1. The isolated Streptomyces sp.173 has great insecticidal potency. This work indicated that marine micro-organisms could be an important source of insecticidal antibiotics and the improved anti-brine shrimp bioassay is suitable for primary screening.

  14. The evolution of insecticide resistance: Have the insects won?

    Science.gov (United States)

    Mallet, J

    1989-11-01

    While insecticides have greatly improved human health and agricultural production worldwide, their utility has been limited by the evolution of resistance in many major pests, including some that became pests only as a result of insecticide use. Insecticide resistance is both an interesting example of the adaptability of insect pests, and, in the design of resistance management programmes, a useful application of evolutionary biology. Pest susceptibility is a valuable natural resource that has been squandered; at the same time, it is becoming increasingly expensive to develop new insecticides. Pest control tactics should therefore take account of the possibility of resistance evolution. One of the best ways to retard resistance evolution is to use insecticides only when control by natural enemies fails to limit economic damage. This review summarizes the recent literature on insecticide resistance as an example of adaptation, and demonstrates how population genetics and ecology can be used to manage the resistance problem. Copyright © 1989. Published by Elsevier Ltd.

  15. Insecticide Resistance and Management Strategies in Urban Ecosystems

    Directory of Open Access Journals (Sweden)

    Fang Zhu

    2016-01-01

    Full Text Available The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs.

  16. An economic evaluation of impact of soil quality on Bt (Bacillus thuringiensis cotton productivity

    Directory of Open Access Journals (Sweden)

    Muhammad Abid*, Muhammad Ashfaq, Imran Khalid and Usman Ishaq

    2011-04-01

    Full Text Available The study was conducted with the aim to determine the impact of soil quality on the Bt cotton productivity. Asample of 150 farmers was selected by using multi-stage sampling technique from three districts i.e. Rahim YarKhan, Multan and Mianwali. A Cobb Douglas production function was employed to assess the effect of variousagronomic and demographic variables on the Bt cotton productivity. Results of the analysis indicated that landpreparation cost, seed cost, fertilizer cost, labour cost and dummy variable of soil quality were significant andpositively contributing towards higher Bt cotton yield. While the spray cost and irrigation cost variable were foundpositive but non-significant. Findings of the study suggested that focusing on maintaining and improving the qualityof soils is necessary to obtain higher crop yields. All this needs attention of agricultural extension department toprovide information about advance techniques to farmers for improving soil quality.

  17. Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt-Crops

    Directory of Open Access Journals (Sweden)

    D. K. Letourneau

    2012-01-01

    Full Text Available When field tests of transgenic plants are precluded by practical containment concerns, manipulative experiments can detect potential consequences of crop-wild gene flow. Using topical sprays of bacterial Bacillus thuringiensis larvicide (Bt and larval additions, we measured fitness effects of reduced herbivory on Brassica rapa (wild mustard and Raphanus sativus (wild radish. These species represent different life histories among the potential recipients of Bt transgenes from Bt cole crops in the US and Asia, for which rare spontaneous crosses are expected under high exposure. Protected wild radish and wild mustard seedlings had approximately half the herbivore damage of exposed plants and 55% lower seedling mortality, resulting in 27% greater reproductive success, 14-day longer life-spans, and 118% more seeds, on average. Seed addition experiments in microcosms and in situ indicated that wild radish was more likely to spread than wild mustard in coastal grasslands.

  18. Function and effectiveness of natural refuge in IRM strategies for Bt crops.

    Science.gov (United States)

    Li, Yunhe; Gao, Yulin; Wu, Kongming

    2017-06-01

    Several strategies involving refuge have been proposed for delaying insect resistance to Bt crops. The report was focused on the unstructured 'natural' refuges that contain plants naturally presented as part of the cropping system in the form of non-Bt plants that differ from Bt plant species, or wild host plants of the target pests. The cases of natural refuges applied in different countries were analyzed, and the factors that favor their success are discussed. The results indicate that the effectiveness of a natural refuge strategy depends on the biological characteristics of the target pest, the spatial and temporal distribution and abundance of the host plants in the agricultural system and the quality of the host plants for the pest species. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Narayan, Gautham; Challis, Peter J.; Kirshner, Robert P.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Steele, Thea N.

    2010-01-01

    SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining light curves indicative of a hot, high-luminosity SN, but lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its spectra are similar to those of low-luminosity SNe Ia, containing features that are only present in cool SN photospheres. Light-curve fitting methods suggest that SN 2006bt is reddened by a significant amount of dust; however, it occurred in the outskirts of its early-type host galaxy and has no strong Na D absorption in any of its spectra, suggesting a negligible amount of host-galaxy dust absorption. C II is possibly detected in our pre-maximum spectra, but at a much lower velocity than other elements. The progenitor was likely very old, being a member of the halo population of a galaxy that shows no signs of recent star formation. SNe Ia have been very successfully modeled as a one-parameter family, and this is fundamental to their use as cosmological distance indicators. SN 2006bt is a challenge to that picture, yet its relatively normal light curves allowed SN 2006bt to be included in cosmological analyses. We generate mock SN Ia data sets which indicate that contamination by similar objects will both increase the scatter of a SN Ia Hubble diagram and systematically bias measurements of cosmological parameters. However, spectra and rest-frame i-band light curves should provide a definitive way to identify and eliminate such objects.

  20. Control of ferroelectric phase transition in nano particulate NBT–BT based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Ch. Sameera; Kumar, G.S. [Department of Physics, Osmania University, Hyderabad 500 007 (India); Prasad, G., E-mail: gudurup@gmail.com [Department of Physics, Osmania University, Hyderabad 500 007 (India)

    2013-03-20

    Graphical abstract: Modified Curie–Weiss law fitting of BT1, NBT1, NBT2 and NBT3 samples and inset shows modified Curie–Weiss law fitting for NBT at 10 kHz frequency. Highlights: ► For the first time we have studied the effect of Nd{sup 3+} and BT on structural changes in NBT lattice. ► Ti metal powder was used instead of TiO{sub 2} to synthesize the ceramics using sol–gel. ► FTIR and Raman spectra were recorded for NBT–BT based ceramics. ► In dielectric measurements the transition from relaxor to normal with doping is observed. -- Abstract: Lead free relaxor NBT–BT based ceramic compositions were prepared using sol–gel method. The samples were sintered around 1140 °C for 3–4 h in the air. The characterization was done using X-ray diffraction (XRD), filed emission scanning electron microscope (FESEM), energy dispersive spectrometry (EDS), Raman, Fourier transform infrared (FTIR), dielectric and P–E loop measurements. The XRD patterns recorded at room temperature confirmed the phase formation of the samples. From FESEM micrographs, the particle sizes were estimated for calcined powders and are found to be in the range of 50–70 nm. The analysis of both Raman and FTIR spectral data of the samples also indicated the distortion of NBT lattice with the addition of Ba{sup 2+} and Nd{sup 3+} ions. It was found that the dielectric and piezoelectric properties of NBT–BT compositions beyond the morphotrophic phase boundary (MPB) are rather sensitive to the presence of tetragonal phase in addition to the rhombohedral phase. NBT ceramics exhibit a decrease in diffusive factor with increasing BT content, implying a degradation of relaxor feature leading to the normal ferroelectric nature. The ceramic samples employed in the present study exhibited variation in P–E hysteresis loops.

  1. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils.

    Science.gov (United States)

    Hung, T P; Truong, L V; Binh, N D; Frutos, R; Quiquampoix, H; Staunton, S

    2016-01-01

    Insecticidal Cry, or Bt, proteins are produced by the soil-endemic bacterium, Bacillus thuringiensis and some genetically modified crops. Their environmental fate depends on interactions with soil. Little is known about the toxicity of adsorbed proteins and the change in toxicity over time. We incubated Cry1Ac and Cry2A in contrasting soils subjected to different treatments to inhibit microbial activity. The toxin was chemically extracted and immunoassayed. Manduca sexta was the target insect for biotests. Extractable toxin decreased during incubation for up to four weeks. Toxicity of Cry1Ac was maintained in the adsorbed state, but lost after 2 weeks incubation at 25 °C. The decline in extractable protein and toxicity were much slower at 4 °C with no significant effect of soil sterilization. The major driving force for decline may be time-dependent fixation of adsorbed protein, leading to a decrease in the extraction yield in vitro, paralleled by decreasing solubilisation in the larval gut. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Can Bt Technology Reduce Poverty Among African Cotton Growers? An Ex Ante Analysis of the Private and Social Profitability of Bt Cotton Seed in Mozambique.

    OpenAIRE

    Pitoro, Raul; Walker, Thomas S.; Tschirley, David L.; Swinton, Scott M.; Boughton, Duncan; de Marrule, Higino Francisco

    2009-01-01

    This paper presents an ex ante analysis of the private and social profitability of the introduction of Bt cotton for a major cotton producing area of northern Mozambique. Cotton is especially relevant to rural poverty reduction because smallholders often have few alternative cash earning activities, and yields are among the lowest in Africa. Multivariate regression is used to quantify the relationship between pest control and yield loss at farm level as a basis for estimating the expected yie...

