WorldWideScience

Sample records for binding assays revealed

  1. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels

    Directory of Open Access Journals (Sweden)

    Cerrone Cabanos

    2017-08-01

    Full Text Available Lipid regulation of ion channels by low-abundance signaling lipids phosphatidylinositol 4,5-bisphosphate (PIP2 and phosphatidic acid (PA has emerged as a central cellular mechanism for controlling ion channels and the excitability of nerves. A lack of robust assays suitable for facile detection of a lipid bound to a channel has hampered the probing of the lipid binding sites and measuring the pharmacology of putative lipid agonists for ion channels. Here, we show a fluorescent PIP2 competition assay for detergent-purified potassium channels, including TWIK-1-related K+-channel (TREK-1. Anionic lipids PA and phosphatidylglycerol (PG bind dose dependently (9.1 and 96 μM, respectively and agonize the channel. Our assay shows PIP2 binds with high affinity (0.87 μM but surprisingly can directly antagonize TREK-1 in liposomes. We propose a model for TREK-1 lipid regulation where PIP2 can compete with PA and PG agonism based on the affinity of the lipid for a site within the channel.

  2. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available ABCB6 is a member of the adenosine triphosphate (ATP-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS, can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.

  3. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  4. Chromatin immunoprecipitation assays revealed CREB and serine 133 phospho-CREB binding to the CART gene proximal promoter.

    Science.gov (United States)

    Rogge, George A; Shen, Li-Ling; Kuhar, Michael J

    2010-07-16

    Both over expression of cyclic AMP response element binding protein (CREB) in the nucleus accumbens (NAc), and intra-accumbal injection of cocaine- and amphetamine-regulated transcript (CART) peptides, have been shown to decrease cocaine reward. Also, over expression of CREB in the rat NAc increased CART mRNA and peptide levels, but it is not known if this was due to a direct action of P-CREB on the CART gene promoter. The goal of this study was to test if CREB and P-CREB bound directly to the CRE site in the CART promoter, using chromatin immunoprecipitation (ChIP) assays. ChIP assay with anti-CREB antibodies showed an enrichment of the CART promoter fragment containing the CRE region over IgG precipitated material, a non-specific control. Forskolin, which was known to increase CART mRNA levels in GH3 cells, was utilized to show that the drug increased levels of P-CREB protein and P-CREB binding to the CART promoter CRE-containing region. A region of the c-Fos promoter containing a CRE cis-regulatory element was previously shown to bind P-CREB, and it was used here as a positive control. These data suggest that the effects of CREB over expression on blunting cocaine reward could be, at least in part, attributed to the increased expression of the CART gene by direct interaction of P-CREB with the CART promoter CRE site, rather than by some indirect action. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Andrew V Oleinikov

    2009-04-01

    Full Text Available Plasmodium falciparum-infected erythrocytes bind endothelial receptors to sequester in vascular beds, and binding to ICAM1 has been implicated in cerebral malaria. Binding to ICAM1 may be mediated by the variant surface antigen family PfEMP1: for example, 6 of 21 DBLbetaC2 domains from the IT4 strain PfEMP1 repertoire were shown to bind ICAM1, and the PfEMP1 containing these 6 domains are all classified as Group B or C type. In this study, we surveyed binding of ICAM1 to 16 DBLbetaC2 domains of the 3D7 strain PfEMP1 repertoire, using a high throughput Bioplex assay format. Only one DBL2betaC2 domain from the Group A PfEMP1 PF11_0521 showed strong specific binding. Among these 16 domains, DBL2betaC2(PF11_0521 best preserved the residues previously identified as conserved in ICAM1-binding versus non-binding domains. Our analyses further highlighted the potential role of conserved residues within predominantly non-conserved flexible loops in adhesion, and, therefore, as targets for intervention. Our studies also suggest that the structural/functional DBLbetaC2 domain involved in ICAM1 binding includes about 80 amino acid residues upstream of the previously suggested DBLbetaC2 domain. DBL2betaC2(PF11_0521 binding to ICAM1 was inhibited by immune sera from east Africa but not by control US sera. Neutralizing antibodies were uncommon in children but common in immune adults from east Africa. Inhibition of binding was much more efficient than reversal of binding, indicating a strong interaction between DBL2betaC2(PF11_0521 and ICAM1. Our high throughput approach will significantly accelerate studies of PfEMP1 binding domains and protective antibody responses.

  6. In Situ Protein Binding Assay Using Fc-Fusion Proteins.

    Science.gov (United States)

    Padmanabhan, Nirmala; Siddiqui, Tabrez J

    2017-01-01

    This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.

  7. Rapid, radiochemical-ligand binding assay for methotrexate

    International Nuclear Information System (INIS)

    Caston, J.D.

    1976-01-01

    A radiochemical ligand binding assay for methotrexate is provided. A binder factor comprising a partially purified dihydrofolic acid reductase preparation is employed. The binder factor is conveniently prepared by homogenizing a factor containing animal organ such as liver, and extracting with isotonic saline and ammonium sulfate. A binder cofactor, NADPH 2 , is also employed in the binding reaction. The procedure contemplates both direct and sequential assay techniques, and it is not interfered with by vast excesses of many natural folate derivatives. 12 claims, 6 drawing figures

  8. Comparison of the Hershberger assay and androgen receptor binding assay of twelve chemicals.

    Science.gov (United States)

    Yamasaki, Kanji; Sawaki, Masakuni; Noda, Shoji; Muroi, Takako; Takakura, Saori; Mitoma, Hideo; Sakamoto, Satoko; Nakai, Makoto; Yakabe, Yoshikuni

    2004-02-15

    We performed the Hershberger assay of 12 chemicals based on the OECD draft protocol. The chemicals tested by the Hershberger assay were phthalic acid di-n-hexyl ester, phthalic acid di-n-amyl ester, phthalic acid di-n-propyl ester, diethylstilbestrol, 17beta-estradiol, tamoxifen, 5alpha-dihydrotestosterone, dichlorodiphenyldichloroethane, cyproterone acetate, 6alpha-methyl-17alpha-hydroxy-progesterone, atrazine, and spironolactone. Phthalic acid di-n-hexyl ester, phthalic acid di-n-amyl ester, and phthalic acid di-n-propyl ester are phthalates; diethylstilbestrol and 17beta-estradiol are estrogenic chemicals; tamoxifen is partial estrogen receptor antagonist with mainly estrogenic properties; 5alpha-dihydrotestosterone is an androgen derivatives; dichlorodiphenyldichloroethane is a reference androgen antagonistic chemical; cyproterone acetate, 6alpha-methyl-17alpha-hydroxy-progesterone, and spironolactone have an androgenic steroid structure and are known as androgen antagonistic chemicals; and atrazine is a reference endocrine disruptor. We also subjected these chemicals to the receptor binding assay for androgen. A clear androgen agonistic effect was detected in 5alpha-dihydrotestosterone, and an androgen antagonistic effect was observed in five chemicals: cyproterone acetate, spironolactone, 6alpha-methyl-17alpha-hydroxy-progesterone, phthalic acid di-n-amyl ester, and dichlorodiphenyldichloroethane. By contrast, diethylstilbestrol, 17beta-estradiol, tamoxifen, 5alpha-dihydrotestosterone, dichlorodiphenyldichloroethane, cyproterone acetate, 6alpha-methyl-17alpha-hydroxy-progesterone, and spironolactone were positive in the receptor binding assay for androgen. Three estrogenic chemicals, diethylstilbestrol, 17beta-estradiol, and tamoxifen, were negative in the Hershberger assay with receptor binding affinity. On the other hand, the Hershberger assays of three phthalates were performed at the same dosages, and the results showed androgen antagonistic affinity only

  9. A sensitive competitive binding assay for exogenous and endogenous heparins

    International Nuclear Information System (INIS)

    Dawes, J.; Pepper, D.S.

    1982-01-01

    A new type of assay for heparins has been devised, in which the test material competes with 125 I-labelled heparin for binding to protamine-Sepharose. The assay is very sensitive and will measure heparin concentrations down to 10 ng ml-1. It responds to both the degree of sulphation and the molecular weight of acidic polysaccharides, but is independent of their biological activities. It can be used to quantitate heparins in biological fluids after pretreatment of the samples with protease. In this way endogenous heparins were measured in normal human serum, plasma and urine. The assay is extremely versatile and has great potential for the investigation of endogenous and exogenous heparins

  10. Specific binding-adsorbent assay method and test means

    International Nuclear Information System (INIS)

    1981-01-01

    A description is given of an improved specific binding assay method and test means employing a nonspecific adsorbent for the substance to be determined, particularly hepatitis B surface (HBsub(s)) antigen, in its free state or additionally in the form of its immune complex. The invention is illustrated by 1) the radioimmunoadsorbent assay for HBsub(s) antigen, 2) the radioimmunoadsorbent assay for HBsub(s) antigen in the form of immune complex with antibody, 3) a study of adsorption characteristics of various anion exchange materials for HBsub(s) antigen, 4) the use of hydrophobic adsorbents in a radioimmunoadsorbent assay for HBsub(s) antigen and 5) the radioimmunoadsorbent assay for antibody to HBsub(s) antigen. The advantages of the present method for detecting HBsub(s) antigen compared to previous methods include the manufacturing advantages of eliminating the need for insolubilised anti-HBsub(s) and the advantages of a single incubation step, fewer manipulations, storability of adsorbent materials, increased sensitivity and versatility of detecting HBsub(s) antigen in the form of its immune complex if desired. (U.K.)

  11. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    Science.gov (United States)

    Hardison, D Ransom; Holland, William C; McCall, Jennifer R; Bourdelais, Andrea J; Baden, Daniel G; Darius, H Taiana; Chinain, Mireille; Tester, Patricia A; Shea, Damian; Quintana, Harold A Flores; Morris, James A; Litaker, R Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  12. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    Directory of Open Access Journals (Sweden)

    D Ransom Hardison

    Full Text Available Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs. One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R. However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R in certain labs. A fluorescence based receptor binding assay (RBA(F was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2 for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1. Fish (N = 61 of six different species were screened using the RBA(F. Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a correlated well (R2 = 0.71 with those of the RBA(F, given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F, which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F advantages include the long-term (> 5 years stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R. The RBA(F is cost-effective, allows high sample

  13. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Binding of 3H-iloprost to rat gastric mucosa: a pitfall in performing radioligand binding assays

    International Nuclear Information System (INIS)

    Beinborn, M.; Kromer, W.; Staar, U.; Sewing, K.F.

    1985-01-01

    Binding of 3 H-iloprost was studied in a 20,000 x g sediment of the rat gastric mucosa. When pH in both test tubes for total and non-specific binding was kept identical, no displaceable binding of iloprost could be detected. When no care was taken to keep the pH identical in corresponding test tubes of the binding assay, changes in pH simulated specific and displaceable binding of iloprost. Therefore it is concluded that - in contrast to earlier reports - it is not possible to demonstrate specific iloprost binding using the given method

  15. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics.

    Directory of Open Access Journals (Sweden)

    Donald W Lee

    Full Text Available With the development of single-particle tracking (SPT microscopy and host membrane mimics called supported lipid bilayers (SLBs, stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data

  16. The development of a high-content screening binding assay for the smoothened receptor.

    Science.gov (United States)

    Bee, Weilin Tiger; Xie, Wensheng; Truong, Maggie; Will, Matthew; Turunen, Brandon; Zuercher, William J; McMillan, Lynette; Li, Hu; Hornberger, Keith R; Davenport, Elizabeth A; Ames, Robert S; Kallal, Lorena A

    2012-08-01

    In this study, the development of an image-based high-content screening (HCS) binding assay for the seven-transmembrane (7TM) receptor Smoothened (Smo) is described. Using BacMam-based gene delivery of Smo, BODIPY-cyclopamine as a fluorescent probe, and a confocal imaging system, a robust 384-well assay that could be used for high-throughput compound profiling activities was developed. The statistically robust HCS binding assay was developed through optimization of multiple parameters, including cell transduction conditions, Smo expression levels, the image analysis algorithm, and staining procedures. Evaluation of structurally diverse compounds, including functional Smo activators, inhibitors, and related analogs, demonstrated good compound potency correlations between high-content imaging binding, membrane fluorescence polarization binding, and gene reporter assays. Statistical analysis of data from a screening test set of compounds at a single 10-µM concentration suggested that the high-content imaging Smo binding assay is amenable for use in hit identification. The 384-well HCS assay was rapidly developed and met statistical assay performance targets, thus demonstrating its utility as a fluorescent whole-cell binding assay suitable for compound screening and profiling.

  17. New binding mode to TNF-alpha revealed by ubiquitin-based artificial binding protein.

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    Full Text Available A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1:3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins--designed ankyrin repeat proteins--without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies.

  18. Peptide Binding to HLA Class I Molecules: Homogenous, High-Throughput Screening, and Affinity Assays

    DEFF Research Database (Denmark)

    Harndahl, Mikkel; Justesen, Sune Frederik Lamdahl; Lamberth, Kasper

    2009-01-01

    The Human MHC Project aims at large-scale description of peptide-HLA binding to a wide range of HLA molecules covering all populations of the world and the accompanying generation of bioinformatics tools capable of predicting binding of any given peptide to any given HLA molecule. Here, the authors...... the luminescent oxygen channeling immunoassay technology (abbreviated LOCI and commercialized as AlphaScreen (TM)). Compared with an enzyme-linked immunosorbent assay-based peptide-HLA class I binding assay, the LOCI assay yields virtually identical affinity measurements, although having a broader dynamic range...

  19. Competitive binding thyroid assay with improved bound-free separation step

    International Nuclear Information System (INIS)

    1979-01-01

    A competitive binding assay is described for serum thyroid hormone using 125 I-labelled thyroid hormone and exogenous thyroid hormone binding protein. The unbound thyroid hormone is separated from thyroid hormone bound to thyroid hormone binding protein using an intermediate base anion exchange resin. This resin comprises tertiary and quaternary amine groups on a polyalkyleneamine lattice and is compressed with microcrystalline cellulose in a tablet form. The assay technique of the present invention employing an intermediate base anion resin was found to give superior results compared with alternative assay techniques used in serum thyroid hormone estimation. (UK)

  20. A novel assay reveals hygrotactic behavior in Drosophila.

    Directory of Open Access Journals (Sweden)

    Feiteng Ji

    Full Text Available Humidity is one of the most important factors that determines the geographical distribution and survival of terrestrial animals. The ability to detect variation in humidity is conserved across many species. Here, we established a novel behavioral assay that revealed the thirsty Drosophila exhibits strong hygrotactic behavior, and it can locate water by detecting humidity gradient. In addition, exposure to high levels of moisture was sufficient to elicit proboscis extension reflex behavior in thirsty flies. Furthermore, we found that the third antennal segment was necessary for hygrotactic behavior in thirsty flies, while arista was required for the avoidance of moist air in hydrated flies. These results indicated that two types of hygroreceptor cells exist in Drosophila: one located in the third antennal segment that mediates hygrotactic behavior in thirst status, and the other located in arista which is responsible for the aversive behavior toward moist air in hydration status. Using a neural silencing screen, we demonstrated that synaptic output from the mushroom body α/β surface and posterior neurons was required for both hygrotactic behavior and moisture-aversive behavior.

  1. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength.

    Directory of Open Access Journals (Sweden)

    Taylor R Paskin

    Full Text Available Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli, planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green, as well as ultraviolet (UV and infrared (IR which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV causing the most intense photophobic responses while longer wavelengths produce no effect (red or an apparent attraction (IR. In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment.

  2. IgG subclasses quantitation: Analytical performance of The Binding Site SPAPLUS® human assay and comparison with Siemens BNII® assay.

    Science.gov (United States)

    Sarnago, Ana; Pascual, Rosa M; Moreno, María J; Laíz, Begoña; Fuster, Oscar

    2018-01-01

    Accurate evaluation of analyzers is highly recommended before these devices are broadly introduced for routine testing. Concerning quantification of IgG subclasses (IgGSc), standardization has not yet been reached and thus different assays might lead to different results. Here we report the analytical performances of The Binding Site (TBS) SPA PLUS ® human IgGSc assay and the concordance with the Siemens BNII® human IgGSc assay. We evaluated precision, LoB, LoD and linearity of TBS SPA PLUS ® human IgGSc immunoassay. Quantitation of IgGSc in 53 patients' serum samples was performed in parallel on both analyzers. Results from both assays were compared. Analytical performances of the TBS SPA PLUS ® human IgGSc assay are acceptable for routine clinical use. According to the method comparison study, TBS assay measures lower values than Siemens assay for IgG1 and IgG4, whereas for IgG2 and IgG3 TBS provides greater values. All assays present a proportional bias, greater in the case of IgG3 and IgG4 assays. Individual subclass agreement, based on the classification of samples within three categories (low, normal and high) according to assay-specific reference intervals, range from 75% (IgG1) to 92% (IgG2). However, total classification agreement over all four subclasses only account for 55% of samples. Results obtained from both assays are not interchangeable. Standardization of IgGSc assay and review of the reference ranges must be accomplished in order to achieve a higher degree of agreement between different methods. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Identification of Lipid Binding Modulators Using the Protein-Lipid Overlay Assay.

    Science.gov (United States)

    Tang, Tuo-Xian; Xiong, Wen; Finkielstein, Carla V; Capelluto, Daniel G S

    2017-01-01

    The protein-lipid overlay assay is an inexpensive, easy-to-implement, and high-throughput methodology that employs nitrocellulose membranes to immobilize lipids in order to rapid screen and identify protein-lipid interactions. In this chapter, we show how this methodology can identify potential modulators of protein-lipid interactions by screening water-soluble lipid competitors or even the introduction of pH changes during the binding assay to identify pH-dependent lipid binding events.

  4. Flow Cytometry-Based Bead-Binding Assay for Measuring Receptor Ligand Specificity

    NARCIS (Netherlands)

    Sprokholt, Joris K.; Hertoghs, Nina; Geijtenbeek, Teunis B. H.

    2016-01-01

    In this chapter we describe a fluorescent bead-binding assay, which is an efficient and feasible method to measure interaction between ligands and receptors on cells. In principle, any ligand can be coated on fluorescent beads either directly or via antibodies. Binding between ligand-coated beads

  5. Liposome-binding assays to assess specificity and affinity of phospholipid-protein interactions

    NARCIS (Netherlands)

    Julkowska, M.M.; Rankenberg, J.M.; Testerink, C.

    2013-01-01

    Protein-lipid interactions play an important role in cellular protein relocation, activation and signal transduction. The liposome-binding assay is a simple and inexpensive method to examine protein-lipid binding in vitro. The phospholipids used for liposome production are dried and hydrated.

  6. Development of homogeneous luminescence assays for histone demethylase catalysis and binding.

    Science.gov (United States)

    Kawamura, Akane; Tumber, Anthony; Rose, Nathan R; King, Oliver N F; Daniel, Michelle; Oppermann, Udo; Heightman, Tom D; Schofield, Christopher

    2010-09-01

    Covalent modifications to histones play important roles in chromatin dynamics and the regulation of gene expression. The JumonjiC (JmjC)-containing histone demethylases (HDMs) catalyze the demethylation of methylated lysine residues on histone tails. Here we report the development of homogeneous luminescence-based assay methods for measuring the catalytic activity and the binding affinities of peptides to HDMs. The assays use amplified luminescent proximity homogeneous assay (ALPHA) technology, are sensitive and robust, and can be used for small molecule inhibitor screening of HDMs. We have profiled known inhibitors of JMJD2E and demonstrate a correlation between the inhibitor potencies determined by the ALPHA and other types of assays. Although this study focuses on the JMJD2E isoform, the catalytic turnover and binding assays described here can be used in studies on other HDMs. The assays should be useful for the development of small molecule inhibitors selective for HDM isoforms. 2010 Elsevier Inc. All rights reserved.

  7. Progress on the application of ligand receptor binding assays in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zhou Xue; Qian Jinping; Kong Aiying; Zhu Lin

    2010-01-01

    Receptor binding assay is an important drug screening method, which can quickly and inexpensively study the interactions between the targeted receptor and the potential ligands in vitro and provide the information of the relative binding affinity of ligand-receptor. The imaging of many radiopharmaceuticals is based on highly selective radioligand-receptor binding. The technique plays an important role in the design and screening of receptor-targeting radiopharmaceuticals. (authors)

  8. A peptide-binding assay for the disease-associated HLA-DQ8 molecule

    DEFF Research Database (Denmark)

    Straumfors, A; Johansen, B H; Vartdal, F

    1998-01-01

    The study of peptide binding to HLA class II molecules has mostly concentrated on DR molecules. Since many autoimmune diseases show a primary association to particular DQ molecules rather than DR molecules, it is also important to study the peptide-binding properties of DQ molecules. Here we report...... a biochemical peptide-binding assay for the type I diabetes-associated DQ8, i.e. DQ (alpha1*0301, beta1*0302), molecule. Affinity-purified DQ8 molecules were tested in peptide-binding assays using a radiolabelled influenza haemagglutinin (Ha) peptide encompassing positions 255-271(Y) as an indicator peptide...... of 43 peptides of different lengths and sequences. The DQ8 molecules showed a different pattern of peptide binding compared to a previously studied DQ2 molecule. Peptides derived from thyroid peroxidase, HLA-DQ(alpha1*0301), HLA-DQ(alpha1*0302), retinol receptor and p21ras were among the high...

  9. A robust assay to measure DNA topology-dependent protein binding affinity.

    Science.gov (United States)

    Litwin, Tamara R; Solà, Maria; Holt, Ian J; Neuman, Keir C

    2015-04-20

    DNA structure and topology pervasively influence aspects of DNA metabolism including replication, transcription and segregation. However, the effects of DNA topology on DNA-protein interactions have not been systematically explored due to limitations of standard affinity assays. We developed a method to measure protein binding affinity dependence on the topology (topological linking number) of supercoiled DNA. A defined range of DNA topoisomers at equilibrium with a DNA binding protein is separated into free and protein-bound DNA populations using standard nitrocellulose filter binding techniques. Electrophoretic separation and quantification of bound and free topoisomers combined with a simple normalization procedure provide the relative affinity of the protein for the DNA as a function of linking number. Employing this assay we measured topology-dependent DNA binding of a helicase, a type IB topoisomerase, a type IIA topoisomerase, a non-specific mitochondrial DNA binding protein and a type II restriction endonuclease. Most of the proteins preferentially bind negatively supercoiled DNA but the details of the topology-dependent affinity differ among proteins in ways that expose differences in their interactions with DNA. The topology-dependent binding assay provides a robust and easily implemented method to probe topological influences on DNA-protein interactions for a wide range of DNA binding proteins. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.

  10. Synthesis of Sulochrin-125I and Its Binding Affinity as α-Glucosidase Inhibitor using Radioligand Binding Assay (RBA Method

    Directory of Open Access Journals (Sweden)

    W. Lestari

    2014-04-01

    Full Text Available Most of diabetics patients have type 2 diabetes mellitus or non insulin dependent diabetes mellitus. Treatment type 2 diabetes mellitus can be done by inhibiting α-glucosidase enzyme which converts carbohydrates into glucose. Sulochrin is one of the potential compounds which can inhibit the function of α-glucosidase enzyme. This study was carried out to obtain data of sulochrin binding with α-glucosidase enzyme as α-glucosidase inhibitor using Radioligand Binding Assay (RBA method. Primary reagent required in RBA method is labeled radioactive ligand (radioligand. In this study, the radioligand was sulochrin-125I and prior to sulochrin-125I synthesis, the sulochrin-I was synthesized. Sulochrin-I and sulochrin-125I were synthesized and their bindings were studied using Radioligand Binding Assay method. Sulochrin-I was synthesized with molecular formula C17H15O7I and molecular weight 457.9940. Sulochrin-125I was synthesized from sulochrin-I by isotope exchange method. From the RBA method, dissociation constant (Kd and maximum binding (Bmax were obtained 26.316 nM and Bmax 9.302 nM respectively. This low Kd indicated that sulochrin was can bind to α-glucosidase

  11. Radioligand binding assays for high affinity binders in the presence of endogenous ligands

    International Nuclear Information System (INIS)

    White, H.B. III; McGahan, T.

    1986-01-01

    Endogenous ligands complicate radioligand-binding assays of high-affinity binding proteins by obscuring binding sites or by diluting the labeled ligand. They have developed a mathematical model for such systems where structurally identical radioligand and endogenous ligand can be equilibrated on the binding site and bound radioligand measured. A double-reciprocal plot of bound radioligand, *L/sub B/, versus sample volume, V, yields a straight line. Introduction of scaling factors for sample dilution, F, and total radioligand available, *L/sub T/, produces a plot in which the x-intercept yields the endogenous ligand concentration, [L/sub T/]; the slope is the reciprocal of the binding protein concentration, [P/sub T/] -1 ; and the y-intercept is the fractional saturation of the high-affinity binder, L/sub T//P/sub T/. This type of analysis has been applied to the assay of high-affinity biotin-binding proteins in egg yolk. Its use led to the detection of a second biotin-binding protein which is heat labile. The conceptual approach can be applied to the assay of other high-affinity binders

  12. An assay for the mannan-binding lectin pathway of complement activation

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Thiel, S; Jensen, L

    2001-01-01

    the C1 complex, whereas the carbohydrate-binding activity of MBL and the integrity of the MBL complex is maintained under hypertonic conditions. In the assay described here, the specific C4b-depositing capacity of the MBL pathway was determined by incubating serum diluted in buffer containing 1 M NaCl...... deposited on the mannan-coated surface. However, we also found a threefold variation in C4b-depositing capacity between individuals with similar MBL concentrations. The assay permits for the determination of MBL complex activity in serum and plasma samples and may thus be used to evaluate the clinical......The mannan-binding lectin (MBL) pathway of complement activation has been established as the third pathway of complement activation. MBL is a carbohydrate-binding serum protein, which circulates in complex with serine proteases known as mannan-binding lectin associated serine proteases (MASPs...

  13. The Single-Molecule Centroid Localization Algorithm Improves the Accuracy of Fluorescence Binding Assays.

    Science.gov (United States)

    Hua, Boyang; Wang, Yanbo; Park, Seongjin; Han, Kyu Young; Singh, Digvijay; Kim, Jin H; Cheng, Wei; Ha, Taekjip

    2018-03-13

    Here, we demonstrate that the use of the single-molecule centroid localization algorithm can improve the accuracy of fluorescence binding assays. Two major artifacts in this type of assay, i.e., nonspecific binding events and optically overlapping receptors, can be detected and corrected during analysis. The effectiveness of our method was confirmed by measuring two weak biomolecular interactions, the interaction between the B1 domain of streptococcal protein G and immunoglobulin G and the interaction between double-stranded DNA and the Cas9-RNA complex with limited sequence matches. This analysis routine requires little modification to common experimental protocols, making it readily applicable to existing data and future experiments.

  14. Radioligand binding assays in the drug discovery process: potential pitfalls of high throughput screenings.

    Science.gov (United States)

    Noël, F; Mendonça-Silva, D L; Quintas, L E

    2001-02-01

    Radioligand binding assays evaluating directly the ability of a drug to interact with a defined molecular target is part of the drug discovery process. The need for a high throughput rate in screening drugs is actually leading to simplified experimental schemes that increase the probability of false negative results. Special concern involves voltage-gated ion channel drug discovery where a great care is required in designing assays because of frequent multiplicity of (interacting) binding sites. To clearly illustrate this situation, three different assays used in the academic drug discovery program of the authors were selected because they are rich of intrinsic artifacts: (I) (20 mmol/l caffeine almost duplicated [3H]ryanodine binding (89% higher than control) to rat heart microsomes at 0.3 mumol/l free calcium but did not exert any effect when using a high (107 mumol/l) free calcium, as mostly used in ryanodine binding assays; (II) An agonist for the ionotropic glutamate receptor of the kainate type can distinctly affect [3H]kainate binding to chicken cerebellum membranes depending on its concentration: unlabelled kainic acid per se either stimulated about 30% (at 50-100 nmol/l), had no effect (at 200 nmol/l) or even progressively decreased (at 0.3-2 mumol/l) the binding of 5 nmol/l [3H]kainate, emphasizing the risk of using a single concentration for screening a drug; (III) in a classical [3H]flunitrazepam binding assay, the stimulatory effect of a GABA (gamma-aminobutyric acid) agonist was only observed when using extensively washed rat brain synaptosomes (10 mumol/l GABA increased flunitrazepam binding by 90%). On the other hand, the inhibitory effect of a GABA antagonist was only observed when using crude synaptosomes (10 mumol/l bicuculine reduced [3H]flunitrazepam binding by 40%). It can be concluded that carefully designed radioligand assays which can be performed in an academic laboratory are appropriate for screening a small number of drugs, especially if

  15. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    Science.gov (United States)

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-15

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  16. Antibody-drug conjugate bioanalysis using LB-LC-MS/MS hybrid assays: strategies, methodology and correlation to ligand-binding assays.

    Science.gov (United States)

    Wang, Jian; Gu, Huidong; Liu, Ang; Kozhich, Alexander; Rangan, Vangipuram; Myler, Heather; Luo, Linlin; Wong, Richard; Sun, Huadong; Wang, Bonnie; Vezina, Heather E; Deshpande, Shrikant; Zhang, Yan; Yang, Zheng; Olah, Timothy V; Aubry, Anne-Francoise; Arnold, Mark E; Pillutla, Renuka; DeSilva, Binodh

    2016-07-01

    Antibody-drug conjugates (ADCs) are complex drug constructs with multiple species in the heterogeneous mixture that contribute to their efficacy and toxicity. The bioanalysis of ADCs involves multiple assays and analytical platforms. A series of ligand binding and LC-MS/MS (LB-LC-MS/MS) hybrid assays, through different combinations of anti-idiotype (anti-Id), anti-payload, or generic capture reagents, and cathepsin-B or trypsin enzyme digestion, were developed and evaluated for the analysis of conjugated-payload as well as for species traditionally measured by ligand-binding assays, total-antibody and conjugated-antibody. Hybrid assays are complementary or viable alternatives to ligand-binding assay for ADC bioanalysis and PK/PD modeling. The fit-for-purpose choice of analytes, assays and platforms and an integrated strategy from Discovery to Development for ADC PK and bioanalysis are recommended.

  17. A rapid and simple assay for growth hormone-binding protein activity in human plasma

    International Nuclear Information System (INIS)

    Baumann, G.; Shaw, M.A.; Amburn, K.

    1988-01-01

    The newly discovered circulating growth hormone binding proteins dictate a re-evaluation of the state of GH in plasma in health and disease as the binding proteins are known to affect GH metabolism and action. We describe a rapid and simple GH-binding assay that allows determination of free and complexed plasma GH, as well as GH-binding protein activity as an index of GH-binding protein levels, with relative ease. The method is based on incubation of plasma with 125 I-GH and separation of bound from free GH on small DEAE-cellulose columns; it can be used on a large scale for routine determinations. The results obtained by this method are comparable to those obtained with the previously used slow and more cumbersome gel filtration technique. Initial data obtained in normal subject and certain disease states show that the bound fraction of plasma GH is similar in men, women and children, is unaffected by pregnancy or acute infection, but is marginally decreased in liver cirrhosis. In acromegaly, binding protein activity also appears normal when allowance is made for partial saturation of the binding proteins by the high prevailing GH levels. The technique we describe should facilitate investigations of normal and abnormal regulation of the GH binding proteins. (author)

  18. A versatile assay for RNA-binding proteins in living cells.

    Science.gov (United States)

    Strein, Claudia; Alleaume, Anne-Marie; Rothbauer, Ulrich; Hentze, Matthias W; Castello, Alfredo

    2014-05-01

    RNA-binding proteins (RBPs) control RNA fate from synthesis to decay. Since their cellular expression levels frequently do not reflect their in vivo activity, methods are needed to assess the steady state RNA-binding activity of RBPs as well as their responses to stimuli. While electrophoresis mobility shift assays (EMSA) have been used for such determinations, their results serve at best as proxies for the RBP activities in living cells. Here, we describe a quantitative dual fluorescence method to analyze protein-mRNA interactions in vivo. Known or candidate RBPs are fused to fluorescent proteins (eGFP, YFP), expressed in cells, cross-linked in vivo to RNA by ultraviolet light irradiation, and immunoprecipitated, after lysis, with a single chain antibody fragment directed against eGFP (GFP-binding protein, GBP). Polyadenylated RNA-binding activity of fusion proteins is assessed by hybridization with an oligo(DT) probe coupled with a red fluorophore. Since UV light is directly applied to living cells, the assay can be used to monitor dynamic changes in RNA-binding activities in response to biological or pharmacological stimuli. Notably, immunoprecipitation and hybridization can also be performed with commercially available GBP-coupled 96-well plates (GFP-multiTrap), allowing highly parallel RNA-binding measurements in a single experiment. Therefore, this method creates the possibility to conduct in vivo high-throughput RNA-binding assays. We believe that this fast and simple radioactivity-free method will find many useful applications in RNA biology.

  19. Competitive association binding kinetic assays: a new tool to detect two different binding orientations of a ligand to its target protein under distinct conditions?

    Science.gov (United States)

    Wittmann, Hans-Joachim; Strasser, Andrea

    2017-06-01

    Within the last years, for several ligands, binding to G protein-coupled receptors or other target proteins, a binding of the ligand in two different orientations is described. One appropriate experimental technique to detect two different binding orientations is the crystallization of the ligand-protein-complex, but crystallization and subsequent X-ray analysis do not belong to the routine methods. By traditional competitive radioligand equilibrium binding assays, it is not possible to detect or to distinguish between two different binding orientations, but there is a possibility to identify two different binding orientations by performing kinetic competitive radioligand-binding assays. To study the limitations of this new technique, the related differential equations were defined and solved numerically for 8 different sets of rate constants, also considering an experimental error up to ~10%. In principal, the kinetic competitive radioligand binding assay is a suitable technique to detect two different ligand binding orientations. However, the present study shows that this is only possible under distinct conditions: (1) the rate constants of dissociation for both binding orientations of the cold ligand should at least be > 10-fold different to each other and (2) the experimental error should be as small as possible. Although there are some limitations for the experimental usability of this method, it is worthwhile to perform kinetic competitive binding assays, especially if there are hints for two binding orientations of a ligand, e.g. based on molecular modelling studies.

  20. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    Science.gov (United States)

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-04

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.

  1. Data quality in drug discovery: the role of analytical performance in ligand binding assays.

    Science.gov (United States)

    Wätzig, Hermann; Oltmann-Norden, Imke; Steinicke, Franziska; Alhazmi, Hassan A; Nachbar, Markus; El-Hady, Deia Abd; Albishri, Hassan M; Baumann, Knut; Exner, Thomas; Böckler, Frank M; El Deeb, Sami

    2015-09-01

    Despite its importance and all the considerable efforts made, the progress in drug discovery is limited. One main reason for this is the partly questionable data quality. Models relating biological activity and structures and in silico predictions rely on precisely and accurately measured binding data. However, these data vary so strongly, such that only variations by orders of magnitude are considered as unreliable. This can certainly be improved considering the high analytical performance in pharmaceutical quality control. Thus the principles, properties and performances of biochemical and cell-based assays are revisited and evaluated. In the part of biochemical assays immunoassays, fluorescence assays, surface plasmon resonance, isothermal calorimetry, nuclear magnetic resonance and affinity capillary electrophoresis are discussed in details, in addition radiation-based ligand binding assays, mass spectrometry, atomic force microscopy and microscale thermophoresis are briefly evaluated. In addition, general sources of error, such as solvent, dilution, sample pretreatment and the quality of reagents and reference materials are discussed. Biochemical assays can be optimized to provide good accuracy and precision (e.g. percental relative standard deviation data quality are still advancing and will further advance the progress in drug development.

  2. An Efficient and Economical Assay to Screen for Triclosan Binding to FabI.

    Science.gov (United States)

    Demissie, Robel D; Kabre, Pauline; Tuntland, Micheal L; Fung, Leslie W-M

    2016-04-01

    Triclosan is an effective inhibitor for enoyl acyl carrier protein reductase (ENR) in fatty acid biosynthesis. Triclosan-resistant mutants of ENR have emerged. Thus, it is important to detect these triclosan-resistant mutations in ENR. Generally, enzyme activity assays on the mutants are used to determine the effect of triclosan on ENR activity. Since the substrates are linked to acyl carrier protein (ACP), the assays are challenging due to the need to prepare the ACP and link it to the substrates. Non-ACP-linked (coenzyme A [CoA]-linked) substrates can be used in some ENR, but not in all. Consequently, screening for triclosan-resistant mutants is also challenging. We have developed a simple thermal shift assay, which does not use ACP-linked substrates, to determine the binding ability of triclosan to the ENR active site, and thus it can be used for screening for triclosan-resistant mutants. Staphylococcus aureus FabI enzyme and its mutants were used to demonstrate the binding ability of triclosan with NADP(+) to FabI. The direct correlation between the binding ability and enzyme activity was demonstrated with Francisella tularensis FabI. This method may also be applied to select effective triclosan analogues that inhibit ENR activity. © 2015 Society for Laboratory Automation and Screening.

  3. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays

    DEFF Research Database (Denmark)

    Justesen, Sune; Harndahl, Mikkel; Lamberth, Kasper

    2009-01-01

    BACKGROUND: Molecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle......-II molecules and accompanying HTS peptide-binding assay were successfully developed for nine different MHC-II molecules including the DPA1*0103/DPB1*0401 (DP401) and DQA1*0501/DQB1*0201, where both alpha and beta chains are polymorphic, illustrating the advantages of producing the two chains separately....... CONCLUSION: We have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools....

  4. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Glucose Sensors Based on Microcapsules Containing an Orange/Red Competitive Binding Resonance Energy Transfer Assay

    Science.gov (United States)

    CHINNAYELKA, SWETHA; McSHANE, and MICHAEL J.

    2015-01-01

    Fluorescent sensing systems offer the potential for noninvasive monitoring with implantable devices, but they require carrier technologies that provide suitable immobilization, accessibility, and biocompatibility while maintaining adequate response characteristics. A recent development towards this goal is a highly specific and sensitive competitive binding assay for glucose using apo-glucose oxidase (apo-GOx) as the recognition element and dextran as the competing ligand; this has been demonstrated as a glucose sensor system by encapsulating the competitive binding assay in semipermeable microcapsule carriers. This paper describes the extension of this sensor design to longer wavelengths in an attempt to increase the applicability to in vivo monitoring. The glucose sensitivity of the tetramethylrhodamine isothiocyanate-dextran (TD) and cyanine Cy5-apo-GOx (CAG) complexes showed five to 10 times greater specificity for β-D-glucose over other sugars. Microcapsules loaded with TD/CAG complexes exhibited a linear, totally reversible response in the range of 0–720 mg/dL, with a sensitivity (percent change in intensity ratio) of 0.06%/(mg/dL). The decrease in sensitivity observed with the use of longer-wavelength dyes is most likely to be compensated with the deeper penetration of light and reduced tissue scattering. These findings imply that the encapsulation of sensing assay elements in microcapsules is a simple and translatable method for the fabrication of stable biosensors, and optimization of resonance energy transfer pairs and assay component preparation will further improve the response to approach clinically relevant performance. PMID:16800748

  6. Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays.

    Science.gov (United States)

    Fuhrmann, U; Slater, E P; Fritzemeier, K H

    1995-01-01

    Gestodene is a novel progestin used in oral contraceptives with an increased separation of progestogenic versus androgenic activity and a distinct antimineralocorticoid activity. This specific pharmacological profile of gestodene is defined by its pattern of binding affinities to a variety of steroid hormone receptors. In the present study the affinity of gestodene to the progesterone receptor (PR), the androgen receptor (AR), the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR) and the estrogen receptor (ER) was re-evaluated by steroid binding assays and compared to those obtained for 3-keto-desogestrel and progesterone. The two synthetic progestins displayed identical high affinity to rabbit PR and similar marked binding to rat AR and GR, while progesterone showed high affinity to PR but only low binding to AR and GR. Furthermore, 3-keto-desogestrel exhibited almost no binding to MR, whereas gestodene, similar to progesterone, showed marked affinity to this receptor. In addition to receptor binding studies, transactivation assays were carried out to investigate the effects of gestodene on AR-, GR- and MR-mediated induction of transcription. In contrast to progesterone, which showed antiandrogenic activity, gestodene and 3-keto-desogestrel both exhibited androgenic activity. Furthermore, all three progestins exhibited weak GR-mediated antagonistic activity. In contrast to progesterone, which showed almost no glucocorticoid activity, gestodene and 3-keto-desogestrel showed weak glucocorticoid action. In addition, gestodene inhibited the aldosterone-induced reporter gene transcription, similar to progesterone, whereas unlike progesterone, gestodene did not induce reporter gene transcription. 3-Keto-desogestrel showed neither antimineralocorticoid nor mineralocorticoid action.

  7. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA, and cyto......We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA......, and cytosolic progesterone receptors (PR) measured by LBA were also studied. While ERc concentrations determined by LBA and EIA were highly correlated (r: 0.94), ERc values detected by LBA were approximately twice those found by EIA (median values of ERc: 155 vs. 64 fmol/mg cytosol protein, DCC vs. EIA......). The percentages of ERc positive tumors were 89% by LBA and 77% by EIA. The median fraction of total ER present as ERn was 63%. PR levels correlated positively with ERn concentrations (r: 0.73). We explore possible reasons why greater concentrations of ERc are determined by estradiol binding than by the ER-EIA kit...

  8. Methodology for benzodiazepine receptor binding assays at physiological temperature. Rapid change in equilibrium with falling temperature

    International Nuclear Information System (INIS)

    Dawson, R.M.

    1986-01-01

    Benzodiazepine receptors of rat cerebellum were assayed with [ 3 H]-labeled flunitrazepam at 37 0 C, and assays were terminated by filtration in a cold room according to one of three protocols: keeping each sample at 37 degrees C until ready for filtration, taking the batch of samples (30) into the cold room and filtering sequentially in the order 1-30, and taking the batch of 30 samples into the cold room and filtering sequentially in the order 30-1. the results for each protocol were substantially different from each other, indicating that rapid disruption of equilibrium occurred as the samples cooled in the cold room while waiting to be filtered. Positive or negative cooperativity of binding was apparent, and misleading effects of gamma-aminobutyric acid on the affinity of diazepam were observed, unless each sample was kept at 37 0 C until just prior to filtration

  9. Bacteroides gingivalis-Actinomyces viscosus cohesive interactions as measured by a quantitative binding assay

    International Nuclear Information System (INIS)

    Schwarz, S.; Ellen, R.P.; Grove, D.A.

    1987-01-01

    There is limited evidence, mostly indirect, to suggest that the adherence of Bacteroides gingivalis to teeth may be enhanced by the presence of gram-positive dental plaque bacteria like Actinomyces viscosus. The purpose of this study was to carry out direct quantitative assessments of the cohesion of B gingivalis and A. viscosus by using an in vitro assay modeled on the natural sequence in which these two species colonize the teeth. The assay allowed comparisons to be made of the adherence of 3 H-labeled B. gingivalis 2561 and 381 to saliva-coated hydroxyapatite beads (S-HA) and A. viscosus WVU627- or T14V-coated S-HA (actinobeads) in equilibrium and kinetics binding studies. A series of preliminary binding studies with 3H-labeled A. viscosus and parallel studies by scanning electron microscopy with unlabeled A. viscosus were conducted to establish a protocol by which actinobeads suitable for subsequent Bacteroides adherence experiments could be prepared. By scanning electron microscopy, the actinobeads had only small gaps of exposed S-HA between essentially irreversibly bound A. viscosus cells. Furthermore, B. gingivalis cells appeared to bind preferentially to the Actinomyces cells instead of the exposed S-HA. B. gingivalis binding to both S-HA and actinobeads was saturable with at least 2 X 10(9) to 3 X 10(9) cells per ml, and equilibrium with saturating concentrations was reached within 10 to 20 min. B. gingivalis always bound in greater numbers to the actinobeads than to S-HA. These findings provide direct measurements supporting the concept that cohesion with dental plaque bacteria like A. viscosus may foster the establishment of B. gingivalis on teeth by enhancing its adherence

  10. IgMk paraprotein from gammopathy patient can bind to cardiolipin and interfere with coagulation assay: a case report.

    Science.gov (United States)

    Wu, Xin-Yao; Yin, Yu-Feng; Teng, Jia-Lin; Zhang, Li-Wei; Yang, Cheng-de

    2017-06-23

    The monoclonal gammopathies are a group of plasma-cell proliferative disorders characterized by the secretion of monoclonal immunoglobulin (M protein or paraprotein). Some rare cases have revealed the specific affinity of paraprotein as autoantibody. Here we report a patient with monoclonal gammopathy of undetermined significance (MGUS) accompanied by a remarkable increase of anticardiolipin antibody (aCL) and an extensively decreased coagulation factor activity, however, without any clinical signs of antiphospholipid syndrome (APS) and bleeding. Our further investigation indicated that IgMκ paraprotein of this patient possessed an antibody activity against phospholipids so as to bind to cardiolipin and interfere with coagulation assay in vitro. This case might be indicative that an abnormality of coagulation tests, disturbed by IgMκ paraprotein, does not predict a risk of bleeding in this patient.

  11. Assaying the binding strength of G-quadruplex ligands using single-molecule TPM experiments.

    Science.gov (United States)

    Liu, Shih-Wei; Chu, Jen-Fei; Tsai, Cheng-Ting; Fang, Hung-Chih; Chang, Ta-Chau; Li, Hung-Wen

    2013-05-15

    G-quadruplexes are stable secondary structures formed by Hoogsteen base pairing of guanine-rich single-stranded DNA sequences in the presence of monovalent cations (Na(+) or K(+)). Folded G-quadruplex (G4) structures in human telomeres have been proposed as a potential target for cancer therapy. In this study, we used single-molecule tethered particle motion (TPM) experiments to assay the binding strength of possible G4 ligands. We found that individual single-stranded DNA molecules containing the human telomeric sequence d[AGGG(TTAGGG)3] fluctuated between the folded and the unfolded states in a 10 mM Na(+) solution at 37 °C. The durations of folded and unfolded states were single-exponentially distributed, and in return the folding and unfolding rate constants were 1.68 ± 0.01 and 1.63 ± 0.03 (s(-1)), respectively. In the presence of G4 ligands, such as TMPyP4, DODCI, BMVC, and BMVPA, the unfolding rate constant decreased appreciably. In addition, combining the Cu(2+)-induced G4 unfolding and TPM assay, we showed that BMVC and TMPyP4 are better G4 stabilizers than DODCI. The capability of monitoring the fluctuation between the folded and the unfolded state of G4 DNA in real time allows the determination of both kinetic and thermodynamic parameters in a single measurement and offers a simple way to assay binding strength under various conditions. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  12. Development of a Surface Plasmon Resonance Assay for the Characterization of Small-Molecule Binding Kinetics and Mechanism of Binding to Kynurenine 3-Monooxygenase.

    Science.gov (United States)

    Poda, Suresh B; Kobayashi, Masakazu; Nachane, Ruta; Menon, Veena; Gandhi, Adarsh S; Budac, David P; Li, Guiying; Campbell, Brian M; Tagmose, Lena

    2015-10-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway, was identified as a potential therapeutic target for treating neurodegenerative and psychiatric disorders. In this article, we describe a surface plasmon resonance (SPR) assay that delivers both kinetics and the mechanism of binding (MoB) data, enabling a detailed characterization of KMO inhibitors for the enzyme in real time. SPR assay development included optimization of the protein construct and the buffer conditions. The stability and inhibitor binding activity of the immobilized KMO were significantly improved when the experiments were performed at 10°C using a buffer containing 0.05% n-dodecyl-β-d-maltoside (DDM) as the detergent. The KD values of the known KMO inhibitors (UPF648 and RO61-8048) from the SPR assay were in good accordance with the biochemical LC/MS/MS assay. Also, the SPR assay was able to differentiate the binding kinetics (k(a) and k(d)) of the selected unknown KMO inhibitors. For example, the inhibitors that showed comparable IC50 values in the LC/MS/MS assay displayed differences in their residence time (τ = 1/k(d)) in the SPR assay. To better define the MoB of the inhibitors to KMO, an SPR-based competition assay was developed, which demonstrated that both UPF648 and RO61-8048 bound to the substrate-binding site. These results demonstrate the potential of the SPR assay for characterizing the affinity, the kinetics, and the MoB profiles of the KMO inhibitors.

  13. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli.

    Directory of Open Access Journals (Sweden)

    Muhammad A Javed

    Full Text Available Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs, which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40 and 90% for C. coli (n = 19. CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP. Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.

  14. Calibration and validation of the 14C-labelled polyethylene glycol-binding assay for tannins in tropical browse

    International Nuclear Information System (INIS)

    Mlambo, V.; Makkar, H.P.S.

    2005-01-01

    This study evaluates the radiolabelled polyethylene glycol (PEG)-binding procedure [Silanikove, N., Shinder, D., Gilboa, N., Eyal, M., Nitsan, Z., 1996. Polyethylene glycol-binding to plant samples as an assay for the biological effects of tannins: predicting the negative effects of tannins in Mediterranean browse on rumen degradation. J. Agric. Food Chem. 44, 3230-3234] for tannin analysis, using 27 tropical browse plants. In this method, the amount of PEG bound to a plant sample is assumed to be a reflection of its tannin content. The method was modified to exclude the use of non-tanniniferous substrate for estimating non-specific binding (NSB) in tannin-containing substrates. Non-specific binding values varied widely (0.4-2.8 mg PEG/100 mg DM tannin-free substrate) when the tannin-free substrate was changed from wheat straw to either rye grass or maize shoots. We therefore propose a modified radiolabelled PEG-binding method to estimate the level of PEG-binding (PEGb) to tannin-containing foliage without using tannin-free substrate to correct for non-specific binding. In this approach, incremental levels of each tanniniferous substrate were used to generate PEGb values. The resultant linear response was analysed and tannin activity was expressed as the slope of the response curve (PEGbSlope) observed for each substrate. The slope takes into account the non-specific binding in each substrate, thus PEGbSlope does not require correction for NSB using tannin-free samples. This approach improved the correlation between PEGb and the 125 I-labelled bovine serum albumin precipitation assay. Relationships between the modified PEG-binding assay and radiolabelled bovine serum albumin assay, in vitro tannin bioassay and colorimetric assays are presented. (author)

  15. Ubiquinone binding site of yeast NADH dehydrogenase revealed by structures binding novel competitive- and mixed-type inhibitors.

    Science.gov (United States)

    Yamashita, Tetsuo; Inaoka, Daniel Ken; Shiba, Tomoo; Oohashi, Takumi; Iwata, So; Yagi, Takao; Kosaka, Hiroaki; Miyoshi, Hideto; Harada, Shigeharu; Kita, Kiyoshi; Hirano, Katsuya

    2018-02-05

    Yeast Ndi1 is a monotopic alternative NADH dehydrogenase. Its crystal structure in complex with the electron acceptor, ubiquinone, has been determined. However, there has been controversy regarding the ubiquinone binding site. To address these points, we identified the first competitive inhibitor of Ndi1, stigmatellin, along with new mixed-type inhibitors, AC0-12 and myxothiazol, and thereby determined the crystal structures of Ndi1 in complexes with the inhibitors. Two separate binding sites of stigmatellin, STG-1 and STG-2, were observed. The electron density at STG-1, located at the vicinity of the FAD cofactor, further demonstrated two binding modes: STG-1a and STG-1b. AC0-12 and myxothiazol are also located at the vicinity of FAD. The comparison of the binding modes among stigmatellin at STG-1, AC0-12, and myxothiazol revealed a unique position for the aliphatic tail of stigmatellin at STG-1a. Mutations of amino acid residues that interact with this aliphatic tail at STG-1a reduced the affinity of Ndi1 for ubiquinone. In conclusion, the position of the aliphatic tail of stigmatellin at STG-1a provides a structural basis for its competitive inhibition of Ndi1. The inherent binding site of ubiquinone is suggested to overlap with STG-1a that is distinct from the binding site for NADH.

  16. Discovery of potent thermolysin inhibitors using structure based virtual screening and binding assays.

    Science.gov (United States)

    Khan, Mahmud Tareq Hassan; Fuskevåg, Ole-Martin; Sylte, Ingebrigt

    2009-01-08

    In the present work, 22 compounds of the U.S. NCI compound library (size 273K) were identified as putative thermolysin binders by structure based virtual screening with the ICM software (ICM-VLS). In vitro competitive binding assays confirmed that 12 were thermolysin binders. Thermolysin binding modes of the 12 compounds were studied by docking using ICM and Molegro Virtual Docker (MVD). The most potent inhibitor had an IC(50) value of 6.4 x 10(-8) mM (NSC250686, 1 beta-D-arabinofuranosyl-N(4)-lauroylcytosine). The structure of this compound is quite different from the other 11 compounds. Nine out of the 12 compounds contained a similar chemical skeleton (3-nitrobenzamide derivatives) and have IC(50) values ranging from 697.48 to 0.047 mM. The ICM-VLS score and the activity profiles (pIC(50) values) were compared and found to be somewhat linearly correlated (R(2) = 0.78). Kinetic studies showed that, except for NSC285166 (oxyquinoline), the compounds are competitive thermolysin inhibitors.