  3. Initial mechanisms for the decomposition of electronically excited energetic materials: 1,5′-BT, 5,5′-BT, and AzTT

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2015-03-28

    Decomposition of nitrogen-rich energetic materials 1,5′-BT, 5,5′-BT, and AzTT (1,5′-Bistetrazole, 5,5′-Bistetrazole, and 5-(5-azido-(1 or 4)H-1,2,4-triazol-3-yl)tetrazole, respectively), following electronic state excitation, is investigated both experimentally and theoretically. The N{sub 2} molecule is observed as an initial decomposition product from the three materials, subsequent to UV excitation, with a cold rotational temperature (<30 K). Initial decomposition mechanisms for these three electronically excited materials are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S{sub 1} molecules can non-adiabatically relax to their ground electronic states through (S{sub 1}/S{sub 0}){sub CI} conical intersections. 1,5′-BT and 5,5′-BT materials have several (S{sub 1}/S{sub 0}){sub CI} conical intersections between S{sub 1} and S{sub 0} states, related to different tetrazole ring opening positions, all of which lead to N{sub 2} product formation. The N{sub 2} product for AzTT is formed primarily by N–N bond rupture of the –N{sub 3} group. The observed rotational energy distributions for the N{sub 2} products are consistent with the final structures of the respective transition states for each molecule on its S{sub 0} potential energy surface. The theoretically derived vibrational temperature of the N{sub 2} product is high, which is similar to that found for energetic salts and molecules studied previously.

  4. Decrease in catalase activity of Folsomia candida fed a Bt rice diet

    DEFF Research Database (Denmark)

    Yuan, Yiyang; Ke, Xin; Chen, Fajun

    2011-01-01

    Here we report the effects of three Bt-rice varieties and their non-Bt conventional isolines on biological traits including survival, reproduction, and the activities of three antioxidant enzymes superoxide dismutase, catalase and peroxidase, in the Collembolan, Folsomia candida. The reproduction...... was significantly lower when fed Kemingdao and Huahui1 than those feeding on their non-GM near-isogenic varieties Xiushui and Minghui63 respectively, this can be explained by the differences of plant compositions depended on variety of rice. The catalase activity of F. candida was significantly lower when fed...

  5. A New Developed GIHS-BT-SFIM Fusion Method Based On Edge and Class Data

    Directory of Open Access Journals (Sweden)

    S. Dehnavi

    2013-09-01

    Full Text Available The objective of image fusion (or sometimes pan sharpening is to produce a single image containing the best aspects of the source images. Some desirable aspects are high spatial resolution and high spectral resolution. With the development of space borne imaging sensors, a unified image fusion approach suitable for all employed imaging sources becomes necessary. Among various image fusion methods, intensity-hue-saturation (IHS and Brovey Transforms (BT can quickly merge huge amounts of imagery. However they often face color distortion problems with fused images. The SFIM fusion is one of the most frequently employed approaches in practice to control the tradeoff between the spatial and spectral information. In addition it preserves more spectral information but suffer more spatial information loss. Its effectiveness is heavily depends on the filter design. In this work, two modifications were tested to improve the spectral quality of the images and also investigating class-based fusion results. First, a Generalized Intensity-Hue-Saturation (GIHS, Brovey Transform (BT and smoothing-filter based intensity modulation (SFIM approach was implemented. This kind of algorithm has shown computational advantages among other fusion methods like wavelet, and can be extended to different number of bands as in literature discussed. The used IHS-BT-SFIM algorithm incorporates IHS, IHS-BT, BT, BT-SFIM and SFIM methods by two adjustable parameters. Second, a method was proposed to plus edge information in previous GIHS_BT_SFIM and edge enhancement by panchromatic image. Adding panchromatic data to images had no much improvement. Third, an edge adaptive GIHS_BT_SFIM was proposed to enforce fidelity away from the edges. Using MS image off edges has shown spectral improvement in some fusion methods. Fourth, a class based fusion was tested, which tests different coefficients for each method due to its class. The best parameters for vegetated areas was k1 = 0.6, k2

  6. Impact of efficient refuge policies for Bt cotton in India on world cotton trade

    OpenAIRE

    Singla, Rohit; Johnson, Phillip N.; Misra, Sukant K.

    2010-01-01

    India is a major cotton producing country in the world along with the U.S. and China. A change in the supply of and demand for cotton in the Indian market has the potential to have an impact on world cotton trade. This study evaluates the implications of efficient Bt cotton refuge policies in India on world and U.S. cotton markets. It can be hypothesized that increased refuge requirements for Bt cotton varieties in India could decrease the world supply of cotton because of the lower yield pot...

  7. Proprietes insecticides de l'huile essentielle d' Aeollanthus ...

    African Journals Online (AJOL)

    Proprietes insecticides de l'huile essentielle d' Aeollanthus Pubescens benth. Sur les chenilles de deux lepidopteres: Selepa docilsi butler ( noctuidae,/i>) et scrobipalpa ergassima mayr. ( geleduidae ).

  8. Consequences for Protaphorura armata (Collembola: Onychiuridae) following exposure to genetically modified Bacillus thuringiensis (Bt) maize and non-Bt maize

    DEFF Research Database (Denmark)

    Heckmann, Lars-Henrik; Griffiths, Bryan S; Caul, Sandra

    2006-01-01

    armata. For comparison three non-Bt maize varieties, Rivaldo (isogenic to Cascade), Monumental (isogenic to MEB307) and DK242, and two control diets based on baker's yeast (uncontaminated and contaminated with Bt toxin Cry1Ab) were also tested. Due to a lower C:N ratio, individuals reared on yeast...

  9. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays.

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous

  10. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous

  11. Delta's Key to the Next Generation TOEFL[R] Test: Essential Grammar for the iBT

    Science.gov (United States)

    Gallagher, Nancy

    2012-01-01

    Although the TOEFL iBT does not have a discrete grammar section, knowledge of English sentence structure is important throughout the test. Essential Grammar for the iBT reviews the skills that are fundamental to success on tests. Content includes noun and verb forms, clauses, agreement, parallel structure, punctuation, and much more. The book may…

  12. Effect of Cry1Ab protein on rhizobacterial communities of Bt-maize over a four-year cultivation period.

    Directory of Open Access Journals (Sweden)

    Jorge Barriuso

    Full Text Available BACKGROUND: Bt-maize is a transgenic variety of maize expressing the Cry toxin from Bacillus turingiensis. The potential accumulation of the relative effect of the transgenic modification and the cry toxin on the rhizobacterial communities of Bt-maize has been monitored over a period of four years. METHODOLOGY/PRINCIPAL FINDINGS: The accumulative effects of the cultivation of this transgenic plant have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The obtained sequences were subjected to taxonomic, phylogenetic and taxonomic-independent diversity studies. The results obtained were consistent, indicating that variations detected in the rhizobacterial community structure were possibly due to climatic factors rather than to the presence of the Bt-gene. No variations were observed in the diversity estimates between non-Bt and Bt-maize. CONCLUSIONS/SIGNIFICANCE: The cultivation of Bt-maize during the four-year period did not change the maize rhizobacterial communities when compared to those of the non-Bt maize. This is the first study to be conducted with Bt-maize during such a long cultivation period and the first evaluation of rhizobacterial communities to be performed in this transgenic plant using Next Generation Sequencing.

  13. The end of a myth – Bt(Cry1Ab) maize does not harm green lacewings

    Science.gov (United States)

    A concern with Bt-transgenic insect-resistant plants is their potential to harm non-target organisms. Early studies reported that Cry1Ab-producing Bt maize and purified Cry1Ab harmed larvae of the green lacewing, Chrysoperla carnea. Although these effects could not be confirmed in subsequent studies...

  14. Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems

    DEFF Research Database (Denmark)

    Krogh, P. H.; Griffiths, B.; Demsar, D.

    2007-01-01

    studies of Bt corn and a glufosinate ammonium tolerant corn and included a reduced tillage treatment (RT) and a conventional tillage treatment (CT) as examples of a likely concomitant change in the agricultural practise. At a French study site at Varois, (Bourgogne), a field grown with the Bt...

  15. Study on Soil Mobility of Two Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Mária Mörtl

    2016-01-01

    Full Text Available Movement of two neonicotinoid insecticide active ingredients, clothianidin (CLO and thiamethoxam (TMX, was investigated in different soil types (sand, clay, or loam and in pumice. Elution profiles were determined to explore differences in binding capacity. Soil characterized by high organic matter content retained the ingredients, whereas high clay content resulted in long release of compounds. Decrease in concentration was strongly influenced by soil types: both CLO and TMX were retained in loam and clay soils and showed ready elution through sandy soil and pumice. Elution capability of the active ingredients in sandy soil correlated with their water solubility, indicating approximately 30% higher rapidity for TMX than for CLO. Soil organic carbon-water partitioning coefficients (Koc determined were in good agreement with literature values with somewhat lower value for CLO in sandy soil and substantially higher values for TMX in clay soil. High mobility of these neonicotinoid active ingredients in given soil types urges stronger precautionary approach taken during their application.

  16. Identification of a novel aminopeptidase P-like gene (OnAPP possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis.

    Directory of Open Access Journals (Sweden)

    Chitvan Khajuria

    Full Text Available Studies to understand the Bacillus thuringiensis (Bt resistance mechanism in European corn borer (ECB, Ostrinia nubilalis suggest that resistance may be due to changes in the midgut-specific Bt toxin receptor. In this study, we identified 10 aminopeptidase-like genes, which have previously been identified as putative Bt toxin receptors in other insects and examined their expression in relation to Cry1Ab toxicity and resistance. Expression analysis for the 10 aminopeptidase-like genes revealed that most of these genes were expressed predominantly in the larval midgut, but there was no difference in the expression of these genes in Cry1Ab resistant and susceptible strains. This suggested that altered expression of these genes was unlikely to be responsible for resistance in these ECB strains. However, we found that there were changes in two amino acid residues of the aminopeptidase-P like gene (OnAPP involving Glu(305 to Lys(305 and Arg(307 to Leu(307 in the two Cry1Ab-resistant strains as compared with three Cry1Ab-susceptible strains. The mature OnAPP contains 682 amino acid residues and has a putative signal peptide at the N-terminus, a predicted glycosylphosphatidyl-inositol (GPI-anchor signal at the C-terminal, three predicted N-glycosylation sites at residues N178, N278 and N417, and an O-glycosylation site at residue T653. We used a feeding based-RNA interference assay to examine the role of the OnAPP gene in Cry1Ab toxicity and resistance. Bioassays of Cry1Ab in larvae fed diet containing OnAPP dsRNA resulted in a 38% reduction in the transcript level of OnAPP and a 25% reduction in the susceptibility to Cry1Ab as compared with larvae fed GFP dsRNA or water. These results strongly suggest that the OnAPP gene could be involved in binding the Cry1Ab toxin in the ECB larval midgut and that mutations in this gene may be associated with Bt resistance in these two ECB strains.

  17. Insecticides suppress natural enemies and increase pest damage in cabbage.

    Science.gov (United States)

    Bommarco, Riccardo; Miranda, Freddy; Bylund, Helena; Björkman, Christer

    2011-06-01

    Intensive use of pesticides is common and increasing despite a growing and historically well documented awareness of the costs and hazards. The benefits from pesticides of increased yields from sufficient pest control may be outweighed by developed resistance in pests and killing of beneficial natural enemies. Other negative effects are human health problems and lower prices because of consumers' desire to buy organic products. Few studies have examined these trade-offs in the field. Here, we demonstrate that Nicaraguan cabbage (Brassica spp.) farmers may suffer economically by using insecticides as they get more damage by the main pest diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), at the same time as they spend economic resources on insecticides. Replicated similarly sized cabbage fields cultivated in a standardized manner were either treated with insecticides according common practice or not treated with insecticides over two seasons. Fields treated with insecticides suffered, compared with nontreated fields, equal or, at least in some periods of the seasons, higher diamondback moth pest attacks. These fields also had increased leaf damage on the harvested cabbage heads. Weight and size of the heads were not affected. The farmers received the same price on the local market irrespective of insecticide use. Rates of parasitized diamondback moth were consistently lower in the treated fields. Negative effects of using insecticides against diamondback moth were found for the density of parasitoids and generalist predatory wasps, and tended to affect spiders negatively. The observed increased leaf damages in insecticide-treated fields may be a combined consequence of insecticide resistance in the pest, and of lower predation and parasitization rates from naturally occurring predators that are suppressed by the insecticide applications. The results indicate biological control as a viable and economic alternative pest management strategy

  18. Effects of transgenic Bt+CpTI cotton on the growth and reproduction of earthworm Eisenia foetida.

    Science.gov (United States)

    Liu, Biao; Cui, Jinjie; Meng, Jun; Hu, Wenjun; Luo, Junyu; Zheng, Yangping

    2009-01-01

    With the expansion of the planted area of transgenic Bt+CpTI cotton, the effects of this crop on non-target organisms in soil, including earthworms, are becoming the most important aspect of their ecological risk assessment. Laboratory toxicity studies were conducted to determine the effects of transgenic Bt+CpTI cotton leaves, containing high concentrations of the Bt toxin and cowpea trypsin inhibitor, on the earthworm Eisenia foetida. In comparison with the non-transgenic cotton line Zhong23, transgenic Bt+CpTI cotton Zhong41 had no significant acute toxicity on E. foetida. Moreover, the leaves of transgenic Bt+CpTI cotton were more suitable than the non-transgenic cotton Zhong23 for E. foetida growth and reproduction (time of reproduction, the number of cocoons and newly incubated offspring).

  19. A Study of the Use of the "TOEFL iBT"® Test Speaking and Listening Scores for International Teaching Assistant Screening. "TOEFL iBT"® Research Report. TOEFL iBT-27. ETS Research Report. RR-16-18

    Science.gov (United States)

    Wagner, Elvis

    2016-01-01

    Although the speaking section of the "TOEFL iBT"® test is used by many universities to determine if international teaching assistants (ITAs) have the oral proficiency necessary to be classroom instructors, relatively few studies have investigated the validity of using TOEFL iBT scores for ITA screening. The primary purpose of this study…

  20. Investigating the Predictive Validity of "TOEFL iBT"® Test Scores and Their Use in Informing Policy in a United Kingdom University Setting. "TOEFL iBT"® Research Report. TOEFL iBT-30. ETS Research Report. RR-17-41

    Science.gov (United States)

    Harsch, Claudia; Ushloda, Ema; Ladroue, Christophe

    2017-01-01

    The project examined the predictive validity of the "TOEFL iBT"® test with a focus on the relationship between TOEFL iBT scores and students' subsequent academic success in postgraduate studies in one leading university in the United Kingdom, paying specific attention to the role of linguistic preparedness as perceived by students and…

  1. Surface chemistry of photoluminescent F8BT conjugated polymer nanoparticles determines protein corona formation and internalization by phagocytic cells.

    Science.gov (United States)

    Ahmad Khanbeigi, Raha; Abelha, Thais Fedatto; Woods, Arcadia; Rastoin, Olivia; Harvey, Richard D; Jones, Marie-Christine; Forbes, Ben; Green, Mark A; Collins, Helen; Dailey, Lea Ann

    2015-03-09

    Conjugated polymer nanoparticles are being developed for a variety of diagnostic and theranostic applications. The conjugated polymer, F8BT, a polyfluorene derivative, was used as a model system to examine the biological behavior of conjugated polymer nanoparticle formulations stabilized with ionic (sodium dodecyl sulfate; F8BT-SDS; ∼207 nm; -31 mV) and nonionic (pegylated 12-hydroxystearate; F8BT-PEG; ∼175 nm; -5 mV) surfactants, and compared with polystyrene nanoparticles of a similar size (PS200; ∼217 nm; -40 mV). F8BT nanoparticles were as hydrophobic as PS200 (hydrophobic interaction chromatography index value: 0.96) and showed evidence of protein corona formation after incubation with serum-containing medium; however, unlike polystyrene, F8BT nanoparticles did not enrich specific proteins onto the nanoparticle surface. J774A.1 macrophage cells internalized approximately ∼20% and ∼60% of the F8BT-SDS and PS200 delivered dose (calculated by the ISDD model) in serum-supplemented and serum-free conditions, respectively, while cell association of F8BT-PEG was minimal (<5% of the delivered dose). F8BT-PEG, however, was more cytotoxic (IC50 4.5 μg cm(-2)) than F8BT-SDS or PS200. The study results highlight that F8BT surface chemistry influences the composition of the protein corona, while the properties of the conjugated polymer nanoparticle surfactant stabilizer used determine particle internalization and biocompatibility profile.

  2. Effects of 90-Day Feeding of Transgenic Maize BT799 on the Reproductive System in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Qian-ying Guo

    2015-12-01

    Full Text Available BT799 is a genetically modified (GM maize plant that expresses the Cry1Ac gene from Bacillus thuringiensis (Bt. The Cry1Ac gene was introduced into maize line Zhen58 to encode the Bt crystal protein and thus produce insect-resistant maize BT799. Expression of Bt protein in planta confers resistance to Lepidopteran pests and corn rootworms. The present study was designed to investigate any potential effects of BT799 on the reproductive system of male rats and evaluate the nutritional value of diets containing BT799 maize grain in a 90-day subchronic rodent feeding study. Male Wistar rats were fed with diets containing BT799 maize flours or made from its near isogenic control (Zhen58 at a concentration of 84.7%, nutritionally equal to the standard AIN-93G diet. Another blank control group of male rats were treated with commercial AIN-93G diet. No significant differences in body weight, hematology and serum chemistry results were observed between rats fed with the diets containing transgenic BT799, Zhen58 and the control in this 13-week feeding study. Results of serum hormone levels, sperm parameters and relative organ/body weights indicated no treatment-related side effects on the reproductive system of male rats. In addition, no diet-related changes were found in necropsy and histopathology examinations. Based on results of the current study, we did not find any differences in the parameters tested in our study of the reproductive system of male rats between BT799 and Zhen58 or the control.

  3. Improved Position and Additional Photometry for ASASSN-18bt, Bright Supernova in a Kepler Supernova Field

    Science.gov (United States)

    Cornect, R.; Brimacombe, J.; Stone, G.; Post, R. S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Vallely, P.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.; Kiyota, S.