  17. A simple, rapid and inexpensive technique to bind small peptides to polystyrene surfaces for immunoenzymatic assays.

    Science.gov (United States)

    Cuccuru, Maria Antonietta; Dessì, Daniele; Rappelli, Paola; Fiori, Pier Luigi

    2012-08-31

    Synthetic peptides are widely used in indirect ELISA to detect and characterize specific antibodies in biological samples. Small peptides are not efficiently immobilized on plastic surfaces by simple adsorption, and the conjugation to carrier proteins with different binding techniques is the method of choice. Common techniques to conjugate peptide antigens to carrier proteins and to subsequently purify such complexes are time consuming, expensive, and occasionally abrogate immunogenicity of peptides. In this report we describe a simple, fast and inexpensive alternative protocol to immobilize synthetic peptides to plastic surfaces for standard ELISA. The technique is based on use of maleimide-activated bovine serum albumin or keyhole limpet hemocyanin as a protein anchor adsorbed on the polystyrene surface of the microtiter plate. Following adsorption of the carrier protein, sulfhydryl-containing peptides are cross-linked with an in-well reaction, allowing their correct orientation and availability to antibody binding, avoiding the time consuming steps needed to purify the hapten-carrier complexes. The immunoreactivity of peptides was tested by using both monoclonal and polyclonal antibodies in standard ELISA assays, and compared with established coating methods. Copyright © 2012. Published by Elsevier B.V.

  18. Clinical value of determination of TSH-binding inhibiting immunoglobulins (TBII) by a radioreceptor assay

    International Nuclear Information System (INIS)

    Heberling, H.J.; Bierwolf, B.; Lohmann, D.

    1986-01-01

    The clinical value of a commercial kit for determination of TBII was evaluated. 50 patients with untreated Graves' disease, 21 patients with Graves' disease before and during medical therapy, 18 patients after finishing medical therapy and 10 patients after surgical treatment were examined. Besides these, 41 patients with other thyroid diseases and 36 patients without any thyroid disorder were included. In 47 (94%) of 50 patients with untreated Graves' disease TBII were detectable in serum using a TSH standard curve. Binding activities exceeding 10 U/l TSH equivalents were regarded as positive. In other thyroid diseases TBII were negative with the exception of 3 of 22 patient with autonomously functioning thyroid nodules. After 12 months of antithyroid drug treatment of 19 patients the incidence of positive antibody findings was 26%. During follow-up after medical therapy (1-9 years) 7 of 18 patients had increased TBII in correlation with clinical and functional findings. The determination of TBII by TRAK assay proved to be a sensitive and specific method. The assay can be used to differentiate between hyperthyroidism of autoimmune or non-immunogenic origin. Thus the method seems to be helpful for the follow-up under medical treatment of patients with Graves' disease. (author)

  19. Clinical experience with a radioreceptor assay for TSH-binding inhibiting immunoglobulins (TBII)

    International Nuclear Information System (INIS)

    Heberling, H.J.; Bierwolf, B.; Lohmann, D.

    1988-01-01

    The aim was evaluate the clinical value of a commercial kit for determination of TSH-binding inhibiting immunoglobulin (TBII). 47 of 50 patients with untreated hyperthyroid Graves' disease were TBII positive (sensitivity 94%). TBII was in the normal range in all normal volunteers and in patients with simple goiter, thyroid cancer and in most cases of nonimmunogenic hyperthyreoidism (19 of 22). After 12 months antithyroid drug therapy with methimazole of 21 patients the prevalence of positive TBII findings was 28%. In contrast to this, 50 percent of the patients had increased microsomal antibodies at the end of therapy. The determination of TBII by TRAK assay proved to be a sensitive, specific and practical method. The assay can be used to differentiate between hyperthyreoidism of autoimmune or nonimmunogenic origin. Even so this method seems to be helpful for the follow-up during medical treatment of patients with Graves' disease. The results indicate that persistence of increased TBII levels are markers of active Graves' disease and suggest that in this situation ablative measures should be performed. Normalization of TBII on the end of a longstanding antithyroid therapy does not exclude the possibility of relapse in the further course. (author)

  20. Development of a lectin binding assay to differentiate between recombinant and endogenous proteins in pharmacokinetic studies of protein-biopharmaceuticals.

    Science.gov (United States)

    Weber, Alfred; Minibeck, Eva; Scheiflinger, Friedrich; Turecek, Peter L

    2015-04-10

    Human glycoproteins, expressed in hamster cell lines, show similar glycosylation patterns to naturally occurring human molecules except for a minute difference in the linkage of terminal sialic acid: both cell types lack α2,6-galactosyl-sialyltransferase, abundantly expressed in human hepatocytes and responsible for the α2,6-sialylation of circulating glycoproteins. This minute difference, which is currently not known to have any physiological relevance, was the basis for the selective measurement of recombinant glycoproteins in the presence of their endogenous counterparts. The assay is based on using the lectin Sambucus nigra agglutinin (SNA), selectively binding to α2,6-sialylated N-glycans. Using von Willebrand factor (VWF), factor IX (FIX), and factor VIIa (FVIIa), it was demonstrated that (i) the plasma-derived proteins, but not the corresponding recombinant proteins, specifically bind to SNA and (ii) this binding can be used to deplete the plasma-derived proteins. The feasibility of this approach was confirmed in spike-recovery studies for all three recombinant coagulation proteins in human plasma and for recombinant VWF (rVWF) in macaque plasma. Analysis of plasma samples from macaques after administration of recombinant and a plasma-derived VWF demonstrated the suitability and robustness of this approach. Data showed that rVWF could be selectively measured without changing the ELISAs and furthermore revealed the limitations of baseline adjustment using a single measurement of the predose concentration only. The SNA gel-based depletion procedure can easily be integrated in existing procedures as a specific sample pre-treatment step. While ELISA-based methods were used to measure the recombinant coagulation proteins in the supernatants obtained by depletion, this procedure is applicable for all biochemical analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    Science.gov (United States)

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  2. Context influences on TALE–DNA binding revealed by quantitative profiling

    Science.gov (United States)

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  3. Context influences on TALE-DNA binding revealed by quantitative profiling.

    Science.gov (United States)

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  4. Efficacy of hyaluronic acid binding assay in selecting motile spermatozoa with normal morphology at high magnification

    Directory of Open Access Journals (Sweden)

    Mauri Ana L

    2010-12-01

    Full Text Available Abstract Background The present study aimed to evaluate the efficacy of the hyaluronic acid (HA binding assay in the selection of motile spermatozoa with normal morphology at high magnification (8400x. Methods A total of 16592 prepared spermatozoa were selected and classified into two groups: Group I, spermatozoa which presented their head attached to an HA substance (HA-bound sperm, and Group II, those spermatozoa that did not attach to the HA substance (HA-unbound sperm. HA-bound and HA-unbound spermatozoa were evaluated according to the following sperm forms: 1-Normal morphology: normal nucleus (smooth, symmetric and oval configuration, length: 4.75+/-2.8 μm and width: 3.28+/-0.20 μm, no extrusion or invagination and no vacuoles occupied more than 4% of the nuclear area as well as acrosome, post-acrosomal lamina, neck, tail, besides not presenting a cytoplasmic droplet or cytoplasm around the head; 2-Abnormalities of nuclear form (a-Large/small; b-Wide/narrow; c-Regional disorder; 3-Abnormalities of nuclear chromatin content (a-Vacuoles: occupy >4% to 50% of the nuclear area and b-Large vacuoles: occupy >50% of the nuclear area using a high magnification (8400x microscopy system. Results No significant differences were obtained with respect to sperm morphological forms and the groups HA-bound and HA-unbound. 1-Normal morphology: HA-bound 2.7% and HA-unbound 2.5% (P = 0.56. 2-Abnormalities of nuclear form: a-Large/small: HA-bound 1.6% vs. HA-unbound 1.6% (P = 0.63; b-Wide/narrow: HA-bound 3.1% vs. HA-unbound 2.7% (P = 0.13; c-Regional disorders: HA-bound 4.7% vs. HA-unbound 4.4% (P = 0.34. 3. Abnormalities of nuclear chromatin content: a-Vacuoles >4% to 50%: HA-bound 72.2% vs. HA-unbound 72.5% (P = 0.74; b-Large vacuoles: HA-bound 15.7% vs. HA-unbound 16.3% (P = 0.36. Conclusions The findings suggest that HA binding assay has limited efficacy in selecting motile spermatozoa with normal morphology at high magnification.

  5. Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay.

    Directory of Open Access Journals (Sweden)

    Raymond Wilson

    2010-09-01

    Full Text Available The binding of Leishmania promastigotes to the midgut epithelium is regarded as an essential part of the life-cycle in the sand fly vector, enabling the parasites to persist beyond the initial blood meal phase and establish the infection. However, the precise nature of the promastigote stage(s that mediate binding is not fully understood.To address this issue we have developed an in vitro gut binding assay in which two promastigote populations are labelled with different fluorescent dyes and compete for binding to dissected sand fly midguts. Binding of procyclic, nectomonad, leptomonad and metacyclic promastigotes of Leishmania infantum and L. mexicana to the midguts of blood-fed, female Lutzomyia longipalpis was investigated. The results show that procyclic and metacyclic promastigotes do not bind to the midgut epithelium in significant numbers, whereas nectomonad and leptomonad promastigotes both bind strongly and in similar numbers. The assay was then used to compare the binding of a range of different parasite species (L. infantum, L. mexicana, L. braziliensis, L. major, L. tropica to guts dissected from various sand flies (Lu. longipalpis, Phlebotomus papatasi, P. sergenti. The results of these comparisons were in many cases in line with expectations, the natural parasite binding most effectively to its natural vector, and no examples were found where a parasite was unable to bind to its natural vector. However, there were interesting exceptions: L. major and L. tropica being able to bind to Lu. longipalpis better than L. infantum; L. braziliensis was able to bind to P. papatasi as well as L. major; and significant binding of L. major to P. sergenti and L. tropica to P. papatasi was observed.The results demonstrate that Leishmania gut binding is strictly stage-dependent, is a property of those forms found in the middle phase of development (nectomonad and leptomonad forms, but is absent in the early blood meal and final stages (procyclic

  6. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    Science.gov (United States)

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. WilsonU.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  7. Evidence for ProTα-TLR4/MD-2 binding: molecular dynamics and gravimetric assay studies.

    Science.gov (United States)

    Omotuyi, Olaposi; Matsunaga, Hayato; Ueda, Hiroshi

    2015-01-01

    During preconditioning, lipopolysaccharide (LPS) selectively activates TLR4/MD-2/Toll/IL-1 receptor-domain-containing adaptor inducing IFN-β (TRIF) pathway instead of pro-inflammatory myeloid differentiation protein-88 (MyD88)/MyD88-adaptor-like protein (MAL) pathway. Extracellular prothymosin alpha (ProTα) is also known to selectively activate the TLR4/MD2/TRIF-IRF3 pathway in certain diseased conditions. In the current study, biophysical evidence for ProTα/TLR4/MD-2 complex formation and its interaction dynamics have been studied. Gravimetric assay was used to investigate ProTα/TLR4/MD-2 complex formation while molecular dynamics (MD) simulation was used to study its interaction dynamics. Through electrostatic interaction, full-length ProTα (F-ProTα) C-terminal peptide (aa 91 - 111) superficially interacts with similar TLR4/MD-2 (KD = 273.36 nm vs 16.07 μg/ml [LPS]) conformation with LPS at an overlapping three-dimensional space while F-ProTα is hinged to the TLR4 scaffold by one-amino acid shift-Mosoian domain (aa-51 - 90). Comparatively, F-ProTα better stabilizes MD-2 metastable states transition and mediates higher TLR4/MD-2 interaction than LPS. ProTα via its C-terminal peptide (aa 91 - 111) exhibits in vitro biophysical contact with TLR4/MD-2 complex conformation recognized by LPS at overlapping LPS-binding positions.

  8. Validation of receptor-binding assays to detect antibiotics in goat's milk.

    Science.gov (United States)

    Beltrán, M C; Borràs, M; Nagel, O; Althaus, R L; Molina, M P

    2014-02-01

    The suitability of different receptor-binding assays to detect antibiotics in raw goat's milk was investigated. Detection capability of most β-lactams and tetracyclines assessed applying the Betastar Combo, the SNAP Betalactam, the SNAP Tetracycline, and the Twinsensor tests was at or below maximum residue limits established by European legislation. Regarding test specificity, cross-reactions with antibiotics other than β-lactams and tetracyclines were not found, and no false-positive results were obtained for the Betastar Combo and the SNAP tests when bulk samples of goat's milk were analyzed. For the Twinsensor test, the false-positive rate was 1%. The performance of the Betastar Combo and the SNAP tests was practically unaffected by the milk quality parameters using individual samples of goat's milk collected at points throughout the entire lactation period (false-positive rate, ≤5%). However, a larger number of positive results were obtained by the Twinsensor test in this type of milk sample (>10%), especially in the last weeks of lactation. Interferences related to the use of the preservative azidiol were not observed in any case. Neither were any significant differences found in relation to the interpretation method (visual versus instrumental) applied. In general, the response of the Betastar Combo, SNAP, and Twinsensor tests was optimal for the analysis of bulk caprine milk; thus, they may be used to monitor milk for the presence of β-lactam and tetracycline residues in quality control programs.

  9. Evaluation of a competitive binding assay for cortisol using horse transcortin

    International Nuclear Information System (INIS)

    Stahl, F.; Hubl, W.; Schnorr, D.; Doerner, G.

    1978-01-01

    A non-chromatographic competitive binding assay (CBA) using horse transcortin has been employed in the routine measurement of cortisol in plasma, urine and amniotic fluids. Comparing the values with those of a radioimmunoassay (RIA) or a fluorimetric method (FM) an excellent correlation between the three methods both in plasma and urine has been calculated in normal subjects and in patients with various endocrine disorders. In amniotic fluids, however, there were discrepancies between CBA and RIA. Whereas CBA showed no differences, RIA gave significantly higher values in a amniotic fluids of female than of male fetuses. Elevated free plasma cortisol levels observed in patients with prostatic cancer after diethyl stilboestrol diphosphate therapy did not correlate with unconjugated urinary cortisol concentration as measured with CBA and FM. In newborns, a relatively high plasma level found 12 hours after birth was followed by a nadir on the 2nd and 3rd day of life and by an increase until levels of adults on the 5th day of life were reached. (author)

  10. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.

    Science.gov (United States)

    Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves

    2017-08-21

    Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Fluorescence-based retention assays reveals sustained release of vascular endothelial growth factor from bone grafts.

    Science.gov (United States)

    Kang, Wonmo; Yun, Ye-Rang; Lee, Dong-Sung; Kim, Tae-Hyun; Kim, Joong-Hyun; Kim, Hae-Won; Jang, Jun-Hyeog

    2016-01-01

    The sustained release of growth factors following their implantation in vivo is essential for successful outcomes in bone tissue engineering. In this study, we evaluated the release kinetics and delivery efficacies of vascular endothelial growth factor (VEGF), a potent angiogenic growth factor, incorporated into calcium phosphate bone grafts (BGs). We evaluated the release profile of VEGF from BGs using a novel fluorescence-based retention assay, which revealed that VEGF loaded on BGs can be released in a sustained manner without an initial burst (near zero-order cumulative release) with a controlled release rate of 13.6% per week for up to 7 weeks. In contrast, an ELISA-based release assay showed VEGF to have an early burst-release profile for the first week. However, the biological activity of VEGF released from the BGs was preserved over the 7-week release period, which is consistent with the sustained-release profile observed in the fluorescence-based retention assay. Furthermore, the in vivo bone-forming action of the VEGF-loaded BGs was well demonstrated in a rat subcutaneous model. Taken together, the sustained release of VEGF loaded onto BGs was effective in stimulating proliferation, angiogenesis and osteogenesis, suggesting the ultimate value of VEGF-engineered BGs for bone tissue engineering. © 2015 Wiley Periodicals, Inc.

  12. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin.

    Science.gov (United States)

    Kong, Minsuk; Shin, Joong Ho; Heu, Sunggi; Park, Je-Kyun; Ryu, Sangryeol

    2017-10-15

    The development of a cost-effective and efficient bacterial detection assay is essential for diagnostic fields, particularly in resource-poor settings. Although antibodies have been widely used for bacterial capture, the production of soluble antibodies is still expensive and time-consuming. Here, we developed a nitrocellulose-based lateral flow assay using cell wall binding domains (CBDs) from phage as a recognition element and colloidal gold nanoparticles as a colorimetric signal for the detection of a model pathogenic bacterium, Bacillus cereus (B. cereus). To improve conjugation efficiency and detection sensitivity, cysteine-glutathione-S-transferase-tagged CBDs and maltose-binding protein-tagged CBDs were produced in Escherichia coli (E. coli) and incorporated in our assays. The sensitivity of the strip to detect B. cereus was 1×10 4 CFU/mL and the overall assay time was 20min. The assay showed superior results compared to the antibody-based approach, and did not show any significant cross-reactivity. This proof of concept study indicates that the lateral flow assay using engineered CBDs hold considerable promise as simple, rapid, and cost-effective biosensors for whole cell detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase Porcupine.

    Science.gov (United States)

    Asciolla, James J; Miele, Matthew M; Hendrickson, Ronald C; Resh, Marilyn D

    2017-08-18

    Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC 50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O -acyl transferase family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Detection of Harmful Algal Toxins Using the Radioligand Receptor Binding Assay. A Manual of Methods

    International Nuclear Information System (INIS)

    2013-12-01

    Marine ecosystems and their resources play major roles in sustaining human population and economic growth in coastal developing countries. These ecosystems are subjected to various natural and human-made threats. Among these are harmful algal blooms (HABs), which are natural phenomena that are increasingly being reported around the globe and responsible for human poisoning through the accumulation of potent toxins in marine food products. The impact of HABs may be aggravated by a limited knowledge of the microalgal species that cause toxic outbreaks, their biology, their diversity, their life cycles, and by poor capabilities for predicting the outbreaks and assessing the degree of HAB toxicity. Other negative factors are the lack of recognition of the disease, the lack of epidemiological data, the lack of adequate and specific treatment and low public awareness. Owing to the profound public health and socioeconomic impact of HABs, many countries have developed and implemented HAB related monitoring programmes and regulatory frameworks. Following a request made by the Philippines during the IAEA General Conference in 1997 to identify possible meaures to address the impacts of HABs, the IAEA initiated related Technical Cooperation projects to assist Member States in strengthening their capacities for prevention, management and mitigation of health and socioeconomic impacts of HABs. Since 1998, the IAEA and the National Oceanic and Atmospheric Administration (NOAA) have undertaken concerted actions to develop and to validate a radioligand based method, the receptor binding assay (RBA). The RBA is now recognized by the AOAC International as an official method for the detection of paralytic shellfish poisoning toxins. Within the IAEA Technical Cooperation programme, the RBA methodology was transferred to over 23 Member States in Africa, Asia, the Pacific region and Latin America. Transfer of knowledge and relevant equipment has enabled the development and strengthening

  15. Structures of Human Pumilio with Noncognate RNAs Reveal Molecular Mechanisms for Binding Promiscuity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta,Y.; Nair, D.; Wharton, R.; Aggarwal, A.

    2008-01-01

    Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycBreverse and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, in effect, acting as a 'spacer.' The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.

  16. Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane.

    Science.gov (United States)

    Marek, Patrick; Senecal, Kris; Nida, Dawn; Magnone, Joshua; Senecal, Andre

    2011-10-24

    The quantification of surface groups attached to non-woven fibers is an important step in developing nanofiber biosensing detection technologies. A method utilizing biotin functionalized quantum dots (QDs) 655 for quantitative analysis of available biotin binding sites within avidin immobilized on electrospun nanofiber membranes was developed. A method for quantifying nanofiber bound avidin using biotin functionalized QDs is presented. Avidin was covalently bound to electrospun fibrous polyvinyl chloride (PVC 1.8% COOH w/w containing 10% w/w carbon black) membranes using primary amine reactive EDC-Sulfo NHS linkage chemistry. After a 12 h exposure of the avidin coated membranes to the biotin-QD complex, fluorescence intensity was measured and the total amount of attached QDs was determined from a standard curve of QD in solution (total fluorescence vs. femtomole of QD 655). Additionally, fluorescence confocal microscopy verified the labeling of avidin coated nanofibers with QDs. The developed method was tested against 2.4, 5.2, 7.3 and 13.7 mg spray weights of electrospun nanofiber mats. Of the spray weight samples tested, maximum fluorescence was measured for a weight of 7.3 mg, not at the highest weight of 13.7 mg. The data of total fluorescence from QDs bound to immobilized avidin on increasing weights of nanofiber membrane was best fit with a second order polynomial equation (R(2) = .9973) while the standard curve of total fluorescence vs. femtomole QDs in solution had a linear response (R(2) = .999). A QD assay was developed in this study that provides a direct method for quantifying ligand attachment sites of avidin covalently bound to surfaces. The strong fluorescence signal that is a fundamental characteristic of QDs allows for the measurement of small changes in the amount of these particles in solution or attached to surfaces.

  17. Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane

    Directory of Open Access Journals (Sweden)

    Magnone Joshua

    2011-10-01

    Full Text Available Abstract Background The quantification of surface groups attached to non-woven fibers is an important step in developing nanofiber biosensing detection technologies. A method utilizing biotin functionalized quantum dots (QDs 655 for quantitative analysis of available biotin binding sites within avidin immobilized on electrospun nanofiber membranes was developed. Results A method for quantifying nanofiber bound avidin using biotin functionalized QDs is presented. Avidin was covalently bound to electrospun fibrous polyvinyl chloride (PVC 1.8% COOH w/w containing 10% w/w carbon black membranes using primary amine reactive EDC-Sulfo NHS linkage chemistry. After a 12 h exposure of the avidin coated membranes to the biotin-QD complex, fluorescence intensity was measured and the total amount of attached QDs was determined from a standard curve of QD in solution (total fluorescence vs. femtomole of QD 655. Additionally, fluorescence confocal microscopy verified the labeling of avidin coated nanofibers with QDs. The developed method was tested against 2.4, 5.2, 7.3 and 13.7 mg spray weights of electrospun nanofiber mats. Of the spray weight samples tested, maximum fluorescence was measured for a weight of 7.3 mg, not at the highest weight of 13.7 mg. The data of total fluorescence from QDs bound to immobilized avidin on increasing weights of nanofiber membrane was best fit with a second order polynomial equation (R2 = .9973 while the standard curve of total fluorescence vs. femtomole QDs in solution had a linear response (R2 = .999. Conclusion A QD assay was developed in this study that provides a direct method for quantifying ligand attachment sites of avidin covalently bound to surfaces. The strong fluorescence signal that is a fundamental characteristic of QDs allows for the measurement of small changes in the amount of these particles in solution or attached to surfaces.

  18. Mutational analysis of the pumpkin (Cucurbita maxima) phloem exudate lectin, PP2 reveals Ser-104 is crucial for carbohydrate binding.

    Science.gov (United States)

    Bobbili, Kishore Babu; Bandari, Shyam; Grobe, Kay; Swamy, Musti J

    2014-07-18

    The pumpkin phloem lectin (PP2) is an RNA-binding, defense-related, chitooligosaccharide-specific, homodimeric lectin of Mr 48 kDa expressed at high concentrations in the sieve elements and companion cells of pumpkin (Cucurbita maxima). In the present study, PP2 was expressed in the methylotrophic yeast Pichia pastoris with the Saccharomyces α-factor sequence to direct the recombinant protein into the secretory pathway as a prerequisite for unimpaired folding and posttranslational glycosylation of recombinant PP2. Previous computational modeling and ligand docking studies predicted a putative chitooligosaccharide-binding site on the PP2 surface, which was divided into three subsites, with two amino acid residues in each subsite identified as possible candidates for interaction with chitooligosaccharides (CHOs). In this work, mutational analysis and hemagglutination assays were employed to verify the role of the predicted residues in the carbohydrate binding activity of the protein. The results obtained revealed that mutation of Ser-104 to Ala (S104A) at subsite-2 resulted in about 90% loss of agglutination activity of the protein, indicating that Ser-104 is crucial for the binding of CHOs to PP2. Also, L100A (at subsite-1) and K200A (at subsite-3) independently decreased the lectin activity by about 40%, indicating that these two residues also contribute significantly to sugar binding by PP2. Together, these findings confirm that all the three subsites contribute to varying degrees toward PP2-carbohydrate interaction, and confirm the validity of the computational model, as proposed earlier. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  20. Unfolded HLA class I alpha chains and their use in an assay of HLA class-I-peptide binding.

    Science.gov (United States)

    Tanigaki, N; Fruci, D; Chersi, A; Butler, R H

    1993-02-01

    Unfolded HLA class I alpha chains were isolated from B-cell lysates by alkaline denaturation and subsequent gel filtration and used for the detection of HLA class-I-peptide binding. Binding to specific peptides in the presence of excess beta 2-microglobulin induced the unfolded alpha chains to refold and acquire a conformation that is specific to folded alpha chains. This conformational change was measured by a specific RIA that involves inhibition of the binding of 125I-labeled HLA-A2 alpha/beta dimers and rabbit anti-HLA-B7 serum absorbed with beta 2-microglobulin. This assay procedure does not require labeling of either test peptides or test class I proteins and does not seem to have specificity degeneracy. It is applicable to the detection of peptide binding by all HLA class I allelic proteins. Evaluation of the assay conditions and HLA allelic specificity of the peptide binding defined by the use of synthetic peptides are described here, including the technical details, specificity, and reproducibility.

  1. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    International Nuclear Information System (INIS)

    Costantini, Lindsey M.; Irvin, Susan C.; Kennedy, Steven C.; Guo, Feng; Goldstein, Harris; Herold, Betsy C.; Snapp, Erik L.

    2015-01-01

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells

  2. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, Lindsey M. [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Irvin, Susan C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Kennedy, Steven C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Guo, Feng [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Goldstein, Harris; Herold, Betsy C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Snapp, Erik L., E-mail: erik-lee.snapp@einstein.yu.edu [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States)

    2015-02-15

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.

  3. 125I anti-immunoglobulin binding assay for the detection and characterization of anti-platelet antibodies

    International Nuclear Information System (INIS)

    Kirkley, J.; Fabre, J.W.

    1980-01-01

    The binding assay as described in this paper is a very versatile system, and in this study it has been evaluated specifically for the detection of allo- or autoantibodies to platelets in man. The basic assay involves the incubation of a standard number of platelets with dilutions of test sera and the detection of platelet bound immunoglobulin by a second incubation with 125I labeled, immunoadsorbent purified rabbit F(ab') anti-human F(ab')2 (RAH). Of most importance, by varying the number of target platelets in the titrations and looking for binding plateaus, one can readily define conditions of optimum sensitivity for particular serum/platelet combinations. In addition, the assay can be used in conjunction with quantitative absorptions to subdivide complex sera into subspecificities and to give an estimate of the relative amounts of particular antigens on different platelets or other tissue or cell suspensions. One can also use saturating concentrations of RAH in the second incubation, in which case the amount of platelet bound radioactivity is directly related to the amount of first antibody bound to the platelets, and this can be manipulated to give information about serum antibody concentrations and amounts of antigen on the target tissue. The problem of ABO antibodies in this system, optimal conditions for platelet storage for the assay, and techniques for reducing assay backgrounds resulting from immunoglobulin adsorbed to the platelet surface are all evaluated

  4. Comparison of competitive ligand-binding assay and bioassay formats for the measurement of neutralizing antibodies to protein therapeutics.

    Science.gov (United States)

    Finco, Deborah; Baltrukonis, Daniel; Clements-Egan, Adrienne; Delaria, Kathy; Gunn, George R; Lowe, John; Maia, Mauricio; Wong, Teresa

    2011-01-25

    Administration of biological therapeutic proteins can lead to unwanted immunogenicity in recipients of these products. The assessment and characterization of such immune reactions can be helpful to better understand their clinical relevance and how they relate to patient safety and therefore, have become an integral part of a product development program for biological therapeutics. Testing for anti-drug antibodies (ADA) to biological/biotechnology-derived therapeutic proteins generally follows a tiered approach. Samples are initially screened for binding antibodies; presumptive positives are then confirmed in a confirmatory assay; subsequently, confirmed-positive samples may be further characterized by titration and with a neutralizing antibody (NAb) assay. Regulatory guidances on immunogenicity state that assessing the neutralizing capacity of antibodies should preferably be done using functional bioassays, while recognizing that competitive ligand-binding (CLB) assays may be substituted when neutralizing bioassays are inadequate or not feasible. This manuscript describes case studies from four companies in which CLB assays and functional bioassays were compared for their ability to detect neutralizing ADA against a variety of biotechnology-derived therapeutic proteins. Our findings indicate that CLB assays are comparable to bioassays for the detection of NAbs, in some cases offering better detection sensitivity, lower variability, and less matrix interference. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido

    2011-03-01

    Full Text Available Bifidobacterium longum subsp. infantis (B. infantis is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO. Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs, part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.

  6. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-10-01

    Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.

  7. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[W

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-01-01

    IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127

  8. PK of immunoconjugate anticancer agent CMD-193 in rats: ligand-binding assay approach to determine in vivo immunoconjugate stability.

    Science.gov (United States)

    Hussain, Azher; Gorovits, Boris; Leal, Mauricio; Fluhler, Eric

    2014-01-01

    Antibody-drug conjugates (ADCs) are a new generation of anticancer therapeutics. The objective of this manuscript is to propose a methodology that can be used to assess the stability of the ADCs by using the PK data obtained by ligand-binding assays that measure various components of ADCs. The ligand-binding assays format of different components of ADCs provided unique valuable PK information. The mathematical manipulation of the bioanalytical data provided an insight into the in vivo integrity, indicating that the loading of the calicheamicin on the G193 antibody declines in an apparent slow first-order process. This report demonstrates the value of analyzing various components of the ADC and their PK profiles to better understand the disposition and in vivo stability of ADCs.

  9. Preferential microRNA targeting revealed by in vivo competitive binding and differential Argonaute immunoprecipitation.

    Science.gov (United States)

    Werfel, Stanislas; Leierseder, Simon; Ruprecht, Benjamin; Kuster, Bernhard; Engelhardt, Stefan

    2017-09-29

    MicroRNAs (miRNAs) have been described to simultaneously inhibit hundreds of targets, albeit to a modest extent. It was recently proposed that there could exist more specific, exceptionally strong binding to a subgroup of targets. However, it is unknown, whether this is the case and how such targets can be identified. Using Argonaute2-ribonucleoprotein immunoprecipitation and in vivo competitive binding assays, we demonstrate for miRNAs-21, -199-3p and let-7 exceptional regulation of a subset of targets, which are characterized by preferential miRNA binding. We confirm this finding by analysis of independent quantitative proteome and transcriptome datasets obtained after miRNA silencing. Our data suggest that mammalian miRNA activity is guided by preferential binding of a small set of 3'-untranslated regions, thereby shaping a steep gradient of regulation between potential targets. Our approach can be applied for transcriptome-wide identification of such targets independently of the presence of seed complementary sequences or other predictors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Improved receptor analysis in PET using a priori information from in vitro binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Litton, J.-E.; Hall, H.; Blomqvist, G. [Department of Clinical Neuroscience, Karolinska Hospital, S-171 76 Stockholm (Sweden)

    1997-08-01

    An accurate determination of non-specific binding is required for the analysis of in vitro and in vivo receptor binding data. For some radioligands the non-specific binding is of the same magnitude as the specific binding. Furthermore, in vitro measurements have shown that the non-specific binding can be different in different brain regions. If this is the case in a PET study for determining B{sub max} and K{sub d}, a correction for the non-specific binding has to be applied. The aim of the present communication is to present a means for determining corrected B{sub max} and K{sub d} with Scatchard analysis using in vitro binding studies. The influence of non-specific binding on the free and specifically bound radioligand is expressed with the aid of a correction factor, which can be calculated from measurable quantities. Introduction of the corrected free and specifically bound radioligand should give binding parameters closer to reality than previously obtained results. (author)

  11. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores.

    Science.gov (United States)

    Nikiforov, Theo T; Beechem, Joseph M

    2006-10-01

    We studied the fluorescence resonance energy transfer (FRET) between quantum dots emitting at 565, 605, and 655 nm as energy donors and Alexa Fluor fluorophores with absorbance maxima at 594, 633, 647, and 680 nm as energy acceptors. As a first step, we prepared covalent conjugates between all three types of quantum dots and each of the Alexa Fluor fluorophores that could act as an energy acceptor. All of these conjugates displayed efficient resonance energy transfer. Then we prepared covalent conjugates of these quantum dots with biotin, fluorescein, and cortisol and established that the binding of these conjugates to suitable Alexa Fluor-labeled antibodies and streptavidin (in the case of biotin) can be efficiently detected by measuring the resonance energy transfer in homogeneous solutions. Finally, based on these observations, competitive binding assays for these three small analytes were developed. The performance of these assays as a function of the degree of labeling of the quantum dots was evaluated. It was found that decreasing the degree of loading of the quantum dots leads to decreases of the limits of detection. The results show the great potential of this FRET system for the development of new homogeneous binding assays.

  12. Simplified immunoassay for rapid Dengue serotype diagnosis, revealing insensitivity to non-specific binding interference

    Directory of Open Access Journals (Sweden)

    Fernanda C.C.L. Loureiro

    2017-04-01

    Full Text Available Proof of concept of an immunoassay, which is easy to implement, for rapid Dengue virus (DENV serotype diagnosis, in the early infection stage, is reported. The four-layer assay is immobilized onto a thin gold film and relies on a low cost, disposable polymer biochip for optical surface plasmon resonance sensing and detection. The protocol comprises Neutravidin-Biotin mediated monoclonal antibody (MAB attachment as the functionalized sensing element. Formation of the MAB-DENV complex results in a pronounced thickness change that is optically recorded in real time, employing a microfluidic set-up. Virus presence is confirmed by atomic force microscopy from the same sample. Serum samples were collected from a patient in acute febrile state. Simultaneous serological analysis by means of the reverse transcription polymerase chain reaction, independently, confirmed presence of DENV2 and DENV3. The protocol proved applicable in presence of strong non-specific binding interference that originates from, and is caused by, various blood, serum and other body fluid constituents. False positive indications for both, negative serum and blood control samples were not observed. The achievable limit of detection was estimated to be 2×104 particles/ml. Eventually, the method can be modified towards detection of other viruses by using the same protocol. Keywords: Immuno-assay, Dengue virus detection, Non-specific binding

  13. Measurement of Nanomolar Dissociation Constants by Titration Calorimetry and Thermal Shift Assay – Radicicol Binding to Hsp90 and Ethoxzolamide Binding to CAII

    Directory of Open Access Journals (Sweden)

    Vilma Michailovienė

    2009-06-01

    Full Text Available The analysis of tight protein-ligand binding reactions by isothermal titration calorimetry (ITC and thermal shift assay (TSA is presented. The binding of radicicol to the N-terminal domain of human heat shock protein 90 (Hsp90aN and the binding of ethoxzolamide to human carbonic anhydrase (hCAII were too strong to be measured accurately by direct ITC titration and therefore were measured by displacement ITC and by observing the temperature-denaturation transitions of ligand-free and ligand-bound protein. Stabilization of both proteins by their ligands was profound, increasing the melting temperature by more than 10 ºC, depending on ligand concentration. Analysis of the melting temperature dependence on the protein and ligand concentrations yielded dissociation constants equal to 1 nM and 2 nM for Hsp90aN-radicicol and hCAII-ethoxzolamide, respectively. The ligand-free and ligand-bound protein fractions melt separately, and two melting transitions are observed. This phenomenon is especially pronounced when the ligand concentration is equal to about half the protein concentration. The analysis compares ITC and TSA data, accounts for two transitions and yields the ligand binding constant and the parameters of protein stability, including the Gibbs free energy and the enthalpy of unfolding.

  14. A peptide-binding assay for the disease-associated HLA-DQ8 molecule

    DEFF Research Database (Denmark)

    Straumfors, A; Johansen, B H; Vartdal, F

    1998-01-01

    The study of peptide binding to HLA class II molecules has mostly concentrated on DR molecules. Since many autoimmune diseases show a primary association to particular DQ molecules rather than DR molecules, it is also important to study the peptide-binding properties of DQ molecules. Here we report...... of 43 peptides of different lengths and sequences. The DQ8 molecules showed a different pattern of peptide binding compared to a previously studied DQ2 molecule. Peptides derived from thyroid peroxidase, HLA-DQ(alpha1*0301), HLA-DQ(alpha1*0302), retinol receptor and p21ras were among the high...

  15. The production of KIR-Fc fusion proteins and their use in a multiplex HLA class I binding assay.

    Science.gov (United States)

    Hilton, Hugo G; Moesta, Achim K; Guethlein, Lisbeth A; Blokhuis, Jeroen; Parham, Peter; Norman, Paul J

    2015-10-01

    Soluble recombinant proteins that comprise the extracellular part of a surface expressed receptor attached to the Fc region of an IgG antibody have facilitated the determination of ligand specificity for an array of immune system receptors. Among such receptors is the family of killer cell immunoglobulin-like receptors (KIR) that recognize HLA class I ligands. These receptors, expressed on natural killer (NK) cells and T cells, play important roles in both immune defense and placental development in early pregnancy. Here we describe a method for the production of two domain KIR-Fc fusion proteins using baculovirus infected insect cells. This method is more scalable than traditional mammalian cell expression systems and produces efficiently folded proteins that carry posttranslational modifications found in native KIR. We also describe a multiplex binding assay using the Luminex platform that determines the avidity and specificity of two domain KIR-Fc for a panel of microbeads, each coated with one of 97 HLA class I allotypes. This assay is simple to perform, and represents a major improvement over the assays used previously, which were limited in the number of KIR and HLA class I combinations that could be assayed at any one time. The results obtained from this assay can be used to predict the response of NK cell and T cells when their KIR recognize HLA class I. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties

    Energy Technology Data Exchange (ETDEWEB)

    Mikeska, Ruth [Institute of Biochemistry and Food Chemistry, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22a, 22603 Hamburg (Germany); Wacker, Roland [Institute of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen (Germany); Arni, Raghuvir [Department of Physics, IBILCE/UNESP, São Jose do Rio Preto, São Paul (Brazil); Singh, Tej P. [Department of Biophysics, All India Institute of Medical Sciences, New Delhi (India); Mikhailov, Albert; Gabdoulkhakov, Azat [Institute of Crystallography of Russian Academy of Sciences, Leninsky Prospect 59, 117333 Moscow (Russian Federation); Voelter, Wolfgang [Institute of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen (Germany); Betzel, Christian, E-mail: betzel@unisgi1.desy.de [Institute of Biochemistry and Food Chemistry, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22a, 22603 Hamburg (Germany)

    2005-01-01

    The structures of mistletoe lectin I in complex with lactose and galactose reveal differences in binding by the two known sites in subdomains α1 and γ2 and suggest the presence of a third low-affinity site in subdomain β1. The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 Å resolution and refined to R factors of 20.9% (R{sub free} = 23.6%) and 20.9 (R{sub free} = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chain has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains α1 and γ2 of the ML-I B-chain separated by ∼62 Å from each other. The favoured binding of galactose in subdomain α1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar–lectin complex. In the galactose-binding site II of subdomain γ2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar–protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit β1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound.

  17. A non-radioactive ligand-binding assay for detection of cyanobacterial anatoxins using Torpedo electrocyte membranes.

    Science.gov (United States)

    Aráoz, Rómulo; Herdman, Michael; Rippka, Rosmarie; Ledreux, Aurélie; Molgó, Jordi; Changeux, Jean-Pierre; Tandeau de Marsac, Nicole; Nghiêm, Hoàng-Oanh

    2008-07-01

    Anatoxin-a (ANTX) and homoanatoxin-a (HANTX), neurotoxins exclusively produced by cyanobacteria (LD(50) 200-250 microg kg(-1), i.p. mouse), are agonists of the nicotinic acetylcholine receptors (nAChRs) to which they tightly bind. We have exploited the high affinity of these neurotoxins for the nicotinic receptors to develop a non-radioactive ligand-binding assay using Torpedo electrocyte membranes and biotinylated alpha-bungarotoxin (Biotin-BgTx) as tracer for detection of this class of toxins. The affinity of the Torpedo nAChRs for Biotin-BgTx was determined by chemiluminescence (K(d)=1.2 x 10(-8)M Biotin-BgTx) or color development (K(d)=3.5 x 10(-8)M Biotin-BgTx). Binding of ANTX or HANTX to the nAChRs competitively inhibits the binding of Biotin-BgTx to the receptors in a concentration-dependent manner (chemiluminescence: IC(50): 6.2 x 10(-8)M ANTX; color development: IC(50): 1.7 x 10(-8)M ANTX). The proposed method was validated by HPLC/MS with detection in the single ion recording mode. The non-radioactive ligand receptor-binding assay was successfully applied to the analysis of extracts prepared from cyanobacteria in culture and from natural habitats, as well as from aqueous samples. This method is suitable for ANTX and HANTX early survey of environmental samples since it requires minimal manipulations, is highly sensitive and gives consistent signal-to-noise ratios.

  18. Concepts for the assay of unbound thyroxine (FT4) and thyroxine binding globulin (TBG)

    International Nuclear Information System (INIS)

    Odstrchel, G.; Hertl, W.; Ward, F.B.; Travis, K.; Lindner, R.E.; Mason, R.D.

    1977-01-01

    Two new concepts for the assay of thyroid related substances are presented. One assay (FT 4 ) is based on a kinetic measurement of T 4 as it desorbs from binder proteins onto solid-phase T 4 antibody. This reaction can be described by a second order rate equation; r = k (IMA) (FT 4 ). The assay is rapid (2 hours) and gives good agreement (sigma = 0.92) with equilibrium dialysis and a normal range of 0.9 - 2.3 ng/dl. This assay uses a small sample size (25 μl) and is unaffected by drugs such as aspirin and dilantin. Pregnant and estrogen treated women gave normal FT 4 values. A new method for the measurement of functionally active TEG is also presented. In this case the labeled T 4 is partitioned between bovine serum albumin and the patient's samples. The complex is then removed from solution by solid-phase anti-TBG. A curve remiscent of an immunoradiometric assay is obtained. The assay has a sensitivity of 4 μg/ml and is unaffected by aspirin, dilantin or the patient's T 4 concentrations. Correlation with 'rocket' electrophoresis is 0.90. The normal range was 20 +- 7 μg/ml with pregnant women giving values greater than 30 μg/ml. Five hereditary deficient patients gave a value equivalent to zero TBG concentration. (orig.) [de

  19. Periplasmic binding protein-based detection of maltose using liposomes: a new class of biorecognition elements in competitive assays.

    Science.gov (United States)

    Edwards, Katie A; Baeumner, Antje J

    2013-03-05

    A periplasmic binding protein (PBP) was investigated as a novel binding species in a similar manner to an antibody in a competitive enzyme linked immunosorbent assay (ELISA), resulting in a highly sensitive and specific assay utilizing liposome-based signal amplification. PBPs are located at high concentrations (10(-4) M) between the inner and outer membranes of gram negative bacteria and are involved in the uptake of solutes and chemotaxis of bacteria toward nutrient sources. Previous sensors relying on PBPs took advantage of the change in local environment or proximity of site-specific fluorophore labels resulting from the significant conformational shift of these proteins' two globular domains upon target binding. Here, rather than monitoring conformational shifts, we have instead utilized the maltose binding protein (MBP) in lieu of an antibody in an ELISA. To our knowledge, this is the first PBP-based sensor without the requirement for engineering site-specific modifications within the protein. MBP conjugated fluorescent dye-encapsulating liposomes served to provide recognition and signal amplification in a competitive assay for maltose using amylose magnetic beads in a microtiter plate-based format. The development of appropriate binding buffers and competitive surfaces are described, with general observations expected to extend to PBPs for other analytes. The resulting assay was specific for d-(+)-maltose versus other sugar analogs including d-(+)-raffinose, sucrose, d-trehalose, d-(+)-xylose, d-fructose, 1-thio-β-d-glucose sodium salt, d-(+)-galactose, sorbitol, glycerol, and dextrose. Cross-reactivity with d-lactose and d-(+)-glucose occurred only at concentrations >10(4)-fold greater than d-(+)-maltose. The limit of detection was 78 nM with a dynamic range covering over 3 orders of magnitude. Accurate detection of maltose as an active ingredient in a pharmaceutical preparation was demonstrated. This method offers a significant improvement over existing

  20. Designing binding kinetic assay on the bio-layer interferometry (BLI) biosensor to characterize antibody-antigen interactions.

    Science.gov (United States)

    Kamat, Vishal; Rafique, Ashique

    2017-11-01

    The Octet biosensors provide a high-throughput alternative to the well-established surface plasmon resonance (SPR) and SPR imaging (SPRi) biosensors to characterize antibody-antigen interactions. However, the utility of the Octet biosensors for accurate and reproducible measurement of binding rate constants of monoclonal antibodies (mAbs) is limited due to challenges such as analyte rebinding, and mass transport limitation (MTL). This study focuses on addressing these challenges and provides experimental conditions to reliably measure kinetics of mAb-antigen interactions. The mAb capture density of less than 0.6 nm was found to be optimal to measure a wide range of binding affinities on Octet HTX biosensor. The titration kinetic and single cycle kinetic assays performed on Octet HTX generated reproducible binding kinetic parameters and correlated with the values measured on Biacore 4000 and MASS-1. Kinetic assays performed on 0.1 nm density mAb surfaces significantly reduced MTL and enabled characterization of picomolar affinity mAbs. Finally, kinetic analysis performed on 150 antibodies to 10 antigens with molecular weights ranging from 21kD to 105kD showed concordance between Octet HTX, Biacore 4000 and MASS-1 (R 2  > 0.90). The data presented in this study suggest that under optimal experimental conditions, Octet biosensor is capable of generating kinetic values comparable to SPR/SPRi biosensors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding

    Energy Technology Data Exchange (ETDEWEB)

    Aller, Stephen G.; Yu, Jodie; Ward, Andrew; Weng, Yue; Chittaboina, Srinivas; Zhuo, Rupeng; Harrell, Patina M.; Trinh, Yenphuong T.; Zhang, Qinghai; Urbatsch, Ina L.; Chang, Geoffrey; (Scripps); (TTU)

    2009-04-22

    P-glycoprotein (P-gp) detoxifies cells by exporting hundreds of chemically unrelated toxins but has been implicated in multidrug resistance (MDR) in the treatment of cancers. Substrate promiscuity is a hallmark of P-gp activity, thus a structural description of poly-specific drug-binding is important for the rational design of anticancer drugs and MDR inhibitors. The x-ray structure of apo P-gp at 3.8 angstroms reveals an internal cavity of -6000 angstroms cubed with a 30 angstrom separation of the two nucleotide-binding domains. Two additional P-gp structures with cyclic peptide inhibitors demonstrate distinct drug-binding sites in the internal cavity capable of stereoselectivity that is based on hydrophobic and aromatic interactions. Apo and drug-bound P-gp structures have portals open to the cytoplasm and the inner leaflet of the lipid bilayer for drug entry. The inward-facing conformation represents an initial stage of the transport cycle that is competent for drug binding.

  2. Identification of Rift Valley fever virus nucleocapsid protein-RNA binding inhibitors using a high-throughput screening assay.

    Science.gov (United States)

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J Stephen

    2012-09-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection, and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential antiviral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interaction, we developed a fluorescence polarization-based high-throughput drug-screening assay and tested 26 424 chemical compounds for their ability to disrupt an N-RNA complex. From libraries of Food and Drug Administration-approved drugs, druglike molecules, and natural product extracts, we identified several lead compounds that are promising candidates for medicinal chemistry.

  3. Zinc blotting assay for detection of zinc binding prolamin in barley (Hordeum vulgare) grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Nielsen, Ane Langkilde-Lauesen; Vincze, Eva

    2014-01-01

    zinc blotting method with a zinc-sensing dye, dithizone. Hordeins were extracted from mature barley grain, separated by SDS-PAGE, blotted on a membrane, renatured, overlaid, and probed with zinc; subsequently, zinc-binding specificity of certain proteins was detected either by autoradiography or color...

  4. In-vitro binding assay study of 99mTc-flouroquinolones with E. coli ...

    African Journals Online (AJOL)

    Muhammad Abdul Qadir

    2014-10-28

    Oct 28, 2014 ... Abstract A simple methodology was developed to evaluate binding efficiency of antibiotic mem- bers of fluoroquinolones, namely ciprofloxacin, ofloxacin and enorfloxacin, complexed with 99mTc, against Escherichia coli, Salmonella and Pseudomonas aeruginosa bacterial strains. Radioactivity in the pellet ...

  5. In-vitro binding assay study of 99m Tc-flouroquinolones with E. coli ...

    African Journals Online (AJOL)

    A simple methodology was developed to evaluate binding efficiency of antibiotic members of fluoroquinolones, namely ciprofloxacin, ofloxacin and enorfloxacin, complexed with 99mTc, against Escherichia coli, Salmonella and Pseudomonas aeruginosa bacterial strains. Radioactivity in the pellet, tips supernatant and ...

  6. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin.

    Science.gov (United States)

    McCall, Jennifer R; Jacocks, Henry M; Niven, Susan C; Poli, Mark A; Baden, Daniel G; Bourdelais, Andrea J

    2014-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels.

  7. Ultrasensitive human thyrotropin (h TSH) immunoradiometric assay (IRMA) set up, through identification and minimization of non specific bindings

    International Nuclear Information System (INIS)

    Peroni, C.N.

    1994-01-01

    An IRMA of h TSH, based on magnetic solid phase separation, was studied especially for what concerns its non specific bindings. These were identified as a product of the interaction between an altered form of radioiodinated anti-h TSH monoclonal antibody ( 125 I-m AB) and the uncoupled magnetizable cellulose particle (matrix). Apparently this form of 125 I-m AB is a type of aggregate that can be partly resolved from the main peak on Sephadex G-200 and further minimized via a single pre-incubation with the same matrix. Solid phase saturation with milk proteins, tracer storage at 4 0 C and serum addition during incubation were also found particularly effective is preventing its formation. These findings were used in order to reproducibly decrease non specific bindings to values 60 /B O ) up to values of 300-500. This way we obtained h TSH radio assays with functional sensitivities of about 0.05 m IU/L and analytical sensitivities of the order of 0.02 m IU/L, which classify them at least as among the best second generation assays and that are excellent indeed for magnetic IRMA s. A more optimistic sensitivity calculation, based on Rodbard's definition, provided values down to 0.008 m IU/L. Such sensitivities, moreover, were obtained in a very reproducible way and all over the useful tracer life. (author). 83 refs, 13 figs, 25 tabs

  8. Structural characterisation of Tpx from Yersinia pseudotuberculosis reveals insights into the binding of salicylidene acylhydrazide compounds.

    Directory of Open Access Journals (Sweden)

    Mads Gabrielsen

    Full Text Available Thiol peroxidase, Tpx, has been shown to be a target protein of the salicylidene acylhydrazide class of antivirulence compounds. In this study we present the crystal structures of Tpx from Y. pseudotuberculosis (ypTpx in the oxidised and reduced states, together with the structure of the C61S mutant. The structures solved are consistent with previously solved atypical 2-Cys thiol peroxidases, including that for "forced" reduced states using the C61S mutant. In addition, by investigating the solution structure of ypTpx using small angle X-ray scattering (SAXS, we have confirmed that reduced state ypTpx in solution is a homodimer. The solution structure also reveals flexibility around the dimer interface. Notably, the conformational changes observed between the redox states at the catalytic triad and at the dimer interface have implications for substrate and inhibitor binding. The structural data were used to model the binding of two salicylidene acylhydrazide compounds to the oxidised structure of ypTpx. Overall, the study provides insights into the binding of the salicylidene acylhydrazides to ypTpx, aiding our long-term strategy to understand the mode of action of this class of compounds.

  9. Identification of Splicing Factors Involved in DMD Exon Skipping Events Using an In Vitro RNA Binding Assay.

    Science.gov (United States)

    Miro, Julie; Bourgeois, Cyril F; Claustres, Mireille; Koenig, Michel; Tuffery-Giraud, Sylvie

    2018-01-01

    Mutation-induced exon skipping in the DMD gene can modulate the severity of the phenotype in patients with Duchenne or Becker Muscular Dystrophy. These alternative splicing events are most likely the result of changes in recruitment of splicing factors at cis-acting elements in the mutated DMD pre-mRNA. The identification of proteins involved can be achieved by an affinity purification procedure. Here, we provide a detailed protocol for the in vitro RNA binding assay that we routinely apply to explore molecular mechanisms underlying splicing defects in the DMD gene. In vitro transcribed RNA probes containing either the wild type or mutated sequence are oxidized and bound to adipic acid dihydrazide-agarose beads. Incubation with a nuclear extract allows the binding of nuclear proteins to the RNA probes. The unbound proteins are washed off and then the specifically RNA-bound proteins are released from the beads by an RNase treatment. After separation by SDS-PAGE, proteins that display differential binding affinities for the wild type and mutant RNA probes are identified by mass spectrometry.