    2018-02-01

    We have obtained additional follow-up imaging, using several telescopes, of the nearby type Ia supernova ASASSN-18bt (ATEL #11253). This figure shows the archival SDSS g-band image of the host (left) and the R. Post confirmation image (right).

  4. Sixteen Years of Bt Maize in the EU Hotspot: Why Has Resistance Not Evolved?

    Science.gov (United States)

    Castañera, Pedro; Farinós, Gema P; Ortego, Félix; Andow, David A

    2016-01-01

    The majority of Bt maize production in the European Union (EU) is concentrated in northeast Spain, which is Europe's only hotspot where resistance might evolve, and the main target pest, Sesamia nonagrioides, has been exposed to Cry1Ab maize continuously since 1998. The cropping system in northeast Spain has some similar characteristics to those that probably led to rapid resistance failures in two other target noctuid maize pests. These include repeated cultivation of Bt maize in the same fields, low use of refuges, recurring exposure of larvae to non-high dose concentrations of Cry1Ab toxin during the first years of cultivation, low migratory potential, and production concentrated in an irrigated region with few alternative hosts. Available data reveal no evidence of resistance in S. nonagrioides after 16 years of use. We explore the possible reasons for this resistance management success using evolutionary models to consider factors expected to accelerate resistance, and those expected to delay resistance. Low initial adoption rates and the EU policy decision to replace Event 176 with MON 810 Bt maize were key to delaying resistance evolution. Model results suggest that if refuge compliance continues at the present 90%, Bt maize might be used sustainably in northeast Spain for at least 20 more years before resistance might occur. However, obtaining good estimates of the present R allele frequency and level of local assortative mating are crucial to reduce uncertainty about the future success of resistance management.

  5. Stability of UV exposed RR-P3BT films by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Diware, Mangesh S.; Byun, J. S.; Hwang, S. Y.; Kim, T. J.; Kim, Y. D.

    2013-01-01

    Stability of regioregular poly(3-butylthiophene) (RR-P3BT) films under irradiation of ultra-violet (UV) light has been studied by spectroscopic ellipsometry at room temperature. Consistent decrease in dielectric function with UV exposure time showed the degree of degradation of polymer. This work suggests that, protective methods are mandatory to use this kind of material in optical devices.

  6. Tritrophic choice experiments with Bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae

    NARCIS (Netherlands)

    Schuler, T.H.; Potting, R.P.J.; Denholm, I.; Clark, S.J.; Clark, A.J.; Stewart, C.N.; Poppy, G.M.

    2003-01-01

    Parasitoids are important natural enemies of many pest species and are used extensively in biological and integrated control programmes. Crop plants transformed to express toxin genes derived from Bacillus thuringiensis (Bt) provide high levels of resistance to certain pest species, which is likely

  7. Quantification of the histochemical reaction for alkaline phosphatase activity using the indoxyl-tetranitro BT method

    NARCIS (Netherlands)

    van Noorden, C. J.; Jonges, G. N.

    1987-01-01

    The indoxyl-tetranitro BT method for the demonstration of alkaline phosphatase activity has been optimized and its validity for quantitative histochemistry tested. The study has been performed with model films of polyacrylamide gel incorporating homogenate of rat liver and with cryostat sections

  8. Reduced fitness of Daphnia magna fed a Bt-transgenic maize variety.

    Science.gov (United States)

    Bøhn, Thomas; Primicerio, Raul; Hessen, Dag O; Traavik, Terje

    2008-11-01

    Genetically modified (GM) maize expressing the Bt-toxin Cry1Ab (Bt-maize) was tested for effects on survival, growth, and reproduction of the water flea Daphnia magna, a crustacean arthropod commonly used as a model organism in ecotoxicological studies. In three repeated experiments, D. magna were fed 100% ground maize in suspension, using either GM or isogenic unmodified (UM) maize. D. magna fed GM-maize showed a significantly reduced fitness performance: The mortality was higher, a lower proportion of females reached sexual maturation, and the overall egg production was lower compared to D. magna fed UM isogenic maize. We conclude that the tested variety of Bt-maize and its UM counterpart do not have the same quality as food sources for this widely used model organism. The combination of a reduced fitness performance combined with earlier onset of reproduction of D. magna fed Bt-maize indicates a toxic effect rather than a lower nutritional value of the GM-maize.

  9. FORMING OF MECHANICAL CHARACTERISTICS OF THE SLUGS OF TITANIC ALLOY BT23 AT THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2005-01-01

    Full Text Available Тhе changings of the initial plate structure of alloy BT23 at running of high-temperature thermal treatment of large-sized slugs with heating up to 650- 950 eC and cooling on air and in water and their influence on forming of complex of mechanical characteristics are examined.

  10. TOEFL iBT Speaking Test Scores as Indicators of Oral Communicative Language Proficiency

    Science.gov (United States)

    Bridgeman, Brent; Powers, Donald; Stone, Elizabeth; Mollaun, Pamela

    2012-01-01

    Scores assigned by trained raters and by an automated scoring system (SpeechRater[TM]) on the speaking section of the TOEFL iBT[TM] were validated against a communicative competence criterion. Specifically, a sample of 555 undergraduate students listened to speech samples from 184 examinees who took the Test of English as a Foreign Language…

  11. Relationship of TOEFL iBT[R] Scores to Academic Performance: Some Evidence from American Universities

    Science.gov (United States)

    Cho, Yeonsuk; Bridgeman, Brent

    2012-01-01

    This study examined the relationship between scores on the TOEFL Internet-Based Test (TOEFL iBT[R]) and academic performance in higher education, defined here in terms of grade point average (GPA). The academic records for 2594 undergraduate and graduate students were collected from 10 universities in the United States. The data consisted of…

  12. Construct Validity in TOEFL iBT Speaking Tasks: Insights from Natural Language Processing

    Science.gov (United States)

    Kyle, Kristopher; Crossley, Scott A.; McNamara, Danielle S.

    2016-01-01

    This study explores the construct validity of speaking tasks included in the TOEFL iBT (e.g., integrated and independent speaking tasks). Specifically, advanced natural language processing (NLP) tools, MANOVA difference statistics, and discriminant function analyses (DFA) are used to assess the degree to which and in what ways responses to these…

  13. Validating TOEFL[R] iBT Speaking and Setting Score Requirements for ITA Screening

    Science.gov (United States)

    Xi, Xiaoming

    2007-01-01

    Although the primary use of the speaking section of the Test of English as a Foreign Language Internet-based test (TOEFL[R] iBT Speaking) is to inform admissions decisions at English medium universities, it may also be useful as an initial screening measure for international teaching assistants (ITAs). This study provides criterion-related…

  14. Isolation of a novel uric-acid-degrading microbe Comamonas sp. BT ...

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... The strain was found to be produce extracellular uricase, and so it was very easy to extract from suspension culture. 3.3 Identification of strain. The strain BT UA was gram-negative, betaproteobacteria. Colonies on agar (NB-UA) plate were translucent and moist. The pigment of the colonies varied from ...

  15. screening of new isolates of bt and cloning of their dna amplicons

    African Journals Online (AJOL)

    NEMAPPA

    2012-09-18

    Sep 18, 2012 ... and biopesticides [Bacillus thuringiensis (Bt)] have proved beneficial over conventional chemical pesticides in controlling them. The cry toxins constitute a family of related proteins that can kill insects belonging to the. Lepidoptera, Coleoptera, Diptera, Hymenoptera, Homoptera, and Mallophaga, as well as ...

  16. The Reflexive Producer: The Influence of Farmer Knowledge upon the Use of Bt Corn

    Science.gov (United States)

    Kaup, Brent Z.

    2008-01-01

    This paper examines the influence of farmer knowledge upon decision making processes. Drawing upon the sociological debates around the ideas of reflexive modernity and biotechnology as well as from classic adoption and diffusion studies, I explore the influences upon farmers' use of "Bacillus thuringiensis" (Bt) corn. Utilizing survey data…

  17. Screening for corn rootworm (Coleoptera: Chrysomelidae) resistance to transgenic Bt corn in North Dakota

    Science.gov (United States)

    Western (WCR), Diabrotica virgifera virgifera LeConte, and northern corn rootworms (NCR), D. barberi Smith & Lawrence, are major economic pests of corn in much of the U.S. Corn Belt. Western corn rootworm resistance to transgenic corn expressing Bt (Bacillus thuringiensis) endotoxins has been confi...

  18. Measurement of insecticides for house spraying.

    Science.gov (United States)

    ROMERO ALVAREZ, H; MIRANDA FRANCO, R

    1959-01-01

    In view of the economic and operational importance in malaria eradication campaigns of correctly measuring the insecticides used, tests have been made in Mexico to compare the accuracy of two manual procedures, one volumetric and the other gravimetric. For volumetric measurement a calibrated, metal measuring-can of sheet metal is used, and for gravimetric measurement a specially designed Roman balance. Altogether 1022 volumetric and 1411 gravimetric tests were made. The results, given in this paper, show that the volumetric measurement entails too great a margin of error to be acceptable, but that the Roman balance is both sufficiently accurate and practical and economical.