  10. A DNA-Mediated Homogeneous Binding Assay for Proteins and Small Molecules

    DEFF Research Database (Denmark)

    Zhang, Zhao; Hejesen, Christian; Kjelstrup, Michael Brøndum

    2014-01-01

    Optical detection of molecular targets typically requires immobilization, separation, or chemical or enzymatic processing. An important exception is aptamers that allow optical detection in solution based on conformational changes. This method, however, requires the laborious selection of aptamers....... The shift occurs upon binding of a protein, for example, an antibody to its target. We demonstrate nanomolar detection of small molecules such as biotin, digoxigenin, vitamin D, and folate, in buffer and in plasma. The method is flexible, and we also show nanomolar detection of the respective antibodies...

  11. Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems

    Science.gov (United States)

    Shang, Xiaoran; Orr, Mona W.; Goodson, Jonathan R.; Galperin, Michael Y.; Yildiz, Fitnat H.; Lee, Vincent T.

    2015-01-01

    Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP. PMID:26506097

  12. Agarose gel shift assay reveals that calreticulin favors substrates with a quaternary structure in solution

    DEFF Research Database (Denmark)

    Boelt, Sanne Grundvad; Houen, Gunnar; Højrup, Peter

    2015-01-01

    Here we present an agarose gel shift assay that, in contrast to other electrophoresis approaches, is loaded in the center of the gel. This allows proteins to migrate in either direction according to their isoelectric points. Therefore, the presented assay enables a direct visualization, separation...... structure. It is also demonstrated that the agarose gel shift assay is useful in the study of other protein interactions and can be used as an alternative method to native polyacrylamide gel electrophoresis....... measure of interactions. Therefore, no interaction studies between calreticulin and substrates in solution have been investigated previously. The results presented here indicate that calreticulin has a preference for substrates with a quaternary structure and primarily β-sheets in their secondary...

  13. Probing the functional impact of sequence variation on p53-DNA interactions using a novel microsphere assay for protein-DNA binding with human cell extracts.

    Directory of Open Access Journals (Sweden)

    Maher A Noureddine

    2009-05-01

    Full Text Available The p53 tumor suppressor regulates its target genes through sequence-specific binding to DNA response elements (REs. Although numerous p53 REs are established, the thousands more identified by bioinformatics are not easily subjected to comparative functional evaluation. To examine the relationship between RE sequence variation -- including polymorphisms -- and p53 binding, we have developed a multiplex format microsphere assay of protein-DNA binding (MAPD for p53 in nuclear extracts. Using MAPD we measured sequence-specific p53 binding of doxorubicin-activated or transiently expressed p53 to REs from established p53 target genes and p53 consensus REs. To assess the sensitivity and scalability of the assay, we tested 16 variants of the p21 target sequence and a 62-multiplex set of single nucleotide (nt variants of the p53 consensus sequence and found many changes in p53 binding that are not captured by current computational binding models. A group of eight single nucleotide polymorphisms (SNPs was examined and binding profiles closely matched transactivation capability tested in luciferase constructs. The in vitro binding characteristics of p53 in nuclear extracts recapitulated the cellular in vivo transactivation capabilities for eight well-established human REs measured by luciferase assay. Using a set of 26 bona fide REs, we observed distinct binding patterns characteristic of transiently expressed wild type and mutant p53s. This microsphere assay system utilizes biologically meaningful cell extracts in a multiplexed, quantitative, in vitro format that provides a powerful experimental tool for elucidating the functional impact of sequence polymorphism and protein variation on protein/DNA binding in transcriptional networks.

  14. ERPs reveal the time-course of aberrant visual-phonological binding in developmental dyslexia

    Directory of Open Access Journals (Sweden)

    Manon Wyn Jones

    2016-03-01

    Full Text Available New evidence is accumulating for a deficit in binding visual-orthographic information with the corresponding phonological code in developmental dyslexia. Here, we identify the mechanisms underpinning this deficit using event-related brain potentials (ERPs in dyslexic and control adult readers performing a letter-matching task. In each trial, a printed letter was presented synchronously with an auditory letter name. Incongruent (mismatched, frequent trials were interleaved with congruent (matched infrequent target pairs, which participants were asked to report by pressing a button. In critical trials, incongruent letter pairs were mismatched but confusable in terms of their visual or phonological features. Typical readers showed early detection of deviant trials, indicated by larger modulation in the range of the phonological mismatch negativity (PMN compared with standard trials. This was followed by stronger modulation of the P3b wave for visually confusable deviants and an increased lateralized readiness potential (LRP for phonological deviants, compared with standards. In contrast, dyslexic readers showed reduced sensitivity to deviancy in the PMN range. Responses to deviants in the P3b range indicated normal letter recognition processes, but the LRP calculation revealed a specific impairment for visual-orthographic information during response selection in dyslexia. In a follow-up experiment using an analogous non-lexical task in the same participants, we found no reading-group differences, indicating a degree of specificity to over-learnt visual-phonological binding. Our findings indicate early insensitivity to visual-phonological binding in developmental dyslexia, coupled with difficulty selecting the correct orthographic code.

  15. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation

    Directory of Open Access Journals (Sweden)

    Olgun eGuvench

    2015-06-01

    Full Text Available The extracellular N-terminal hyaluronan binding domain (HABD of CD44 is a small globular domain that confers hyaluronan (HA binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA binding site from a low affinity to a high affinity state; in the partially-disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently-attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.

  16. Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus

    Science.gov (United States)

    Price, Jordan V.; Haddon, David J.; Kemmer, Dodge; Delepine, Guillaume; Mandelbaum, Gil; Jarrell, Justin A.; Gupta, Rohit; Balboni, Imelda; Chakravarty, Eliza F.; Sokolove, Jeremy; Shum, Anthony K.; Anderson, Mark S.; Cheng, Mickie H.; Robinson, William H.; Browne, Sarah K.; Holland, Steven M.; Baechler, Emily C.; Utz, Paul J.

    2013-01-01

    Autoantibodies against cytokines, chemokines, and growth factors inhibit normal immunity and are implicated in inflammatory autoimmune disease and diseases of immune deficiency. In an effort to evaluate serum from autoimmune and immunodeficient patients for Abs against cytokines, chemokines, and growth factors in a high-throughput and unbiased manner, we constructed a multiplex protein microarray for detection of serum factor–binding Abs and used the microarray to detect autoantibody targets in SLE. We designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor–binding probes. We used the arrays to detect previously described autoantibodies against cytokines in samples from individuals with autoimmune polyendocrine syndrome type 1 and chronic mycobacterial infection. Serum profiling from individuals with SLE revealed that among several targets, elevated IgG autoantibody reactivity to B cell–activating factor (BAFF) was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including IFN-α–driven SLE pathology. Our results showed that serum factor protein microarrays facilitate detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE. PMID:24270423

  17. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  18. Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity.

    Science.gov (United States)

    Couñago, Rafael M; Knapp, Karen M; Nakatani, Yoshio; Fleming, Stephen B; Corbett, Michael; Wise, Lyn M; Mercer, Andrew A; Krause, Kurt L

    2015-07-07

    The chemokine binding protein (CKBP) from orf virus (ORFV) binds with high affinity to chemokines from three classes, C, CC, and CXC, making it unique among poxvirus CKBPs described to date. We present its crystal structure alone and in complex with three CC chemokines, CCL2, CCL3, and CCL7. ORFV CKBP possesses a β-sandwich fold that is electrostatically and sterically complementary to its binding partners. Chemokines bind primarily through interactions involving the N-terminal loop and a hydrophobic recess on the ORFV CKBP β-sheet II surface, and largely polar interactions between the chemokine 20s loop and a negatively charged surface groove located at one end of the CKBP β-sheet II surface. ORFV CKBP interacts with leukocyte receptor and glycosaminoglycan binding sites found on the surface of bound chemokines. SEC-MALLS and chromatographic evidence is presented supporting that ORFV CKBP is a dimer in solution over a broad range of protein concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    Science.gov (United States)

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs. Published by Elsevier Inc.

  20. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors

    Science.gov (United States)

    Levis, Mark; Brown, Patrick; Smith, B. Douglas; Stine, Adam; Pham, Rosalyn; Stone, Richard; DeAngelo, Daniel; Galinsky, Ilene; Giles, Frank; Estey, Elihu; Kantarjian, Hagop; Cohen, Pamela; Wang, Yanfeng; Roesel, Johannes; Karp, Judith E.; Small, Donald

    2006-01-01

    We have developed a useful surrogate assay for monitoring the efficacy of FLT3 inhibition in patients treated with oral FLT3 inhibitors. The plasma inhibitory activity (PIA) for FLT3 correlates with clinical activity in patients treated with CEP-701 and PKC412. Using the PIA assay, along with in vitro phosphorylation and cytotoxicity assays in leukemia cells, we compared PKC412 and its metabolite, CGP52421, with CEP-701. While both drugs could effectively inhibit FLT3 in vitro, CEP-701 was more cytotoxic to primary samples at comparable levels of FLT3 inhibition. PKC412 appears to be more selective than CEP-701 and therefore less effective at inducing cytotoxicity in primary acute myeloid leukemia (AML) samples in vitro. However, the PKC412 metabolite CGP52421 is less selective than its parent compound, PKC412, and is more cytotoxic against primary blast samples at comparable levels of FLT3 inhibition. The plasma inhibitory activity assay represents a useful correlative tool in the development of small-molecule inhibitors. Our application of this assay has revealed that the metabolite CGP52421 may contribute a significant portion of the antileukemia activity observed in patients receiving oral PKC412. Additionally, our results suggest that nonselectivity may constitute an important component of the cytotoxic effect of FLT3 inhibitors in FLT3-mutant AML. PMID:16857987

  1. Development of tissue print binding assay for detection of trace metals in tissue

    International Nuclear Information System (INIS)

    Umemiya, Yoshiaki; Hiraoka, Kiyoshi; Nakamura, Yuri; Murakami, Yuriko; Kusaba, Shinnosuke; Honda, Chikako

    2000-01-01

    Distribution of 65 Zn, a tracer added to an apple tree was investigated to clarify the correlation between excess-Zn disease and Zn-binding protein. For a short-term treatment with Zn at 100 ppm, browning lesion at leaf margin was observed both in mature and immature leaves of apple tree after 10 days from the treatment, but the lesion did not lead to death. The absorption pattern of 65 Zn into the tree was not different between the treatments at 0.1 and 1.0 ppm and the amount of absorption was lower in the order of thin root, immature leaf, straight root, stem, upper part and lower part of mature leaf. Whereas for the area treated at 1 ppm, the absorption amount decreased in the order of thin root, straight root, immature leaf, stem, upper part and lower part of leaf. In either of the test areas, Zn absorption per dry weight was the most in thin roots. As increasing Zn concentration, the incorporation of labeled Zn into the immature leaves was decreased in thin root as well as the terrestrial part. The count incorporation into the upper part of mature leaves was about 10 to 20 % of that of the lower part. These results indicated that Zn was much abundantly incorporated into immature leaf and thin roots, in which metabolic activities were high compared to other regions of the tree. Zn concentration in its fruit under the ordinary culture conditions was 4-21 ppm, which was similar to the concentrations of Mn, Cu and Fe. This tendency was similar to those of other fruits including other varieties of apples and pears. (M.N.)

  2. In-frame cDNA library combined with protein complementation assay identifies ARL11-binding partners.

    Directory of Open Access Journals (Sweden)

    Sangkyou Lee

    Full Text Available The cDNA expression libraries that produce correct proteins are essential in facilitating the identification of protein-protein interactions. The 5'-untranslated regions (UTRs that are present in the majority of mammalian and non-mammalian genes are predicted to alter the expression of correct proteins from cDNA libraries. We developed a novel cDNA expression library from which 5'-UTRs were removed using a mixture of polymerase chain reaction primers that complement the Kozak sequences we refer to as an "in-frame cDNA library." We used this library with the protein complementation assay to identify two novel binding partners for ras-related ADP-ribosylation factor-like 11 (ARL11, cellular retinoic acid binding protein 2 (CRABP2, and phosphoglycerate mutase 1 (PGAM1. Thus, the in-frame cDNA library without 5'-UTRs we describe here increases the chance of correctly identifying protein interactions and will have wide applications in both mammalian and non-mammalian detection systems.

  3. Calculations for Adjusting Endogenous Biomarker Levels During Analytical Recovery Assessments for Ligand-Binding Assay Bioanalytical Method Validation.

    Science.gov (United States)

    Marcelletti, John F; Evans, Cindy L; Saxena, Manju; Lopez, Adriana E

    2015-07-01

    It is often necessary to adjust for detectable endogenous biomarker levels in spiked validation samples (VS) and in selectivity determinations during bioanalytical method validation for ligand-binding assays (LBA) with a matrix like normal human serum (NHS). Described herein are case studies of biomarker analyses using multiplex LBA which highlight the challenges associated with such adjustments when calculating percent analytical recovery (%AR). The LBA test methods were the Meso Scale Discovery V-PLEX® proinflammatory and cytokine panels with NHS as test matrix. The NHS matrix blank exhibited varied endogenous content of the 20 individual cytokines before spiking, ranging from undetectable to readily quantifiable. Addition and subtraction methods for adjusting endogenous cytokine levels in %AR calculations are both used in the bioanalytical field. The two methods were compared in %AR calculations following spiking and analysis of VS for cytokines having detectable endogenous levels in NHS. Calculations for %AR obtained by subtracting quantifiable endogenous biomarker concentrations from the respective total analytical VS values yielded reproducible and credible conclusions. The addition method, in contrast, yielded %AR conclusions that were frequently unreliable and discordant with values obtained with the subtraction adjustment method. It is shown that subtraction of assay signal attributable to matrix is a feasible alternative when endogenous biomarkers levels are below the limit of quantitation, but above the limit of detection. These analyses confirm that the subtraction method is preferable over that using addition to adjust for detectable endogenous biomarker levels when calculating %AR for biomarker LBA.

  4. Re-evaluation of nicotinic acetylcholine receptor in rat brain by a tissue-segment binding assay

    Directory of Open Access Journals (Sweden)

    Mao Hsien Wang

    2011-10-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs of cerebral cortex and cerebellum of rats were evaluated by a radioligand binding assay, employing tissue segments or homogenates as materials. [3H]-epibatidine specifically bound to nAChRs in rat cortex or cerebellum, but the dissociation constants for [3H]-epibatidine differed between segments and homogenates (187 and 42 pM in cortex, and 160 and 84 pM in cerebellum, respectively. The abundance of total nAChRs was approximately 310 and 170 fmol/mg protein in the segments of cortex and cerebellum, respectively, which were significantly higher than those (115 and 76 fmol/mg protein estimated in the homogenates of cortex and cerebellum. Most of [3H]-epibatidine binding sites in the cortex segments (approximately 70 % in population showed high affinity for nicotine, dihydro--erythroidine or cytisine, but the binding sites in cerebellum segments were mostly low affinity for nicotine. An upregulation of nAChRs by chronic administration of nicotine was observed in the cortex segments but was not in the cerebellum segments with [3H]-epibatidine as a ligand. The upregulation in the cortex was caused by a specific increase in high affinity sites for nicotine. The present study shows that tissue integrity is important for a precise quantitative as well as qualitative estimation of nAChRs in rat brain. Nicotine-induced upregulation was caused by a specific increase in high affinity sites for nicotine (probably 42 of cerebral cortex.

  5. Molecular recognition of the neurotransmitter acetylcholine by an acetylcholine binding protein reveals determinants of binding to nicotinic acetylcholine receptors.

    Science.gov (United States)

    Olsen, Jeppe A; Balle, Thomas; Gajhede, Michael; Ahring, Philip K; Kastrup, Jette S

    2014-01-01

    Despite extensive studies on nicotinic acetylcholine receptors (nAChRs) and homologues, details of acetylcholine binding are not completely resolved. Here, we report the crystal structure of acetylcholine bound to the receptor homologue acetylcholine binding protein from Lymnaea stagnalis. This is the first structure of acetylcholine in a binding pocket containing all five aromatic residues conserved in all mammalian nAChRs. The ligand-protein interactions are characterized by contacts to the aromatic box formed primarily by residues on the principal side of the intersubunit binding interface (residues Tyr89, Trp143 and Tyr185). Besides these interactions on the principal side, we observe a cation-π interaction between acetylcholine and Trp53 on the complementary side and a water-mediated hydrogen bond from acetylcholine to backbone atoms of Leu102 and Met114, both of importance for anchoring acetylcholine to the complementary side. To further study the role of Trp53, we mutated the corresponding tryptophan in the two different acetylcholine-binding interfaces of the widespread α4β2 nAChR, i.e. the interfaces α4(+)β2(-) and α4(+)α4(-). Mutation to alanine (W82A on the β2 subunit or W88A on the α4 subunit) significantly altered the response to acetylcholine measured by oocyte voltage-clamp electrophysiology in both interfaces. This shows that the conserved tryptophan residue is important for the effects of ACh at α4β2 nAChRs, as also indicated by the crystal structure. The results add important details to the understanding of how this neurotransmitter exerts its action and improves the foundation for rational drug design targeting these receptors.

  6. A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets.

    Directory of Open Access Journals (Sweden)

    Jakob D Wikstrom

    Full Text Available The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets.The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets.The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells.

  7. Genome-wide expression profiling, in vivo DNA binding analysis, and probabilistic motif prediction reveal novel Abf1 target genes during fermentation, respiration, and sporulation in yeast.

    Science.gov (United States)

    Schlecht, Ulrich; Erb, Ionas; Demougin, Philippe; Robine, Nicolas; Borde, Valérie; van Nimwegen, Erik; Nicolas, Alain; Primig, Michael

    2008-05-01

    The autonomously replicating sequence binding factor 1 (Abf1) was initially identified as an essential DNA replication factor and later shown to be a component of the regulatory network controlling mitotic and meiotic cell cycle progression in budding yeast. The protein is thought to exert its functions via specific interaction with its target site as part of distinct protein complexes, but its roles during mitotic growth and meiotic development are only partially understood. Here, we report a comprehensive approach aiming at the identification of direct Abf1-target genes expressed during fermentation, respiration, and sporulation. Computational prediction of the protein's target sites was integrated with a genome-wide DNA binding assay in growing and sporulating cells. The resulting data were combined with the output of expression profiling studies using wild-type versus temperature-sensitive alleles. This work identified 434 protein-coding loci as being transcriptionally dependent on Abf1. More than 60% of their putative promoter regions contained a computationally predicted Abf1 binding site and/or were bound by Abf1 in vivo, identifying them as direct targets. The present study revealed numerous loci previously unknown to be under Abf1 control, and it yielded evidence for the protein's variable DNA binding pattern during mitotic growth and meiotic development.

  8. Filtration assay for quantitation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) specific binding to whole cells in culture

    International Nuclear Information System (INIS)

    Dold, K.M.; Greenlee, W.F.

    1990-01-01

    A rapid and sensitive filtration assay for quantitating the specific binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to whole cells in culture is described. Cell monolayers are incubated with [3H]TCDD in the presence or absence of excess unlabeled ligand, detached from the culture dish with trypsin, filtered, and washed with cold (-78 degrees C) acetone to separate free and nonspecifically bound TCDD from specifically bound TCDD. TCDD receptor binding parameters were characterized in the murine hepatoma cell line Hepa1c1c7. The lower limit of detection of TCDD specific binding was in a sample equivalent to 10 micrograms of total cell protein. The equilibrium dissociation constant and stereospecificity for binding to the TCDD receptor were the same as those previously reported with other TCDD receptor assays on broken cell preparations. Analysis of binding in the murine hepatoma TCDD receptor variants TAO-c1BPrc1 and BPrc1 indicated that this assay will detect receptor number or affinity variants, but will not detect nuclear transfer deficient variants. The major advantage of the whole cell binding assay is that it provides the means to rapidly and reproducibly quantitate TCDD specific binding in small samples of whole cells in culture. In addition, this method eliminates loss or degradation of the receptor protein during the fractionation of cells required in previously reported methods. This method should prove useful in screening clonal cell populations for TCDD receptor number and affinity variants, and in screening for TCDD receptor binding activity in complementation studies of receptor deficient cells

  9. Identification, expression profiling and fluorescence-based binding assays of a chemosensory protein gene from the Western flower thrips, Frankliniella occidentalis.

    Science.gov (United States)

    Zhang, Zhi-Ke; Lei, Zhong-Ren

    2015-01-01

    Using RT-PCR and RACE-PCR strategies, we cloned and identified a new chemosensory protein (FoccCSP) from the Western flower thrips, Frankliniella occidentalis, a species for which no chemosensory protein (CSP) has yet been identified. The FoccCSP gene contains a 387 bp open-reading frame encoding a putative protein of 128 amino acids with a molecular weight of 14.51 kDa and an isoelectric point of 5.41. The deduced amino acid sequence contains a putative signal peptide of 19 amino acid residues at the N-terminus, as well as the typical four-cysteine signature found in other insect CSPs. As FoccCSP is from a different order of insect than other known CSPs, the GenBank FoccCSP homolog showed only 31-50% sequence identity with them. A neighbor-joining tree was constructed and revealed that FoccCSP is in a group with CSPs from Homopteran insects (e.g., AgosCSP4, AgosCSP10, ApisCSP, and NlugCSP9), suggesting that these genes likely developed from a common ancestral gene. The FoccCSP gene expression profile of different tissues and development stages was measured by quantitative real-time PCR. The results of this analysis revealed this gene is predominantly expressed in the antennae and also highly expressed in the first instar nymph, suggesting a function for FoccCSP in olfactory reception and in particular life activities during the first instar nymph stage. We expressed recombinant FoccCSP protein in a prokaryotic expression system and purified FoccCSP protein by affinity chromatography using a Ni-NTA-Sepharose column. Using N-phenyl-1-naphthylamine (1-NPN) as a fluorescent probe in fluorescence-based competitive binding assay, we determined the binding affinities of 19 volatile substances for FoccCSP protein. This analysis revealed that anisic aldehyde, geraniol and methyl salicylate have high binding affinities for FoccCSP, with KD values of 10.50, 15.35 and 35.24 μM, respectively. Thus, our study indicates that FoccCSP may play an important role in regulating the

  10. Identification, expression profiling and fluorescence-based binding assays of a chemosensory protein gene from the Western flower thrips, Frankliniella occidentalis.

    Directory of Open Access Journals (Sweden)

    Zhi-Ke Zhang

    Full Text Available Using RT-PCR and RACE-PCR strategies, we cloned and identified a new chemosensory protein (FoccCSP from the Western flower thrips, Frankliniella occidentalis, a species for which no chemosensory protein (CSP has yet been identified. The FoccCSP gene contains a 387 bp open-reading frame encoding a putative protein of 128 amino acids with a molecular weight of 14.51 kDa and an isoelectric point of 5.41. The deduced amino acid sequence contains a putative signal peptide of 19 amino acid residues at the N-terminus, as well as the typical four-cysteine signature found in other insect CSPs. As FoccCSP is from a different order of insect than other known CSPs, the GenBank FoccCSP homolog showed only 31-50% sequence identity with them. A neighbor-joining tree was constructed and revealed that FoccCSP is in a group with CSPs from Homopteran insects (e.g., AgosCSP4, AgosCSP10, ApisCSP, and NlugCSP9, suggesting that these genes likely developed from a common ancestral gene. The FoccCSP gene expression profile of different tissues and development stages was measured by quantitative real-time PCR. The results of this analysis revealed this gene is predominantly expressed in the antennae and also highly expressed in the first instar nymph, suggesting a function for FoccCSP in olfactory reception and in particular life activities during the first instar nymph stage. We expressed recombinant FoccCSP protein in a prokaryotic expression system and purified FoccCSP protein by affinity chromatography using a Ni-NTA-Sepharose column. Using N-phenyl-1-naphthylamine (1-NPN as a fluorescent probe in fluorescence-based competitive binding assay, we determined the binding affinities of 19 volatile substances for FoccCSP protein. This analysis revealed that anisic aldehyde, geraniol and methyl salicylate have high binding affinities for FoccCSP, with KD values of 10.50, 15.35 and 35.24 μM, respectively. Thus, our study indicates that FoccCSP may play an important role in

  11. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  12. In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein

    Directory of Open Access Journals (Sweden)

    Arase Sachiko

    2012-03-01

    Full Text Available Abstract Background Cytosine methylation is involved in epigenetic control of gene expression in a wide range of organisms. An increasing number of examples indicate that changing the frequency of cytosine methylation in the genome is a feasible tool to engineer novel traits in plants. Although demethylating effects of compounds have been analyzed in human cultured cells in terms of suppressing cancer, their effect in plant cells has not been analyzed extensively. Here, we developed in planta assay systems to detect inhibition of cytosine methylation using plants that contain a transgene transcriptionally silenced by an epigenetic mechanism. Results Seeds of two transgenic plants were used: a petunia line that has been identified as a revertant of the co-suppression of the chalcone synthase-A (CHS-A gene and contains CHS-A transgenes whose transcription is repressed; Nicotiana benthamiana plants that contain the green fluorescent protein (GFP reporter gene whose transcription is repressed through virus-induced transcriptional gene silencing. Seeds of these plants were sown on a medium that contained a demethylating agent, either 5-azacytidine or trichostatin A, and the restoration of the transcriptionally active state of the transgene was detected in seedlings. Using these systems, we found that genistein, a major isoflavonoid compound, inhibits cytosine methylation, thus restoring transgene transcription. Genistein also restored the transcription of an epigenetically silenced endogenous gene in Arabidopsis plants. Conclusions Our assay systems allowed us to assess the inhibition of cytosine methylation, in particular of maintenance of methylation, by compounds in plant cells. These results suggest a novel role of flavonoids in plant cells and that genistein is useful for modifying the epigenetic state of plant genomes.

  13. The fine specificity of mannose-binding and galactose-binding lectins revealed using outlier motif analysis of glycan array data.

    Science.gov (United States)

    Maupin, Kevin A; Liden, Daniel; Haab, Brian B

    2012-01-01

    Glycan-binding proteins are commonly used as analytical reagents to detect the levels of specific glycan structures in biological samples. A detailed knowledge of the specificities of glycan-binding proteins is required for properly interpreting their binding data. A powerful technology for characterizing glycan-binding specificity is the glycan array. However, the interpretation of glycan-array data can be difficult due to the complex fine specificities of certain glycan-binding proteins. We developed a systematic approach, called outlier-motif analysis, for extracting fine-specificity information from glycan-array data, and we applied the method to the study of four commonly used lectins: two mannose binders (concanavalin A and Lens culinaris) and two galactose binders (Bauhinia purpurea and peanut agglutinin). The study confirmed the known, primary specificity of each lectin and also revealed new insights into their binding preferences. Lens culinaris's main specificity may be non-terminal, α-linked mannose with a single linkage at its 2' carbon, which is more restricted than previous definitions. We found broader specificity for bauhinea purpurea (BPL) than previously reported, showing that BPL can bind terminal N-acetylgalactosamine (GalNAc) and penultimate β-linked galactose under certain limitations. Peanut agglutinin may bind terminal Galβ1,3Gal, a glycolipid motif, in addition to terminal Galβ1,3GalNAc, a common O-linked glycoprotein motif. These results could be used to more accurately interpret data obtained using these well-studied lectins. Furthermore, this study demonstrates a systematic and general approach for extracting fine-specificity information from glycan-array data.

  14. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM).

    Science.gov (United States)

    Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L

    2017-07-18

    Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.

  15. Evaluation of the N-latex serum free light chain assay on the Siemens BNII analyzer and agreement with The Binding Site FreeLite assay on the SPAPlus.

    Science.gov (United States)

    White-Al Habeeb, Nicole M A; Earle, Tammy; Spencer, Megan; Blasutig, Ivan M

    2018-01-01

    To evaluate the Siemens N-latex kappa free light chain (κFLC) and lambda FLC (λFLC) assays on the BNII nephelometer and assess agreement with The Binding Site Freelite FLC assays on the SPA Plus . Over 180 patient serum samples from routine analysis of κFLC and λFLC measured by the Freelite assay were collected for the study and measured with the N-latex κFLC and λFLC assays to assess precision, linearity, method comparison and dilutional effects. Complex precision showed coefficients of variation of 4.8-7.2% for the κFLC assay and 3.6-6.0% for the λFLC assay. Linearity assessment showed both assays were linear (κFLC, y=1.00x-0.09 and λFLC, y=1.050x-1.252). Qualitative method comparison showed 87.9% (116/132) agreement and Cohen's kappa of 80.4% between the κFLC assays and 72.6% (98/135) agreement and Cohen's kappa of 55.4% for the λFLC assays. Quantitative method comparison for κFLC<150mg/L was y=0.92x+2.21, R=0.661 and for λFLC<150mg/L was y=7.90x-137.96, R=0.526. Dilutional effects including antigen excess and non-linearity were also examined. The N-latex assay showed good precision and linearity with reasonable agreement to the Freelite assay. However, the assays should not be used interchangeably to monitor patients. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure

    International Nuclear Information System (INIS)

    Yamashita, Eiki; Nakagawa, Atsushi; Takahashi, Junichi; Tsunoda, Kin-ichi; Yamada, Seiko; Takeda, Shigeki

    2011-01-01

    The C-terminal domain of a bacteriophage P2 tail-spike protein, gpV, was crystallized and its structure was solved at 1.27 Å resolution. The refined model showed a triple β-helix structure and the presence of iron, calcium and chloride ions. The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87–Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009 ▶), Biochemistry, 48, 10129–10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions

  17. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model.

    Science.gov (United States)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-05

    Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  18. A cell-based, high content screening assay reveals activators and inhibitors of cancer cell invasion

    Science.gov (United States)

    Quintavalle, Manuela; Elia, Leonardo; Price, Jeffrey H.; Heynen-Genel, Susanne; Courtneidge, Sara A.

    2012-01-01

    Acquisition of invasive cell behavior underlies tumor progression and metastasis. To define in more molecular detail the mechanisms underlying invasive behavior, we developed a high throughput screening strategy to quantitate invadopodia; actin-rich membrane protrusions of cancer cells which contribute to tissue invasion and matrix remodeling. We developed a high content, imaged-based assay, and tested the LOPAC 1280 collection of pharmacologically active agents. We found compounds that potently inhibited invadopodia formation without overt toxicity, as well as compounds that increased invadopodia number. One of the two compounds that increased both invadopodia number and invasive behavior was the chemotherapeutic agent paclitaxel, which has potential clinical implications for its use in the neoadjuvant and resistance settings. Several of the invasion inhibitors were annotated as cyclin-dependent kinase (cdk) inhibitors. Loss-of-function experiments determined that Cdk5 was the relevant target. We further determined that the mechanism by which Cdk5 promotes both invadopodia formation and cancer invasion is by phosphorylation and down regulation of the actin regulatory protein caldesmon. PMID:21791703

  19. Genetic diversity and relationships in mulberry (genus Morus as revealed by RAPD and ISSR marker assays

    Directory of Open Access Journals (Sweden)

    Thangavelu K

    2004-01-01

    Full Text Available Abstract Background The genus Morus, known as mulberry, is a dioecious and cross-pollinating plant that is the sole food for the domesticated silkworm, Bombyx mori. Traditional methods using morphological traits for classification are largely unsuccessful in establishing the diversity and relationships among different mulberry species because of environmental influence on traits of interest. As a more robust alternative, PCR based marker assays including RAPD and ISSR were employed to study the genetic diversity and interrelationships among twelve domesticated and three wild mulberry species. Results RAPD analysis using 19 random primers generated 128 discrete markers ranging from 500–3000 bp in size. One-hundred-nineteen of these were polymorphic (92%, with an average of 6.26 markers per primer. Among these were a few putative species-specific amplification products which could be useful for germplasm classification and introgression studies. The ISSR analysis employed six anchored primers, 4 of which generated 93 polymorphic markers with an average of 23.25 markers per primer. Cluster analysis of RAPD and ISSR data using the WINBOOT package to calculate the Dice coefficient resulted into two clusters, one comprising polyploid wild species and the other with domesticated (mostly diploid species. Conclusion These results suggest that RAPD and ISSR markers are useful for mulberry genetic diversity analysis and germplasm characterization, and that putative species-specific markers may be obtained which can be converted to SCARs after further studies.

  20. Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment

    Science.gov (United States)

    Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.

    2003-11-01

    Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.

  1. Structure of human stabilin-1 interacting chitinase-like protein (SI-CLP) reveals a saccharide-binding cleft with lower sugar-binding selectivity.

    Science.gov (United States)

    Meng, Geng; Zhao, Yanmei; Bai, Xiaoyun; Liu, Yong; Green, Todd J; Luo, Ming; Zheng, Xiaofeng

    2010-12-17

    Human secreted protein stabilin-1 interacting chitinase-like protein (SI-CLP) has been identified as a novel member of Glyco_18 domain-containing proteins that is involved in host defense and inflammatory reactions. Efficient secretion of SI-CLP is mediated by its interaction with the endocytic/sorting receptor stabilin-1. SI-CLP is expressed abundantly in macrophages and neutrophils and is up-regulated by Th2 cytokine IL-4 and glucocorticoid, which suggest that SI-CLP could be a marker for adverse effects of glucocorticoid therapy. To gain insight into the biological function of SI-CLP, we determined the crystal structure of SI-CLP at 2.7 Å resolution by x-ray crystallography and found that it featured a typical triose-phosphate isomerase barrel fold with a putative saccharide-binding cleft. Comparison with other chitinase-like proteins showed the cleft to be atypically wide and open. The saccharide-binding capacity of SI-CLP was investigated, and its ligand-binding specificity was found to relate to the length of the oligosaccharides, with preference for chitotetraose. Further investigations reveal that SI-CLP could bind LPS in vitro and neutralize its endotoxin effect on macrophages. Our results demonstrate the saccharide-binding property of SI-CLP by structure and in vitro biochemical analyses and suggest the possible roles of SI-CLP in pathogen sensing and endotoxin neutralization.

  2. Life table assay of field-caught Mediterranean fruit flies, Ceratitis capitata, reveals age bias

    Science.gov (United States)

    Kouloussis, Nikos A.; Papadopoulos, Nikos T.; Müller, Hans-Georg; Wang, Jane-Ling; Mao, Meng; Katsoyannos, Byron I.; Duyck, Pierre-François; Carey, James R.

    2012-01-01

    Though traps are used widely to sample phytophagous insects for research or management purposes, and recently in aging research, possible bias stemming from differential response of individuals of various ages to traps has never been examined. In this paper, we tested the response of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) males and females of four ages (spanning from 1 to 40 days) to McPhail-type traps baited with a synthetic food attractant in field cages and found that the probability of trapping was significantly influenced by age. The type of food on which flies were maintained before testing (sugar or protein) also had a strong effect and interacted with age. In another experiment, we collected wild C. capitata adults of unknown age using 1–3 methods and then reared them in the laboratory until death. The survival schedules of these flies were subsequently used in a life table assay to infer their age at the time of capture. Results showed that on a single sampling date, males captured in traps baited with a food attractant were younger compared with males aspirated from fruiting host trees, or males captured in traps baited with a sex attractant. Likewise, females captured in food-baited traps were younger compared with aspirated females. In addition to providing the first evidence of age-dependent sampling bias for a phytophagous insect species, this paper also provides a novel approach to estimate the differences in the age composition of samples collected with different techniques. These findings are of utmost importance for several categories of insects, medically important groups notwithstanding. PMID:22844133

  3. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    Science.gov (United States)

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Lactose Binding Induces Opposing Dynamics Changes in Human Galectins Revealed by NMR-Based Hydrogen-Deuterium Exchange.

    Science.gov (United States)

    Chien, Chih-Ta Henry; Ho, Meng-Ru; Lin, Chung-Hung; Hsu, Shang-Te Danny

    2017-08-16

    Galectins are β-galactoside-binding proteins implicated in a myriad of biological functions. Despite their highly conserved carbohydrate binding motifs with essentially identical structures, their affinities for lactose, a common galectin inhibitor, vary significantly. Here, we aimed to examine the molecular basis of differential lactose affinities amongst galectins using solution-based techniques. Consistent dissociation constants of lactose binding were derived from nuclear magnetic resonance (NMR) spectroscopy, intrinsic tryptophan fluorescence, isothermal titration calorimetry and bio-layer interferometry for human galectin-1 (hGal1), galectin-7 (hGal7), and the N-terminal and C-terminal domains of galectin-8 (hGal8 NTD and hGal8 CTD , respectively). Furthermore, the dissociation rates of lactose binding were extracted from NMR lineshape analyses. Structural mapping of chemical shift perturbations revealed long-range perturbations upon lactose binding for hGal1 and hGal8 NTD . We further demonstrated using the NMR-based hydrogen-deuterium exchange (HDX) that lactose binding increases the exchange rates of residues located on the opposite side of the ligand-binding pocket for hGal1 and hGal8 NTD , indicative of allostery. Additionally, lactose binding induces significant stabilisation of hGal8 CTD across the entire domain. Our results suggested that lactose binding reduced the internal dynamics of hGal8 CTD on a very slow timescale (minutes and slower) at the expense of reduced binding affinity due to the unfavourable loss of conformational entropy.

  5. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  6. Fermentation assays reveal differences in sugar and (off-) flavor metabolism across different Brettanomyces bruxellensis strains.

    Science.gov (United States)

    Crauwels, Sam; Van Opstaele, Filip; Jaskula-Goiris, Barbara; Steensels, Jan; Verreth, Christel; Bosmans, Lien; Paulussen, Caroline; Herrera-Malaver, Beatriz; de Jonge, Ronnie; De Clippeleer, Jessika; Marchal, Kathleen; De Samblanx, Gorik; Willems, Kris A; Verstrepen, Kevin J; Aerts, Guido; Lievens, Bart

    2017-01-01

    Brettanomyces (Dekkera) bruxellensis is an ascomycetous yeast of major importance in the food, beverage and biofuel industry. It has been isolated from various man-made ecological niches that are typically characterized by harsh environmental conditions such as wine, beer, soft drink, etc. Recent comparative genomics studies revealed an immense intraspecific diversity, but it is still unclear whether this genetic diversity also leads to systematic differences in fermentation performance and (off-)flavor production, and to what extent strains have evolved to match their ecological niche. Here, we present an evaluation of the fermentation properties of eight genetically diverse B. bruxellensis strains originating from beer, wine and soft drinks. We show that sugar consumption and aroma production during fermentation are determined by both the yeast strain and composition of the medium. Furthermore, our results indicate a strong niche adaptation of B. bruxellensis, most clearly for wine strains. For example, only strains originally isolated from wine were able to thrive well and produce the typical Brettanomyces-related phenolic off-flavors 4-ethylguaiacol and 4-ethylphenol when inoculated in red wine. Sulfite tolerance was found as a key factor explaining the observed differences in fermentation performance and off-flavor production. Sequence analysis of genes related to phenolic off-flavor production, however, revealed only marginal differences between the isolates tested, especially at the amino acid level. Altogether, our study provides novel insights in the Brettanomyces metabolism of flavor production, and is highly relevant for both the wine and beer industry. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Structure-Function Analysis of Friedreich's Ataxia Mutants Reveals Determinants of Frataxin Binding and Activation of the Fe-S Assembly Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P [TAM

    2012-08-01

    Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a kcat/KM higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest kcat/KM of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.

  8. Chirality-induced conformational preferences in peptide-metal ion binding revealed by IR spectroscopy

    NARCIS (Netherlands)

    Dunbar, R.C.; Steill, J.D.; Oomens, J.

    2011-01-01

    Chirality reversal of a residue in a peptide can change its mode of binding to a metal ion, as shown here experimentally by gas-phase IR spectroscopy of peptide−metal ion complexes. The binding conformations of Li+, Na+, and H+ with the ll and dl stereoisomers of PhePhe were compared through IR ion

  9. Chirality-Induced Conformational Preferences in Peptide-Metal Ion Binding Revealed by IR Spectroscopy

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2011-01-01

    Chirality reversal of a residue in a peptide can change its mode of binding to a metal ion, as shown here experimentally by gas-phase IR spectroscopy of peptide metal ion complexes. The binding conformations of Li+, Na+, and H+ with the LL and DL stereoisomers of PhePhe were compared through IR ion

  10. Biochemical studies of mouse brain tubulin: colchicine binding (DEAE-cellulose filter) assay and subunits (α and β) biosynthesis and degradation (in newborn brain)

    International Nuclear Information System (INIS)

    Tse, C.F.

    1978-01-01

    A DEAE-cellulose filter assay, measuring [ 3 H]colchicine bound to colchicine binding protein (CBP) absorbed on filter discs, has been modified to include lM sucrose in the incubation medium for complexing colchicine to CBP in samples before applying the samples to filter discs (single point assay). Due to the much greater stability of colchicine binding capacity in the presence of lM sucrose, multiple time-point assays and least squares linear regression analysis were not necessary for accurate determination of CBP in hybrid mouse brain at different stages of development. The highest concentrations of CBP were observed in the 160,000g supernatant and pellet of newborn brain homogenate. Further studies of the modified filter assay documented that the assay has an overall counting efficiency of 27.3%, that DEAE-cellulose filters bind and retain all tubulin in the assay samples, and that one molecule of colchicine binds approximately one molecule of tubulin dimer. Therefore, millimoles of colchicine bound per milligram total protein can be used to calculate tubulin content. With this technique tubulin content of brain supernatant was found to be 11.9% for newborn, and 7.15% for 11 month old mice. Quantitative densitometry was also used to measure mouse brain supernatant actin content for these two stages. In vivo synthesis and degradation rates of tubulin α and β subunits of two day mouse brain 100,000g supernatant were studied after intracerebral injection of [ 3 H]leucine. Quantitative changes of the ratio of tritium specific activities of tubulin α and β subunits with time were determined. The pattern of change was biphasic. During the first phase the ratio decreased; during the second phase the ratio increased continuously. An interpretation consistent with all the data in this study is that the α subunit is synthesized at a more rapid rate than the β subunit

  11. Biochemical studies of mouse brain tubulin: colchicine binding (DEAE-cellulose filter) assay and subunits ( α and β) biosynthesis and degradation (in newborn brain)

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Cek-Fyne [Univ. of Rochester, NY (United States)

    1978-01-01

    A DEAE-cellulose filter assay, measuring (3H)colchicine bound to colchicine binding protein (CBP) absorbed on filter discs, has been modified to include lM sucrose in the incubation medium for complexing colchicine to CBP in samples before applying the samples to filter discs (single point assay). Due to the much greater stability of colchicine binding capacity in the presence of lM sucrose, multiple time-point assays and least squares linear regression analysis were not necessary for accurate determination of CBP in hybrid mouse brain at different stages of development. The highest concentrations of CBP were observed in the 160,000g supernatant and pellet of newborn brain homogenate. Further studies of the modified filter assay documented that the assay has an overall counting efficiency of 27.3%, that DEAE-cellulose filters bind and retain all tubulin in the assay samples, and that one molecule of colchicine binds approximately one molecule of tubulin dimer. Therefore, millimoles of colchicine bound per milligram total protein can be used to calculate tubulin content. With this technique tubulin content of brain supernatant was found to be 11.9% for newborn, and 7.15% for 11 month old mice. Quantitative densitometry was also used to measure mouse brain supernatant actin content for these two stages. In vivo synthesis and degradation rates of tubulin ..cap alpha.. and ..beta.. subunits of two day mouse brain 100,000g supernatant were studied after intracerebral injection of (3H)leucine. Quantitative changes of the ratio of tritium specific activities of tubulin ..cap alpha.. and ..beta.. subunits with time were determined. The pattern of change was biphasic. During the first phase the ratio decreased; during the second phase the ratio increased continuously. An interpretation consistent with all the data in this study is that the ..cap alpha.. subunit is synthesized at a more rapid rate than the ..beta.. subunit. (ERB)

  12. Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available α-Hemolysin (α-HL is a self-assembling, channel-forming toxin that is produced as a soluble monomer by Staphylococcus aureus strains. Until now, α-HL has been a significant virulence target for the treatment of S. aureus infection. In our previous report, we demonstrated that some natural compounds could bind to α-HL. Due to the binding of those compounds, the conformational transition of α-HL from the monomer to the oligomer was blocked, which resulted in inhibition of the hemolytic activity of α-HL. However, these results have not indicated how the binding of the α-HL inhibitors influence the conformational transition of the whole protein during the oligomerization process. In this study, we found that three natural compounds, Oroxylin A 7-O-glucuronide (OLG, Oroxin A (ORA, and Oroxin B (ORB, when inhibiting the hemolytic activity of α-HL, could bind to the "stem" region of α-HL. This was completed using conventional Molecular Dynamics (MD simulations. By interacting with the novel binding sites of α-HL, the ligands could form strong interactions with both sides of the binding cavity. The results of the principal component analysis (PCA indicated that because of the inhibitors that bind to the "stem" region of α-HL, the conformational transition of α-HL from the monomer to the oligomer was restricted. This caused the inhibition of the hemolytic activity of α-HL. This novel inhibition mechanism has been confirmed by both the steered MD simulations and the experimental data obtained from a deoxycholate-induced oligomerization assay. This study can facilitate the design of new antibacterial drugs against S. aureus.

  13. Virtual Screening of Plant Volatile Compounds Reveals a High Affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-Binding Proteins for Sesquiterpenes From Its Native Host

    Science.gov (United States)

    Palma-Millanao, Rubén; Yáñez, Osvaldo; Rojas, Maximiliano; Mutis, Ana; Venthur, Herbert; Quiroz, Andrés; Ramírez, Claudio C.

    2016-01-01

    Hylamorpha elegans (Burmeister) is a native Chilean scarab beetle considered to be a relevant agricultural pest to pasture and cereal and small fruit crops. Because of their cryptic habits, control with conventional methods is difficult; therefore, alternative and environmentally friendly control strategies are highly desirable. The study of proteins that participate in the recognition of odorants, such as odorant-binding proteins (OBPs), offers interesting opportunities to identify new compounds with the potential to modify pest behavior and computational screening of compounds, which is commonly used in drug discovery, may help to accelerate the discovery of new semiochemicals. Here, we report the discovery of four OBPs in H. elegans as well as six new volatiles released by its native host Nothofagus obliqua (Mirbel). Molecular docking performed between OBPs and new and previously reported volatiles from N. obliqua revealed the best binding energy values for sesquiterpenic compounds. Despite remarkable divergence at the amino acid level, three of the four OBPs evaluated exhibited the best interaction energy for the same ligands. Molecular dynamics investigation reinforced the importance of sesquiterpenes, showing that hydrophobic residues of the OBPs interacted most frequently with the tested ligands, and binding free energy calculations demonstrated van der Waals and hydrophobic interactions to be the most important. Altogether, the results suggest that sesquiterpenes are interesting candidates for in vitro and in vivo assays to assess their potential application in pest management strategies. PMID:27012867

  14. Presynaptic selectivity of a ligand for serotonin 1A receptors revealed by in vivo PET assays of rat brain.

    Directory of Open Access Journals (Sweden)

    Takeaki Saijo

    Full Text Available A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A receptor, called Wf-516 (structural formula: (2S-1-[4-(3,4-dichlorophenylpiperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-ylbenzo[b]furan-4-yloxy]propan-2-ol monohydrochloride, has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A receptors. In addition, [(35S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.

  15. A multilocus assay reveals high nucleotide diversity and limited differentiation among Scandinavian willow grouse (Lagopus lagopus

    Directory of Open Access Journals (Sweden)

    Quintela Maria

    2008-12-01

    Full Text Available Abstract Background There is so far very little data on autosomal nucleotide diversity in birds, except for data from the domesticated chicken and some passerines species. Estimates of nucleotide diversity reported so far in birds have been high (~10-3 and a likely explanation for this is the generally higher effective population sizes compared to mammals. In this study, the level of nucleotide diversity has been examined in the willow grouse, a non-domesticated bird species from the order Galliformes, which also holds the chicken. The willow grouse (Lagopus lagopus has an almost circumpolar distribution but is absent from Greenland and the north Atlantic islands. It primarily inhabits tundra, forest edge habitats and sub-alpine vegetation. Willow grouse are hunted throughout its range, and regionally it is a game bird of great cultural and economical importance. Results We sequenced 18 autosomal protein coding loci from approximately 15–18 individuals per population. We found a total of 127 SNP's, which corresponds to 1 SNP every 51 bp. 26 SNP's were amino acid replacement substitutions. Total nucleotide diversity (πt was between 1.30 × 10-4 and 7.66 × 10-3 (average πt = 2.72 × 10-3 ± 2.06 × 10-3 and silent nucleotide diversity varied between 4.20 × 10-4and 2.76 × 10-2 (average πS = 9.22 × 10-3 ± 7.43 × 10-4. The synonymous diversity is approximately 20 times higher than in humans and two times higher than in chicken. Non-synonymous diversity was on average 18 times lower than the synonymous diversity and varied between 0 and 4.90 × 10-3 (average πa = 5.08 × 10-4 ± 7.43 × 103, which suggest that purifying selection is strong in these genes. FST values based on synonymous SNP's varied between -5.60 × 10-4 and 0.20 among loci and revealed low levels of differentiation among the four localities, with an overall value of FST = 0.03 (95% CI: 0.006 – 0.057 over 60 unlinked loci. Non-synonymous SNP's gave similar results. Low

  16. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    International Nuclear Information System (INIS)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana; Mingarro, Ismael; Pallas, Vicente

    2005-01-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed

  17. Longitudinal investigation of source memory reveals different developmental trajectories for item memory and binding

    OpenAIRE

    Riggins, Tracy

    2013-01-01

    The present study used a cohort-sequential design to examine developmental changes in children's ability to bind items in memory during early and middle childhood. Three cohorts of children (aged 4, 6, or 8 years) were followed longitudinally for three years. Each year, children completed a source memory paradigm assessing memory for items and binding. Results suggest linear increases in memory for individual items (facts or sources) between 4 and 10 years of age, but that memory for correct ...

  18. Development and Validation of an Enzyme-Linked Immunosorbent Assay for the Detection of Binding Anti-Drug Antibodies against Interferon Beta

    Directory of Open Access Journals (Sweden)

    Kathleen Ingenhoven

    2017-07-01

    Full Text Available ObjectiveTo develop and validate a method for the detection of binding anti-drug antibodies (ADAs against interferon beta (IFN-β in human serum as part of a European initiative (ABIRISK aimed at the prediction and analysis of clinical relevance of anti-biopharmaceutical immunization to minimize the risk.MethodA two-tiered bridging enzyme-linked immunosorbent assay (ELISA format was selected and validated according to current recommendations. Screening assay: ADA in serum samples form complexes with immobilized IFN-β and biotinylated IFN-β, which are then detected using HRP labeled Streptavidin and TMB substrate. Confirmation assay: Screen “putative positive” samples are tested in the presence of excess drug (preincubation of sera with 0.3 µg/mL of soluble IFN-β and percentage of inhibition is calculated.ResultsThe assay is precise, and the sensitivity of the assay was confirmed to be 26 ng/mL using commercially available polyclonal rabbit antihuman IFN-β in human sera as the positive control.ConclusionAn ultrasensitive ELISA for IFN-β-binding ADA testing has been validated. This will form the basis to assess anti-biopharmaceutical immunization toward IFN-β with regards to its clinical relevance and may allow for the development of predictive tools, key aims within the ABIRISK consortium.

  19. Interpretation of Ocular Melanin Drug Binding Assays. Alternatives to the Model of Multiple Classes of Independent Sites.

    Science.gov (United States)

    Manzanares, José A; Rimpelä, Anna-Kaisa; Urtti, Arto

    2016-04-04

    Melanin has a high binding affinity for a wide range of drugs. The determination of the melanin binding capacity and its binding affinity are important, e.g., in the determination of the ocular drug distribution, the prediction of drug effects in the eye, and the trans-scleral drug delivery. The binding parameters estimated from a given data set vary significantly when using different isotherms or different nonlinear fitting methods. In this work, the commonly used bi-Langmuir isotherm, which assumes two classes of independent sites, is confronted with the Sips isotherm. Direct, log-log, and Scatchard plots are used, and the interpretation of the binding curves in the latter is critically analyzed. In addition to the goodness of fit, the emphasis is placed on the physical meaning of the binding parameters. The bi-Langmuir model imposes a bimodal distribution of binding energies for the sites on the melanin granules, but the actual distribution is most likely continuous and unimodal, as assumed by the Sips isotherm. Hence, the latter describes more accurately the distribution of binding energies and also the experimental results of melanin binding to drugs and metal ions. Simulations are used to show that the existence of two classes of sites cannot be confirmed on the sole basis of the shape of the binding curve in the Scatchard plot, and that serious doubts may appear on the meaning of the binding parameters of the bi-Langmuir model. Experimental results of melanin binding to chloroquine and metoprolol are used to illustrate the importance of the choice of the binding isotherm and of the method used to evaluate the binding parameters.

  20. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations.

    Directory of Open Access Journals (Sweden)

    Xuelu Huan

    Full Text Available The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD, which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J-K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity

  1. Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L; McElfresh, M W

    2005-07-15

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.

  2. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    Science.gov (United States)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  3. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation.

    Science.gov (United States)

    Uroz, Stéphane; Ioannidis, Panos; Lengelle, Juliette; Cébron, Aurélie; Morin, Emmanuelle; Buée, Marc; Martin, Francis

    2013-01-01

    In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France). The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource availability impact the

  4. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation.

    Directory of Open Access Journals (Sweden)

    Stéphane Uroz

    Full Text Available In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France. The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource

  5. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    Energy Technology Data Exchange (ETDEWEB)

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander; Wei, Anzhi; Emanuel, Stuart L.; Gupta, Ruchira Das; Janjua, Ahsen; Cheng, Lin; Murdock, Melissa; Abramczyk, Bozena; Cohen, Daniel; Lin, Zheng; Morin, Paul; Davis, Jonathan H.; Dabritz, Michael; McLaughlin, Douglas C.; Russo, Katie A.; Chao, Ginger; Wright, Martin C.; Jenny, Victoria A.; Engle, Linda J.; Furfine, Eric; Sheriff, Steven (BMS)

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.

  6. Machine learning reveals a non-canonical mode of peptide binding to MHC class II molecules.

    Science.gov (United States)

    Andreatta, Massimo; Jurtz, Vanessa I; Kaever, Thomas; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2017-10-01

    MHC class II molecules play a fundamental role in the cellular immune system: they load short peptide fragments derived from extracellular proteins and present them on the cell surface. It is currently thought that the peptide binds lying more or less flat in the MHC groove, with a fixed distance of nine amino acids between the first and last residue in contact with the MHCII. While confirming that the great majority of peptides bind to the MHC using this canonical mode, we report evidence for an alternative, less common mode of interaction. A fraction of observed ligands were shown to have an unconventional spacing of the anchor residues that directly interact with the MHC, which could only be accommodated to the canonical MHC motif either by imposing a more stretched out peptide backbone (an 8mer core) or by the peptide bulging out of the MHC groove (a 10mer core). We estimated that on average 2% of peptides bind with a core deletion, and 0·45% with a core insertion, but the frequency of such non-canonical cores was as high as 10% for certain MHCII molecules. A mutational analysis and experimental validation of a number of these anomalous ligands demonstrated that they could only fit to their MHC binding motif with a non-canonical binding core of length different from nine. This previously undescribed mode of peptide binding to MHCII molecules gives a more complete picture of peptide presentation by MHCII and allows us to model more accurately this event. © 2017 John Wiley & Sons Ltd.

  7. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    Science.gov (United States)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  8. Machine Learning Reveals a Non-Canonical Mode of Peptide Binding to MHC class II Molecules

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Jurtz, Vanessa Isabell; Kaever, Thomas

    2017-01-01

    MHC class II molecules play a fundamental role in the cellular immune system: they load short peptide fragments derived from extracellular proteins and present them on the cell surface. It is currently thought that the peptide binds lying more or less flat in the MHC groove, with a fixed distance...... of nine amino acids between the first and last residue in contact with the MHCII. While confirming that the great majority of peptides bind to the MHC using this canonical mode, we report evidence for an alternative, less common mode of interaction. A fraction of observed ligands were shown to have....... All rights reserved....

  9. Binding of peptides from the N-terminal region of alpha-gliadin to the celiac disease-associated HLA-DQ2 molecule assessed in biochemical and T cell assays

    DEFF Research Database (Denmark)

    Johansen, B H; Gjertsen, H A; Vartdal, F

    1996-01-01

    -purified DQ2 and DR3 (i.e., DR(alpha, beta1*0301)) molecules. The peptides were also tested for binding to DQ2 in a functional binding assay, where binding was measured as the capacity to inhibit the stimulation of a gliadin-specific, DQ2-restricted T lymphocyte clone RNnTalpha33. In both assay systems...... here provide new methods for the screening of potentially toxic peptides....

  10. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein.

    Science.gov (United States)

    Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A

    2017-04-01

    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low

  11. Characterization of equine vitamin D–binding protein, development of an assay, and assessment of plasma concentrations of the protein in healthy horses and horses with gastrointestinal disease

    DEFF Research Database (Denmark)

    Pihl, Tina Holberg; Jacobsen, Stine; Olsen, Dorthe T.

    2017-01-01

    OBJECTIVE To purify and characterize equine vitamin D-binding protein (VDBP) from equine serum and to evaluate plasma concentrations of VDBP in healthy horses and horses with gastrointestinal injury or disease. ANIMALS 13 healthy laboratory animals (8 mice and 5 rabbits), 61 healthy horses, 12...... in horses with acute gastrointestinal injury or disease. Further studies and the development of a clinically relevant assay are needed to establish the reliability of VDBP as a diagnostic and prognostic marker in horses....

  12. Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods.

    NARCIS (Netherlands)

    Mathes, T.; van Stokkum, I.H.M.; Kennis, J.T.M.

    2014-01-01

    Flavin-binding photoreceptor proteins use the isoalloxazine moiety of flavin cofactors to absorb light in the blue/UV-A wavelength region and subsequently translate it into biological information. The underlying photochemical reactions and protein structural dynamics are delicately tuned by the

  13. Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice

    DEFF Research Database (Denmark)

    Møller-Kristensen, Mette; Hamblin, Michael R; Thiel, Steffen

    2007-01-01

    Burn injury destroys skin, the second largest innate immune organ in the body, and triggers chaotic immune and inflammatory responses. The pattern recognition molecule, mannan-binding lectin (MBL), plays an important role in the first-line host defense against infectious agents. MBL initiates...

  14. Longitudinal Investigation of Source Memory Reveals Different Developmental Trajectories for Item Memory and Binding

    Science.gov (United States)

    Riggins, Tracy

    2014-01-01

    The present study used a cohort-sequential design to examine developmental changes in children's ability to bind items in memory during early and middle childhood. Three cohorts of children (aged 4, 6, or 8 years) were followed longitudinally for 3 years. Each year, children completed a source memory paradigm assessing memory for items and…

  15. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities

    DEFF Research Database (Denmark)

    Kitir, Betül; Maolanon, Alex R.; Ohm, Ragnhild G.

    2017-01-01

    medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30...... natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important...

  16. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.

    Science.gov (United States)

    Mitra, Sneha; Biswas, Anushua; Narlikar, Leelavati

    2018-04-23

    Genome-wide in vivo protein-DNA interactions are routinely mapped using high-throughput chromatin immunoprecipitation (ChIP). ChIP-reported regions are typically investigated for enriched sequence-motifs, which are likely to model the DNA-binding specificity of the profiled protein and/or of co-occurring proteins. However, simple enrichment analyses can miss insights into the binding-activity of the protein. Note that ChIP reports regions making direct contact with the protein as well as those binding through intermediaries. For example, consider a ChIP experiment targeting protein X, which binds DNA at its cognate sites, but simultaneously interacts with four other proteins. Each of these proteins also binds to its own specific cognate sites along distant parts of the genome, a scenario consistent with the current view of transcriptional hubs and chromatin loops. Since ChIP will pull down all X-associated regions, the final reported data will be a union of five distinct sets of regions, each containing binding sites of one of the five proteins, respectively. Characterizing all five different motifs and the corresponding sets is important to interpret the ChIP experiment and ultimately, the role of X in regulation. We present diversity which attempts exactly this: it partitions the data so that each partition can be characterized with its own de novo motif. Diversity uses a Bayesian approach to identify the optimal number of motifs and the associated partitions, which together explain the entire dataset. This is in contrast to standard motif finders, which report motifs individually enriched in the data, but do not necessarily explain all reported regions. We show that the different motifs and associated regions identified by diversity give insights into the various complexes that may be forming along the chromatin, something that has so far not been attempted from ChIP data. Webserver at http://diversity.ncl.res.in/; standalone (Mac OS X/Linux) from https

  17. Competitive binding radioassays for 1α-25(OH)2 vitamin D; comparative evaluation of two receptor assays and a radioimmunoassay

    International Nuclear Information System (INIS)

    Jallet, P.; Bidet, M.; Audran, M.

    1985-01-01

    The performances of a 1α,25-dihydroxy vitamin D assay using the cytosol receptor of bovine thymus gland were evaluated and compared to the results obtained with an assay based on cytosol receptor of chicK intestine and with a radioimmunoassay [fr

  18. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay.

    Science.gov (United States)

    Sajayan, Arya; Seghal Kiran, G; Priyadharshini, S; Poulose, Navya; Selvin, Joseph

    2017-09-01

    A bioflocculant-producing bacterial strain, designated MSI021, was isolated from the marine sponge Dendrilla nigra and demonstrated 94% flocculation activity in a kaolin clay suspension. MSI021 was identified as Bacillus cereus based on phylogenetic affiliation and biochemical characteristics. The purified extra-cellular bioflocculant was chemically elucidated as a polysaccharide molecule. The polysaccharide bioflocculant was stable under both acidic and alkaline conditions (pH 2.0-10.0) and temperatures up to 100 °C. The purified bioflocculant efficiently nucleated the formation of silver nanoparticles which showed broad spectrum antibacterial activity. The ability of the bioflocculant to remediate heavy metal toxicity was evaluated by measuring the inhibition of bioluminescence expression in Vibrio harveyi. Enrichment of heavy metals such as zinc, mercury and copper at concentrations of 1, 2 and 3 mM in culture media showed significant reduction of bioluminescence in Vibrio, whereas media enriched with heavy metals and bioflocculant showed dose dependent improvement in the expression of bioluminescence. The assay results demonstrated that the polysaccharide bioflocculant effectively mitigates heavy metal toxicity, thereby improving the expression of bioluminescence in Vibrio. This bioluminescence reporter assay can be developed into a high-throughput format to monitor and evaluate of heavy metal toxicity. The findings of this study revealed that a novel polysaccharide bioflocculant produced by a marine B. cereus demonstrated strong flocculating performance and was effective in nucleating the formation antibacterial silver nanoparticles and removing heavy metals. These results suggest that the MSI021 polysaccharide bioflocculant can be used to develop greener waste water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Revealing the binding medium of a Roman Egyptian painted mummy shroud

    DEFF Research Database (Denmark)

    Granzotto, Clara; Arslanoglu, Julie

    2017-01-01

    Ancient Egyptian painted artworks are usually understudied from an analytical point of view, due to their extremely fragile nature. Attention typically focuses on pigments since identification is possible with non-invasive techniques, while limited information is available in the literature...... regarding the organic binding media. Here successful determination of the binder of a Roman Egyptian painted mummy shroud (2nd–3rd century A.D.) achieved through the application of enzymatic digestion followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is reported. The high...... specificity and sensitivity of this analytical strategy not only allowed the identification of the binding medium as a mixture of two different plant gums but also allowed the discrimination of the different species sources, even though the organic material was present in very small amounts and subject...

  20. Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice

    DEFF Research Database (Denmark)

    Møller-Kristensen, Mette; Hamblin, MR; Thiel, Steffen

    2007-01-01

    Burn injury destroys skin, the second largest innate immune organ in the body, and triggers chaotic immune and inflammatory responses. The pattern recognition molecule, mannan-binding lectin (MBL), plays an important role in the first-line host defense against infectious agents. MBL initiates...... the lectin complement pathway and acts as an opsonin. Recent studies suggest that MBL also modulates inflammatory responses. We report that local responses after burn in MBL null mice differ from those found in wild-type (WT) mice in the following important biological markers: spontaneous eschar separation......, thinned epidermis and dermis, upregulation of soluble factors including cytokines, chemokines, cell adhesion molecules, a growth factor-binding protein, and matrix metalloproteinases. Mice lacking C1q, C4, or C3 did not show the lack of eschar separation seen in MBL null-burn phenotype. These findings...

  1. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors.

    Science.gov (United States)

    Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-03-26

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients' Targets (HIT) database for 22 flavonoids that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. Diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process.

  2. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

    Science.gov (United States)

    Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-01-01

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoids that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. Diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process. PMID:27023590

  3. Systematic Synthesis and Binding Study of HIV V3 Glycopeptides Reveal the Fine Epitopes of Several Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Orwenyo, Jared; Cai, Hui; Giddens, John; Amin, Mohammed N; Toonstra, Christian; Wang, Lai-Xi

    2017-06-16

    A class of new glycan-reactive broadly neutralizing antibodies represented by PGT121, 10-1074, and PGT128 has recently been discovered that targets specific N-glycans and the peptide region around the V3 domain. However, the glycan specificity and fine epitopes of these bNAbs remain to be further defined. We report here a systematic chemoenzymatic synthesis of homogeneous V3 glycopeptides derived from the HIV-1 JR-FL strain carrying defined N-glycans at N332, N301, and N295 sites. Antibody binding studies revealed that both the nature and site of glycosylation in the context of the V3 domain were critical for high-affinity binding. It was found that antibody PGT128 exhibited specificity for high-mannose N-glycan with glycosylation site promiscuity, PGT121 showed binding specificity for glycopeptide carrying a sialylated N-glycan at N301 site, and 10-1074 was specific for glycopeptide carrying a high-mannose N-glycan at N332 site. The synthesis and binding studies permit a detailed assessment of the glycan specificity and the requirement of peptide in the context of antibody-antigen recognition. The identified glycopeptides can be used as potential templates for HIV vaccine design.

  4. A FRET-based high throughput screening assay to identify inhibitors of anthrax protective antigen binding to capillary morphogenesis gene 2 protein.

    Directory of Open Access Journals (Sweden)

    Michael S Rogers

    Full Text Available Anti-angiogenic therapies are effective for the treatment of cancer, a variety of ocular diseases, and have potential benefits in cardiovascular disease, arthritis, and psoriasis. We have previously shown that anthrax protective antigen (PA, a non-pathogenic component of anthrax toxin, is an inhibitor of angiogenesis, apparently as a result of interaction with the cell surface receptors capillary morphogenesis gene 2 (CMG2 protein and tumor endothelial marker 8 (TEM8. Hence, molecules that bind the anthrax toxin receptors may be effective to slow or halt pathological vascular growth. Here we describe development and testing of an effective homogeneous steady-state fluorescence resonance energy transfer (FRET high throughput screening assay designed to identify molecules that inhibit binding of PA to CMG2. Molecules identified in the screen can serve as potential lead compounds for the development of anti-angiogenic and anti-anthrax therapies. The assay to screen for inhibitors of this protein-protein interaction is sensitive and robust, with observed Z' values as high as 0.92. Preliminary screens conducted with a library of known bioactive compounds identified tannic acid and cisplatin as inhibitors of the PA-CMG2 interaction. We have confirmed that tannic acid both binds CMG2 and has anti-endothelial properties. In contrast, cisplatin appears to inhibit PA-CMG2 interaction by binding both PA and CMG2, and observed cisplatin anti-angiogenic effects are not mediated by interaction with CMG2. This work represents the first reported high throughput screening assay targeting CMG2 to identify possible inhibitors of both angiogenesis and anthrax intoxication.

  5. Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay

    OpenAIRE

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential anti-viral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interactio...

  6. Heterogeneity of tumor chemosensitivity in ovarian epithelial cancer revealed using the adenosine triphosphate-tumor chemosensitivity assay

    Science.gov (United States)

    ZHANG, JIN; LI, HONGXIA

    2015-01-01

    Ovarian cancer has a poor prognosis, primarily due to the heterogeneity in chemosensitivity among patients. In the present study, this heterogeneity was evaluated in ovarian epithelial cancer (OEC) using an in vitro adenosine triphosphate tumor chemosensitivity assay (ATP-TCA). Specimens were collected from 80 patients who underwent cytoreductive surgery. Viable ovarian cancer cells obtained from malignant tissues were tested for sensitivity to paclitaxel (PTX), carboplatin (CBP), topotecan (TPT), gemcitabine (GEM), docetaxel (TXT), etoposide, bleomycin and 4-hydroperoxycyclophosphamide using ATP-TCA. The sensitivity, specificity, positive predictive value and negative predictive value for the clinical chemotherapy sensitivity of OEC were 88.6, 77.8, 83 and 84.8%, respectively. PTX demonstrated the highest sensitivity of all agents tested (82.5% in all specimens, 85.7% in recurrent specimens), followed by CBP (58.8 and 60.7%, respectively). The sensitivities to PTX and docetaxel (P<0.001) were correlated, in addition to those of CBP, TPT and GEM (P<0.001). Early-stage (I/II) and high- to mildly-differentiated OEC specimens revealed a lower chemosensitivity than advanced-stage (III) or low-differentiated specimens, respectively. The present study indicated that ATP-TCA is an effective method for guiding the choice of chemotherapy drugs. Notable heterogeneity of chemosensitivity was observed in the OEC specimens. PMID:26137074

  7. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Rodrigo Juliano Oliveira

    2014-01-01

    Full Text Available β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63-116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20-52.54% and -0.95-62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide.

  8. Nanodisc-targeted STD NMR reveals atomistic details of ligand binding to lipid environments.

    Science.gov (United States)

    Watts, Anthony

    2018-03-14

    Saturation transfer difference (STD) NMR constitutes one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information of the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g. small organic molecules, carbohydrates, or lipids) and a protein as the target, where the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD-NMR to investigate the interactions of the neurotransmitter dopamine to mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed from charged and zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry (ITC) studies, show that dopamine preferential binds to negatively charged model membranes, but also provides detailed atomistic insights into the mode of interaction of dopamine to membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine, structural analogues, and are of generic applicability to other systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Determination of low tetanus or diphtheria antitoxin titers in sera by a toxin neutralization assay and a modified toxin-binding inhibition test

    Directory of Open Access Journals (Sweden)

    M.H. Sonobe

    2007-01-01

    Full Text Available A method for the screening of tetanus and diphtheria antibodies in serum using anatoxin (inactivated toxin instead of toxin was developed as an alternative to the in vivo toxin neutralization assay based on the toxin-binding inhibition test (TOBI test. In this study, the serum titers (values between 1.0 and 19.5 IU measured by a modified TOBI test (Modi-TOBI test and toxin neutralization assays were correlated (P < 0.0001. Titers of tetanus or diphtheria antibodies were evaluated in serum samples from guinea pigs immunized with tetanus toxoid, diphtheria-tetanus or triple vaccine. For the Modi-TOBI test, after blocking the microtiter plates, standard tetanus or diphtheria antitoxin and different concentrations of guinea pig sera were incubated with the respective anatoxin. Twelve hours later, these samples were transferred to a plate previously coated with tetanus or diphtheria antitoxin to bind the remaining anatoxin. The anatoxin was then detected using a peroxidase-labeled tetanus or diphtheria antitoxin. Serum titers were calculated using a linear regression plot of the results for the corresponding standard antitoxin. For the toxin neutralization assay, L+/10/50 doses of either toxin combined with different concentrations of serum samples were inoculated into mice for anti-tetanus detection, or in guinea pigs for anti-diphtheria detection. Both assays were suitable for determining wide ranges of antitoxin levels. The linear regression plots showed high correlation coefficients for tetanus (r² = 0.95, P < 0.0001 and for diphtheria (r² = 0.93, P < 0.0001 between the in vitro and the in vivo assays. The standardized method is appropriate for evaluating titers of neutralizing antibodies, thus permitting the in vitro control of serum antitoxin levels.

  10. Interactions between Metal-binding Domains Modulate Intracellular Targeting of Cu(I)-ATPase ATP7B, as Revealed by Nanobody Binding*

    Science.gov (United States)

    Huang, Yiping; Nokhrin, Sergiy; Hassanzadeh-Ghassabeh, Gholamreza; Yu, Corey H.; Yang, Haojun; Barry, Amanda N.; Tonelli, Marco; Markley, John L.; Muyldermans, Serge; Dmitriev, Oleg Y.; Lutsenko, Svetlana

    2014-01-01

    The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1–3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell. PMID:25253690

  11. Identification of Tight-Binding Plasmepsin II and Falcipain 2 Inhibitors in Aqueous Extracts of Marine Invertebrates by the Combination of Enzymatic and Interaction-Based Assays

    Science.gov (United States)

    Salas-Sarduy, Emir; Guerra, Yasel; Covaleda Cortés, Giovanni; Avilés, Francesc Xavier; Chávez Planes, María A.

    2017-01-01

    Natural products from marine origin constitute a very promising and underexplored source of interesting compounds for modern biotechnological and pharmaceutical industries. However, their evaluation is quite challenging and requires specifically designed assays to reliably identify the compounds of interest in a highly heterogeneous and interfering context. In the present study, we describe a general strategy for the confident identification of tight-binding protease inhibitors in the aqueous extracts of 62 Cuban marine invertebrates, using Plasmodium falciparum hemoglobinases Plasmepsin II and Falcipain 2 as model enzymes. To this end, we first developed a screening strategy that combined enzymatic with interaction-based assays and then validated screening conditions using five reference extracts. Interferences were evaluated and minimized. The results from the massive screening of such extracts, the validation of several hits by a variety of interaction-based assays and the purification and functional characterization of PhPI, a multifunctional and reversible tight-binding inhibitor for Plasmepsin II and Falcipain 2 from the gorgonian Plexaura homomalla, are presented. PMID:28430158

  12. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state.

    Directory of Open Access Journals (Sweden)

    Becka M Warfield

    Full Text Available RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are

  13. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.

    Science.gov (United States)

    Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G

    2017-11-01

    γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.

  14. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    Science.gov (United States)

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  15. Synthesis of 125I Labeled Estradiol-17-Hemisuccinate and Its Binding Study to Estrogen Receptors Using Scintillation Proximity Assay Method

    Directory of Open Access Journals (Sweden)

    Y. Susilo

    2012-12-01

    Full Text Available Research was carried out to obtain a selective ligand which strongly bind to estrogen receptors through determination of binding affinity of estradiol-17β-hemisuccinate. Selectivity of these compounds for estrogen receptor was studied using Scintillation Proximity Assay (SPA method. Primary reagents required in the SPA method including radioligand and receptor, the former was obtained by labeling of estradiol-17β-hemisuccinate with 125I, while MCF7 was used as the receptor. The labeling process was performed by indirect method via two-stage reaction. In this procedure, first step was activation of estradiol-17β-hemisuccinate using isobutylchloroformate and tributylamine as a catalist, while labeling of histamine with 125I was carried out using chloramin-T method to produce 125I-histamine. The second stage was conjugation of activated estradiol-17β-hemisuccinate with 125I-histamine. The product of estradiol-17β-hemisuccinate labeled 125I was extracted using toluene. Furtherly, the organic layer was purified by TLC system. Characterization of estradiol-17β-hemisuccinate labeled 125I from this solvent extraction was carried out by determining its radiochemical purity and the result was obtained using paper electrophoresis and TLC were 79.8% and 84.4% respectively. Radiochemical purity could be increased when purification step was repeated using TLC system, the result showed up to 97.8%. Determination of binding affinity by the SPA method was carried out using MCF7 cell lines which express estrogen receptors showed the value of Kd at 7.192 x 10-3 nM and maximum binding at 336.1 nM. This low value of Kd indicated that binding affinity of estradiol-17β-hemisuccinate was high or strongly binds to estrogen recepto

  16. Phylogenetic analysis reveals dynamic evolution of the poly(A)-binding protein gene family in plants.

    Science.gov (United States)

    Gallie, Daniel R; Liu, Renyi

    2014-11-25

    The poly(A)-binding protein (PABP) binds the poly(A) tail of eukaryotic mRNAs and functions to maintain the integrity of the mRNA while promoting protein synthesis through its interaction with eukaryotic translation initiation factor (eIF) 4G and eIF4B. PABP is encoded by a single gene in yeast and marine algae but during plant evolution the PABP gene family expanded substantially, underwent sequence divergence into three subclasses, and acquired tissue-specificity in gene family member expression. Although such changes suggest functional specialization, the size of the family and its sequence divergence have complicated an understanding of which gene family members may be foundational and which may represent more recent expansions of the family to meet the specific needs of speciation. Here, we examine the evolution of the plant PABP gene family to provide insight into these aspects of the family that may yield clues into the function of individual family members. The PABP gene family had expanded to two members by the appearance of fresh water algae and four members in non-vascular plants. In lycophytes, the first sequence divergence yielding a specific class member occurs. The earliest members of the gene family share greatest similarity to those modern members whose expression is confined to reproductive tissues, suggesting that supporting reproductive-associated gene expression is the most conserved function of this family. A family member sharing similarity to modern vegetative-associated members first appears in gymnosperms. Further elaboration of the reproductive-associated and vegetative-associated members occurred during the evolution of flowering plants. Expansion of the plant PABP gene family began prior to the colonization of land. By the evolution of lycophytes, the first class member whose expression is confined to reproductive tissues in higher plants had appeared. A second class member whose expression is vegetative-associated appeared in

  17. Binding assay and preliminary X-ray crystallographic analysis of ACTIBIND, a protein with anticarcinogenic and antiangiogenic activities

    International Nuclear Information System (INIS)

    Leeuw, Marina de; Roiz, Levava; Smirnoff, Patricia; Schwartz, Betty; Shoseyov, Oded; Almog, Orna

    2007-01-01

    Native ACTIBIND was successfully crystallized and it was shown that the interaction between ACTIBIND and actin is in a molar ratio of 1:2, with a binding constant of 16.17 × 10 4 M −1 . ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 × 10 4 M −1 . Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 × 0.5 × 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3 1 21 space group, with unit-cell parameters a = 78, b = 78, c = 104 Å

  18. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Science.gov (United States)

    Tarazanova, Mariya; Huppertz, Thom; Beerthuyzen, Marke; van Schalkwijk, Saskia; Janssen, Patrick; Wels, Michiel; Kok, Jan; Bachmann, Herwig

    2017-01-01

    Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities. PMID:28936202

  19. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Directory of Open Access Journals (Sweden)

    Mariya Tarazanova

    2017-09-01

    Full Text Available Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.

  20. Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh; Grembecka, Jolanta; Cierpicki, Tomasz (Michigan); (UV)

    2014-10-02

    Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.

  1. Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity

    Science.gov (United States)

    Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora

    2017-09-01

    The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti

  2. NMR insight into myosin-binding subunit coiled-coil structure reveals binding interface with protein kinase G-Iα leucine zipper in vascular function.

    Science.gov (United States)

    Sharma, Alok K; Birrane, Gabriel; Anklin, Clemens; Rigby, Alan C; Alper, Seth L

    2017-04-28

    Nitrovasodilators relax vascular smooth-muscle cells in part by modulating the interaction of the C-terminal coiled-coil domain (CC) and/or the leucine zipper (LZ) domain of the myosin light-chain phosphatase component, myosin-binding subunit (MBS), with the N-terminal LZ domain of protein kinase G (PKG)-Iα. Despite the importance of vasodilation in cardiovascular homeostasis and therapy, our structural understanding of the MBS CC interaction with LZ PKG-1α has remained limited. Here, we report the 3D NMR solution structure of homodimeric CC MBS in which amino acids 932-967 form a coiled-coil of two monomeric α-helices in parallel orientation. We found that the structure is stabilized by non-covalent interactions, with dominant contributions from hydrophobic residues at a and d heptad positions. Using NMR chemical-shift perturbation (CSP) analysis, we identified a subset of hydrophobic and charged residues of CC MBS (localized within and adjacent to the C-terminal region) contributing to the dimer-dimer interaction interface between homodimeric CC MBS and homodimeric LZ PKG-Iα. 15 N backbone relaxation NMR revealed the dynamic features of the CC MBS interface residues identified by NMR CSP. Paramagnetic relaxation enhancement- and CSP-NMR-guided HADDOCK modeling of the dimer-dimer interface of the heterotetrameric complex exhibits the involvement of non-covalent intermolecular interactions that are localized within and adjacent to the C-terminal regions of each homodimer. These results deepen our understanding of the binding restraints of this CC MBS·LZ PKG-Iα low-affinity heterotetrameric complex and allow reevaluation of the role(s) of myosin light-chain phosphatase partner polypeptides in regulation of vascular smooth-muscle cell contractility. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    International Nuclear Information System (INIS)

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-01

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  4. A radioactive antigen-binding assay for the measurement of antibody to Haemophilus influenzae type b capsular polysaccharide

    International Nuclear Information System (INIS)

    Kuo, J.S.-C.; Monji, N.; Schwalbe, R.S.; McCoy, D.W.

    1981-01-01

    A new polyethylene glycol (PEG) radioimmunoprecipitation assay was developed for the detection of antibody to Haemophilus influenzae b capsular polysaccharide, polyribosylribitol phosphate (PRP). The radioactive antigen, [ 3 H]PRP, with a high specific activity, was produced by growing the organism in the presence of [ 3 H]ribose and was purified by hydroxylapatite and sepharose 4B column chromatography. In the assay, PEG (12.5%) was used to separate antibody-bound [ 3 H]PRP from free [ 3 H]PRP. The present RIA is a simple, specific, sensitive and reproducible procedure for the evaluation of antibody responses of young animals and infants to H. influenzae b vaccines and infections. (Auth.)

  5. A cell-based MHC stabilization assay for the detection of peptide binding to the canine classical class I molecule, DLA-88.

    Science.gov (United States)

    Ross, Peter; Holmes, Jennifer C; Gojanovich, Gregory S; Hess, Paul R

    2012-12-15

    Identifying immunodominant CTL epitopes is essential for studying CD8+ T-cell responses in populations, but remains difficult, as peptides within antigens typically are too numerous for all to be synthesized and screened. Instead, to facilitate discovery, in silico scanning of proteins for sequences that match the motif, or binding preferences, of the restricting MHC class I allele - the largest determinant of immunodominance - can be used to predict likely candidates. The high false positive rate with this analysis ideally requires binding confirmation, which is obtained routinely by an assay using cell lines such as RMA-S that have defective transporter associated with antigen processing (TAP) machinery, and consequently, few surface class I molecules. The stabilization and resultant increased life-span of peptide-MHC complexes on the cell surface by the addition of true binders validates their identity. To determine whether a similar assay could be developed for dogs, we transfected a prevalent class I allele, DLA-88*50801, into RMA-S. In the BARC3 clone, the recombinant heavy chain was associated with murine β2-microglobulin, and importantly, could differentiate motif-matched and -mismatched peptides by surface MHC stabilization. This work demonstrates the potential to use RMA-S cells transfected with canine alleles as a tool for CTL epitope discovery in this species. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B.

    Science.gov (United States)

    Muniyan, Rajiniraja; Gurunathan, Jayaraman

    2016-12-01

    The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.

  7. Spatial clustering of binding motifs and charges reveals conserved functional features in disordered nucleoporin sequences

    Science.gov (United States)

    Ando, David; Colvin, Michael; Rexach, Michael; Gopinathan, Ajay

    2013-03-01

    The Nuclear Pore Complex (NPC) gates the only channel through which cells exchange material between the nucleus and cytoplasm. Traffic is regulated by transport receptors bound to cargo which interact with numerous of disordered phenylalanine glycine (FG) repeat containing proteins (FG nups) that line this channel. The precise physical mechanism of transport regulation has remained elusive primarily due to the difficulty in understanding the structure and dynamics of such a large assembly of interacting disordered proteins. Here we have performed a comprehensive bioinformatic analysis, specifically tailored towards disordered proteins, on thousands of nuclear pore proteins from a variety of species revealing a set of highly conserved features in the sequence structure among FG nups. Contrary to the general perception that these proteins are functionally equivalent to homogeneous polymers, we show that biophysically important features within individual nups like the separation, spatial localization and ordering along the chain of FG and charge domains are highly conserved. Our current understanding of NPC structure and function should therefore be revised to account for these common features that are functionally relevant for the underlying physical mechanism of NPC gating.

  8. A fluorescence polarization assay to quantify biotin and biotin-binding proteins in whole plant extracts using Alexa-Fluor 594 biocytin.

    Science.gov (United States)

    Martin, Harry; Murray, Colleen; Christeller, John; McGhie, Tony

    2008-10-01

    A high-throughput fluorescence polarization assay has been developed for the detection of biotin and biotin-binding proteins in whole leaf extracts. Various groups are investigating the insecticidal properties of avidin and other biotin-binding proteins expressed in leaves of transgenic plants. The methods commonly used to quantify biotin and avidin in leaf extracts are enzyme-linked immunosorbent assay (ELISA) and Western blotting. Here we describe a homogeneous fluorescence polarization (FP) method that quantifies transgenic avidin in whole leaf extract by the simple addition of the fluorescent avidin ligand Alexa-Fluor 594 biocytin (AFB). The FP assay exploits the fact that AFB excites and emits in regions of the spectrum that are relatively free of background fluorescence in leaf extract. Transgenic leaf avidin can be quantified within 1-2 h by the FP method, in comparison with 1-2 days for ELISA and Western blotting. The FP method can also measure the amount of biotin in control leaves, not expressing avidin. Functional avidin levels of 1.54 microM (26.1 microg/g leaf tissue) were detected in tobacco leaves expressing vacuole-targeted avidin. Control leaves had biotin levels of around 0.74 microM (approximately 0.18 microg/g leaf tissue). Reagent costs are minimal: typically AFB is used at concentrations of 1-10 nM, avidin is used at 1-100 nM, and sample volumes are 20 microL in 384-well microplates.

  9. Development of a nano-SiO2based enzyme-linked ligand binding assay for the determination of ibuprofen in human urine.

    Science.gov (United States)

    Wang, Qian-Long; Xie, Jing; Li, Xing-De; Ding, Li-Sheng; Liang, Jian; Luo, Pei; Qing, Lin-Sen

    2017-05-15

    The application domains of classic enzyme-linked ligand binding assay (ELBA) is relatively narrow due to the high cost and hardly available binding receptor. In here, we described for the first time the possibility of developing a new ELBA based on silica nanoparticles (nano-SiO 2 ) to assess the ibuprofen in human urine. Nano-SiO 2 with a large surface area was introduced as stationary phase to improve the analytical performance. In the experiment, a competitively binding procedure with human serum albumin (HSA) was performed between the ibuprofen presented in sample and horseradish peroxidase labeled ibuprofen (HRP-ibuprofen) subsequently added. After centrifugal separation, the HRP/ibuprofen/nano-SiO 2 composite catalyzed the substrate solution (TMB/H 2 O 2 ) with a color change from colorless to yellow for quantitative measurement via an ultraviolet spectrophotometer. As a validation of the new principle, the developed nano-ELBA method was applied in the determination of ibuprofen excreted in human urine with excellent performance. This detection range only depends on the solubility of ligand and sensitivity of UV spectrophotometer. Our results indicate that this new method demonstrated to be able to rapidly and adequately determine the concentration of components in biological samples and advocate its effectiveness for various applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2010-08-01

    Full Text Available Abstract Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR, which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.

  11. Interdependence of initial cell density, drug concentration and exposure time revealed by real-time impedance spectroscopic cytotoxicity assay

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Zor, Kinga; Canepa, Silvia

    2015-01-01

    We investigated the combined effect of the initial cell density (12 500, 35 000, 75 000, and 100 000 cells cm−2) and concentration of the anti-cancer drug doxorubicin on HeLa cells by performing timedependent cytotoxicity assays using real-time electrochemical impedance spectroscopy. A correlation...... between the rate of cell death and the initial cell seeding density was found at 2.5 μM doxorubicin concentration, whereas this was not observed at 5 or 100 μM. By sensing the changes in the cell–substrate interaction using impedance spectroscopy under static conditions, the onset of cytotoxicity...... was observed 5 h earlier than when using a standard colorimetric end-point assay (MTS) which measures changes in the mitochondrial metabolism. Furthermore, with the MTS assay no cytotoxicity was observed after 15 h of incubation with 2.5 μM doxorubicin, whereas the impedance showed at this time point cell...

  12. Hormone assay

    International Nuclear Information System (INIS)

    Eisentraut, A.M.

    1977-01-01

    An improved radioimmunoassay is described for measuring total triiodothyronine or total thyroxine levels in a sample of serum containing free endogenous thyroid hormone and endogenous thyroid hormone bound to thyroid hormone binding protein. The thyroid hormone is released from the protein by adding hydrochloric acid to the serum. The pH of the separated thyroid hormone and thyroid hormone binding protein is raised in the absence of a blocking agent without interference from the endogenous protein. 125 I-labelled thyroid hormone and thyroid hormone antibodies are added to the mixture, allowing the labelled and unlabelled thyroid hormone and the thyroid hormone antibody to bind competitively. This results in free thyroid hormone being separated from antibody bound thyroid hormone and thus the unknown quantity of thyroid hormone may be determined. A thyroid hormone test assay kit is described for this radioimmunoassay. It provides a 'single tube' assay which does not require blocking agents for endogenous protein interference nor an external solid phase sorption step for the separation of bound and free hormone after the competitive binding step; it also requires a minimum number of manipulative steps. Examples of the assay are given to illustrate the reproducibility, linearity and specificity of the assay. (UK)

  13. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft

    DEFF Research Database (Denmark)

    Kandra, L.; Abou Hachem, Maher; Gyemant, G.

    2006-01-01

    Subsite affinity maps of long substrate binding clefts in barley alpha-amylases, obtained using a series of maltooligosaccharides of degree of polymerization of 3-12, revealed unfavorable binding energies at the internal subsites -3 and -5 and at subsites -8 and +3/+4 defining these subsites...... as binding barriers. Barley a-amylase I mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile......, converting barriers to binding areas. These findings highlight the dynamic binding energy distribution and the versatility of long maltooligosaccharide derivatives in mapping extended binding clefts in a-amylases....

  14. Proteomic analysis of pig (Sus scrofa olfactory soluble proteome reveals O-GlcNAcylation of secreted odorant-binding proteins

    Directory of Open Access Journals (Sweden)

    Patricia eNAGNAN-LE MEILLOUR

    2014-12-01

    Full Text Available The diversity of olfactory binding proteins (OBPs is a key point to understand their role in molecular olfaction. Since only few different sequences were characterized in each mammalian species, they have been considered as passive carriers of odors and pheromones. We have explored the soluble proteome of pig nasal mucus, taking benefit of the powerful tools of proteomics. Combining two-dimensional electrophoresis, mass spectrometry and western-blot with specific antibodies, our analyses revealed for the first time that the pig nasal mucus is mainly composed of secreted OBP isoforms, some of them being potentially modified by O-GlcNAcylation. An ortholog gene of the glycosyltransferase responsible of the O-GlcNAc linking on extracellular proteins in Drosophila and Mouse (EOGT was amplified from tissues of pigs of different ages and sex. The sequence was used in a phylogenetic analysis, which evidenced conservation of EOGT in insect and mammalian models studied in molecular olfaction. Extracellular O-GlcNAcylation of secreted OBPs could finely modulate their binding specificities to odors and pheromones. This constitutes a new mechanism for extracellular signaling by OBPs, suggesting that they act as the first step of odor discrimination.

  15. Characterization of the Translationally Controlled Tumor Protein (TCTP) Interactome Reveals Novel Binding Partners in Human Cancer Cells.

    Science.gov (United States)

    Li, Siting; Chen, Minghai; Xiong, Qian; Zhang, Jia; Cui, Zongqiang; Ge, Feng

    2016-10-07

    Translationally controlled tumor protein (TCTP) is a highly conserved housekeeping protein present in eukaryotic organisms. It is involved in regulating many fundamental processes and plays a critical role in tumor reversion and tumorigenesis. Increasing evidence suggests that TCTP plays a role in the regulation of cell fate determination and is a promising therapeutic target for cancer. To decipher the exact mechanisms by which TCTP functions and how all these functions are integrated, we analyzed the interactome of TCTP in HeLa cells by coimmunoprecipitation (IP) and mass spectrometry (MS). A total of 98 proteins were identified. We confirmed the in vitro and in vivo association of TCTP with six of the identified binding proteins using reciprocal IP and bimolecular fluorescence complementation (BiFC) analysis, respectively. Moreover, TCTP interacted with Y-box-binding protein 1 (YBX1), and their interaction was localized to the N-terminal region of TCTP and the 1-129 amino acid (aa) residues of YBX1. The YBX1 protein plays an important role in cell proliferation, RNA splicing, DNA repair, drug resistance, and stress response to extracellular signals. These data suggest that the interaction of TCTP with YBX1 might cooperate or coordinate their functions in the control of diverse regulatory pathways in cancer cells. Taken together, our results not only reveal a large number of TCTP-associated proteins that possess pleiotropic functions, but also provide novel insights into the molecular mechanisms of TCTP in tumorigenesis.

  16. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors

    Science.gov (United States)

    Rubio, Fernando; Kamp, Lisa; Carpino, Justin; Faltin, Erin; Loftin, Keith A.; Molgó, Jordi; Aráoz, Rómulo

    2014-01-01

    Anatoxin-a and homoanatoxin-a, produced by cyanobacteria, are agonists of nicotinic acetylcholine receptors (nAChRs). Pinnatoxins, spirolides, and gymnodimines, produced by dinoflagellates, are antagonists of nAChRs. In this study we describe the development and validation of a competitive colorimetric, high throughput functional assay based on the mechanism of action of freshwater and marine toxins against nAChRs. Torpedo electrocyte membranes (rich in muscle-type nAChR) were immobilized and stabilized on the surface of 96-well microtiter plates. Biotinylated α-bungarotoxin (the tracer) and streptavidin-horseradish peroxidase (the detector) enabled the detection and quantitation of anatoxin-a in surface waters and cyclic imine toxins in shellfish extracts that were obtained from different locations across the US. The method compares favorably to LC/MS/MS and provides accurate results for anatoxin-a and cyclic imine toxins monitoring. Study of common constituents at the concentrations normally found in drinking and environmental waters, as well as the tolerance to pH, salt, solvents, organic and inorganic compounds did not significantly affect toxin detection. The assay allowed the simultaneous analysis of up to 25 samples within 3.5 h and it is well suited for on-site or laboratory monitoring of low levels of toxins in drinking, surface, and ground water as well as in shellfish extracts.

  17. Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers

    Directory of Open Access Journals (Sweden)

    Ngoka Lambert CM

    2008-10-01

    Full Text Available Abstract Background An important step in the proteomics of solid tumors, including breast cancer, consists of efficiently extracting most of proteins in the tumor specimen. For this purpose, Radio-Immunoprecipitation Assay (RIPA buffer is widely employed. RIPA buffer's rapid and highly efficient cell lysis and good solubilization of a wide range of proteins is further augmented by its compatibility with protease and phosphatase inhibitors, ability to minimize non-specific protein binding leading to a lower background in immunoprecipitation, and its suitability for protein quantitation. Results In this work, the insoluble matter left after RIPA buffer extraction of proteins from breast tumors are subjected to another extraction step, using a urea-based buffer. It is shown that RIPA and urea lysis buffers fractionate breast tissue proteins primarily on the basis of molecular weights. The average molecular weight of proteins that dissolve exclusively in urea buffer is up to 60% higher than in RIPA. Gene Ontology (GO and Directed Acyclic Graphs (DAG are used to map the collective biological and biophysical attributes of the RIPA and urea proteomes. The Cellular Component and Molecular Function annotations reveal protein solubilization preferences of the buffers, especially the compartmentalization and functional distributions. It is shown that nearly all extracellular matrix proteins (ECM in the breast tumors and matched normal tissues are found, nearly exclusively, in the urea fraction, while they are mostly insoluble in RIPA buffer. Additionally, it is demonstrated that cytoskeletal and extracellular region proteins are more soluble in urea than in RIPA, whereas for nuclear, cytoplasmic and mitochondrial proteins, RIPA buffer is preferred. Extracellular matrix proteins are highly implicated in cancer, including their proteinase-mediated degradation and remodelling, tumor development, progression, adhesion and metastasis. Thus, if they are not

  18. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol.

    Science.gov (United States)

    Nagel, S C; vom Saal, F S; Thayer, K A; Dhar, M G; Boechler, M; Welshons, W V

    1997-01-01

    We have developed a relative binding affinity-serum modified access (RBA-SMA) assay to determine the effect of serum on the access of xenoestrogens to estrogen receptors within intact cultured MCF-7 human breast cancer cells. We used this assay to predict low dose activity of two xenoestrogens in mice. In serum-free medium, bisphenol A, a component of polycarbonates and of resins used to line metal food cans, showed a lower relative binding affinity (RBA; 0.006%) than octylphenol (0.072%) and nonylphenol (0.026%), which are used as surfactants in many commercial products (all RBAs are relative to estradiol, which is equal to 100%). In 100% serum from adult men, bisphenol A showed a higher RBA (0.01%) than in serum-free medium and thus enhanced access to estrogen receptors relative to estradiol. In contrast, octylphenol showed a 22-fold decrease in RBA (0.0029%) and nonylphenol showed a 5-fold decrease in RBA (0.0039%) when measured in adult serum. This indicates that, relative to estradiol, serum had less of an inhibitory effect on the cell uptake and binding in MCF-7 cells of bisphenol A, while serum had a greater inhibitory effect on octylphenol and nonylphenol relative to estradiol. Extrapolation of these relative activities in adult serum predicted that the estrogenic bioactivity of bisphenol A would be over 500-fold greater than that of octylphenol in fetal mouse serum. Bisphenol A and octylphenol were fed to pregnant mice at 2 and 20 micrograms/kg/day. Exposure of male mouse fetuses to either dose of bisphenol A, but to neither dose of octylphenol, significantly increased their adult prostate weight relative to control males, which is consistent with the higher predicted bioactivity of bisphenol A than octylphenol in the RBA-SMA assay. In addition, our findings show for the first time that fetal exposure to environmentally relevant parts-per-billion (ppb) doses of bisphenol A, in the range currently being consumed by people, can alter the adult reproductive

  19. Association of HLA Types with Non-Specific Binding of Negative Control Beads in Luminex Panel Reactive Antibody (PRA) Screening Assay.

    Science.gov (United States)

    Lee, Nuri; Park, Hee Sue; In, Ji Won; Roh, Eun Youn; Shin, Sue; Park, Kyoung Un; Song, Eun Young

    2017-01-01

    Luminex panel reactive antibody (PRA) screening assays using microbeads are widely used for organ transplantation. Anti-HLA serum reactivity is calculated by correcting for non-specific binding to the negative control (NC) beads. High mean fluorescence intensity (MFI) value of NC beads are observed in some patients and can result in false negative results in the PRA screening assay. We analyzed the clinical characteristics and HLA types of those patients with high MFI values of NC beads. Sixty-six patients with high MFI values of NC beads (> 300) in the PRA LABScreen Mixed assay (One Lambda) tested were included as the high NC group. Age and gender matched controls with low MFI values of NC beads (PRA, were selected as the low NC group and 207 healthy Koreans were used as normal controls. Association of clinical characteristics and HLA types with the high NC group were analyzed using Chi-square test or Fischer's exact test, as appropriate. The proportion of patients with underlying liver disease was higher in the high NC group compared to the low NC group (18.1% vs. 1.5%, p < 0.001, OR = 14.2). The seropositivity of anti-nuclear antibody and rheumatoid factor, the frequency of use of intravenous immunoglobulin G, anti-thymocyte globulin, and rituximab showed no difference between two groups. The phenotype frequency (PF) of HLA-B46 was higher in the high NC group than in the low NC group (8.0% vs. 3.2%, p = 0.036, OR = 2.8). The PF of HLA-B7 was lower in the high NC group than in the healthy controls (0.0% vs. 6.5%, p = 0.008, OR = 0.1). The PF of HLA-DR1 was lower in the high NC group than in the low NC group (0.8% vs. 6.6%, p = 0.015, OR = 0.1) or healthy controls (0.8% vs. 7.4%, p = 0.003, Pc = 0.042, OR = 0.1). Increased non-specific binding to NC beads was associated with underlying liver disease and HLAB46. HLA-B7 and HLA-DR1 were related to a lower chance of non-specific binding to NC beads. The mechanism of those associations, such as differences in non

  20. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation

    Directory of Open Access Journals (Sweden)

    Mukerji Joya

    2012-06-01

    Full Text Available Abstract Background HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown. Results To identify Nef binding partners involved in Pak2-association dependent Nef functions, we employed tandem mass spectrometry analysis of Nef immunocomplexes from Jurkat cells expressing wild-type Nef or Nef mutants defective for the ability to associate with Pak2 (F85L, F89H, H191F and A72P, A75P in NL4-3. We report that wild-type, but not mutant Nef, was associated with 5 components of the exocyst complex (EXOC1, EXOC2, EXOC3, EXOC4, and EXOC6, an octameric complex that tethers vesicles at the plasma membrane, regulates polarized exocytosis, and recruits membranes and proteins required for nanotube formation. Additionally, Pak2 kinase was associated exclusively with wild-type Nef. Association of EXOC1, EXOC2, EXOC3, and EXOC4 with wild-type, but not mutant Nef, was verified by co-immunoprecipitation assays in Jurkat cells. Furthermore, shRNA-mediated depletion of EXOC2 in Jurkat cells abrogated Nef-mediated enhancement of nanotube formation. Using bioinformatic tools, we visualized protein interaction networks that reveal functional linkages between Nef, the exocyst complex, and the cellular endocytic and exocytic trafficking machinery. Conclusions Exocyst complex proteins are likely a key effector of Nef-mediated enhancement of nanotube formation, and possibly microvesicle secretion. Linkages revealed between Nef and the exocyst complex suggest a new paradigm of

  1. Glycoprotein profiles of macrophages at different stages of activation as revealed by lectin binding after electrophoretic separation.

    Science.gov (United States)

    Irimura, T; North, S M; Nicolson, G L

    1987-01-01

    Glycoprotein profiles of rat macrophages (M phi) at different stages of activation were studied by examining the reactivity of various lectins to the glycoproteins separated by polyacrylamide gel electrophoresis. Ricinus communis agglutinin 1 (RCA1) revealed several components including glycoproteins of Mr 160 kDa and 65 kDa prominent in resident M phi. A pokeweed mitogen (PWM) isolectin, Pa-4, recognizes branched poly(N-acetyllactosamine)-type carbohydrate chains, and revealed a significant increase in glycoproteins of Mr ranging from 70 kDa to 150 kDa on thioglycolate-elicited M phi. Increased reactivity of PWM to thioglycolate-elicited M phi was observed by direct binding of 125I-labeled Pa-4 to intact or glutaraldehyde-fixed M phi. Histochemical staining of formaldehyde-fixed M phi in vitro with biotinylated Pa-4 was consistent with the gel analysis, that is, resident M phi had no reactivity while thioglycolate-elicited M phi showed slight reactivity. Alveolar and intratumoral M phi bound more Pa-4 than resident or thioglycolate-elicited M phi. The PWM isolectin may therefore serve as a marker for an early stage of M phi activation.

  2. Enzymatic assays for detecting lactose and sucrose in urine to reveal intravenous drug abuse with emphasis on buprenorphine.

    Science.gov (United States)

    Keltanen, T; Mariottini, C; Walta, A M; Rahikainen, A L; Ojanperä, I

    2017-06-01

    Buprenorphine and methadone are commonly used medications for opioid maintenance treatment (OMT), using sublingual and oral administration, respectively. Although beneficial for OMT, these drugs can also be abused by intravenous administration. In intravenous abuse cases, the adjuvants lactose and sucrose are excreted in urine without hydrolysis to monosaccharides, since there are no disaccharidases in the blood. We validated enzymatic methods for the analysis of lactose and sucrose in urine. The analytical performance of both assays was considered appropriate for detecting intravenous drug abuse. The principle was proven by analyzing 93 postmortem (PM) urine samples for lactose, following comprehensive toxicological drug screening. In addition, 32 clinical urine samples from potential drug abusers were analyzed to assess the effect of PM changes on the assay. The mean level of lactose was low in clinical samples and relatively low in PM samples in which no drugs were found. Markedly elevated levels were seen in many of the buprenorphine positive samples, suggesting intravenous administration. Enzymatic methods could provide a simple and cost effective way to assess the intravenous administration of OMT drugs or drugs of abuse. Very high levels of glucose in urine may interfere with the assays. Furthermore, other causes for elevated urine disaccharides, such as hypolactasia and increased intestinal permeability, need to be considered in the interpretation of the results. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    International Nuclear Information System (INIS)

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.

  4. Binding assays for the quantitative detection of P. brevis polyether neurotoxins in biological samples and antibodies as therapeutic aids for polyether marine intoxication. Annual report, 1 December 1987-30 November 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baden, D.G.

    1988-12-15

    The polyether lipid-soluble toxins isolated from the marine dinoflagellate Ptychodiscus brevis (formerly Gymnodinium breve) can be detected using two separate types of specific binding reaction. Using tritiated PbTx-3 as a specific probe for binding to voltage-dependent sodium channels in rat brain synaptosomes or to specific polyclonal antibodies, binding equilibria and displacement by unlabeled brevetoxins were compared. Labeled toxin can be displaced in a competitive manner by any of the other 5 naturally-occurring toxins; the quantitative displacement ability of each appears to reflect individual potency in fish bioassay. A comparison of ED50 in Radioimmunoassay and ED50 in synaptosome binding assay indicates that the former assay is useful for detection of toxins which possess the structural backbone of PbTx-3, the immunizing hapten. Thus, the two assays have quantitative applicability; the sodium channel with respect to potency and the antibodies with respect to structure. Microtiter plate assays utilizing each specific brevetoxin binding component and enzyme-linked toxin hapten have been successful and indicate a general applicability of colorimetric prototypes. There, is however, considerable manipulation required to decrease non-specific binding of the hydrophobic toxin-enzyme complex to the plates. Preliminary studies aimed at producing monoclonal antibodies have been explored using brevetoxins linked to keyhole limpet hemocyanin.