  19. Insecticidal, brine shrimp cytotoxicity, antifungal and nitric oxide free ...

    African Journals Online (AJOL)

    The crude methanolic extract and various fractions derived from the aerial parts of Myrsine africana were screened in vitro for possible insecticidal, antifungal, brine shrimp lethality and nitric oxide free radical scavenging activities. Low insecticidal activity (20 %) was shown by chloroform (CHCl3) and aqueous fractions ...

  20. Mechanistic modeling of insecticide risks to breeding birds in ...

    Science.gov (United States)

    Insecticide usage in the United States is ubiquitous in urban, suburban, and rural environments. In evaluating data for an insecticide registration application and for registration review, scientists at the United States Environmental Protection Agency (USEPA) assess the fate of the insecticide and the risk the insecticide poses to the environment and non-target wildlife. At the present time, current USEPA risk assessments do not include population-level endpoints. In this paper, we present a new mechanistic model, which allows risk assessors to estimate the effects of insecticide exposure on the survival and seasonal productivity of birds known to use agricultural fields during their breeding season. The new model was created from two existing USEPA avian risk assessment models, the Terrestrial Investigation Model (TIM v.3.0) and the Markov Chain Nest Productivity model (MCnest). The integrated TIM/MCnest model has been applied to assess the relative risk of 12 insecticides used to control corn pests on a suite of 31 avian species known to use cornfields in midwestern agroecosystems. The 12 insecticides that were assessed in this study are all used to treat major pests of corn (corn root worm borer, cutworm, and armyworm). After running the integrated TIM/MCnest model, we found extensive differences in risk to birds among insecticides, with chlorpyrifos and malathion (organophosphates) generally posing the greatest risk, and bifenthrin and ë-cyhalothrin (

  1. Effectiveness and profitability of insecticide formulations used for ...

    African Journals Online (AJOL)

    To identify optimal pest control with lower economic risks to farmers, we investigated the effectiveness and profitability of different insecticides and insecticide formulations against bean fly (Ophiomyia spp.) and bean flower thrips (Megalurothrips sjostedtii). Two separate experiments were conducted during 2009 to 2012.

  2. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    USER

    2010-03-15

    Mar 15, 2010 ... This study provides information on the incidence of major insect pests of cowpea as well as the minimum insecticide control intervention necessary for effectively reducing cowpea yield losses on the field. Two insecticide spray regimes (once at flowering and podding) significantly reduced insect population ...

  3. Laboratory Evaluation of Insecticidal Activities of Some Botanicals ...

    African Journals Online (AJOL)

    user

    The n-hexane and methanol extracts of the five plants had repellence and insecticidal effects on the four insect pests of bees and could be considered as bioactive candidate for management of the insects. Key words: Apis mellifera, synthetic insecticide, leaf extracts, mortality, repellence. Introduction. Honey bees (Apis ...

  4. Expression of melanin and insecticidal protein from Rhodotorula ...

    African Journals Online (AJOL)

    Both the salmon/red melanin and the insecticidal producing genes of Rhodotorula glutinis was successfully expressed in Escherichia coli using plasmid pZErO-1. This work suggests that in Rhodotorula species melanin and insecticidal toxin are co-expressed and therefore possibly co-evolved. Keywords: Rhodotorula ...

  5. Effect of Insecticidal Plant Materials, Lantana camara L. and

    African Journals Online (AJOL)

    ... small-scale farmers as cost-effective and sustainable alternatives to synthetic insecticides in maize grain storage. Key Words: botanicals, indigenous knowledge, grain storage, grain quality parameters, synthetic insecticides, insect damage, seed viability, food safety. Journal of Food Technology in Africa Vol.9(1) 2004: 29- ...

  6. efficacy of some synthetic insecticides for control of cotton bollworms ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    insecticide treatments, Thionex at 2.8 l ha-1 was the most effective. This was ... Key Words: Control, cotton bollworms, efficacy, Ghana, synthetic insecticides ..... work. REFERENCES. Abdulai, M., Abatania, L. and Salifu, A. B. 2006. Farmers' knowledge and perceptions of cotton insect pests and their control practices.

  7. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    Field studies were conducted during the 2008 - 2009 cropping season to determine the minimal insecticide application which can reduce cowpea yield losses on the field due to insect pest infestations in the Transkei region of South Africa. Treatments consisted of five cowpea varieties and four regimes of insecticide spray ...

  8. Malaria control-two years' use of insecticide treated bednets ...

    African Journals Online (AJOL)

    Objectives. The objective of this study was to produce data indicating whether insecticide-treated bednets should replaced insecticide house spraying as a malaria control method in South Africa. We report 2 years of preliminary data on malaria incidence comparing areas receiving insecticidetreated bednets and those ...

  9. Socio-Economic Determinants of Insecticides Usage in Cowpea ...

    African Journals Online (AJOL)

    This study investigates the socio-economic determinants of Insecticides use among cowpea farmers in Kaduna State, Nigeria. A multi-stage sampling technique was used to select 150 cowpea farmers who used insecticides in controlling pest in cowpea production in the study area. Information collected includes those of ...

  10. Influence of insecticide treatments on damaging termite population ...

    African Journals Online (AJOL)

    Influence of insecticide treatments on damaging termite population of rice and maize crops in Savanna (Lamto and Booro-Borotou, Cote d'lvoire) : Influence des traitements insecticides sur les populations de termites nuisibles aux cultures de riz et de mais en milieu de savane (Lamto et Booro-Borotou,Cote d'Lvoire).

  11. Chemical composition and insecticidal properties of the essential oil ...

    African Journals Online (AJOL)

    into natural insecticides or fumigants, for control of insects in stored grains. Keywords: Bidens frondosa, Liposcelis bostrychophila, Contact toxicity, Essential oil, Boolice, Stored grains, Natural insecticides, Fumigants. Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,.

  12. Malaria control – two years' use of insecticide treated bednets ...

    African Journals Online (AJOL)

    Objectives_ The objective of this study was to produce data indicating whether insecticide-treated bednets should replac insecticide house spraying as a malaria control method in South Africa_ We report 2 years of preliminary data on malaria incidence comparing areas receiving insecticidetreated bednets and those ...

  13. Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-02-01

    Increasing adoption of transgenic crops expressing cry toxin genes from Bacillus thuringiensis (Bt crops) represents an augmented risk for development of insect resistance. While fitness costs can greatly influence the rate of resistance evolution, most available data related to Bt resistance have been obtained from laboratory-selected insect strains. In this article, we test the existence of fitness costs associated with high levels of field-evolved resistance to Bt maize event TC1507 in a strain of Spodoptera frugiperda (JE Smith) originated from maize fields in Puerto Rico. Fitness costs in resistant S. frugiperda were evaluated by comparing biological performance to susceptible insects when reared on meridic diet, maize or soybean leaf tissue, or cotton reproductive tissues. Parameters monitored included larval survival, larval and pupal weights, developmental time (larval and pupal), adult longevity, reproductive traits (fecundity and fertility), and sex ratio. We found that all monitored parameters were influenced to a similar extent by the host, independently of susceptibility to Bt maize. The only parameter that significantly differed between strains for all hosts was a longer larval developmental period in resistant S. frugiperda, which resulted in emergence asynchrony between susceptible and resistant adults. To test the relevance of fitness costs in resistant S. frugiperda, we performed a selection experiment to monitor the stability of resistance in a heterogeneous strain through 12 generations of rearing on meridic diet. Our data demonstrate lack of fitness costs relevant to stability of field-evolved resistance to Bt maize and help explain reported stability of field-evolved resistance in Puerto Rican populations of S. frugiperda.

  14. What are farmers really planting? Measuring the presence and effectiveness of Bt cotton in Pakistan.

    Directory of Open Access Journals (Sweden)

    David J Spielman

    Full Text Available Genetically modified, insect-resistant Bacillus thuringiensis (Bt cotton is cultivated extensively in Pakistan. Past studies, however, have raised concerns about the prevalence of Bt cotton varieties possessing weak or nonperforming insect-resistance traits conferred by the cry gene. We examine this issue using data drawn from a representative sample of cotton-growing households that were surveyed in six agroclimatic zones spanning 28 districts in Pakistan in 2013, as well as measurements of Cry protein levels in cotton tissue samples collected from the sampled households' main fields. The resultant dataset combines information from 593 sampled households with corresponding plant tissue diagnostics from 70 days after sowing, as well as information from 589 sampled households with corresponding diagnostics from 120 days after sowing. Our analysis indicates that 11 percent of farmers believed they were cultivating Bt cotton when, in fact, the Cry toxin was not present in the tested tissue at 70 days after sowing (i.e., a Type I error. The analysis further indicates that 5 percent of farmers believed they were cultivating non-Bt cotton when, in fact, the Cry toxin was present in the tested tissue (i.e., a Type II error. In addition, 17 percent of all sampled farmers were uncertain whether or not they were cultivating Bt cotton. Overall, 33 percent of farmers either did not know or were mistaken in their beliefs about the presence of the cry gene in the cotton they cultivated. Results also indicate that toxic protein levels in the plant tissue samples occurred below threshold levels for lethality in a significant percentage of cases, although these measurements may also be affected by factors related to tissue sample collection, handling, storage, and testing procedures. Nonetheless, results strongly suggest wide variability both in farmers' beliefs and in gene expression. Such variability has implications for policy and regulation in Pakistan