  5. K2P2.1 (TREK-1)–activator complexes reveal a cryptic selectivity filter binding site

    Energy Technology Data Exchange (ETDEWEB)

    Lolicato, Marco; Arrigoni, Cristina; Mori, Takahiro; Sekioka, Yoko; Bryant, Clifford; Clark, Kimberly A.; Minor, Jr , Daniel L. (Ono); (UCSF)

    2017-07-10

    Polymodal thermo- and mechanosensitive two-pore domain potassium (K2P) channels of the TREK1 subfamily generate ‘leak’ currents that regulate neuronal excitability, respond to lipids, temperature and mechanical stretch, and influence pain, temperature perception and anaesthetic responses1, 2, 3. These dimeric voltage-gated ion channel (VGIC) superfamily members have a unique topology comprising two pore-forming regions per subunit4, 5, 6. In contrast to other potassium channels, K2P channels use a selectivity filter ‘C-type’ gate7, 8, 9, 10 as the principal gating site. Despite recent advances3, 11, 12, poor pharmacological profiles of K2P channels limit mechanistic and biological studies. Here we describe a class of small-molecule TREK activators that directly stimulate the C-type gate by acting as molecular wedges that restrict interdomain interface movement behind the selectivity filter. Structures of K2P2.1 (also known as TREK-1) alone and with two selective K2P2.1 (TREK-1) and K2P10.1 (TREK-2) activators—an N-aryl-sulfonamide, ML335, and a thiophene-carboxamide, ML402—define a cryptic binding pocket unlike other ion channel small-molecule binding sites and, together with functional studies, identify a cation–π interaction that controls selectivity. Together, our data reveal a druggable K2P site that stabilizes the C-type gate ‘leak mode’ and provide direct evidence for K2P selectivity filter gating.

  6. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.

    Directory of Open Access Journals (Sweden)

    Olga V Viktorovskaya

    2016-08-01

    Full Text Available There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses replication.Seventy-nine novel RNA binding proteins for dengue virus (DENV were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps

  7. Characterization of equine vitamin D-binding protein, development of an assay, and assessment of plasma concentrations of the protein in healthy horses and horses with gastrointestinal disease.

    Science.gov (United States)

    Pihl, Tina H; Jacobsen, Stine; Olsen, Dorthe T; Højrup, Peter; Grosche, Astrid; Freeman, David E; Andersen, Pia H; Houen, Gunnar

    2017-06-01

    OBJECTIVE To purify and characterize equine vitamin D-binding protein (VDBP) from equine serum and to evaluate plasma concentrations of VDBP in healthy horses and horses with gastrointestinal injury or disease. ANIMALS 13 healthy laboratory animals (8 mice and 5 rabbits), 61 healthy horses, 12 horses with experimentally induced intestinal ischemia and reperfusion (IR), and 59 horses with acute gastrointestinal diseases. PROCEDURES VDBP was purified from serum of 2 healthy horses, and recombinant equine VDBP was obtained through a commercial service. Equine VDBP was characterized by mass spectrometry. Monoclonal and polyclonal antibodies were raised against equine VDBP, and a rocket immunoelectrophoresis assay for equine VDBP was established. Plasma samples from 61 healthy horses were used to establish working VDBP reference values for study purposes. Plasma VDBP concentrations were assessed at predetermined time points in horses with IR and in horses with naturally occurring gastrointestinal diseases. RESULTS The working reference range for plasma VDBP concentration in healthy horses was 531 to 1,382 mg/L. Plasma VDBP concentrations were significantly decreased after 1 hour of ischemia in horses with IR, compared with values prior to induction of ischemia, and were significantly lower in horses with naturally occurring gastrointestinal diseases with a colic duration of < 12 hours than in healthy horses. CONCLUSIONS AND CLINICAL RELEVANCE Plasma VDBP concentrations were significantly decreased in horses with acute gastrointestinal injury or disease. Further studies and the development of a clinically relevant assay are needed to establish the reliability of VDBP as a diagnostic and prognostic marker in horses.

  8. Development of a Novel Fluorescence Assay Based on the Use of the Thrombin-Binding Aptamer for the Detection of O6-Alkylguanine-DNA Alkyltransferase Activity

    Directory of Open Access Journals (Sweden)

    Maria Tintoré

    2010-01-01

    Full Text Available Human O6-alkylguanine-DNA alkyltransferase (hAGT is a DNA repair protein that reverses the effects of alkylating agents by removing DNA adducts from the O6 position of guanine. Here, we developed a real-time fluorescence hAGT activity assay that is based on the detection of conformational changes of the thrombin-binding aptamer (TBA. The quadruplex structure of TBA is disrupted when a central guanine is replaced by an O6-methyl-guanine. The sequence also contains a fluorophore (fluorescein and a quencher (dabsyl attached to the opposite ends. In the unfolded structure, the fluorophore and the quencher are separated. When hAGT removes the methyl group from the central guanine of TBA, it folds back immediately into its quadruplex structure. Consequently, the fluorophore and the quencher come into close proximity, thereby resulting in decreased fluorescence intensity. Here, we developed a new method to quantify the hAGT without using radioactivity. This new fluorescence resonance energy transfer assay has been designed to detect the conformational change of TBA that is induced by the removal of the O6-methyl group.

  9. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    Science.gov (United States)

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies. © 2016 Elsevier Inc. All rights reserved.

  10. Analysis of the structural and functional roles of coupling helices in the ATP-binding cassette transporter MsbA through enzyme assays and molecular dynamics simulations.

    Science.gov (United States)

    Furuta, Tadaomi; Yamaguchi, Tomohiro; Kato, Hiroaki; Sakurai, Minoru

    2014-07-08

    ATP-binding cassette (ABC) transporters are constructed from some common structural units: the highly conserved nucleotide-binding domains (NBDs), which work as a nucleotide-dependent engine for driving substrate transport, the diverse transmembrane domains (TMDs), which create the translocation pathway, and the coupling helices (CHs), which are located at the NBD-TMD interface. Although the CHs are believed to be essential for NBD-TMD communication, their roles remain unclear. In this study, we performed enzyme assays and molecular dynamics (MD) simulations of the ABC transporter MsbA and two MsbA mutants in which the amino acid residues of one of the CHs were mutated to alanines: (i) wild type (Wt), (ii) CH1 mutant (Mt1), and (iii) CH2 mutant (Mt2). The experiments show that the CH2 mutation decreases the ATPase activity (kcat) compared with that of the Wt (a decrease of 32%), and a nearly equal degree of decrease in the ATP binding affinity (Km) was observed for both Mt1 and Mt2. The MD simulations successfully accounted for several structural and dynamical origins for these experimental observations. In addition, on the basis of collective motion and morphing analyses, we propose that the reverse-rotational motions and noddinglike motions between the NBDs and TMDs are indispensable for the conformational transition between the inward- and outward-facing conformations. In particular, CH2 is significantly important for the occurrence of the noddinglike motion. These findings provide important insights into the structure-function relationship of ABC transporters.

  11. Argyreia nervosa (Burm. f.): receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches.

    Science.gov (United States)

    Paulke, Alexander; Kremer, Christian; Wunder, Cora; Achenbach, Janosch; Djahanschiri, Bardya; Elias, Anderson; Schwed, J Stefan; Hübner, Harald; Gmeiner, Peter; Proschak, Ewgenij; Toennes, Stefan W; Stark, Holger

    2013-07-09

    The convolvulacea Argyreia nervosa (Burm. f.) is well known as an important medical plant in the traditional Ayurvedic system of medicine and it is used in numerous diseases (e.g. nervousness, bronchitis, tuberculosis, arthritis, and diabetes). Additionally, in the Indian state of Assam and in other regions Argyreia nervosa is part of the traditional tribal medicine (e.g. the Santali people, the Lodhas, and others). In the western hemisphere, Argyreia nervosa has been brought in attention as so called "legal high". In this context, the seeds are used as source of the psychoactive ergotalkaloid lysergic acid amide (LSA), which is considered as the main active ingredient. As the chemical structure of LSA is very similar to that of lysergic acid diethylamide (LSD), the seeds of Argyreia nervosa (Burm. f.) are often considered as natural substitute of LSD. In the present study, LSA and LSD have been compared concerning their potential pharmacological profiles based on the receptor binding affinities since our recent human study with four volunteers on p.o. application of Argyreia nervosa seeds has led to some ambiguous effects. In an initial step computer-aided in silico prediction models on receptor binding were employed to screen for serotonin, norepinephrine, dopamine, muscarine, and histamine receptor subtypes as potential targets for LSA. In addition, this screening was extended to accompany ergotalkaloids of Argyreia nervosa (Burm. f.). In a verification step, selected LSA screening results were confirmed by in vitro binding assays with some extensions to LSD. In the in silico model LSA exhibited the highest affinity with a pKi of about 8.0 at α1A, and α1B. Clear affinity with pKi>7 was predicted for 5-HT1A, 5-HT1B, 5-HT1D, 5-HT6, 5-HT7, and D2. From these receptors the 5-HT1D subtype exhibited the highest pKi with 7.98 in the prediction model. From the other ergotalkaloids, agroclavine and festuclavine also seemed to be highly affine to the 5-HT1D

  12. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site.

    Science.gov (United States)

    Gristick, Harry B; von Boehmer, Lotta; West, Anthony P; Schamber, Michael; Gazumyan, Anna; Golijanin, Jovana; Seaman, Michael S; Fätkenheuer, Gerd; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J

    2016-10-01

    HIV-1 vaccine design is informed by structural studies elucidating mechanisms by which broadly neutralizing antibodies (bNAbs) recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env). Variability in high-mannose and complex-type Env glycoforms leads to heterogeneity that usually precludes visualization of the native glycan shield. We present 3.5-Å- and 3.9-Å-resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation, revealing a glycan shield of high-mannose and complex-type N-glycans, which we used to define complete epitopes of two bNAbs. Env trimer was complexed with 10-1074 (against the V3-loop) and IOMA, a new CD4-binding site (CD4bs) antibody. Although IOMA derives from VH1-2*02, the germline gene of CD4bs-targeting VRC01-class bNAbs, its light chain lacks the short CDRL3 that defines VRC01-class bNAbs. Thus IOMA resembles 8ANC131-class/VH1-46-derived CD4bs bNAbs, which have normal-length CDRL3s. The existence of bNAbs that combine features of VRC01-class and 8ANC131-class antibodies has implications for immunization strategies targeting VRC01-like bNAbs.

  13. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation.

    LENUS (Irish Health Repository)

    Murphy, Derek M

    2009-01-01

    BACKGROUND: Neuroblastoma, a cancer derived from precursor cells of the sympathetic nervous system, is a major cause of childhood cancer related deaths. The single most important prognostic indicator of poor clinical outcome in this disease is genomic amplification of MYCN, a member of a family of oncogenic transcription factors. METHODOLOGY: We applied MYCN chromatin immunoprecipitation to microarrays (ChIP-chip) using MYCN amplified\\/non-amplified cell lines as well as a conditional knockdown cell line to determine the distribution of MYCN binding sites within all annotated promoter regions. CONCLUSION: Assessment of E-box usage within consistently positive MYCN binding sites revealed a predominance for the CATGTG motif (p<0.0016), with significant enrichment of additional motifs CATTTG, CATCTG, CAACTG in the MYCN amplified state. For cell lines over-expressing MYCN, gene ontology analysis revealed enrichment for the binding of MYCN at promoter regions of numerous molecular functional groups including DNA helicases and mRNA transcriptional regulation. In order to evaluate MYCN binding with respect to other genomic features, we determined the methylation status of all annotated CpG islands and promoter sequences using methylated DNA immunoprecipitation (MeDIP). The integration of MYCN ChIP-chip and MeDIP data revealed a highly significant positive correlation between MYCN binding and DNA hypermethylation. This association was also detected in regions of hemizygous loss, indicating that the observed association occurs on the same homologue. In summary, these findings suggest that MYCN binding occurs more commonly at CATGTG as opposed to the classic CACGTG E-box motif, and that disease associated over expression of MYCN leads to aberrant binding to additional weaker affinity E-box motifs in neuroblastoma. The co-localization of MYCN binding and DNA hypermethylation further supports the dual role of MYCN, namely that of a classical transcription factor affecting the

  14. Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method

    DEFF Research Database (Denmark)

    Zhang, Changyi; Guo, Li; Deng, Ling

    2010-01-01

    during incubation of pMID-pcna3 and pMID-araS-pcna1 transformants under counter selection. Studying the propagation of mutant cells by semi-quantitative PCR analysis of the deleted target gene allele (Deltapcna1 or Deltapcna3) revealed that mutant cells lost propagativity, demonstrating that these pcna...

  15. The use of a modified [3H]4-DAMP radioligand binding assay with increased selectivity for muscarinic M3 receptor shows that cortical CHRM3 levels are not altered in mood disorders.

    Science.gov (United States)

    Jeon, Won Je; Gibbons, Andrew S; Dean, Brian

    2013-12-02

    [(3)H]4-DAMP is a radioligand that has been used to quantify levels of the muscarinic receptor CHRM3 protein in situ. However, in addition to high affinity binding to CHRM3, [(3)H]4-DAMP binds with low affinity to CHRM1 confounding the potential to discriminate between changes in these two muscarinic receptors. We have developed a [(3)H]4-DAMP binding assay, optimised for measuring CHRM3 protein levels in the cortex, with minimal selectivity towards CHRM1. The selectivity of our assay towards CHRM3 was confirmed using recombinant receptor-expressing, cell lysate preparations. [(3)H]4-DAMP binding levels were similar between wildtype and CHRM1 knockout mice, confirming that the amount of [(3)H]4-DAMP binding to CHRM1 was negligible. We used this assay to measure CHRM3 protein levels in the frontal pole, obtained post-mortem from subjects with bipolar disorder (n = 15), major depressive disorder (n = 15) and matched controls (n = 20) and showed that [(3)H]4-DAMP binding was not altered in either bipolar disorder or major depressive disorder. Western blotting confirmed that CHRM3 protein levels were unchanged in these subjects. © 2013.

  16. UPF201 archaeal specific family members reveal structural similarity to RNA-binding proteins but low likelihood for RNA-binding function.

    Directory of Open Access Journals (Sweden)

    Krishnamurthy N Rao

    Full Text Available We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54 to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40% and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel beta-sheet and five alpha-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.

  17. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fichorova, Raina N., E-mail: rfichorova@rics.bwh.harvard.edu [Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Mendonca, Kevin; Yamamoto, Hidemi S.; Murray, Ryan [Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Chandra, Neelima; Doncel, Gustavo F. [CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA (United States)

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were

  18. A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion.

    Science.gov (United States)

    Quintavalle, Manuela; Elia, Leonardo; Price, Jeffrey H; Heynen-Genel, Susanne; Courtneidge, Sara A

    2011-07-26

    Acquisition of invasive cell behavior underlies tumor progression and metastasis. To further define the molecular mechanisms underlying invasive behavior, we developed a high-throughput screening strategy to quantitate invadopodia, which are actin-rich membrane protrusions of cancer cells that contribute to tissue invasion and matrix remodeling. We tested the LOPAC 1280 collection of pharmacologically active agents in a high-content, image-based assay and identified compounds that inhibited invadopodium formation without overt toxicity, as well as compounds that increased invadopodia number. The chemotherapeutic agent paclitaxel increased both the number of invadopodia and the invasive behavior of various human cancer cell lines, effects that have potential clinical implications for its use before surgical removal of a primary tumor (neoadjuvant therapy) or in patients with chemoresistant tumors. Several compounds that inhibited invasion have been characterized as cyclin-dependent kinase (Cdk) inhibitors, and loss-of-function experiments determined that Cdk5 was the relevant target. We further determined that Cdk5 promoted both invadopodium formation and cancer cell invasion by phosphorylating and thus decreasing the abundance of the actin regulatory protein caldesmon.

  19. Heterogeneity of tumor chemosensitivity in ovarian epithelial cancer revealed using the adenosine triphosphate-tumor chemosensitivity assay.

    Science.gov (United States)

    Zhang, Jin; Li, Hongxia

    2015-05-01

    Ovarian cancer has a poor prognosis, primarily due to the heterogeneity in chemosensitivity among patients. In the present study, this heterogeneity was evaluated in ovarian epithelial cancer (OEC) using an in vitro adenosine triphosphate tumor chemosensitivity assay (ATP-TCA). Specimens were collected from 80 patients who underwent cytoreductive surgery. Viable ovarian cancer cells obtained from malignant tissues were tested for sensitivity to paclitaxel (PTX), carboplatin (CBP), topotecan (TPT), gemcitabine (GEM), docetaxel (TXT), etoposide, bleomycin and 4-hydroperoxycyclophosphamide using ATP-TCA. The sensitivity, specificity, positive predictive value and negative predictive value for the clinical chemotherapy sensitivity of OEC were 88.6, 77.8, 83 and 84.8%, respectively. PTX demonstrated the highest sensitivity of all agents tested (82.5% in all specimens, 85.7% in recurrent specimens), followed by CBP (58.8 and 60.7%, respectively). The sensitivities to PTX and docetaxel (PIII) or low-differentiated specimens, respectively. The present study indicated that ATP-TCA is an effective method for guiding the choice of chemotherapy drugs. Notable heterogeneity of chemosensitivity was observed in the OEC specimens.

  20. Binding of alpha2ML1 to the low density lipoprotein receptor-related protein 1 (LRP1 reveals a new role for LRP1 in the human epidermis.

    Directory of Open Access Journals (Sweden)

    Marie-Florence Galliano

    Full Text Available BACKGROUND: The multifunctional receptor LRP1 has been shown to bind and internalize a large number of protein ligands with biological importance such as the pan-protease inhibitor alpha2-macroglobulin (alpha2M. We recently identified Alpha2ML1, a new member of the alpha2M gene family, expressed in epidermis. alpha2ML1 might contribute to the regulation of desquamation through its inhibitory activity towards proteases of the chymotrypsin family, notably KLK7. The expression of LRP1 in epidermis as well as its ability to internalize alpha2ML1 was investigated. METHODS AND PRINCIPAL FINDINGS: In human epidermis, LRP1 is mainly expressed within the granular layer of the epidermis, which gathers the most differentiated keratinocytes, as shown by immunohistochemistry and immunofluorescence using two different antibodies. By using various experimental approaches, we show that the receptor binding domain of alpha2ML1 (RBDl is specifically internalized into the macrophage-like cell line RAW and colocalizes with LRP1 upon internalization. Coimmunoprecipitation assays demonstrate that RBDl binds LRP1 at the cell surface. Addition of RAP, a universal inhibitor of ligand binding to LRP1, prevents RBDl binding at the cell surface as well as internalization into RAW cells. Silencing Lrp1 expression with specific siRNA strongly reduces RBDl internalization. CONCLUSIONS AND SIGNIFICANCE: Keratinocytes of the upper differentiated layers of epidermis express LRP1 as well as alpha2ML1. Our study also reveals that alpha2ML1 is a new ligand for LRP1. Our findings are consistent with endocytosis by LRP1 of complexes formed between alpha2ML1 and proteases. LRP1 may thus control desquamation by regulating the biodisponibility of extracellular proteases.

  1. Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding*

    Science.gov (United States)

    Stewart, Sarah E.; Bird, Catherina H.; Tabor, Rico F.; D'Angelo, Michael E.; Piantavigna, Stefania; Whisstock, James C.; Trapani, Joseph A.; Martin, Lisandra L.; Bird, Phillip I.

    2015-01-01

    Perforin is an essential component in the cytotoxic lymphocyte-mediated cell death pathway. The traditional view holds that perforin monomers assemble into pores in the target cell membrane via a calcium-dependent process and facilitate translocation of cytotoxic proteases into the cytoplasm to induce apoptosis. Although many studies have examined the structure and role of perforin, the mechanics of pore assembly and granzyme delivery remain unclear. Here we have employed quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate binding and assembly of perforin on lipid membranes, and show that perforin monomers bind to the membrane in a cooperative manner. We also found that cholesterol influences perforin binding and activity on intact cells and model membranes. Finally, contrary to current thinking, perforin efficiently binds membranes in the absence of calcium. When calcium is added to perforin already on the membrane, the QCM-D response changes significantly, indicating that perforin becomes membranolytic only after calcium binding. PMID:26542805

  2. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response.

    Science.gov (United States)

    Chen, Guan-Xing; Zhen, Shou-Min; Liu, Yan-Lin; Yan, Xing; Zhang, Ming; Yan, Yue-Ming

    2017-10-23

    Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.

  3. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  4. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS genes.

    Directory of Open Access Journals (Sweden)

    Jia-Yu Xue

    Full Text Available Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL class and the other is the CC-NBS-LRR (CNL class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL, reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an α/β-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL. Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.

  5. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  6. An integrated model of multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding.

    Directory of Open Access Journals (Sweden)

    Shaun Mahony

    2014-03-01

    Full Text Available Regulatory proteins can bind to different sets of genomic targets in various cell types or conditions. To reliably characterize such condition-specific regulatory binding we introduce MultiGPS, an integrated machine learning approach for the analysis of multiple related ChIP-seq experiments. MultiGPS is based on a generalized Expectation Maximization framework that shares information across multiple experiments for binding event discovery. We demonstrate that our framework enables the simultaneous modeling of sparse condition-specific binding changes, sequence dependence, and replicate-specific noise sources. MultiGPS encourages consistency in reported binding event locations across multiple-condition ChIP-seq datasets and provides accurate estimation of ChIP enrichment levels at each event. MultiGPS's multi-experiment modeling approach thus provides a reliable platform for detecting differential binding enrichment across experimental conditions. We demonstrate the advantages of MultiGPS with an analysis of Cdx2 binding in three distinct developmental contexts. By accurately characterizing condition-specific Cdx2 binding, MultiGPS enables novel insight into the mechanistic basis of Cdx2 site selectivity. Specifically, the condition-specific Cdx2 sites characterized by MultiGPS are highly associated with pre-existing genomic context, suggesting that such sites are pre-determined by cell-specific regulatory architecture. However, MultiGPS-defined condition-independent sites are not predicted by pre-existing regulatory signals, suggesting that Cdx2 can bind to a subset of locations regardless of genomic environment. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.

  7. Identification of cellular proteins that interact with Newcastle Disease Virus and human Respiratory Syncytial Virus by a two-dimensional virus overlay protein binding assay (VOPBA).

    Science.gov (United States)

    Holguera, Javier; Villar, Enrique; Muñoz-Barroso, Isabel

    2014-10-13

    Although it is well documented that the initial attachment receptors for Newcastle Disease Virus (NDV) and Respiratory Syncytial Virus (RSV) are sialic acid-containing molecules and glycosaminoglycans respectively, the exact nature of the receptors for both viruses remains to be deciphered. Moreover, additional molecules at the host cell surface might be involved in the entry mechanism. With the aim of identifying the cellular proteins that interact with NDV and RSV at the cell surface, we performed a virus overlay protein binding assay (VOPBA). Cell membrane lysates were separated by two dimensional (2D) gel electrophoresis and electrotransferred to PVDF membranes, after which they were probed with high viral concentrations. NDV interacted with a Protein Disulfide Isomerase from chicken fibroblasts. In the case of RSV, we detected 15 reactive spots, which were identified as six different proteins, of which nucleolin was outstanding. We discuss the possible role of PDI and nucleolin in NDV and RSV entry, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay.ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells.We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue reconstitution. Using this assay, we demonstrated that ESP

  9. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U......-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5'→3' ssDNA exonuclease activity, in addition...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair....

  10. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed

    DEFF Research Database (Denmark)

    Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Park, Chankyu

    2010-01-01

    ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X...... of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region...... ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications...

  11. Ac-mediated trans-activation of the Ds element in rice (Oryza sativa L.) cells as revealed by GUS assay.

    Science.gov (United States)

    Solis, R; Takumi, S; Mori, N; Nakamura, C

    1999-01-01

    A method using particle bombardment and beta-glucuronidase (GUS) assay was applied to rice callus for detecting the excision of the maize Ds element trans-activated by the Ac transposase source. Excision of Ds biolistically introduced into rice callus resulted in the restoration of the interrupted gus gene expression, allowing visual detection of trans-activation two days after bombardment. Only the transgenic callus lines expressing the Ac transposase gene and the wild-type callus co-transformed with Ac and Ds revealed GUS activity. Frequency of excision, estimated based on the relative GUS activity, ranged from 0.3% to 2.2%. Callus lines showing different levels of Ac transcripts revealed varying excision frequencies. At the later stages of callus growth after selection for the Ac/Ds transformed lines, excision events were detected by GUS assay and confirmed by PCR and sequence analyses of the excision sites in individual colonies. GUS activity was also demonstrated in the primary regenerants from the Ac/Ds-transformed callus colonies. The method described in this study may be used as an approach for rapid detection of excision events and assessment of various factors limiting Ac/Ds activity in rice cells.

  12. Analysis of Metal-Binding Features of the Wild Type and Two Domain-Truncated Mutant Variants of Littorina littorea Metallothionein Reveals Its Cd-Specific Character

    Directory of Open Access Journals (Sweden)

    Òscar Palacios

    2017-07-01

    Full Text Available After the resolution of the 3D structure of the Cd9-aggregate of the Littorina littorea metallothionein (MT, we report here a detailed analysis of the metal binding capabilities of the wild type MT, LlwtMT, and of two truncated mutants lacking either the N-terminal domain, Lltr2MT, or both the N-terminal domain, plus four extra flanking residues (SSVF, Lltr1MT. The recombinant synthesis and in vitro studies of these three proteins revealed that LlwtMT forms unique M9-LlwtMT complexes with Zn(II and Cd(II, while yielding a complex mixture of heteronuclear Zn,Cu-LlwtMT species with Cu(I. As expected, the truncated mutants gave rise to unique M6-LltrMT complexes and Zn,Cu-LltrMT mixtures of lower stoichiometry with respect to LlwtMT, with the SSVF fragment having an influence on their metal binding performance. Our results also revealed a major specificity, and therefore a better metal-coordinating performance of the three proteins for Cd(II than for Zn(II, although the analysis of the Zn(II/Cd(II displacement reaction clearly demonstrates a lack of any type of cooperativity in Cd(II binding. Contrarily, the analysis of their Cu(I binding abilities revealed that every LlMT domain is prone to build Cu4-aggregates, the whole MT working by modules analogously to, as previously described, certain fungal MTs, like those of C. neoformans and T. mesenterica. It is concluded that the Littorina littorea MT is a Cd-specific protein that (beyond its extended binding capacity through an additional Cd-binding domain confers to Littorina littorea a particular adaptive advantage in its changeable marine habitat.

  13. Crystal structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Nikhil; Goldgur, Yehuda; Xu, Kai; Paavilainen, Sari; Nikolov, Dimitar B.; Himanen, Juha P. (MSKCC); (Turku)

    2010-09-08

    Eph receptors and their ephrin ligands are important mediators of cell-cell communication. They are divided in two subclasses based on their affinities for each other and on sequence conservation. Receptor-ligand binding within each subclass is fairly promiscuous, while binding cross the subclasses happens rarely. EphA4 is an exception to this general rule, since it has long been known to bind both A- and B-class ephrin ligands but the reason for this exceptional behavior has not been worked out at molecular level. Recent structural and biochemical studies on EphA4 ligand-binding domain alone and in complex with its ligands have addressed this question. However, the published structures of EphA4/ephrin complexes differ considerably from each other and strikingly different explanations for the exceptional promiscuity of EphA4 were proposed. To address these contradictory findings, we have determined a crystal structure of the EphA4 ligand-binding domain at 2.3 {angstrom} resolution and show that the receptor has an unprecedented ability to exist in two very different, well-ordered conformations even in the unbound state. Our results suggest that the ligand promiscuity of the Ephs is directly correlated with the structural flexibility of the ligand-binding surface of the receptor.

  14. Structure of bacteriophage SPN1S endolysin reveals an unusual two-module fold for the peptidoglycan lytic and binding activity.

    Science.gov (United States)

    Park, Yangshin; Lim, Jeong-A; Kong, Minsuk; Ryu, Sangryeol; Rhee, Sangkee

    2014-04-01

    Bacteriophage SPN1S infects the pathogenic Gram-negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane-permeabilized Gram-negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram-negative bacteria background, the α-helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane-permeabilized Escherichia coli. The three-helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane-permeabilized E. coli and was therefore proposed as the peptidoglycan-binding domain. These structural and functional features suggest that endolysin from a Gram-negative bacterial background has peptidoglycan-binding activity and performs glycoside hydrolase activity through the catalytic dyad. © 2014 John Wiley & Sons Ltd.

  15. Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif.

    Science.gov (United States)

    Alenton, Rod Russel R; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo

    2017-04-04

    C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation.

  16. Proteomic Analysis of the Excretory and Secretory Proteins of Haemonchus contortus (HcESP Binding to Goat PBMCs In Vivo Revealed Stage-Specific Binding Profiles.

    Directory of Open Access Journals (Sweden)

    Javaid Ali Gadahi

    Full Text Available Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and secretory products (HcESPs interact extensively with the host cells. In this study, we report the interaction of proteins from HcESPs at different developmental stages to goat peripheral blood mononuclear cells (PBMCs in vivo using liquid chromatography-tandem mass spectrometry. A total of 407 HcESPs that interacted with goat PBMCs at different time points were identified from a H. contortus protein database using SEQUEST searches. The L4 and L5 stages of H. contortus represented a higher proportion of the identified proteins compared with the early and late adult stages. Both stage-specific interacting proteins and proteins that were common to multiple stages were identified. Forty-seven interacting proteins were shared among all stages. The gene ontology (GO distributions of the identified goat PBMC-interacting proteins were nearly identical among all developmental stages, with high representation of binding and catalytic activity. Cellular, metabolic and single-organism processes were also annotated as major biological processes, but interestingly, more proteins were annotated as localization processes at the L5 stage than at the L4 and adult stages. Based on the clustering of homologous proteins, we improved the functional annotations of un-annotated proteins identified at different developmental stages. Some unnamed H. contortus ATP-binding cassette proteins, including ADP-ribosylation factor and P-glycoprotein-9, were identified by STRING protein clustering analysis.

  17. Conformational dynamics of L-lysine, L-arginine, L-ornithine binding protein reveals ligand-dependent plasticity.

    Science.gov (United States)

    Silva, Daniel-Adriano; Domínguez-Ramírez, Lenin; Rojo-Domínguez, Arturo; Sosa-Peinado, Alejandro

    2011-07-01

    The molecular basis of multiple ligand binding affinity for amino acids in periplasmic binding proteins (PBPs) and in the homologous domain for class C G-protein coupled receptors is an unsolved question. Here, using unrestrained molecular dynamic simulations, we studied the ligand binding mechanism present in the L-lysine, L-arginine, L-ornithine binding protein. We developed an analysis based on dihedral angles for the description of the conformational changes upon ligand binding. This analysis has an excellent correlation with each of the two main movements described by principal component analysis (PCA) and it's more convenient than RMSD measurements to describe the differences in the conformational ensembles observed. Furthermore, an analysis of hydrogen bonds showed specific interactions for each ligand studied as well as the ligand interaction with the aromatic residues Tyr-14 and Phe-52. Using uncharged histidine tautomers, these interactions are not observed. On the basis of these results, we propose a model in which hydrogen bond interactions place the ligand in the correct orientation to induce a cation-π interaction with Tyr-14 and Phe-52 thereby stabilizing the closed state. Our results also show that this protein adopts slightly different closed conformations to make available specific hydrogen bond interactions for each ligand thus, allowing a single mechanism to attain multiple ligand specificity. These results shed light on the experimental evidence for ligand-dependent conformational plasticity not explained by the previous crystallographic data. Copyright © 2011 Wiley-Liss, Inc.

  18. Acetylcholine-Binding Protein Engineered to Mimic the α4-α4 Binding Pocket in α4β2 Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Ahring, Philip K; Olsen, Jeppe A

    2015-01-01

    Neuronal α4β2 nicotinic acetylcholine receptors are attractive drug targets for psychiatric and neurodegenerative disorders and smoking cessation aids. Recently, a third agonist binding site between two α4 subunits in the (α4)(3)(β2)(2) receptor subpopulation was discovered. In particular, three...... specific nicotinic acetylcholine receptor interfaces....... by introduction of three point mutations, R104H, L112Q, and M114T, into the binding pocket of Lymnaea stagnalis acetylcholine-binding protein (Ls-AChBP). Cocrystallization with two agonists possessing distinct pharmacologic profiles, NS3920 [1-(6-bromopyridin-3-yl)-1,4-diazepane] and NS3573 [1-(5-ethoxypyridin-3...

  19. Promoter engineering reveals the importance of heptameric direct repeats for DNA-binding by SARP-LAL regulators inStreptomyces.

    Science.gov (United States)

    Barreales, Eva G; Vicente, Cláudia M; de Pedro, Antonio; Santos-Aberturas, Javier; Aparicio, Jesús F

    2018-03-02

    The biosynthesis of small size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A SARP-LAL regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3 nucleotide spacer, both located in the promoter region of its unique target gene pimM Similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here we have used promoter engineering and quantitative transcriptional analyses to determine the contribution of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays have been used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. A cooperative binding of PimR SARP appears to be the mechanism involved in binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding. IMPORTANCE: Here we have shown that modulation of the production of antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM Expression of this gene is controlled by the SARP-LAL regulator PimR, which binds a series of heptameric direct repeats in its promoter

  20. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug-binding site

    OpenAIRE

    Handing, Katarzyna B.; Shabalin, Ivan G.; Szlachta, Karol; Majorek, Karolina A.; Minor, Wladek

    2016-01-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1 ?. Cetirizine is bound in two sites ? a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizi...

  1. Comparison of the Fibronectin-Binding Protein FNE from Streptococcus equi Subspecies equi with FNZ from S. equi Subspecies zooepidemicus Reveals a Major and Conserved Difference

    Science.gov (United States)

    Lindmark, Hans; Nilsson, Martin; Guss, Bengt

    2001-01-01

    The gene fnz from Streptococcus equi subspecies zooepidemicus encodes a cell surface protein that binds fibronectin (Fn). Fifty tested isolates of S. equi subspecies equi all contain DNA sequences with similarity to fnz. This work describes the cloning and sequencing of a gene, designated fne, with similarity to fnz from two S. equi subspecies equi isolates. The DNA sequences were found to be identical in the two strains, and sequence comparison of the fne and fnz genes revealed only minor differences. However, one base deletion was found in the middle of the fne gene and eight base pairs downstream of the altered reading frame there is a stop codon. An Fn-binding protein was purified from the growth medium of a subspecies equi culture. Determination of the NH2-terminal amino acid sequence and molecular mass, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed that the purified protein is the gene product of the 5′-terminal half of fne. Fn-binding activity has earlier only been found in the COOH-terminal half of FNZ. By the use of a purified recombinant protein containing the NH2 half of FNZ, we provide here evidence that this half of the protein also harbors an Fn-binding domain. PMID:11292736

  2. High-resolution analysis of four efficient yeast replication origins reveals new insights into the ORC and putative MCM binding elements.

    Science.gov (United States)

    Chang, Fujung; May, Caitlin D; Hoggard, Timothy; Miller, Jeremy; Fox, Catherine A; Weinreich, Michael

    2011-08-01

    In budding yeast, the eukaryotic initiator protein ORC (origin recognition complex) binds to a bipartite sequence consisting of an 11 bp ACS element and an adjacent B1 element. However, the genome contains many more matches to this consensus than actually bind ORC or function as origins in vivo. Although ORC-dependent loading of the replicative MCM helicase at origins is enhanced by a distal B2 element, less is known about this element. Here, we analyzed four highly active origins (ARS309, ARS319, ARS606 and ARS607) by linker scanning mutagenesis and found that sequences adjacent to the ACS contributed substantially to origin activity and ORC binding. Using the sequences of four additional B2 elements we generated a B2 multiple sequence alignment and identified a shared, degenerate 8 bp sequence that was enriched within 228 known origins. In addition, our high-resolution analysis revealed that not all origins exist within nucleosome free regions: a class of Sir2-regulated origins has a stably positioned nucleosome overlapping or near B2. This study illustrates the conserved yet flexible nature of yeast origin architecture to promote ORC binding and origin activity, and helps explain why a strong match to the ORC binding site is insufficient to identify origins within the genome.

  3. Circular dichroism and absorption spectroscopic data reveal binding of the natural cis-carotenoid bixin to human alpha1-acid glycoprotein.

    Science.gov (United States)

    Zsila, Ferenc; Molnár, Péter; Deli, József; Lockwood, Samuel F

    2005-08-01

    Using circular dichroism (CD) and electronic absorption spectroscopy techniques, interaction of the natural dietary cis-carotenoid bixin with an important human plasma protein in vitro was demonstrated for the first time. The induced CD spectra of bixin obtained under physiological conditions (pH 7.4, 37 degrees C) revealed its binding to the serum acute-phase reactant alpha(1)-acid glycoprotein (AGP), a member of the lipocalin protein family. Spectral features of the extrinsic Cotton effects of bixin suggested the inclusion of a single, chirally distorted ligand molecule into the asymmetric protein environment. Compared with the absorption spectra obtained in ethanol and benzene, the strong red shift of the main absorption peak of AGP-bound bixin indicated that the proposed binding site was rich in aromatic residues, and also suggested that hydrophobic interactions were involved in the binding. Using the data obtained from the CD titration experiments, the association constant (Ka=4.5x10(5)M-1) and stoichiometry of the binding (0.15) were calculated. The low value of the stoichiometry was attributed to the structural polymorphism of AGP. To the authors' knowledge, the current study represents the first human lipocalin protein for which carotenoid binding affinity has been explored in vitro with these techniques.

  4. Targeted deletion of multiple CTCF-binding elements in the human C-MYC gene reveals a requirement for CTCF in C-MYC expression.

    Directory of Open Access Journals (Sweden)

    Wendy M Gombert

    Full Text Available BACKGROUND: Insulators and domain boundaries both shield genes from adjacent enhancers and inhibit intrusion of heterochromatin into transgenes. Previous studies examined the functional mechanism of the MYC insulator element MINE and its CTCF binding sites in the context of transgenes that were randomly inserted into the genome by transfection. However, the contribution of CTCF binding sites to both gene regulation and maintenance of chromatin has not been tested at the endogenous MYC gene. METHODOLOGY/PRINCIPAL FINDINGS: To determine the impact of CTCF binding on MYC expression, a series of mutant human chromosomal alleles was prepared in homologous recombination-efficient DT40 cells and individually transferred by microcell fusion into murine cells. Functional tests reported here reveal that deletion of CTCF binding elements within the MINE does not impact the capacity of this locus to correctly organize an 'accessible' open chromatin domain, suggesting that these sites are not essential for the formation of a competent, transcriptionally active locus. Moreover, deletion of the CTCF site at the MYC P2 promoter reduces transcription but does not affect promoter acetylation or serum-inducible transcription. Importantly, removal of either CTCF site leads to DNA methylation of flanking sequences, thereby contributing to progressive loss of transcriptional activity. CONCLUSIONS: These findings collectively demonstrate that CTCF-binding at the human MYC locus does not repress transcriptional activity but is required for protection from DNA methylation.

  5. Combined amplicon pyrosequencing assays reveal presence of the apicomplexan "type-N" (cf. Gemmocystis cylindrus and Chromera velia on the Great Barrier Reef, Australia.

    Directory of Open Access Journals (Sweden)

    Jan Slapeta

    Full Text Available BACKGROUND: The coral is predominantly composed of the metabolically dependent coral host and the photosynthetic dinoflagellate Symbiodinium sp. The system as a whole interacts with symbiotic eukaryotes, bacteria and viruses. Gemmocystiscylindrus (cf. "type-N" symbiont belonging to the obligatory parasitic phylum Apicomplexa (Alveolata is ubiquitous in the Caribbean coral, but its presence in the Great Barrier Reef coral has yet to be documented. Approaches allowing identification of the healthy community from the pathogenic or saprobic organisms are needed for sustainable coral reef monitoring. METHODS & PRINCIPAL FINDINGS: We investigated the diversity of eukaryotes associated with a common reef-building corals from the southern Great Barrier Reef. We used three tag encoded 454 amplicon pyrosequencing assays targeting eukaryote small-subunit rRNA gene to demonstrate the presence of the apicomplexan type-N and a photosynthetic sister species to Apicomplexa-Chromeravelia. Amplicon pyrosequencing revealed presence of the small-subunit rRNA genes of known eukaryotic pathogens (Cryptosporidium and Cryptococcus. We therefore conducted bacterial tag encoded amplicon pyrosequencing assay for small-subunit rRNA gene to support effluent exposure of the coral. Bacteria of faecal origin (Enterobacteriales formed 41% of total sequences in contrast to 0-2% of the coral-associated bacterial communities with and without C. velia, respectively. SIGNIFICANCE: This is the first time apicomplexan type-N has been detected in the Great Barrier Reef. Eukaryote tag encoded amplicon pyrosequencing assays demonstrate presence of apicomplexan type-N and C. Velia in total coral DNA. The data highlight the need for combined approaches for eukaryotic diversity studies coupled with bacterial community assessment to achieve a more realistic goals of defining the holobiont community and assessing coral disease. With increasing evidence of Apicomplexa in coral reef

  6. A spectrophotometer-based diffusivity assay reveals that diffusion hindrance of small molecules in extracellular matrix gels used in 3D cultures is dominated by viscous effects.

    Science.gov (United States)

    Galgoczy, Roland; Pastor, Isabel; Colom, Adai; Giménez, Alicia; Mas, Francesc; Alcaraz, Jordi

    2014-08-01

    The design of 3D culture studies remains challenging due to the limited understanding of extracellular matrix (ECM)-dependent hindered diffusion and the lack of simple diffusivity assays. To address these limitations, we set up a cost-effective diffusivity assay based on a Transwell plate and the spectrophotometer of a Microplate Reader, which are readily accessible to cell biology groups. The spectrophotometer-based assay was used to assess the apparent diffusivity D of FITC-dextrans with molecular weight (4-70kDa) spanning the physiological range of signaling factors in a panel of acellular ECM gels including Matrigel, fibrin and type I collagen. Despite their technical differences, D data exhibited ∼15% relative difference with respect to FRAP measurements. Our results revealed that diffusion hindrance of small particles is controlled by the enhanced viscosity of the ECM gel in conformance with the Stokes-Einstein equation rather than by geometrical factors. Moreover, we provided a strong rationale that the enhanced ECM viscosity is largely contributed to by unassembled ECM macromolecules. We also reported that gels with the lowest D exhibited diffusion hindrance closest to the large physiologic hindrance of brain tissue, which has a typical pore size much smaller than ECM gels. Conversely, sparse gels (≤1mg/ml), which are extensively used in 3D cultures, failed to reproduce the hindered diffusion of tissues, thereby supporting that dense (but not sparse) ECM gels are suitable tissue surrogates in terms of macromolecular transport. Finally, the consequences of reduced diffusivity in terms of optimizing the design of 3D culture experiments were addressed in detail. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Combined amplicon pyrosequencing assays reveal presence of the apicomplexan "type-N" (cf. Gemmocystis cylindrus) and Chromera velia on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Slapeta, Jan; Linares, Marjorie C

    2013-01-01

    The coral is predominantly composed of the metabolically dependent coral host and the photosynthetic dinoflagellate Symbiodinium sp. The system as a whole interacts with symbiotic eukaryotes, bacteria and viruses. Gemmocystiscylindrus (cf. "type-N" symbiont) belonging to the obligatory parasitic phylum Apicomplexa (Alveolata) is ubiquitous in the Caribbean coral, but its presence in the Great Barrier Reef coral has yet to be documented. Approaches allowing identification of the healthy community from the pathogenic or saprobic organisms are needed for sustainable coral reef monitoring. We investigated the diversity of eukaryotes associated with a common reef-building corals from the southern Great Barrier Reef. We used three tag encoded 454 amplicon pyrosequencing assays targeting eukaryote small-subunit rRNA gene to demonstrate the presence of the apicomplexan type-N and a photosynthetic sister species to Apicomplexa-Chromeravelia. Amplicon pyrosequencing revealed presence of the small-subunit rRNA genes of known eukaryotic pathogens (Cryptosporidium and Cryptococcus). We therefore conducted bacterial tag encoded amplicon pyrosequencing assay for small-subunit rRNA gene to support effluent exposure of the coral. Bacteria of faecal origin (Enterobacteriales) formed 41% of total sequences in contrast to 0-2% of the coral-associated bacterial communities with and without C. velia, respectively. This is the first time apicomplexan type-N has been detected in the Great Barrier Reef. Eukaryote tag encoded amplicon pyrosequencing assays demonstrate presence of apicomplexan type-N and C. Velia in total coral DNA. The data highlight the need for combined approaches for eukaryotic diversity studies coupled with bacterial community assessment to achieve a more realistic goals of defining the holobiont community and assessing coral disease. With increasing evidence of Apicomplexa in coral reef environments, it is important not only to understand the evolution of these

  8. Structural and Enzymatic Analyses Reveal the Binding Mode of a Novel Series of Francisella tularensis Enoyl Reductase (FabI) Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Shahila; Hevener, Kirk E.; Truong, Kent; Boci, Teuta; Santarsiero, Bernard D.; Johnson, Michael E. (UIC)

    2012-10-10

    Because of structural and mechanistic differences between eukaryotic and prokaryotic fatty acid synthesis enzymes, the bacterial pathway, FAS-II, is an attractive target for the design of antimicrobial agents. We have previously reported the identification of a novel series of benzimidazole compounds with particularly good antibacterial effect against Francisella tularensis, a Category A biowarfare pathogen. Herein we report the crystal structure of the F. tularensis FabI enzyme in complex with our most active benzimidazole compound bound with NADH. The structure reveals that the benzimidazole compounds bind to the substrate site in a unique conformation that is distinct from the binding motif of other known FabI inhibitors. Detailed inhibition kinetics have confirmed that the compounds possess a novel inhibitory mechanism that is unique among known FabI inhibitors. These studies could have a strong impact on future antimicrobial design efforts and may reveal new avenues for the design of FAS-II active antibacterial compounds.

  9. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.; (UTSMC)

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  10. Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions.

    Science.gov (United States)

    Bryan, Louise C; Weilandt, Daniel R; Bachmann, Andreas L; Kilic, Sinan; Lechner, Carolin C; Odermatt, Pascal D; Fantner, Georg E; Georgeon, Sandrine; Hantschel, Oliver; Hatzimanikatis, Vassily; Fierz, Beat

    2017-10-13

    Chromatin recruitment of effector proteins involved in gene regulation depends on multivalent interaction with histone post-translational modifications (PTMs) and structural features of the chromatin fiber. Due to the complex interactions involved, it is currently not understood how effectors dynamically sample the chromatin landscape. Here, we dissect the dynamic chromatin interactions of a family of multivalent effectors, heterochromatin protein 1 (HP1) proteins, using single-molecule fluorescence imaging and computational modeling. We show that the three human HP1 isoforms are recruited and retained on chromatin by a dynamic exchange between histone PTM and DNA bound states. These interactions depend on local chromatin structure, the HP1 isoforms as well as on PTMs on HP1 itself. Of the HP1 isoforms, HP1α exhibits the longest residence times and fastest binding rates due to DNA interactions in addition to PTM binding. HP1α phosphorylation further increases chromatin retention through strengthening of multivalency while reducing DNA binding. As DNA binding in combination with specific PTM recognition is found in many chromatin effectors, we propose a general dynamic capture mechanism for effector recruitment. Multiple weak protein and DNA interactions result in a multivalent interaction network that targets effectors to a specific chromatin modification state, where their activity is required. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Structures of the rare-cutting restriction endonuclease NotI reveal a unique metal binding fold involved in DNA binding.

    Science.gov (United States)

    Lambert, Abigail R; Sussman, Django; Shen, Betty; Maunus, Robert; Nix, Jay; Samuelson, James; Xu, Shuang-Yong; Stoddard, Barry L

    2008-04-01

    The structure of the rare-cutting restriction endonuclease NotI, which recognizes the 8 bp target 5'-GCGGCCGC-3', has been solved with and without bound DNA. Because of its specificity (recognizing a site that occurs once per 65 kb), NotI is used to generate large genomic fragments and to map DNA methylation status. NotI contains a unique metal binding fold, found in a variety of putative endonucleases, occupied by an iron atom coordinated within a tetrahedral Cys4 motif. This domain positions nearby protein elements for DNA recognition, and serves a structural role. While recognition of the central six base pairs of the target is accomplished via a saturated hydrogen bond network typical of restriction enzymes, the most peripheral base pairs are engaged in a single direct contact in the major groove, reflecting reduced pressure to recognize those positions. NotI may represent an evolutionary intermediate between mobile endonucleases (which recognize longer target sites) and canonical restriction endonucleases.

  12. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Nelson Laura D

    2012-06-01

    Full Text Available Abstract Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024. EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated

  13. Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding

    Directory of Open Access Journals (Sweden)

    Murray Jill I

    2012-07-01

    Full Text Available Abstract Background S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. Results To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. Conclusions Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct

  14. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump.

    Science.gov (United States)

    Tejral, Gracian; Sopko, Bruno; Necas, Alois; Schoner, Wilhelm; Amler, Evzen

    2017-01-01

    Hydrolysis of ATP by Na + /K + -ATPase, a P-Type ATPase, catalyzing active Na + and K + transport through cellular membranes leads transiently to a phosphorylation of its catalytical α -subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp 369 to allow the transfer of ATP's terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ -phosphate group of ATP to the Asp 369 is achieved, analogous molecular modeling of the M 4 -M 5 loop of ATPase was performed using the crystal data of Na + /K + -ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr 338 and Ile 760 of the α 2 -subunit of Na + /K + -ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe 475 in the N-domain, the other one close to Asp 369 in the P-domain. However, binding of Mg 2+ •ATP to any of these sites in the "open conformation" may not lead to phosphorylation of Asp 369 . Additional conformations of the cytoplasmic loop were found wobbling between "open conformation"  "semi-open conformation  "closed conformation" in the absence of 2Mg 2+ •ATP. The cytoplasmic loop's conformational change to the "semi-open conformation"-characterized by a hydrogen bond between Arg 543 and Asp 611 -triggers by binding of 2Mg 2+ •ATP to a single ATP site and conversion to the "closed conformation" the phosphorylation of Asp 369 in the P-domain, and hence the start of Na + /K + -activated ATP hydrolysis.

  15. MxaJ structure reveals a periplasmic binding protein-like architecture with unique secondary structural elements.

    Science.gov (United States)

    Myung Choi, Jin; Cao, Thinh-Phat; Wouk Kim, Si; Ho Lee, Kun; Haeng Lee, Sung

    2017-07-01

    MxaJ is a component of type II methanol dehydrogenase (MDH) that mediates electron transfer during methanol oxidation in methanotrophic bacteria. However, little is known about how MxaJ structurally cooperates with MDH and Cytochrome c L . Here, we report for the first time the crystal structure of MxaJ. MxaJ consists of eight α-helices and six β-strands, and resembles the "bi-lobate" folding architecture found in periplasmic binding proteins. Distinctive features of MxaJ include prominent loops and a β-strand around the hinge region supporting the ligand-binding cavity, which might provide a more favorable framework for interacting with proteins rather than small molecules. Proteins 2017; 85:1379-1386. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Analogues of doxanthrine reveal differences between the dopamine D 1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines

    Science.gov (United States)

    Cueva, J.P.; Chemel, B.R.; Juncosa, J.I.; Lill, M.A.; Watts, V.J.; Nichols, D.E.

    2012-01-01

    Efforts to develop selective agonists for dopamine D 1-like receptors led to the discovery of dihydrexidine and doxanthrine, two bioisosteric ??-phenyldopamine-type full agonist ligands that display selectivity and potency at D 1-like receptors. We report herein an improved methodology for the synthesis of substituted chromanoisoquinolines (doxanthrine derivatives) and the evaluation of several new compounds for their ability to bind to D 1- and D 2-like receptors. Identical pendant phenyl ring substitutions on the dihydrexidine and doxanthrine templates surprisingly led to different effects on D 1-like receptor binding, suggesting important differences between the interactions of these ligands with the D 1 receptor. We propose, based on the biological results and molecular modeling studies, that slight conformational differences between the tetralin and chroman-based compounds lead to a shift in the location of the pendant ring substituents within the receptor. ?? 2011 Elsevier Ltd. All rights reserved.

  17. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites.

    Science.gov (United States)

    Radka, Christopher D; DeLucas, Lawrence J; Wilson, Landon S; Lawrenz, Matthew B; Perry, Robert D; Aller, Stephen G

    2017-07-01

    Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. In Yersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA is polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.

  18. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase "Asian" variant.

    Science.gov (United States)

    Larson, Heather N; Weiner, Henry; Hurley, Thomas D

    2005-08-26

    Mitochondrial aldehyde dehydrogenase (ALDH2) is the major enzyme that oxidizes ethanol-derived acetaldehyde. A nearly inactive form of the enzyme, ALDH2*2, is found in about 40% of the East Asian population. This variant enzyme is defined by a glutamate to lysine substitution at residue 487 located within the oligomerization domain. ALDH2*2 has an increased Km for its coenzyme, NAD+, and a decreased kcat, which lead to low activity in vivo. Here we report the 2.1 A crystal structure of ALDH2*2. The structure shows a large disordered region located at the dimer interface that includes much of the coenzyme binding cleft and a loop of residues that form the base of the active site. As a consequence of these structural changes, the variant enzyme exhibits rigid body rotations of its catalytic and coenzyme-binding domains relative to the oligomerization domain. These structural perturbations are the direct result of the inability of lysine 487 to form important stabilizing hydrogen bonds with arginines 264 and 475. Thus, the elevated Km for coenzyme exhibited by this variant probably reflects the energetic penalty for reestablishing this site for productive coenzyme binding, whereas the structural alterations near the active site are consistent with the lowered Vmax.

  19. Atomic model of human Rcd-1 reveals an armadillo-like-repeat protein with in vitro nucleic acid binding properties.

    Science.gov (United States)

    Garces, Robert G; Gillon, Wanda; Pai, Emil F

    2007-02-01

    Rcd-1, a protein highly conserved across eukaryotes, was initially identified as a factor essential for nitrogen starvation-invoked differentiation in fission yeast, and its Saccharomyces cerevisiae homolog, CAF40, has been identified as part of the CCR4-NOT transcription complex, where it interacts with the NOT1 protein. Mammalian homologs are involved in various cellular differentiation processes including retinoic acid-induced differentiation and hematopoetic cell development. Here, we present the 2.2 A X-ray structure of the highly conserved region of human Rcd-1 and investigate possible functional abilities of this and the full-length protein. The monomer is made up of six armadillo repeats forming a solvent-accessible, positively-charged cleft 21-22 A wide that, in contrast to other armadillo proteins, stays fully exposed in the dimer. Prompted by this finding, we established that Rcd-1 can bind to single- and double-stranded oligonucleotides in vitro with the affinity of G/C/T > A. Mutation of an arginine residue within the cleft strongly reduced or abolished oligonucleotide binding. Rcd-1's ability to bind to nucleic acids, in addition to the previously reported protein-protein interaction with NOT1, suggests a new feature in Rcd-1's role in regulation of overall cellular differentiation processes.

  20. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  1. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    Directory of Open Access Journals (Sweden)

    Allison Marie Barbaglia

    2016-04-01

    Full Text Available Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho- lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012. Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I a putative GDSL-motif lipase (II a PIG-P-like protein, with a possible receptor-like function; (III and PLAFP (phloem lipid-associated family protein, a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH, which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while

  2. Blood-brain barrier specific permeability assay reveals N-methylated tyramine derivatives in standardised leaf extracts and herbal products of Ginkgo biloba.

    Science.gov (United States)

    Könczöl, Árpád; Rendes, Kata; Dékány, Miklós; Müller, Judit; Riethmüller, Eszter; Balogh, György Tibor

    2016-11-30

    The linkage between the central nervous system availability and neuropharmacological activity of the constituents of Ginkgo biloba L. extracts (GBE) is still incomplete. In this study, the in vitro blood-brain barrier (BBB) permeability profile of the standardised GBE was investigated by the parallel artificial membrane permeability assay (PAMPA). Biomarkers, such as terpene trilactones, flavonoid aglycones and ginkgotoxin exerted moderate or good BBB-permeability potential (BBB+), while glycosides and biflavones were predicted as unable to pass the BBB. N-methyltyramine (NMT) and N,N-dimethyltyramine or hordenine (Hor) were identified among BBB+ compounds, while subsequent direct HRMS analysis revealed tyramine (Tyr) and N,N,N-trimethyltyramine or candicine (Can) in GBE as trace constituents. Distribution of Tyr, NMT, Hor and Can was determined by a validated ion-exchange mechanism-based liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) method in G. biloba samples, such as herbal drugs and dietary supplements. The total content of the four tyramine derivatives in various GBEs ranged from 7.3 up to 6357μg/g dry extract with NMT and Hor as most abundant ones. Considering the pharmacological activities and the revealed fluctuation in the concentration of the analysed adrenergic protoalkaloids, the presented rapid LC-ESI-MS method is proposed for monitoring of the levels of Tyr, NMT, Hor and Can in G. biloba products. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lenong; Chang, Zhenzhan; Pan, Zhiqiang; Fu, Zheng-Qing; Wang, Xiaoqiang (US-Agriculture); (SRNF); (Georgia)

    2009-01-12

    Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates, which are involved in signal and defense reactions in higher plants. The crystal structures of guayule (Parthenium argentatum) AOS (CYP74A2) and its complex with the substrate analog 13(S)-hydroxyoctadeca-9Z,11E-dienoic acid have been determined. The structures exhibit a classic P450 fold but possess a heme-binding mode with an unusually long heme binding loop and a unique I-helix. The structures also reveal two channels through which substrate and product may access and leave the active site. The entrances are defined by a loop between {beta}3-2 and {beta}3-3. Asn-276 in the substrate binding site may interact with the substrate's hydroperoxy group and play an important role in catalysis, and Lys-282 at the entrance may control substrate access and binding. These studies provide both structural insights into AOS and related P450s and a structural basis to understand the distinct reaction mechanism.

  4. The Crystal Structure of Rv0813c from Mycobacterium tuberculosis Reveals a New Family of Fatty Acid-Binding Protein-Like Proteins in Bacteria▿

    Science.gov (United States)

    Shepard, William; Haouz, Ahmed; Graña, Martin; Buschiazzo, Alejandro; Betton, Jean-Michel; Cole, Stewart T.; Alzari, Pedro M.

    2007-01-01

    The gene Rv0813c from Mycobacterium tuberculosis, which codes for a hypothetical protein of unknown function, is conserved within the order Actinomycetales but absent elsewhere. The crystal structure of Rv0813c reveals a new family of proteins that resemble the fatty acid-binding proteins (FABPs) found in eukaryotes. Rv0813c adopts the 10-stranded β-barrel fold typical of FABPs but lacks the double-helix insert that covers the entry to the binding site in the eukaryotic proteins. The barrel encloses a deep cavity, at the bottom of which a small cyclic ligand was found to bind to the hydroxyl group of Tyr192. This residue is part of a conserved Arg-X-Tyr motif much like the triad that binds the carboxylate group of fatty acids in FABPs. Most of the residues forming the internal surface of the cavity are conserved in homologous protein sequences found in CG-rich prokaryotes, strongly suggesting that Rv0813c is a member of a new family of bacterial FABP-like proteins that may have roles in the recognition, transport, and/or storage of small molecules in the bacterial cytosol. PMID:17172346

  5. Quantitative Molecular Imaging with a Single Gd-Based Contrast Agent Reveals Specific Tumor Binding and Retention in Vivo.

    Science.gov (United States)

    Johansen, Mette L; Gao, Ying; Hutnick, Melanie A; Craig, Sonya E L; Pokorski, Jonathan K; Flask, Chris A; Brady-Kalnay, Susann M

    2017-06-06

    Magnetic resonance imaging (MRI) has become an indispensable tool in the diagnosis and treatment of many diseases, especially cancer. However, the poor sensitivity of MRI relative to other imaging modalities, such as PET, has hindered the development and clinical use of molecular MRI contrast agents that could provide vital diagnostic information by specifically locating a molecular target altered in the disease process. This work describes the specific and sustained in vivo binding and retention of a protein tyrosine phosphatase mu (PTPμ)-targeted, molecular magnetic resonance (MR) contrast agent with a single gadolinium (Gd) chelate using a quantitative MRI T 1 mapping technique in glioma xenografts. Quantitative T 1 mapping is an imaging method used to measure the longitudinal relaxation time, the T 1 relaxation time, of protons in a magnetic field after excitation by a radiofrequency pulse. T 1 relaxation times can in turn be used to calculate the concentration of a gadolinium-containing contrast agent in a region of interest, thereby allowing the retention or clearance of an agent to be quantified. In this context, retention is a measure of molecular contrast agent binding. Using conventional peptide chemistry, a PTPμ-targeted peptide was linked to a chelator that had been conjugated to a lysine residue. Following complexation with Gd, this PTPμ-targeted molecular contrast agent containing a single Gd ion showed significant tumor enhancement and a sustained increase in Gd concentration in both heterotopic and orthotopic tumors using dynamic quantitative MRI. This single Gd-containing PTPμ agent was more effective than our previous version with three Gd ions. Differences between nonspecific and specific agents, due to specific tumor binding, can be determined within the first 30 min after agent administration by examining clearance rates. This more facile chemistry, when combined with quantitative MR techniques, allows for widespread adoption by academic

  6. Bioinformatics comparisons of RNA-binding proteins of pathogenic and non-pathogenic Escherichia coli strains reveal novel virulence factors.

    Science.gov (United States)

    Ghosh, Pritha; Sowdhamini, Ramanathan

    2017-08-24

    Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations.

  7. A combined binding mechanism of nonionic ethoxylated surfactants to bovine serum albumin revealed by fluorescence and circular dichroism.

    Science.gov (United States)

    Iovescu, Alina; Băran, Adriana; Stîngă, Gabriela; Cantemir-Leontieş, Anca Ruxandra; Maxim, Monica Elisabeta; Anghel, Dan Florin

    2015-12-01

    The study systematically investigates aqueous mixtures of fixed bovine serum albumin (BSA) and various ethoxylated nonionic surfactants belonging to a homologous series or not. Mono-disperse tetra-(C12E4), hexa-(C12E6) and octa-ethyleneglycol mono-n-dodecyl ether (C12E8), and poly-disperse eicosa-ethyleneglycol mono-n-tetradecyl ether (C14EO20) are respectively employed. Fluorescence and circular dichroism measurements are performed at surfactant/protein molar ratios (rm)s lower and higher than one. We aim to get new insights into the binding mechanism of these species and to differentiate among the interaction abilities of these surfactants. The relative magnitude of the binding thermodynamic parameters by fluorescence, and the increase of α-helix prove that hydrogen bonding drives the interaction next to the hydrophobic attraction. C12En (n=4,6,8) develop more H bonds with the albumin than C14EO20 owing to a zigzag conformation of their short ethyleneoxide chains. Among the homologous surfactants, C12E6 has a slightly stronger interaction with BSA due to a maximal number of H bonds at a minimal hindering. Static fluorescence and dynamic fluorescence indicate an inter-conversion between the tryptophan (Trp) rotamers which happens around the surfactants critical micellar concentration. For C14EO20, the meander conformation of the polar group determines a less evident conversion of the Trp rotamers and smaller α-helix rise. Binding isotherms of the homologous surfactants and the fluorescence quenching mechanism by C12E6 are also provided. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...

  9. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    Advances in mass spectrometry-based proteomics have yielded a substantial mapping of the tyrosine phosphoproteome and thus provided an important step toward a systematic analysis of intracellular signaling networks in higher eukaryotes. In this study we decomposed an uncharacterized proteomics data...... set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr...

  10. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

    Energy Technology Data Exchange (ETDEWEB)

    Mochalkin, Igor; Lightle, Sandra; Narasimhan, Lakshmi; Bornemeier, Dirk; Melnick, Michael; VanderRoest, Steven; McDowell, Laura (Pfizer)

    2008-04-02

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 {angstrom} resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC{sub 50} - 18 {mu}M in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.

  11. Interaction of gold and silver nanoparticles with human plasma: Analysis of protein corona reveals specific binding patterns.

    Science.gov (United States)

    Lai, Wenjia; Wang, Qingsong; Li, Lumeng; Hu, Zhiyuan; Chen, Jiankui; Fang, Qiaojun

    2017-04-01

    Determining how nanomaterials interact with plasma will assist in understanding their effects on the biological system. This work presents a systematic study of the protein corona formed from human plasma on 20nm silver and gold nanoparticles with three different surface modifications, including positive and negative surface charges. The results show that all nanoparticles, even those with positive surface modifications, acquire negative charges after interacting with plasma. Approximately 300 proteins are identified on the coronas, while 99 are commonly found on each nanomaterial. The 20 most abundant proteins account for over 80% of the total proteins abundance. Remarkably, the surface charge and core of the nanoparticles, as well as the isoelectric point of the plasma proteins, are found to play significant roles in determining the nanoparticle coronas. Albumin and globulins are present at levels of less than 2% on these nanoparticle coronas. Fibrinogen, which presents in the plasma but not in the serum, preferably binds to negatively charged gold nanoparticles. These observations demonstrate the specific plasma protein binding pattern of silver and gold nanoparticles, as well as the importance of the surface charge and core in determining the protein corona compositions. The potential downstream biological impacts of the corona proteins were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Missense mutation in the second RNA binding domain reveals a role for Prkra (PACT/RAX during skull development.

    Directory of Open Access Journals (Sweden)

    Benjamin K Dickerman

    Full Text Available Random chemical mutagenesis of the mouse genome can causally connect genes to specific phenotypes. Using this approach, reduced pinna (rep or microtia, a defect in ear development, was mapped to a small region of mouse chromosome 2. Sequencing of this region established co-segregation of the phenotype (rep with a mutation in the Prkra gene, which encodes the protein PACT/RAX. Mice homozygous for the mutant Prkra allele had defects not only in ear development but also growth, craniofacial development and ovarian structure. The rep mutation was identified as a missense mutation (Serine 130 to Proline that did not affect mRNA expression, however the steady state level of RAX protein was significantly lower in the brains of rep mice. The mutant protein, while normal in most biochemical functions, was unable to bind dsRNA. In addition, rep mice displayed altered morphology of the skull that was consistent with a targeted deletion of Prkra showing a contribution of the gene to craniofacial development. These observations identified a specific mutation that reduces steady-state levels of RAX protein and disrupts the dsRNA binding function of the protein, demonstrating the importance of the Prkra gene in various aspects of mouse development.

  13. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains.

    Science.gov (United States)

    Yuan, Yuan; Cao, Duanfang; Zhang, Yanfang; Ma, Jun; Qi, Jianxun; Wang, Qihui; Lu, Guangwen; Wu, Ying; Yan, Jinghua; Shi, Yi; Zhang, Xinzheng; Gao, George F

    2017-04-10

    The envelope spike (S) proteins of MERS-CoV and SARS-CoV determine the virus host tropism and entry into host cells, and constitute a promising target for the development of prophylactics and therapeutics. Here, we present high-resolution structures of the trimeric MERS-CoV and SARS-CoV S proteins in its pre-fusion conformation by single particle cryo-electron microscopy. The overall structures resemble that from other coronaviruses including HKU1, MHV and NL63 reported recently, with the exception of the receptor binding domain (RBD). We captured two states of the RBD with receptor binding region either buried (lying state) or exposed (standing state), demonstrating an inherently flexible RBD readily recognized by the receptor. Further sequence conservation analysis of six human-infecting coronaviruses revealed that the fusion peptide, HR1 region and the central helix are potential targets for eliciting broadly neutralizing antibodies.

  14. Helper T cell epitope-mapping reveals MHC-peptide binding affinities that correlate with T helper cell responses to pneumococcal surface protein A.

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2010-02-01

    Full Text Available Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several proteins and polysaccharide capsule have recently been implicated in the virulence of and protective immunity against Streptococcus pneumonia. Pneumococcal surface protein A (PspA is highly conserved among S. pneumonia strains, inhibits complement activation, binds lactoferrin, elicits protective systemic immunity against pneumococcal infection, and is necessary for full pneumococcal virulence. Identification of PspA peptides that optimally bind human leukocyte antigen (HLA would greatly contribute to global vaccine efforts, but this is hindered by the multitude of HLA polymorphisms. Here, we have used an experimental data set of 54 PspA peptides and in silico methods to predict peptide binding to HLA and murine major histocompatibility complex (MHC class II. We also characterized spleen- and cervical lymph node (CLN-derived helper T lymphocyte (HTL cytokine responses to these peptides after S. pneumonia strain EF3030-challenge in mice. Individual, yet overlapping peptides, 15 amino acids in length revealed residues 199 to 246 of PspA (PspA(199-246 consistently caused the greatest IFN-gamma, IL-2, IL-5 and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo stimulated splenic and CLN CD4(+ T cells isolated from S. pneumonia strain EF3030-challeged F(1 (B6xBALB/c mice. IEDB, RANKPEP, SVMHC, MHCPred, and SYFPEITHI in silico analysis tools revealed peptides in PspA(199-246 also interact with a broad range of HLA-DR, -DQ, and -DP allelles. These data suggest that predicted MHC class II-peptide binding affinities do not always correlate with T helper (Th cytokine or proliferative responses to PspA peptides, but when used together with in vivo validation can be a useful tool to choose candidate pneumococcal HTL epitopes.

  15. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis

    Science.gov (United States)

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.

    2016-03-01

    Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See

  16. A capture method based on the VC1 domain reveals new binding properties of the human receptor for advanced glycation end products (RAGE

    Directory of Open Access Journals (Sweden)

    Genny Degani

    2017-04-01

    Full Text Available The Advanced Glycation and Lipoxidation End products (AGEs and ALEs are a heterogeneous class of compounds derived from the non-enzymatic glycation or protein adduction by lipoxidation break-down products. The receptor for AGEs (RAGE is involved in the progression of chronic diseases based on persistent inflammatory state and oxidative stress. RAGE is a pattern recognition receptor (PRR and the inhibition of the interaction with its ligands or of the ligand accumulation have a potential therapeutic effect. The N-terminal domain of RAGE, the V domain, is the major site of AGEs binding and is stabilized by the adjacent C1 domain. In this study, we set up an affinity assay relying on the extremely specific biological interaction AGEs ligands have for the VC1 domain. A glycosylated form of VC1, produced in the yeast Pichia pastoris, was attached to magnetic beads and used as insoluble affinity matrix (VC1-resin. The VC1 interaction assay was employed to isolate specific VC1 binding partners from in vitro generated AGE-albumins and modifications were identified/localized by mass spectrometry analysis. Interestingly, this method also led to the isolation of ALEs produced by malondialdehyde treatment of albumins. Computational studies provided a rational-based interpretation of the contacts established by specific modified residues and amino acids of the V domain. The validation of VC1-resin in capturing AGE-albumins from complex biological mixtures such as plasma and milk, may lead to the identification of new RAGE ligands potentially involved in pro-inflammatory and pro-fibrotic responses, independently of their structures or physical properties, and without the use of any covalent derivatization process. In addition, the method can be applied to the identification of antagonists of RAGE-ligand interaction.

  17. Crystal Structure of the Ubiquitin-like Domain-CUT Repeat-like Tandem of Special AT-rich Sequence Binding Protein 1 (SATB1) Reveals a Coordinating DNA-binding Mechanism*

    Science.gov (United States)

    Wang, Zheng; Yang, Xue; Guo, Shuang; Yang, Yin; Su, Xun-Cheng; Shen, Yuequan; Long, Jiafu

    2014-01-01

    SATB1 is essential for T-cell development and growth and metastasis of multitype tumors and acts as a global chromatin organizer and gene expression regulator. The DNA binding ability of SATB1 plays vital roles in its various biological functions. We report the crystal structure of the N-terminal module of SATB1. Interestingly, this module contains a ubiquitin-like domain (ULD) and a CUT repeat-like (CUTL) domain (ULD-CUTL tandem). Detailed biochemical experiments indicate that the N terminus of SATB1 (residues 1–248, SATB1(1–248)), including the extreme 70 N-terminal amino acids, and the ULD-CUTL tandem bind specifically to DNA targets. Our results show that the DNA binding ability of full-length SATB1 requires the contribution of the CUTL domain, as well as the CUT1-CUT2 tandem domain and the homeodomain. These findings may reveal a multiple-domain-coordinated mechanism whereby SATB1 recognizes DNA targets. PMID:25124042

  18. Crystal structure of the ubiquitin-like domain-CUT repeat-like tandem of special AT-rich sequence binding protein 1 (SATB1) reveals a coordinating DNA-binding mechanism.

    Science.gov (United States)

    Wang, Zheng; Yang, Xue; Guo, Shuang; Yang, Yin; Su, Xun-Cheng; Shen, Yuequan; Long, Jiafu

    2014-10-03

    SATB1 is essential for T-cell development and growth and metastasis of multitype tumors and acts as a global chromatin organizer and gene expression regulator. The DNA binding ability of SATB1 plays vital roles in its various biological functions. We report the crystal structure of the N-terminal module of SATB1. Interestingly, this module contains a ubiquitin-like domain (ULD) and a CUT repeat-like (CUTL) domain (ULD-CUTL tandem). Detailed biochemical experiments indicate that the N terminus of SATB1 (residues 1-248, SATB1((1-248))), including the extreme 70 N-terminal amino acids, and the ULD-CUTL tandem bind specifically to DNA targets. Our results show that the DNA binding ability of full-length SATB1 requires the contribution of the CUTL domain, as well as the CUT1-CUT2 tandem domain and the homeodomain. These findings may reveal a multiple-domain-coordinated mechanism whereby SATB1 recognizes DNA targets. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Analysis of the EIAV Rev-responsive element (RRE reveals a conserved RNA motif required for high affinity Rev binding in both HIV-1 and EIAV.

    Directory of Open Access Journals (Sweden)

    Jae-Hyung Lee

    2008-06-01

    Full Text Available A cis-acting RNA regulatory element, the Rev-responsive element (RRE, has essential roles in replication of lentiviruses, including human immunodeficiency virus (HIV-1 and equine infection anemia virus (EIAV. The RRE binds the viral trans-acting regulatory protein, Rev, to mediate nucleocytoplasmic transport of incompletely spliced mRNAs encoding viral structural genes and genomic RNA. Because of its potential as a clinical target, RRE-Rev interactions have been well studied in HIV-1; however, detailed molecular structures of Rev-RRE complexes in other lentiviruses are still lacking. In this study, we investigate the secondary structure of the EIAV RRE and interrogate regulatory protein-RNA interactions in EIAV Rev-RRE complexes. Computational prediction and detailed chemical probing and footprinting experiments were used to determine the RNA secondary structure of EIAV RRE-1, a 555 nt region that provides RRE function in vivo. Chemical probing experiments confirmed the presence of several predicted loop and stem-loop structures, which are conserved among 140 EIAV sequence variants. Footprinting experiments revealed that Rev binding induces significant structural rearrangement in two conserved domains characterized by stable stem-loop structures. Rev binding region-1 (RBR-1 corresponds to a genetically-defined Rev binding region that overlaps exon 1 of the EIAV rev gene and contains an exonic splicing enhancer (ESE. RBR-2, characterized for the first time in this study, is required for high affinity binding of EIAV Rev to the RRE. RBR-2 contains an RNA structural motif that is also found within the high affinity Rev binding site in HIV-1 (stem-loop IIB, and within or near mapped RRE regions of four additional lentiviruses. The powerful integration of computational and experimental approaches in this study has generated a validated RNA secondary structure for the EIAV RRE and provided provocative evidence that high affinity Rev binding sites of

  20. Total protein measurement in canine cerebrospinal fluid: agreement between a turbidimetric assay and 2 dye-binding methods and determination of reference intervals using an indirect a posteriori method.

    Science.gov (United States)

    Riond, B; Steffen, F; Schmied, O; Hofmann-Lehmann, R; Lutz, H

    2014-03-01

    In veterinary clinical laboratories, qualitative tests for total protein measurement in canine cerebrospinal fluid (CSF) have been replaced by quantitative methods, which can be divided into dye-binding assays and turbidimetric methods. There is a lack of validation data and reference intervals (RIs) for these assays. The aim of the present study was to assess agreement between the turbidimetric benzethonium chloride method and 2 dye-binding methods (Pyrogallol Red-Molybdate method [PRM], Coomassie Brilliant Blue [CBB] technique) for measurement of total protein concentration in canine CSF. Furthermore, RIs were determined for all 3 methods using an indirect a posteriori method. For assay comparison, a total of 118 canine CSF specimens were analyzed. For RIs calculation, clinical records of 401 canine patients with normal CSF analysis were studied and classified according to their final diagnosis in pathologic and nonpathologic values. The turbidimetric assay showed excellent agreement with the PRM assay (mean bias 0.003 g/L [-0.26-0.27]). The CBB method generally showed higher total protein values than the turbidimetric assay and the PRM assay (mean bias -0.14 g/L for turbidimetric and PRM assay). From 90 of 401 canine patients, nonparametric reference intervals (2.5%, 97.5% quantile) were calculated (turbidimetric assay and PRM method: 0.08-0.35 g/L (90% CI: 0.07-0.08/0.33-0.39); CBB method: 0.17-0.55 g/L (90% CI: 0.16-0.18/0.52-0.61). Total protein concentration in canine CSF specimens remained stable for up to 6 months of storage at -80°C. Due to variations among methods, RIs for total protein concentration in canine CSF have to be calculated for each method. The a posteriori method of RIs calculation described here should encourage other veterinary laboratories to establish RIs that are laboratory-specific. ©2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  1. Structural and functional studies of Escherichia coli aggregative adherence fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding.

    Science.gov (United States)

    Jønsson, Rie; Liu, Bing; Struve, Carsten; Yang, Yi; Jørgensen, René; Xu, Yingqi; Jenssen, Håvard; Krogfelt, Karen A; Matthews, Steve

    2017-03-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging cause of acute and persistent diarrhea worldwide. The pathogenesis of different EAEC stains is complicated, however, the early essential step begins with attachment of EAEC to intestinal mucosa via aggregative adherence fimbriae (AAFs). Currently, five different variants have been identified, which all share a degree of similarity in the gene organization of their operons and sequences. Here, we report the solution structure of Agg5A from the AAF/V variant. While preserving the major structural features shared by all AAF members, only Agg5A possesses an inserted helix at the beginning of the donor strand, which together with altered surface electrostatics, renders the protein unable to interact with fibronectin. Hence, here we characterize the first AAF variant with a binding mode that varies from previously described AAFs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Aminoglycoside detection using a universal ELISA binding procedure onto polystyrene microtiter plates in comparison with HPLC analysis and microbiological agar-diffusion assay.

    Science.gov (United States)

    Sachetelli, S; Beaulac, C; Lagacé, J

    1998-01-08

    The use of enzyme-linked immunosorbent assay for the detection of aminoglycosides has been hindered due to low molecular weight compound adsorption to solid phases. Here, we describe an enzyme-linked immunosorbent assay based on the treatment of polystyrene microtiter plates with Alcian blue prepared in acetic acid prior to coating with the antibiotic. Whereas no detection of tobramycin was possible on commercially treated or untreated enzyme-linked immunosorbent assay plates, the Alcian blue treatment permitted detection of 0.025 and 0.05 microg ml(-1) of tobramycin respectively using 0.05 and 0.1% of Alcian blue with a coefficient of variation of 1.85 and 7.69%, respectively. Comparative studies of five tobramycin samples of unknown quantity using enzyme-linked immunosorbent assay and high-performance liquid chromatography gave equivalent results while those done via microbiological agar-diffusion assay were an overestimation of the actual quantity. The use of the Alcian blue pretreatment enzyme-linked immunosorbent assay procedure has permitted, in previous studies, the measure of antibodies against synthetic peptides and phospholipids. Subsequently, our demonstration of the sensitivity and reliability of this method in the quantification of tobramycin strongly suggests that the use of Alcian blue pretreatment in enzyme-linked immunosorbent assay can be applied universally to avert molecule immobilization problems on solid phases.

  3. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    Science.gov (United States)

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  4. High resolution Chromatin Immunoprecipitation (ChIP) sequencing reveals novel bindings targets and prognostic role for SOX11 in Mantle cell lymphoma

    Science.gov (United States)

    Kuo, Pei-Yu; Leshchenko, Violetta V.; Fazzari, Melissa J.; Perumal, Deepak; Gellen, Tobias; He, Tianfang; Iqbal, Javeed; Baumgartner-Wennerholm, Stefanie; Nygren, Lina; Zhang, Fan; Zhang, Weijia; Suh, K. Stephen; Goy, Andre; Yang, David T.; Chan, Wing-Chung; Kahl, Brad S.; Verma, Amit K.; Gascoyne, Randy D.; Kimby, Eva; Sander, Birgitta; Ye, B. Hilda; Melnick, Ari M.; Parekh, Samir

    2015-01-01

    SOX11 (Sex determining region Y-box 11) expression is specific for MCL as compared to other Non-Hodgkin's lymphomas. However, the function and direct binding targets of SOX11 in MCL are largely unknown. We used high-resolution ChIP-Seq to identify the direct target genes of SOX11 in a genome-wide, unbiased manner and elucidate its functional significance. Pathway analysis identified WNT, PKA and TGF-beta signaling pathways as significantly enriched by SOX11 target genes. qCHIP and promoter reporter assays confirmed that SOX11 directly binds to individual genes and modulates their transcription activities in these pathways in MCL. Functional studies using RNA interference demonstrate that SOX11 directly regulates WNT in MCL. We analyzed SOX11 expression in three independent well-annotated tissue microarrays from the University of Wisconsin (UW), Karolinska Institute and British Columbia Cancer Agency (BCCA). Our findings suggest that high SOX11 expression is associated with improved survival in a subset of MCL patients, particularly those treated with intensive chemotherapy. Transcriptional regulation of WNT and other biological pathways affected by SOX11 target genes may help explain the impact of SOX11 expression on patient outcomes. PMID:24681958

  5. High-resolution chromatin immunoprecipitation (ChIP) sequencing reveals novel binding targets and prognostic role for SOX11 in mantle cell lymphoma.

    Science.gov (United States)

    Kuo, P-Y; Leshchenko, V V; Fazzari, M J; Perumal, D; Gellen, T; He, T; Iqbal, J; Baumgartner-Wennerholm, S; Nygren, L; Zhang, F; Zhang, W; Suh, K S; Goy, A; Yang, D T; Chan, W-C; Kahl, B S; Verma, A K; Gascoyne, R D; Kimby, E; Sander, B; Ye, B H; Melnick, A M; Parekh, S

    2015-03-05

    Sex determining region Y-box 11 (SOX11) expression is specific for mantle cell lymphoma (MCL) as compared with other non-Hodgkin's lymphomas. However, the function and direct-binding targets of SOX11 in MCL are largely unknown. We used high-resolution chromatin immunoprecipitation sequencing to identify the direct target genes of SOX11 in a genome-wide, unbiased manner and elucidate its functional significance. Pathway analysis identified WNT, PKA and TGF-beta signaling pathways as significantly enriched by SOX11-target genes. Quantitative chromatin immunoprecipitation sequencing and promoter reporter assays confirmed that SOX11 directly binds to individual genes and modulates their transcription activities in these pathways in MCL. Functional studies using RNA interference demonstrate that SOX11 directly regulates WNT in MCL. We analyzed SOX11 expression in three independent well-annotated tissue microarrays from the University of Wisconsin (UW), Karolinska Institute and British Columbia Cancer Agency. Our findings suggest that high SOX11 expression is associated with improved survival in a subset of MCL patients, particularly those treated with intensive chemotherapy. Transcriptional regulation of WNT and other biological pathways affected by SOX11-target genes may help explain the impact of SOX11 expression on patient outcomes.

  6. Binding of the Galanthus nivalis Agglutinin to Thymocytes Reveals Alterations in Surface Glycosylation during T-Cell Development

    Czech Academy of Sciences Publication Activity Database

    Šinkora, Jiří; Kolínská, Jiřina; Řeháková, Zuzana; Černý, J.; Doubravská, L.

    2002-01-01

    Roč. 55, - (2002), s. 196-203 ISSN 0300-9475 R&D Projects: GA ČR GA303/99/0197 Institutional research plan: CEZ:AV0Z5020903 Keywords : thymocytes reveals * agglutinin * lymphocytes Subject RIV: EE - Microbiology, Virology Impact factor: 1.782, year: 2002

  7. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2015-06-29

    Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow onand off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. PHD finger of the SUMO ligase Siz/PIAS family in rice reveals specific binding for methylated histone H3 at lysine 4 and arginine 2.

    Science.gov (United States)

    Shindo, Heisaburo; Suzuki, Rintaro; Tsuchiya, Wataru; Taichi, Misako; Nishiuchi, Yuji; Yamazaki, Toshimasa

    2012-06-21

    We determined the three-dimensional structure of the PHD finger of the rice Siz/PIAS-type SUMO ligase, OsSiz1, by NMR spectroscopy and investigated binding ability for a variety of methylated histone H3 tails, showing that OsSiz1-PHD primarily recognizes dimethylated Arg2 of the histone H3 and that methylations at Arg2 and Lys4 reveal synergy effect on binding to OsSiz1-PHD. The K4 cage of OsSiz1-PHD for trimethylated Lys4 of H3K4me3 was similar to that of the BPTF-PHD finger, while the R2 pocket for Arg2 was different. It is intriguing that the PHD module of Siz/PIAS plays an important role, with collaboration with the DNA binding domain SAP, in gene regulation through SUMOylation of a variety of effectors associated with the methylated arginine-riched chromatin domains. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site.

    Science.gov (United States)

    Nevskaya, N; Tishchenko, S; Nikulin, A; al-Karadaghi, S; Liljas, A; Ehresmann, B; Ehresmann, C; Garber, M; Nikonov, S

    1998-05-29

    S8 is one of the core ribosomal proteins. It binds to 16 S RNA with high affinity and independently of other ribosomal proteins. It also acts as a translational repressor in Escherichia coli by binding to its own mRNA. The structure of Thermus thermophilus S8 has been determined by the method of multiple isomorphous replacement at 2.9 A resolution and refined to a crystallographic R-factor of 16.2% (Rfree 27.5%). The two domains of the structure have an alpha/beta fold and are connected by a long protruding loop. The two molecules in the asymmetric unit of the crystal interact through an extensive hydrophobic core and form a tightly associated dimer, while symmetry-related molecules form a joint beta-sheet of mixed type. This type of protein-protein interaction could be realized within the ribosomal assembly. A comparison of the structures of T. thermophilus and Bacillus stearothermophilus S8 shows that the interdomain loop is eight residues longer in the former and reveals high structural conservation of an extensive region, located in the C-terminal domain. From mutational studies this region was proposed earlier to be involved in specific interaction with RNA. On the basis of these data and on the comparison of the two structures of S8, it is proposed that the three-dimensional structure of specific RNA binding sites in ribosomal proteins is highly conserved among different species.

  10. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Directory of Open Access Journals (Sweden)

    Gracian Tejral

    2017-03-01

    Full Text Available Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.

  11. Drug binding and resistance mechanism of KIT tyrosine kinase revealed by hydrogen/deuterium exchange FTICR mass spectrometry.

    Science.gov (United States)

    Zhang, Hui-Min; Yu, Xiu; Greig, Michael J; Gajiwala, Ketan S; Wu, Joe C; Diehl, Wade; Lunney, Elizabeth A; Emmett, Mark R; Marshall, Alan G

    2010-04-01

    Mutations of the receptor tyrosine kinase KIT are linked to certain cancers such as gastrointestinal stromal tumors (GISTs). Biophysical, biochemical, and structural studies have provided insight into the molecular basis of resistance to the KIT inhibitors, imatinib and sunitinib. Here, solution-phase hydrogen/deuterium exchange (HDX) and direct binding mass spectrometry experiments provide a link between static structure models and the dynamic equilibrium of the multiple states of KIT, supporting that sunitinib targets the autoinhibited conformation of WT-KIT. The D816H mutation shifts the KIT conformational equilibrium toward the activated state. The V560D mutant exhibits two low energy conformations: one is more flexible and resembles the D816H mutant shifted toward the activated conformation, and the other is less flexible and resembles the wild-type KIT in the autoinhibited conformation. This result correlates with the V560D mutant exhibiting a sensitivity to sunitinib that is less than for WT KIT but greater than for KIT D816H. These findings support the elucidation of the resistance mechanism for the KIT mutants.

  12. Transcriptomic analyses of RNA-binding proteins reveal eIF3c promotes cell proliferation in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Tangjian; Li, Shengli; Chen, Di; Chen, Bing; Yu, Tao; Zhao, Fangyu; Wang, Qifeng; Yao, Ming; Huang, Shenglin; Chen, Zhiao; He, Xianghuo

    2017-05-01

    RNA-binding proteins (RBPs) play fundamental roles in the RNA life cycle. The aberrant expression of RBPs is often observed in human disease, including cancer. In this study, we screened for the expression levels of 1542 human RBPs in The Cancer Genome Atlas liver hepatocellular carcinoma samples and found 92 consistently upregulated RBP genes in HCC compared with normal samples. Additionally, we undertook a Kaplan-Meier analysis and found that high expression of 15 RBP genes was associated with poor prognosis in patients with HCC. Furthermore, we found that eIF3c promotes HCC cell proliferation in vitro as well as tumorigenicity in vivo. Gene Set Enrichment Analysis showed that high eIF3c expression is positively associated with KRAS, vascular endothelial growth factor, and Hedgehog signaling pathways, all of which are closely associated with specific cancer-related gene sets. Our study provides the basis for further investigation of the molecular mechanism by which eIF3c promotes the development and progression of HCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analyses.

    Directory of Open Access Journals (Sweden)

    Filipe G Vieira

    Full Text Available Insects are the most diverse group of animals on the planet, comprising over 90% of all metazoan life forms, and have adapted to a wide diversity of ecosystems in nearly all environments. They have evolved highly sensitive chemical senses that are central to their interaction with their environment and to communication between individuals. Understanding the molecular bases of insect olfaction is therefore of great importance from both a basic and applied perspective. Odorant binding proteins (OBPs are some of most abundant proteins found in insect olfactory organs, where they are the first component of the olfactory transduction cascade, carrying odorant molecules to the olfactory receptors. We carried out a search for OBPs in the genome of the parasitoid wasp Nasonia vitripennis and identified 90 sequences encoding putative OBPs. This is the largest OBP family so far reported in insects. We report unique features of the N. vitripennis OBPs, including the presence and evolutionary origin of a new subfamily of double-domain OBPs (consisting of two concatenated OBP domains, the loss of conserved cysteine residues and the expression of pseudogenes. This study also demonstrates the extremely dynamic evolution of the insect OBP family: (i the number of different OBPs can vary greatly between species; (ii the sequences are highly diverse, sometimes as a result of positive selection pressure with even the canonical cysteines being lost; (iii new lineage specific domain arrangements can arise, such as the double domain OBP subfamily of wasps and mosquitoes.

  14. Receptor binding and cell entry of Old World arenaviruses reveal novel aspects of virus-host interaction.

    Science.gov (United States)

    Kunz, Stefan

    2009-05-10

    Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.

  15. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Directory of Open Access Journals (Sweden)

    Papa Maria

    2011-01-01

    Full Text Available Abstract Background Estrogen receptors alpha (ERα and beta (ERβ are transcription factors (TFs that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC. The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions Results indicate that the

  16. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.

    Science.gov (United States)

    Singh, Harkewal; Arentson, Benjamin W; Becker, Donald F; Tanner, John J

    2014-03-04

    Proline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of L-proline to L-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004-residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal an elaborate and dynamic tunnel system featuring a 75-Å-long tunnel that links the two active sites and six smaller tunnels that connect the main tunnel to the bulk medium. The locations of these tunnels and their responses to ligand binding and flavin reduction suggest hypotheses about how proline, water, and quinones enter the tunnel system and where L-glutamate exits. Kinetic measurements show that glutamate production from proline occurs without a lag phase, consistent with substrate channeling and implying that the observed tunnel is functionally relevant. Furthermore, the structure of reduced PutA complexed with menadione bisulfite reveals the elusive quinone-binding site. The benzoquinone binds within 4.0 Å of the flavin si face, consistent with direct electron transfer. The location of the quinone site implies that the concave surface of the PutA dimer approaches the membrane. Altogether, these results provide insight into how PutAs couple proline oxidation to quinone reduction.

  17. Reversible G Protein βγ9 Distribution-Based Assay Reveals Molecular Underpinnings in Subcellular, Single-Cell, and Multicellular GPCR and G Protein Activity.

    Science.gov (United States)

    Senarath, Kanishka; Ratnayake, Kasun; Siripurapu, Praneeth; Payton, John L; Karunarathne, Ajith

    2016-12-06

    Current assays to measure the activation of G protein coupled receptors (GPCRs) and G proteins are time-consuming, indirect, and expensive. Therefore, an efficient method which directly measures the ability of a ligand to govern GPCR-G protein interactions can help to understand the molecular underpinnings of the associated signaling. A live cell imaging-based approach is presented here to directly measure ligand-induced GPCR and G protein activity in real time. The number of active GPCRs governs G protein heterotrimer (αβγ) dissociation, thereby controlling the concentration of free βγ subunits. The described γ9 assay measures the GPCR activation-induced extent of the reversible βγ9 subunit exchange between the plasma membrane (PM) and internal membranes (IMs). Confocal microscopy-based γ9 assay quantitatively determines the concentration dependency of ligands on GPCR activation. Demonstrating the high-throughput screening (HTS) adaptability, the γ9 assay performed using an imaging plate reader measures the ligand-induced GPCR activation. This suggests that the γ9 assay can be employed to screen libraries of compounds for their ability to activate GPCRs. Together with subcellular optogenetics, the spatiotemporal sensitivity of the γ9 assay permits experimental determination of the limits of spatially restricted activation of GPCRs and G proteins in subcellular regions of single cells. This assay works effectively for GPCRs coupled to αi/o and αs heterotrimers, including light-sensitive GPCRs. In addition, computational modeling of experimental data from the assay is used to decipher intricate molecular details of the GPCR-G protein activation process. Overall, the γ9 assay provides a robust strategy for quantitative as well as qualitative determination of GPCR and G protein function on a single-cell, multicell, and subcellular level. This assay not only provides information about the inner workings of the signaling pathway, but it also strengthens

  18. Tricyclic antidepressant radioreceptor assay

    International Nuclear Information System (INIS)

    Innis, R.B.; Tune, L.; Rock, R.; Depaulo, R.; U'Prichard, D.C.; Snyder, S.M.

    1979-01-01

    A receptor assay for tricyclic antidepressants described here is based on the ability of these drugs to compete with [ 3 H]-3-guinuclidnyl benzilate ( 3 H-QNB) for binding to muscarinic cholinergic receptors in rat brain membranes. The assay is sensitive, in that it can detect, for example, 2ng/ml nortriptyline in plasma. Seven plasma samples from depressed patients treated with nortriptyline were assayed with the radioreceptor and gas liquid chromatographic methods, and the results from these two methods were almost identical. This assay should be used cautiously, if at all, in patients treated with other drugs that have potent anticholinergic effects. (Auth.)

  19. Calcium-dependent and calcium-independent signals in the conglutinin-binding assay (KgBa) for immune complexes. Influence of anti-collagen-antibodies

    DEFF Research Database (Denmark)

    Holmskov, U; Haas, Henning de; Teisner, B

    1992-01-01

    G to solid phase bovine conglutinin was also observed to a variable degree in normal and pathological sera. However, in this situation the IgG binding was largely calcium-independent, was not inhibited by GlcNAc and did not decrease after prolonged incubation of the serum at 37 degrees C. The reactive Ig...... been "solubilized" (i.e., complement treated by incubation with serum) was employed as a reference. The binding of the complement-reacted IgG to solid phase conglutinin was found to be calcium-dependent and inhibitable with N-acetyl-D-glucosamine (GlcNAc). Prolonged incubation (4 days) of aggregated Ig...

  20. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  1. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin.

    Directory of Open Access Journals (Sweden)

    Hirohito Abo

    Full Text Available We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA, revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG, heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units.

  2. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin.

    Science.gov (United States)

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units.

  3. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion.

    Science.gov (United States)

    Haridas, Parvathi; Penington, Catherine J; McGovern, Jacqui A; McElwain, D L Sean; Simpson, Matthew J

    2017-06-21

    Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Development and Validation of an Enzyme-Linked Immunosorbent Assay for the Detection of Binding Anti-Drug Antibodies against Interferon Beta

    DEFF Research Database (Denmark)

    Ingenhoven, Kathleen; Kramer, Daniel; Jensen, Poul Erik Hyldgaard

    2017-01-01

    OBJECTIVE: To develop and validate a method for the detection of binding anti-drug antibodies (ADAs) against interferon beta (IFN-β) in human serum as part of a European initiative (ABIRISK) aimed at the prediction and analysis of clinical relevance of anti-biopharmaceutical immunization to minim...

  5. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    International Nuclear Information System (INIS)

    Hu, Dong; Wu, Jing; Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan; Xiao, Jian; Hu, Fengyu; Yang, Yabo; Zhang, Rongbo

    2015-01-01

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy

  6. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong, E-mail: austhudong@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wu, Jing, E-mail: wujing8008@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Hu, Fengyu; Yang, Yabo [Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Zhang, Rongbo, E-mail: lory456@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China)

    2015-05-29

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.

  7. Epitope mapping of the major allergen from Atlantic cod in Spanish population reveals different IgE-binding patterns.

    Science.gov (United States)

    Perez-Gordo, Marina; Pastor-Vargas, Carlos; Lin, Jing; Bardina, Ludmilla; Cases, Barbara; Ibáñez, Maria Dolores; Vivanco, Fernando; Cuesta-Herranz, Javier; Sampson, Hugh A

    2013-07-01

    IgE-epitope mapping of allergens reveal important information about antigen components involved in allergic reactions. The peptide-based microarray immunoassay has been used to map epitopes of some food allergens. We developed a peptide microarray immunoassay to map allergenic epitopes in parvalbumin from Atlantic cod (Gad m 1), the most consumed cod species in Spain. Sera from 13 fish-allergic patients with specific IgE to cod parvalbumin were used. A library of overlapping peptides was synthesized, representing the primary sequence of Gad m 1. Peptides were used to analyze allergen-specific IgE antibodies in patient sera. 100% of the patients recognized one antigenic region of 15 amino acids in length in Gad m 1. This region only partially correlated with one of the three antigenic determinants of Gad c 1 (Allergen M), parvalbumin from Baltic cod (Gadus callarias). In the 3D model of the protein, this region was located on the surface of the protein. We have identified a relevant antigenic region in Gad m 1. This epitope could be considered as a severity marker and provides additional information to improve fish allergy diagnosis and the design of safe immunotherapeutic tools. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family.

    Science.gov (United States)

    Hrle, Ajla; Maier, Lisa-Katharina; Sharma, Kundan; Ebert, Judith; Basquin, Claire; Urlaub, Henning; Marchfelder, Anita; Conti, Elena

    2014-01-01

    Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.

  9. High-Resolution Longitudinal Study of HIV-1 Env Vaccine-Elicited B Cell Responses to the Virus Primary Receptor Binding Site Reveals Affinity Maturation and Clonal Persistence.

    Science.gov (United States)

    Wang, Yimeng; Sundling, Christopher; Wilson, Richard; O'Dell, Sijy; Chen, Yajing; Dai, Kaifan; Phad, Ganesh E; Zhu, Jiang; Xiao, Yongli; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T; Li, Yuxing

    2016-05-01

    Because of the genetic variability of the HIV-1 envelope glycoproteins (Env), the elicitation of neutralizing Abs to conserved neutralization determinants including the primary receptor binding site, CD4 binding site (CD4bs), is a major focus of vaccine development. To gain insight into the evolution of Env-elicited Ab responses, we used single B cell analysis to interrogate the memory B cell Ig repertoires from two rhesus macaques after five serial immunizations with Env/adjuvant. We observed that the CD4bs-specific repertoire displayed unique features in the third CDR of Ig H chains with minor alterations along the immunization course. Progressive affinity maturation occurred as evidenced by elevated levels of somatic hypermutation (SHM) in Ab sequences isolated at the late immunization time point compared with the early time point. Abs with higher SHM were associated with increased binding affinity and virus neutralization capacity. Moreover, a notable portion of the CD4bs-specific repertoire was maintained between early and late immunization time points, suggesting that persistent clonal lineages were induced by Env vaccination. Furthermore, we found that the predominant persistent CD4bs-specific clonal lineages had larger population sizes and higher affinities than that from the rest of the repertoires, underscoring the critical role of Ag affinity selection in Ab maturation and clonal expansion. Genetic and functional analyses revealed that the accumulation of SHM in both framework regions and CDRs contributed to the clonal affinity and antigenicity evolution. Our longitudinal study provides high-resolution understanding of the dynamically evolving CD4bs-specific B cell response after Env immunization in primates. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. High Resolution Longitudinal Study of HIV-1 Env Vaccine-elicited B Cell Responses to the Virus Primary Receptor Binding Site Reveals Affinity Maturation and Clonal Persistence

    Science.gov (United States)

    Wang, Yimeng; Sundling, Christopher; Wilson, Richard; O’Dell, Sijy; Chen, Yajing; Dai, Kaifan; Phad, Ganesh E.; Zhu, Jiang; Xiao, Yongli; Mascola, John R.; Karlsson Hedestam, Gunilla B.; Wyatt, Richard T.; Li, Yuxing

    2016-01-01

    Due to the genetic variability of the HIV-1 envelope glycoproteins (Env), the elicitation of neutralizing antibodies to conserved neutralization determinants including the primary receptor binding site, CD4 binding site (CD4bs), is a major focus of vaccine development. To gain insight into the evolution of Env-elicited antibody responses, we utilized single B cell analysis to interrogate the memory B cell Ig repertoires from two rhesus macaques following five serial immunizations with Env/adjuvant. We observed that the CD4bs-specific repertoire displayed unique features in the third complementarity determining region (CDR3) of Ig heavy chains with minor alterations along the immunization course. Progressive affinity maturation occurred as evidenced by elevated levels of somatic hypermutation (SHM) in antibody sequences isolated at late immunization time point compared to the early time point. Antibodies with higher SHM were associated with increased binding affinity and virus neutralization capacity. Moreover, a notable portion of the CD4bs-specific repertoire was maintained between early and late immunization time points, suggesting that persistent clonal lineages were induced by Env vaccination. Furthermore, we found that the predominant persistent CD4bs-specific clonal lineages had larger population sizes and higher affinities than that from the rest of the repertoires, underscoring the critical role of antigen affinity selection in antibody maturation and clonal expansion. Genetic and functional analyses revealed that the accumulation of SHM in both framework regions and CDRs contributed to the clonal affinity and antigenicity evolution. Our longitudinal study provides high resolution understanding of the dynamically evolving CD4bs-specific B cell response following Env immunization in primates. PMID:27001953

  11. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara

    2012-01-01

    ) signaling pathways, and subsequent chromatin immunoprecipitation-sequencing (ChIP-seq) mapping of PPARα binding demonstrated binding of PPARα to 71 to 88% of the identified LXR-RXR binding sites. The combination of sequence analysis of shared binding regions and sequential ChIP on selected sites indicate...

  12. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5[prime] end

    Energy Technology Data Exchange (ETDEWEB)

    Corson, G.M.; Chalberg, S.C.; Charbonneau, N.L.; Sakai, L.Y. (Oregon Health Sciences Univ., Portland (United States)); Dietz, H.C. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1993-08-01

    Fibrillin is an important structural protein of the extracellular matrix. It is a large cysteine-rich glycoprotein with extensive intrachain disulfide bonds, likely contributed by multiple EGF-like repeats. The authors have previously published 6.9 kb of FBN1 cDNA sequence. FBN1 cDNA clones that extend the sequence 3089 bp in the 5[prime] direction are described in this report. The deduced primary structure suggests that fibrillin in composed of multiple domains. The most predominant features the presence of 43 calcium binding EGF-like repeats. They demonstrate here that fibrillin molecules bind calcium. In addition, three alternatively spliced exons at the 5[prime] end are described. Analysis of 5.8 kb of surrounding genomic sequence revealed a 1.8-kb CpG island spanning the alternatively spliced exons and the next downstream exon. Since FBN1 is the gene responsible for Marfan syndrome, the information presented here will be useful in identifying new mutations and in understanding the function of fibrillin in the pathogenesis of the disease. 42 refs., 7 figs.

  13. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies.

    Directory of Open Access Journals (Sweden)

    Claudio Ciferri

    2015-10-01

    Full Text Available Human Cytomegalovirus (HCMV is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV.

  14. Crystal structure of Arabidopsis thaliana Dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding.

    Science.gov (United States)

    Machida, Satoru; Yuan, Y Adam

    2013-07-01

    Dawdle (DDL) is a microRNA processing protein essential for the development of Arabidopsis. DDL contains a putative nuclear localization signal at its amino-terminus and forkhead-associated (FHA) domain at the carboxyl-terminus. Here, we report the crystal structure of the FHA domain of Arabidopsis Dawdle, determined by multiple-wavelength anomalous dispersion method at 1.7-Å resolution. DDL FHA structure displays a seven-stranded β-sandwich architecture that contains a unique structural motif comprising two long anti-parallel strands. Strikingly, crystal packing of the DDL FHA domain reveals that a glutamate residue from the symmetry-related DDL FHA domain, a structural mimic of the phospho-threonine, is specifically recognized by the structurally conserved phospho-threonine binding cleft. Consistently with the structural observations, co-immuno-precipitation experiments performed in Nicotiana benthamiana show that the DDL FHA domain co-immuno-precipitates with DCL1 fragments containing the predicted pThr+3(Ile/Val/Leu/Asp) motif. Taken together, we count the recognition of the target residue by the canonical binding cleft of the DDL FHA domain as the key molecular event to instate FHA domain-mediated protein-protein interaction in plant miRNA processing.

  15. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (Cornell); (NWU)

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  16. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    Science.gov (United States)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  17. Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein.