  15. Exposure and nontarget effects of transgenic Bt corn debris in streams.

    Science.gov (United States)

    Jensen, Peter D; Dively, Galen P; Swan, Christopher M; Lamp, William O

    2010-04-01

    Corn (Zea mays L.) transformed with a gene from the bacterium Bacillus thuringiensis (Bt) comprises 49% of all corn in the United States. The input of senesced corn tissue expressing the Bt gene may impact stream-inhabiting invertebrates that process plant debris, especially trichopteran species related to the target group of lepidopteran pests. Our goal was to assess risk associated with transgenic corn debris entering streams. First, we show the input of corn tissue after harvest was extended over months in a stream. Second, using laboratory bioassays based on European corn borer [Ostrinia nubilalis (Hübner)], we found no bioactivity of Cry1Ab protein in senesced corn tissue after 2 wk of exposure to terrestrial or aquatic environments. Third, we show that Bt near-isolines modify growth and survivorship of some species of invertebrates. Of the four nontarget invertebrate species fed Bt near-isolines, growth of two closely related trichopterans was not negatively affected, whereas a tipulid crane fly exhibited reduced growth rates, and an isopod exhibited reduced growth and survivorship on the Cry1Ab near-isoline but not on the stacked Cry1Ab + Cry3Bb1 near-isoline. Because of lack of evidence of bioactivity of Bt after 2 wk and because of lack of nontarget effects on the stacked near-isoline, we suggest that tissue-mediated differences, and not the presence of the Cry1Ab protein, caused the different responses among the species. Overall, our results provide evidence that adverse effects to aquatic nontarget shredders involve complex interactions arising from plant genetics and environment that cannot be ascribed to the presence of Cry1Ab proteins.

  16. Measurement of plasma protein and lipoprotein binding of pyrethroids.

    Science.gov (United States)

    Sethi, Pankaj K; Muralidhara, S; Bruckner, James V; White, Catherine A

    2014-01-01

    A simple, reliable procedure was developed to measure binding of pyrethroid insecticides to total proteins and lipoproteins of rat and human plasma. The extent of binding of (14)C-labeled deltamethrin (DLM), cis-permethrin (CIS) and trans-permethrin (TRANS) was quantified by a 3-step organic solvent extraction technique. Rat and human plasma samples, containing NaF to inhibit esterases, were spiked with a range of concentrations of each radiolabeled pyrethroid. Protein binding reached equilibrium within ~1h of incubation at 37°C. The samples were extracted in turn with: isooctane to collect the unbound fraction; 2-octanol to extract the lipoprotein-bound fraction; and acetonitrile to obtain the protein-bound fraction. Absolute recoveries of DLM, CIS and TRANS ranged from 86 to 95%. Adherence of these very lipophilic chemicals to glass and plastic was minimized by using silanized glass vials and LoBind® plastic pipettes. The method's ability to distinguish lipoprotein from protein binding was confirmed by experiments with diazepam and cyclosporine, drugs that bind selectively to albumin and lipoproteins, respectively. This procedure was effectively utilized for studies of the species-dependence of plasma protein and lipoprotein binding of three pyrethroids for inclusion in physiologically-based pharmacokinetic models of pyrethroids for use in health risk assessments of the insecticides in children and adults. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin

    Science.gov (United States)

    Ihara, Makoto; Okajima, Toshihide; Yamashita, Atsuko; Oda, Takuma; Hirata, Koichi; Nishiwaki, Hisashi; Morimoto, Takako; Akamatsu, Miki; Ashikawa, Yuji; Kuroda, Shun’ichi; Mega, Ryosuke; Kuramitsu, Seiki; Sattelle, David B.

    2008-01-01

    Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR–neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH–π interactions in the Ls-AChBP–CTD complex than in the Ls-AChBP–IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs. PMID:18338186

  18. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin.

    Science.gov (United States)

    Ihara, Makoto; Okajima, Toshihide; Yamashita, Atsuko; Oda, Takuma; Hirata, Koichi; Nishiwaki, Hisashi; Morimoto, Takako; Akamatsu, Miki; Ashikawa, Yuji; Kuroda, Shun'ichi; Mega, Ryosuke; Kuramitsu, Seiki; Sattelle, David B; Matsuda, Kazuhiko

    2008-06-01

    Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR-neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH-pi interactions in the Ls-AChBP-CTD complex than in the Ls-AChBP-IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs.

  19. Botanical insecticides inspired by plant-herbivore chemical interactions.

    Science.gov (United States)

    Miresmailli, Saber; Isman, Murray B

    2014-01-01

    Plants have evolved a plethora of secondary chemicals to protect themselves against herbivores and pathogens, some of which have been used historically for pest management. The extraction methods used by industry render many phytochemicals ineffective as insecticides despite their bioactivity in the natural context. In this review, we examine how plants use their secondary chemicals in nature and compare this with how they are used as insecticides to understand why the efficacy of botanical insecticides can be so variable. If the commercial production of botanical insecticides is to become a viable pest management option, factors such as production cost, resource availability, and extraction and formulation techniques need be considered alongside innovative application technologies to ensure consistent efficacy of botanical insecticides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Insecticide resistance in the horn fly: alternative control strategies.

    Science.gov (United States)

    Oyarzún, M P; Quiroz, A; Birkett, M A

    2008-09-01

    The horn fly, Haematobia irritans (Linnaeus 1758) (Diptera: Muscidae) is one of the most widespread and economically important pests of cattle. Although insecticides have been used for fly control, success has been limited because of the development of insecticide resistance in all countries where the horn fly is found. This problem, along with public pressure for insecticide-free food and the prohibitive cost of developing new classes of compounds, has driven the investigation of alternative control methods that minimize or avoid the use of insecticides. This review provides details of the economic impact of horn flies, existing insecticides used for horn fly control and resistance mechanisms. Current research on new methods of horn fly control based on resistant cattle selection, semiochemicals, biological control and vaccines is also discussed.

  1. Ecotoxicological Study of Insecticide Effects on Arthropods in Common Bean

    Science.gov (United States)

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon–Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots. PMID:25700537

  2. Ecotoxicological study of insecticide effects on arthropods in common bean.

    Science.gov (United States)

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon-Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  3. Distribuição espacial de Aphis gossypii (Glover (Hemiptera, Aphididae e Bemisia tabaci (Gennadius biótipo B (Hemiptera, Aleyrodidae em algodoeiro Bt e não-Bt Spatial distribution of Aphis gossypii (Glover (Hemiptera, Aphididae and Bemisia tabaci (Gennadius biotype B (Hemiptera, Aleyrodidae on Bt and non-Bt cotton

    Directory of Open Access Journals (Sweden)

    Tatiana Rojas Rodrigues

    2010-03-01

    Full Text Available Distribuição espacial de Aphis gossypii (Glover (Hemiptera, Aphididae e Bemisia tabaci (Gennadius biótipo B (Hemiptera, Aleyrodidae em algodoeiro Bt e não-Bt. O estudo da distribuição espacial de adultos de Bemisia tabaci e de Aphis gossypii nas culturas do algodoeiro Bt e não-Bt é fundamental para a otimização de técnicas de amostragens, além de revelar diferenças de comportamento de espécies não-alvo dessa tecnologia Bt entre as duas cultivares. Nesse sentido, o experimento buscou investigar o padrão da distribuição espacial dessas espécies de insetos no algodoeiro convencional não-Bt e no cultivar Bt. As avaliações ocorreram em dois campos de 5.000 m² cada, nos quais se realizou 14 avaliações com contagem de adultos da mosca-branca e colônias de pulgões. Foram calculados os índices de agregação (razão variância/média, índice de Morisita e Expoente k da Distribuição Binomial Negativa e realizados os testes ajustes das classes numéricas de indivíduos encontradas e esperadas às distribuições teóricas de freqüência (Poisson, Binomial Negativa e Binomial Positiva. Todas as análises mostraram que, em ambas as cultivares, a distribuição espacial de B. tabaci ajustou-se a distribuição binomial negativa durante todo o período analisado, indicando que a cultivar transgênica não influenciou o padrão de distribuição agregada desse inseto. Já com relação às análises para A. gossypii, os índices de agregação apontaram distribuição agregada nas duas cultivares, mas as distribuições de freqüência permitiram concluir a ocorrência de distribuição agregada apenas no algodoeiro convencional, pois não houve nenhum ajuste para os dados na cultivar Bt. Isso indica que o algodão Bt alterou o padrão normal de dispersão dos pulgões no cultivo.The study of spatial distribution of the adults of Bemisia tabaci and the colonies of Aphis gossypii on Bt and non-Bt cotton crop is fundamental for

  4. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae)

    Science.gov (United States)

    The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability o...

  5. A highly active endo-levanase BT1760 of a dominant mammalian gut commensal Bacteroides thetaiotaomicron cleaves not only various bacterial levans, but also levan of timothy grass

    DEFF Research Database (Denmark)

    Mardo, Karin; Visnapuu, Triinu; Vija, Heiki

    2017-01-01

    -levanase BT1760. The FOS are consumed by B. thetaiotaomicron, but also by other gut bacteria, including health-promoting bifidobacteria and lactobacilli. Here we characterize biochemical properties of BT1760, including the activity of BT1760 on six bacterial levans synthesized by the levansucrase Lsc3...