    Science.gov (United States)

    Politis, Argyris; Park, Ah Young; Hall, Zoe; Ruotolo, Brandon T; Robinson, Carol V

    2013-11-29

    DNA polymerase III, a decameric 420-kDa assembly, simultaneously replicates both strands of the chromosome in Escherichia coli. A subassembly of this holoenzyme, the seven-subunit clamp loader complex, is responsible for loading the sliding clamp (β2) onto DNA. Here, we use structural information derived from ion mobility mass spectrometry (IM-MS) to build three-dimensional models of one form of the full clamp loader complex, γ3δδ'ψχ (254 kDa). By probing the interaction between the clamp loader and a single-stranded DNA (ssDNA) binding protein (SSB4) and by identifying two distinct conformational states, with and without ssDNA, we assemble models of ψχ-SSB4 (108 kDa) and the clamp loader-SSB4 (340 kDa) consistent with IM data. A significant increase in measured collision cross-section (~10%) of the clamp loader-SSB4 complex upon DNA binding suggests large conformational rearrangements. This DNA bound conformation represents the active state and, along with the presence of ψχ, stabilises the clamp loader-SSB4 complex. Overall, this study of a large heteromeric complex analysed by IM-MS, coupled with integrative modelling, highlights the potential of such an approach to reveal structural features of previously unknown complexes of high biological importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Synthesis, characterization, X-ray crystal structure, DFT calculation, DNA binding, and antimicrobial assays of two new mixed-ligand copper(II) complexes

    Science.gov (United States)

    Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Mohamadi, Maryam; Suarez, Sebastian; Baggio, Ricardo; Khaleghi, Moj; Torkzadeh-Mahani, Masoud; Mostafavi, Ali

    2015-05-01

    Two new Cu(II) complexes, [Cu(L)(phen)] (1), [Cu(L)(bipy)] (2), where L2- = (3-methoxy-2oxidobenzylidene)benzohydrazidato, phen = 1,10 phenanthroline, and bipy = 2,2‧ bipyridine, were prepared and fully characterized using elemental analyses, FT-IR, molar conductivity, and electronic spectra. The structures of both complexes were also determined by X-ray diffraction. It was found that, both complexes possessed square pyramidal coordination environment in which, Cu(II) ions were coordinated by donor atoms of HL and two nitrogens of heterocyclic bases. Computational studies were performed using DFT calculations at B3LYP/6-311+G(d,p) level of theory. DNA binding activities of these complexes were also investigated using electronic absorption, competitive fluorescence titration and cyclic voltammetry studies. The obtained results indicated that binding of the complexes to DNA was of intercalative mode. Furthermore, antimicrobial activities of these compounds were screened against microorganisms.

  19. Radioreceptor opioid assay

    International Nuclear Information System (INIS)

    Miller, R.J.; Chang, K.-J.

    1981-01-01

    A radioreceptor assay is described for assaying opioid drugs in biological fluids. The method enables the assay of total opioid activity, being specific for opioids as a class but lacking specificity within the class. A radio-iodinated opioid and the liquid test sample are incubated with an opiate receptor material. The percentage inhibition of the binding of the radio-iodinated compound to the opiate receptor is calculated and the opioid activity of the test liquid determined from a standard curve. Examples of preparing radio-iodinated opioids and assaying opioid activity are given. A test kit for the assay is described. Compared to other methods, this assay is cheap, easy and rapid. (U.K.)

  20. Crystal structure of Mycobacterium tuberculosis CarD, an essential RNA polymerase binding protein, reveals a quasidomain-swapped dimeric structural architecture.

    Science.gov (United States)

    Kaur, Gundeep; Dutta, Dipak; Thakur, Krishan Gopal

    2014-05-01

    Mycobacterium tuberculosis (Mtb) CarD is an essential transcriptional regulator that binds RNA polymerase and plays an important role in reprogramming transcription machinery under diverse stress conditions. Here, we report the crystal structure of CarD at 2.3 Å resolution, that represents the first structural description of CarD/CdnL-Like family of proteins. CarD adopts an overall bi-lobed structural architecture where N-terminal domain resembles 'tudor-like' domain and C-terminal domain adopts a novel five helical fold that lacks the predicted leucine zipper structural motif. The structure reveals dimeric state of CarD resulting from β-strand swapping between the N-terminal domains of each individual subunits. The structure provides crucial insights into the possible mode(s) of CarD/RNAP interactions. Copyright © 2013 Wiley Periodicals, Inc.

  1. Quantitative proteomic analysis reveals that anti-cancer effects of selenium-binding protein 1 in vivo are associated with metabolic pathways.

    Science.gov (United States)

    Ying, Qi; Ansong, Emmanuel; Diamond, Alan M; Lu, Zhaoxin; Yang, Wancai; Bie, Xiaomei

    2015-01-01

    Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins that were involved in SBP1-mediated anti-cancer effects in tumor tissues. We identified 132 differentially expressed proteins, among them, 53 proteins were upregulated and 79 proteins were downregulated. Importantly, many of the differentially altered proteins were associated with lipid/glucose metabolism, which were also linked to Glycolysis, MAPK, Wnt, NF-kB, NOTCH and epithelial-mesenchymal transition (EMT) signaling pathways. These results have revealed a novel mechanism that SBP1-mediated cancer inhibition is through altering lipid/glucose metabolic signaling pathways.

  2. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain.

    Directory of Open Access Journals (Sweden)

    Yunjie Zhao

    Full Text Available The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD simulation for the A130V mutant (>6 Å and after 30 ns for A130T mutant (>6 Å. Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding.

  3. Optimization of a real-time RT-PCR assay reveals an increase of genogroup I norovirus in the clinical setting.

    Science.gov (United States)

    Van Stelten, A; Kreman, T M; Hall, N; Desjardin, L E

    2011-07-01

    Although norovirus has been identified as the most common cause of gastroenteritis, the majority of cases have no etiologic agent identified. In this study, we describe the optimization of a real-time RT-PCR assay for the improved detection of genogroup I norovirus in patient specimens based upon sequence data from a collection of representative clinical norovirus sequences. The redesigned assay demonstrated a 64 fold increase in sensitivity, a 2 log decrease in the limit of detection, and an 18% increase in amplification efficiency, when compared to the standard assay. The optimized test also detected GI norovirus in clinical specimens that were initially negative by the standard assay. Use of the optimized assay increased the annual positivity of GI norovirus in Iowa from 1.2% to 4.5%, indicating the prevalence of GI norovirus may be higher than previously identified. Laboratory confirmation of the etiologic agent involved in gasteroenteritis cases is essential for better understanding of the prevalence and transmission of noroviruses. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Determination of structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC

    Science.gov (United States)

    Wu, Wei; Park, Kyung-Tae; Holyoak, Todd; Lutkenhaus, Joe

    2011-01-01

    Summary The three Min proteins spatially regulate Z ring positioning in E. coli and are dynamically associated with the membrane. MinD binds to vesicles in the presence of ATP and can recruit MinC or MinE. Biochemical and genetic evidence indicate the binding sites for these two proteins on MinD overlap. Here we solved the structure of a hydrolytic-deficient mutant of MinD truncated for the C-terminal amphipathic helix involved in binding to the membrane. The structure solved in the presence of ATP is a dimer and reveals the face of MinD abutting the membrane. Using a combination of random and extensive site-directed mutagenesis additional residues important for MinE and MinC binding were identified. The location of these residues on the MinD structure confirms that the binding sites overlap and reveals that the binding sites are at the dimer interface and exposed to the cytosol. The location of the binding sites at the dimer interface offers a simple explanation for the ATP-dependency of MinC and MinE binding to MinD. PMID:21231967

  5. Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays

    Czech Academy of Sciences Publication Activity Database

    Horáková Brázdilová, Petra; Macíčková-Cahová, Hana; Pivoňková, Hana; Špaček, Jan; Havran, Luděk; Hocek, Michal; Fojta, Miroslav

    2011-01-01

    Roč. 9, č. 5 (2011), s. 1366-1371 ISSN 1477-0520 R&D Projects: GA MŠk(CZ) LC06035; GA MŠk(CZ) LC512; GA AV ČR(CZ) IAA400040901 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : DNA tail-labelling * protein-DNA binding * DNA hybridization Subject RIV: BO - Biophysics Impact factor: 3.696, year: 2011

  6. Lethal factor VII deficiency due to novel mutations in the F7 promoter: functional analysis reveals disruption of HNF4 binding site.

    Science.gov (United States)

    Giansily-Blaizot, Muriel; Lopez, Estelle; Viart, Victoria; Chafa, Ouerdia; Tapon-Bretaudière, Jacqueline; Claustres, Mireille; Taulan, Magali

    2012-08-01

    Hereditary factor VII (FVII) deficiency is a rare autosomal recessive disorder. Deleterious mutations that prevent the synthesis of any amount of functional FVII have been associated with life-threatening haemorrhage in neonates. Here we report two infants, of Maghrebian origin, who suffered a fatal spontaneous cerebral haemorrhage. Investigation of the molecular basis for their severe FVII deficiency revealed novel mutations in a homozygous state within the F7 gene promoter: a single nucleotide substitution (c.-65G>C) and a 2bp deletion (c.-60_-59delTT). To determine whether these promoter variants were responsible for the FVII deficiency, computer-assisted sequence analyses were performed. The data predicted a disrupted binding of both HNF4 and COUP-TF transcription factors with each variant. Concordantly, experimental results revealed an altered HNF4-induced transactivation in the promoter mutated variants. The execution of functional tests is critical to ensuring a complete understanding of the effect of any promoter mutant on FVII deficiency. Only then can an accurate molecular diagnosis be made and further genetic counselling and prenatal diagnosis be offered.

  7. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    Science.gov (United States)

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  8. Homology modeling and docking of AahII-Nanobody complexes reveal the epitope binding site on AahII scorpion toxin.

    Science.gov (United States)

    Ksouri, Ayoub; Ghedira, Kais; Ben Abderrazek, Rahma; Shankar, B A Gowri; Benkahla, Alia; Bishop, Ozlem Tastan; Bouhaouala-Zahar, Balkiss

    2018-02-19

    Scorpion envenoming and its treatment is a public health problem in many parts of the world due to highly toxic venom polypeptides diffusing rapidly within the body of severely envenomed victims. Recently, 38 AahII-specific Nanobody sequences (Nbs) were retrieved from which the performance of NbAahII10 nanobody candidate, to neutralize the most poisonous venom compound namely AahII acting on sodium channels, was established. Herein, structural computational approach is conducted to elucidate the Nb-AahII interactions that support the biological characteristics, using Nb multiple sequence alignment (MSA) followed by modeling and molecular docking investigations (RosettaAntibody, ZDOCK software tools). Sequence and structural analysis showed two dissimilar residues of NbAahII10 CDR1 (Tyr27 and Tyr29) and an inserted polar residue Ser30 that appear to play an important role. Indeed, CDR3 region of NbAahII10 is characterized by a specific Met104 and two negatively charged residues Asp115 and Asp117. Complex dockings reveal that NbAahII17 and NbAahII38 share one common binding site on the surface of the AahII toxin divergent from the NbAahII10 one's. At least, a couple of NbAahII10 - AahII residue interactions (Gln38 - Asn44 and Arg62, His64, respectively) are mainly involved in the toxic AahII binding site. Altogether, this study gives valuable insights in the design and development of next generation of antivenom. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Crystal structures of Pseudomonas putida esterase reveal the functional role of residues 187 and 287 in substrate binding and chiral recognition.

    Science.gov (United States)

    Dou, Shuai; Kong, Xu-Dong; Ma, Bao-Di; Chen, Qi; Zhang, Jie; Zhou, Jiahai; Xu, Jian-He

    2014-04-18

    A recombinant carboxylesterase (rPPE) from Pseudomonas putida ECU1011 was previously cloned and engineered to give a potential application for resolving chiral α-hydroxy acids including mandelic acids and derivatives. Two variants rPPEW187H and rPPED287A showed a ∼100-fold increase in activity towards rac-2-acetoxy-2-(2'-chlorophenyl) acetate (rac-AcO-CPA), but rPPED287A had a significant decrease in enantioselectivity (E=8.7) compared to rPPEW187H and the wild-type rPPE (rPPEWT) (E>200). Here we report the crystal structures of rPPEWT and rPPEW187H, both by themselves and in complex with the substrate, to elucidate the structural basis of this phenomenon. An inactive mutation of nucleophile residue S159A was introduced to obtain the structure of rPPES159A/W187H complexed with (S)-AcO-CPA. The structural analysis reveals that the side chain of residue Asp287 in rPPEWT would have a potential steric conflict with (S)-AcO-CPA when the substrate binds at the active site of the enzyme. However, the mutation W187H could facilitate the relocation of Asp287, while D287A directly eliminates the hindrance of Asp287, both of which offer sufficient space for the binding and hydrolysis of substrate. Moreover, Asp287 generates one site of the "three-point attachment model" as a hydrogen-bond donor that determines the excellent enantioselectivity of rPPE in chiral recognition, and D287A would obviously destroy the hydrogen bond and result in the low enantioselectivity of rPPED287A. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Larval development assays reveal the presence of sub-populations showing high- and low-level resistance in a monepantel (Zolvix®)-resistant isolate of Haemonchus contortus.

    Science.gov (United States)

    Raza, Ali; Lamb, Jane; Chambers, Michael; Hunt, Peter W; Kotze, Andrew C

    2016-04-15

    Resistance to the amino-acetonitrile derivative monepantel has been reported in several species of gastrointestinal nematodes over recent years. We were interested in the use of in vitro assays with free-living worm life-stages to detect resistance to this drug. We therefore used larval development and larval migration assays to examine dose response relationships for the drug against two susceptible and one resistant isolate of Haemonchus contortus. The resistant isolate was established by laboratory propagation of the survivors of a field treatment with Zolvix(®) that had originally resulted in a drug efficacy of over 99%. Drug efficacy against this field-derived laboratory-propagated resistant isolate in vivo was approximately 15%. The larval development assay proved able to discriminate between the susceptible and resistant isolates, with larvae of the resistant isolate showing an ability to develop at higher drug concentrations than the two susceptible isolates. The resistant isolate showed the presence of two distinct subpopulations, separated by a plateau in the dose-response curve. Sub-population 1 (approximately 40% of the total population) showed a low level of resistance with an IC50 increased approximately 7-fold compared to the baseline susceptible isolate, while sub-population 2 (the remaining 60% of the total population) showed an IC50 increased over 1000-fold compared to the baseline susceptible isolate. This level of resistance is unusually high for any gastrointestinal nematode species in drug dose-response in vitro assays. In contrast, the migration assay could not discriminate between the three isolates, with migration not reduced to zero at any of the drug concentrations tested. This study demonstrates that a larval development assay is able to detect resistance to monepantel in H. contortus, and that resistance can exist in two distinct forms. This suggests that at least two separate monepantel resistance mechanisms are acting within the worm

  11. Safety Evaluation of Chinese Medicine Injections with a Cell Imaging-Based Multiparametric Assay Revealed a Critical Involvement of Mitochondrial Function in Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2015-01-01

    Full Text Available The safety of herbal medicine products has been a widespread concern due to their complex chemical nature and lack of proper evaluation methods. We have adapted a sensitive and reproducible multiparametric cell-based high-content analysis assay to evaluate the hepatic-safety of four Chinese medicine injections and validated it with classical animal-based toxicity assays. Our results suggested that the reported hepatotoxicity by one of the drugs, Fufangkushen injection, could be attributed at least in part to the interference of mitochondrial function in human HepG2 cells by some of its constituents. This method should be useful for both preclinical screen in a drug discovery program and postclinical evaluation of herbal medicine preparations.

  12. AKT1, LKB1, and YAP1 revealed as MYC interactors with NanoLuc-based protein-fragment complementation assay. | Office of Cancer Genomics

    Science.gov (United States)

    The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. Here we report the development of a NanoLuc®-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells.

  13. Antioxidant assays – consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves

    Science.gov (United States)

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-01-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays – by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied. PMID:24804054

  14. Antioxidant assays - consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves.

    Science.gov (United States)

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-11-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays - by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied.

  15. Exploring the Role of N6-Substituents in Potent Dual Acting 5'-C-Ethyltetrazolyladenosine Derivatives: Synthesis, Binding, Functional Assays, and Antinociceptive Effects in Mice ∇.

    Science.gov (United States)

    Petrelli, Riccardo; Scortichini, Mirko; Kachler, Sonja; Boccella, Serena; Cerchia, Carmen; Torquati, Ilaria; Del Bello, Fabio; Salvemini, Daniela; Novellino, Ettore; Luongo, Livio; Maione, Sabatino; Jacobson, Kenneth A; Lavecchia, Antonio; Klotz, Karl-Norbert; Cappellacci, Loredana

    2017-05-25

    Structural determinants of affinity of N 6 -substituted-5'-C-(ethyltetrazol-2-yl)adenosine and 2-chloroadenosine derivatives at adenosine receptor (AR) subtypes were studied with binding and molecular modeling. Small N 6 -cycloalkyl and 3-halobenzyl groups furnished potent dual acting A 1 AR agonists and A 3 AR antagonists. 4 was the most potent dual acting human (h) A 1 AR agonist (K i = 0.45 nM) and A 3 AR antagonist (K i = 0.31 nM) and highly selective versus A 2A ; 11 and 26 were most potent at both h and rat (r) A 3 AR. All N 6 -substituted-5'-C-(ethyltetrazol-2-yl)adenosine derivatives proved to be antagonists at hA 3 AR but agonists at the rA 3 AR. Analgesia of 11, 22, and 26 was evaluated in the mouse formalin test (A 3 AR antagonist blocked and A 3 AR agonist strongly potentiated). N 6 -Methyl-5'-C-(ethyltetrazol-2-yl)adenosine (22) was most potent, inhibiting both phases, as observed combining A 1 AR and A 3 AR agonists. This study demonstrated for the first time the advantages of a single molecule activating two AR pathways both leading to benefit in this acute pain model.

  16. Ultrasensitive human thyrotropin (h TSH) immunoradiometric assay (IRMA) set up, through identification and minimization of non specific bindings; Ensaio imunoradiometrico ultra-sensivel de tireotrofina humana (hTSH) obtido mediante a identificacao e minimizacao de ligacoes inespecificas

    Energy Technology Data Exchange (ETDEWEB)

    Peroni, C.N.

    1994-12-31

    An IRMA of h TSH, based on magnetic solid phase separation, was studied especially for what concerns its non specific bindings. These were identified as a product of the interaction between an altered form of radioiodinated anti-h TSH monoclonal antibody ({sup 125} I-m AB) and the uncoupled magnetizable cellulose particle (matrix). Apparently this form of {sup 125} I-m AB is a type of aggregate that can be partly resolved from the main peak on Sephadex G-200 and further minimized via a single pre-incubation with the same matrix. Solid phase saturation with milk proteins, tracer storage at 4{sup 0} C and serum addition during incubation were also found particularly effective is preventing its formation. These findings were used in order to reproducibly decrease non specific bindings to values <0.1% (or <70 cpm), increasing thus the signal-to-noise ratio (B{sub 60}/B{sub O}) up to values of 300-500. This way we obtained h TSH radio assays with functional sensitivities of about 0.05 m IU/L and analytical sensitivities of the order of 0.02 m IU/L, which classify them at least as among the best second generation assays and that are excellent indeed for magnetic IRMA s. A more optimistic sensitivity calculation, based on Rodbard`s definition, provided values down to 0.008 m IU/L. Such sensitivities, moreover, were obtained in a very reproducible way and all over the useful tracer life. (author). 83 refs, 13 figs, 25 tabs.

  17. Deletion of the Androgen Receptor in Adipose Tissue in Male Mice Elevates Retinol Binding Protein 4 and Reveals Independent Effects on Visceral Fat Mass and on Glucose Homeostasis

    Science.gov (United States)

    McInnes, Kerry J.; Smith, Lee B.; Hunger, Nicole I.; Saunders, Philippa T.K.; Andrew, Ruth; Walker, Brian R.

    2012-01-01

    Testosterone deficiency is epidemic in obese ageing males with type 2 diabetes, but the direction of causality remains unclear. Testosterone-deficient males and global androgen receptor (AR) knockout mice are insulin resistant with increased fat, but it is unclear whether AR signaling in adipose tissue mediates body fat redistribution and alters glucose homoeostasis. To investigate this, mice with selective knockdown of AR in adipocytes (fARKO) were generated. Male fARKO mice on normal diet had reduced perigonadal fat but were hyperinsulinemic and by age 12 months, were insulin deficient in the absence of obesity. On high-fat diet, fARKO mice had impaired compensatory insulin secretion and hyperglycemia, with increased susceptibility to visceral obesity. Adipokine screening in fARKO mice revealed a selective increase in plasma and intra-adipose retinol binding protein 4 (RBP4) that preceded obesity. AR activation in murine 3T3 adipocytes downregulated RBP4 mRNA. We conclude that AR signaling in adipocytes not only protects against high-fat diet–induced visceral obesity but also regulates insulin action and glucose homeostasis, independently of adiposity. Androgen deficiency in adipocytes in mice resembles human type 2 diabetes, with early insulin resistance and evolving insulin deficiency. PMID:22415878

  18. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

    Science.gov (United States)

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding. PMID:27559340

  19. Genome-wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

    Directory of Open Access Journals (Sweden)

    Eunyoung Seo

    2016-08-01

    Full Text Available Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR immune receptors are known play critical roles in effector-triggered immunity (ETI plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analyses and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analyses of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding.

  20. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants.

    Science.gov (United States)

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding.

  1. Enzyme assays.

    Science.gov (United States)

    Brodelius, P E

    1991-02-01

    The past year or so has seen the development of new enzyme assays, as well as the improvement of existing ones. Assays are becoming more rapid and sensitive as a result of modifications such as amplification of the enzyme product(s). Recombinant DNA technology is now being recognized as a particularly useful tool in the search for improved assay systems.

  2. Genetic damage induced by trophic doses of lead in the neotropical fish Hoplias malabaricus (Characiformes, Erythrinidae as revealed by the comet assay and chromosomal aberrations

    Directory of Open Access Journals (Sweden)

    Marta Margarete Cestari

    2004-01-01

    Full Text Available The effects of clastogenic or mutagenic agents have rarely been studied in neotropical fish species exposed to contaminated water. In this study, the genetic damage caused by lead in the widely distributed South American fish, Hoplias malabaricus, was assessed using the comet (SCGE assay and by testing for chromosomal aberrations. Eighteen specimens were acclimatized to laboratory conditions and then chronically exposed to contaminated food by feeding prey (Cyprinus sp. injected intraperitoneally with doses of inorganic lead adjusted to give a contamination level of 21 mg of Pb2+.g-1 net weight of H. malabaricus. Three fish were sampled for chromosomal analysis after four doses (18 days and another three after eight doses (41 days of lead and the results then compared with three untreated controls kept under lead-free conditions. An additional six treated fish and three controls were sampled for the comet assay after 13 doses (64 days. Exposure to lead significantly increased the frequency of chromosomal aberrations and the frequency of tailed cell nuclei, the latter indicating DNA damage. These results show that H. malabaricus is a useful biological model for screening the clastogenic effects of lead and possibly other xenobiotics. The genetic damage seen here illustrates the need to investigate the potential effects of heavy metals on fish species in South America.

  3. A pseudo-full mutation identified in fragile X assay reveals a novel base change abolishing an EcoRI restriction site.

    Science.gov (United States)

    Liang, Shujian; Bass, Harold N; Gao, Hanlin; Astbury, Caroline; Jamehdor, Mehdi R; Qu, Yong

    2008-09-01

    Diagnostic testing for the fragile X syndrome is designed to detect the most common mutation, a CGG expansion in the 5'-untranslated region of the fragile X mental retardation (FMRI) gene. PCR can determine the number of CGG repeats less than 100, whereas Southern analysis can detect large premutations, full mutations, and their methylation status. Bands larger than 5.8 kb observed via Southern analysis are usually considered a methylated full mutation, causing fragile X syndrome in males and varied clinical presentations in females. We observed a 10.9-kb band on a Southern blot assay from an autistic girl with language delay. Further investigation identified a novel G-to-A transition at an EcoRI cleavage site, upstream of the CGG repeat region of the FMRI gene. This base change abolished the EcoRI restriction site, resulting in a 10.9-kb pseudo-full mutation. This G-to-A base change has not been previously reported and was not identified in a subsequent analysis of 105 male and 30 female patient samples. The clear 10.9-kb band detected on a Southern blot assay for fragile X syndrome mimics a large, methylated full mutation, which could result in a misdiagnosis without the benefit of family studies and further testing.

  4. A new in vitro mouse oligodendrocyte precursor cell migration assay reveals a role for integrin-linked kinase in cell motility.

    Science.gov (United States)

    O'Meara, Ryan W; Cummings, Sarah E; Michalski, John-Paul; Kothary, Rashmi

    2016-02-01

    The decline of remyelination in chronic multiple sclerosis (MS) is in part attributed to inadequate oligodendrocyte precursor cell (OPC) migration, a process governed by the extracellular matrix (ECM). Elucidating the mechanisms underlying OPC migration is therefore an important step towards developing new therapeutic strategies to promote myelin repair. Many seminal OPC culture methods were established using rat-sourced cells, and these often need modification for use with mouse OPCs due to their sensitive nature. It is of interest to develop mouse OPC assays to leverage the abundant transgenic lines. To this end, we developed a new OPC migration method specifically suited for use with mouse-derived cells. To validate its utility, we combined the new OPC migration assay with a conditional knockout approach to investigate the role of integrin-linked kinase (ILK) in OPC migration. ILK is a focal adhesion protein that stabilizes cellular adhesions to the extracellular matrix (ECM) by mediating a linkage between matrix-bound integrin receptors and the cytoskeleton. We identified ILK as a regulator of OPC migration on three permissive substrates. ILK loss produced an early, albeit transient, deficit in OPC migration on laminin matrix, while migration on fibronectin and polylysine was heavily reliant on ILK expression. Inclusively, our work provides a new tool for studying mouse OPC migration and highlights the role of ILK in its regulation on ECM proteins relevant to MS.

  5. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing [Oklahoma State University, Stillwater, OK 74078 (United States); Liu, Caini; Qian, Wen [Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Han, Yue [Oklahoma State University, Stillwater, OK 74078 (United States); Li, Xiaoxia, E-mail: lix@ccf.org [Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Deng, Junpeng, E-mail: lix@ccf.org [Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-05-01

    Crystal structure of the SEFIR domain from human IL-17 receptor A provides new insights into IL-17 signaling. Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein–protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminal extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand βC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC′{sub ins}) and a flexible loop (CC′). The DD′ loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Å to accommodate the αCC′{sub ins} helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR–SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.

  6. Single Vesicle Assaying of SNARE-Synaptotagmin-Driven Fusion Reveals Fast and Slow Modes of Both Docking and Fusion and Intrasample Heterogeneity

    DEFF Research Database (Denmark)

    M. Christensen, Sune; W. Mortensen, Michael; Stamou, Dimitrios

    2011-01-01

    the docking or the fusion of vesicles. Here we report a fluorescence microscopy-based assay to monitor SNARE-mediated docking and fusion of individual vesicle pairs. In situ measurement of the concentration of diffusing particles allowed us to quantify docking rates by a maximum-likelihood approach....... This analysis showed that C2AB and Ca(2+) accelerate vesicle-vesicle docking with more than two orders of magnitude. Comparison of the measured docking rates with ensemble lipid mixing kinetics, however, suggests that in most cases bilayer fusion remains therate-limiting step. Our single vesicle results show...... that only 60% of the vesicles dock and only 6% of docked vesicles fuse. Lipid mixing on single vesicles was fast (t(mix)fusion pathways cannot be rationalized...

  7. Nongenotoxic effects and a reduction of the DXR-induced genotoxic effects of Helianthus annuus Linné (sunflower) seeds revealed by micronucleus assays in mouse bone marrow.

    Science.gov (United States)

    Boriollo, Marcelo Fabiano Gomes; Souza, Luiz Silva; Resende, Marielly Reis; Silva, Thaísla Andrielle da; Oliveira, Nelma de Mello Silva; Resck, Maria Cristina Costa; Dias, Carlos Tadeu dos Santos; Fiorini, João Evangelista

    2014-04-02

    This research evaluated the genotoxicity of oil and tincture of H. annuus L. seeds using the micronucleus assay in bone marrow of mice. The interaction between these preparations and the genotoxic effects of doxorubicin (DXR) was also analysed (antigenotoxicity test). Experimental groups were evaluated at 24-48 h post treatment with N-Nitroso-N-ethylurea (positive control - NEU), DXR (chemotherapeutic), NaCl (negative control), a sunflower tincture (THALS) and two sources of sunflower oils (POHALS and FOHALS). Antigenotoxic assays were carried out using the sunflower tincture and oils separately and in combination with NUE or DXR. For THALS, analysis of the MNPCEs showed no significant differences between treatment doses (250-2,000 mg.Kg-1) and NaCl. A significant reduction in MNPCE was observed when THALS (2,000 mg.Kg-1) was administered in combination with DXR (5 mg.Kg-1). For POHALS or FOHALS, analysis of the MNPCEs also showed no significant differences between treatment doses (250-2,000 mg.Kg-1) and NaCl. However, the combination DXR + POHALS (2,000 mg.Kg-1) or DXR + FOHALS (2,000 mg.Kg-1) not contributed to the MNPCEs reduction. This research suggests absence of genotoxicity of THALS, dose-, time- and sex-independent, and its combination with DXR can reduce the genotoxic effects of DXR. POHALS and FOHALS also showed absence of genotoxicity, but their association with DXR showed no antigenotoxic effects.

  8. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression

    DEFF Research Database (Denmark)

    Siersbæk, Majken; Loft, Anne; Jørgensen, Mads Malik Aagaard

    2012-01-01

    epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding...... sites that are specific to the primary cells, and these tend to be located in closed chromatin regions in 3T3-L1 adipocytes. The depot-selective binding of PPARγ is associated with highly depot-specific gene expression. This indicates that PPARγ plays a role in the induction of genes characteristic...... of different adipocyte lineages and that preadipocytes from different depots are differentially preprogrammed to permit PPARγ lineage-specific recruitment even when differentiated in vitro....

  9. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Guodong; Bergenholm, David; Nielsen, Jens

    2016-01-01

    In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p...... of transcription factors. In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to regulate several biological processes, while its genome-wide targets remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. We show that the binding...... at high resolution. Cst6p binds to the promoter regions of 59 genes with various biological functions when cells are grown on ethanol but hardly binds to the promoter at any gene when cells are grown on glucose. The retarded growth of the CST6 deletion mutant on ethanol is attributed to the markedly...

  10. Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse

    Directory of Open Access Journals (Sweden)

    Barbora Kuntová

    2018-02-01

    Full Text Available Mammalian olfaction depends on chemosensory neurons of the main olfactory epithelia (MOE, and/or of the accessory olfactory epithelia in the vomeronasal organ (VNO. Thus, we have generated the VNO and MOE transcriptomes and the nasal cavity proteome of the house mouse, Mus musculus musculus. Both transcriptomes had low levels of sexual dimorphisms, while the soluble proteome of the nasal cavity revealed high levels of sexual dimorphism similar to that previously reported in tears and saliva. Due to low levels of sexual dimorphism in the olfactory receptors in MOE and VNO, the sex-specific sensing seems less likely to be dependent on receptor repertoires. However, olfaction may also depend on a continuous removal of background compounds from the sites of detection. Odorant binding proteins (OBPs are thought to be involved in this process and in our study Obp transcripts were most expressed along other lipocalins (e.g., Lcn13, Lcn14 and antimicrobial proteins. At the level of proteome, OBPs were highly abundant with only few being sexually dimorphic. We have, however, detected the major urinary proteins MUP4 and MUP5 in males and females and the male-biased central/group-B MUPs that were thought to be abundant mainly in the urine. The exocrine gland-secreted peptides ESP1 and ESP22 were male-biased but not male-specific in the nose. For the first time, we demonstrate that the expression of nasal lipocalins correlates with antimicrobial proteins thus suggesting that their individual variation may be linked to evolvable mechanisms that regulate natural microbiota and pathogens that regularly enter the body along the ‘eyes-nose-oral cavity’ axis.

  11. Mutagenesis of Ly49B reveals key structural elements required for promiscuous binding to MHC class I molecules and new insights into the molecular evolution of Ly49s.

    Science.gov (United States)

    Mickiewicz, Katarzyna M; Gays, Frances; Lewis, Richard J; Brooks, Colin G

    2014-02-15

    Ly49B is a potentially important immunoregulator expressed on mouse myeloid cells, and it is thus an unusual member of the wider Ly49 family whose members are ordinarily found on NK cells. Ly49B displays substantial sequence divergence from other Ly49s and in particular shares virtually no amino acid sequence identity with the residues that have been reported to bind to MHC class I (cI) ligands in other Ly49s. Despite this, we show in this study that the BALB/c, but not the C57, isoform of Ly49B displays promiscuous cI binding. Binding was not significantly affected by inactivation of any of the four predicted N-linked glycosylation sites of Ly49B, nor was it affected by removal of the unique 20-aa C-terminal extension found in Ly49B. However, transfer of these C-terminal 20 aa to Ly49A inhibited cI binding, as did the addition of a hemagglutinin tag to the C terminus of Ly49B, demonstrating unexpectedly that the C-terminal region of Ly49s can play a significant role in ligand binding. Systematic exchange of BALB/c and C57 residues revealed that Trp(166), Asn(167), and Cys(251) are of major importance for cI binding in Ly49B. These residues are highly conserved in the Ly49 family. Remarkably, however, Ly49B(BALB) variants that have C57 residues at positions 166 or 167, and are unable to bind cI multimers, regain substantial cI binding when amino acid changes are made at distal positions, providing an explanation of how highly divergent Ly49s that retain the ability to bind cI molecules might have evolved.

  12. Characterization of binding mode of action of a blocking anti-platelet-derived growth factor (PDGF)-B monoclonal antibody, MOR8457, reveals conformational flexibility and avidity needed for PDGF-BB to bind PDGF receptor-β.

    Science.gov (United States)

    Kuai, Jun; Mosyak, Lidia; Brooks, Jon; Cain, Michael; Carven, Gregory J; Ogawa, Shinji; Ishino, Tetsuya; Tam, May; Lavallie, Edward R; Yang, Zhiyong; Ponsel, Dirk; Rauchenberger, Robert; Arch, Robert; Pullen, Nick

    2015-03-17

    Platelet derived growth factor-BB (PDGF-BB) is an important mitogen and cell survival factor during development. PDGF-BB binds PDGF receptor-β (PDGFRβ) to trigger receptor dimerization and tyrosine kinase activation. We present the pharmacological and biophysical characterization of a blocking PDGF-BB monoclonal antibody, MOR8457, and contrast this to PDGFRβ. MOR8457 binds to PDGF-BB with high affinity and selectivity, and prevents PDGF-BB induced cell proliferation competitively and with high potency. The structural characterization of the MOR8457-PDGF-BB complex indicates that MOR8457 binds with a 2:1 stoichiometry, but that binding of a single MOR8457 moiety is sufficient to prevent binding to PDGFRβ. Comparison of the MOR8457-PDGF-BB structure with that of the PDGFRβ-PDGF-BB complex suggested the potential reason for this was a substantial bending and twisting of PDGF-BB in the MOR8457 structure, relative to the structures of PDGF-BB alone, bound to a PDGF-BB aptamer or PDGFRβ, which makes it nonpermissive for PDGFRβ binding. These biochemical and structural data offer insights into the permissive structure of PDGF-BB needed for agonism as well as strategies for developing specific PDGF ligand antagonists.

  13. A simple screening assay for the most common JK*0 alleles revealed compound heterozygosity in Jk(a-b-) probands from Guam.

    Science.gov (United States)

    Wester, E S; Gustafsson, J; Snell, B; Spruell, P; Hellberg, A; Olsson, M L; Storry, J R

    2009-01-01

    The Jk(a-b-) phenotype results from alterations in the JK gene and is characterized by absence of the RBC urea transporter in the cell membrane. The frequency of Jk(a-b-) varies among populations,but this phenotype is most commonly found in people of Polynesian and Finnish descent. Although rare, Jk(a-b-) individuals present a clinical challenge because anti-Jk3 is produced readily in response to transfusion and pregnancy, and Jk(a-b-) blood is not routinely available. Identification of Jk(a-b-) patients and donors is most often performed serologically. However, ten JK*0 alleles have been identified, and this information can be used in DNA-based typing. We selected five JK*0 alleles that had been encountered by our reference laboratory in two or more samples from unrelated individuals and designed an allele-specific primer PCR assay for use as an initial screening tool. After in-house validation,we tested genomic DNA from a family: a mother and her two sons referred to us for genetic investigation of their Jk(a-b-)phenotypes. Two different nucleotide substitutions, -1g>a in intron 5 (IVS5) and 956C>T in exon 10, originally associated with Polynesian and Indian/African populations respectively, were identified in the family. The mother and one son were compound heterozygotes, and the second son was homozygous for IVS5-1g>a. We conclude that the effort to design and validate such a screening assay was cost-efficient when compared with DNA sequencing costs. Furthermore, selection of the more common JK*0 mutations was a practical approach that resulted in rapid identification of the genetic bases behind the Jk(a-b-) phenotypes in this unusual family. Although an obvious target for eventual inclusion into high-throughput genotyping platforms for clinical diagnostic services, current systems are very limited. Our approach provides a simple and inexpensive method for the identification of these rare alleles.

  14. A fluorescence-coupled assay for gamma aminobutyric acid (GABA reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Joseph E Ippolito

    Full Text Available Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA have been implicated in the pathogenesis of high grade neuroendocrine (NE neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1, was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.

  15. In Vitro Endothelial Cell Proliferation Assay Reveals Distinct Levels of Proangiogenic Cytokines Characterizing Sera of Healthy Subjects and of Patients with Heart Failure

    Directory of Open Access Journals (Sweden)

    Rebecca Voltan

    2014-01-01

    Full Text Available Although myocardial angiogenesis is thought to play an important role in heart failure (HF, the involvement of circulating proinflammatory and proangiogenic cytokines in the pathogenesis and/or prognosis of HF has not been deeply investigated. By using a highly standardized proliferation assay with human endothelial cells, we first demonstrated that sera from older (mean age 52±7.6 years; n=46 healthy donors promoted endothelial cell proliferation to a significantly higher extent compared to sera obtained from younger healthy donors (mean age 29±8.6 years; n=20. The promotion of endothelial cell proliferation was accompanied by high serum levels of several proangiogenic cytokines. When we assessed endothelial cell proliferation in response to HF patients’ sera, we observed that a subset of sera (n=11 promoted cell proliferation to a significantly lesser extent compared to the majority of sera (n=18. Also, in this case, the difference between the patient groups in the ability to induce endothelial cell proliferation correlated to significant (P<0.05 differences in serum proangiogenic cytokine levels. Unexpectedly, HF patients associated to the highest endothelial proliferation index showed the worst prognosis as evaluated in terms of subsequent cardiovascular events in the follow-up, suggesting that high levels of circulating proangiogenic cytokines might be related to a worse prognosis.

  16. Radioreceptor assay for GH

    International Nuclear Information System (INIS)

    Tsushima, Toshio; Matsuzaki, Fukashi

    1975-01-01

    Radioreceptor assay (RRA) of growth hormone (GH) was studied using the protein which specifically bound to GH presenting in the liver of rabbits. 100,000g pellet of the liver homogenate was used as receptor source. The factors which affected the results of RRA such as salt, temperature and incubation time, were discussed. As same as in other RRA methods, serum protein inhibited non-specifically 125 I-GH binding in this method. In this assay, serum GH less than 5ng/ml could not be detected. The difference between the value obtained by RRA and that by radioimmunoassay was compared with reference to the patients with acromegalia. (Tsukamoto, Y.)

  17. Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Specific Changes in the Local Flexibility of Plasminogen Activator Inhibitor 1 upon Binding to the Somatomedin B Domain of Vitronectin

    DEFF Research Database (Denmark)

    Trelle, Morten Beck; Hirschberg, Daniel; Jansson, Anna

    2012-01-01

    and increases the thermal stability of the protein dramatically. We have used hydrogen/deuterium exchange mass spectrometry to assess the inherent structural flexibility of PAI-1 and to monitor the changes induced by SMB binding. Our data show that the PAI-1 core consisting of β-sheet B is rather protected...... against exchange with the solvent, while the remainder of the molecule is more dynamic. SMB binding causes a pronounced and widespread stabilization of PAI-1 that is not confined to the binding interface with SMB. We further explored the local structural flexibility in a mutationally stabilized PAI-1...

  18. Ligand binding and conformational dynamics in a flavin-based electron-bifurcating enzyme complex revealed by Hydrogen-Deuterium Exchange Mass Spectrometry.

    Science.gov (United States)

    Demmer, Julius K; Rupprecht, Fiona A; Eisinger, Martin L; Ermler, Ulrich; Langer, Julian D

    2016-12-01

    Flavin-based electron bifurcation (FBEB) is a novel mechanism of energy coupling used by anaerobic microorganisms to optimize their energy metabolism efficiency. The first high-resolution structure of a complete FBEB enzyme complex, the NADH-dependent reduced ferredoxin: NADP + -oxidoreductase (NfnAB) of Thermotoga maritima, was recently solved. However, no experimental evidence for the NADPH-binding site and conformational changes during the FBEB reaction are available. Here we analyzed ligand binding and the conformational dynamics of oxygen-sensitive NfnAB using Hydrogen-Deuterium Exchange Mass-Spectrometry, including a customized anaerobic workflow. We confirmed the NADH and the previously postulated NADPH-binding site. Furthermore, we observed an NfnA-NfnB rearrangement upon NADPH binding which supports the proposed FBEB mechanism. © 2016 Federation of European Biochemical Societies.

  19. Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding.

    Science.gov (United States)

    Cetinkol, Ozgül Persil; Hud, Nicholas V

    2009-02-01

    A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (T(m) approximately 60 degrees C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (K(a) >10(7) M(-1)), and that the crescent shape of coralyne appears necessary for poly(A) binding. We also show that the binding of similar ligands to poly(A) can be highly cooperative. For one particular ligand, at least six ligand molecules are required to stabilize the poly(A) self-structure at room temperature. This highly cooperative binding produces very sharp transitions between unstructured and structured poly(A) as a function of ligand concentration. Given the fact that junctions between Watson-Crick and A.A duplexes are tolerated, we propose that poly(A) sequence elements and appropriate ligands could be used to reversibly drive transitions in DNA and RNA-based molecular structures by simply diluting/concentrating a sample about the poly(A)-ligand 'critical concentration'. The ligands described here may also find biological or medicinal applications, owing to the 3'-polyadenylation of mRNA in living cells.

  20. Dual isotope assays

    International Nuclear Information System (INIS)

    Smith, G.F.W.; Stevens, R.A.J.; Jacoby, B.

    1980-01-01

    Dual isotope assays for thyroid function are performed by carrying out a radio-immunoassay for two of thyroxine (T4), tri-iodothyronine (T3), thyroid stimulating hormone (TSH), and thyroxine binding globulin (TBG), by a method wherein a version of one of the thyroid components, preferably T4 or T3 is labelled with Selenium-75 and the version of the other thyroid component is labelled with a different radionuclide, preferably Iodine-125. (author)

  1. RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006.

    Science.gov (United States)

    Wilf, Nabil M; Reid, Adam J; Ramsay, Joshua P; Williamson, Neil R; Croucher, Nicholas J; Gatto, Laurent; Hester, Svenja S; Goulding, David; Barquist, Lars; Lilley, Kathryn S; Kingsley, Robert A; Dougan, Gordon; Salmond, George Pc

    2013-11-22

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative enterobacterium that is virulent in plant and animal models. It produces a red-pigmented trypyrrole secondary metabolite, prodigiosin (Pig), and a carbapenem antibiotic (Car), as well as the exoenzymes, pectate lyase and cellulase. Secondary metabolite production in this strain is controlled by a complex regulatory network involving quorum sensing (QS). Hfq and RsmA (two RNA binding proteins and major post-transcriptional regulators of gene expression) play opposing roles in the regulation of several key phenotypes within S39006. Prodigiosin and carbapenem production was abolished, and virulence attenuated, in an S39006 ∆hfq mutant, while the converse was observed in an S39006 rsmA transposon insertion mutant. In order to define the complete regulon of Hfq and RsmA, deep sequencing of cDNA libraries (RNA-seq) was used to analyse the whole transcriptome of S39006 ∆hfq and rsmA::Tn mutants. Moreover, we investigated global changes in the proteome using an LC-MS/MS approach. Analysis of differential gene expression showed that Hfq and RsmA directly or indirectly regulate (at the level of RNA) 4% and 19% of the genome, respectively, with some correlation between RNA and protein expression. Pathways affected include those involved in antibiotic regulation, virulence, flagella synthesis, and surfactant production. Although Hfq and RsmA are reported to activate flagellum production in E. coli and an adherent-invasive E. coli hfq mutant was shown to have no flagella by electron microscopy, we found that flagellar production was increased in the S39006 rsmA and hfq mutants. Additionally, deletion of rsmA resulted in greater genomic flux with increased activity of two mobile genetic elements. This was confirmed by qPCR and analysis of rsmA culture supernatant revealed the presence of prophage DNA and phage particles. Finally, expression of a hypothetical protein containing DUF364 increased prodigiosin production and was

  2. Molecular simulations of lactose-bound and unbound forms of the FaeG adhesin reveal critical amino acids involved in sugar binding.

    Science.gov (United States)

    Baker, Joseph L; Jafri, Heba

    2016-11-01

    F4 fimbriae are protein filaments found in enterotoxigenic Escherichia coli cells and are implicated in the process of bacterial infection due to their function as bacterial adhesins. These filaments are comprised from several proteins, but the bacterial adhesin FaeG, which is a lactose-binding protein, is the major subunit comprising F4 fimbriae. Crystal structures for three variants of the FaeG protein were recently solved, including the ad variant of FaeG that was crystallized in complex with lactose. However, the dynamics of the FaeG protein bound to lactose have not been explored previously using molecular dynamics simulations. Therefore, in order to study the dynamical interactions between the FaeG ad variant and lactose, we have carried out the first all-atom molecular dynamics simulations of this system. We have also probed the role of crystallographic water molecules on the stability of lactose in the FaeG binding site, and have simulated seven FaeG mutants to probe the influence of amino acid substitutions on the ability of FaeG to bind lactose effectively. Our simulations agree well with experimental results for the influence of mutations on lactose binding, provide dynamical insights into the interactions of FaeG with lactose, and also suggest the possibility of additional regions of the FaeG protein that may act as secondary lactose binding sites. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Assay of oestrogen

    International Nuclear Information System (INIS)

    Edwards, J.C.

    1981-01-01

    A particular problem with the direct radioimmunoassay of unconjugated oestriol in pregnancy is caused by the increased amount of steroid-binding proteins present in pregnancy serum and plasma. The steroid-binding proteins react with oestriol and 125 I-labelled oestriol during the assay procedure and the steroid-protein bound 125 I-labelled oestriol is precipitated along with the antibody-bound 125 I-labelled oestriol by the ammonium sulphate solution separation system. A novel method is described whereby progesterone (1-20 μg/ml) is used to block the action of steroid-binding proteins in pregnancy serum and plasma samples, thus minimizing interference in a direct radioimmunoassay for unconjugated oestriol using a specific anti-oestriol serum. (U.K.)

  4. Mannobiose Binding Induces Changes in Hydrogen Bonding and Protonation States of Acidic Residues in Concanavalin A As Revealed by Neutron Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Gerlits, Oksana O. [UT/ORNL; Coates, Leighton [Biology; Woods, Robert J. [Complex; Kovalevsky, Andrey [Biology

    2017-08-30

    Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 and Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.

  5. Unbiased mutagenesis of MHV68 LANA reveals a DNA-binding domain required for LANA function in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Clinton R Paden

    2012-09-01

    Full Text Available The Latency-Associated Nuclear Antigen (LANA, encoded by ORF73, is a conserved gene among the γ2-herpesviruses (rhadinoviruses. The Kaposi's Sarcoma-Associated Herpesvirus (KSHV LANA is consistently expressed in KSHV-associated malignancies. In the case of the rodent γ2-herpesvirus, murine gammaherpesvirus 68 (MHV68, the LANA homolog (mLANA is required for efficient virus replication, reactivation from latency and immortalization of murine fetal liver-derived B cells. To gain insights into mLANA function(s, knowing that KSHV LANA binds DNA and can modulate transcription of a variety of promoters, we sought out and identified a mLANA-responsive promoter which maps to the terminal repeat (TR of MHV68. Notably, mLANA strongly repressed activity from this promoter. We extended these analyses to demonstrate direct, sequence-specific binding of recombinant mLANA to TR DNA by DNase I footprinting. To assess whether the DNA-binding and/or transcription modulating function is important in the known mLANA phenotypes, we generated an unbiased library of mLANA point mutants using error-prone PCR, and screened a large panel of mutants for repression of the mLANA-responsive promoter to identify loss of function mutants. Notably, among the mutant mLANA proteins recovered, many of the mutations are in a predicted EBNA-1-like DNA-binding domain. Consistent with this prediction, those tested displayed loss of DNA binding activity. We engineered six of these mLANA mutants into the MHV68 genome and tested the resulting mutant viruses for: (i replication fitness; (ii efficiency of latency establishment; and (iii reactivation from latency. Interestingly, each of these mLANA-mutant viruses exhibited phenotypes similar to the mLANA-null mutant virus, indicating that DNA-binding is critical for mLANA function.

  6. BINDING OF THE RESPIRATORY CHAIN INHIBITOR ANTIMYCIN TO THE MITOCHONDRIAL bc1 COMPLEX: A NEW CRYSTAL STRUCTURE REVEALS AN ALTERED INTRAMOLECULAR HYDROGEN-BONDING PATTERN.

    OpenAIRE

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-01-01

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Tw...

  7. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Martinez, K. L.; Corringer, P. J.; Edelstein, S. J.

    2000-01-01

    The nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata carries two nonequivalent agonist binding sites at the αδ and αγ subunit interfaces. These sites have been characterized by time-resolved fluorescence with the partial nicotinic agonist dansyl-C6-choline (Dnscho). When bound...

  8. In silico peptide-binding predictions of passerine MHC class I reveal similarities across distantly related species, suggesting convergence on the level of protein function

    DEFF Research Database (Denmark)

    Follin, Elna; Karlsson, Maria; Lundegaard, Claus

    2013-01-01

    compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1–α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate...

  9. High resolution crystal structures of unliganded and liganded human liver ACBP reveal a new mode of binding for the acyl-CoA ligand

    DEFF Research Database (Denmark)

    Taskinen, Jukka P; van Aalten, Daan M; Knudsen, Jens

    2007-01-01

    The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described. The...

  10. Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xiongying; Latham, John A.; Klema, Valerie J.; Evans III, Robert L.; Li, Chao; Klinman, Judith P.; Wilmot, Carrie M. (UMM); (UCB)

    2017-08-19

    PqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn2+, Mg2+, Cu2+, and Zn2+. These structures demonstrate that PqqB can still bind metal ions at the canonical MBL active site. The fact that PqqB can adapt its side chains to chelate a wide spectrum of metal ions with different coordination features on a uniform main chain scaffold demonstrates its metal-binding plasticity. This plasticity may provide insights into the structural basis of promiscuous activities found in ensembles of metal complexes within this superfamily. Furthermore, PqqB belongs to a small subclass of MBLs that contain an additional CxCxxC motif that binds a structural Zn2+. Our data support a key role for this motif in dimerization.

  11. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ayanjeet, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Gai, Feng, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M. [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Wang, Jun; DeGrado, William F. [Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143 (United States); Moroz, Yurii S.; Korendovych, Ivan V. [Department of Chemistry, Syracuse University, Syracuse, New York 13244 (United States); Zanni, Martin [Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  12. dNTP binding to HIV-1 reverse transcriptase and mammalian DNA polymerase beta as revealed by affinity labeling with a photoreactive dNTP analog.

    Science.gov (United States)

    Lavrik, O I; Prasad, R; Beard, W A; Safronov, I V; Dobrikov, M I; Srivastava, D K; Shishkin, G V; Wood, T G; Wilson, S H

    1996-09-06

    The dNTP binding pocket of human immunodeficiency virus type 1 reverse transcriptase (RT) and DNA polymerase beta (beta-pol) were labeled using a photoreactive analog of dCTP, exo-N-[beta-(p-azidotetrafluorobenzamido)-ethyl]-deoxycytidine-5'- triphosphate (FABdCTP). Two approaches of photolabeling were utilized. In one approach, photoreactive FABdCTP and radiolabeled primer-template were UV-irradiated in the presence of each enzyme and resulted in polymerase radiolabeling. In an alternate approach, FABdCTP was first UV-cross-linked to enzyme; subsequently, radiolabeled primer-template was added, and the enzyme-linked dCTP analog was incorporated onto the 3'-end of the radiolabeled primer. The results showed strong labeling of the p66 subunit of RT, with only minor labeling of p51. No difference in the intensity of cross-linking was observed with either approach. FABdCTP cross-linking was increased in the presence of a dideoxyterminated primer-template with RT, but not with beta-pol, suggesting a significant influence of prior primer-template binding on dNTP binding for RT. Mutagenesis of beta-pol residues observed to interact with the incoming dNTP in the crystal structure of the ternary complex resulted in labeling consistent with kinetic characterization of these mutants and indicated specific labeling of the dNTP binding pocket.