  6. Risks of neonicotinoid insecticides to honeybees.

    Science.gov (United States)

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-04-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations-including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure-are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees. © 2014 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc.

  7. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates present on the brush border membrane and in the peritrophic membrane of the Douglas-fir tussock moth are peritrophins

    Science.gov (United States)

    Algimantas P. Valaitis; John D. Podgwaite

    2013-01-01

    Bacillus thuringiensis (Bt) Cry1A toxin-binding sites in the Douglas fir tussock moth (DFTM) larval gut were localized using immunofluorescence microscopy. Cry1Aa, Cry1Ab and Cry1Ac all bound strongly to the DFTM peritrophic membrane (PM); weaker binding of the Cry1A toxins was observed along the apical brush border of the midgut epithelium....

  8. Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

    Energy Technology Data Exchange (ETDEWEB)

    Low, Wai Yee; Feil, Susanne C.; Ng, Hooi Ling; Gorman, Michael A.; Morton, Craig J.; Pyke, James; McConville, Malcolm J.; Bieri, Michael; Mok, Yee-Foong; Robin, Charles; Gooley, Paul R.; Parker, Michael W.; Batterham, Philip (SVIMR-A); (Melbourne)

    2010-06-14

    GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 {angstrom} resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional {sup 1}H,{sup 15}N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.

  9. Influence of one or two Bt genes transgenic cotton free living nitrogen fixers and p-solubilising microorganisms in vertisols and alfisols

    Science.gov (United States)

    Sudha, T.; Babu, R.; Biradar, D. P.; Patil, V. C.; Shirnalli, G.

    2012-04-01

    India, the largest cotton grower in the world benefited from the cultivation of genetically modified Bt transgenic cotton. Bt cotton with the single gene (cry 1Ac) contributed to increased productivity over the last eight years. But in the recent years, there has been an increasing trend to adopt two genes (cry 1Ac and cry 2Ab) transgenic cotton in India. The two gene Bt cotton hybrids were planted over a large area (57%) during 2009 than the single gene Bt cotton hybrids. In this context, the field experiments were conducted in farmers field in both Vertisols and Alfisols during monsoon season of 2009 to study the effect of a single gene Bt hybrid (RCH-2Bt, JK-99Bt, Mallika Bt, MRC-6918 Bt, Brahma Bt, RCH-708 Bt, Bunny Bt) as well as two gene Bt hybrids (RCH-2 BGII Bt, Bunny BGII Bt) compared with the non genetically modified (non-Bt) hybrid (DHH-11) on the population of free living nitrogen fixing microorganisms (Azospirillum and methylotrophs) and P-solubilizers in two different soil types under rainfed situation. Observations on microbial population were recorded at flowering and at harvest in both the soil types. Results indicated a higher population of Azospirillum, methylotrophs and P-solubilisers in the rhizosphere grown with single or two gene Bt hybrid and non-Bt hybrid at flowering stage in both the soil types. In Vertisol, significantly higher population of methylotrophs in MRC-6918 Bt (30 x 102/g of soil), P-solubilizers in RCH-2 Bt (31x103/g of soil) and Azospirillum in RCH-708 Bt (0.79 x 106 /g of soil) was recorded as compared to non-Bt hybrid DHH-11 (2 x 102/g of soil, 12 x 103/g of soil, 0.54 x 106/g of soil), respectively. Whereas, in Alfisol, significantly higher population of methylotrophs in RCH-2 Bt (13x 102/g of soil), P-solubilisers in JK-99 Bt (38 x 103/g of soil) and Azospirillum in RCH-2Bt (0.57 x 106/g of soil) was recorded over non Bt hybrid DHH-11 (2x 102/g of soil, 13x 103/g of soil and 0.17 x106/g of soil) respectively. Our results

  10. Larval Dispersal of Spodoptera frugiperda Strains on Bt Cotton: A Model for Understanding Resistance Evolution and Consequences for its Management.

    Science.gov (United States)

    Malaquias, José B; Godoy, Wesley A C; Garcia, Adriano G; Ramalho, Francisco de S; Omoto, Celso

    2017-11-23

    High dispersal of Lepidoptera larvae between non-Bt and Bt cotton plants can favour the evolution of insect resistance; however, information on host acceptance of neonates in tropical transgenic crops is scarce. Therefore, the purposes of this study were as follows: (i) to investigate the feeding behaviour of susceptible and Cry1F-resistant strains of Spodoptera frugiperda (J.E. Smith) on Bt and non-Bt cotton (Gossypium hirsutum L.) varieties and (ii) to understand the possible effects of cotton field contamination on the dispersal and infestation capacity of S. frugiperda larvae by using an individual-based model. The main results of this paper are as follows: (1) the highest post-feeding larval dispersal of the Cry1F-resistant strain occurred at an exposure time of 18-24 h; (2) via video tracking assays, we found that the least distance moved was by larvae resistant to Cry1F on non-Bt cotton; and (3) the model indicated differences in mobility capacity between Bt and non-Bt cotton. We conclude that resistant neonates exhibit sedentary behaviour. Our report represents the first findings concerning the fitness cost of larval behaviour traits of S. frugiperda associated with Cry1F resistance in Brazilian populations.

  11. Molecular screening of insecticides with sigma glutathione S-transferases (GST) in cotton aphid Aphis gossypii using docking.

    Science.gov (United States)

    Gawande, Nilesh Dinkar; Subashini, Swaminathan; Murugan, Marimuthu; Subbarayalu, Mohankumar

    2014-01-01

    Glutathione S-transferases (GSTs) are one of the major families of detoxifying enzymes that detoxifies different chemical compounds including insecticides in different insect species. Among the GST subclasses, sigma GSTs are found to be the most abundant and conserved among different insect orders. These GSTs are found to play an important role in lipid peroxidation as well as detoxification. Cotton aphid, Aphis gossypii is the most damaging sucking pest with a wide range of hosts and vector of more than 50 plant viruses. Resistance to insecticides in A. gossypii is reported in India and in other countries. Glutathione S transferases (GSTs), an oxidative enzyme is understood to have a role in insecticide resistance and plant resistance breakdown. In relation to this, we have focused on the sigma 1 (GenBank Accession No: JN989964.1) and sigma 2 (GenBank Accession No: JN989965.1) GSTs of A. gossypii and their interaction with plant natural compounds and insecticides. Molecular screening of different insecticides (Chlorphinamidine, Mevinphos, Nitenpyrum, Piperonyl butoxide, Tetrachlorovinphos, Pyrethrins, Resmetrin, Pirimicarb and Dinotefuran) and known plant derived natural compounds (Catechin, Gossypol, Myrcene, Kaempferol, P-coumaric acid, Quercetin, Tannins, α-mangostin, Capsaicin, Cinnamic acid, Citronellal, Curcumin, Dicumarol, Ellagic acid, Eugenol, Geriniol, Isoeugenol, Juglone, Menadione, Methyl jasmonate, Morin, Myricetin, Myristicin, Piperine, Plumbagin, Tangitinin C, Thymol, Vanillin, Alpha pipene, α-terpineol Apigenin and β-Caryophyllene) with sigma 1 and sigma 2 GST protein models was completed using Maestro 9.3 (Schrodinger, USA). This exercise showed the binding of piperonyl butoxide with sigma 1 GST and tannin with sigma 2 GST for further consideration.

  12. Progress of the BT-EdF-CEA project. The lithium polymer battery; Avancees du projet BT-EdF-CEA. Batterie lithium polymere

    Energy Technology Data Exchange (ETDEWEB)

    Marginedes, D.; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Baudry, P.; Lascaud, S. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Bloch, D.; Lebrun, N. [CEA Grenoble, CEREM, 38 (France)

    1996-12-31

    The lithium-polymer energy storage technology requires the production of thin films of huge surface. The BT-EdF-CEA consortium has studied the various manufacturing techniques of these films and their assembly. The process was chosen according to its productivity, low expensiveness, ecological impact and energy performances with capacities reaching 40 Ah. This paper explains: the objectives and specifications of the project, the advantage of the consortium and the role of the different partners, the results (coating, dry extrusion and battery element manufacturing techniques), and the electrochemical performances of the elements. (J.S.)

  13. Rice Production without Insecticide in Smallholder Farmer's Field

    Directory of Open Access Journals (Sweden)

    M. P. Ali

    2017-05-01

    Full Text Available Highlights:Use of perching, sweeping, and need based insecticide (IPM technique useage produce at par yields compared to prophylactic insecticide useage in rice fields.There exists a technique that can reduce 75% of insecticide useage in rice field.The results were obtained in cooperation between smallholder rice farmers and researchers of Bangladesh.Currently rice protection from insect pests solely depends on chemical pesticides which have tremendous impact on biodiversity, environment, animal, and human health. To reduce their impact from our society we need to cut pesticide use from agricultural practices. To address this issue, we did an experiment to identify realistic solutions that could help farmers build sustainable crop protection systems and minimize useage of insecticides and thus reduce the impact of pesticides in the environment. Innovations developed jointly by farmers and researchers and evaluated for their potential to be adopted by more farmers. In this paper we tested four management practices jointly with smallholder farmer fields in order to select the best one. Four management practices were used namely, T1 = Prophylactic use of insecticide where insecticide was applied in rice field at every 15 days interval without judging the infestation level; T2 = Perching (that is, placing roosting (perching sites for insectivorous birds within the rice field and concurrent sweep net samples along with need-based insecticide application; T3 = Perching only; and T4 = Farmer's own practices. The results revealed that routine application of insecticides for crop protection is not mandatory which is commonly found at use in rice farmers. In our experiment, where prophylactic method or farmers used 3–4 times insecticides without judging the insect pests infestation level, the similar pest population was found when compared to the field where insecticide was not applied. Our management system reduced by 75% the use of insecticides even

  14. Biological characteristics of black armyworm Spodoptera cosmioides on genetically modified soybean and corn crops that express insecticide Cry proteins

    Directory of Open Access Journals (Sweden)

    Gabriela Vieira Silva

    2016-09-01

    Full Text Available ABSTRACT This study aimed to evaluate the development and reproduction of the black armyworm, Spodoptera cosmioides when larvae fed on leaves of Bt-corn hybrids, expressing a single Cry1F and also Cry1F, Cry1A.105 and Cry2Ab2 in pyramided corn and their non-Bt-isoline (hybrid 2B688, as well as on leaves of two soybean isolines expressing the Cry1Ac protein and its non-Bt isoline (A5547-227. We also assessed the effect of these Bt and non-Bt plants on the leaf consumption rate of S. cosmioides larvae. This pest was unable to develop when fed on any of the corn isolines (Bt and non-Bt. When both 1st and 3rd instar larvae were fed on corn leaf, mortality was 100% in both Bt and non-Bt corn. In contrast, when corn leaves were offered to 5th instar larvae, there were survivors. Defoliation and leaf consumption was higher with non-Bt corn than with both of the Bt corn isolines. There was no negative effect of Bt soybean leaves on the development and reproduction of S. cosmioides with respect to all evaluated parameters. Our study indicates that both Bt and non-Bt corn adversely affect the development of S. cosmioides while Bt soybean did not affect its biology, suggesting that this lepidopteran has major potential to become an important pest in Bt soybean crops.

  15. Effect of insertion of Bt gene in corn and different fumonisin content on growth performance of weaned piglets

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2010-05-01

    Full Text Available The objective of this study was to compare the effect of Bt corn and isogenic corn on the growth of weaned piglets. One hundred and twenty-eight weaned piglets weighing 8.8±1.27 kg live weight were randomly assigned to 4 groups of 32 animals each (16 castrated males and 16 females. Bt corn (line MON810 and isogenic corn were produced at two farms located in the provinces of Lodi and Venice (northern Italy. The Bt corn had the same chemical composition as the isogenic corn but a lower content of fumonisin B1 (FB1. The experimental period (35 days was in 2 phases, 0-14 d and 15-35 d. There was no significant difference in average daily gain (ADG among groups during the first feeding phase. Compared to animals fed isogenic corn, the piglets fed Bt maize gained more weight during the second feeding phase (Bt: 464.1 g/d, isogenic: 429.1 g/d; P<0.05. Also, the ADG over the entire trial was higher in piglets fed Bt corn versus piglets fed isogenic corn (Bt: 396.4 g/d, isogenic: 374.1 g/d; P<0.05. The ADG of the whole period decreased linearly (P<0.05 with respect to the FB1 content of the diet. Final weight was higher in piglets fed the diet containing Bt corn (Bt: 22.68 kg, isogenic: 21.83 kg; P<0.05. No differences in feed intake and in the feed:gain ratio were observed, although a linear response between FB1 and feed:gain ratio in first 14 days of the experiment was detected.

  16. Effect of insertion of Bt gene in corn and different fumonisin content on growth performance of weaned piglets

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2011-04-01

    Full Text Available The objective of this study was to compare the effect of Bt corn and isogenic corn on the growth of weaned piglets. One hundred twenty-eight weaned piglets weighing 8.8 ±1.27 kg live weight were randomly assigned to 4 groups of 32 animals each (16 castrated males and 16 females. Bt corn (line MON810 and isogenic corn were produced at two farms located in the Lodi and Venezia provinces (northern Italy. Bt corn had the same chemical composition as the isogenic corn but a lower content of fumonisin B1 (FB1. The experimental period (35 days was divided into two phases: 0-14 d and 15-35 d. There was no significant difference in average daily gain (ADG among groups during the first feeding phase. Compared to animals fed isogenic corn, the piglets fed Bt maize gained more weight during the second feeding phase (Bt: 464.1 g/d, isogenic: 429.1 g/d; P < 0.05. Also, the ADG over the entire trial was higher in piglets fed Bt corn versus piglets fed isogenic corn (Bt: 396.4 g/d, isogenic: 374.1 g/d; P < 0.05. The ADG of the whole period decreased linearly (P<0.05 with respect to FB1 content of diet. Final weight was higher in piglets fed the diet containing Bt corn (Bt: 22.68 kg, isogenic: 21.83 kg; P < 0.05. No differences in feed intake and in the feed:gain ratio were observed, however a linear response between FB1 and feed:gain ratio in first 14 days of the experiment was detected.

  17. Nitenpyram analogues with 1,4-dihydropyridine fixed cis-configuration:synthesis,insecticidal activities and molecular docking studies

    Directory of Open Access Journals (Sweden)

    XUE Sijia

    2013-08-01

    Full Text Available A novel series of Nitenpyram analogues(Ia-Ij with 1,4-dihydropyridine fixed cis-configuration were designed and synthesized.Preliminary bioassays showed that most of them exhibited good insecticidal activities against Aphis medicagini and Brown rice planthopper at 500 mg/L and 100 mg/L.The analogue Ij afforded the best activity in vitro,that had 100% mortality at 4 mg/L against Brown rice planthopper and Aphis medicagin.In addition,the molecular docking simulations revealed that the structural uniqueness of these analogues may lead to a unique molecular recognition and binding mode,and the results explained the SARs observed in vitro, which shed light on the novel insecticidal mechanism of these novel nitenpyam analogues.

  18. Bacillus thuringiensis toxins trigger receptor shedding from gypsy moth midgut cells

    Science.gov (United States)

    Algimantas P. Valaitis

    2007-01-01

    The mechanism of action of the Cry1 insecticidal proteins produced by Bacillus thuringiensis (Bt) begins with the processing of these proteins in the larval gut. After proteolytic activation, the Bt toxins bind to specific midgut receptors and insert into the membrane of the gut epithelial cells, causing insect death.

  19. Laboratory studies of the effects of reduced prey choice caused by Bt plants on a predatory insect.

    Science.gov (United States)

    Schuler, T H; Clark, A J; Clark, S J; Poppy, G M; Stewart, C N; Denholm, I

    2005-06-01

    Crops transformed to express Bacillus thuringiensis (Bt) toxins can cause close to 100% mortality of certain target pest species. This study assessed the effect of target pest reduction on the predatory insect Chrysoperla carnea (Stephens) in the presence of alternative prey. Numbers of lacewings recovered from Bt oilseed rape (cultivar Oscar, event O52) did not differ significantly from numbers of lacewings recovered from conventional oilseed rape in cage experiments with the target pest Plutella xylostella (Linnaeus) and the non-target pest Myzus persicae (Sulzer) when aphid densities were high. However, significantly fewer lacewings were recovered from Bt plants as aphid densities were lowered. Lacewing weights were not affected by plant type.

  20. Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana.

    Science.gov (United States)

    Kumar, Muthukannan Satheesh; Kabra, Akhil N; Min, Booki; El-Dalatony, Marwa M; Xiong, Jiuqiang; Thajuddin, Nooruddin; Lee, Dae Sung; Jeon, Byong-Hun

    2016-01-01

    The effect of insecticides (acephate and imidacloprid) on a freshwater microalga Chlamydomonas mexicana was investigated with respect to photosynthetic pigments, carbohydrate and protein contents, fatty acids composition and induction of stress indicators including proline, superoxide dismutase (SOD) and catalase (CAT). C. mexicana was cultivated with 1, 5, 10, 15, 20 and 25 mg L(-1) of acephate and imidacloprid. The microalga growth increased with increasing concentrations of both insecticides up to 15 mg L(-1), beyond which the growth declined compared to control condition (without insecticides). C. mexicana cultivated with 15 mg L(-1) of both insecticides for 12 days was used for further analysis. The accumulation of photosynthetic pigments (chlorophyll and carotenoids), carbohydrates and protein was decreased in the presence of both insecticides. Acephate and imidacloprid induced the activities of superoxide dismutase (SOD) and catalase (CAT) and increased the concentration of proline in the microalga, which play a defensive role against various environmental stresses. Fatty acid analysis revealed that the fraction of polyunsaturated fatty acids decreased on exposure to both insecticides. C. mexicana also promoted 25 and 21% removal of acephate and imidacloprid, respectively. The biochemical changes in C. mexicana on exposure to acephate and imidacloprid indicate that the microalga undergoes an adaptive change in response to the insecticide-induced oxidative stress.