  13. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    International Nuclear Information System (INIS)

    Ghosh, Ayanjeet; Gai, Feng; Hochstrasser, Robin M.; Wang, Jun; DeGrado, William F.; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin

    2014-01-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs

  14. Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement

    KAUST Repository

    Jiang, Hanlun

    2015-07-16

    Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.

  15. Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida.

    Science.gov (United States)

    Tu, Xiongying; Latham, John A; Klema, Valerie J; Evans, Robert L; Li, Chao; Klinman, Judith P; Wilmot, Carrie M

    2017-10-01

    PqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn 2+ , Mg 2+ , Cu 2+ , and Zn 2+ . These structures demonstrate that PqqB can still bind metal ions at the canonical MBL active site. The fact that PqqB can adapt its side chains to chelate a wide spectrum of metal ions with different coordination features on a uniform main chain scaffold demonstrates its metal-binding plasticity. This plasticity may provide insights into the structural basis of promiscuous activities found in ensembles of metal complexes within this superfamily. Furthermore, PqqB belongs to a small subclass of MBLs that contain an additional CxCxxC motif that binds a structural Zn 2+ . Our data support a key role for this motif in dimerization.

  16. The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS.

    Science.gov (United States)

    Yang, Wenhua; Tu, Zongcai; Wang, Hui; Zhang, Lu; Kaltashov, Igor A; Zhao, Yunlong; Niu, Chendi; Yao, Honglin; Ye, Wenfeng

    2018-01-24

    Bovine β-lactoglobulin (β-Lg) is a major allergen existing in milk and causes about 90% of IgE-mediated cow's milk allergies. Previous studies showed that pulsed electric field (PEF) treatment could partially unfold the protein, which may contribute to the improvement of protein glycation. In this study, the effect of PEF pretreatment combined with glycation on the IgG/IgE-binding ability and the structure of β-Lg was investigated. The result showed that PEF pretreatment combined with glycation significantly reduced the IgG and IgE binding abilities, which was attributed to the changes of secondary and tertiary structure and the increase in glycation sites and degree of substitution per peptide (DSP) value determined by electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD/FTICR-MS). Unexpectedly, glycation sites (K47, K91 and K135) added by two mannose molecules were identified in glycated β-Lg with PEF pretreatment. Moreover, the results indicated that PEF pretreatment at 25 kV cm -1 for 60 μs promoted the reduction of IgG/IgE-binding capacity by increasing the glycation degree of β-Lg, whereas single PEF treatment under the same conditions markedly enhanced the IgG/IgE-binding ability by partially unfolding the structure of β-Lg. The results suggested that ECD/FTICR-MS could help us to understand the mechanism of reduction in the IgG/IgE-binding of β-Lg by structural characterization at the molecular level. Therefore, PEF pretreatment combined with glycation may provide an alternative method for β-Lg desensitization.

  17. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Ling; Robinson, Howard; Varnum, Susan M.

    2011-01-07

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (~two-thirds) and BoNT/D (~one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR

  18. Crystal Structure of the Receptor Binding Domain of the botulinum C-D Mosiac Neurotoxin Reveals Potential Roles of Lysines 1118 and 1136 in Membrane Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C ({approx}two-third) and BoNT/D ({approx}one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 {angstrom} resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal {beta}-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR.

  19. H19-DMR allele-specific methylation analysis reveals epigenetic heterogeneity of CTCF binding site 6 but not of site 5 in head-and-neck carcinomas

    DEFF Research Database (Denmark)

    De Castro Valente Esteves, Leda Isabel; De Karla Cervigne, Nilva; Do Carmo Javaroni, Afonso

    2006-01-01

    of CTCF binding sites 5 and 6 using methylation-sensitive restriction enzyme PCR followed by RFLP analysis in matched tumoral and lymphocyte DNA from head-and-neck squamous cell carcinoma (HNSCC) patients, as well as in lymphocyte DNA from control individuals who were cancer-free. The monoallelic...... observed in both tumor and lymphocyte DNA from two patients, and at a high frequency in the control group (29 out of 64 informative controls). Additionally, we found that the C/T transition detected by HhaI RFLP suppressed one dinucleotide CpG in critical CTCF binding site 6, of a mutation showing...... polymorphic frequencies. Although a heterogeneous methylation pattern was observed after DNA sequencing modified by sodium bisulfite, the biallelic methylation pattern was confirmed in 9 out of 10 HNSCCs. These findings are likely to be relevant in the epigenetic regulation of the DMR, especially...

  20. Hydrogen/deuterium exchange mass spectrometry reveals specific changes in the local flexibility of plasminogen activator inhibitor 1 upon binding to the somatomedin B domain of vitronectin.

    Science.gov (United States)

    Trelle, Morten Beck; Hirschberg, Daniel; Jansson, Anna; Ploug, Michael; Roepstorff, Peter; Andreasen, Peter A; Jørgensen, Thomas J D

    2012-10-16

    The native fold of plasminogen activator inhibitor 1 (PAI-1) represents an active metastable conformation that spontaneously converts to an inactive latent form. Binding of the somatomedin B domain (SMB) of the endogenous cofactor vitronectin to PAI-1 delays the transition to the latent state and increases the thermal stability of the protein dramatically. We have used hydrogen/deuterium exchange mass spectrometry to assess the inherent structural flexibility of PAI-1 and to monitor the changes induced by SMB binding. Our data show that the PAI-1 core consisting of β-sheet B is rather protected against exchange with the solvent, while the remainder of the molecule is more dynamic. SMB binding causes a pronounced and widespread stabilization of PAI-1 that is not confined to the binding interface with SMB. We further explored the local structural flexibility in a mutationally stabilized PAI-1 variant (14-1B) as well as the effect of stabilizing antibody Mab-1 on wild-type PAI-1. The three modes of stabilizing PAI-1 (SMB, Mab-1, and the mutations in 14-1B) all cause a delayed latency transition, and this effect was accompanied by unique signatures on the flexibility of PAI-1. Reduced flexibility in the region around helices B, C, and I was seen in all three cases, which suggests an involvement of this region in mediating structural flexibility necessary for the latency transition. These data therefore add considerable depth to our current understanding of the local structural flexibility in PAI-1 and provide novel indications of regions that may affect the functional stability of PAI-1.

  1. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids.

    Directory of Open Access Journals (Sweden)

    Flavien Pillet

    Full Text Available Bacterial centromeres-also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA-the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.

  2. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Radka, Christopher D.; DeLucas, Lawrence J.; Wilson, Landon S.; Lawrenz, Matthew B.; Perry, Robert D.; Aller, Stephen G.

    2017-06-30

    Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. InYersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA is polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.

  3. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

    OpenAIRE

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267...

  4. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin; Ye, Sheng; Zhang, Rongguang

    2017-09-01

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.

  5. Binding of the Respiratory Chain Inhibitor Antimycin to theMitochondrial bc1 Complex: A New Crystal Structure Reveals an AlteredIntramolecular Hydrogen-Bonding Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-05-10

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex.Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28Angstrom resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cyt b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alpha-A helix.

  6. Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern.

    Science.gov (United States)

    Huang, Li-Shar; Cobessi, David; Tung, Eric Y; Berry, Edward A

    2005-08-19

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28 A resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cytochrome b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density, the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alphaA helix.

  7. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

    Directory of Open Access Journals (Sweden)

    Julia Asencio-Hernández

    Full Text Available There is growing evidence that bisphenol A (BPA, a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER, estrogen-related receptor (ERR and androgen receptor (AR. BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD, which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules.

  8. The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors.

    Directory of Open Access Journals (Sweden)

    Philip D Townsend

    Full Text Available The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition.

  9. Assay of vitamin B12

    International Nuclear Information System (INIS)

    Tovey, K.C.; Carrick, D.T.

    1982-01-01

    A radioassay is described for vitamin B12 which involves denaturing serum protein binding proteins with alkali. In the denaturation step a dithiopolyol and cyanide are used and in the intrinsic factor assay step a vitamin B12 analogue such as cobinamide is used to bind with any remaining serum proteins. The invention also includes a kit in which the dithiopolyol is provided in admixture with the alkali. The dithiopolyol may be dithiothreitol or dithioerythritol. (author)

  10. Radioligand assay in reproductive biology

    International Nuclear Information System (INIS)

    Korenman, S.G.; Sherman, B.M.

    1975-01-01

    Radioligand assays have been developed for the principal reproductive steroids and peptide hormones. Specific binding reagents have included antibodies, plasma binders, and intracellular receptors. In each assay, problems of specificity, sensitivity, and nonspecific inhibitors were encountered. Many features of the endocrine physiology in childhood, during puberty, and in adulthood have been characterized. Hormonal evaluations of endocrine disorders of reproduction are characterized on the basis of their characteristic pathophysiologic alterations. (U.S.)

  11. Replacing antibodies with modified DNA aptamers in vaccine potency assays.

    Science.gov (United States)

    Trausch, Jeremiah J; Shank-Retzlaff, Mary; Verch, Thorsten

    2017-10-04

    Vaccine in vitro potency assays are vital regulatory tests that are used to confirm the presence and concentration of an antigen of interest in a form that directly or indirectly relates to protective activity in patients. Current assays come in many forms, but they almost exclusively use antibody reagents for selective detection of the target antigen. Antibodies provide specific recognition of vaccine antigens but also exhibit drawbacks such as stability limitations, cost, and lot-to-lot variation, which can make it challenging to maintain the reagent throughout the lifetime of the vaccine. We explored replacing antibodies with aptamers. Aptamers are macromolecules, such as nucleic acids, which can bind to their targets with high specificity and affinity, similar to that of antibodies. Some of the advantages of using aptamers over antibodies is that aptamers can be more stable, smaller, less expensive to produce, synthesized in vitro, and logistically easier to supply throughout the multi-decade lifespan of a commercial vaccine. We created modified DNA aptamers against the common vaccine carrier protein, CRM 197 . Several aptamers were discovered and one was chosen for further characterization. The binding kinetics of the aptamer revealed an off-rate 16-fold slower than anti-CRM 197 antibodies used for comparison. The aptamers were more sensitive than available antibodies in some assay formats and comparable in others. The aptamer epitope was mapped to the receptor-binding domain of CRM 197 , a site adjacent to a known antibody binding site. These data address some key aspects for a path forward in replacing antibodies with aptamers for use as critical reagents in vaccine assays. We further highlight the possibility of using nucleic acid reagents to develop next generation potency assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Crystal complexes of a predicted S-adenosylmethionine-dependent methyltransferase reveal a typical AdoMet binding domain and a substrate recognition domain

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.J.; Ouellette, N.; Evodokimova, E.; Savchenko, A.; Edwards, A.; Anderson, W.F. (Toronto); (NWU)

    2010-03-08

    S-adenosyl-L-methionine-dependent methyltransferases (MTs) are abundant, and highly conserved across phylogeny. These enzymes use the cofactor AdoMet to methylate a wide variety of molecular targets, thereby modulating important cellular and metabolic activities. Thermotoga maritima protein 0872 (TM0872) belongs to a large sequence family of predicted MTs, ranging phylogenetically from relatively simple bacteria to humans. The genes for many of the bacterial homologs are located within operons involved in cell wall synthesis and cell division. Despite preliminary biochemical studies in E. coli and B. subtilis, the substrate specificity of this group of more than 150 proteins is unknown. As part of the Midwest Center for Structural Genomics initiative (www.mcsg.anl.gov), we have determined the structure of TM0872 in complexes with AdoMet and with S-adenosyl-L-homocysteine (AdoHcy). As predicted, TM0872 has a typical MT domain, and binds endogenous AdoMet, or co-crystallized AdoHcy, in a manner consistent with other known MT structures. In addition, TM0872 has a second domain that is novel among MTs in both its location in the sequence and its structure. The second domain likely acts in substrate recognition and binding, and there is a potential substrate-binding cleft spanning the two domains. This long and narrow cleft is lined with positively charged residues which are located opposite the S{sup +}-CH{sub 3} bond, suggesting that a negatively charged molecule might be targeted for catalysis. However, AdoMet and AdoHcy are both buried, and access to the methyl group would presumably require structural rearrangement. These TM0872 crystal structures offer the first structural glimpses at this phylogenetically conserved sequence family.

  13. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  14. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  15. Two distinct allosteric binding sites at α4β2 nicotinic acetylcholine receptors revealed by NS206 and NS9283 give unique insights to binding activity-associated linkage at Cys-loop receptors.

    Science.gov (United States)

    Olsen, Jeppe A; Kastrup, Jette S; Peters, Dan; Gajhede, Michael; Balle, Thomas; Ahring, Philip K

    2013-12-13

    Positive allosteric modulators (PAMs) of α4β2 nicotinic acetylcholine receptors have the potential to improve cognitive function and alleviate pain. However, only a few selective PAMs of α4β2 receptors have been described limiting both pharmacological understanding and drug-discovery efforts. Here, we describe a novel selective PAM of α4β2 receptors, NS206, and compare with a previously reported PAM, NS9283. Using two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, NS206 was observed to positively modulate acetylcholine (ACh)-evoked currents at both known α4β2 stoichiometries (2α:3β and 3α:2β). In the presence of NS206, peak current amplitudes surpassed those of maximal efficacious ACh stimulations (Emax(ACh)) with no or limited effects at potencies and current waveforms (as inspected visually). This pharmacological action contrasted with that of NS9283, which only modulated the 3α:2β receptor and acted by left shifting the ACh concentration-response relationship. Interestingly, the two modulators can act simultaneously in an additive manner at 3α:2β receptors, which results in current levels exceeding Emax(ACh) and a left-shifted ACh concentration-response relationship. Through use of chimeric and point-mutated receptors, the binding site of NS206 was linked to the α4-subunit transmembrane domain, whereas binding of NS9283 was shown to be associated with the αα-interface in 3α:2β receptors. Collectively, these data demonstrate the existence of two distinct modulatory sites in α4β2 receptors with unique pharmacological attributes that can act additively. Several allosteric sites have been identified within the family of Cys-loop receptors and with the present data, a detailed picture of allosteric modulatory mechanisms of these important receptors is emerging.

  16. The chaperone and potential mannan-binding lectin (MBL) co-receptor calreticulin interacts with MBL through the binding site for MBL-associated serine proteases

    DEFF Research Database (Denmark)

    Pagh, Rasmus; Duus, Karen; Laursen, Inga

    2008-01-01

    was immobilized on a solid surface or bound to mannan on a surface. The binding was non-covalent and biphasic with an initial salt-sensitive phase followed by a more stable salt-insensitive interaction. For plasma-derived MBL, known to be complexed with MBL-associated serine proteases (MASPs), no binding...... with calreticulin. Comparative analysis of MBL with complement component C1q, its counterpart of the classical pathway, revealed that they display similar binding characteristics for calreticulin, providing further indication that calreticulin is a common co-receptor/chaperone for both proteins. In conclusion......The chaperone calreticulin has been suggested to function as a C1q and collectin receptor. The interaction of calreticulin with mannan-binding lectin (MBL) was investigated by solid-phase binding assays. Calreticulin showed saturable and time-dependent binding to recombinant MBL, provided that MBL...

  17. Phenylarsine Oxide Binding Reveals Redox-Active and Potential Regulatory Vicinal Thiols on the Catalytic Subunit of Protein Phosphatase 2A

    Science.gov (United States)

    Melideo, Scott L.; Healey, Adriana E.; Lucas, Eugene J.; Koval, Jason A.

    2011-01-01

    Our earlier finding that the activity of protein phosphatase 2A from rat brain is inhibited by micromolar concentrations of the dithiol cross-linking reagent phenylarsine oxide (PAO) has encouraged the hypothesis that the catalytic subunit (PP2Ac) of PP2A contains one or more pairs of closely-spaced (vicinal) thiol pairs that may contribute to regulation of the enzyme. The results of the present study demonstrate using immobilized PAO-affinity chromatography that PP2Ac from rat brain formed stable DTT-sensitive adducts with PAO with or without associated regulatory subunits. In addition, a subset of the PAO-binding vicinal thiols of PP2Ac was readily oxidized to disulfide bonds in vitro. Importantly, a small fraction of PP2Ac was still found to contain disulfide bonds after applying stringent conditions designed to prevent protein disulfide bond formation during homogenization and fractionation of the brains. These findings establish the presence of potentially regulatory and redox-active PAO-binding vicinal thiols on the catalytic subunit of PP2A and suggest that a population of PP2Ac may contain disulfide bonds in vivo. PMID:21080067

  18. Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice

    Science.gov (United States)

    Shimomura, Kazuhiro; Kumar, Vivek; Koike, Nobuya; Kim, Tae-Kyung; Chong, Jason; Buhr, Ethan D; Whiteley, Andrew R; Low, Sharon S; Omura, Chiaki; Fenner, Deborah; Owens, Joseph R; Richards, Marc; Yoo, Seung-Hee; Hong, Hee-Kyung; Vitaterna, Martha H; Bass, Joseph; Pletcher, Mathew T; Wiltshire, Tim; Hogenesch, John; Lowrey, Phillip L; Takahashi, Joseph S

    2013-01-01

    Genetic and molecular approaches have been critical for elucidating the mechanism of the mammalian circadian clock. Here, we demonstrate that the ClockΔ19 mutant behavioral phenotype is significantly modified by mouse strain genetic background. We map a suppressor of the ClockΔ19 mutation to a ∼900 kb interval on mouse chromosome 1 and identify the transcription factor, Usf1, as the responsible gene. A SNP in the promoter of Usf1 causes elevation of its transcript and protein in strains that suppress the Clock mutant phenotype. USF1 competes with the CLOCK:BMAL1 complex for binding to E-box sites in target genes. Saturation binding experiments demonstrate reduced affinity of the CLOCKΔ19:BMAL1 complex for E-box sites, thereby permitting increased USF1 occupancy on a genome-wide basis. We propose that USF1 is an important modulator of molecular and behavioral circadian rhythms in mammals. DOI: http://dx.doi.org/10.7554/eLife.00426.001 PMID:23580255

  19. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids.

    Science.gov (United States)

    Lusher, Scott J; Raaijmakers, Hans C A; Vu-Pham, Diep; Kazemier, Bert; Bosch, Rolien; McGuire, Ross; Azevedo, Rita; Hamersma, Hans; Dechering, Koen; Oubrie, Arthur; van Duin, Marcel; de Vlieg, Jacob

    2012-06-08

    We present here the x-ray structures of the progesterone receptor (PR) in complex with two mixed profile PR modulators whose functional activity results from two differing molecular mechanisms. The structure of Asoprisnil bound to the agonist state of PR demonstrates the contribution of the ligand to increasing stability of the agonist conformation of helix-12 via a specific hydrogen-bond network including Glu(723). This interaction is absent when the full antagonist, RU486, binds to PR. Combined with a previously reported structure of Asoprisnil bound to the antagonist state of the receptor, this structure extends our understanding of the complex molecular interactions underlying the mixed agonist/antagonist profile of the compound. In addition, we present the structure of PR in its agonist conformation bound to the mixed profile compound Org3H whose reduced antagonistic activity and increased agonistic activity compared with reference antagonists is due to an induced fit around Trp(755), resulting in a decreased steric clash with Met(909) but inducing a new internal clash with Val(912) in helix-12. This structure also explains the previously published observation that 16α attachments to RU486 analogs induce mixed profiles by altering the binding of 11β substituents. Together these structures further our understanding of the steric and electrostatic factors that contribute to the function of steroid receptor modulators, providing valuable insight for future compound design.

  20. Crystal Structures of the Helicobacter pylori MTAN Enzyme Reveal Specific Interactions between S-Adenosylhomocysteine and the 5'-Alkylthio Binding Subsite

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Vidhi [Univ. of Toledo, OH (United States); Ronning, Donald R. [Univ. of Toledo, OH (United States)

    2012-11-13

    The bacterial 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) enzyme is a multifunctional enzyme that catalyzes the hydrolysis of the N-ribosidic bond of at least four different adenosine-based metabolites: S-adenosylhomocysteine (SAH), 5'-methylthioadenosine (MTA), 5'-deoxyadenosine (5'-DOA), and 6-amino-6-deoxyfutalosine. These activities place the enzyme at the hub of seven fundamental bacterial metabolic pathways: S-adenosylmethionine (SAM) utilization, polyamine biosynthesis, the purine salvage pathway, the methionine salvage pathway, the SAM radical pathways, autoinducer-2 biosynthesis, and menaquinone biosynthesis. The last pathway makes MTAN essential for Helicobacter pylori viability. Although structures of various bacterial and plant MTANs have been described, the interactions between the homocysteine moiety of SAH and the 5'-alkylthiol binding site of MTAN have never been resolved. We have determined crystal structures of an inactive mutant form of H. pylori MTAN bound to MTA and SAH to 1.63 and 1.20 Å, respectively. The active form of MTAN was also crystallized in the presence of SAH, allowing the determination of the structure of a ternary enzyme–product complex resolved at 1.50 Å. These structures identify interactions between the homocysteine moiety and the 5'-alkylthiol binding site of the enzyme. This information can be leveraged for the development of species-specific MTAN inhibitors that prevent the growth of H. pylori.

  1. Global alteration of the drug-binding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency.

    Science.gov (United States)

    Vahedi, Shahrooz; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-11-01

    P-glycoprotein (P-gp), an ATP-dependent efflux pump, is linked to the development of multidrug resistance in cancer cells. However, the drug-binding sites and translocation pathways of this transporter are not yet well-characterized. We recently demonstrated the important role of tyrosine residues in regulating P-gp ATP hydrolysis via hydrogen bond formations with high affinity modulators. Since tyrosine is both a hydrogen bond donor and acceptor, and non-covalent interactions are key in drug transport, in this study we investigated the global effect of enrichment of tyrosine residues in the drug-binding pocket on the drug binding and transport function of P-gp. By employing computational analysis, 15 conserved residues in the drug-binding pocket of human P-gp that interact with substrates were identified and then substituted with tyrosine, including 11 phenylalanine (F72, F303, F314, F336, F732, F759, F770, F938, F942, F983, F994), two leucine (L339, L975), one isoleucine (I306), and one methionine (M949). Characterization of the tyrosine-rich P-gp mutant in HeLa cells demonstrated that this major alteration in the drug-binding pocket by introducing fifteen additional tyrosine residues is well tolerated and has no measurable effect on total or cell surface expression of this mutant. Although the tyrosine-enriched mutant P-gp could transport small to moderate size (transport large (>1000 Daltons) substrates such as NBD-cyclosporine A, Bodipy-paclitaxel and Bodipy-vinblastine was significantly decreased. This was further supported by the physico-chemical characterization of seventeen tested substrates, which revealed a negative correlation between drug transport and molecular size for the tyrosine-enriched P-gp mutant. Published by Elsevier Inc.

  2. Dynamics of TBP binding to the TATA box

    Science.gov (United States)

    Schluesche, Peter; Heiss, Gregor; Meisterernst, Michael; Lamb, Don C.

    2008-02-01

    Gene expression is highly controlled and regulated in living cells. One of the first steps in gene transcription is recognition of the promoter site by the TATA box Binding Protein (TBP). TBP recruits other transcriptions factors and eventually the RNA polymerase II to transcribe the DNA in mRNA. We developed a single pair Förster Resonance Energy Transfer (spFRET) assay to investigate the mechanism of gene regulation. Here, we apply this assay to investigate the initial binding process of TBP to the adenovirus major late (AdML) promoter site. From the spFRET measurements, we were able to identify two conformations of the TBP-DNA complex that correspond to TBP bound in the correct and the opposite orientation. Increased incubation times or the presence of the transcription factor TFIIA improved the alignment of TBP on the promoter site. Binding of TBP to the TATA box shows a rich dynamics with abrupt transitions between multiple FRET states. A frame-wise histogram analysis revealed the presence of at least six discrete states, showing that TBP binding is more complicated than previously thought. Hence, the spFRET assay is very sensitive to the conformation of the TBP-DNA complex and is very promising tool for investigating the pathway of TBP binding in detail.

  3. Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Au nanoparticles interacting with realistic membranes and explicit solvent using a model system that comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The membrane-AuNP+ binding and membrane reorganization processes are discovered...... to be governed by cooperative effects where AuNP+, counterions, water, and the two membrane leaflets all contribute. On the extracellular side, we find that the nanoparticle has to cross a free energy barrier of about 5 k(B)T prior forming a stable contact with the membrane. This results in a rearrangement......Despite being chemically inert as a bulk material, nanoscale gold can pose harmful side effects to living organisms. In particular, cationic Au nanoparticles (AuNP+) of 2 nm diameter or less permeate readily through plasma membranes and induce cell death. We report atomistic simulations of cationic...

  4. Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16 Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tengchuan; Perry, Andrew; Jiang, Jiansheng; Smith, Patrick; Curry, James A.; Unterholzner, Leonie; Jiang, Zhaozhao; Horvath, Gabor; Rathinam, Vijay A.; Johnstone, Ricky W.; Hornung, Veit; Latz, Eicke; Bowie, Andrew G.; Fitzgerald, Katherine A.; Xiao, T. Sam (UMASS, MED); (Bonn); (Trinity); (PMCI-A); (NIH)

    2012-05-21

    Recognition of DNA by the innate immune system is central to antiviral and antibacterial defenses, as well as an important contributor to autoimmune diseases involving self DNA. AIM2 (absent in melanoma 2) and IFI16 (interferon-inducible protein 16) have been identified as DNA receptors that induce inflammasome formation and interferon production, respectively. Here we present the crystal structures of their HIN domains in complex with double-stranded (ds) DNA. Non-sequence-specific DNA recognition is accomplished through electrostatic attraction between the positively charged HIN domain residues and the dsDNA sugar-phosphate backbone. An intramolecular complex of the AIM2 Pyrin and HIN domains in an autoinhibited state is liberated by DNA binding, which may facilitate the assembly of inflammasomes along the DNA staircase. These findings provide mechanistic insights into dsDNA as the activation trigger and oligomerization platform for the assembly of large innate signaling complexes such as the inflammasomes.

  5. The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage 8a revealed by cryo-electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaofeng [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Walter, Michael H. [Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614 (United States); Paredes, Angel [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Morais, Marc C., E-mail: mcmorais@utmb.edu [Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Liu, Jun, E-mail: Jun.Liu.1@uth.tmc.edu [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States)

    2011-12-20

    The structure of the Bacillus anthracis spore-binding phage 8a was determined by cryo-electron tomography. The phage capsid forms a T = 16 icosahedron attached to a contractile tail via a head-tail connector protein. The tail consists of a six-start helical sheath surrounding a central tail tube, and a structurally novel baseplate at the distal end of the tail that recognizes and attaches to host cells. The parameters of the icosahedral capsid lattice and the helical tail sheath suggest protein folds for the capsid and tail-sheath proteins, respectively, and indicate evolutionary relationships to other dsDNA viruses. Analysis of 2518 intact phage particles show four distinct conformations that likely correspond to four sequential states of the DNA ejection process during infection. Comparison of the four observed conformations suggests a mechanism for DNA ejection, including the molecular basis underlying coordination of tail sheath contraction and genome release from the capsid.

  6. A polyether biotoxin binding site on the lipid-exposed face of the pore domain of Kv channels revealed by the marine toxin gambierol

    Science.gov (United States)

    Kopljar, Ivan; Labro, Alain J.; Cuypers, Eva; Johnson, Henry W. B.; Rainier, Jon D.; Tytgat, Jan; Snyders, Dirk J.

    2009-01-01

    Gambierol is a marine polycyclic ether toxin belonging to the group of ciguatera toxins. It does not activate voltage-gated sodium channels (VGSCs) but inhibits Kv1 potassium channels by an unknown mechanism. While testing whether Kv2, Kv3, and Kv4 channels also serve as targets, we found that Kv3.1 was inhibited with an IC50 of 1.2 ± 0.2 nM, whereas Kv2 and Kv4 channels were insensitive to 1 μM gambierol. Onset of block was similar from either side of the membrane, and gambierol did not compete with internal cavity blockers. The inhibition did not require channel opening and could not be reversed by strong depolarization. Using chimeric Kv3.1–Kv2.1 constructs, the toxin sensitivity was traced to S6, in which T427 was identified as a key determinant. In Kv3.1 homology models, T427 and other molecular determinants (L348, F351) reside in a space between S5 and S6 outside the permeation pathway. In conclusion, we propose that gambierol acts as a gating modifier that binds to the lipid-exposed surface of the pore domain, thereby stabilizing the closed state. This site may be the topological equivalent of the neurotoxin site 5 of VGSCs. Further elucidation of this previously undescribed binding site may explain why most ciguatoxins activate VGSCs, whereas others inhibit voltage-dependent potassium (Kv) channels. This previously undescribed Kv neurotoxin site may have wide implications not only for our understanding of channel function at the molecular level but for future development of drugs to alleviate ciguatera poisoning or to modulate electrical excitability in general. PMID:19482941

  7. Surface Proteome Analysis of a Natural Isolate of Lactococcus lactis Reveals the Presence of Pili Able to Bind Human Intestinal Epithelial Cells*

    Science.gov (United States)

    Meyrand, Mickael; Guillot, Alain; Goin, Mélodie; Furlan, Sylviane; Armalyte, Julija; Kulakauskas, Saulius; Cortes-Perez, Naima G.; Thomas, Ginette; Chat, Sophie; Péchoux, Christine; Dupres, Vincent; Hols, Pascal; Dufrêne, Yves F.; Trugnan, Germain; Chapot-Chartier, Marie-Pierre

    2013-01-01

    Surface proteins of Gram-positive bacteria play crucial roles in bacterial adhesion to host tissues. Regarding commensal or probiotic bacteria, adhesion to intestinal mucosa may promote their persistence in the gastro-intestinal tract and their beneficial effects to the host. In this study, seven Lactococcus lactis strains exhibiting variable surface physico-chemical properties were compared for their adhesion to Caco-2 intestinal epithelial cells. In this test, only one vegetal isolate TIL448 expressed a high-adhesion phenotype. A nonadhesive derivative was obtained by plasmid curing from TIL448, indicating that the adhesion determinants were plasmid-encoded. Surface-exposed proteins in TIL448 were analyzed by a proteomic approach consisting in shaving of the bacterial surface with trypsin and analysis of the released peptides by LC-MS/MS. As the TIL448 complete genome sequence was not available, the tryptic peptides were identified by a mass matching approach against a database including all Lactococcus protein sequences and the sequences deduced from partial DNA sequences of the TIL448 plasmids. Two surface proteins, encoded by plasmids in TIL448, were identified as candidate adhesins, the first one displaying pilin characteristics and the second one containing two mucus-binding domains. Inactivation of the pilin gene abolished adhesion to Caco-2 cells whereas inactivation of the mucus-binding protein gene had no effect on adhesion. The pilin gene is located inside a cluster of four genes encoding two other pilin-like proteins and one class-C sortase. Synthesis of pili was confirmed by immunoblotting detection of high molecular weight forms of pilins associated to the cell wall as well as by electron and atomic force microscopy observations. As a conclusion, surface proteome analysis allowed us to detect pilins at the surface of L. lactis TIL448. Moreover we showed that pili appendages are formed and involved in adhesion to Caco-2 intestinal epithelial cells

  8. Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling.

    Science.gov (United States)

    Lisse, Thomas S; Liu, Ting; Irmler, Martin; Beckers, Johannes; Chen, Hong; Adams, John S; Hewison, Martin

    2011-03-01

    Transcriptional regulation by hormonal 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] involves occupancy of vitamin D response elements (VDREs) by the VDRE binding protein (VDRE-BP) or 1,25(OH)(2)D(3)-bound vitamin D receptor (VDR). This relationship is disrupted by elevated VDRE-BP, causing a form of hereditary vitamin D-resistant rickets (HVDRR). DNA array analysis showed that of 114 genes regulated by 1,25(OH)(2)D(3) in control cells, almost all (113) were rendered insensitive to the hormone in VDRE-BP-overexpressing HVDRR cells. Among these was the gene for DNA-damage-inducible transcript 4 (DDIT4), an inhibitor of mammalian target of rapamycin (mTOR) signaling. Chromatin immunoprecipitation PCR using 1,25(OH)(2)D(3)-treated osteoblasts confirmed that VDR and VDRE-BP compete for binding to the DDIT4 gene promoter. Expression of DDIT4 mRNA in these cells was induced (1.6-6 fold) by 1,25(OH)(2)D(3) (10-100 nM), and Western blot and flow cytometry analysis showed that this response involved suppression of phosphorylated S6K1(T389) (a downstream target of mTOR) similar to rapamycin treatment. siRNA knockdown of DDIT4 completely abrogated antiproliferative responses to 1,25(OH)(2)D(3), whereas overexpression of VDRE-BP exerted a dominant-negative effect on transcription of 1,25(OH)(2)D(3)-target genes. DDIT4, an inhibitor of mTOR signaling, is a direct target for 1,25(OH)(2)D(3) and VDRE-BP, and functions to suppress cell proliferation in response to vitamin D.

  9. Potent and selective small-molecule inhibitors of cIAP1/2 proteins reveal that the binding of Smac mimetics to XIAP BIR3 is not required for their effective induction of cell death in tumor cells.

    Science.gov (United States)

    Sun, Haiying; Lu, Jianfeng; Liu, Liu; Yang, Chao-Yie; Wang, Shaomeng

    2014-04-18

    Cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2) and X-linked inhibitor of apoptosis protein (XIAP) are key apoptosis regulators and promising new cancer therapeutic targets. This study describes a set of non-peptide, small-molecule Smac (second mitochondria-derived activator of caspases) mimetics that are selective inhibitors of cIAP1/2 over XIAP. The most potent and most selective compounds bind to cIAP1/2 with affinities in the low nanomolar range and show >1,000-fold selectivity for cIAP1 over XIAP. These selective cIAP inhibitors effectively induce degradation of the cIAP1 protein in cancer cells at low nanomolar concentrations and do not antagonize XIAP in a cell-free functional assay. They potently inhibit cell growth and effectively induce apoptosis at low nanomolar concentrations in cancer cells with a mechanism of action similar to that of other known Smac mimetics. Our study shows that binding of Smac mimetics to XIAP BIR3 is not required for effective induction of apoptosis in tumor cells by Smac mimetics. These potent and highly selective cIAP1/2 inhibitors are powerful tools in the investigation of the role of these IAP proteins in the regulation of apoptosis and other cellular processes.

  10. binding protein (HABP1)

    Indian Academy of Sciences (India)

    Unknown

    adsorbed on carbon coated copper grid (400 mesh) for. 5 min at room temperature. The grids were subsequently .... and inhibition by GAGs and DMA were determined on polystyrene wells of microtitre plates (Costar, ... for binding inhibition assays was carried out by mixing equal volumes of the conjugate and the inhibitor at ...

  11. STRUCTURE AND FUNCTION OF PALLADIN’S ACTIN BINDING DOMAIN

    Science.gov (United States)

    Beck, Moriah R.; Dixon, Richard D.S.; Goicoechea, Silvia M.; Murphy, Grant S.; Brungardt, Joseph G.; Beam, Matthew T.; Srinath, Pavan; Patel, Julie; Mohiuddin, Jahan; Otey, Carol A.; Campbell, Sharon L.

    2013-01-01

    Here we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct F-actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and crosslinking. Sedimentation equilibrium assays indicate that the Ig3 domain of palladin does not self-associate. These combined data are consistent with an actin crosslinking mechanism that involves concurrent attachment of two actin filaments by a single palladin molecule by an electrostatic mechanism. Palladin mutations that disrupt actin binding show altered cellular distributions and morphology of actin in cells, revealing a functional requirement for the interaction between palladin and actin in vivo. PMID:23806659

  12. Radioreceptor assays

    International Nuclear Information System (INIS)

    Lapka, R.

    1985-01-01

    Radioreceptor assay (RRA) is an analytical method using the specific interaction of some pharmaceuticals and endogenic substances (ligands) with specific receptors present in certin tissues of living organisms. RRA uses the principle of isotope dilution. The method is described in detail of the preparation of receptors, samples and radioligands, conditions of incubation, the separation of free and bound radioligand, and the mathematical evaluation of RRA. The sensitivity of RRA is measured in units to tens of pg. The specificity of RRA relates to a group of substances with similar pharmacological effect. RRA may be used for identifying neuroleptics, antidepressants, anxiolytics, ergot alkaloids, beta blockers, anticholinergic drugs, certain hormones and neuropeptides. (M.D.)

  13. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution.

    Science.gov (United States)

    Liu, Yan-Yan; Yang, Ke-Zhen; Wei, Xiao-Xin; Wang, Xiao-Quan

    2016-11-01

    Angiosperms and gymnosperms are two major groups of extant seed plants. It has been suggested that gymnosperms lack FLOWERING LOCUS T (FT), a key integrator at the core of flowering pathways in angiosperms. Taking advantage of newly released gymnosperm genomes, we revisited the evolutionary history of the plant phosphatidylethanolamine-binding protein (PEBP) gene family through phylogenetic reconstruction. Expression patterns in three gymnosperm taxa and heterologous expression in Arabidopsis were studied to investigate the functions of gymnosperm FT-like and TERMINAL FLOWER 1 (TFL1)-like genes. Phylogenetic reconstruction suggests that an ancient gene duplication predating the divergence of seed plants gave rise to the FT and TFL1 genes. Expression patterns indicate that gymnosperm TFL1-like genes play a role in the reproductive development process, while GymFT1 and GymFT2, the FT-like genes resulting from a duplication event in the common ancestor of gymnosperms, function in both growth rhythm and sexual development pathways. When expressed in Arabidopsis, both spruce FT-like and TFL1-like genes repressed flowering. Our study demonstrates that gymnosperms do have FT-like and TFL1-like genes. Frequent gene and genome duplications contributed significantly to the expansion of the plant PEBP gene family. The expression patterns of gymnosperm PEBP genes provide novel insight into the functional evolution of this gene family. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Origin of the stereospecificity in binding hydroxamates of alpha- and beta-phenylalanine methylamide to thermolysin revealed by the X-ray crystallographic study.

    Science.gov (United States)

    Kim, Seung-Jun; Kim, Dong H; Park, Jung Dae; Woo, Joo-Rang; Jin, Yonghao; Ryu, Seong Eon

    2003-05-29

    Optically active N-formyl-N-hydroxy-alpha-phenylalanine methylamide (1) and N-formyl-N-hydroxy-beta-phenylalanine methylamide (2) were evaluated as inhibitors for thermolysin (TLN) to find that while the D-form is more potent than its enantiomer in the case of the hydroxamate of alpha-Phe-NHMe, in the inhibition with hydroxamate of beta-Phe-NHMe, the L-isomer (K(i)=1.66+/-0.05 microM) is more effective than its enantiomer. In order to shed light on the stereochemical preference observed in the inhibitions, X-ray crystallographic analyses of the crystalline TLN.D-1 and TLN.L-2 complexes were performed to the resolution of 2.1A. While L-2 binds TLN like substrate does with its benzyl aromatic ring occupying the S(1)' pocket, the electron density in the S(1)' pocket in the complex of TLN.D-1 is weak and could best be accounted for by the methylcarbamoyl moiety. For both inhibitors, the hydroxamate moiety coordinates the active site zinc ion in a bidentate fashion.

  15. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Kristin N., E-mail: kparent@msu.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Tang, Jinghua; Cardone, Giovanni [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Gilcrease, Eddie B. [University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112 (United States); Janssen, Mandy E.; Olson, Norman H. [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Casjens, Sherwood R., E-mail: sherwood.casjens@path.utah.edu [University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112 (United States); Baker, Timothy S., E-mail: tsb@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); University of California, San Diego, Division of Biological Sciences, La Jolla, CA, 92093 (United States)

    2014-09-15

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer.

  16. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    International Nuclear Information System (INIS)

    Parent, Kristin N.; Tang, Jinghua; Cardone, Giovanni; Gilcrease, Eddie B.; Janssen, Mandy E.; Olson, Norman H.; Casjens, Sherwood R.; Baker, Timothy S.

    2014-01-01

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer

  17. Structures of The HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of The AIM2 Inflammasome and IFI16 Receptor

    Science.gov (United States)

    Jin, Tengchuan; Perry, Andrew; Jiang, Jiansheng; Smith, Patrick; Curry, James A.; Unterholzner, Leonie; Jiang, Zhaozhao; Horvath, Gabor; Rathinam, Vijay; Johnstone, Ricky W.; Hornung, Veit; Latz, Eicke; Bowie, Andrew G.; Fitzgerald, Katherine A.; Xiao, T. Sam

    2012-01-01

    SUMMARY Recognition of DNA by the innate immune system is central to anti-viral and anti-bacterial defenses, as well as an important contributor to autoimmune diseases involving self DNA. AIM2 (absent in melanoma 2) and IFI16 (interferon-inducible protein 16) have been identified as DNA receptors that induce inflammasome formation and interferon production, respectively. Here we present the crystal structures of their HIN domains in complex with double-stranded (ds) DNA. Non-sequence specific DNA recognition is accomplished through electrostatic attraction between the positively charged HIN domain residues and the dsDNA sugar-phosphate backbone. An intramolecular complex of the AIM2 Pyrin and HIN domains in an autoinhibited state is liberated by DNA binding, which may facilitate the assembly of inflammasomes along the DNA staircase. These findings provide novel mechanistic insights into dsDNA as the activation trigger and oligomerization platform for the assembly of large innate signaling complexes such as the inflammasomes. PMID:22483801

  18. Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Rawlings, Neil D.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-Andre; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A. (SG); (Wellcome)

    2012-07-11

    NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, 'closed' conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6) identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes.

  19. Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus

    Science.gov (United States)

    Scorsato, Valéria; Lima, Tatiani B.; Righetto, Germanna L.; Zanchin, Nilson I. T.; Brandão-Neto, José; Sandy, James; Pereira, Humberto D.'Muniz; Ferrari, Állan J. R.; Gozzo, Fabio C.; Smetana, Juliana H. C.; Aparicio, Ricardo

    2016-08-01

    TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase’s active site, providing a structural framework for the function of TIPRL in PP2A inhibition.

  20. Desenvolvimento de ensaio imunofluorométrico para a medida da globulina ligadora de tiroxina (thyroxine-binding globulin, TBG e sua aplicação em casos de deficiência desta proteína Development of an immunofluorometric assay for thyroxine-binding globulin (TBG and its application in cases of protein deficiency

    Directory of Open Access Journals (Sweden)

    José Gilberto H. Vieira

    2002-01-01

    Full Text Available A globulina ligadora de tiroxina (thyroxine-binding globulin, TBG é a principal transportadora de hormônios tiroidianos no soro. Variações na concentração sérica de TBG determinam variações proporcionais nas concentrações séricas totais de T4 e T3, sem implicar alterações de função, desde que a fração livre permaneça normal. Várias condições clínicas comuns levam a alterações significativas nos níveis de TBG, sendo as variações mais importantes devidas a defeitos genéticos. Como a TBG é codificada por gene localizado no cromossomo X, os defeitos se manifestam mais facilmente no sexo masculino. Descrevemos o desenvolvimento de ensaio imunofluorométrico para a medida de TBG com base em anticorpos monoclonais, sendo um desenvolvido em nosso laboratório e outro comercial. O método apresenta sensibilidade de 0,8mg/l e coeficientes de variação intra e interensaio inferiores a 10%. O estudo comparativo com método comercial mostrou alta correlação (r = 0,93; n = 48, sendo os valores normais obtidos de 10mg/l a 29mg/l. Estudamos também 20 indivíduos portadores de deficiência congênita de TBG, 19 homens e uma mulher, que apresentavam valores normais de TSH e baixos de T4 total; em todos eles os níveis de TBG foram indetectáveis. Já os níveis de T4 livre medidos por método indireto em 16 desses indivíduos mostraram-se elevados em todos, ao passo que, quando medidos por método direto pós-diálise nos quatro restantes, mostraram-se normais. Nossos resultados reforçam a necessidade prática da disponibilidade de ensaio para a medida de TBG para esclarecimento e definição diagnóstica de alguns casos especiais, principalmente quando o ensaio de T4 livre direto, pós-diálise, não é disponível.Thyroxine-binding globulin (TBG is the main responsible for serum thyroid hormone transport. Serum variations in TBG concentrations determine proportional variations in serum total T4 and T3 concentrations, without

  1. Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns1

    Science.gov (United States)

    Shao, Zhu-Qing; Xue, Jia-Yu; Wu, Ping; Zhang, Yan-Mei; Wu, Yue; Hang, Yue-Yu; Wang, Bin; Chen, Jian-Qun

    2016-01-01

    Nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes make up the largest plant disease resistance gene family (R genes), with hundreds of copies occurring in individual angiosperm genomes. However, the expansion history of NBS-LRR genes during angiosperm evolution is largely unknown. By identifying more than 6,000 NBS-LRR genes in 22 representative angiosperms and reconstructing their phylogenies, we present a potential framework of NBS-LRR gene evolution in the angiosperm. Three anciently diverged NBS-LRR classes (TNLs, CNLs, and RNLs) were distinguished with unique exon-intron structures and DNA motif sequences. A total of seven ancient TNL, 14 CNL, and two RNL lineages were discovered in the ancestral angiosperm, from which all current NBS-LRR gene repertoires were evolved. A pattern of gradual expansion during the first 100 million years of evolution of the angiosperm clade was observed for CNLs. TNL numbers remained stable during this period but were eventually deleted in three divergent angiosperm lineages. We inferred that an intense expansion of both TNL and CNL genes started from the Cretaceous-Paleogene boundary. Because dramatic environmental changes and an explosion in fungal diversity occurred during this period, the observed expansions of R genes probably reflect convergent adaptive responses of various angiosperm families. An ancient whole-genome duplication event that occurred in an angiosperm ancestor resulted in two RNL lineages, which were conservatively evolved and acted as scaffold proteins for defense signal transduction. Overall, the reconstructed framework of angiosperm NBS-LRR gene evolution in this study may serve as a fundamental reference for better understanding angiosperm NBS-LRR genes. PMID:26839128

  2. Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns.

    Science.gov (United States)

    Shao, Zhu-Qing; Xue, Jia-Yu; Wu, Ping; Zhang, Yan-Mei; Wu, Yue; Hang, Yue-Yu; Wang, Bin; Chen, Jian-Qun

    2016-04-01

    Nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes make up the largest plant disease resistance gene family (R genes), with hundreds of copies occurring in individual angiosperm genomes. However, the expansion history of NBS-LRR genes during angiosperm evolution is largely unknown. By identifying more than 6,000 NBS-LRR genes in 22 representative angiosperms and reconstructing their phylogenies, we present a potential framework of NBS-LRR gene evolution in the angiosperm. Three anciently diverged NBS-LRR classes (TNLs, CNLs, and RNLs) were distinguished with unique exon-intron structures and DNA motif sequences. A total of seven ancient TNL, 14 CNL, and two RNL lineages were discovered in the ancestral angiosperm, from which all current NBS-LRR gene repertoires were evolved. A pattern of gradual expansion during the first 100 million years of evolution of the angiosperm clade was observed for CNLs. TNL numbers remained stable during this period but were eventually deleted in three divergent angiosperm lineages. We inferred that an intense expansion of both TNL and CNL genes started from the Cretaceous-Paleogene boundary. Because dramatic environmental changes and an explosion in fungal diversity occurred during this period, the observed expansions of R genes probably reflect convergent adaptive responses of various angiosperm families. An ancient whole-genome duplication event that occurred in an angiosperm ancestor resulted in two RNL lineages, which were conservatively evolved and acted as scaffold proteins for defense signal transduction. Overall, the reconstructed framework of angiosperm NBS-LRR gene evolution in this study may serve as a fundamental reference for better understanding angiosperm NBS-LRR genes. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways1[OPEN

    Science.gov (United States)

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Doubský, Jan; Schneeberger, Korbinian; Schulze-Lefert, Paul

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes. PMID:26023163

  4. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains.

    Directory of Open Access Journals (Sweden)

    Didier Menard

    2013-11-01

    Full Text Available Plasmodium vivax is the most prevalent human malaria parasite, causing serious public health problems in malaria-endemic countries. Until recently the Duffy-negative blood group phenotype was considered to confer resistance to vivax malaria for most African ethnicities. We and others have reported that P. vivax strains in African countries from Madagascar to Mauritania display capacity to cause clinical vivax malaria in Duffy-negative people. New insights must now explain Duffy-independent P. vivax invasion of human erythrocytes.Through recent whole genome sequencing we obtained ≥ 70× coverage of the P. vivax genome from five field-isolates, resulting in ≥ 93% of the Sal I reference sequenced at coverage greater than 20×. Combined with sequences from one additional Malagasy field isolate and from five monkey-adapted strains, we describe here identification of DNA sequence rearrangements in the P. vivax genome, including discovery of a duplication of the P. vivax Duffy binding protein (PvDBP gene. A survey of Malagasy patients infected with P. vivax showed that the PvDBP duplication was present in numerous locations in Madagascar and found in over 50% of infected patients evaluated. Extended geographic surveys showed that the PvDBP duplication was detected frequently in vivax patients living in East Africa and in some residents of non-African P. vivax-endemic countries. Additionally, the PvDBP duplication was observed in travelers seeking treatment of vivax malaria upon returning home. PvDBP duplication prevalence was highest in west-central Madagascar sites where the highest frequencies of P. vivax-infected, Duffy-negative people were reported.The highly conserved nature of the sequence involved in the PvDBP duplication suggests that it has occurred in a recent evolutionary time frame. These data suggest that PvDBP, a merozoite surface protein involved in red cell adhesion is rapidly evolving, possibly in response to constraints imposed by

  5. NMR studies of the fifth transmembrane segment of Na+,K+-ATPase reveals a non-helical ion-binding region

    DEFF Research Database (Denmark)

    Underhaug, Jarl; Jakobsen, Louise Odgaard; Esmann, Mikael

    2006-01-01

    The structure of a synthetic peptide corresponding to the fifth membrane-spanning segment (M5) in Na(+),K(+)-ATPase in sodium dodecyl sulfate (SDS) micelles was determined using liquid-state nuclear magnetic resonance (NMR) spectroscopy. The spectra reveal that this peptide is substantially less...... transmembrane element of the Ca(2+)-ATPase. Furthermore, this region spans the residues implicated in Na(+) and K(+) transport, where they are likely to offer the flexibility needed to coordinate Na(+) as well as K(+) during active transport....... alpha-helical than the corresponding M5 peptide of Ca(2+)-ATPase. A well-defined alpha-helix is shown in the C-terminal half of the peptide. Apart from a short helical stretch at the N-terminus, the N-terminal half contains a non-helical region with two proline residues and sequence similarity to a non-structured...

  6. Crystal Structures of Beryllium Fluoride-Free and Beryllium Fluoride-Bound CheY in Complex with the Conserved C-Terminal Peptide of CheZ Reveal Dual Binding Modes Specific to CheY Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Guhaniyogi,J.; Robinson, V.; Stock, A.

    2006-01-01

    Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZ{sub C}), an indispensable structural component of the functional CheZ protein. To understand how the CheZ{sub C} helix, representing less than 10% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ{sub 200-214}) at resolutions ranging from 2.0 Angstroms to 2.3 Angstroms. These structures provide a detailed view of the CheZC peptide interaction both in the presence and absence of the phosphoryl analog, BeF{sub 3}{sup -}. Our studies reveal that two different modes of binding the CheZ{sub 200-214} peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ{sub C} helix binds to a 'meta-active' conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains.

  7. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Zulezwan A. Malik

    2013-12-01

    Full Text Available Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC coupled to mass spectrometry (MS affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group bred as either high- or low-capacity runners (HCR and LCR, respectively that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001 in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897 and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5. Sixteen proteins were significantly (p < 0.05 more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH was 1

  8. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.

    Directory of Open Access Journals (Sweden)

    Andrea D Coviello

    Full Text Available Sex hormone-binding globulin (SHBG is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8 × 10(-106, PRMT6 (rs17496332, 1p13.3, p = 1.4 × 10(-11, GCKR (rs780093, 2p23.3, p = 2.2 × 10(-16, ZBTB10 (rs440837, 8q21.13, p = 3.4 × 10(-09, JMJD1C (rs7910927, 10q21.3, p = 6.1 × 10(-35, SLCO1B1 (rs4149056, 12p12.1, p = 1.9 × 10(-08, NR2F2 (rs8023580, 15q26.2, p = 8.3 × 10(-12, ZNF652 (rs2411984, 17q21.32, p = 3.5 × 10(-14, TDGF3 (rs1573036, Xq22.3, p = 4.1 × 10(-14, LHCGR (rs10454142, 2p16.3, p = 1.3 × 10(-07, BAIAP2L1 (rs3779195, 7q21.3, p = 2.7 × 10(-08, and UGT2B15 (rs293428, 4q13.2, p = 5.5 × 10(-06. These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5 × 10(-08, women p = 0.66, heterogeneity p = 0.003. Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion

  9. Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    Directory of Open Access Journals (Sweden)

    Lehrer Robert I

    2002-03-01

    Full Text Available Abstract Background Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1 sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. Methods The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore. Results The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 μg/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 μg/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. Conclusion These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS.