WorldWideScience

Sample records for binding affinity prediction

  1. AB-Bind: Antibody binding mutational database for computational affinity predictions.

    Science.gov (United States)

    Sirin, Sarah; Apgar, James R; Bennett, Eric M; Keating, Amy E

    2016-02-01

    Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction. PMID:26473627

  2. Blind prediction of host-guest binding affinities: A new SAMPL3 challenge

    OpenAIRE

    Muddana, Hari S.; Varnado, C. Daniel; Bielawski, Christopher W.; Urbach, Adam R.; Isaacs, Lyle; Geballe, Matthew T; Gilson, Michael K.

    2012-01-01

    The computational prediction of protein-ligand binding affinities is of central interest in early-stage drug-discovery, and there is a widely recognized need for improved methods. Low molecular weight receptors and their ligands—i.e. host-guest systems – represent valuable test-beds for such affinity prediction methods, because their small size makes for fast calculations and relatively facile numerical convergence. The SAMPL3 community exercise included the first ever blind prediction challe...

  3. A 3D-QSAR-driven approach to binding mode and affinity prediction

    DEFF Research Database (Denmark)

    Tosco, Paolo; Balle, Thomas

    2012-01-01

    A method for predicting the binding mode of a series of ligands is proposed. The procedure relies on three-dimensional quantitative structure-activity relationships (3D-QSAR) and does not require structural knowledge of the binding site. Candidate alignments are automatically built and ranked...... according to a consensus scoring function. 3D-QSAR analysis based on the selected binding mode enables affinity prediction of new drug candidates having less than 10 rotatable bonds....

  4. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.

    Science.gov (United States)

    Jain, Tarun; Jayaram, B

    2007-06-01

    Zinc is one of the most important metal ions found in proteins performing specific functions associated with life processes. Coordination geometry of the zinc ion in the active site of the metalloprotein-ligand complexes poses a challenge in determining ligand binding affinities accurately in structure-based drug design. We report here an all atom force field based computational protocol for estimating rapidly the binding affinities of zinc containing metalloprotein-ligand complexes, considering electrostatics, van der Waals, hydrophobicity, and loss in conformational entropy of protein side chains upon ligand binding along with a nonbonded approach to model the interactions of the zinc ion with all the other atoms of the complex. We examined the sensitivity of the binding affinity predictions to the choice of Lennard-Jones parameters, partial atomic charges, and dielectric treatments adopted for system preparation and scoring. The highest correlation obtained was R2 = 0.77 (r = 0.88) for the predicted binding affinity against the experiment on a heterogenous dataset of 90 zinc containing metalloprotein-ligand complexes consisting of five unique protein targets. Model validation and parameter analysis studies underscore the robustness and predictive ability of the scoring function. The high correlation obtained suggests the potential applicability of the methodology in designing novel ligands for zinc-metalloproteins. The scoring function has been web enabled for free access at www.scfbio-iitd.res.in/software/drugdesign/bapplz.jsp as BAPPL-Z server (Binding Affinity Prediction of Protein-Ligand complexes containing Zinc metal ions).

  5. Prediction of SAMPL3 Host-Guest Affinities with the Binding Energy Distribution Analysis Method (BEDAM)

    OpenAIRE

    Gallicchio, Emilio; Ronald M Levy

    2012-01-01

    BEDAM calculations are described to predict the free energies of binding of a series of anaesthetic drugs to a recently characterized acyclic cucurbituril host. The modeling predictions, conducted as part of the SAMPL3 host-guest affinity blind challenge, are generally in good quantitative agreement with the experimental measurements. The correlation coefficient between computed and measured binding free energies is 70% with high statistical significance. Multiple conformational stereoisomers...

  6. Predicting the Impact of Missense Mutations on Protein-Protein Binding Affinity.

    Science.gov (United States)

    Li, Minghui; Petukh, Marharyta; Alexov, Emil; Panchenko, Anna R

    2014-04-01

    The crucial prerequisite for proper biological function is the protein's ability to establish highly selective interactions with macromolecular partners. A missense mutation that alters the protein binding affinity may cause significant perturbations or complete abolishment of the function, potentially leading to diseases. The availability of computational methods to evaluate the impact of mutations on protein-protein binding is critical for a wide range of biomedical applications. Here, we report an efficient computational approach for predicting the effect of single and multiple missense mutations on protein-protein binding affinity. It is based on a well-tested simulation protocol for structure minimization, modified MM-PBSA and statistical scoring energy functions with parameters optimized on experimental sets of several thousands of mutations. Our simulation protocol yields very good agreement between predicted and experimental values with Pearson correlation coefficients of 0.69 and 0.63 and root-mean-square errors of 1.20 and 1.90 kcal mol(-1) for single and multiple mutations, respectively. Compared with other available methods, our approach achieves high speed and prediction accuracy and can be applied to large datasets generated by modern genomics initiatives. In addition, we report a crucial role of water model and the polar solvation energy in estimating the changes in binding affinity. Our analysis also reveals that prediction accuracy and effect of mutations on binding strongly depends on the type of mutation and its location in a protein complex. PMID:24803870

  7. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction

    Directory of Open Access Journals (Sweden)

    Wang Renxiao

    2010-04-01

    Full Text Available Abstract Background Current scoring functions are not very successful in protein-ligand binding affinity prediction albeit their popularity in structure-based drug designs. Here, we propose a general knowledge-guided scoring (KGS strategy to tackle this problem. Our KGS strategy computes the binding constant of a given protein-ligand complex based on the known binding constant of an appropriate reference complex. A good training set that includes a sufficient number of protein-ligand complexes with known binding data needs to be supplied for finding the reference complex. The reference complex is required to share a similar pattern of key protein-ligand interactions to that of the complex of interest. Thus, some uncertain factors in protein-ligand binding may cancel out, resulting in a more accurate prediction of absolute binding constants. Results In our study, an automatic algorithm was developed for summarizing key protein-ligand interactions as a pharmacophore model and identifying the reference complex with a maximal similarity to the query complex. Our KGS strategy was evaluated in combination with two scoring functions (X-Score and PLP on three test sets, containing 112 HIV protease complexes, 44 carbonic anhydrase complexes, and 73 trypsin complexes, respectively. Our results obtained on crystal structures as well as computer-generated docking poses indicated that application of the KGS strategy produced more accurate predictions especially when X-Score or PLP alone did not perform well. Conclusions Compared to other targeted scoring functions, our KGS strategy does not require any re-parameterization or modification on current scoring methods, and its application is not tied to certain systems. The effectiveness of our KGS strategy is in theory proportional to the ever-increasing knowledge of experimental protein-ligand binding data. Our KGS strategy may serve as a more practical remedy for current scoring functions to improve their

  8. Advances and applications of binding affinity prediction methods in drug discovery.

    Science.gov (United States)

    Parenti, Marco Daniele; Rastelli, Giulio

    2012-01-01

    Nowadays, the improvement of R&D productivity is the primary commitment in pharmaceutical research, both in big pharma and smaller biotech companies. To reduce costs, to speed up the discovery process and to increase the chance of success, advanced methods of rational drug design are very helpful, as demonstrated by several successful applications. Among these, computational methods able to predict the binding affinity of small molecules to specific biological targets are of special interest because they can accelerate the discovery of new hit compounds. Here we provide an overview of the most widely used methods in the field of binding affinity prediction, as well as of our own work in developing BEAR, an innovative methodology specifically devised to overtake some limitations in existing approaches. The BEAR method was successfully validated against different biological targets, and proved its efficacy in retrieving active compounds from virtual screening campaigns. The results obtained so far indicate that BEAR may become a leading tool in the drug discovery pipeline. We primarily discuss advantages and drawbacks of each technique and show relevant examples and applications in drug discovery.

  9. Prediction of SAMPL3 Host-Guest Binding Affinities: Evaluating the Accuracy of Generalized Force-Fields

    OpenAIRE

    Muddana, Hari S.; Gilson, Michael K.

    2012-01-01

    We used the second-generation mining minima method (M2) to compute the binding affinities of the novel host-guest complexes in the SAMPL3 blind prediction challenge. The predictions were in poor agreement with experiment, and we conjectured that much of the error might derive from the force field, CHARMm with Vcharge charges. Repeating the calculations with other generalized force-fields led to no significant improvement, and we observed that the predicted affinities were highly sensitive to ...

  10. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    Science.gov (United States)

    Brylinski, Michal

    2013-11-25

    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely

  11. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    Science.gov (United States)

    Brylinski, Michal

    2013-11-25

    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely

  12. Comparison of Performance of Docking, LIE, Metadynamics and QSAR in Predicting Binding Affinity of Benzenesulfonamides.

    Science.gov (United States)

    Raškevičius, Vytautas; Kairys, Visvaldas

    2015-01-01

    The design of inhibitors specific for one relevant carbonic anhydrase isozyme is the major challenge in the new therapeutic agents development. Comparative computational chemical structure and biological activity relationship studies on a series of carbonic anhydrase II inhibitors, benzenesulfonamide derivatives, bearing pyrimidine moieties are reported in this paper using docking, Linear Interaction Energy (LIE), Metadynamics and Quantitative Structure Activity Relationship (QSAR) methods. The computed binding affinities were compared with the experimental data with the goal to explore strengths and weaknesses of various approaches applied to the investigated carbonic anhydrase/inhibitor system. From the tested methods initially only QSAR showed promising results (R2=0.83-0.89 between experimentally determined versus predicted pKd values.). Possible reasons for this performance were discussed. A modification of the LIE method was suggested which used an alternative LIE-like equation yielding significantly improved results (R2 between the experimentally determined versus the predicted ΔG(bind) improved from 0.24 to 0.50).

  13. Predicting the Impact of Missense Mutations on Protein–Protein Binding Affinity

    OpenAIRE

    Li, Minghui; Petukh, Marharyta; Alexov, Emil; Panchenko, Anna R

    2014-01-01

    The crucial prerequisite for proper biological function is the protein’s ability to establish highly selective interactions with macromolecular partners. A missense mutation that alters the protein binding affinity may cause significant perturbations or complete abolishment of the function, potentially leading to diseases. The availability of computational methods to evaluate the impact of mutations on protein–protein binding is critical for a wide range of biomedical applications. Here, we r...

  14. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2007-07-01

    Full Text Available Abstract Background Antigen presenting cells (APCs sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR, we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion

  15. Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest

    Directory of Open Access Journals (Sweden)

    Hongjian Li

    2015-06-01

    Full Text Available Docking scoring functions can be used to predict the strength of protein-ligand binding. It is widely believed that training a scoring function with low-quality data is detrimental for its predictive performance. Nevertheless, there is a surprising lack of systematic validation experiments in support of this hypothesis. In this study, we investigated to which extent training a scoring function with data containing low-quality structural and binding data is detrimental for predictive performance. We actually found that low-quality data is not only non-detrimental, but beneficial for the predictive performance of machine-learning scoring functions, though the improvement is less important than that coming from high-quality data. Furthermore, we observed that classical scoring functions are not able to effectively exploit data beyond an early threshold, regardless of its quality. This demonstrates that exploiting a larger data volume is more important for the performance of machine-learning scoring functions than restricting to a smaller set of higher data quality.

  16. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    Science.gov (United States)

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications.

  17. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    International Nuclear Information System (INIS)

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2 = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2 = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables prediction of both

  18. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Politi, Regina [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States); Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  19. Ligand-induced conformational changes: Improved predictions of ligand binding conformations and affinities

    DEFF Research Database (Denmark)

    Frimurer, T.M.; Peters, Günther H.J.; Iversen, L.F.;

    2003-01-01

    A computational docking strategy using multiple conformations of the target protein is discussed and evaluated. A series of low molecular weight, competitive, nonpeptide protein tyrosine phosphatase inhibitors are considered for which the x-ray crystallographic structures in complex with protein...... tyrosine phosphatase 1 B (PTP1B) are known. To obtain a quantitative measure of the impact of conformational changes induced by the inhibitors, these were docked to the active site region of various structures of PTP1B using the docking program FlexX. Firstly, the inhibitors were docked to a PTP1B crystal...... with low estimated binding energies corresponded to relatively large RMS differences when aligned with the corresponding crystal structure. Secondly, the inhibitors were docked to their parent protein structures in which they were cocrystallized. In this case, there was a good correlation between low...

  20. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Karosiene, Edita; Rasmussen, Michael;

    2015-01-01

    A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized ...

  1. High-Throughput Melanin-Binding Affinity and In Silico Methods to Aid in the Prediction of Drug Exposure in Ocular Tissue.

    Science.gov (United States)

    Reilly, John; Williams, Sarah L; Forster, Cornelia J; Kansara, Viral; End, Peter; Serrano-Wu, Michael H

    2015-12-01

    Drugs possessing the ability to bind to melanin-rich tissue, such as the eye, are linked with higher ocular exposure, and therefore have the potential to affect the efficacy and safety profiles of therapeutics. A high-throughput melanin chromatographic affinity assay has been developed and validated, which has allowed the rapid melanin affinity assessment for a large number of compounds. Melanin affinity of compounds can be quickly assigned as low, medium, or high melanin binders. A high-throughput chromatographic method has been developed and fully validated to assess melanin affinity of pharmaceuticals and has been useful in predicting ocular tissue distribution in vivo studies. The high-throughput experimental approach has also allowed for a specific training set of 263 molecules for a quantitative structure-affinity relationships (QSAR) method to be developed, which has also been shown to be a predictor of ocular tissue exposure. Previous studies have reported the development of in silico QSAR models based on training sets of relatively small and mostly similar compounds; this model covers a broader range of melanin-binding affinities than what has been previously published and identified several physiochemical descriptors to be considered in the design of compounds where melanin-binding modulation is desired.

  2. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic...... benchmark data set, and SMM-align prediction method (NetMHCII) are made publicly available....

  3. Methods for Improving Aptamer Binding Affinity

    OpenAIRE

    Hijiri Hasegawa; Nasa Savory; Koichi Abe; Kazunori Ikebukuro

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of a...

  4. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Olsen, Lars; Jørgensen, Flemming Steen;

    2010-01-01

    , and methods based on statistical mechanics. In the present investigation, we started from an LIE model to predict the binding free energy of structurally diverse compounds of cytochrome P450 1A2 ligands, one of the important human metabolizing isoforms of the cytochrome P450 family. The data set includes both...... substrates and inhibitors. It appears that the electrostatic contribution to the binding free energy becomes negligible in this particular protein and a simple empirical model was derived, based on a training set of eight compounds. The root mean square error for the training set was 3.7 kJ/mol. Subsequent...

  5. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules.

    Science.gov (United States)

    Paricharak, Shardul; Cortés-Ciriano, Isidro; IJzerman, Adriaan P; Malliavin, Thérèse E; Bender, Andreas

    2015-01-01

    The rampant increase of public bioactivity databases has fostered the development of computational chemogenomics methodologies to evaluate potential ligand-target interactions (polypharmacology) both in a qualitative and quantitative way. Bayesian target prediction algorithms predict the probability of an interaction between a compound and a panel of targets, thus assessing compound polypharmacology qualitatively, whereas structure-activity relationship techniques are able to provide quantitative bioactivity predictions. We propose an integrated drug discovery pipeline combining in silico target prediction and proteochemometric modelling (PCM) for the respective prediction of compound polypharmacology and potency/affinity. The proposed pipeline was evaluated on the retrospective discovery of Plasmodium falciparum DHFR inhibitors. The qualitative in silico target prediction model comprised 553,084 ligand-target associations (a total of 262,174 compounds), covering 3,481 protein targets and used protein domain annotations to extrapolate predictions across species. The prediction of bioactivities for plasmodial DHFR led to a recall value of 79% and a precision of 100%, where the latter high value arises from the structural similarity of plasmodial DHFR inhibitors and T. gondii DHFR inhibitors in the training set. Quantitative PCM models were then trained on a dataset comprising 20 eukaryotic, protozoan and bacterial DHFR sequences, and 1,505 distinct compounds (in total 3,099 data points). The most predictive PCM model exhibited R (2) 0 test and RMSEtest values of 0.79 and 0.59 pIC50 units respectively, which was shown to outperform models based exclusively on compound (R (2) 0 test/RMSEtest = 0.63/0.78) and target information (R (2) 0 test/RMSEtest = 0.09/1.22), as well as inductive transfer knowledge between targets, with respective R (2) 0 test and RMSEtest values of 0.76 and 0.63 pIC50 units. Finally, both methods were integrated to predict the protein

  6. HADDOCK2P2I : A biophysical model for predicting the binding affinity of protein-protein interaction inhibitors

    NARCIS (Netherlands)

    Kastritis, Panagiotis L.; Garcia Lopes Maia Rodrigues, João; Bonvin, Alexandre M J J

    2014-01-01

    The HADDOCK score, a scoring function for both protein-protein and protein-nucleic acid modeling, has been successful in selecting near-native docking poses in a variety of cases, including those of the CAPRI blind prediction experiment. However, it has yet to be optimized for small molecules, and i

  7. Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin.

    Science.gov (United States)

    Liu, Huihui; Yang, Xianhai; Lu, Rui

    2016-08-01

    Disturbing the transport process is a crucial pathway for endocrine disrupting chemicals (EDCs) to disrupt endocrine function. However, this mechanism has not gotten enough attention, compared with that of hormone receptors and synthetase up to now, especially for the sex hormone transport process. In this study, we selected sex hormone-binding globulin (SHBG) and EDCs as a model system and the relative competing potency of a chemical with testosterone binding to SHBG (log RBA) as the endpoints, to develop classification models and quantitative structure-activity relationship (QSAR) models. With the classification model, a satisfactory model with nR09, nR10 and RDF155v as the most relevant variables was screened. Statistic results indicated that the model had the sensitivity, specificity, accuracy of 86.4%, 80.0%, 84.4% and 85.7%, 87.5%, 86.2% for the training set and validation set, respectively, highlighting a high classification performance of the model. With the QSAR model, a satisfactory model with statistical parameters, specifically, an adjusted determination coefficient (Radj(2)) of 0.810, a root mean square error (RMSE) of 0.616, a leave-one-out cross-validation squared correlation coefficient (QLOO(2)) of 0.777, a bootstrap method (QBOOT(2)) of 0.756, an external validation coefficient (Qext(2)) of 0.544 and a RMSEext of 0.859, were obtained, which implied satisfactory goodness of fit, robustness and predictive ability. The applicability domain of the current model covers a large number of structurally diverse chemicals, especially a few classes of nonsteroidal compounds. PMID:27156209

  8. Prediction of peptide bonding affinity: kernel methods for nonlinear modeling

    CERN Document Server

    Bergeron, Charles; Sundling, C Matthew; Krein, Michael; Katt, Bill; Sukumar, Nagamani; Breneman, Curt M; Bennett, Kristin P

    2011-01-01

    This paper presents regression models obtained from a process of blind prediction of peptide binding affinity from provided descriptors for several distinct datasets as part of the 2006 Comparative Evaluation of Prediction Algorithms (COEPRA) contest. This paper finds that kernel partial least squares, a nonlinear partial least squares (PLS) algorithm, outperforms PLS, and that the incorporation of transferable atom equivalent features improves predictive capability.

  9. Protein-ligand binding affinities from large-scale quantum mechanical simulations

    OpenAIRE

    Fox, Stephen J.

    2012-01-01

    The accurate prediction of protein-drug binding affinities is a major aim of computational drug optimisation and development. A quantitative measure of binding affinity is provided by the free energy of binding, and such calculations typically require extensive configurational sampling of entities such as proteins with thousands of atoms. Current binding free energy methods use force fields to perform the configurational sampling and to compute interaction energies. Due to the empirical natur...

  10. Peptide Nucleic Acids Having Enhanced Binding Affinity and Sequence Specificity

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than a corresponding DNA strand, and exhibit increased sequence specificity and binding affinity. Methods of increasing binding affinity and sequence specificity of peptide nucleic aci...

  11. In Silico Prediction of Estrogen Receptor Subtype Binding Affinity and Selectivity Using Statistical Methods and Molecular Docking with 2-Arylnaphthalenes and 2-Arylquinolines

    Directory of Open Access Journals (Sweden)

    Yonghua Wang

    2010-09-01

    Full Text Available Over the years development of selective estrogen receptor (ER ligands has been of great concern to researchers involved in the chemistry and pharmacology of anticancer drugs, resulting in numerous synthesized selective ER subtype inhibitors. In this work, a data set of 82 ER ligands with ERα and ERβ inhibitory activities was built, and quantitative structure-activity relationship (QSAR methods based on the two linear (multiple linear regression, MLR, partial least squares regression, PLSR and a nonlinear statistical method (Bayesian regularized neural network, BRNN were applied to investigate the potential relationship of molecular structural features related to the activity and selectivity of these ligands. For ERα and ERβ, the performances of the MLR and PLSR models are superior to the BRNN model, giving more reasonable statistical properties (ERα: for MLR, Rtr2 = 0.72, Qte2 = 0.63; for PLSR, Rtr2 = 0.92, Qte2 = 0.84. ERβ: for MLR, Rtr2 = 0.75, Qte2 = 0.75; for PLSR, Rtr2 = 0.98, Qte2 = 0.80. The MLR method is also more powerful than other two methods for generating the subtype selectivity models, resulting in Rtr2 = 0.74 and Qte2 = 0.80. In addition, the molecular docking method was also used to explore the possible binding modes of the ligands and a relationship between the 3D-binding modes and the 2D-molecular structural features of ligands was further explored. The results show that the binding affinity strength for both ERα and ERβ is more correlated with the atom fragment type, polarity, electronegativites and hydrophobicity. The substitutent in position 8 of the naphthalene or the quinoline plane and the space orientation of these two planes contribute the most to the subtype selectivity on the basis of similar hydrogen bond interactions between binding ligands and both ER subtypes. The QSAR models built together with the docking procedure should be of great advantage for screening and designing ER ligands with improved affinity

  12. Candidate SNP Markers of Chronopathologies Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters

    Directory of Open Access Journals (Sweden)

    Petr Ponomarenko

    2016-01-01

    Full Text Available Variations in human genome (e.g., single nucleotide polymorphisms, SNPs may be associated with hereditary diseases, their complications, comorbidities, and drug responses. Using Web service SNP_TATA_Comparator presented in our previous paper, here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example, rs572527200 may be related to asthma, where symptoms are circadian (worse at night, and rs367732974 may be associated with heart attacks that are characterized by a circadian preference (early morning. By the same method, we analyzed the 90 bp proximal promoter region of each protein-coding transcript of each human gene of the circadian clock core. This analysis yielded 53 candidate SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients, rs192518038 (higher risk of a heart attack in patients with diabetes, and rs374778785 (emphysema and lung cancer in smokers. If they are properly validated according to clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each patient and for the general population (to choose a lifestyle preventing possible circadian complications of diseases.

  13. Candidate SNP Markers of Chronopathologies Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters

    Science.gov (United States)

    Ponomarenko, Petr; Rasskazov, Dmitry; Suslov, Valentin; Sharypova, Ekaterina; Savinkova, Ludmila; Podkolodnaya, Olga; Podkolodny, Nikolay L.; Tverdokhleb, Natalya N.; Chadaeva, Irina; Kolchanov, Nikolay

    2016-01-01

    Variations in human genome (e.g., single nucleotide polymorphisms, SNPs) may be associated with hereditary diseases, their complications, comorbidities, and drug responses. Using Web service SNP_TATA_Comparator presented in our previous paper, here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example, rs572527200 may be related to asthma, where symptoms are circadian (worse at night), and rs367732974 may be associated with heart attacks that are characterized by a circadian preference (early morning). By the same method, we analyzed the 90 bp proximal promoter region of each protein-coding transcript of each human gene of the circadian clock core. This analysis yielded 53 candidate SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients), rs192518038 (higher risk of a heart attack in patients with diabetes), and rs374778785 (emphysema and lung cancer in smokers). If they are properly validated according to clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each patient) and for the general population (to choose a lifestyle preventing possible circadian complications of diseases).

  14. Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model

    OpenAIRE

    Muddana, Hari S.; Gilson, Michael K.

    2012-01-01

    The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy functi...

  15. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  16. Tetrapyrrole binding affinity of the murine and human p22HBP heme-binding proteins.

    Science.gov (United States)

    Micaelo, Nuno M; Macedo, Anjos L; Goodfellow, Brian J; Félix, Vítor

    2010-11-01

    We present the first systematic molecular modeling study of the binding properties of murine (mHBP) and human (hHBP) p22HBP protein (heme-binding protein) with four tetrapyrrole ring systems belonging to the heme biosynthetic pathway: iron protoporphyrin IX (HEMIN), protoporphyrin IX (PPIX), coproporphyrin III (CPIII), coproporphyrin I (CPI). The relative binding affinities predicted by our computational study were found to be similar to those observed experimentally, providing a first rational structural analysis of the molecular recognition mechanism, by p22HBP, toward a number of different tetrapyrrole ligands. To probe the structure of these p22HBP protein complexes, docking, molecular dynamics and MM-PBSA methodologies supported by experimental NMR ring current shift data have been employed. The tetrapyrroles studied were found to bind murine p22HBP with the following binding affinity order: HEMIN> PPIX> CPIII> CPI, which ranged from -22.2 to -6.1 kcal/mol. In general, the protein-tetrapyrrole complexes are stabilized by non-bonded interactions between the tetrapyrrole propionate groups and basic residues of the protein, and by the preferential solvation of the complex compared to the unbound components. PMID:20800521

  17. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    Science.gov (United States)

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  18. Evaluation of ligand-binding affinity using polynomial empirical scoring functions.

    Science.gov (United States)

    de Azevedo, Walter Filgueira; Dias, Raquel

    2008-10-15

    Assessing protein-ligand interaction is of great importance for virtual screening initiatives in order to discover new drugs. The present work describes a set of empirical scoring functions to assess the binding affinity, involving terms for intermolecular hydrogen bonds and contact surface. The results show that our methodology works better to predict protein-ligand affinity when compared with XSCORE, a popular empirical scoring function.

  19. Relative Binding Affinities of Monolignols to Horseradish Peroxidase.

    Science.gov (United States)

    Sangha, Amandeep K; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C

    2016-08-11

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic -OH group and a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic -OH group instead interacting with Pro139. Since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate. PMID:27447548

  20. Assessment of Solvated Interaction Energy Function for Ranking Antibody-Antigen Binding Affinities.

    Science.gov (United States)

    Sulea, Traian; Vivcharuk, Victor; Corbeil, Christopher R; Deprez, Christophe; Purisima, Enrico O

    2016-07-25

    Affinity modulation of antibodies and antibody fragments of therapeutic value is often required in order to improve their clinical efficacies. Virtual affinity maturation has the potential to quickly focus on the critical hotspot residues without the combinatorial explosion problem of conventional display and library approaches. However, this requires a binding affinity scoring function that is capable of ranking single-point mutations of a starting antibody. We focus here on assessing the solvated interaction energy (SIE) function that was originally developed for and is widely applied to scoring of protein-ligand binding affinities. To this end, we assembled a structure-function data set called Single-Point Mutant Antibody Binding (SiPMAB) comprising several antibody-antigen systems suitable for this assessment, i.e., based on high-resolution crystal structures for the parent antibodies and coupled with high-quality binding affinity measurements for sets of single-point antibody mutants in each system. Using this data set, we tested the SIE function with several mutation protocols based on the popular methods SCWRL, Rosetta, and FoldX. We found that the SIE function coupled with a protocol limited to sampling only the mutated side chain can reasonably predict relative binding affinities with a Spearman rank-order correlation coefficient of about 0.6, outperforming more aggressive sampling protocols. Importantly, this performance is maintained for each of the seven system-specific component subsets as well as for other relevant subsets including non-alanine and charge-altering mutations. The transferability and enrichment in affinity-improving mutants can be further enhanced using consensus ranking over multiple methods, including the SIE, Talaris, and FOLDEF energy functions. The knowledge gained from this study can lead to successful prospective applications of virtual affinity maturation. PMID:27367467

  1. Soybean. beta. -glucan binding sites display maximal affinity for a heptaglucoside phytoalexin-elicitor

    Energy Technology Data Exchange (ETDEWEB)

    Cosio, E.G.; Waldmueller, T.; Frey, T.; Ebel, J. (Biologisches Institut II der Universitat Freiburg (West Germany))

    1990-05-01

    The affinity of soybean {beta}-glucan-binding sites for a synthetic heptaglucan elicitor was tested in a ligand-competition assay against a {sup 125}I-labeled 1,3-1,6-{beta}-glucan preparation (avg. DP=20). Half-maximal displacement of label (IC{sub 50}) was obtained at 9nM heptaglucan, the highest affinity of all fractions tested to date. Displacement followed a uniform sigmoidal pattern and was complete at 1{mu}M indicating access of heptaglucan to all sites available to the labeled elicitor. A mathematical model was used to predict IC{sub 50} values according to the DP of glucan fragments obtained from fungal cell walls. The lowest IC{sub 50} predicted by this model is 3nM. Binding affinity of the glucans was compared with their elicitor activity in a bioassay.

  2. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    Science.gov (United States)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  3. Agonist binding to high-affinity dopamine sites

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, J.L.

    1985-01-01

    The authors have characterized the dopamine D/sub 3/ site and its binding requirements. The dopamine D/sub 3/ site in calf caudate crude homogenate has a site density of 214-230 fmoles/mg. protein by both /sup 3/H-apomorphine (/sup 3/H-AOP) and /sup 3/H-dopamine (/sup 3/H-DA) Scatchard analysis of specific binding (SB). Stereospecific subsets of /sup 3/H-APO and /sup 3/H-DA sites were defined by the use of agonist and antagonist enantiomer-pairs as a rigorous test for D/sub 3/ site heterogeneity. IC/sub 50/ values for both /sup 3/H-APO and /sup 3/H-DA SB sites were assessed for 55 agonist ligands and an excellent correlation was obtained. The authors conclude that both /sup 3/H-ligands label the same D/sub 3/ site. The D/sub 3/ site affinities of 105 dopamine-agonist ligands, in particular 2-aminotetralins,, aporphines and flexible dopamine analogues were measured. Low D/sub 3/-site affinities of N-quaternary analogues confirm the need for a lone pair. Subadditivity of substituents' effects in semi-flexible DA analogues confirms their postulate that sidechain conformation is the critical determinant of affinity. They conclude that there are at least two high-affinity ligand conformations of the DA sidechain pharmacophore. These binding requirements are presented as two interface-Geometry tetrahedral models of the double H-bond interface between the D/sub 3/ site and the ideal ligand.

  4. Determinants of benzodiazepine brain uptake: lipophilicity versus binding affinity.

    Science.gov (United States)

    Arendt, R M; Greenblatt, D J; Liebisch, D C; Luu, M D; Paul, S M

    1987-01-01

    Factors influencing brain uptake of benzodiazepine derivatives were evaluated in adult Sprague Dawley rats (n = 8-10 per drug). Animals received single intraperitoneal doses of alprazolam, triazolam, lorazepam, flunitrazepam, diazepam, midazolam, desmethyldiazepam, or clobazam. Concentrations of each drug (and metabolites) in whole brain and serum 1 h after dosage were determined by gas chromatography. Serum free fraction was measured by equilibrium dialysis. In vitro binding affinity (apparent Ki) of each compound was estimated based on displacement of tritiated flunitrazepam in washed membrane preparations from rat cerebral cortex. Lipid solubility of each benzodiazepine was estimated using the reverse-phase liquid chromatographic (HPLC) retention index at physiologic pH. There was no significant relation between brain:total serum concentration ratio and either HPLC retention (r = 0.18) or binding Ki (r = -0.34). Correction of uptake ratios for free as opposed to total serum concentration yielded a highly significant correlation with HPLC retention (r = 0.78, P less than 0.005). However, even the corrected ratio was not correlated with binding Ki (r = -0.22). Thus a benzodiazepine's capacity to diffuse from systemic blood into brain tissue is much more closely associated with the physicochemical property of lipid solubility than with specific affinity. Unbound rather than total serum or plasma concentration most accurately reflects the quantity of drug available for diffusion. PMID:2888155

  5. Binding Affinity and Capacity for the Uremic Toxin Indoxyl Sulfate

    Directory of Open Access Journals (Sweden)

    Eric Devine

    2014-01-01

    Full Text Available Protein binding prevents uremic toxins from removal by conventional extracorporeal therapies leading to accumulation in maintenance dialysis patients. Weakening of the protein binding may enhance the dialytic elimination of these toxins. In ultrafiltration and equilibrium dialysis experiments, different measures to modify the plasma binding affinity and capacity were tested: (i, increasing the sodium chloride (NaCl concentration to achieve a higher ionic strength; (ii, increasing the temperature; and (iii, dilution. The effects on the dissociation constant KD and the protein bound fraction of the prototypical uremic toxin indoxyl sulfate (IS in plasma of healthy and uremic individuals were studied. Binding of IS corresponded to one site binding in normal plasma. KD increased linearly with the NaCl concentration between 0.15 (KD = 13.2 ± 3.7 µM and 0.75 M (KD = 56.2 ± 2.0 µM. Plasma dilution further reduced the protein bound toxin fraction by lowering the protein binding capacity of the plasma. Higher temperatures also decreased the protein bound fraction of IS in human plasma. Increasing the NaCl concentration was effective to weaken the binding of IS also in uremic plasma: the protein bound fraction decreased from 89% ± 3% to 81% ± 3% at 0.15 and 0.75 M NaCl, respectively. Dilution and increasing the ionic strength and temperature enhance the free fraction of IS allowing better removal of the substance during dialysis. Applied during clinical dialysis, this may have beneficial effects on the long-term outcome of maintenance dialysis patients.

  6. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.

    Science.gov (United States)

    Reddy, M Rami; Reddy, C Ravikumar; Rathore, R S; Erion, Mark D; Aparoy, P; Reddy, R Nageswara; Reddanna, P

    2014-01-01

    Post-genomic era has led to the discovery of several new targets posing challenges for structure-based drug design efforts to identify lead compounds. Multiple computational methodologies exist to predict the high ranking hit/lead compounds. Among them, free energy methods provide the most accurate estimate of predicted binding affinity. Pathway-based Free Energy Perturbation (FEP), Thermodynamic Integration (TI) and Slow Growth (SG) as well as less rigorous end-point methods such as Linear interaction energy (LIE), Molecular Mechanics-Poisson Boltzmann./Generalized Born Surface Area (MM-PBSA/GBSA) and λ-dynamics have been applied to a variety of biologically relevant problems. The recent advances in free energy methods and their applications including the prediction of protein-ligand binding affinity for some of the important drug targets have been elaborated. Results using a recently developed Quantum Mechanics (QM)/Molecular Mechanics (MM) based Free Energy Perturbation (FEP) method, which has the potential to provide a very accurate estimation of binding affinities to date has been discussed. A case study for the optimization of inhibitors for the fructose 1,6- bisphosphatase inhibitors has been described. PMID:23947646

  7. High-throughput analysis of protein-DNA binding affinity.

    Science.gov (United States)

    Franco-Zorrilla, José M; Solano, Roberto

    2014-01-01

    Sequence-specific protein-DNA interactions mediate most regulatory processes underlying gene expression, such as transcriptional regulation by transcription factors (TFs) or chromatin organization. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies that are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. The use of protein-binding microarrays (PBMs) offers a high-throughput alternative for the identification of protein-DNA specificities. PBM consists in an array of pseudorandomized DNA sequences that are optimized to include all the possible 10- or 11-mer DNA sequences, allowing the determination of binding specificities of most eukaryotic TFs. PBMs that can be synthesized by several manufacturing companies as single-stranded DNA are converted into double-stranded in a simple primer extension reaction. The protein of interest fused to an epitope tag is then incubated onto the PBM, and specific DNA-protein complexes are revealed in a series of immunological reactions coupled to a fluorophore. After scanning and quantifying PBMs, specific DNA motifs recognized by the protein are identified with ready-to-use scripts, generating comprehensive but accessible information about the DNA-binding specificity of the protein. This chapter describes detailed procedures for preparation of double-stranded PBMs, incubation with recombinant protein, and detection of protein-DNA complexes. Finally, we outline some cues for evaluating the biological role of DNA motifs obtained in vitro. PMID:24057393

  8. THE RECEPTOR BINDING AFFINITIES, ANTIPROGESTERONE AND ANTIGLUCOCORTICOID ACTIVITIES OF MIFEPRISTONE AND LILOPRISTONE

    Institute of Scientific and Technical Information of China (English)

    LIUYong-Qiang; WUXi-Rui

    1989-01-01

    With radioligand binding assays, the receptor binding affmities of mifepristone and lilopristone to the rabbit uterus cytosol progesterone receptor and the rat fiver cytosol glucocorticoid receptor have been measured. The relative binding affinities ( RBA ) of

  9. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lund, Ole; Nielsen, Morten

    2008-01-01

    Several accurate prediction systems have been developed for prediction of class I major histocompatibility complex (MHC):peptide binding. Most of these are trained on binding affinity data of primarily 9mer peptides. Here, we show how prediction methods trained on 9mer data can be used for accurate...

  10. Understanding enzymic binding affinity : thermodynamics of binding of benzamidinium chloride inhibitors to trypsin

    NARCIS (Netherlands)

    Talhout, Reinskje

    2003-01-01

    Understanding enzymic binding affinity is of fundamental scientific importance as well as a prerequisite for structure-based drug design. In this study, the interactions of the serine proteinase trypsin with several artificial, benzamidinium-based inhibitors have been studied in aqueous solutions. I

  11. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  12. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Directory of Open Access Journals (Sweden)

    Graham S Baldwin

    Full Text Available The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  13. PBSA_E: A PBSA-Based Free Energy Estimator for Protein-Ligand Binding Affinity.

    Science.gov (United States)

    Liu, Xiao; Liu, Jinfeng; Zhu, Tong; Zhang, Lujia; He, Xiao; Zhang, John Z H

    2016-05-23

    Improving the accuracy of scoring functions for estimating protein-ligand binding affinity is of significant interest as well as practical utility in drug discovery. In this work, PBSA_E, a new free energy estimator based on the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) descriptors, has been developed. This free energy estimator was optimized using high-quality experimental data from a training set consisting of 145 protein-ligand complexes. The method was validated on two separate test sets containing 121 and 130 complexes. Comparison of the binding affinities predicted using the present method with those obtained using three popular scoring functions, i.e., GlideXP, GlideSP, and SYBYL_F, demonstrated that the PBSA_E method is more accurate. This new energy estimator requires a MM/PBSA calculation of the protein-ligand binding energy for a single complex configuration, which is typically obtained by optimizing the crystal structure. The present study shows that PBSA_E has the potential to become a robust tool for more reliable estimation of protein-ligand binding affinity in structure-based drug design. PMID:27088302

  14. Stoichiometry and Affinity of Thioflavin T Binding to Sup35p Amyloid Fibrils.

    Science.gov (United States)

    Sulatskaya, Anna I; Kuznetsova, Irina M; Belousov, Mikhail V; Bondarev, Stanislav A; Zhouravleva, Galina A; Turoverov, Konstantin K

    2016-01-01

    In this work two modes of binding of the fluorescent probe thioflavin T to yeast prion protein Sup35p amyloid fibrils were revealed by absorption spectrometry of solutions prepared by equilibrium microdialysis. These binding modes exhibited significant differences in binding affinity and stoichiometry. Moreover, the absorption spectrum and the molar extinction coefficient of the dye bound in each mode were determined. The fluorescence quantum yield of the dye bound in each mode was determined via a spectrofluorimetric study of the same solutions in which the recorded fluorescence intensity was corrected for the primary inner filter effect. As previously predicted, the existence of one of the detected binding modes may be due to the incorporation of the dye into the grooves along the fiber axis perpendicular to the β-sheets of the fibrils. It was assumed that the second type of binding with higher affinity may be due to the existence of ThT binding sites that are localized to areas where amyloid fibrils are clustered.

  15. Synthesis and binding affinity of an iodinated juvenile hormone

    Energy Technology Data Exchange (ETDEWEB)

    Prestwich, G.D.; Eng, W.S.; Robles, S.; Vogt, R.G.; Wisniewski, J.R.; Wawrzenczyk, C.

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural /sup 3/H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated (/sup 125/I)12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added /sup 125/I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of (/sup 125/I)12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  16. Synthesis and binding affinity of an iodinated juvenile hormone

    International Nuclear Information System (INIS)

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural 3H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated [125I]12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added 125I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of [125I]12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues

  17. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  18. Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana.

    Science.gov (United States)

    Vallone, Rosario; La Verde, Valentina; D'Onofrio, Mariapina; Giorgetti, Alejandro; Dominici, Paola; Astegno, Alessandra

    2016-08-01

    In addition to the well-known Ca(2+) sensor calmodulin, plants possess many calmodulin-like proteins (CMLs) that are predicted to have specific roles in the cell. Herein, we described the biochemical and biophysical characterization of recombinant Arabidopsis thaliana CML14. We applied isothermal titration calorimetry to analyze the energetics of Ca(2+) and Mg(2+) binding to CML14, and nuclear magnetic resonance spectroscopy, together with intrinsic and ANS-based fluorescence, to evaluate the structural effects of metal binding and metal-induced conformational changes. Furthermore, differential scanning calorimetry and limited proteolysis were used to characterize protein thermal and local stability. Our data demonstrate that CML14 binds one Ca(2+) ion with micromolar affinity (Kd ∼ 12 µM) and the presence of 10 mM Mg(2+) decreases the Ca(2+) affinity by ∼5-fold. Although binding of Ca(2+) to CML14 increases protein stability, it does not result in a more hydrophobic protein surface and does not induce the large conformational rearrangement typical of Ca(2+) sensors, but causes only localized structural changes in the unique functional EF-hand. Our data, together with a molecular modelling prediction, provide interesting insights into the biochemical properties of Arabidopsis CML14 and may be useful to direct additional studies aimed at understanding its physiological role. PMID:27124620

  19. Influences of hydrocarbon linkers on the receptor binding affinities of gonadotropin-releasing hormone peptides

    OpenAIRE

    Guo, Haixun; Hathaway, Helen; Royce, Melanie E.; Prossnitz, Eric R.; Miao, Yubin

    2013-01-01

    Three new DOTA-conjugated GnRH peptides with various hydrocarbon linkers were synthesized to evaluate the influences of the linkers on their receptor binding affinities. The hydrocarbon linker displayed a profound impact on the receptor binding affinities of DOTA-conjugated GnRH peptides. The Aun linker was better than Gaba, Ahx and Aoc linkers in retaining strong receptor binding affinity of the GnRH peptide. DOTA-Aun-(D-Lys6-GnRH) displayed 22.8 nM GnRH receptor binding affinity. 111In-DOTA...

  20. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.

    Science.gov (United States)

    Viet, Man Hoang; Ngo, Son Tung; Lam, Nguyen Sy; Li, Mai Suan

    2011-06-01

    The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds more strongly to Aβ(16-22). Therefore, by simulations, we have clarified the relationship between aggregation rates and binding affinity: the stronger the ligand binding, the slower the oligomerization process. The binding affinity of pentapeptides to full-length peptide Aβ(1-40) and its mature fibrils has been considered using the Autodock and MM-PBSA methods. The hydrophobic interaction between ligands and receptors plays a more important role for association than does hydrogen bonding. The influence of beta-sheet breaker peptides on the secondary structures of monomer Aβ(1-40) was studied in detail, and it turns out that, in their presence, the total beta-sheet content can be enhanced. However, the aggregation can be slowed because the beta-content is reduced in fibril-prone regions. Both pentapeptides strongly bind to monomer Aβ(1-40), as well as to mature fibrils, but KLVFF displays a lower binding affinity than LPFFD. Our findings are in accord with earlier experiments that both of these peptides can serve as prominent inhibitors. In addition, we predict that LPFFD inhibits/degrades the fibrillogenesis of full-length amyloid peptides better than KLVFF. This is probably related to a difference in their total hydrophobicities in that the higher the hydrophobicity, the lower the inhibitory capacity. The GROMOS96 43a1 force field with explicit water and the force field proposed by Morris et al. (Morris et al. J. Comput. Chem. 1998, 19, 1639 ) were employed for all-atom molecular dynamics simulations and Autodock experiments, respectively. PMID:21563780

  1. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.

    Science.gov (United States)

    Liu, Jinfeng; He, Xiao; Zhang, John Z H

    2013-06-24

    Docking programs that use scoring functions to estimate binding affinities of small molecules to biological targets are widely applied in drug design and drug screening with partial success. But accurate and efficient scoring functions for protein-ligand binding affinity still present a grand challenge to computational chemists. In this study, the polarized protein-specific charge model (PPC) is incorporated into the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method to rescore the binding poses of some protein-ligand complexes, for which docking programs, such as Autodock, could not predict their binding modes correctly. Different sampling techniques (single minimized conformation and multiple molecular dynamics (MD) snapshots) are used to test the performance of MM/PBSA combined with the PPC model. Our results show the availability and effectiveness of this approach in correctly ranking the binding poses. More importantly, the bridging water molecules are found to play an important role in correctly determining the protein-ligand binding modes. Explicitly including these bridging water molecules in MM/PBSA calculations improves the prediction accuracy significantly. Our study sheds light on the importance of both bridging water molecules and the electronic polarization in the development of more reliable scoring functions for predicting molecular docking and protein-ligand binding affinity. PMID:23651068

  2. Complementary three-dimensional quantitative structure-activity relationship modeling of binding affinity and functional potency

    DEFF Research Database (Denmark)

    Tosco, Paolo; Ahring, Philip K; Dyhring, Tino;

    2009-01-01

    Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible for high affinity binding vs those driving agonist behavior and receptor activation...

  3. APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY

    OpenAIRE

    Sviatenko, О.; Gorbatiuk, O.; Vasylchenko, О.

    2014-01-01

    Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding speci...

  4. Dopamine transporter oligomerization: impact of combining protomers with differential cocaine analog binding affinities.

    Science.gov (United States)

    Zhen, Juan; Antonio, Tamara; Cheng, Shu-Yuan; Ali, Solav; Jones, Kymry T; Reith, Maarten E A

    2015-04-01

    Previous studies point to quaternary assembly of dopamine transporters (DATs) in oligomers. However, it is not clear whether the protomers function independently in the oligomer. Is each protomer an entirely separate unit that takes up dopamine and is inhibited by drugs known to block DAT function? In this work, human embryonic kidney 293 cells were co-transfected with DAT constructs possessing differential binding affinities for the phenyltropane cocaine analog, [³H]WIN35,428. It was assessed whether the binding properties in co-expressing cells capable of forming hetero-oligomers differ from those in preparations obtained from mixed singly transfected cells where such oligomers cannot occur. A method is described that replaces laborious 'mixing' experiments with an in silico method predicting binding parameters from those observed for the singly expressed constructs. Among five pairs of constructs tested, statistically significant interactions were found between protomers of wild-type (WT) and D313N, WT and D345N, and WT and D436N. Compared with predicted Kd values of [³H]WIN35,428 binding to the non-interacting pairs, the observed affinity of the former pair was increased 1.7 fold while the latter two were reduced 2.2 and 4.1 fold, respectively. This is the first report of an influence of protomer composition on the properties of a DAT inhibitor, indicating cooperativity within the oligomer. The dopamine transporter (DAT) can exist as an oligomer but it is unknown whether the protomers function independently. The present results indicate that protomers that are superpotent or deficient in cocaine analog binding can confer enhanced or reduced potency to the oligomer, respectively. In this respect, positive or negative cooperativity is revealed in the DAT oligomer. PMID:25580950

  5. Enhancement of binding kinetics on affinity substrates by laser point heating induced transport.

    Science.gov (United States)

    Wang, Bu; Cheng, Xuanhong

    2016-03-01

    Enhancing the time response and detection limit of affinity-binding based biosensors is an area of active research. For diffusion limited reactions, introducing active mass transport is an effective strategy to reduce the equilibration time and improve surface binding. Here, a laser is focused on the ceiling of a microchamber to generate point heating, which introduces natural advection and thermophoresis to promote mass transport to the reactive floor. We first used the COMSOL simulation to study how the kinetics of ligand binding is influenced by the optothermal effect. Afterwards, binding of biotinylated nanoparticles to NeutrAvidin-treated substrates is quantitatively measured with and without laser heating. It is discovered that laser induced point heating reduces the reaction half-life locally, and the reduction improves with the natural advection velocity. In addition, non-uniform ligand binding on the substrate is induced by the laser with predictable binding patterns. This optothermal strategy holds promise to improve the time-response and sensitivity of biosensors and microarrays. PMID:26898559

  6. Immunoglobulin G preparation from plasma samples and analysis of its affinity kinetic binding to peptide hormones

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Romain Legrand, Kuniko Takagi & Sergueï Fetissov ### Abstract Circulating peptide hormones such as ghrelin physiologically bind plasma immunoglobulins (Ig) which protect hormone from degradation and modulate its biological activity depending on affinity of hormone / IgG binding. Because the IgG set of each individual is unique, measuring affinity kinetics of human or animal plasma IgG binding to a specific peptide hormone may provide useful information towards understandi...

  7. Isotope-coded ATP Probe for Quantitative Affinity Profiling of ATP-binding Proteins

    OpenAIRE

    Xiao, Yongsheng; Guo, Lei; Wang, Yinsheng

    2013-01-01

    ATP-binding proteins play significant roles in numerous cellular processes. Here, we introduced a novel isotope-coded ATP-affinity probe (ICAP) as acylating agent to simultaneously enrich and incorporate isotope label to ATP-binding proteins. By taking advantage of the quantitative capability of this isotope-coded probe, we devised an affinity profiling strategy to comprehensively characterize ATP-protein interactions at the entire proteome scale. False-positive identification of ATP-binding ...

  8. Alcohol Binding to the Odorant Binding Protein LUSH: Multiple Factors Affecting Binding Affinities

    OpenAIRE

    Ader, Lauren; Jones, David N. M.; Lin, Hai

    2010-01-01

    Density function theory (DFT) calculations have been carried out to investigate the binding of alcohols to the odorant binding protein LUSH from Drosophila melanogaster. LUSH is one of the few proteins known to bind to ethanol at physiologically relevant concentrations and where high-resolution structural information is available for the protein bound to alcohol at these concentrations. The structures of the LUSH–alcohol complexes identify a set of specific hydrogen-bonding interactions as cr...

  9. Anion-induced increases in the affinity of colcemid binding to tubulin.

    Science.gov (United States)

    Ray, K; Bhattacharyya, B; Biswas, B B

    1984-08-01

    Colcemid binds tubulin rapidly and reversibly in contrast to colchicine which binds tubulin relatively slowly and essentially irreversibly. At 37 degrees C the association rate constant for colcemid binding is 1.88 X 10(6) M-1 h-1, about 10 times higher than that for colchicine; this is reflected in the activation energies for binding which are 51.4 kJ/mol for colcemid and 84.8 kJ/mol for colchicine. Scatchard analysis indicates two binding sites on tubulin having different affinities for colcemid. The high-affinity site (Ka = 0.7 X 10(5) M-1 at 37 degrees C) is sensitive to temperature and binds both colchicine and colcemid and hence they are mutually competitive inhibitors. The low-affinity site (Kb = 1.2 X 10(4) M-1) is rather insensitive to temperature and binds only colcemid. Like colchicine, 0.6 mol of colcemid are bound/mol of tubulin dimer (at the high-affinity site) and the reaction is entropy driven (163 J K-1 mol-1). Similar to colchicine, colcemid binding to tubulin is stimulated by certain anions (viz. sulfate and tartrate) but by a different mechanism. Colcemid binding affinity at the lower-affinity site of tubulin is increased in the presence of ammonium sulfate. Interestingly, the lower-affinity site on tubulin for colcemid, even when converted to higher affinity in presence of ammonium sulfate, is not recognized by colchicine. We conclude that tubulin possesses two binding sites, one of which specifically recognized the groups present on the B-ring of colchicine molecule and is effected by the ammonium sulfate, whereas the higher-affinity site, which could accommodate both colchicine and colcemid, possibly recognized the A and C ring of colchicine.

  10. Cell-Binding Assays for Determining the Affinity of Protein-Protein Interactions: Technologies and Considerations.

    Science.gov (United States)

    Hunter, S A; Cochran, J R

    2016-01-01

    Determining the equilibrium-binding affinity (Kd) of two interacting proteins is essential not only for the biochemical study of protein signaling and function but also for the engineering of improved protein and enzyme variants. One common technique for measuring protein-binding affinities uses flow cytometry to analyze ligand binding to proteins presented on the surface of a cell. However, cell-binding assays require specific considerations to accurately quantify the binding affinity of a protein-protein interaction. Here we will cover the basic assumptions in designing a cell-based binding assay, including the relevant equations and theory behind determining binding affinities. Further, two major considerations in measuring binding affinities-time to equilibrium and ligand depletion-will be discussed. As these conditions have the potential to greatly alter the Kd, methods through which to avoid or minimize them will be provided. We then outline detailed protocols for performing direct- and competitive-binding assays against proteins displayed on the surface of yeast or mammalian cells that can be used to derive accurate Kd values. Finally, a comparison of cell-based binding assays to other types of binding assays will be presented. PMID:27586327

  11. Synthesis and receptor binding affinity of new selective GluR5 ligands

    DEFF Research Database (Denmark)

    Bunch, L; Johansen, T H; Bräuner-Osborne, Hans;

    2001-01-01

    Two hybrid analogues of the kainic acid receptor agonists, 2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA) and (2S,4R)-4-methylglutamic acid ((2S,4R)-4-Me-Glu), were designed, synthesized, and characterized in radioligand binding assays using cloned ionotropic and metabotropi.......0 and 2.0 microM. respectively. Their affinities in the [3H]AMPA binding assay on native cortical receptors were shown to correlate with their GluR2 affinity rather than their GluR5 affinity. No affinity for GluR6 was detected (IC50 > 100 microM)....

  12. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to other Siderophores

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-05-27

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated using a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.

  13. Parameterization of an effective potential for protein-ligand binding from host-guest affinity data.

    Science.gov (United States)

    Wickstrom, Lauren; Deng, Nanjie; He, Peng; Mentes, Ahmet; Nguyen, Crystal; Gilson, Michael K; Kurtzman, Tom; Gallicchio, Emilio; Levy, Ronald M

    2016-01-01

    Force field accuracy is still one of the "stalemates" in biomolecular modeling. Model systems with high quality experimental data are valuable instruments for the validation and improvement of effective potentials. With respect to protein-ligand binding, organic host-guest complexes have long served as models for both experimental and computational studies because of the abundance of binding affinity data available for such systems. Binding affinity data collected for cyclodextrin (CD) inclusion complexes, a popular model for molecular recognition, is potentially a more reliable resource for tuning energy parameters than hydration free energy measurements. Convergence of binding free energy calculations on CD host-guest systems can also be obtained rapidly, thus offering the opportunity to assess the robustness of these parameters. In this work, we demonstrate how implicit solvent parameters can be developed using binding affinity experimental data and the binding energy distribution analysis method (BEDAM) and validated using the Grid Inhomogeneous Solvation Theory analysis. These new solvation parameters were used to study protein-ligand binding in two drug targets against the HIV-1 virus and improved the agreement between the calculated and the experimental binding affinities. This work illustrates how benchmark sets of high quality experimental binding affinity data and physics-based binding free energy models can be used to evaluate and optimize force fields for protein-ligand systems. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26256816

  14. Purification of proteins specifically binding human endogenous retrovirus K long terminal repeat by affinity elution chromatography.

    Science.gov (United States)

    Trubetskoy, D O; Zavalova, L L; Akopov, S B; Nikolaev, L G

    2002-11-01

    A novel affinity elution procedure for purification of DNA-binding proteins was developed and employed to purify to near homogeneity the proteins recognizing a 21 base pair sequence within the long terminal repeat of human endogenous retroviruses K. The approach involves loading the initial protein mixture on a heparin-agarose column and elution of protein(s) of interest with a solution of double-stranded oligonucleotide containing binding sites of the protein(s). The affinity elution has several advantages over conventional DNA-affinity chromatography: (i) it is easier and faster, permitting to isolate proteins in a 1 day-one stage procedure; (ii) yield of a target protein is severalfold higher than that in DNA-affinity chromatography; (iii) it is not necessary to prepare a special affinity support for each factor to be isolated. Theaffinity elution could be a useful alternative to conventional DNA-affinity chromatography.

  15. GHB receptor targets in the CNS: Focus on high-affinity binding sites

    DEFF Research Database (Denmark)

    Bay, Tina; Eghorn, Laura Friis; Klein, Anders Bue;

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects...... of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation...... of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB...

  16. Relative binding affinity of steroids for the corticosterone receptor system in rat hippocampus

    NARCIS (Netherlands)

    De Kloet, E R; Veldhuis, H D; Wagenaars, J L; Bergink, E W

    1984-01-01

    In cytosol of the hippocampus corticosterone displays highest affinity for the sites that remain available for binding in the presence of excess RU 26988, which is shown to be a "pure" glucocorticoid. A rather high affinity (greater than or equal to 25%) was found for 11 beta-hydroxyprogesterone, 21

  17. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    Science.gov (United States)

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  18. Candidate SNP Markers of Gender-Biased Autoimmune Complications of Monogenic Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters

    Science.gov (United States)

    Ponomarenko, Mikhail P.; Arkova, Olga; Rasskazov, Dmitry; Ponomarenko, Petr; Savinkova, Ludmila; Kolchanov, Nikolay

    2016-01-01

    Some variations of human genome [for example, single nucleotide polymorphisms (SNPs)] are markers of hereditary diseases and drug responses. Analysis of them can help to improve treatment. Computer-based analysis of millions of SNPs in the 1000 Genomes project makes a search for SNP markers more targeted. Here, we combined two computer-based approaches: DNA sequence analysis and keyword search in databases. In the binding sites for TATA-binding protein (TBP) in human gene promoters, we found candidate SNP markers of gender-biased autoimmune diseases, including rs1143627 [cachexia in rheumatoid arthritis (double prevalence among women)]; rs11557611 [demyelinating diseases (thrice more prevalent among young white women than among non-white individuals)]; rs17231520 and rs569033466 [both: atherosclerosis comorbid with related diseases (double prevalence among women)]; rs563763767 [Hughes syndrome-related thrombosis (lethal during pregnancy)]; rs2814778 [autoimmune diseases (excluding multiple sclerosis and rheumatoid arthritis) underlying hypergammaglobulinemia in women]; rs72661131 and rs562962093 (both: preterm delivery in pregnant diabetic women); and rs35518301, rs34166473, rs34500389, rs33981098, rs33980857, rs397509430, rs34598529, rs33931746, rs281864525, and rs63750953 (all: autoimmune diseases underlying hypergammaglobulinemia in women). Validation of these predicted candidate SNP markers using the clinical standards may advance personalized medicine. PMID:27092142

  19. On the Meaning of Affinity Limits in B-Cell Epitope Prediction for Antipeptide Antibody-Mediated Immunity

    Directory of Open Access Journals (Sweden)

    Salvador Eugenio C. Caoili

    2012-01-01

    Full Text Available B-cell epitope prediction aims to aid the design of peptide-based immunogens (e.g., vaccines for eliciting antipeptide antibodies that protect against disease, but such antibodies fail to confer protection and even promote disease if they bind with low affinity. Hence, the Immune Epitope Database (IEDB was searched to obtain published thermodynamic and kinetic data on binding interactions of antipeptide antibodies. The data suggest that the affinity of the antibodies for their immunizing peptides appears to be limited in a manner consistent with previously proposed kinetic constraints on affinity maturation in vivo and that cross-reaction of the antibodies with proteins tends to occur with lower affinity than the corresponding reaction of the antibodies with their immunizing peptides. These observations better inform B-cell epitope prediction to avoid overestimating the affinity for both active and passive immunization; whereas active immunization is subject to limitations of affinity maturation in vivo and of the capacity to accumulate endogenous antibodies, passive immunization may transcend such limitations, possibly with the aid of artificial affinity-selection processes and of protein engineering. Additionally, protein disorder warrants further investigation as a possible supplementary criterion for B-cell epitope prediction, where such disorder obviates thermodynamically unfavorable protein structural adjustments in cross-reactions between antipeptide antibodies and proteins.

  20. Structure-affinity relationship of the cocaine-binding aptamer with quinine derivatives.

    Science.gov (United States)

    Slavkovic, Sladjana; Altunisik, Merve; Reinstein, Oren; Johnson, Philip E

    2015-05-15

    In addition to binding its target molecule, cocaine, the cocaine-binding aptamer tightly binds the alkaloid quinine. In order to understand better how the cocaine-binding aptamer interacts with quinine we have used isothermal titration calorimetry-based binding experiments to study the interaction of the cocaine-binding aptamer to a series of structural analogs of quinine. As a basis for comparison we also investigated the binding of the cocaine-binding aptamer to a set of cocaine metabolites. The bicyclic aromatic ring on quinine is essential for tight affinity by the cocaine-binding aptamer with 6-methoxyquinoline alone being sufficient for tight binding while the aliphatic portion of quinine, quinuclidine, does not show detectable binding. Compounds with three fused aromatic rings are not bound by the aptamer. Having a methoxy group at the 6-position of the bicyclic ring is important for binding as substituting it with a hydrogen, an alcohol or an amino group all result in lower binding affinity. For all ligands that bind, association is driven by a negative enthalpy compensated by unfavorable binding entropy.

  1. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity.

    Science.gov (United States)

    Boder, E T; Midelfort, K S; Wittrup, K D

    2000-09-26

    Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant K(d) = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin-biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 10(5)-10(7) yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.

  2. Protein-protein binding affinities calculated using the LIE method

    OpenAIRE

    Andberg, Tor Arne Heim

    2011-01-01

    Absolute binding free energies for the third domain of the turkey ovomucoid inhibitor in complex with Streptomyces griseus proteinase B and porcine pancreatic elastase has been calculated using the linear interaction energy method.

  3. Photoaffinity labelling of high affinity dopamine binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-03-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-)N'-4-azidobenzamidol)-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using (/sup 3/H)-SCH 23390 (a D/sub 1/ specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked (/sup 3/H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of (/sup 3/H)-SCH 23390 binding. Compounds which compete for D/sub 1/ receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D/sub 1/ (adenylate cyclase linked) dopamine receptor.

  4. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores.

    Science.gov (United States)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S

    2016-06-24

    Siderophores are iron (Fe)-binding secondary metabolites that have been investigated for their uranium-binding properties. Previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl (UO2)-binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of UO2, yet they have not been widely studied. Desmalonichrome is a carboxylate siderophore that is not commercially available and so was obtained from the fungus Fusarium oxysporum cultivated under Fe-depleted conditions. The relative affinity for UO2 binding of desmalonichrome was investigated using a competitive analysis of binding affinities between UO2 acetate and different concentrations of Fe(III) chloride using electrospray ionization mass spectrometry. In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A), were studied to understand their relative affinities for the UO2(2+) ion at two pH values. The binding affinities of hydroxamate siderophores to UO2(2+) ions were observed to decrease with increasing Fe(III)Cl3 concentration at the lower pH. On the other hand, decreasing the pH has a smaller impact on the binding affinities between carboxylate siderophores and the UO2(2+) ion. Desmalonichrome in particular was shown to have the greatest relative affinity for UO2 at all pH and Fe(III) concentrations examined. These results suggest that acidic functional groups in the ligands are important for strong chelation with UO2 at lower pH. PMID:27232848

  5. Experimental and theoretical characterization of the high-affinity cation binding site of the purple membrane

    OpenAIRE

    Pardo, Leonardo; Sepulcre Sánchez, Francesc; Cladera Cerdà, Josep Bartomeu; Duñach, Mireia; Labarta, A.; Tejada, J.; Padrós Morell, Esteve

    1998-01-01

    Binding of Mn2+ or Mg2+ to the high-affinity site of the purple membrane from Halobacterium salinarium has been studied by superconducting quantum interference device magnetometry or by ab initio quantum mechanical calculations, respectively. The binding of Mn2+ cation, in a low-spin state, to the high-affinity site occurs through a major octahedral local symmetry character with a minor rhombic distortion and a coordination number of six. A molecular model of this binding site in the Schiff b...

  6. A High-Affinity Metal-Binding Peptide From Escherichia Coli Hypb

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K.C.Chan; Cao, L.; Dias, A.V.; Pickering, I.J.; George, G.N.; Zamble, D.B.

    2009-05-12

    The high-affinity nickel-binding site of the Escherichia coli [NiFe]-hydrogenase accessory protein HypB was localized to residues at the immediate N-terminus of the protein. Modification of a metal-binding fusion protein, site-directed mutagenesis experiments, and DFT calculations were used to identify the N-terminal amine as a ligand as well as the three cysteine residues in the CXXCGCXXX motif. This sequence can be removed from the protein and both a synthesized peptide and a protein fusion bind nickel with a similar affinity and the same structure as the parent metalloprotein, indicating the self-sufficiency of this high-affinity nickel-binding sequence.

  7. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    Science.gov (United States)

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  8. Rolling adhesion of alphaL I domain mutants decorrelated from binding affinity.

    Science.gov (United States)

    Pepper, Lauren R; Hammer, Daniel A; Boder, Eric T

    2006-06-30

    Activated lymphocyte function-associated antigen-1 (LFA-1, alphaLbeta2 integrin) found on leukocytes facilitates firm adhesion to endothelial cell layers by binding to intercellular adhesion molecule-1 (ICAM-1), which is up-regulated on endothelial cells at sites of inflammation. Recent work has shown that LFA-1 in a pre-activation, low-affinity state may also be involved in the initial tethering and rolling phase of the adhesion cascade. The inserted (I) domain of LFA-1 contains the ligand-binding epitope of the molecule, and a conformational change in this region during activation increases ligand affinity. We have displayed wild-type I domain on the surface of yeast and validated expression using I domain specific antibodies and flow cytometry. Surface display of I domain supports yeast rolling on ICAM-1-coated surfaces under shear flow. Expression of a locked open, high-affinity I domain mutant supports firm adhesion of yeast, while yeast displaying intermediate-affinity I domain mutants exhibit a range of rolling phenotypes. We find that rolling behavior for these mutants fails to correlate with ligand binding affinity. These results indicate that unstressed binding affinity is not the only molecular property that determines adhesive behavior under shear flow.

  9. A human β-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding.

    Science.gov (United States)

    Avery, Adam W; Crain, Jonathan; Thomas, David D; Hays, Thomas S

    2016-01-01

    Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein β-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of β-III-spectrin. We report that the L253P substitution in the isolated β-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 μM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P β-III-spectrin is a likely driver of neurodegeneration. PMID:26883385

  10. Low levels of high-affinity growth hormone-binding protein in African pygmies.

    Science.gov (United States)

    Baumann, G; Shaw, M A; Merimee, T J

    1989-06-29

    The cause of growth hormone resistance and short stature in African Pygmies in unknown. Low levels of insulin-like growth factor 1 that fail to respond to growth hormone suggest a possible deficiency of growth hormone receptors. The high-affinity growth hormone-binding protein is a fragment of the growth hormone receptor and may be an indicator of the number of receptors in tissues. We measured growth hormone-binding activity in plasma from 20 pygmies and 12 control subjects (7 white Americans and 5 non-Pygmy black Africans of normal stature). Growth hormone binding to the high-affinity binding protein was significantly reduced in the Pygmies as compared with the controls (mean +/- SD, 6.50 +/- 2.33 percent vs. 12.95 +/- 3.95 percent bound per 160 microliters of plasma; P less than 0.001); however, there was substantial overlap between the values for Pygmies and controls. Growth hormone binding to the low-affinity binding protein was similar in Pygmies and control subjects. We conclude that Pygmies have low levels of high-affinity growth hormone-binding protein in their plasma, which may indicate a reduced number of growth hormone receptors in their tissues. The finding may help explain the resistance to growth in Pygmies, but there may be additional reasons, related to the receptors or not, for their short stature.

  11. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin

    OpenAIRE

    Hong, Lian; Simon, John D.

    2007-01-01

    Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of u...

  12. High-affinity dextromethorphan binding sites in guinea pig brain. II. Competition experiments.

    Science.gov (United States)

    Craviso, G L; Musacchio, J M

    1983-05-01

    Binding of dextromethorphan (DM) to guinea pig brain is stereoselective, since levomethorphan is 20 times weaker than DM in competing for DM sites. In general, opiate agonists and antagonists as well as their corresponding dextrorotatory isomers are weak competitors for tritiated dextromethorphan ([3H]DM) binding sites and display IC50 values in the micromolar range. In contrast, several non-narcotic, centrally acting antitussives are inhibitory in the nanomolar range (IC50 values for caramiphen, carbetapentane, dimethoxanate, and pipazethate are 25 nM, 9 nM, 41 nM, and 190 nM, respectively). Other antitussives, such as levopropoxyphene, chlophedianol, and fominoben, have poor affinity for DM sites whereas the antitussive noscapine enhances DM binding by increasing the affinity of DM for its central binding sites. Additional competition studies indicate that there is no correlation of DM binding with any of the known or putative neurotransmitters in the central nervous system. DM binding is also not related to tricyclic antidepressant binding sites or biogenic amine uptake sites. However, certain phenothiazine neuroleptics and typical and atypical antidepressants inhibit binding with IC50 values in the nanomolar range. Moreover, the anticonvulsant drug diphenylhydantoin enhances DM binding in a manner similar to that of noscapine. Preliminary experiments utilizing acid extracts of brain have not demonstrated the presence of an endogenous ligand for DM sites. The binding characteristics of DM sites studied in rat and mouse brain indicate that the relative potencies of several antitussives to inhibit specific DM binding vary according to species. High-affinity, saturable, and stereoselective [3H]DM binding sites are present in liver homogenates, but several differences have been found for these peripheral binding sites and those described for brain. Although the nature of central DM binding sites is not known, the potent interaction of several classes of centrally

  13. A high affinity binding site for cytokinin to a particulate fraction in carrot suspension cells

    International Nuclear Information System (INIS)

    Carrot suspension cells contain one class of high affinity binding sites for cytokinin in an 80,000 X g particulate fraction. Binding of [8-14C] - benzylaminopurine (BA) to this fraction assayed by a sedimentation method was found to be optimal at ph 6.0 and thermolabile. Specific binding was proved in competition experiments in which labelled BA was displaced by increasing concentrations of unlabelled BA. Scatchard plots of these results displayed a dissociation constant (Ksub(d)) of 33+- 6 n.M. The number of binding sites found was 1,100+-120 fmol g-1 fresh weight which is equivalent to a frequency of 23,000 binding sites per cell. The specificity of the binding sites to cytokinins and their analogues followed the sequence BA with highest affinity, kinetin, zeatin, iP and adenine. The cytokinin ribosides generally had a lower affinity than their cytokinin bases, and the affinity decreased in the order [9 R] BA, [9 R] iP, [i R]Z, [9 R] A. (author)

  14. Improved binding affinity and interesting selectivities of aminopyrimidine-bearing carbohydrate receptors in comparison with their aminopyridine analogues.

    Science.gov (United States)

    Lippe, Jan; Seichter, Wilhelm; Mazik, Monika

    2015-12-28

    Due to the problems with the exact prediction of the binding properties of an artificial carbohydrate receptor, the identification of characteristic structural features, having the ability to influence the binding properties in a predictable way, is of high importance. The purpose of our investigation was to examine whether the previously observed higher affinity of 2-aminopyrimidine-bearing carbohydrate receptors in comparison with aminopyridine substituted analogues represents a general tendency of aminopyrimidine-bearing compounds. Systematic binding studies on new compounds consisting of 2-aminopyrimidine groups confirmed such a tendency and allowed the identification of interesting structure-activity relationships. Receptors having different symmetries showed systematic preferences for specific glycosides, which are remarkable for such simple receptor systems. Particularly suitable receptor architectures for the recognition of selected glycosides were identified and represent a valuable base for further developments in this field. PMID:26467387

  15. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar

    2012-07-01

    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  16. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions.

  17. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    Science.gov (United States)

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  18. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. PMID:26938582

  19. Binding affinities and thermodynamics of noncovalent functionalization of carbon nanotubes with surfactants.

    Science.gov (United States)

    Oh, Hyunkyu; Sim, Jinsook; Ju, Sang-Yong

    2013-09-01

    Binding affinity and thermodynamic understanding between a surfactant and carbon nanotube is essential to develop various carbon nanotube applications. Flavin mononucleotide-wrapped carbon nanotubes showing a large redshift in optical signature were utilized to determine the binding affinity and related thermodynamic parameters of 12 different nanotube chiralities upon exchange with other surfactants. Determined from the midpoint of sigmoidal transition, the equilibrium constant (K), which is inversely proportional to the binding affinity of the initial surfactant-carbon nanotube, provided quantitative binding strengths of surfactants as SDBS > SC ≈ FMN > SDS, irrespective of electronic types of SWNTs. Binding affinity of metallic tubes is weaker than that of semiconducting tubes. The complex K patterns from semiconducting tubes show preference to certain SWNT chiralities and surfactant-specific cooperativity according to nanotube chirality. Controlling temperature was effective to modulate K values by 30% and enables us to probe thermodynamic parameters. Equally signed enthalpy and entropy changes produce Gibbs energy changes with a magnitude of a few kJ/mol. A greater negative Gibbs energy upon exchange of surfactant produces an enhanced nanotube photoluminescence, implying the importance of understanding thermodynamics for designing nanotube separation and supramolecular assembly of surfactant.

  20. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands

    Science.gov (United States)

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  1. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  2. A CBM20 low-affinity starch-binding domain from glucan, water dikinase

    DEFF Research Database (Denmark)

    Christiansen, Camilla; Abou Hachem, Maher; Glaring, M.A.;

    2009-01-01

    from GA. Homology modelling identified possible structural elements responsible for this weak binding of the intracellular CBM20. Differential binding of fluorescein-labelled GWD3 and GA modules to starch granules in vitro was demonstrated by confocal laser scanning microscopy and yellow fluorescent......The family 20 carbohydrate-binding module (CBM20) of the Arabidopsis starch phosphorylator glucan, water dikinase 3 (GWD3) was heterologously produced and its properties were compared to the CBM20 from a fungal glucoamylase (GA). The GWD3 CBM20 has 50-fold lower affinity for cyclodextrins than that...... protein-tagged GWD3 CBM20 expressed in tobacco confirmed binding to starch granules in planta....

  3. Affinity of the heparin binding motif of Noggin1 to heparan sulfate and its visualization in the embryonic tissues.

    Science.gov (United States)

    Nesterenko, Alexey M; Orlov, Eugeny E; Ermakova, Galina V; Ivanov, Igor A; Semenyuk, Pavel I; Orlov, Victor N; Martynova, Natalia Y; Zaraisky, Andrey G

    Heparin binding motifs were found in many secreted proteins and it was suggested that they are responsible for retardation of the protein diffusion within the intercellular space due to the binding to heparan sulfate proteoglycanes (HSPG). Here we used synthetic FITC labeled heparin binding motif (HBM peptide) of the Xenopus laevis secreted BMP inhibitor Noggin1 to study its diffusion along the surface of the heparin beads by FRAP method. As a result, we have found out that diffusivity of HBM-labeled FITC was indeed much lesser than those predicted by theoretical calculations even for whole protein of the Noggin size. We also compared by isothermal titration calorimetry the binding affinity of HBM and the control oligolysine peptide to several natural polyanions including heparan sulfate (HS), heparin, the bacterial dextran sulfate and salmon sperm DNA, and demonstrated that HBM significantly exceeds oligolysine peptide in the affinity to HS, heparin and DNA. By contrast, oligolysine peptide bound with higher affinity to dextran sulfate. We speculate that such a difference may ensure specificity of the morphogen binding to HSPG and could be explained by steric constrains imposed by different distribution of the negative charges along a given polymeric molecule. Finally, by using EGFP-HBM recombinant protein we have visualized the natural pattern of the Noggin1 binding sites within the X. laevis gastrula and demonstrated that these sites forms a dorsal-ventral concentration gradient, with a maximum in the dorsal blastopore lip. In sum, our data provide a quantitative basis for modeling the process of Noggin1 diffusion in embryonic tissues, considering its interaction with HSPG.

  4. Interplay between binding affinity and kinetics in protein-protein interactions.

    Science.gov (United States)

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc.

  5. Interplay between binding affinity and kinetics in protein-protein interactions.

    Science.gov (United States)

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. PMID:27018856

  6. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    Science.gov (United States)

    Im, Jae Hong; Nakane, Takashi; Yanagishita, Hiroshi; Ikegami, Toru; Kitamoto, Dai

    2001-01-01

    Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A) and human immunoglobulin G (HIgG). Results In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate) (polyHEMA) beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 × 106 (M-1) for HIgG, which is approximately 4-fold greater than that of protein A reported. Conclusions MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid. PMID:11604104

  7. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    Directory of Open Access Journals (Sweden)

    Ikegami Toru

    2001-09-01

    Full Text Available Abstract Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A and human immunoglobulin G (HIgG. Results In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate (polyHEMA beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 × 106 (M-1 for HIgG, which is approximately 4-fold greater than that of protein A reported. Conclusions MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid.

  8. Epidermal transformation leads to increased perlecan synthesis with heparin-binding-growth-factor affinity

    DEFF Research Database (Denmark)

    Tapanadechopone, P; Tumova, S; Jiang, X;

    2001-01-01

    . Despite this, the heparan sulphate of RT101- and JB6-derived perlecan bound fibroblast growth factor-1, -2, -4 and -7 and heparin-binding epidermal growth factor with similar affinity. Therefore abundant tumour-derived perlecan may support the angiogenic responses seen in vivo and be a key player...

  9. Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules

    Directory of Open Access Journals (Sweden)

    Cicortas Gunnarsson Lavinia

    2009-10-01

    Full Text Available Abstract Background Molecular evolution of carbohydrate binding modules (CBM is a new approach for the generation of glycan-specific molecular probes. To date, the possibility of performing affinity maturation on CBM has not been investigated. In this study we show that binding characteristics such as affinity can be improved for CBM generated from the CBM4-2 scaffold by using random mutagenesis in combination with phage display technology. Results Two modified proteins with greatly improved affinity for xyloglucan, a key polysaccharide abundant in the plant kingdom crucial for providing plant support, were generated. Both improved modules differ from other existing xyloglucan probes by binding to galactose-decorated subunits of xyloglucan. The usefulness of the evolved binders was verified by staining of plant sections, where they performed better than the xyloglucan-binding module from which they had been derived. They discriminated non-fucosylated from fucosylated xyloglucan as shown by their ability to stain only the endosperm, rich in non-fucosylated xyloglucan, but not the integument rich in fucosylated xyloglucan, on tamarind seed sections. Conclusion We conclude that affinity maturation of CBM selected from molecular libraries based on the CBM4-2 scaffold is possible and has the potential to generate new analytical tools for detection of plant carbohydrates.

  10. A strategy to enhance the binding affinity of fluorophore-aptamer pairs for RNA tagging with neomycin conjugation.

    Science.gov (United States)

    Jeon, Jongho; Lee, Kyung Hyun; Rao, Jianghong

    2012-10-14

    Fluorogenic sulforhodamine-neomycin conjugates have been designed and synthesized for RNA tagging. Conjugates were fluorescently activated by binding to RNA aptamers and exhibited greater than 250-400 fold enhancement in binding affinity relative to corresponding unconjugated fluorophores.

  11. Enhanced DNA binding affinity of RecA protein from Deinococcus radiodurans.

    Science.gov (United States)

    Warfel, Jaycob D; LiCata, Vince J

    2015-07-01

    Deinococcus radiodurans (Dr) has a significantly more robust DNA repair response than Escherichia coli (Ec), which helps it survive extremely high doses of ionizing radiation and prolonged periods of desiccation. DrRecA protein plays an essential part in this DNA repair capability. In this study we directly compare the binding of DrRecA and EcRecA to the same set of short, defined single (ss) and double stranded (ds) DNA oligomers. In the absence of cofactors (ATPγS or ADP), DrRecA binds to dsDNA oligomers more than 20 fold tighter than EcRecA, and binds ssDNA up to 9 fold tighter. Binding to dsDNA oligomers in the absence of cofactor presumably predominantly monitors DNA end binding, and thus suggests a significantly higher affinity of DrRecA for ds breaks. Upon addition of ATPγS, this species-specific affinity difference is nearly abolished, as ATPγS significantly decreases the affinity of DrRecA for DNA. Other findings include that: (1) both proteins exhibit a dependence of binding affinity on the length of the ssDNA oligomer, but not the dsDNA oligomer; (2) the salt dependence of binding is modest for both species of RecA, and (3) in the absence of DNA, DrRecA produces significantly shorter and/or fewer free-filaments in solution than does EcRecA. The results suggest intrinsic biothermodynamic properties of DrRecA contribute directly to the more robust DNA repair capabilities of D. radiodurans.

  12. Influence of length and flexibility of spacers on the binding affinity of divalent ligands

    Directory of Open Access Journals (Sweden)

    Susanne Liese

    2015-05-01

    Full Text Available We present a quantitative model for the binding of divalent ligand–receptor systems. We study the influence of length and flexibility of the spacers on the overall binding affinity and derive general rules for the optimal ligand design. To this end, we first compare different polymeric models and determine the probability to simultaneously bind to two neighboring receptor binding pockets. In a second step the binding affinity of divalent ligands in terms of the IC50 value is derived. We find that a divalent ligand has the potential to bind more efficiently than its monovalent counterpart only, if the monovalent dissociation constant is lower than a critical value. This critical monovalent dissociation constant depends on the ligand-spacer length and flexibility as well as on the size of the receptor. Regarding the optimal ligand-spacer length and flexibility, we find that the average spacer length should be equal or slightly smaller than the distance between the receptor binding pockets and that the end-to-end spacer length fluctuations should be in the same range as the size of a receptor binding pocket.

  13. Influence of length and flexibility of spacers on the binding affinity of divalent ligands.

    Science.gov (United States)

    Liese, Susanne; Netz, Roland R

    2015-01-01

    We present a quantitative model for the binding of divalent ligand-receptor systems. We study the influence of length and flexibility of the spacers on the overall binding affinity and derive general rules for the optimal ligand design. To this end, we first compare different polymeric models and determine the probability to simultaneously bind to two neighboring receptor binding pockets. In a second step the binding affinity of divalent ligands in terms of the IC50 value is derived. We find that a divalent ligand has the potential to bind more efficiently than its monovalent counterpart only, if the monovalent dissociation constant is lower than a critical value. This critical monovalent dissociation constant depends on the ligand-spacer length and flexibility as well as on the size of the receptor. Regarding the optimal ligand-spacer length and flexibility, we find that the average spacer length should be equal or slightly smaller than the distance between the receptor binding pockets and that the end-to-end spacer length fluctuations should be in the same range as the size of a receptor binding pocket.

  14. Screening for oligonucleotide binding affinity by a convenient fluorescence competition assay.

    Science.gov (United States)

    Harrison, J G; Liu, X; Balasubramanian, S

    1999-09-01

    A competitive homogeneous quenched fluorescence assay system is described for the high throughput screening of DNA conjugates that bind to single-stranded DNA. Fluorescence signal is generated by competitive binding of the sample molecule to a target strand labelled with a quencher probe, which is otherwise hybridised to a complementary strand containing a fluorescent probe. Thus fluorescence generated is related to the affinity of the sample. Competitive analysis of a number of peptide-oligonucleotide conjugates gave data that correlated well with the corresponding UV melting data. The assay will be useful for screening of large numbers of potential single-stranded binding molecules.

  15. Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product.

    OpenAIRE

    Nakagama, H; Heinrich, G.; Pelletier, J; Housman, D E

    1995-01-01

    The Wilms' tumor suppressor gene, WT1, encodes a zinc finger polypeptide which plays a key role regulating cell growth and differentiation in the urogenital system. Using the whole-genome PCR approach, we searched murine genomic DNA for high-affinity WT1 binding sites and identified a 10-bp motif 5'GCGTGGGAGT3' which we term WTE). The WTE motif is similar to the consensus binding sequence 5'GCG(G/T)GGGCG3' recognized by EGR-1 and is also suggested to function as a binding site for WT1, settin...

  16. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    International Nuclear Information System (INIS)

    The effects of brief incubation with carbamylcholine on subsequent binding of [3H]N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with [3H]N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent [3H]N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation

  17. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    Science.gov (United States)

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-01

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M. PMID:23325100

  18. Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction between 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod-odecane. High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover,the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA condensation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.

  19. Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation

    Institute of Scientific and Technical Information of China (English)

    XIANG YongZhe; WANG Na; ZHANG Ji; LI Kun; ZHANG ZhongWei; LIN HongHui; YU XiaoQi

    2009-01-01

    A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction be-tween 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod- odecane.High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover, the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA con-densation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.

  20. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  1. Is There Consistency between the Binding Affinity and Inhibitory Potential of Natural Polyphenols as α-amylase Inhibitors?

    Science.gov (United States)

    Xu, Wei; Shao, Rong; Xiao, Jianbo

    2016-07-26

    The inhibitory potential of natural polyphenols for α-amylases has attracted great interests among researchers. The structure-affinity properties of natural polyphenols binding to α-amylase and the structure-activity relationship of dietary polyphenols inhibiting α-amylase were deeply investigated. There is a lack of consistency between the structure-affinity relationship and the structure-activity relationship of natural polyphenols as α-amylase inhibitors. Is it consistent between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors? It was found that the consistency between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors is not equivocal. For example, there is no consistency between the binding affinity and the inhibitory potential of quercetin and its glycosides as α-amylase inhibitors. However, catechins with higher α-amylase inhibitory potential exhibited higher affinity with α-amylase. PMID:25748632

  2. Structure-guided optimization of estrogen receptor binding affinity and antagonist potency of pyrazolopyrimidines with basic side chains.

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.; Sheng, S.; Compton, D.; Kim, Y.; Joachimiak, A.; Sharma, S.; Carlson, K.; Katzenellenbogen, B.; Nettles, K.; Greene, G.; Katzenellenbogen, J.; Biosciences Division; Univ. of Illinois; Univ. of Chicago; The Scripps Research Inst.

    2007-01-01

    2,3-Diarylpyrazolo[1,5-a]pyrimidines are estrogen receptor (ER) antagonists of modest potency that we have described previously. Guided by the crystal structure of an ER-ligand complex that we have obtained with one of these compounds, we prepared analogs that contain a basic side chain at the 2- or 3-aryl group and quickly found one that, according to the structure-based prediction, shows an increase in binding affinity and antagonist potency and a loss of residual agonist activity.

  3. Design of cyclic peptides that bind protein surfaces with antibody-like affinity.

    Science.gov (United States)

    Millward, Steven W; Fiacco, Stephen; Austin, Ryan J; Roberts, Richard W

    2007-09-21

    There is a pressing need for new molecular tools to target protein surfaces with high affinity and specificity. Here, we describe cyclic messenger RNA display with a trillion-member covalent peptide macrocycle library. Using this library, we have designed a number of high-affinity, redox-insensitive, cyclic peptides that target the signaling protein G alpha i1. In addition to cyclization, our library construction took advantage of an expanded genetic code, utilizing nonsense suppression to insert N-methylphenylalanine as a 21st amino acid. The designed macrocycles exhibit several intriguing features. First, the core motif seen in all of the selected variants is the same and shares an identical context with respect to the macrocyclic scaffold, consistent with the idea that selection simultaneously optimizes both the cyclization chemistry and the structural placement of the binding epitope. Second, detailed characterization of one molecule, cyclic G alpha i binding peptide (cycGiBP), demonstrates substantially enhanced proteolytic stability relative to that of the parent linear molecule. Third and perhaps most important, the cycGiBP peptide binds the target with very high affinity ( K i approximately 2.1 nM), similar to those of many of the best monoclonal antibodies and higher than that of the betagamma heterodimer, an endogenous G alpha i1 ligand. Overall the work provides a general route to design novel, low-molecular-weight, high-affinity ligands that target protein surfaces.

  4. Evaluation of Caesalpinia pulcherrima endospermic gum as affinity matrices for galactose-binding lectins interaction

    Directory of Open Access Journals (Sweden)

    Renata Chastinet Braga

    2011-04-01

    Full Text Available Lectins are proteins or glycoproteins able to bind, specifically and reversibly carbohydrates and glycoconjugates. Considering this ability, the utilization of Caesalpinia pulcherrima seeds polysaccharides as an affinity matrix was tested. The endospermic gum were solubilized in distinct concentrations of NaOH and treated with different amounts of epichlorohydrin (ECH forming affinity gels with variable capacity for interaction with galactose- binding lectins. The gel with an ECH/gum ration of 6.0mmol/g was selected as the best affinity matrix. The matrix presented different efficiencies in terms of isolating galactose-binding lectins. C. pulcherrima endospermic galactomannans were purified by ethanol precipitation and the purified galactomannan was crosslinked with the best formulation of gel. The Artocarpus incisa, Ricinus communis and Abrus precatorius lectins showed interactions of 11.5, 17.7 and 47.2mg of retained protein in 1g of gel, respectively; the Artocarpus integrifolia lectin showed the highest affinities (79.7mg/g. The heamaglutination assays confirmed the activity and SDS-PAGE electrophoresis confirmed the isolation of the lectins in a single-step procedure.

  5. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    Science.gov (United States)

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  6. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  7. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    International Nuclear Information System (INIS)

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBDKZ), originating from Pseudomonas aeruginosa bacteriophage φKZ, has been examined using a fusion protein of PBDKZ and green fluorescent protein (PBDKZ-GFP). A fluorescence recovery after photobleaching analysis of bound PBDKZ-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 107 M-1 for the PBDKZ-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBDKZ-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  8. A Combinatorial Approach to Biophysically Characterise Chemokine-Glycan Binding Affinities for Drug Development

    Directory of Open Access Journals (Sweden)

    Tanja Gerlza

    2014-07-01

    Full Text Available Chemokine binding to glycosaminoglycans (GAGs is recognised to be an important step in inflammation and other pathological disorders like tumor growth and metastasis. Although different ways and strategies to interfere with these interactions are being pursued, no major breakthrough in the development of glycan-targeting drugs has been reported so far. We have engineered CXCL8 towards a dominant-negative form of this chemokine (dnCXCL8 which was shown to be highly active in various inflammatory animal models due to its inability to bind/activate the cognate CXCL8 GPC receptors on neutrophils in combination with its significantly increased GAG-binding affinity [1]. For the development of GAG-targeting chemokine-based biopharmaceuticals, we have established a repertoire of methods which allow the quantification of protein-GAG interactions. Isothermal fluorescence titration (IFT, surface plasmon resonance (SPR, isothermal titration calorimetry (ITC, and a novel ELISA-like competition assay (ELICO have been used to determine Kd and IC50 values for CXCL8 and dnCXCL8 interacting with heparin and heparan sulfate (HS, the proto-typical members of the GAG family. Although the different methods gave different absolute affinities for the four protein-ligand pairs, the relative increase in GAG-binding affinity of dnCXCL8 compared to the wild type chemokine was found by all methods. In combination, these biophysical methods allow to discriminate between unspecific and specific protein-GAG interactions.

  9. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    Science.gov (United States)

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  10. A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules

    OpenAIRE

    Bjoern Peters; Huynh-Hoa Bui; Sune Frankild; Morten Nielson; Claus Lundegaard; Emrah Kostem; Derek Basch; Kasper Lamberth; Mikkel Harndahl; Ward Fleri; Wilson, Stephen S; John Sidney; Ole Lund; Soren Buus; Alessandro Sette

    2006-01-01

    Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, an...

  11. A community resource benchmarking predictions of peptide binding to MHC-I molecules.

    OpenAIRE

    Bjoern Peters; Huynh-Hoa Bui; Sune Frankild; Morten Nielson; Claus Lundegaard; Emrah Kostem; Derek Basch; Kasper Lamberth; Mikkel Harndahl; Ward Fleri; Wilson, Stephen S; John Sidney; Ole Lund; Soren Buus; Alessandro Sette

    2006-01-01

    Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, an...

  12. A community resource benchmarking predictions of peptide binding to MHC-I molecules

    OpenAIRE

    Peters, B; Bui, HH; Pletscher-Frankild, Sune; Nielsen, Morten; Lundegaard, Claus; Kostem, E; Basch, D; Lamberth, K.; Harndahl, M.; Fleri, W.; Wilson, SS; Sidney, J; Lund, Ole; Buus, S.; Sette, Alessandro

    2006-01-01

    Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, an...

  13. A computational study of ligand binding affinities in iron(III) porphine and protoporphyrin IX complexes.

    Science.gov (United States)

    Durrant, Marcus C

    2014-07-01

    The search for novel anti-malarial drugs that can disrupt biomineralization of ferriprotoporphyrin IX to haemozoin requires an understanding of the fundamental chemistry of the porphyrin's iron(iii) centre at the water-lipid interface. Towards this end, the binding affinities for a diverse set of 31 small ligands with iron(iii) porphine have been calculated using density functional theory, in the gas phase and also with implicit solvent corrections for both water and n-octanol. In addition, the binding of hydroxide, chloride, acetate, methylamine and water to ferriprotoporphyrin IX has been studied, and very similar trends are observed for the smaller and larger models. Anionic ligands generally give stronger binding than neutral ones; the strongest binding is observed for RO(-) and OH(-) ligands, whilst acetate binds relatively weakly among the anions studied. Electron-rich nitrogen donors tend to bind more strongly than electron-deficient ones, and the weakest binding is found for neutral O and S donors such as oxazole and thiophene. In all cases, ligand binding is stronger in n-octanol than in water, and the differences in binding energies for the two solvents are greater for ionic ligands than for neutrals. Finally, dimerization of ferriprotoporphyrin IX by means of iron(iii)-carboxylate bond formation has been modelled. The results are discussed in terms of haemozoin crystal growth and its disruption by known anti-malarial drugs.

  14. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  15. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  16. Microscale characterization of the binding specificity and affinity of a monoclonal antisulfotyrosyl IgG antibody

    DEFF Research Database (Denmark)

    Lassen, K.S.; Bradbury, A.R.; Heegaard, N.H.;

    2008-01-01

    peptides and proteins. The data show that the anti-Tyr(SO(3)H) antibody is completely specific for compounds containing sulfated tyrosyls. Affinity electrophoresis experiments allowed us to estimate dissociation constants for sulfated hirudin fragment (56-65), gastrin-17, and cholecystokinin octapeptide...... (CCK8) in the 1-3 microM range. The affinity of the antibody toward complement 4 protein that contains three sulfotyrosines was analyzed by surface plasmon resonance technology and modeled according to a bivalent-binding model which yielded a K(d1) of 20.1 microM for the monovalent complex. The same...... binding was studied by CE and found to be in the micromolar scale albeit with some uncertainty due to complex separation patterns. The work illustrates the amount of information on antibody-antigen interactions that may be obtained with microelectrophoretic methods consuming minute quantities of material...

  17. Structure and Energetic Contributions of a Designed Modular Peptide-Binding Protein with Picomolar Affinity.

    Science.gov (United States)

    Hansen, Simon; Tremmel, Dirk; Madhurantakam, Chaithanya; Reichen, Christian; Mittl, Peer R E; Plückthun, Andreas

    2016-03-16

    Natural armadillo repeat proteins (nArmRP) like importin-α or β-catenin bind their target peptides such that each repeat interacts with a dipeptide unit within the stretched target peptide. However, this modularity is imperfect and also restricted to short peptide stretches of usually four to six consecutive amino acids. Here we report the development and characterization of a regularized and truly modular peptide-specific binding protein, based on designed armadillo repeat proteins (dArmRP), binding to peptides of alternating lysine and arginine residues (KR)n. dArmRP were obtained from nArmRP through cycles of extensive protein engineering, which rendered them more uniform. This regularity is reflected in the consistent binding of dArmRP to (KR)-peptides, where affinities depend on the lengths of target peptides and the number of internal repeats in a very systematic manner, thus confirming the modularity of the interaction. This exponential dependency between affinity and recognition length suggests that each module adds a constant increment of binding energy to sequence-specific recognition. This relationship was confirmed by comprehensive mutagenesis studies that also reveal the importance of individual peptide side chains. The 1.83 Å resolution crystal structure of a dArmRP with five identical internal repeats in complex with the cognate (KR)5 peptide proves a modular binding mode, where each dipeptide is recognized by one internal repeat. The confirmation of this true modularity over longer peptide stretches lays the ground for the design of binders with different specificities and tailored affinities by the assembly of dipeptide-specific modules based on armadillo repeats. PMID:26878586

  18. Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin.

    Science.gov (United States)

    Vu, Trang T; Stafford, Alan R; Leslie, Beverly A; Kim, Paul Y; Fredenburgh, James C; Weitz, Jeffrey I

    2013-06-01

    Batroxobin is a thrombin-like serine protease from the venom of Bothrops atrox moojeni that clots fibrinogen. In contrast to thrombin, which releases fibrinopeptide A and B from the NH2-terminal domains of the Aα- and Bβ-chains of fibrinogen, respectively, batroxobin only releases fibrinopeptide A. Because the mechanism responsible for these differences is unknown, we compared the interactions of batroxobin and thrombin with the predominant γA/γA isoform of fibrin(ogen) and the γA/γ' variant with an extended γ-chain. Thrombin binds to the γ'-chain and forms a higher affinity interaction with γA/γ'-fibrin(ogen) than γA/γA-fibrin(ogen). In contrast, batroxobin binds both fibrin(ogen) isoforms with similar high affinity (Kd values of about 0.5 μM) even though it does not interact with the γ'-chain. The batroxobin-binding sites on fibrin(ogen) only partially overlap with those of thrombin because thrombin attenuates, but does not abrogate, the interaction of γA/γA-fibrinogen with batroxobin. Furthermore, although both thrombin and batroxobin bind to the central E-region of fibrinogen with a Kd value of 2-5 μM, the α(17-51) and Bβ(1-42) regions bind thrombin but not batroxobin. Once bound to fibrin, the capacity of batroxobin to promote fibrin accretion is 18-fold greater than that of thrombin, a finding that may explain the microvascular thrombosis that complicates envenomation by B. atrox moojeni. Therefore, batroxobin binds fibrin(ogen) in a manner distinct from thrombin, which may contribute to its higher affinity interaction, selective fibrinopeptide A release, and prothrombotic properties. PMID:23612970

  19. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    OpenAIRE

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Ce...

  20. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    Energy Technology Data Exchange (ETDEWEB)

    Raza, H.; Chung, W.L.; Mukhtar, H. (Department of Dermatology, University Hospitals of Cleveland, Case Western Reserve University, OH (USA))

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  1. Engineering protein therapeutics: predictive performances of a structure-based virtual affinity maturation protocol.

    Science.gov (United States)

    Oberlin, Michael; Kroemer, Romano; Mikol, Vincent; Minoux, Hervé; Tastan, Erdogan; Baurin, Nicolas

    2012-08-27

    The implementation of a structure based virtual affinity maturation protocol and evaluation of its predictivity are presented. The in silico protocol is based on conformational sampling of the interface residues (using the Dead End Elimination/A* algorithm), followed by the estimation of the change of free energy of binding due to a point mutation, applying MM/PBSA calculations. Several implementations of the protocol have been evaluated for 173 mutations in 7 different protein complexes for which experimental data were available: the use of the Boltzamnn averaged predictor based on the free energy of binding (ΔΔG(*)) combined with the one based on its polar component only (ΔΔE(pol*)) led to the proposal of a subset of mutations out of which 45% would have successfully enhanced the binding. When focusing on those mutations that are less likely to be introduced by natural in vivo maturation methods (99 mutations with at least two base changes in the codon), the success rate is increased to 63%. In another evaluation, focusing on 56 alanine scanning mutations, the in silico protocol was able to detect 89% of the hot-spots. PMID:22788756

  2. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  3. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding

    Science.gov (United States)

    Peng, Tao; Free, Paul; Fernig, David G.; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of

  4. Sensitivity of binding of high-affinity dopamine receptor radioligands to increased synaptic dopamine.

    Science.gov (United States)

    Gatley, S J; Gifford, A N; Carroll, F I; Volkow, N D

    2000-12-15

    PET and SPECT studies have documented that D2 radioligands of moderate affinity, but not radioligands of high affinity, are sensitive to pharmacological challenges that alter synaptic dopamine levels. The objective of this work was to determine whether the brain kinetics of high-affinity radioligands for dopamine D1 ([(3)H]SCH 23390) and D2 ([(123)I]epidepride) receptors were altered by a prolonged elevation of synaptic dopamine induced by the potent cocaine analog RTI-55. Mice were injected intravenously with radioligands either 30 min after or 4 h before intraperitoneal administration of RTI-55 (2 mg/kg). In separate experiments, the pharmacological effects of RTI-55 were assessed biochemically by measuring uptake of dopamine in synaptosomes prepared from RTI-treated mice and behaviorally by monitoring locomotor activity. Consistent with the expected elevation of synaptic dopamine, RTI-55 induced a long-lasting decrement in dopamine uptake measured ex vivo, and a prolonged increase in locomotor activity. RTI-55 injected prior to the radioligands induced a significant (P epidepride at 15 min, relative to saline-treated controls, but there were no differences between the two groups at later time-points. For [(3)H]SCH 23390, both initial striatal uptake and subsequent clearance were slightly increased by preadministration of RTI-55. Administration of RTI-55 4 h after the radioligands (i.e., when it was presumed that a state of near equilibrium binding of the radioligands had been reached), was associated with a significant reduction of striatal radioactivity for both radiotracers. Our results are consistent with increased competition between dopamine and radioligand for binding to both D1 and D2 receptors after treatment with RTI-55. We suggest that the magnitude of the competition is reduced by failure of the receptor binding of high-affinity radioligands to rapidly attain equilibrium. PMID:11044896

  5. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    International Nuclear Information System (INIS)

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, 3H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a 3H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of 3H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A4, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each

  6. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  7. Compressed images for affinity prediction-2 (CIFAP-2): an improved machine learning methodology on protein-ligand interactions based on a study on caspase 3 inhibitors.

    Science.gov (United States)

    Erdas, Ozlem; Andac, Cenk A; Gurkan-Alp, A Selen; Alpaslan, Ferda Nur; Buyukbingol, Erdem

    2015-01-01

    The aim of this study is to propose an improved computational methodology, which is called Compressed Images for Affinity Prediction-2 (CIFAP-2) to predict binding affinities of structurally related protein-ligand complexes. CIFAP-2 method is established based on a protein-ligand model from which computational affinity information is obtained by utilizing 2D electrostatic potential images determined for the binding site of protein-ligand complexes. The quality of the prediction of the CIFAP-2 algorithm was tested using partial least squares regression (PLSR) as well as support vector regression (SVR) and adaptive neuro-fuzzy ınference system (ANFIS), which are highly promising prediction methods in drug design. CIFAP-2 was applied on a protein-ligand complex system involving Caspase 3 (CASP3) and its 35 inhibitors possessing a common isatin sulfonamide pharmacophore. As a result, PLSR affinity prediction for the CASP3-ligand complexes gave rise to the most consistent information with reported empirical binding affinities (pIC(50)) of the CASP3 inhibitors. PMID:25578823

  8. Prediction of MHC binding peptides and epitopes from alfalfa mosaic virus.

    Science.gov (United States)

    Gomase, Virendra S; Kale, Karbhari V; Chikhale, Nandkishor J; Changbhale, Smruti S

    2007-08-01

    Peptide fragments from alfalfa mosaic virus involved multiple antigenic components directing and empowering the immune system to protect the host from infection. MHC molecules are cell surface proteins, which take active part in host immune reactions and involvement of MHC class-I & II in response to almost all antigens. Coat protein of alfalfa mosaic virus contains 221 aa residues. Analysis found five MHC ligands in coat protein as 64-LSSFNGLGV-72; 86- RILEEDLIY-94; 96-MVFSITPSY-104; 100- ITPSYAGTF-108; 110- LTDDVTTED-118; having rescaled binding affinity and c-terminal cleavage affinity more than 0.5. The predicted binding affinity is normalized by the 1% fractil. The MHC peptide binding is predicted using neural networks trained on c-terminals of known epitopes. In analysis predicted MHC/peptide binding is a log transformed value related to the IC50 values in nM units. Total numbers of peptides found are 213. Predicted MHC binding regions act like red flags for antigen specific and generate immune response against the parent antigen. So a small fragment of antigen can induce immune response against whole antigen. This theme is implemented in designing subunit and synthetic peptide vaccines. The sequence analysis method allows potential drug targets to identify active sites against plant diseases. The method integrates prediction of peptide MHC class I binding; proteosomal c-terminal cleavage and TAP transport efficiency. PMID:17691913

  9. New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups.

    Science.gov (United States)

    Puerta, David T; Lewis, Jana A; Cohen, Seth M

    2004-07-14

    In an effort to identify promising non-hydroxamate inhibitors of matrix metalloproteinases (MMPs), several new zinc-binding groups (ZBGs) based on pyrone, pyrothione, hydroxypyridinone, and hydroxypyridinethione chelators have been examined. Structural studies with tris(pyrazolyl)borate model complexes show that these ligands bind to the MMP active site zinc(II) ion in a bidentate fashion, similar to that found with hydroxamate-based inhibitors. Fluorescence- and colorimetric-based enzyme assays have been used to determine the IC50 values for these ZBGs against MMP-3; mixed O,S-donor ligands were found to be remarkably potent, with IC50 values as much as 700-fold lower than that found for acetohydroxamic acid. Inhibitory activity was found to parallel metal binding affinity as determined in titrations with model complexes. These results demonstrate that MPIs based on new ZBGs are feasible and may indeed improve the overall performance of inhibitors designed against these important medicinal targets. PMID:15237990

  10. The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate.

    Science.gov (United States)

    Kristensen, Ole; Kristensen, Lise Baadsgaard; Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2016-09-01

    Ionotropic glutamate receptors play a key role in fast neurotransmission in the CNS and have been linked to several neurological diseases and disorders. One subfamily is the kainate receptors, which are grouped into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptors based on their affinity for kainate. Although structures of the ligand-binding domain (LBD) of all low-affinity kainate receptors have been reported, no structures of the high-affinity receptor subunits are available. Here, we present the X-ray structure of GluK4-LBD with kainate at 2.05 Å resolution, together with thermofluor and radiolabel binding affinity data. Whereas binding-site residues in GluK4 are most similar to the AMPA receptor subfamily, the domain closure and D1-D2 interlobe contacts induced by kainate are similar to the low-affinity kainate receptor GluK1. These observations provide a likely explanation for the high binding affinity of kainate at GluK4-LBD.

  11. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  12. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    The mechanism by which delta9 tetrahydrocannabinol (delta9THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta8THC (TMA) is a positively charged analog of delta-8THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [3H]-5'-trimethylammonium-delta-8THC ([3H]TMA) to rat neuronal membranes. [3H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [3H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  13. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms.

    Directory of Open Access Journals (Sweden)

    Christopher J Brown

    Full Text Available The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19-26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD and an equivalent phage optimized peptide (12/1 were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design.

  14. Influence of target concentration and background binding on in vitro selection of affinity reagents.

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    Full Text Available Nucleic acid-based aptamers possess many useful features that make them a promising alternative to antibodies and other affinity reagents, including well-established chemical synthesis, reversible folding, thermal stability and low cost. However, the selection process typically used to generate aptamers (SELEX often requires significant resources and can fail to yield aptamers with sufficient affinity and specificity. A number of seminal theoretical models and numerical simulations have been reported in the literature offering insights into experimental factors that govern the effectiveness of the selection process. Though useful, these previous models have not considered the full spectrum of experimental factors or the potential impact of tuning these parameters at each round over the course of a multi-round selection process. We have developed an improved mathematical model to address this important question, and report that both target concentration and the degree of non-specific background binding are critical determinants of SELEX efficiency. Although smaller target concentrations should theoretically offer superior selection outcome, we show that the level of background binding dramatically affect the target concentration that will yield maximum enrichment at each round of selection. Thus, our model enables experimentalists to determine appropriate target concentrations as a means for protocol optimization. Finally, we perform a comparative analysis of two different selection methods over multiple rounds of selection, and show that methods with inherently lower background binding offer dramatic advantages in selection efficiency.

  15. A new BODIPY/nanoparticle/Ni affinity system for binding of cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Maltas, Esra, E-mail: maltasesra@gmail.com [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Kursunlu, Ahmed Nuri [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Arslan, Gulsin [Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey); Ozmen, Mustafa [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey)

    2015-09-15

    Highlights: • BODIPY was synthesized, and then attached to magnetic nanoparticles. • Ni(II) ions were chelated on prepared material. • The binding of cytochrome c to obtained material was studied. - Abstract: In this study, 3,5-{Bis[4,4-difluoro, 8-(2,6-diethyl, 1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene)]}benzoylchloride (BODIPY) was synthesized for the improving of a new immobilized metal affinity supporting material. Firstly, the synthesized BODIPY was immobilized on iron oxide superparamagnetic nanoparticles (SPIONs) and then, Ni(II) ions were chelated with the active terminals of BODIPY on nanoparticles surfaces to prepare an immobilized metal affinity (IMA) adsorbent for protein adsorption. The amount of BODIPY coated on SPIONs was about 29.7 μM at 10 mg nanoparticles. 738 μmol of Ni(II) ions were loaded to 10 mg of the SPIONs/BODIPY. The binding amount of cytochrome c was found to be 170 μg to the SPIONs/BODIPY/Ni at pH 7.4. The binding amount of the molecules on SPIONs was analyzed by using UV–vis, fluorescence and atomic absorption spectroscopy. The characterization of the prepared surfaces was performed by FT-IR, SEM and TEM.

  16. Tuning affinity and reversibility for O2 binding in dinuclear Co(II) complexes

    DEFF Research Database (Denmark)

    Vad, Mads Sørensen; Johansson, Frank Bartnik; Seidler-Egdal, Rune Kirk;

    2013-01-01

    /+) for the acetato-bridged complex to 696 mV for the trichloroacetato-bridged system. Despite the clear difference in reactivity in solution, there are no clear trends which can be correlated to O2 affinity in the O–O bond lengths in the X-ray crystal structures at 180 K (1.415(4)–1.424(2) Å) or in the frequencies...... in the reversible O2 binding process. The alternative of five coordination in the deoxy Co(II) complexes is therefore seen as less likely. The crystal structure and p(O2)50% are also reported for the 1-naphthoato-bridged oxy complex [Co2(bpbp)(O2)(C10H7O2)]2+, and the O2 binding affinity in that case is also...... qualitatively consistent with the expectation from the pKa of the parent 1-naphthoic acid. Introduction Reversible dioxygen binding is a life-supporting process for respiring organisms carried out by three classes of metalloproteins: hemoglobin, hemerythrin, and hemocyanin, the latter two...

  17. Ring size in cyclic endomorphin-2 analogs modulates receptor binding affinity and selectivity.

    Science.gov (United States)

    Piekielna, Justyna; Kluczyk, Alicja; Gentilucci, Luca; Cerlesi, Maria Camilla; Calo', Girolamo; Tomböly, Csaba; Łapiński, Krzysztof; Janecki, Tomasz; Janecka, Anna

    2015-06-01

    The study reports the solid-phase synthesis and biological evaluation of a series of new side chain-to-side chain cyclized opioid peptide analogs of the general structure Tyr-[D-Xaa-Phe-Phe-Asp]NH2, where Xaa = Lys (1), Orn (2), Dab (3), or Dap (4) (Dab = 2,4-diaminobutyric acid, Dap = 2,3-diaminopropionic acid), containing 17- to 14-membered rings. The influence of the ring size on binding to the MOP, DOP and KOP opioid receptors was studied. In general, the reduction of the size of the macrocyclic ring increased the selectivity for the MOP receptor. The cyclopeptide incorporating Xaa = Lys displayed subnanomolar MOP affinity but modest selectivity over the KOP receptor, while the analog with the Orn residue showed increased affinity and selectivity for MOP. The analog with Dab was a weak MOP agonist and did not bind to the other two opioid receptors. Finally, the peptide with Xaa = Dap was completely MOP receptor-selective with subnanomolar affinity. Interestingly, the deletion of one Phe residue from 1 led to the 14-membered Tyr-c[D-Lys-Phe-Asp]NH2 (5), a potent and selective MOP receptor ligand. The in vitro potencies of the new analogs were determined in a calcium mobilization assay performed in Chinese Hamster Ovary (CHO) cells expressing human recombinant opioid receptors and chimeric G proteins. A good correlation between binding and the functional test results was observed. The influence of the ring size, solid support and the N-terminal protecting group on the formation of cyclodimers was studied. PMID:25948019

  18. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    Science.gov (United States)

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. PMID:26795018

  19. Asparagine deamidation reduces DNA-binding affinity of the Drosophila melanogaster Scr homeodomain.

    Science.gov (United States)

    O'Connell, Nichole E; Lelli, Katherine; Mann, Richard S; Palmer, Arthur G

    2015-10-24

    Spontaneous deamidation of asparagine is a non-enzymatic post-translational modification of proteins. Residue Asn 321 is the main site of deamidation of the Drosophila melanogaster Hox transcription factor Sex Combs Reduced (Scr). Formation of iso-aspartate, the major deamidation product, is detected by HNCACB triple-resonance NMR spectroscopy. The rate of deamidation is quantified by fitting the decay of Asn NH2 side-chain signals in a time-series of (15)N-(1)H HSQC NMR spectra. The deamidated form of Scr binds to specific DNA target sequences with reduced affinity as determined by an electrophoretic mobility shift assay.

  20. A protein engineered to bind uranyl selectively and with femtomolar affinity

    Science.gov (United States)

    Zhou, Lu; Bosscher, Mike; Zhang, Changsheng; Özçubukçu, Salih; Zhang, Liang; Zhang, Wen; Li, Charles J.; Liu, Jianzhao; Jensen, Mark P.; Lai, Luhua; He, Chuan

    2014-03-01

    Uranyl (UO22+), the predominant aerobic form of uranium, is present in the ocean at a concentration of ~3.2 parts per 109 (13.7 nM) however, the successful enrichment of uranyl from this vast resource has been limited by the high concentrations of metal ions of similar size and charge, which makes it difficult to design a binding motif that is selective for uranyl. Here we report the design and rational development of a uranyl-binding protein using a computational screening process in the initial search for potential uranyl-binding sites. The engineered protein is thermally stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 femtomolar (fM) and >10,000-fold selectivity over other metal ions. We also demonstrated that the uranyl-binding protein can repeatedly sequester 30-60% of the uranyl in synthetic sea water. The chemical strategy employed here may be applied to engineer other selective metal-binding proteins for biotechnology and remediation applications.

  1. Theoretical prediction of the binding free energy for mutants of replication protein A.

    Science.gov (United States)

    Carra, Claudio; Saha, Janapriya; Cucinotta, Francis A

    2012-07-01

    The replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), single stranded DNA (ssDNA) binding protein required for pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Studies based on deletions and mutations have identified the high affinity ssDNA binding domains in the 70 kDa subunit of RPA, regions A and B. Individually, the domain A and B have a low affinity for ssDNA, while tandems composed of AA, AB, BB, and BA sequences bind the ssDNA with moderate to high affinity. Single and double point mutations on polar residues in the binding domains leads to a reduction in affinity of RPA for ssDNA, in particular when two hydrophilic residues are involved. In view of these results, we performed a study based on molecular dynamics simulation aimed to reproduce the experimental change in binding free energy, ΔΔG, of RPA70 mutants to further elucidate the nature of the protein-ssDNA interaction. The MM-PB(GB)SA methods implemented in Amber10 and the code FoldX were used to estimate the binding free energy. The theoretical and experimental ΔΔG values correlate better when the results are obtained by MM-PBSA calculated on individual trajectories for each mutant. In these conditions, the correlation coefficient between experimental and theoretical ΔΔG reaches a value of 0.95 despite the overestimation of the energy change by one order of magnitude. The decomposition of the MM-GBSA energy per residue allows us to correlate the change of the affinity with the residue polarity and energy contribution to the binding. The method revealed reliable predictions of the change in the affinity in function of mutations, and can be used to identify new mutants with distinct binding properties. PMID:22160652

  2. Predicting binding free energies in solution

    CERN Document Server

    Jensen, Jan H

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic for others. In paper I summarize some of the many factors that could easily contribute 1-3 kcal/mol errors at 298 K: three-body dispersion effects, molecular symmetry, anharmonicity, spurious imaginary frequencies, insufficient conformational sampling, wrong or changing ionization states, errors in the solvation free energy of ions, and explicit solvent (and ion) effects that are not well-represented by continuum models. While the paper is primarily a synthesis of previously published work there are two new results: the adaptation of Legendre transformed free energies to electronic structure theory and a use of water clusters that maximizes error cancellation in binding free energies computed using explicit solvent molecules. While I focus on binding free energies in aqueous solution the approach also a...

  3. In Silico and in Vitro Study of Binding Affinity of Tripeptides to Amyloid β Fibrils: Implications for Alzheimer's Disease.

    Science.gov (United States)

    Viet, Man Hoang; Siposova, Katarina; Bednarikova, Zuzana; Antosova, Andrea; Nguyen, Truc Trang; Gazova, Zuzana; Li, Mai Suan

    2015-04-23

    Self-assembly of Aβ peptides into amyloid aggregates has been suggested as the major cause of Alzheimer's disease (AD). Nowadays, there is no medication for AD, but experimental data indicate that reversion of the process of amyloid aggregation reduces the symptoms of disease. In this paper, all 8000 tripeptides were studied for their ability to destroy Aβ fibrils. The docking method and the more sophisticated MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method were employed to calculate the binding affinity and mode of tripeptides to Aβ fibrils. The ability of these peptides to depolymerize Aβ fibrils was also investigated experimentally using atomic force microscopy and fluorescence spectroscopy (Thioflavin T assay). It was shown that tripeptides prefer to bind to hydrophobic regions of 6Aβ9-40 fibrils. Tripeptides WWW, WWP, WPW and PWW were found to be the most potent binders. In vitro experiments showed that tight-binding tripeptides have significant depolymerizing activities and their DC50 values determined from dose-response curves were in micromolar range. The ability of nonbinding (GAM, AAM) and weak-binding (IVL and VLA) tripeptides to destroy Aβ fibrils was negligible. In vitro data of tripeptide depolymerizing activities support the predictions obtained by molecular docking and all-atom simulation methods. Our results suggest that presence of multiple complexes of heterocycles forming by tryptophan and proline residues in tripeptides is crucial for their tight binding to Aβ fibrils as well as for extensive fibril depolymerization. We recommend PWW for further studies as it has the lowest experimental binding constant. PMID:25815792

  4. An HIV-1 encoded peptide mimics the DNA binding loop of NF-{kappa}B and binds thioredoxin with high affinity

    Energy Technology Data Exchange (ETDEWEB)

    Su Guoping [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352 (United States)]. E-mail: gsu@u.washington.edu; Wang Min [Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023 (United States)]. E-mail: wang.min@yale.edu; Taylor, Ethan Will [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352 (United States)]. E-mail: wtaylor@rx.uga.edu

    2005-11-11

    Pro-fs is a human immunodeficiency virus type 1 (HIV-l)-encoded putative selenoprotein, predicted by a theoretical analysis of the viral genome; it is potentially expressed by a -1 frameshift from the protease coding region. Pro-fs has significant sequence similarity to the DNA binding loop of nuclear factor kappa B (NF-{kappa}B), which is known to bind thioredoxin (Trx). We hypothesize that the putative HIV-1 pro-fs gene product functions by mimicry of NF-{kappa}B via binding to Trx. The hypothesis was tested in vitro by co-immunoprecipitation and GST-pull down assays, using a purified mutant pro-fs protein, in which the two potential selenocysteine residues were mutated to cysteines, in order to permit expression in bacteria. Both experiments showed that pro-fs binds to human wild type Trx (Trx-wt) with high affinity. Mutation of the two conserved cysteine residues in the Trx active site redox center to serine (Ser) (Trx-CS) weakened but failed to abolish the interaction. In pro-fs-transfected 293T cells, using confocal microscopy and fluorescence resonance energy transfer (FRET), we have observed that pro-fs localizes in cell nuclei and forms oligomers. Upon stimulation by phorbol 12-myristate 13-acetate (PMA), Trx translocates into cell nuclei. Significant FRET efficiency was detected in the nuclei of PMA-stimulated 293T cells co-expressing fluorescence-tagged pro-fs and Trx-wt or Trx-CS. These results indicate that in living cells the double cysteine mutant of pro-fs binds to both Trx and Trx-CS with high affinity, suggesting that Trx-pro-fs binding is a structurally-specific interaction, involving more of the Trx molecule than just its active site cysteine residues. These results establish the capacity for functional mimicry of the Trx binding ability of the NF-{kappa}B/Rel family of transcription factors by the putative HIV-1 pro-fs protein.

  5. Isolation and identification of actin-binding proteins in Plasmodium falciparum by affinity chromatography

    Directory of Open Access Journals (Sweden)

    Claudia Forero

    2000-06-01

    Full Text Available The invasion of the erythrocyte by Plasmodium falciparum depends on the ability of the merozoite to move through the membrane invagination. This ability is probably mediated by actin dependent motors. Using affinity columns with G-actin and F-actin we isolated actin binding proteins from the parasite. By immunoblotting and immunoprecipitation with specific antibodies we identified the presence of tropomyosin, myosin, a-actinin, and two different actins in the eluate corresponding to F-actin binding proteins. In addition to these, a 240-260 kDa doublet, different in size from the erythrocyte spectrin, reacted with an antibody against human spectrin. All the above mentioned proteins were metabolically radiolabeled when the parasite was cultured with 35S-methionine. The presence of these proteins in P. falciparum is indicative of a complex cytoskeleton and supports the proposed role for an actin-myosin motor during invasion.

  6. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    Science.gov (United States)

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  7. Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol.

    Science.gov (United States)

    Tsitsanou, Katerina E; Hayes, Joseph M; Keramioti, Maria; Mamais, Michalis; Oikonomakos, Nikos G; Kato, Atsushi; Leonidas, Demetres D; Zographos, Spyros E

    2013-11-01

    Flavonoids have been discovered as novel inhibitors of glycogen phosphorylase (GP), a target to control hyperglycemia in type 2 diabetes. To elucidate the mechanism of inhibition, we have determined the crystal structure of the GPb-chrysin complex at 1.9 Å resolution. Chrysin is accommodated at the inhibitor site intercalating between the aromatic side chains of Phe285 and Tyr613 through π-stacking interactions. Chrysin binds to GPb approximately 15 times weaker (Ki=19.01 μM) than flavopiridol (Ki=1.24 μM), exclusively at the inhibitor site, and both inhibitors display similar behavior with respect to AMP. To identify the source of flavopiridols' stronger affinity, molecular docking with Glide and postdocking binding free energy calculations using QM/MM-PBSA have been performed and compared. Whereas docking failed to correctly rank inhibitor binding conformations, the QM/MM-PBSA method employing M06-2X/6-31+G to model the π-stacking interactions correctly reproduced the experimental results. Flavopiridols' greater binding affinity is sourced to favorable interactions of the cationic 4-hydroxypiperidin-1-yl substituent with GPb, with desolvation effects limited by the substituent conformation adopted in the crystallographic complex. Further successful predictions using QM/MM-PBSA for the flavonoid quercetagetin (which binds at the allosteric site) leads us to propose the methodology as a useful and inexpensive tool to predict flavonoid binding. PMID:23279842

  8. Bicarbonate increases binding affinity of Vibrio cholerae ToxT to virulence gene promoters.

    Science.gov (United States)

    Thomson, Joshua J; Withey, Jeffrey H

    2014-11-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription.

  9. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity.

    Science.gov (United States)

    Beccia, Maria Rosa; Sauge-Merle, Sandrine; Lemaire, David; Brémond, Nicolas; Pardoux, Romain; Blangy, Stéphanie; Guilbaud, Philippe; Berthomieu, Catherine

    2015-07-01

    Calmodulin (CaM) is an essential Ca(II)-dependent regulator of cell physiology. To understand its interaction with Ca(II) at a molecular level, it is essential to examine Ca(II) binding at each site of the protein, even if it is challenging to estimate the site-specific binding properties of the interdependent CaM-binding sites. In this study, we evaluated the site-specific Ca(II)-binding affinity of sites I and II of the N-terminal domain by combining site-directed mutagenesis and spectrofluorimetry. The mutations had very low impact on the protein structure and stability. We used these binding constants to evaluate the inter-site cooperativity energy and compared it with its lower limit value usually reported in the literature. We found that site I affinity for Ca(II) was 1.5 times that of site II and that cooperativity induced an approximately tenfold higher affinity for the second Ca(II)-binding event, as compared to the first one. We further showed that insertion of a tryptophan at position 7 of site II binding loop significantly increased site II affinity for Ca(II) and the intra-domain cooperativity. ΔH and ΔS parameters were studied by isothermal titration calorimetry for Ca(II) binding to site I, site II and to the entire N-terminal domain. They showed that calcium binding is mainly entropy driven for the first and second binding events. These findings provide molecular information on the structure-affinity relationship of the individual sites of the CaM N-terminal domain and new perspectives for the optimization of metal ion binding by mutating the EF-hand loops sequences.

  10. Application of a constrained regularization method to extraction of affinity distributions: proton and metal binding to humic substances.

    Science.gov (United States)

    Orsetti, Silvia; Andrade, Estela María; Molina, Fernando V

    2009-08-15

    The binding of proton and metal cations to humic substances has been analyzed with a regularized fitting procedure (using the CONTIN software package) to extract conditional affinity distributions, valid at a given ionic strength, from binding (titration) curves. The procedure was previously tested with simulated titration curves using a simple bi-Gaussian model, the NICA-Donnan model, and the Stockholm humic model. Application to literature data for proton binding shows that in several cases the affinity distribution found is bimodal (carboxylic and phenolic sites) as usually assumed; however in other cases, specially for fulvic acids, a trimodal distribution is clearly discerned, with a smaller peak between the two noted above attributed to the presence of vicinal carboxylic groups. The analysis of metal binding curves has been performed in a few cases where the available data could be reliably processed, separating the proton affinity distribution and obtaining the conditional affinity spectra. For Cd(II) and Pb(II) a bimodal distribution is found, attributed in principle to mono- and bidentate binding, based on spectroscopic data. In the case of Cu(II), a more complex affinity distribution is found showing 3-4 peaks; this is consistent with spectroscopic studies, where different binding modes, up to tetradentate, have been observed. PMID:19477457

  11. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  12. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina;

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide....... Screening of 1 against different CNS targets establishes a high selectivity, and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites....

  13. Residue 21 of human granulocyte-macrophage colony-stimulating factor is critical for biological activity and for high but not low affinity binding.

    OpenAIRE

    Lopez, A F; Shannon, M F; Hercus, T; Nicola, N A; Cambareri, B; Dottore, M; Layton, M. J.; Eglinton, L; Vadas, M A

    1992-01-01

    The functional role of the predicted first alpha-helix of human granulocyte-macrophage colony-stimulating factor (GM-CSF) was analysed by site-directed mutagenesis and multiple biological and receptor binding assays. Initial deletion mutagenesis pointed to residues 20 and 21 being critical. Substitution mutagenesis showed that by altering Gln20 to Ala full GM-CSF activity was retained but that by altering Glu21 for Ala GM-CSF activity and high affinity receptor binding were decreased. Substit...

  14. Identification of High Affinity Fatty Acid Binding Sites on Human Serum Albumin by MM-PBSA Method

    OpenAIRE

    Fujiwara, Shin-ichi; Amisaki, Takashi

    2007-01-01

    Human serum albumin (HSA) has seven common fatty acid (FA) binding sites. In this study, we used the molecular mechanics Poisson-Boltzmann surface area method to identify high affinity FA binding sites on HSA in terms of binding free energy. Using multiple HSA-FA (myristate, palmitate) complex models constructed by molecular dynamics simulations, two methods were performed in molecular mechanics Poisson-Boltzmann surface area, the “three-trajectory method” and the “single-trajectory method”. ...

  15. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.

    Science.gov (United States)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel; Nielsen, Morten; Buus, Søren; Jungersen, Gregers

    2016-02-01

    Affinity and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are important factors in presentation of peptides to cytotoxic T lymphocytes (CTLs). In silico prediction methods of peptide-MHC binding followed by experimental analysis of peptide-MHC interactions constitute an attractive protocol to select target peptides from the vast pool of viral proteome peptides. We have earlier reported the peptide binding motif of the porcine MHC-I molecules SLA-1*04:01 and SLA-2*04:01, identified by an ELISA affinity-based positional scanning combinatorial peptide library (PSCPL) approach. Here, we report the peptide binding motif of SLA-3*04:01 and combine two prediction methods and analysis of both peptide binding affinity and stability of peptide-MHC complexes to improve rational peptide selection. Using a peptide prediction strategy combining PSCPL binding matrices and in silico prediction algorithms (NetMHCpan), peptide ligands from a repository of 8900 peptides were predicted for binding to SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01 and validated by affinity and stability assays. From the pool of predicted peptides for SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01, a total of 71, 28, and 38% were binders with affinities below 500 nM, respectively. Comparison of peptide-SLA binding affinity and complex stability showed that peptides of high affinity generally, but not always, produce complexes of high stability. In conclusion, we demonstrate how state-of-the-art prediction and in vitro immunology tools in combination can be used for accurate selection of peptides for MHC class I binding, hence providing an expansion of the field of peptide-MHC analysis also to include pigs as a livestock experimental model.

  16. Computational Estimates of Binding Affinities for Estrogen Receptor Isoforms in Rainbow Trout

    CERN Document Server

    Shyu, Conrad

    2009-01-01

    Molecular dynamics simulations are performed to determine the binding affinities between the hormone 17 beta-estradiol (E2) and different estrogen receptor (ER) isoforms in the rainbow trout (Oncorhynchus mykiss). Previous studies have demonstrated that a recent, unique gene duplication of the ER alpha subtype created two isoforms ER alpha 1 and ER alpha 2, and an early secondary split of ER beta produced two distinct isoforms of ER beta 1 and ER beta 2 based on the phylogenetic analysis. The objective of our computational studies is to provide insight into the underlying evolutionary selection pressure on the ER isoforms. Our results show that E2 binds preferentially to ER alpha 1. This finding corresponds to the experimental results as the ERs evolved from gene duplication events are frequently free from selective pressure and should exhibit no deleterious effects. The E2, however, only binds slightly better to ER beta 2. Both isoforms remain competitive. This finding reflects the fact that since ER beta 2 ...

  17. Interleukin 3 activates human blood basophils via high-affinity binding sites

    International Nuclear Information System (INIS)

    Pure populations of human basophilic granulocytes were obtained from chronic myeloid leukemia (CML) blood by negative selection using a mixture of monoclonal antibodies and complement. 125I-radiolabeled recombinant human interleukin 3 (rhIL-3) bound to purified basophils in a specific manner. Quantitative binding studies and Scatchard plot analyses performed on samples from two donors revealed the presence of a single class of high-affinity IL-3 binding sites. Purified CML basophils maintained in suspension in the presence of rhIL-3 incorporated up to 12 times more [3H]thymidine than basophils in control cultures. Furthermore, after preincubation in vitro with rhIL-3 for 30 min, normal blood basophils released 2- to 3-fold more histamine than basophils pretreated with control medium when exposed to various concentrations of an anti-IgE antibody. Together, these results show that rhIL-3 binds to a specific receptor on blood basophils and is a regulator of basophil function

  18. A community resource benchmarking predictions of peptide binding to MHC-I molecules

    DEFF Research Database (Denmark)

    Peters, B; Bui, HH; Pletscher-Frankild, Sune;

    2006-01-01

    of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one...... neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available...... of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current...

  19. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  20. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    International Nuclear Information System (INIS)

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity

  1. Introduction of D-Phenylalanine enhanced the receptor binding affinities of gonadotropin-releasing hormone peptides

    OpenAIRE

    Lu, Jie; Hathaway, Helen J.; Royce, Melanie E.; Prossnitz, Eric R.; Miao, Yubin

    2014-01-01

    The purpose of this study was to examine whether the introduction of D-Phe could improve the GnRH receptor binding affinities of DOTA-conjugated D-Lys6-GnRH peptides. Building upon the construct of DOTA-Ahx-(D-Lys6-GnRH1) we previously reported, an aromatic amino acid of D-Phe was inserted either between the DOTA and Ahx or between the Ahx and D-Lys6 to generate new DOTA-D-Phe-Ahx-(D-Lys6-GnRH) or DOTA-Ahx-D-Phe-(D-Lys6-GnRH) peptides. Compared to DOTA-Ahx-(D-Lys6-GnRH1) (36.1 nM), the introd...

  2. Localization of the binding site for the human high-affinity Fc receptor on IgG.

    Science.gov (United States)

    Duncan, A R; Woof, J M; Partridge, L J; Burton, D R; Winter, G

    1988-04-01

    A major pathway in the clearance of pathogens involves the coating of the pathogen with specific antibodies, and the binding of the antibody Fc region to cell receptors. This can trigger engulfment of the pathogen by phagocytes or lysis by killer cells. By oligonucleotide site-directed mutagenesis we have engineered a single amino acid change in a mouse IgG2b antibody (Glu 235----Leu) which now enables the antibody to bind to the FcRI (high affinity) receptor on human monocytes with a 100-fold improvement in affinity. This indicates that Leu 235 is a major determinant in the binding of antibody to FcRI and that the receptor may interact directly with the region linking the CH2 domain to the hinge. Tailoring the affinity of antibodies for cell receptors could help dissect their role in clearing pathogen. PMID:2965792

  3. Molecular dynamic behavior and binding affinity of flavonoid analogues to the cyclin dependent kinase 6/cyclin D complex.

    Science.gov (United States)

    Khuntawee, Wasinee; Rungrotmongkol, Thanyada; Hannongbua, Supot

    2012-01-23

    The cyclin dependent kinases (CDKs), each with their respective regulatory partner cyclin that are involved in the regulation of the cell cycle, apoptosis, and transcription, are potentially interesting targets for cancer therapy. The CDK6 complex with cyclin D (CDK6/cycD) drives cellular proliferation by phosphorylation of specific key target proteins. To understand the flavonoids that inhibit the CDK6/cycD functions, molecular dynamics simulations (MDSs) were performed on three inhibitors, fisetin (FST), apigenin (AGN), and chrysin (CHS), complexed with CDK6/cycD, including the two different binding orientations of CHS: FST-like (CHS_A) and deschloro-flavopiridol-like (CHS_B). For all three inhibitors, including both CHS orientations, the conserved interaction between the 4-keto group of the flavonoid and the backbone V101 nitrogen of CDK6 was strongly detected. The 3'- and 4'-OH groups on the flavonoid phenyl ring and the 3-OH group on the benzopyranone ring of inhibitor were found to significantly increase the binding and inhibitory efficiency. Besides the electrostatic interactions, especially through hydrogen bond formation, the van der Waals (vdW) interactions with the I19, V27, F98, H100, and L152 residues of CDK6 are also important factors in the binding efficiency of flavonoids against the CDK6/cycD complex. On the basis of the docking calculation and MM-PBSA method, the order of the predicted inhibitory affinities of these three inhibitors toward the CDK6/cycD was FST > AGN > CHS, which is in good agreement with the experimental data. In addition, CHS preferentially binds to the active CDK6 in a different orientation to FST and AGN but similar to its related analog, deschloro-flavopiridol. The obtained results are useful as the basic information for the further design of potent anticancer drugs specifically targeting the CDK6 enzyme. PMID:22172011

  4. Evaluation of drug-muscarinic receptor affinities using cell membrane chromatography and radioligand binding assay in guinea pig jejunum membrane

    Institute of Scientific and Technical Information of China (English)

    Bing-xiang YUAN; Jin HOU; Lang-chong HE; Guang-de YANG

    2005-01-01

    Aim: To study if cell membrane chromatography (CMC) could reflect drug-receptor interaction and evaluate the affinity and competitive binding to muscarinic acetylcholine receptor (mAChR). Methods: The cell membrane stationary phase(CMSP) was prepared by immobilizing guinea pig jejunum cell membrane on the surface of a silica carrier, and was used for the rapid on-line chromatographic evaluation of ligand binding affinities to mAChR. The affinity to mAChR was also evaluated from radioligand binding assays (RBA) using the same jejunum membrane preparation. Results: The capacity factor (k') profiles in guinea pig jejunum CMSP were: (-)QNB (15.4)>(+)QNB (11.5)>atropine (5.35)>pirenzepine(5.26)>4-DAMP (4.45)>AF-DX 116 (4.18)>pilocarpine (3.93)>acetylcholine(1.31). These results compared with the affinity rank orders obtained from radioligand binding assays indicated that there wasa positive correlation (r2=0.8525, P<0.0001) between both data sets. Conclusion: The CMC method can be used to evaluate drug-receptor affinities for drug candidates.

  5. Packing density of glycolipid biosurfactant monolayers give a significant effect on their binding affinity toward immunoglobulin G.

    Science.gov (United States)

    Imura, Tomohiro; Masuda, Yuma; Ito, Seya; Worakitkanchanakul, Wannasiri; Morita, Tomotake; Fukuoka, Tokuma; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipid-A (MEL-A) is one of the most promising glycolipid biosurfactants, and abundantly produced by Pseudozyma yeasts. MEL-A gives not only excellent self-assembling properties but also a high binding affinity toward human immunoglobulin G (HIgG). In this study, three kinds of MEL-A were prepared from methyl myristate [MEL-A (m)], olive oil [MEL-A (o)], and soybean oil [MEL-A (s)], and the effect of interfacial properties of each MEL-A monolayer on the binding affinity toward HIgG was investigated using surface plasmon resonance (SPR) and the measurement of surface pressure (pi)-area (A) isotherms. Based on GC-MS analysis, the main fatty acids were C(8) and C(10) acids in all MEL-A, and the content of unsaturated fatty acids was 0% for MEL-A (m), 9.1% for MEL-A (o), 46.3% for MEL-A (s), respectively. Interestingly, the acid content significantly influenced on their binding affinity, and the monolayer of MEL-A (o) gave a higher binding affinity than that of MEL-A (m) and MEL-A (s). Moreover, the mixed MEL-A (o)/ MEL-A (s) monolayer prepared from 1/1 molar ratio, which comprised of 27.8% of unsaturated fatty acids, indicated the highest binding affinity. At the air/water interface, MEL-A (o) monolayer exhibited a phase transition at 13 degrees C from a liquid condensed monolayer to a liquid expanded monolayer, and the area per molecule significantly expanded above 13 degrees C, while the amount of HIgG bound to the liquid expanded monolayer was much higher than that bound to liquid condensed monolayer. The binding affinity of MEL-A toward HIgG is thus likely to closely relate to the monolayer packing density, and may be partly controlled by temperature. PMID:18622124

  6. Structure-affinity properties of a high-affinity ligand of FKBP12 studied by molecular simulations of a binding intermediate.

    Directory of Open Access Journals (Sweden)

    Lilian Olivieri

    Full Text Available With a view to explaining the structure-affinity properties of the ligands of the protein FKBP12, we characterized a binding intermediate state between this protein and a high-affinity ligand. Indeed, the nature and extent of the intermolecular contacts developed in such a species may play a role on its stability and, hence, on the overall association rate. To find the binding intermediate, a molecular simulation protocol was used to unbind the ligand by gradually decreasing the biasing forces introduced. The intermediate was subsequently refined with 17 independent stochastic boundary molecular dynamics simulations that provide a consistent picture of the intermediate state. In this state, the core region of the ligand remains stable, notably because of the two anchoring oxygen atoms that correspond to recurrent motifs found in all FKBP12 ligand core structures. Besides, the non-core regions participate in numerous transient intermolecular and intramolecular contacts. The dynamic aspect of most of the contacts seems important both for the ligand to retain at least a part of its configurational entropy and for avoiding a trapped state along the binding pathway. Since the transient and anchoring contacts contribute to increasing the stability of the intermediate, as a corollary, the dissociation rate constant [Formula: see text] of this intermediate should be decreased, resulting in an increase of the affinity constant [Formula: see text]. The present results support our previous conclusions and provide a coherent rationale for explaining the prevalence in high-affinity ligands of (i the two oxygen atoms found in carbonyl or sulfonyl groups of dissimilar core structures and of (ii symmetric or pseudo-symmetric mobile groups of atoms found as non-core moieties. Another interesting aspect of the intermediate is the distortion of the flexible 80 s loop of the protein, mainly in its tip region, that promotes the accessibility to the bound state.

  7. Identification and binding mechanism of phage displayed peptides with specific affinity to acid-alkali treated titanium.

    Science.gov (United States)

    Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo

    2016-10-01

    Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. PMID:27371890

  8. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    Directory of Open Access Journals (Sweden)

    Chung Chun-wa

    2011-04-01

    Full Text Available Abstract Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA. It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin.

  9. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities.

    Science.gov (United States)

    Zhang, Jian; Lieu, Yen K; Ali, Abdullah M; Penson, Alex; Reggio, Kathryn S; Rabadan, Raul; Raza, Azra; Mukherjee, Siddhartha; Manley, James L

    2015-08-25

    Serine/arginine-rich splicing factor 2 (SRSF2) is an RNA-binding protein that plays important roles in splicing of mRNA precursors. SRSF2 mutations are frequently found in patients with myelodysplastic syndromes and certain leukemias, but how these mutations affect SRSF2 function has only begun to be examined. We used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease to introduce the P95H mutation to SRSF2 in K562 leukemia cells, generating an isogenic model so that splicing alterations can be attributed solely to mutant SRSF2. We found that SRSF2 (P95H) misregulates 548 splicing events (RNA gel shift assays showed that a mutant SRSF2 derivative bound more tightly than its wild-type counterpart to RNA sites containing UCCAG but bound less tightly to UGGAG sites. Thus in most cases the pattern of exon inclusion or exclusion correlated with stronger or weaker RNA binding, respectively. We further show that the P95H mutation does not affect other functions of SRSF2, i.e., protein-protein interactions with key splicing factors. Our results thus demonstrate that the P95H mutation positively or negatively alters the binding affinity of SRSF2 for cognate RNA sites in target transcripts, leading to misregulation of exon inclusion. Our findings shed light on the mechanism of the disease-associated SRSF2 mutation in splicing regulation and also reveal a group of misspliced mRNA isoforms for potential therapeutic targeting.

  10. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities

    Science.gov (United States)

    Genheden, Samuel; Ryde, Ulf

    2015-01-01

    Introduction: The molecular mechanics energies combined with the Poisson–Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods are popular approaches to estimate the free energy of the binding of small ligands to biological macromolecules. They are typically based on molecular dynamics simulations of the receptor–ligand complex and are therefore intermediate in both accuracy and computational effort between empirical scoring and strict alchemical perturbation methods. They have been applied to a large number of systems with varying success. Areas covered: The authors review the use of MM/PBSA and MM/GBSA methods to calculate ligand-binding affinities, with an emphasis on calibration, testing and validation, as well as attempts to improve the methods, rather than on specific applications. Expert opinion: MM/PBSA and MM/GBSA are attractive approaches owing to their modular nature and that they do not require calculations on a training set. They have been used successfully to reproduce and rationalize experimental findings and to improve the results of virtual screening and docking. However, they contain several crude and questionable approximations, for example, the lack of conformational entropy and information about the number and free energy of water molecules in the binding site. Moreover, there are many variants of the method and their performance varies strongly with the tested system. Likewise, most attempts to ameliorate the methods with more accurate approaches, for example, quantum-mechanical calculations, polarizable force fields or improved solvation have deteriorated the results. PMID:25835573

  11. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a concentration-depende

  12. High affinity binding of hydrophobic and autoantigenic regions of proinsulin to the 70 kDa chaperone DnaK

    OpenAIRE

    Schloot Nanette C; Fingberg Waltraud; Alloza Iraide; Vandenbroeck Koen; Blasius Elias; Siegenthaler Rahel K; Burkart Volker; Christen Philipp; Kolb Hubert

    2010-01-01

    Abstract Background Chaperones facilitate proper folding of peptides and bind to misfolded proteins as occurring during periods of cell stress. Complexes of peptides with chaperones induce peptide-directed immunity. Here we analyzed the interaction of (pre)proinsulin with the best characterized chaperone of the hsp70 family, bacterial DnaK. Results Of a set of overlapping 13-mer peptides of human preproinsulin high affinity binding to DnaK was found for the signal peptide and one further regi...

  13. Whole blood-oxygen binding properties of four cold-temperate marine fishes: blood affinity is independent of pH-dependent binding, routine swimming performance, and environmental hypoxia

    DEFF Research Database (Denmark)

    Herbert, Neill A; Skov, Peter V; Wells, Rufus M G;

    2006-01-01

    The relationship between whole blood-oxygen affinity (P(50)) and pH-dependent binding (i.e., cooperativity and the Bohr [ Phi ] and Root effects) was examined statistically under standardized conditions (10.0 degrees Celsius) in four unrelated cold-temperate marine fishes that differ widely in...... swimming performance and the predicted low O(2) response of each species. The ecotype of the four marine species was also unrelated to pH-dependent binding because no difference in the Bohr effect was apparent ( Phi varied insignificantly from -0.90 to -1.06), and differences in the magnitude of the...... their swimming performance and their expected responses to hypoxia: cod (Gadus morhua), herring (Clupea harengus), mackerel (Scomber scombrus), and plaice (Pleuronectes platessa). An unexpected difference in blood-oxygen affinity was found (herring>plaice>mackerel>cod), and this was independent of both...

  14. Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N,N-diallyltryptamines.

    Science.gov (United States)

    Cozzi, Nicholas V; Daley, Paul F

    2016-02-01

    N,N-Diallyltryptamine (DALT) and 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) are two tryptamines synthesized and tested by Alexander Shulgin. In self-experiments, 5-MeO-DALT was reported to be psychoactive in the 12-20mg range, while the unsubstituted compound DALT had few discernible effects in the 42-80 mg range. Recently, 5-MeO-DALT has been used in nonmedical settings for its psychoactive effects, but these effects have been poorly characterized and little is known of its pharmacological properties. We extended the work of Shulgin by synthesizing additional 5-substituted-DALTs. We then compared them to DALT and 5-MeO-DALT for their binding affinities at 45 cloned receptors and transporter proteins. Based on in vitro binding affinity, we identified 27 potential receptor targets for the 5-substituted-DALT compounds. Five of the DALT compounds had affinity in the 10-80 nM range for serotonin 5-HT1A and 5-HT2B receptors, while the affinity of DALT itself at 5-HT1A receptors was slightly lower at 100 nM. Among the 5-HT2 subtypes, the weakest affinity was at 5-HT2A receptors, spanning 250-730 nM. Five of the DALT compounds had affinity in the 50-400 nM range for serotonin 5-HT1D, 5-HT6, and 5-HT7 receptors; again, it was the unsubstituted DALT that had the weakest affinity at all three subtypes. The test drugs had even weaker affinity for 5-HT1B, 5-HT1E, and 5-HT5A subtypes and little or no affinity for the 5-HT3 subtype. These compounds also had generally nanomolar affinities for adrenergic α2A, α2B, and α2C receptors, sigma receptors σ1 and σ2, histamine H1 receptors, and norepinephrine and serotonin uptake transporters. They also bound to other targets in the nanomolar-to-low micromolar range. Based on these binding results, it is likely that multiple serotonin receptors, as well as several nonserotonergic sites are important for the psychoactive effects of DALT drugs. To learn whether any quantitative structure-affinity relationships existed, we evaluated

  15. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    Science.gov (United States)

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications.

  16. Metal-ligand binding affinity vs reactivity: qualitative studies in Rh(I)-catalyzed asymmetric ring-opening reactions.

    Science.gov (United States)

    Tsui, Gavin Chit; Dougan, Patrick; Lautens, Mark

    2013-06-01

    Rh(I)-catalyzed asymmetric ring opening (ARO) of oxabenzonorbornadiene is used as a model system to qualitatively study reactions involving multiple metal-ligand interactions. The key feature of this approach is the use of product ee as an indicator to quickly gain important information such as the relative ligand binding affinity and relative reactivity of catalysts.

  17. Topography of the high-affinity lysine binding site of plasminogen as defined with a specific antibody probe

    Energy Technology Data Exchange (ETDEWEB)

    Miles, L.A.; Plow, E.F.

    1986-11-04

    An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound (/sup 125/I)EDP I, (/sup 125/I)Glu-plasminogen, and (/sup 125/I)Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of (/sup 125/I)EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and l730 ..mu..M, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region and did not react with those lacking an EDP I region, or with tissue plasminogen activator or prothrombin, which also contains kringles. By immunoblotting analyses, a chymotryptic degradation product of M/sub r/ 20,000 was derived from EDP I that retained reactivity with the antibody. ..cap alpha../sub 2/-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen. The binding of (/sup 125/I)EDP I to fibrin was also inhibited by the antiserum. The observations provide independent evidence for the role of the high-affinity lysine binding site in the functional interactions of plasminogen with its primary substrate and inhibitor.

  18. SYNTHESIS OF POLY(3,4-AZOPYRIDYLENE) AND OXYGEN-BINDING AFFINITY OF ITS COMPLEX WITH COBALTPORPHYRIN

    Institute of Scientific and Technical Information of China (English)

    Bao-qing Shentu; Zhi-xue Weng; Hiroyuki Nishide

    2005-01-01

    Synthesis and characteristics of poly(3,4-azopyridylene) (PAP), conductivity and oxygen-binding affinity of its complex with meso-α,α,α,α-tetrakis(o-pivalamidophenyl) porphyrinatocobalt(Ⅱ) (CoP) were studied. PAP was prepared by oxidative polymerization of 3,4-diaminopyridine (DAP) in DMF solution using CuCl/pyridine as the catalyst. IR and NMR results showed that the peak of amido group in DAP was converted to the azo group in PAP and a π conjugated polymer was synthesized. The average molecular weight of PAP was determined to be 5.0 × 103. The PAP-CoP complex was prepared by complexing the pyridyl group of PAP with the fifth coordination site of CoP in DMF solution. In comparison with the CoP complex with a non-π conjugated polymer, the PAP-CoP complex shows good electroconductivity of 5.8 × 10-6 Scm-1. The PAP-CoP complex displays a reversible change in the UV-Visible absorption spectrum from the deoxy form to the oxy or oxygen-binding one with an isosbestic point, in response to the partial oxygen pressure of the atmosphere. The oxygen-response behavior was monitored at the absorbance ascribed to the oxy form at 548 nm to give the oxygen-binding affinity.The oxygen-binding equilibrium curves of PAP-CoP complex obey a Langmuir isotherm. DMF has great effects on the oxygen-binding properties of the PAP-CoP complex. The oxygen-binding affinity of PAP-CoP complex in the solid state is higher than that in DMF solution. With decreasing temperature, the oxygen-binding affinity of the PAP-CoP complex increases.

  19. Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity.

    Directory of Open Access Journals (Sweden)

    Lorenzo Asti

    2016-04-01

    Full Text Available The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high-frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10-6, outperforming other sequence- and structure-based models.

  20. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism

    OpenAIRE

    Bourne, Yves; Radić, Zoran; Aráoz, Rómulo; Talley, Todd T.; Benoit, Evelyne; Servent, Denis; Taylor, Palmer; Molgó, Jordi; Marchot, Pascale

    2010-01-01

    Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type α12βγδ and neuronal α3β2 and α4β2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble rec...

  1. Dynamics of starch granule biogenesis - the role of redox-regulated enzymes and low-affinity carbohydrate-binding modules

    DEFF Research Database (Denmark)

    Blennow, A.; Svensson, Birte

    2010-01-01

    of a substantially more extensive and coordinated redox regulation involving a larger number of enzymes. Noticeably several of these enzymes contain a new type of low-affinity carbohydrate-binding module that we term a low-affinity starch-binding domain or LA-SBD. These are present in the CBM20, CBM45 and CBM53...... families and can enable diurnal dynamics of starch-enzyme recognition. Such diurnal changes in starch binding have been indicated for the redox-regulated GWD and SEX4.......The deposition and degradation of starch in plants is subject to extensive post-translational regulation. To permit degradation of B-type crystallites present in tuberous and leaf starch these starch types are phosphorylated by glucan, water dikinase (GWD). At the level of post-translational redox...

  2. Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics.

    Science.gov (United States)

    Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel

    2016-09-01

    The acquisition of reliable kinetic parameters for the characterization of biomolecular interactions is an important component of the drug discovery and development process. While several benchmark studies have explored the variability of kinetic rate constants obtained from multiple laboratories and biosensors, a direct comparison of these instruments' performance has not been undertaken, and systematic factors contributing to data variability from these systems have not been discussed. To address these questions, a panel of ten high-affinity monoclonal antibodies was simultaneously evaluated for their binding kinetics against the same antigen on four biosensor platforms: GE Healthcare's Biacore T100, Bio-Rad's ProteOn XPR36, ForteBio's Octet RED384, and Wasatch Microfluidics's IBIS MX96. We compared the strengths and weaknesses of these systems and found that despite certain inherent systematic limitations in instrumentation, the rank orders of both the association and dissociation rate constants were highly correlated between these instruments. Our results also revealed a trade-off between data reliability and sample throughput. Biacore T100, followed by ProteOn XPR36, exhibited excellent data quality and consistency, whereas Octet RED384 and IBIS MX96 demonstrated high flexibility and throughput with compromises in data accuracy and reproducibility. Our results support the need for a "fit-for-purpose" approach in instrument selection for biosensor studies. PMID:27365220

  3. A Self-Adaptive Steered Molecular Dynamics Method Based on Minimization of Stretching Force Reveals the Binding Affinity of Protein–Ligand Complexes

    Directory of Open Access Journals (Sweden)

    Junfeng Gu

    2015-10-01

    Full Text Available Binding affinity prediction of protein–ligand complexes has attracted widespread interest. In this study, a self-adaptive steered molecular dynamics (SMD method is proposed to reveal the binding affinity of protein–ligand complexes. The SMD method is executed through adjusting pulling direction to find an optimum trajectory of ligand dissociation, which is realized by minimizing the stretching force automatically. The SMD method is then used to simulate the dissociations of 19 common protein–ligand complexes which are derived from two homology families, and the binding free energy values are gained through experimental techniques. Results show that the proposed SMD method follows a different dissociation pathway with lower a rupture force and energy barrier when compared with the conventional SMD method, and further analysis indicates the rupture forces of the complexes in the same protein family correlate well with their binding free energy, which reveals the possibility of using the proposed SMD method to identify the active ligand.

  4. Binding affinity to and dependence on some opioidsin Sf9 insect cells expressing human μ-opioid receptor

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Hua; HEYou; JINWen-Qiao; CHENXin-Jian; ZHANGHong-Ping; SHENQing-Xiang; CHIZhi-Qiang

    2003-01-01

    AIM: To investigate the receptor binding affinity and naloxone-precipitated cAMP overshoot of dihydroetorphine,fentanyl, heroin, and pethidine in Sf9 insect cells expressing human μ-opioid receptor (Sf9-μ cells). METHODS:Competitive binding assay of [3H]ohmefentanyl was used to reveal the affinity for μ-opioid receptor in Sf9-μ cells.[3H]cAMP RIA was used to determine cAMP level. Antinociceptive activity was evaluated using 55℃ mouse hotplate test. Naloxone-precipitated withdrawal jumping was used to reflect physical dependence in mice. RESULTS:All drugs displayed antinociceptive activity and produced physical dependence in mice. The Ki values ofdihydroetorphine, fentanyl, heroin, and pethidine in competitive binding assay were (0.85±0.20)nmol, (59.1±11.7)nmol, (0.36±0.13)μmol, and (12.2±3.8) μmol respectively. The binding affinities of these drugs for μ-opioidreceptor in Sf9-μ cells were paralleled to their antinociceptive activities in mice. After chronic pretreatment withthese drugs, naloxone induced cAMP withdrawal overshoot in Sf9-μ cells. The dependence index in Sf9-μ cellswas calculated as Ki value in competitive binding assay over ECs0 value in naloxone-precipitated cAMP assay, Thephysical dependence index in mice was calculated as antinociceptive ED50/withdrawal jumping cumulative EDs0.There was a good linear correlation between dependence index in Sf9-μ cells and physical dependence index inmice. CONCLUSION: The Sf9-μ cells could be used as a cell model to evaluate the receptor binding affinity andphysical dependent liability of analgesic agents.

  5. High affinity binding of hydrophobic and autoantigenic regions of proinsulin to the 70 kDa chaperone DnaK

    Directory of Open Access Journals (Sweden)

    Schloot Nanette C

    2010-11-01

    Full Text Available Abstract Background Chaperones facilitate proper folding of peptides and bind to misfolded proteins as occurring during periods of cell stress. Complexes of peptides with chaperones induce peptide-directed immunity. Here we analyzed the interaction of (preproinsulin with the best characterized chaperone of the hsp70 family, bacterial DnaK. Results Of a set of overlapping 13-mer peptides of human preproinsulin high affinity binding to DnaK was found for the signal peptide and one further region in each proinsulin domain (A- and B-chain, C-peptide. Among the latter, peptides covering most of the B-chain region B11-23 exhibited strongest binding, which was in the range of known high-affinity DnaK ligands, dissociation equilibrium constant (K'd of 2.2 ± 0.4 μM. The B-chain region B11-23 is located at the interface between two insulin molecules and not accessible in insulin oligomers. Indeed, native insulin oligomers showed very low DnaK affinity (K'd 67.8 ± 20.8 μM whereas a proinsulin molecule modified to prevent oligomerization showed good binding affinity (K'd 11.3 ± 7.8 μM. Conclusions Intact insulin only weakly interacts with the hsp70 chaperone DnaK whereas monomeric proinsulin and peptides from 3 distinct proinsulin regions show substantial chaperone binding. Strongest binding was seen for the B-chain peptide B 11-23. Interestingly, peptide B11-23 represents a dominant autoantigen in type 1 diabetes.

  6. Binding affinities in the SAMPL3 trypsin and host-guest blind tests estimated with the MM/PBSA and LIE methods.

    OpenAIRE

    Mikulskis, Paulius; Genheden, Samuel; Rydberg, Patrik; Sandberg, Lars; Olsen, Lars; Ryde, Ulf

    2012-01-01

    We have estimated affinities for the binding of 34 ligands to trypsin and nine guest molecules to three different hosts in the SAMPL3 blind challenge, using the MM/PBSA, MM/GBSA, LIE, continuum LIE, and Glide score methods. For the trypsin challenge, none of the methods were able to accurately predict the experimental results. For the MM/GB(PB)SA and LIE methods, the rankings were essentially random and the mean absolute deviations were much worse than a null hypothesis giving the same affini...

  7. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it.

    Science.gov (United States)

    Bacon, J R; Rhodes, M J

    2000-03-01

    Proline-rich proteins (PRP) in human parotid saliva have a high affinity for dietary polyphenolic compounds (tannins), forming stable complexes that may modulate the biological and nutritional properties of the tannin. The formation of such complexes may also have an important role in the modulation or promotion of the sensation of oral astringency perceived when tannin-rich foods and beverages are consumed. The major classes of PRP (acidic, basic, and glycosylated) have been isolated from human saliva, and the relative binding affinities of a series of hydrolyzable tannins, which are found in a number of plant-derived foods and beverages, to these PRP classes have been determined using a competition assay. All of the classes of PRP have a high capacity for hydrolyzable tannins. Within the narrow range of binding affinities exhibited, structure/binding relationships with the levels of tannin galloylation, hexahydroxydiphenoyl esterification, and degree of polymerization were identified. No individual class of human salivary PRP appears to have an exclusive affinity for a particular type of hydrolyzable tannin. PMID:10725160

  8. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it.

    Science.gov (United States)

    Bacon, J R; Rhodes, M J

    2000-03-01

    Proline-rich proteins (PRP) in human parotid saliva have a high affinity for dietary polyphenolic compounds (tannins), forming stable complexes that may modulate the biological and nutritional properties of the tannin. The formation of such complexes may also have an important role in the modulation or promotion of the sensation of oral astringency perceived when tannin-rich foods and beverages are consumed. The major classes of PRP (acidic, basic, and glycosylated) have been isolated from human saliva, and the relative binding affinities of a series of hydrolyzable tannins, which are found in a number of plant-derived foods and beverages, to these PRP classes have been determined using a competition assay. All of the classes of PRP have a high capacity for hydrolyzable tannins. Within the narrow range of binding affinities exhibited, structure/binding relationships with the levels of tannin galloylation, hexahydroxydiphenoyl esterification, and degree of polymerization were identified. No individual class of human salivary PRP appears to have an exclusive affinity for a particular type of hydrolyzable tannin.

  9. Design of Bcl-2 and Bcl-xL Inhibitors with Subnanomolar Binding Affinities Based upon a New Scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Chen, Jianfang; Meagher, Jennifer L.; Yang, Chao-Yie; Aguilar, Angelo; Liu, Liu; Bai, Longchuan; Cong, Xin; Cai, Qian; Fang, Xueliang; Stuckey, Jeanne A.; Wang, Shaomeng (Michigan)

    2014-10-02

    Employing a structure-based strategy, we have designed a new class of potent small-molecule inhibitors of the anti-apoptotic proteins Bcl-2 and Bcl-xL. An initial lead compound with a new scaffold was designed based upon the crystal structure of Bcl-xL and U.S. Food and Drug Administration (FDA) approved drugs and was found to have an affinity of 100 {micro}M for both Bcl-2 and Bcl-xL. Linking this weak lead to another weak-affinity fragment derived from Abbott's ABT-737 led to an improvement of the binding affinity by a factor of >10,000. Further optimization ultimately yielded compounds with subnanomolar binding affinities for both Bcl-2 and Bcl-xL and potent cellular activity. The best compound (21) binds to Bcl-xL and Bcl-2 with K{sub i} < 1 nM, inhibits cell growth in the H146 and H1417 small-cell lung cancer cell lines with IC{sub 50} values of 60-90 nM, and induces robust cell death in the H146 cancer cell line at 30-100 nM.

  10. Critical factors governing the difference in antizyme-binding affinities between human ornithine decarboxylase and antizyme inhibitor.

    Directory of Open Access Journals (Sweden)

    Yen-Chin Liu

    Full Text Available Both ornithine decarboxylase (ODC and its regulatory protein, antizyme inhibitor (AZI, can bind with antizyme (AZ, but the latter has a higher AZ-binding affinity. The results of this study clearly identify the critical amino acid residues governing the difference in AZ-binding affinities between human ODC and AZI. Inhibition experiments using a series of ODC mutants suggested that residues 125 and 140 may be the key residues responsible for the differential AZ-binding affinities. The ODC_N125K/M140K double mutant demonstrated a significant inhibition by AZ, and the IC(50 value of this mutant was 0.08 µM, three-fold smaller than that of ODC_WT. Furthermore, the activity of the AZ-inhibited ODC_N125K/M140K enzyme was hardly rescued by AZI. The dissociation constant (K(d of the [ODC_N125K/M140K]-AZ heterodimer was approximately 0.02 µM, which is smaller than that of WT_ODC by approximately 10-fold and is very close to the K(d value of AZI_WT, suggesting that ODC_N125K/M140K has an AZ-binding affinity higher than that of ODC_WT and similar to that of AZI. The efficiency of the AZI_K125N/K140M double mutant in the rescue of AZ-inhibited ODC enzyme activity was less than that of AZI_WT. The K(d value of [AZI_K125N/K140M]-AZ was 0.18 µM, nine-fold larger than that of AZI_WT and close to the K(d value of ODC_WT, suggesting that AZI_K125N/K140M has an AZ-binding affinity lower than that of AZI_WT and similar to that of ODC. These data support the hypothesis that the differences in residues 125 and 140 in ODC and AZI are responsible for the differential AZ-binding affinities.

  11. Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity

    DEFF Research Database (Denmark)

    Asti, Lorenzo; Uguzzoni, Guido; Marcatili, Paolo;

    2016-01-01

    -frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function...... related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire...... of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10-6), outperforming other sequence- and structure-based models....

  12. Two Metabolites with DNA-Binding Affinity from the Mangrove Fungus Xylaria sp. (#2508) from the South China Sea Coast

    Institute of Scientific and Technical Information of China (English)

    XU Fang; PANG Jiyan; LU Bingtai; WANG Jiajun; ZHANG yi; SHEZhigang; VRIJMOED L LP; GARETH JONES E B; LIN Yongcheng

    2009-01-01

    A novel metabolite xylopyridine A (1), together with a known compound pyrocoll (2), was isolated from man-grove endophytic fungus Xylaria sp. (#2508) collected from the South China Sea coast. Their structures were estab-lished on the basis of spectroscopic analysis, especially 2D-NMR. Their affinities toward calf thymus (CT) DNA were studied by fluorescence quenching and spectrophotometric titration experiments. The results indicate that 1 showes strong DNA-binding affinity presumably via an intercalation mechanism, thus it is exploitable as strong DNA-binders.

  13. A Prediction Method of Binding Free Energy of Protein and Ligand

    Science.gov (United States)

    Yang, Kun; Wang, Xicheng

    2010-05-01

    Predicting the binding free energy is an important problem in bimolecular simulation. Such prediction would be great benefit in understanding protein functions, and may be useful for computational prediction of ligand binding strengths, e.g., in discovering pharmaceutical drugs. Free energy perturbation (FEP)/thermodynamics integration (TI) is a classical method to explicitly predict free energy. However, this method need plenty of time to collect datum, and that attempts to deal with some simple systems and small changes of molecular structures. Another one for estimating ligand binding affinities is linear interaction energy (LIE) method. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. However, it also is time-consuming work. In this paper, a new prediction method based on steered molecular dynamics (SMD) with direction optimization is developed to compute binding free energy. Jarzynski's equality is used to derive the PMF or free-energy. The results for two numerical examples are presented, showing that the method has good accuracy and efficiency. The novel method can also simulate whole binding proceeding and give some important structural information about development of new drugs.

  14. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2007-11-01

    Full Text Available Abstract Background Peptides binding to Major Histocompatibility Complex (MHC class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule – a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1 an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2 quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion We present two MOEA-based algorithms for finding motifs

  15. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system.

    Science.gov (United States)

    Konishi, Masaaki; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Kitamoto, Dai

    2007-03-01

    Mannosylerythritol lipids (MEL), which are glycolipid biosurfactants secreted by the Pseudozyma yeasts, show not only excellent surface-active properties but also versatile biochemical actions including antitumor and cell-differentiation activities. In order to address the biochemical actions, interactions between MEL-A, the major component of MEL, and different lectins were investigated using the surface plasmon resonance spectroscopy. The monolayer of MEL-A showed high binding affinity to concanavalin A (ConA) and Maackia amurensis lectin-I (MAL-I). The observed affinity constants for ConA and MAL-I were estimated to be 9.48 +/- 1.31 x 10(6) and 3.13 +/- 0.274 x 10(6) M(-1), respectively; the value was comparable to that of Manalpha1-6(Manalpha1-3)Man, which is one of the most specific probe to ConA. Significantly, alpha-methyl-D-mannopyranoside (1 mM) exhibited no binding inhibition between MEL-A and ConA. MEL-A is thus likely to self-assemble to give a high affinity surface, where ConA binds to the hydrophilic headgroup in a different manner from that generally observed in lectin-saccharide interactions. The binding manner should be related with the biochemical actions of MEL toward mammalian cells via protein-carbohydrate interactions. PMID:17205206

  16. Molecular Weight, Protein Binding Affinity and Methane Mitigation of Condensed Tannins from Mangosteen-peel (Garcinia mangostana L).

    Science.gov (United States)

    Paengkoum, P; Phonmun, T; Liang, J B; Huang, X D; Tan, H Y; Jahromi, M F

    2015-10-01

    The objectives of this study were to determine the molecular weight of condensed tannins (CT) extracted from mangosteen (Garcinia mangostana L) peel, its protein binding affinity and effects on fermentation parameters including total gas, methane (CH4) and volatile fatty acids (VFA) production. The average molecular weight (Mw) of the purified CT was 2,081 Da with a protein binding affinity of 0.69 (the amount needed to bind half the maximum bovine serum albumin). In vitro gas production declined by 0.409, 0.121, and 0.311, respectively, while CH4 production decreased by 0.211, 0.353, and 0.549, respectively, with addition of 10, 20, and 30 mg CT/500 mg dry matter (DM) compared to the control (p<0.05). The effects of CT from mangosteen-peel on in vitro DM degradability (IVDMD) and in vitro N degradability was negative and linear (p<0.01). Total VFA, concentrations of acetic, propionic, butyric and isovaleric acids decreased linearly with increasing amount of CT. The aforementioned results show that protein binding affinity of CT from mangosteen-peel is lower than those reported for Leucaena forages, however, the former has stronger negative effect on IVDMD. Therefore, the use of mangosteen-peel as protein source and CH4 mitigating agent in ruminant feed requires further investigations. PMID:26323400

  17. The Binding Affinity and Molecular Basis of the Structure-Binding Relationship between Urinary Tamm-Horsfall Glycoprotein and Tumor Necrosis Factor-α

    Directory of Open Access Journals (Sweden)

    Chia-Li Yu

    2012-10-01

    Full Text Available In a previous study we noted significant THP binding to TNF-α, but did not explore the molecular basis of the structure-binding relationship. In this study, we used lectin-binding ELISA to assess the carbohydrate compositions of THP, BSA, IgG, TNF-α, and IFN-g. We identified β(1,4-N-acetylglucosamine oligomers (GlcNAc and GlcNAc/branched mannose in BSA, IgG, TNF-α, and THP, but not in IFN-g. These carbohydrate moieties mediated binding with THP. Small amounts of Siaα(2,3Gal/ GalNAc, Sia(2,6Gal/GalNAc, and mannose residues were also present in THP and TNF-α. Binding affinity (Kd between THP and TNF-α by Scatchard plot analysis was 1.4–1.7 × 10−6 M, lower than antigen-antibody or ligand-receptor binding affinities. To elucidate the structure-binding relationship of THP-TNF-α, THP was digested with neuraminidase, β-galactosidase, O-sialoglycoprotein endopeptidase, carboxypeptidase Y, or proteinase K. β-galactosidase increased binding capacity of THP for TNF-α. Monosaccharide inhibition suggested that α-methyl-D-mannoside, GlcNAc, and GalNAc, but not sialic acid, suppress THP-TNF-α binding as detected by ELISA. We conclude that sugar-lectin and sugar-protein interactions between cognate sites in THP and TNF-α mediate their binding.

  18. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.

    Science.gov (United States)

    Ma, Wen; Waffo-Teguo, Pierre; Jourdes, Michael; Li, Hua; Teissedre, Pierre-Louis

    2016-01-01

    Astringency perception, as an essential parameter for high-quality red wine, is principally elicited by condensed tannins in diversified chemical structures. Condensed tannins, which are also known as proanthocyanidins (PAs), belong to the flavonoid class of polyphenols and are incorporated by multiple flavan-3-ols units according to their degree of polymerization (DP). However, the influence of DP size of PAs on astringency perception remains unclear for decades. This controversy was mainly attributed to the lack of efficient strategies to isolate the PAs in non-galloylated forms and with individual degree size from grape/wine. In the present study, the astringency intensity of purified and identified grape oligomeric tannins (DP ranged from 1 to 5) was firstly explored. A novel non-solid phase strategy was used to rapidly exclude the galloylated PAs from the non-galloylated PAs and fractionate the latter according to their DP size. Then, a series of PAs with individual DP size and galloylation were purified by an approach of preparative hydrophilic interaction chromatography. Furthermore, purified compounds were identified by both normal phase HPLC-FLD and reverse phase UHPLC-ESI-Q-TOF. Finally, the contribution of the astringency perception of the individual purified tannins was examined with a salivary protein binding ability test. The results were observed by HPLC-FLD and quantified by changes in PA concentration remaining in the filtrate. In summary, a new approach without a solid stationary phase was developed to isolate PAs according to their DP size. And a positive relationship between the DP of PAs and salivary protein affinity was revealed. PMID:27518822

  19. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency

    Science.gov (United States)

    Ma, Wen; Waffo-Teguo, Pierre; Jourdes, Michael; Li, Hua

    2016-01-01

    Astringency perception, as an essential parameter for high-quality red wine, is principally elicited by condensed tannins in diversified chemical structures. Condensed tannins, which are also known as proanthocyanidins (PAs), belong to the flavonoid class of polyphenols and are incorporated by multiple flavan-3-ols units according to their degree of polymerization (DP). However, the influence of DP size of PAs on astringency perception remains unclear for decades. This controversy was mainly attributed to the lack of efficient strategies to isolate the PAs in non-galloylated forms and with individual degree size from grape/wine. In the present study, the astringency intensity of purified and identified grape oligomeric tannins (DP ranged from 1 to 5) was firstly explored. A novel non-solid phase strategy was used to rapidly exclude the galloylated PAs from the non-galloylated PAs and fractionate the latter according to their DP size. Then, a series of PAs with individual DP size and galloylation were purified by an approach of preparative hydrophilic interaction chromatography. Furthermore, purified compounds were identified by both normal phase HPLC-FLD and reverse phase UHPLC-ESI-Q-TOF. Finally, the contribution of the astringency perception of the individual purified tannins was examined with a salivary protein binding ability test. The results were observed by HPLC-FLD and quantified by changes in PA concentration remaining in the filtrate. In summary, a new approach without a solid stationary phase was developed to isolate PAs according to their DP size. And a positive relationship between the DP of PAs and salivary protein affinity was revealed. PMID:27518822

  20. Afi-Chip: An Equipment-Free, Low-Cost, and Universal Binding Ligand Affinity Evaluation Platform.

    Science.gov (United States)

    Song, Yanling; Shi, Yuanzhi; Li, Xingrui; Ma, Yanli; Gao, Mingxuan; Liu, Dan; Mao, Yu; Zhu, Zhi; Lin, Hui; Yang, Chaoyong

    2016-08-16

    Binding affinity characterization is of great importance for aptamer screening because the dissociation constant (Kd) value is a key parameter for evaluating molecular interaction. However, conventional methods often require sophisticated equipment and time-consuming processing. Here, we present a portable device, Afi-Chip, as an equipment-free, rapid, low-cost, and universal platform for evaluation of the aptamer affinity. The Afi-Chip displays a distance readout based on the reaction of an enzyme catalyzing the decomposition of H2O2 for gas generation to push the movement of ink bar. Taking advantage of translating the recognition signal to distance signal and realizing the regents mixing and quantitative readout on the chip, we successfully monitored the aptamer evolution process and characterized binding affinity of aptamers against multiple types of targets, including small molecule glucose, cancer biomarker protein EpCAM, and tumor cell SW620. We also applied the Afi-Chip for rapid characterization of the affinity between anti-HCG and HCG to demonstrate the generality for the molecular interaction study. All of the Kd values obtained are comparable to those reported in the literature or obtained by sophisticated instruments such as a flow cytometer. The Afi-Chip offers a new approach for equipment-free investigation of molecular interactions, such as aptamer identification, ligand selection monitoring, and drug screening.

  1. Automethylation of SUV39H2, an oncogenic histone lysine methyltransferase, regulates its binding affinity to substrate proteins.

    Science.gov (United States)

    Piao, Lianhua; Nakakido, Makoto; Suzuki, Takehiro; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2016-04-19

    We previously reported that the histone lysine methyltransferase SUV39H2, which is overexpressed in various types of human cancer, plays a critical role in the DNA repair after double strand breakage, and possesses oncogenic activity. Although its biological significance in tumorigenesis has been elucidated, the regulatory mechanism of SUV39H2 activity through post-translational modification is not well known. In this study, we demonstrate in vitro and in vivo automethylation of SUV39H2 at lysine 392. Automethylation of SUV39H2 led to impairment of its binding affinity to substrate proteins such as histone H3 and LSD1. Furthermore, we observed that hyper-automethylated SUV39H2 reduced methylation activities to substrates through affecting the binding affinity to substrate proteins. Our finding unveils a novel autoregulatory mechanism of SUV39H2 through lysine automethylation. PMID:26988914

  2. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Feng; Miyakawa, Takuya [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kataoka, Michihiko [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeshita, Daijiro [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kumashiro, Shoko [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Uzura, Atsuko [Research and Development Center, Nagase and Co., Ltd., 2-2-3 Muratani, Nishi-ku, Kobe 651-2241 (Japan); Urano, Nobuyuki [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Nagata, Koji [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shimizu, Sakayu [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Bioenvironmental Science, Kyoto Gakuen University, Sogabe-cho, Kameoka 621-8555 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  3. Irreversible blockade of the high and low affinity (3H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    International Nuclear Information System (INIS)

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the (3H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na+-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of (3H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested

  4. Irreversible blockade of the high and low affinity ( sup 3 H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    Energy Technology Data Exchange (ETDEWEB)

    Krizsan, D. (EGIS Pharmaceutical Works, Budapest (Hungary)); Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A. (Biological Research Center of the Hungarian Academy of Sciences, Szeged (Hungary)); Hosztafi, S. (Alkaloida Chemical Works, Tiszavasvari (Hungary))

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ({sup 3}H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na{sup +}-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ({sup 3}H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested.

  5. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    Science.gov (United States)

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  6. Fluorescence Enhancement of Fluorescein Isothiocyanate-Labeled Protein A Caused by Affinity Binding with Immunoglobulin G in Bovine Plasma

    Directory of Open Access Journals (Sweden)

    Kiyotaka Sakai

    2009-10-01

    Full Text Available Fluorescence enhancement of fluorescein isothiocyanate-labeled protein A (FITC-protein A caused by the binding with immunoglobulin G (IgG in bovine plasma was studied. FITC-protein A was immobilized onto a glass surface by covalent bonds. An increase in fluorescence intensity was dependent on IgG concentration ranging from 20 to 78 μg/mL in both phosphate buffer saline and bovine plasma. This method requires no separation procedure, and the reaction time is less than 15 min. A fluorescence enhancement assay by the affinity binding of fluorescence-labeled reagent is thus available for the rapid determination of biomolecules in plasma.

  7. Structural Changes in the Lectin Domain of CD23, the Low-Affinity IgE Receptor, upon Calcium Binding

    Energy Technology Data Exchange (ETDEWEB)

    Wurzburg, Beth A.; Tarchevskaya, Svetlana S.; Jardetzky, Theodore S. (NWU)

    2010-03-08

    CD23, the low-affinity receptor for IgE (Fc{var_epsilon}RII), regulates IgE synthesis and also mediates IgE-dependent antigen transport and processing. CD23 is a unique Fc receptor belonging to the C-type lectin-like domain superfamily and binds IgE in an unusual, non-lectin-like manner, requiring calcium but not carbohydrate. We have solved the high-resolution crystal structures of the human CD23 lectin domain in the presence and absence of Ca{sup 2+}. The crystal structures differ significantly from a previously determined NMR structure and show that calcium binding occurs at the principal binding site, but not at an auxiliary site that appears to be absent in human CD23. Conformational differences between the apo and Ca{sup 2+} bound structures suggest how IgE-Fc binding can be both calcium-dependent and carbohydrate-independent.

  8. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations

    Directory of Open Access Journals (Sweden)

    Marharyta Petukh

    2016-04-01

    Full Text Available Predicting the effect of amino acid substitutions on protein–protein affinity (typically evaluated via the change of protein binding free energy is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  9. Statistical deconvolution of enthalpic energetic contributions to MHC-peptide binding affinity

    Directory of Open Access Journals (Sweden)

    Drew Michael GB

    2006-03-01

    Full Text Available Abstract Background MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions. Results A large dataset comprising MHC-peptide structural complexes was created by re-modelling pre-determined x-ray crystallographic structures. Static energetic analysis, following energy minimisation, was performed on the dataset in order to characterise interactions between bound peptides and the MHC Class I molecule, partitioning the interactions within the groove into van der Waals, electrostatic and total non-bonded energy contributions. Conclusion The QSAR techniques of Genetic Function Approximation (GFA and Genetic Partial Least Squares (G/PLS algorithms were used to identify key interactions between the two molecules by comparing the calculated energy values with experimentally-determined BL50 data. Although the peptide termini binding interactions help ensure the stability of the MHC Class I-peptide complex, the central region of the peptide is also important in defining the specificity of the interaction. As thermodynamic studies indicate that peptide association and dissociation may be driven entropically, it may be necessary to incorporate entropic contributions into future calculations.

  10. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    Science.gov (United States)

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date. PMID:27578558

  11. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    Science.gov (United States)

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date.

  12. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin

    DEFF Research Database (Denmark)

    Eghorn, Laura Friis; Høstgaard-Jensen, Kirsten; Kongstad, Kenneth Thermann;

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate...... whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive...... conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed...

  13. Use of surface plasmon resonance for the measurement of low affinity binding interactions between HSP72 and measles virus nucleocapsid protein

    Directory of Open Access Journals (Sweden)

    Zhang Xinsheng

    2003-01-01

    Full Text Available The 72 kDa heat shock protein (HSP72 is a molecular chaperone that binds native protein with low affinity. These interactions can alter function of the substrate, a property known as HSP-mediated activity control. In the present work, BIAcore instrumentation was used to monitor binding reactions between HSP72 and naturally occurring sequence variants of the measles virus (MV nucleocapsid protein (N, a structural protein regulating transcription/replication of the viral genome. Binding reactions employed synthetic peptides mimicking a putative HSP72 binding motif of N. Sequences were identified that bound HSP72 with affinities comparable to well-characterized activity control reactions. These sequences, but not those binding with lesser affinity, supported HSP72 activity control of MV transcription/replication. BIAcore instrumentation thus provides an effective way to measure biologically relevant low affinity interactions with structural variants of viral proteins.

  14. A community resource benchmarking predictions of peptide binding to MHC-I molecules.

    Directory of Open Access Journals (Sweden)

    Bjoern Peters

    2006-06-01

    Full Text Available Recognition of peptides bound to major histocompatibility complex (MHC class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet. While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify promising features of prediction methods and providing guidance to immunologists regarding the reliability of prediction tools.

  15. Curcumin binds in silico to anti-cancer drug target enzyme MMP-3 (human stromelysin-1) with affinity comparable to two known inhibitors of the enzyme.

    Science.gov (United States)

    Jerah, Ahmed; Hobani, Yahya; Kumar, B Vinod; Bidwai, Anil

    2015-01-01

    In silico interaction of curcumin with the enzyme MMP-3 (human stromelysin-1) was studied by molecular docking using AutoDock 4.2 as the docking software application. AutoDock 4.2 software serves as a valid and acceptable docking application to study the interactions of small compounds with proteins. Interactions of curcumin with MMP-3 were compared to those of two known inhibitors of the enzyme, PBSA and MPPT. The calculated free energy of binding (ΔG binding) shows that curcumin binds with affinity comparable to or better than the two known inhibitors. Binding interactions of curcumin with active site residues of the enzyme are also predicted. Curcumin appears to bind in an extendended conformation making extensive VDW contacts in the active site of the enzyme. Hydrogen bonding and pi-pi interactions with key active site residues is also observed. Thus, curcumin can be considered as a good lead compound in the development of new inhibitors of MMP-3 which is a potential target of anticancer drugs. The results of these studies can serve as a starting point for further computational and experimental studies. PMID:26420919

  16. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    OpenAIRE

    Ikegami Toru; Yanagishita Hiroshi; Nakane Takashi; Im Jae Hong; Kitamoto Dai

    2001-01-01

    Abstract Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand...

  17. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lamberth, K; Harndahl, M;

    2008-01-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding....... The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8......–11 for all 122 alleles. artificial neural network predictions are given as actual IC50 values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has...

  18. Structure-based rational design of a Toll-like receptor 4 (TLR4 decoy receptor with high binding affinity for a target protein.

    Directory of Open Access Journals (Sweden)

    Jieun Han

    Full Text Available Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4 decoy receptor composed of leucine-rich repeat (LRR modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2. Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (K(D one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities.

  19. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    Directory of Open Access Journals (Sweden)

    Gregory A Ross

    Full Text Available Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.

  20. Histidine-rich glycoprotein binds fibrin(ogen) with high affinity and competes with thrombin for binding to the gamma'-chain.

    Science.gov (United States)

    Vu, Trang T; Stafford, Alan R; Leslie, Beverly A; Kim, Paul Y; Fredenburgh, James C; Weitz, Jeffrey I

    2011-09-01

    Histidine-rich glycoprotein (HRG) is an abundant protein that binds fibrinogen and other plasma proteins in a Zn(2+)-dependent fashion but whose function is unclear. HRG has antimicrobial activity, and its incorporation into fibrin clots facilitates bacterial entrapment and killing and promotes inflammation. Although these findings suggest that HRG contributes to innate immunity and inflammation, little is known about the HRG-fibrin(ogen) interaction. By immunoassay, HRG-fibrinogen complexes were detected in Zn(2+)-supplemented human plasma, a finding consistent with a high affinity interaction. Surface plasmon resonance determinations support this concept and show that in the presence of Zn(2+), HRG binds the predominant γ(A)/γ(A)-fibrinogen and the γ-chain elongated isoform, γ(A)/γ'-fibrinogen, with K(d) values of 9 nm. Likewise, (125)I-labeled HRG binds γ(A)/γ(A)- or γ(A)/γ'-fibrin clots with similar K(d) values when Zn(2+) is present. There are multiple HRG binding sites on fibrin(ogen) because HRG binds immobilized fibrinogen fragment D or E and γ'-peptide, an analog of the COOH terminus of the γ'-chain that mediates the high affinity interaction of thrombin with γ(A)/γ'-fibrin. Thrombin competes with HRG for γ'-peptide binding and displaces (125)I-HRG from γ(A)/γ'-fibrin clots and vice versa. Taken together, these data suggest that (a) HRG circulates in complex with fibrinogen and that the complex persists upon fibrin formation, and (b) by competing with thrombin for γ(A)/γ'-fibrin binding, HRG may modulate coagulation. Therefore, the HRG-fibrin interaction may provide a novel link between coagulation, innate immunity, and inflammation.

  1. A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein.

    Science.gov (United States)

    Chang, Tsung-Che; Adak, Avijit K; Lin, Ting-Wei; Li, Pei-Jhen; Chen, Yi-Ju; Lai, Chain-Hui; Liang, Chien-Fu; Chen, Yu-Ju; Lin, Chun-Cheng

    2016-03-15

    The use of photo-crosslinking glycoprobes represents a powerful strategy for the covalent capture of labile protein complexes and allows detailed characterization of carbohydrate-mediated interactions. The selective release of target proteins from solid support is a key step in functional proteomics. We envisaged that light activation can be exploited for releasing labeled protein in a dual photo-affinity probe-based strategy. To investigate this possibility, we designed a trifunctional, galactose-based, multivalent glycoprobe for affinity labeling of carbohydrate-binding proteins. The resulting covalent protein-probe adduct is attached to a photo-cleavable biotin affinity tag; the biotin moiety enables specific presentation of the conjugate on streptavidin-coated beads, and the photolabile linker allows the release of the labeled proteins. This dual probe promotes both the labeling and the facile cleavage of the target protein complexes from the solid surfaces and the remainder of the cell lysate in a completely unaltered form, thus eliminating many of the common pitfalls associated with traditional affinity-based purification methods.

  2. Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa.

    Science.gov (United States)

    Ekman, Agneta; Sundblad-Elverfors, Charlotta; Landén, Mikael; Eriksson, Tomas; Eriksson, Elias

    2006-06-15

    Impaired serotonin transmission has been suggested to be implicated in the pathophysiology of bulimia nervosa. As an indirect measure of brain serotonergic activity, the binding of tritiated ligands to platelet serotonin transporters has been studied in bulimia nervosa as well as in other putatively serotonin-related psychiatric disorders. In this study, the density and affinity of platelet serotonin transporters were assessed in 20 women meeting the DSM-IV criteria for bulimia nervosa and in 14 controls without previous or ongoing eating disorder using [(3)H]paroxetine as a ligand. In comparison to controls, women with bulimia nervosa had a significantly reduced number of platelet binding sites (B(max) = 721 +/- 313 vs. 1145 +/- 293 fmol/mg protein) and an increase in the affinity for the ligand demonstrated by a lower dissociaton constant (K(d) = 33 +/- 10 vs. 44 +/- 10 pM). A significant correlation between B(max) and K(d) values was found in patients but not in controls. Our results support the notion that bulimia nervosa is associated with a reduction in platelet serotonin transporter density. In addition, our study is the first to report that this reduced transporter density in women with bulimia nervosa is accompanied by an increase in the affinity of the transporter for the ligand.

  3. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    International Nuclear Information System (INIS)

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of 125I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB-125I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein

  4. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S.; Shibuya, K.; Miyazono, K.; Tojo, A.; Oka, Y.; Miyagawa, K.; Takaku, F. (Univ. of Tokyo (Japan))

    1990-11-15

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of {sup 125}I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB-{sup 125}I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein.

  5. Design, Synthesis, and in Vitro Pharmacology of New Radiolabeled γ-Hydroxybutyric Acid Analogues Including Photolabile Analogues with Irreversible Binding to the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Sabbatini, Paola; Wellendorph, Petrine; Høg, Signe;

    2010-01-01

    γ-Hydroxybutyric acid (GHB) is a psychotropic compound endogenous to the brain. Despite its potential physiological significance, the complete molecular mechanisms of action remain unexplained. To facilitate the isolation and identification of the high-affinity GHB binding site, we herein report...... the design and synthesis of the first 125I-labeled radioligands in the field, one of which contains a photoaffinity label which enables it to bind irreversibly to the high-affinity GHB binding sites....

  6. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation.

    Science.gov (United States)

    Arnold, Lindsay; Chen, Rachel

    2014-02-01

    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection.

  7. Synthesis, characterization and binding affinities of rhenium(I) thiosemicarbazone complexes for the estrogen receptor (α/β).

    Science.gov (United States)

    Núñez-Montenegro, Ara; Carballo, Rosa; Vázquez-López, Ezequiel M

    2014-11-01

    The binding affinities towards estrogen receptors (ERs) α and β of a set of thiosemicarbazone ligands (HL(n)) and their rhenium(I) carbonyl complexes [ReX(HL(n))(CO)3] (X=Cl, Br) were determined by a competitive standard radiometric assay with [(3)H]-estradiol. The ability of the coordinated thiosemicarbazone ligands to undergo deprotonation and the lability of the ReX bond were used as a synthetic strategy to obtain [Re(hpy)(L(n))(CO)3] (hpy=3- or 4-hydroxypyridine). The inclusion of the additional hpy ligand endows the new thiosemicarbazonate complexes with an improved affinity towards the estrogen receptors and, consequently, the values of the inhibition constant (Ki) could be determined for some of them. In general, the values of Ki for both ER subtypes suggest an appreciable selectivity towards ERα. PMID:25061691

  8. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    Science.gov (United States)

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  9. High-affinity naloxone binding to filamin a prevents mu opioid receptor-Gs coupling underlying opioid tolerance and dependence.

    Directory of Open Access Journals (Sweden)

    Hoau-Yan Wang

    Full Text Available Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs by the mu opioid receptor (MOR, although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a pentapeptide segment of the scaffolding protein filamin A, known to interact with the mu opioid receptor, to disrupt its chronic opioid-induced Gs coupling. Naloxone binding to filamin A is demonstrated by the absence of [(3H]-and FITC-naloxone binding in the melanoma M2 cell line that does not contain filamin or MOR, contrasting with strong [(3H]naloxone binding to its filamin A-transfected subclone A7 or to immunopurified filamin A. Naloxone binding to A7 cells was displaced by naltrexone but not by morphine, indicating a target distinct from opioid receptors and perhaps unique to naloxone and its analogs. The intracellular location of this binding site was confirmed by FITC-NLX binding in intact A7 cells. Overlapping peptide fragments from c-terminal filamin A revealed filamin A(2561-2565 as the binding site, and an alanine scan of this pentapeptide revealed an essential mid-point lysine. Finally, in organotypic striatal slice cultures, peptide fragments containing filamin A(2561-2565 abolished the prevention by 10 pM naloxone of both the chronic morphine-induced mu opioid receptor-Gs coupling and the downstream cAMP excitatory signal. These results establish filamin A as the target for ultra-low-dose opioid antagonists previously shown to enhance opioid analgesia and to prevent opioid tolerance and dependence.

  10. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel;

    2016-01-01

    and in silico prediction algorithms (NetMHCpan), peptide ligands from a repository of 8900 peptides were predicted for binding to SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01 and validated by affinity and stability assays. From the pool of predicted peptides for SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01, a total...

  11. Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin

    DEFF Research Database (Denmark)

    Hui, Tommy; Sørensen, Esben Skipper; Rittling, Susan R.

    2015-01-01

    Osteopontin (OPN) is a ligand for the α4 integrin, but the physiological importance of this binding is not well understood. Here, we have assessed the effect of posttranslational modifications on OPN binding to the α4 integrin on cultured human leukocyte cell lines, and compared OPN interaction...... affinity forms of this integrin. Together, the results suggest OPN has very low affinity for the α4 integrin on human leukocytes under physiological conditions....

  12. Direct Labeling of Polyphosphate at the Ultrastructural Level in Saccharomyces cerevisiae by Using the Affinity of the Polyphosphate Binding Domain of Escherichia coli Exopolyphosphatase

    OpenAIRE

    Saito, Katsuharu; Ohtomo, Ryo; Kuga-Uetake, Yukari; Aono, Toshihiro; Saito, Masanori

    2005-01-01

    Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate and has many biological functions in prokaryotic and eukaryotic organisms. To investigate polyP localization, we developed a novel technique using the affinity of the recombinant polyphosphate binding domain (PPBD) of Escherichia coli exopolyphosphatase to polyP. An epitope-tagged PPBD was expressed and purified from E. coli. Equilibrium binding assay of PPBD revealed its high affinity for long-chain polyP and its weak affi...

  13. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes.

    Science.gov (United States)

    Wu, Wenhao; Yang, Kun; Chen, Wei; Wang, Wendi; Zhang, Jie; Lin, Daohui; Xing, Baoshan

    2016-01-01

    Adsorption of 22 nonpolar and polar aromatic compounds on 10 carbon nanotubes (CNTs) with various diameters, lengths and surface oxygen-containing group contents was investigated to develop predictive correlations for adsorption, using the isotherm fitting of Polanyi theory-based Dubinin-Ashtakhov (DA) model. Adsorption capacity of aromatic compounds on CNTs is negatively correlated with melting points of aromatic compounds, and surface oxygen-containing group contents and surface area ratios of mesopores to total pores of CNTs, but positively correlated with total surface area of CNTs. Adsorption affinity is positively correlated with solvatochromic parameters of aromatic compounds, independent of tube lengths and surface oxygen-containing group contents of CNTs, but negatively correlated with surface area ratios of mesopores to total pores of CNTs. The correlations of adsorption capacity and adsorption affinity with properties of both aromatic compounds and CNTs clearly have physical significance, can be used successfully with DA model to predict adsorption of aromatic compounds on CNTs from the well-known physiochemical properties of aromatic compounds (i.e., solvatochromic parameters, melting points) and CNTs (i.e., surface area and total acidic group contents), and thus can facilitate the environmental application of CNTs as sorbents and environmental risk assessment of both aromatic contaminants and CNTs.

  14. ZipA binds to FtsZ with high affinity and enhances the stability of FtsZ protofilaments.

    Directory of Open Access Journals (Sweden)

    Anuradha Kuchibhatla

    Full Text Available A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0 pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them.

  15. The Structure of the Amyloid-[beta] Peptide High-Affinity Copper II Binding Site in Alzheimer Disease

    Energy Technology Data Exchange (ETDEWEB)

    Streltsov, Victor A.; Titmuss, Stephen J.; Epa, V. Chandana; Barnham, Kevin J.; Masters, Colin L.; Varghese, Joseph N. (CSIRO/MHT)

    2008-11-03

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-{beta} (A{beta}) protein bound primarily to copper ions. The evidence for an oxidative stress role of A{beta}-Cu redox chemistry is still incomplete. Details of the copper binding site in A{beta} may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of A{beta} peptides complexed with Cu{sup 2+} in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length A{beta}-Cu{sup 2+} peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the A{beta}-Cu{sup 2+} complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu{sup 2+} binding site is consistent with the hypothesis that the redox activity of the metal ion bound to A{beta} can lead to the formation of dityrosine-linked dimers found in AD.

  16. Molecular Weight, Protein Binding Affinity and Methane Mitigation of Condensed Tannins from Mangosteen-peel (Garcinia mangostana L).

    Science.gov (United States)

    Paengkoum, P; Phonmun, T; Liang, J B; Huang, X D; Tan, H Y; Jahromi, M F

    2015-10-01

    The objectives of this study were to determine the molecular weight of condensed tannins (CT) extracted from mangosteen (Garcinia mangostana L) peel, its protein binding affinity and effects on fermentation parameters including total gas, methane (CH4) and volatile fatty acids (VFA) production. The average molecular weight (Mw) of the purified CT was 2,081 Da with a protein binding affinity of 0.69 (the amount needed to bind half the maximum bovine serum albumin). In vitro gas production declined by 0.409, 0.121, and 0.311, respectively, while CH4 production decreased by 0.211, 0.353, and 0.549, respectively, with addition of 10, 20, and 30 mg CT/500 mg dry matter (DM) compared to the control (pmangosteen-peel on in vitro DM degradability (IVDMD) and in vitro N degradability was negative and linear (pmangosteen-peel is lower than those reported for Leucaena forages, however, the former has stronger negative effect on IVDMD. Therefore, the use of mangosteen-peel as protein source and CH4 mitigating agent in ruminant feed requires further investigations.

  17. Automated benchmarking of peptide-MHC class I binding predictions

    DEFF Research Database (Denmark)

    Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason;

    2015-01-01

    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given...... the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding...

  18. The binding of pentapeptides to biological and synthetic high affinity heparin.

    Science.gov (United States)

    Flengsrud, Ragnar; Antonsen, Simen Gjelseth

    2015-11-01

    Pentapeptides have been shown to bind the synthetic heparin fondaparinux (Arixtra) as well the biological heparins dalteparin (Fragmin) and salmon heparin. In contrast to heparin binding consensus sequences, the pentapeptides are acidic or neutral, with no arginine or histidine residue. The peptides showed an effect on in vitro heparin anti-factor X activity with a reduction of fondaparinux activity by 65-95%. Heparin binding was further studied by using peptide solid phase chromatography and NMR analysis.

  19. Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD

    OpenAIRE

    Andrade, Fábia K; Moreira, Susana Margarida Gomes; Domingues, Lucília; Gama, F. M.

    2010-01-01

    The attachment of cells to biomedical materials can be improved by using adhesion sequences, such as Arg-Gly-Asp (RGD), found in several extracellular matrix proteins. In this work, bifunctional recombinant proteins, with a Cellulose-Binding Module (CBM), from the cellulosome of Clostridium thermocellum and cell binding sequences - RGD, GRGDY - were cloned and expressed in E.coli. These RGD-containing cellulose binding proteins were purified and used to coat bacterial cellulose fibres. Its ef...

  20. Cloud computing approaches for prediction of ligand binding poses and pathways.

    Science.gov (United States)

    Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S

    2015-01-22

    We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.

  1. Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity.

    Science.gov (United States)

    Murashko, Oleg N; Kaberdin, Vladimir R; Lin-Chao, Sue

    2012-05-01

    RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane-protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E-membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1-499) binds specifically to anionic phospholipids through electrostatic interactions. The membrane-binding specificity of NRne was confirmed using circular dichroism difference spectroscopy; the dissociation constant (K(d)) for NRne binding to anionic liposomes was 298 nM. E. coli RNase G and RNase E/G homologs from phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be membrane-binding proteins. Electrostatic potentials of NRne and its homologs were found to be conserved, highly positive, and spread over a large surface area encompassing four putative membrane-binding regions identified in the "large" domain (amino acids 1-400, consisting of the RNase H, S1, 5'-sensor, and DNase I subdomains) of E. coli NRne. In vitro cleavage assay using liposome-free and liposome-bound NRne and RNA substrates BR13 and GGG-RNAI showed that NRne membrane binding altered its enzymatic activity. Circular dichroism spectroscopy showed no obvious thermotropic structural changes in membrane-bound NRne between 10 and 60 °C, and membrane-bound NRne retained its normal cleavage activity after cooling. Thus, NRne membrane binding induced changes in secondary protein structure and enzymatic activation by stabilizing the protein-folding state and increasing its binding affinity for its substrate. Our results demonstrate that RNase E-membrane interaction enhances the rate of RNA processing and decay. PMID:22509045

  2. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida;

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...

  3. Influence of binding energies of electrons on nuclear mass predictions

    Science.gov (United States)

    Tang, Jing; Niu, Zhong-Ming; Guo, Jian-You

    2016-07-01

    Nuclear mass contains a wealth of nuclear structure information, and has been widely employed to extract the nuclear effective interactions. The known nuclear mass is usually extracted from the experimental atomic mass by subtracting the masses of electrons and adding the binding energy of electrons in the atom. However, the binding energies of electrons are sometimes neglected in extracting the known nuclear masses. The influence of binding energies of electrons on nuclear mass predictions are carefully investigated in this work. If the binding energies of electrons are directly subtracted from the theoretical mass predictions, the rms deviations of nuclear mass predictions with respect to the known data are increased by about 200 keV for nuclei with Z, N ⩾ 8. Furthermore, by using the Coulomb energies between protons to absorb the binding energies of electrons, their influence on the rms deviations is significantly reduced to only about 10 keV for nuclei with Z, N ⩾ 8. However, the binding energies of electrons are still important for the heavy nuclei, about 150 keV for nuclei around Z = 100 and up to about 500 keV for nuclei around Z = 120. Therefore, it is necessary to consider the binding energies of electrons to reliably predict the masses of heavy nuclei at an accuracy of hundreds of keV. Supported by National Natural Science Foundation of China (11205004)

  4. Changes in parathyroid hormone receptor binding affinity during egg laying: implications for calcium homeostasis in chicken.

    Science.gov (United States)

    Yasuoka, T; Kawashima, M; Takahashi, T; Iwata, A; Oka, N; Tanaka, K

    1996-12-01

    Parathyroid hormone (PTH) receptor bindings were examined in the membrane fraction of the calvaria and the kidney of the hen by the use of [125I]PTH-related protein (PTHrP) binding assays. The binding specificity, reversibility, and saturation of the receptor were demonstrated. The equilibrium dissociation constant (Kd) and the maximum binding capacity (Bmax) were obtained by Scatchard analyses. In both calvaria and kidney, Kd and Bmax values decreased at 3 h before oviposition in egg-laying hens, but not in nonlaying hens. Administration of 17 beta-estradiol or progesterone in vivo caused a decrease in the Kd and Bmax values. Ionized calcium concentrations in the blood plasma showed a decrease at 13 h before oviposition. The results suggest that the PTH receptor binding in the calvaria and the kidney is affected by ovarian steroid hormones and may play a role in maintaining the calcium homeostasis in the egg-laying hen. PMID:8970893

  5. Prediction of the sorption capacities and affinities of organic chemicals by XAD-7.

    Science.gov (United States)

    Yang, Kun; Qi, Long; Wei, Wei; Wu, Wenhao; Lin, Daohui

    2016-01-01

    Macro-porous resins are widely used as adsorbents for the treatment of organic contaminants in wastewater and for the pre-concentration of organic solutes from water. However, the sorption mechanisms for organic contaminants on such adsorbents have not been systematically investigated so far. Therefore, in this study, the sorption capacities and affinities of 24 organic chemicals by XAD-7 were investigated and the experimentally obtained sorption isotherms were fitted to the Dubinin-Ashtakhov model. Linear positive correlations were observed between the sorption capacities and the solubilities (SW) of the chemicals in water or octanol and between the sorption affinities and the solvatochromic parameters of the chemicals, indicating that the sorption of various organic compounds by XAD-7 occurred by non-linear partitioning into XAD-7, rather than by adsorption on XAD-7 surfaces. Both specific interactions (i.e., hydrogen-bonding interactions) as well as nonspecific interactions were considered to be responsible for the non-linear partitioning. The correlation equations obtained in this study allow the prediction of non-linear partitioning using well-known chemical parameters, namely SW, octanol-water partition coefficients (KOW), and the hydrogen-bonding donor parameter (αm). The effect of pH on the sorption of ionizable organic compounds (IOCs) could also be predicted by combining the correlation equations with additional equations developed from the estimation of IOC dissociation rates. The prediction equations developed in this study and the proposed non-linear partition mechanism shed new light on the selective removal and pre-concentration of organic solutes from water and on the regeneration of exhausted XAD-7 using solvent extraction. PMID:25561259

  6. The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain.

    Science.gov (United States)

    Ryndak, Michelle B; Wang, Shuishu; Smith, Issar; Rodriguez, G Marcela

    2010-02-01

    Iron is an essential nutrient not freely available to microorganisms infecting mammals. To overcome iron deficiency, bacteria have evolved various strategies including the synthesis and secretion of high-affinity iron chelators known as siderophores. The siderophores produced and secreted by Mycobacterium tuberculosis, exomycobactins, compete for iron with host iron-binding proteins and, together with the iron-regulated ABC transporter IrtAB, are required for the survival of M. tuberculosis in iron deficient conditions and for normal replication in macrophages and in mice. This study further characterizes the role of IrtAB in M. tuberculosis iron acquisition. Our results demonstrate a role for IrtAB in iron import and show that the amino terminus domain of IrtA is a flavin-adenine dinucleotide-binding domain essential for iron acquisition. These results suggest a model in which the amino terminus of IrtA functions to couple iron transport and assimilation.

  7. Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Greenwood, Jeremy R;

    2005-01-01

    Gamma-hydroxybutyrate (GHB) is a psychotropic compound endogenous to the brain. Despite its potentially great physiological significance, its exact molecular mechanism of action is unknown. GHB is a weak agonist at GABA(B) receptors, but there is also evidence of specific GHB receptor sites......, the molecular cloning of which remains a challenge. Ligands with high affinity and specificity for the reported GHB binding site are needed for pharmacological dissection of the GHB and GABA(B) effects and for mapping the structural requirements of the GHB receptor-ligand interactions. For this purpose, we have...... synthesized and assayed three conformationally restricted GHB analogs for binding against the GHB-specific ligand [3H]NCS-382 [(E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene-)acetic acid] in rat brain homogenate. The cyclohexene and cyclopentene analogs, 3-hydroxycyclohex-1-enecarboxylic...

  8. Starch‐binding domains in the CBM45 family – low‐affinity domains from glucan, water dikinase and α‐amylase involved in plastidial starch metabolism

    DEFF Research Database (Denmark)

    Glaring, Mikkel Andreas; Baumann, Martin; Abou Hachem, Maher;

    2011-01-01

    Starch‐binding domains are noncatalytic carbohydrate‐binding modules that mediate binding to granular starch. The starch‐binding domains from the carbohydrate‐binding module family 45 (CBM45, ) are found as N‐terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing...... amylolytic enzymes. This suggests that low‐affinity starch‐binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low‐affinity interaction with starch granules, facilitates dynamic regulation of enzyme activities and...... organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45‐type domains, the Solanum tuberosumα‐glucan, water dikinase and the Arabidopsis thaliana plastidial α‐amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry...

  9. High- and low-affinity binding of S-citalopram to the human serotonin transporter mutated at 20 putatively important amino acid positions

    DEFF Research Database (Denmark)

    Plenge, Per; Wiborg, Ove

    2005-01-01

    The serotonin transporter (SERT) is responsible for terminating or modulating the action of serotonin released from the presynaptic neuron and is the major target for most antidepressants including the tricyclic antidepressants and the selective serotonin uptake inhibitors. Two binding sites...... for uptake inhibitors and serotonin (5-HT) have been found on SERT. At one site, uptake inhibitors bind with high-affinity to SERT, thereby blocking the uptake of 5-HT. The other site is a low-affinity allosteric site, which influences the dissociation of uptake inhibitors, such as imipramine, paroxetine......, and citalopram from the first site, when occupied by 5-HT and a few uptake inhibitors like paroxetine and citalopram. In this study, the connection between the high-affinity binding site and the allosteric affinity-modulating site was investigated by introducing 20 single amino acid substitutions into positions...

  10. Gestational treatment with cocaine and fluoxetine alters oxytocin receptor number and binding affinity in lactating rat dams.

    Science.gov (United States)

    Johns, Josephine M; Lubin, Deborah A; Walker, Cheryl H; Joyner, Paul; Middleton, Christopher; Hofler, Vivian; McMurray, Matthew

    2004-01-01

    Cocaine administered chronically throughout gestation has been correlated with deficits in maternal behavior, increased maternal aggressive behavior and decreased oxytocin levels in rats. In addition to its effects on oxytocin levels, cocaine is a potent serotonergic, dopaminergic and noradrenergic reuptake inhibitor. Alterations in the dopaminergic and serotonergic systems have been suggested as possibly having a role in cocaine-induced maternal aggression. This study was in part, an attempt to understand some of the mechanisms by which cocaine increases postpartum aggression, particularly as they relate to changes in the oxytocin system. Oxytocin receptor number and binding affinity in the medial preoptic area of the hypothalamus, ventral tegmental area, hippocampus and amygdala were determined for lactating rat dams on postpartum day 6 (PPD 6) that were gestationally treated with cocaine, fluoxetine, saline or an amfonelic acid/fluoxetine drug combination. Cocaine and fluoxetine treatment both resulted in a significant up-regulation of oxytocin receptor number and lower receptor affinity in the amygdala of lactating rat dams compared to saline controls and the amfonelic acid/fluoxetine combination treatment group. Cocaine treatment also resulted in a significant down-regulation of oxytocin receptors in the medial preoptic area and both cocaine and fluoxetine treated dams had the highest affinity for oxytocin receptors in this brain region. Results of the present study support previous data indicating that alterations in oxytocinergic and perhaps serotonergic system dynamics in the amygdala may play a role in cocaine-induced postpartum aggression. PMID:15380831

  11. Gestational treatment with cocaine and fluoxetine alters oxytocin receptor number and binding affinity in lactating rat dams

    Science.gov (United States)

    Johns, Josephine M.; Lubin, Deborah A.; Walker, Cheryl H.; Joyner, Paul; Middleton, Christopher; Hofler, Vivian; McMurray, Matthew

    2011-01-01

    Cocaine administered chronically throughout gestation has been correlated with deficits in maternal behavior, increased maternal aggressive behavior and decreased oxytocin levels in rats. In addition to its effects on oxytocin levels, cocaine is a potent serotonergic, dopaminergic and noradrenergic reuptake inhibitor. Alterations in the dopaminergic and serotonergic systems have been suggested as possibly having a role in cocaine-induced maternal aggression. This study was in part, an attempt to understand some of the mechanisms by which cocaine increases postpartum aggression, particularly as they relate to changes in the oxytocin system. Oxytocin receptor number and binding affinity in the medial preoptic area of the hypothalamus, ventral tegmental area, hippocampus and amygdala were determined for lactating rat dams on postpartum day 6 (PPD 6) that were gestationally treated with cocaine, fluoxetine, saline or an amfonelic acid/fluoxetine drug combination. Cocaine and fluoxetine treatment both resulted in a significant up-regulation of oxytocin receptor number and lower receptor affinity in the amygdala of lactating rat dams compared to saline controls and the amfonelic acid/fluoxetine combination treatment group. Cocaine treatment also resulted in a significant down-regulation of oxytocin receptors in the medial preoptic area and both cocaine and fluoxetine treated dams had the highest affinity for oxytocin receptors in this brain region. Results of the present study support previous data indicating that alterations in oxytocinergic and perhaps serotonergic system dynamics in the amygdala may play a role in cocaine-induced postpartum aggression. PMID:15380831

  12. Influence of the high-affinity growth hormone (GH)-binding protein on plasma profiles of free and bound GH and on the apparent half-life of GH. Modeling analysis and clinical applications.

    OpenAIRE

    Veldhuis, J D; Johnson, M.L.; Faunt, L M; MERCADO, M.; Baumann, G

    1993-01-01

    The discovery of a specific high-affinity growth hormone (GH) binding protein (GH-BP) in plasma adds complexity to the dynamics of GH secretion and clearance. Intuitive predictions are that such a protein would damp sharp oscillations in GH concentrations otherwise caused by bursts of GH secretion into the blood volume, prolong the apparent half-life of circulating GH, and contribute a reservoir function. To test these implicit considerations, we formulated an explicit mathematical model of p...

  13. Polymerization Degrees, Molecular Weights and Protein-Binding Affinities of Condensed Tannin Fractions from a Leucaena leucocephala Hybrid

    Directory of Open Access Journals (Sweden)

    Mookiah Saminathan

    2014-06-01

    Full Text Available Condensed tannins (CTs form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP and molecular weights, CT fractions vary in their capability to bind proteins. In this study, purified condensed tannins (CTs from a Leucaena leucocephala hybrid were fractionated into five different molecular weight fractions. The structures of the CT fractions were investigated using 13C-NMR. The DP of the CT fractions were determined using a modified vanillin assay and their molecular weights were determined using Q-TOF LC-MS. The protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay. The DP of the five CT fractions (fractions F1–F5 measured by the vanillin assay in acetic acid ranged from 4.86 to 1.56. The 13C-NMR results showed that the CT fractions possessed monomer unit structural heterogeneity. The number-average molecular weights (Mn of the different fractions were 1265.8, 1028.6, 652.2, 562.2, and 469.6 for fractions F1, F2, F3, F4, and F5, respectively. The b values representing the CT quantities needed to bind half of the maximum precipitable bovine serum albumin increased with decreasing molecular weight—from fraction F1 to fraction F5 with values of 0.216, 0.295, 0.359, 0.425, and 0.460, respectively. This indicated that higher molecular weight fractions of CTs from L. leucocephala have higher protein-binding affinities than those with lower molecular weights.

  14. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts

    DEFF Research Database (Denmark)

    Woods, A; Longley, R L; Tumova, S;

    2000-01-01

    fibroblasts attach and spread following integrin ligation, but do not form focal adhesions unless treated with a heparin-binding fragment of fibronectin (HepII), a peptide from this domain, or phorbol esters to activate protein kinase C. Syndecan-4 heparan sulfate proteoglycan is a transmembrane component...

  15. DETERMINANTS OF LIGAND BINDING AFFINITY AND COOPERATIVITY AT THE GLUT1 ENDOFACIAL SITE

    OpenAIRE

    Robichaud, Trista; Appleyard, Antony N.; Herbert, Richard B.; Henderson, Peter J. F.; Carruthers, Anthony

    2011-01-01

    Cytochalasin B (CB) and forskolin (FSK) inhibit GLUT1-mediated sugar transport in red cells by binding at or close to the GLUT1 endofacial sugar binding site. Paradoxically, very low concentrations of each of these inhibitors produce a modest stimulation of sugar transport (Cloherty, E. K., Levine, K. B., & Carruthers, A. (2001). The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry, 40(51), 15549–15561). This result is consistent with t...

  16. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    Science.gov (United States)

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-01

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  17. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors.

    Science.gov (United States)

    Ozoe, Yoshihisa; Kita, Tomo; Ozoe, Fumiyo; Nakao, Toshifumi; Sato, Kazuyuki; Hirase, Kangetsu

    2013-11-01

    γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides

  18. Artifactual high-affinity and saturable binding of (3H)5-hydroxytryptamine induced by radioligand oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Peroutka, S.J.; Ison, P.J.; Liu, D.U.; Barrett, R.W.

    1986-07-01

    The binding of (3H)5-hydroxytryptamine (5-HT, serotonin) to cerebellar membranes was examined after preincubation of (/sup 3/H)5-HT in the presence or absence of ascorbate. The tissue preparation was identical in all experiments and consisted of rat cerebellar homogenates in Tris-HCl buffer with 0.1% ascorbate. Cerebellar membranes were used because of their low density of 5-HT1 binding sites. In the presence of ascorbate during a 4-h preincubation period, minimal specific binding of 2 nM (/sup 3/H)5-HT is detected. Similar results are obtained with equimolar concentrations of other antioxidants (butylated hydroxytoluene, sodium dithionite, and sodium metabisulfite). Apparent specific binding increases 14-fold following a 4-h preincubation of (/sup 3/H)5-HT in the absence of ascorbate. The increase in apparent specific (/sup 3/H)5-HT binding is time-dependent and plateaus after 4-6 h of preincubation. When ascorbate is present during the 4-h preincubation, Scatchard analysis of (/sup 3/H)5-HT binding reveals a KD value of 3.0 +/- 0.3 nM and a Bmax value of 1.9 +/- 0.2 pmol/g tissue. When ascorbate is absent during the preincubation, the KD is essentially unchanged at 3.6 +/- 0.1 nM but the Bmax is significantly increased to 36.5 +/- 7 pmol/g tissue. Drug competition studies reveal that the apparent specific (/sup 3/H)5-HT binding in the absence of ascorbate appears to be displaced by nanomolar concentrations of hydroxylated tryptamines (5-HT, bufotenine) but not by nonhydroxylated tryptamines (5-methoxytryptamine, tryptamine). HPLC analysis demonstrates that (3H)5-HT is essentially destroyed by a 4-h incubation at 22/sup 0/C in the absence of ascorbate.

  19. Prediction of MHC class I binding peptides, using SVMHC

    Directory of Open Access Journals (Sweden)

    Elofsson Arne

    2002-09-01

    Full Text Available Abstract Background T-cells are key players in regulating a specific immune response. Activation of cytotoxic T-cells requires recognition of specific peptides bound to Major Histocompatibility Complex (MHC class I molecules. MHC-peptide complexes are potential tools for diagnosis and treatment of pathogens and cancer, as well as for the development of peptide vaccines. Only one in 100 to 200 potential binders actually binds to a certain MHC molecule, therefore a good prediction method for MHC class I binding peptides can reduce the number of candidate binders that need to be synthesized and tested. Results Here, we present a novel approach, SVMHC, based on support vector machines to predict the binding of peptides to MHC class I molecules. This method seems to perform slightly better than two profile based methods, SYFPEITHI and HLA_BIND. The implementation of SVMHC is quite simple and does not involve any manual steps, therefore as more data become available it is trivial to provide prediction for more MHC types. SVMHC currently contains prediction for 26 MHC class I types from the MHCPEP database or alternatively 6 MHC class I types from the higher quality SYFPEITHI database. The prediction models for these MHC types are implemented in a public web service available at http://www.sbc.su.se/svmhc/. Conclusions Prediction of MHC class I binding peptides using Support Vector Machines, shows high performance and is easy to apply to a large number of MHC class I types. As more peptide data are put into MHC databases, SVMHC can easily be updated to give prediction for additional MHC class I types. We suggest that the number of binding peptides needed for SVM training is at least 20 sequences.

  20. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment

    DEFF Research Database (Denmark)

    Carrasco Pro, S.; Zimic, M.; Nielsen, Morten

    2014-01-01

    Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One...... of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available......, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses...

  1. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity

    Science.gov (United States)

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates. PMID:25658443

  2. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  3. Affinity tagging & purification of the fucose binding LecB protein

    OpenAIRE

    Creavin, Aileen; O'Connor, Brendan

    2007-01-01

    The fucose binding LecB protein is one of two identified lectins produced by the opportunistic pathogen Pseudomonas aeruginosa (PA01) and is implicated in contributing to its virulence. A large number of homologous proteins have been identified in other bacterial species that exhibit extremely high sequence identity and similarity to LecB. However, key amino acid residues known to participate in fucose binding in LecB are altered in many of these proteins. Some of these proteins have been sho...

  4. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    Full Text Available BACKGROUND: The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates. METHODOLOGY/PRINCIPAL FINDINGS: We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data. CONCLUSIONS/SIGNIFICANCE: Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct

  5. Oxypred: Prediction and Classification of Oxygen-Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    S.; Muthukrishnan; Aarti; Garg; G.P.S.; Raghava

    2007-01-01

    This study describes a method for predicting and classifying oxygen-binding pro- teins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding pro- teins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Sec- ondly, an SVM module was developed based on amino acid composition, classify- ing the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemo- cyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins(available from http://www.imtech.res.in/raghava/oxypred/).

  6. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum. Evidence that (/sup 3/H)dopamine can label a high affinity agonist-binding state of the D1 dopamine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Leff, S.E.; Creese, I.

    1985-02-01

    The interactions of dopaminergic agonists and antagonists with /sup 3/H-agonist labeled D3 dopaminergic binding sites of rat striatum have been characterized by radioligand-binding techniques. When the binding of (/sup 3/H)dopamine and (/sup 3/H)apomorphine to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone, these ligands appear to label selectively the previously termed D3 binding site. Antagonist/(/sup 3/H)dopamine competition curves are of uniformly steep slope (nH . 1.0), suggesting the presence of a single D3 binding site. The relative potencies of antagonists to inhibit D3 specific (/sup 3/H)dopamine binding are significantly correlated with their potencies to block D1 dopamine receptors as measured by the inhibition of both dopamine-stimulated adenylate cyclase and (/sup 3/H)flupentixol-binding activities. The affinities of agonists to inhibit D3 specific (/sup 3/H)dopamine binding are also correlated with estimates of these agonists affinities for the high affinity binding component of agonist/(/sup 3/H)flupentixol competition curves. Both D3 specific (/sup 3/H) dopamine binding and the high affinity agonist-binding component of dopamine/(/sup 3/H)flupentixol competition curves show a similar sensitivity to guanine nucleotides. Taken together, these data strongly suggest that the D3 binding site is related to a high affinity agonist-binding state of the D1 dopamine receptor.

  7. Comparing the Affinity of GTPase-binding Proteins using Competition Assays.

    Science.gov (United States)

    Williamson, Rosalind C; Bass, Mark D

    2015-01-01

    In this protocol we demonstrate a method for comparing the competition between GTPase-binding proteins. Such an approach is important for determining the binding capabilities of GTPases for two reasons: The fact that all interactions involve the same face of the GTPases means that binding events must be considered in the context of competitors, and the fact that the bound nucleotide must also be controlled means that conventional approaches such as immunoprecipitation are unsuitable for GTPase biochemistry. The assay relies on the use of purified proteins. Purified Rac1 immobilized on beads is used as the bait protein, and can be loaded with GDP, a non-hydrolyzable version of GTP or left nucleotide free, so that the signaling stage to be investigated can be controlled. The binding proteins to be investigated are purified from mammalian cells, to allow correct folding, by means of a GFP tag. Use of the same tag on both proteins is important because not only does it allow rapid purification and elution, but also allows detection of both competitors with the same antibody during elution. This means that the relative amounts of the two bound proteins can be determined accurately.

  8. A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination

    DEFF Research Database (Denmark)

    Rudolf, Amalie Frederikke; Skovgaard, Tine; Knapp, Stefan;

    2014-01-01

    Binding assays are increasingly used as a screening method for protein kinase inhibitors; however, as yet only a weak correlation with enzymatic activity-based assays has been demonstrated. We show that the correlation between the two types of assays can be improved using more precise screening...

  9. Peptide Binding to HLA Class I Molecules: Homogenous, High-Throughput Screening, and Affinity Assays

    DEFF Research Database (Denmark)

    Harndahl, Mikkel; Justesen, Sune Frederik Lamdahl; Lamberth, Kasper;

    2009-01-01

    present a homogenous, proximity-based assay for detection of peptide binding to HLA class I molecules. It uses a conformation-dependent anti-HLA class I antibody, W6/32, as one tag and a biotinylated recombinant HLA class I molecule as the other tag, and a proximity-based signal is generated through...

  10. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian;

    2006-01-01

    Haptoglobin-related protein (Hpr) is a primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL) particles shown to be a part of the innate immune defense. Despite the assumption hitherto that Hpr does not bind to hemoglobin, the present...

  11. Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method

    OpenAIRE

    Marharyta Petukh; Minghui Li; Emil Alexov

    2015-01-01

    Author Summary Developing methods for accurate prediction of effects of amino acid substitutions on protein-protein affinity is important for both understanding disease-causing mechanism of missense mutations and guiding protein engineering. For both purposes, there is a need for accurate methods primarily based on first principle calculations, while being fast enough to handle large number of cases. Here we report a new method, the Single Amino Acid Mutation based change in Binding free Ener...

  12. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    Science.gov (United States)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  13. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe-1, Val1, Asn2, Gln3, His4, Ser8, His9, Glu12, Tyr15, Leu16]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln3, Ala4] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr15, Leu16] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln3, Ala4, Tyr15,Leu16]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  14. Leucine zipper like structure in rice WRKY89 enhances its affinity for binding with W box elements

    Institute of Scientific and Technical Information of China (English)

    WANG Haihua; HAO Zhongna; XIE Ke; WU Kunlu; GUO Zejian

    2005-01-01

    WRKY proteins are transcriptional regulators involved in plant responses to biotic and abiotic stresses, metabolisms, and developmental processes. In the present study, we isolated a WRKY cDNA, OsWRKY89 from a rice cDNA library. The deduced polypeptide contains 263 amino acid residues with a potential leucine zipper structure in its N-terminus, sharing low identity with other known WRKY members. OsWRKY89 and three deletion derivatives from its N-terminal were expressed in high levels in Escherichia coli as a C-terminally six-histidine-tagged fusion protein, and purified by employing one-step affinity chromatography on a Ni-NTA column. The recombinant OsWRKY89 protein was found to bind specially to sequences harboring W box cis elements by using electrophoretic mobility shift assays. This binding activity was decreased significantly by deletion of the leucine zipper-like structure in the N-terminal of OsWRKY89. Using a yeast two-hybrid assay system, we found that the leucine zipper motif of OsWRKY89 was involved in the protein-protein interaction. Further deletion to remove partial WRKY domain abolished completely the interaction between the expressed protein and the W boxes, indicating that the WRKY domain is essential to the DNA-binding. These data strongly suggest that the leucine zipper-like motif of OsWRKY89 plays a significant role in the protein-protein and DNA-protein interactions.

  15. 混合微粒群神经网络系统的构建及其在HLA-A*0201限制性T细胞表位活性预测中的应用%Design and construction of hybrid particle swarm optimizer-artificial neural network and its application in predicting the binding affinity of T-cell epitope to HLA-A*0201

    Institute of Scientific and Technical Information of China (English)

    任彦荣

    2011-01-01

    A novel modeling method that we named hybrid particle swarm optimizer-artificial neural network (HPSO-ANN) is developed by introducing "reproduction", "hybrid", "mutation" operator and "Metropolis" sampling into exploration of particle swarm optimizer and then applies to optimize the weighted values of feed-forward multilayer perceptron. By performing this newly proposed method to quantitatively predict the binding affinity of 152 CTL epitopes to their common receptor of HLA-A*0201 protein, it is suggested that the developed method enormously increases abilities of global searching for such algorithms in their former periods and/or earlier stages and local convergence in their latter periods and/or final stages except for little time-consuming of CPU. By comparing with QSAR modeling results obtained from reports in references, this proposed method is effective in solving practical problems, especially in cases of optimizations with non-linear, high-dimensional, etc.%尝试将“复制”、“杂交”、“变异”算子和“Metropolis”采样策略引入到微粒群算法(PSO)搜索进程,并将其用于前馈型多层神经网络(FMANN)连接权值优化当中,形成了1种新的非线性统计建模方法:混合微粒群神经网络系统(hybrid particle Swarmoptimizer-artificial neural network,HPSO-ANN)。通过仿真对比及对152个HLA-A*0201限制性T细胞表位活性预测表明:HPSO-ANN仅在少量增加CPU耗时的同时大大提高了算法前期全局搜索能力及后期局部收敛性,特别是对于非线性、高维数等复杂问题该法往往能够取得优于传统QSAR建模方法的实际效果。

  16. Peptide binding predictions for HLA DR, DP and DQ molecules

    DEFF Research Database (Denmark)

    Wang, P.; Sidney, J.; Kim, Y.;

    2010-01-01

    their performance. CONCLUSION: We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence...... include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform......BACKGROUND: MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects...

  17. Development of affinity technology for isolating individual human chromosomes by third strand binding

    Energy Technology Data Exchange (ETDEWEB)

    Fresco, Jacques R.

    2003-06-01

    The overall goal was to explore whether nucleic acid third strands could be used to bind with very high specificity to specific targets within whole genomes. Towards this end conditions had to be found to keep erroneous binding to an absolute minimum. The goal to use third strands (linked to magnetic beads) to ''capture'' large particles such as plasmids, cosmids, and whole chromosomes from complex mixtures was partially met; their use to serve as cytogenetic probes of metaphase chromosomes and to deliver reactive reagents to unique target sites on chromosomes in vivo for the purpose of mutagenizing specific base pairs was fully met; and their use as cytogenetic probes of chromosomal DNA in sections of formalin-fixed, paraffin-embedded tissue has been met since the DOE support was terminated.

  18. Fast Modeling of Binding Affinities by Means of Superposing Significant Interaction Rules (SSIR Method

    Directory of Open Access Journals (Sweden)

    Emili Besalú

    2016-05-01

    Full Text Available The Superposing Significant Interaction Rules (SSIR method is described. It is a general combinatorial and symbolic procedure able to rank compounds belonging to combinatorial analogue series. The procedure generates structure-activity relationship (SAR models and also serves as an inverse SAR tool. The method is fast and can deal with large databases. SSIR operates from statistical significances calculated from the available library of compounds and according to the previously attached molecular labels of interest or non-interest. The required symbolic codification allows dealing with almost any combinatorial data set, even in a confidential manner, if desired. The application example categorizes molecules as binding or non-binding, and consensus ranking SAR models are generated from training and two distinct cross-validation methods: leave-one-out and balanced leave-two-out (BL2O, the latter being suited for the treatment of binary properties.

  19. Specific high-affinity binding sites for a synthetic gliadin heptapeptide of human peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Payan, D.G.; Horvath, K.; Graf, L.

    1987-03-23

    The synthetic peptide containing residues 43-49 of ..cap alpha..-gliadin, the major protein component of gluten, has previously been shown to inhibit the production of lymphokine activities by mononuclear leukocytes. The authors demonstrate using radiolabeled ..cap alpha..-gliadin(43-49) that human peripheral blood lymphocytes express approximately 20,000-25,000 surface receptors for this peptide, with a dissociation constant (K/sub D/) of 20 nM. In addition, binding is inhibited by naloxone and an enkephalin analog, thus confirming the functional correlate which demonstrates inhibition by these agents of ..cap alpha..-gliadin(43-49) functional effects. Furthermore, B-lymphocytes bind specifically a greater amount of (/sup 125/I)..cap alpha..-gliadin(43-49) than T-lymphocytes. The lymphocyte ..cap alpha..-gliadin(43-49) receptor may play an important role in mediating the immunological response to ..cap alpha..-gliadin. 16 references, 4 figures.

  20. Tissue-binding affinity of Proteus mirabilis fimbriae in the human urinary tract.

    OpenAIRE

    Sareneva, T; Holthöfer, H; Korhonen, T K

    1990-01-01

    Binding characteristics of the two major fimbrial hemagglutinin types of uropathogenic Proteus mirabilis were determined in frozen sections of human kidney and in exfoliated uroepithelial cells. P. mirabilis 3087, which expresses the MR/P fimbriae, adhered avidly to the tubular epithelial cells of the kidney and also to the epithelial cells of urinary sediment. No adhesion to glomerular or peritubular elements of the kidney was detected. Indirect immunogold silver staining also showed that th...

  1. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.

    Science.gov (United States)

    Ferrara, Claudia; Grau, Sandra; Jäger, Christiane; Sondermann, Peter; Brünker, Peter; Waldhauer, Inja; Hennig, Michael; Ruf, Armin; Rufer, Arne Christian; Stihle, Martine; Umaña, Pablo; Benz, Jörg

    2011-08-01

    Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen-antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant therapeutic, glycoenginereed antibodies is currently being developed to exploit this finding. In this study, the crystal structures of a glycosylated Fcγ receptor complexed with either afucosylated or fucosylated Fc were determined allowing a detailed, molecular understanding of the regulatory role of Fc-oligosaccharide core fucosylation in improving ADCC. The structures reveal a unique type of interface consisting of carbohydrate-carbohydrate interactions between glycans of the receptor and the afucosylated Fc. In contrast, in the complex structure with fucosylated Fc, these contacts are weakened or nonexistent, explaining the decreased affinity for the receptor. These findings allow us to understand the higher efficacy of therapeutic antibodies lacking the core fucose and also suggest a unique mechanism by which the immune system can regulate antibody-mediated effector functions.

  2. Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag

    Science.gov (United States)

    Duong-Ly, Krisna C.; Gabelli, Sandra B.

    2015-01-01

    Expression of fusion proteins such as MBP fusions can be used as a way to improve the solubility of the expressed protein in E. coli (Fox and Waugh, 2003; Nallamsetty et al., 2005; Nallamsetty and Waugh, 2006) and as a way to introduce an affinity purification tag. The protocol that follows was designed by the authors as a first step in the purification of a recombinant protein fused with MBP, using fast protein liquid chromatography (FPLC). Cells should have been thawed, resuspended in binding buffer, and lysed by sonication or microfluidization before mixing with the amylose resin or loading on the column. Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:26096500

  3. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography

    Directory of Open Access Journals (Sweden)

    Lina Lu

    2015-05-01

    Full Text Available Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed.

  4. An In-tether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide.

    Science.gov (United States)

    Hu, Kuan; Geng, Hao; Zhang, Qingzhou; Liu, Qisong; Xie, Mingsheng; Sun, Chengjie; Li, Wenjun; Lin, Huacan; Jiang, Fan; Wang, Tao; Wu, Yun-Dong; Li, Zigang

    2016-07-01

    The addition of a precisely positioned chiral center in the tether of a constrained peptide is reported, yielding two separable peptide diastereomers with significantly different helicity, as supported by circular dichroism (CD) and NMR spectroscopy. Single crystal X-ray diffraction analysis suggests that the absolute configuration of the in-tether chiral center in helical form is R, which is in agreement with theoretical simulations. The relationship between the secondary structure of the short peptides and their biochemical/biophysical properties remains elusive, largely because of the lack of proper controls. The present strategy provides the only method for investigating the influence of solely conformational differences upon the biochemical/biophysical properties of peptides. The significant differences in permeability and target binding affinity between the peptide diastereomers demonstrate the importance of helical conformation. PMID:27167181

  5. Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: Evidence for low-affinity sites and for the involvement of G proteins

    International Nuclear Information System (INIS)

    Detailed kinetic studies of the binding of the calcium channel antagonist (+)-[3H]PN200-110 to membrane preparations form rabbit skeletal muscle have demonstrated that, in addition to the high-affinity sites that are readily measured in equilibrium and kinetic experiments, there are also dihydropyridine binding sites with much lower affinities. These sites were detected by the ability of micromolar concentrations of several dihydropyridines to accelerate the rate of dissociation of (+)-[3H]PN200-110 from its high-affinity sites. The observed increase in rate was dependent on the concentration of competing ligand, and half-maximal effects occurred at approximately 10 μM for the agonist (±)-Bay K8644 and for the antagonists nifedipine, (±)-nitrendipine, and (+)-PN200-110. The low-affinity sites appear to be stereospecific since (-)-PN200-110 (1-200 μM) did not affect the dissociation rate. The possible involvement of guanine nucleotide binding proteins in dihydropyridine binding has been investigated by studying the effects of guanosine 5'-O-(3-thiotriphosphate) (GTPγS) and guanosine 5'-O-(2-thiodiphosphate) (GDPβS) on binding parameters. GTPγS did increase the ability of (±)-[3H]PN200-110. These results suggest that skeletal muscle dihydropyridine receptors have low-affinity binding sites that may be involved in the regulation of calcium channel function and that activation of a guanine nucleotide binding protein may modulate the binding of agonists but not of antagonists to these sites

  6. Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity.

    Science.gov (United States)

    Luo, Man; Wang, Xiang S; Tropsha, Alexander

    2016-01-01

    Ligand based virtual screening (LBVS) approaches could be broadly divided into those relying on chemical similarity searches and those employing Quantitative Structure-Activity Relationship (QSAR) models. We have compared the predictive power of these approaches using some datasets of compounds tested against several G-Protein Coupled Receptors (GPCRs). The k-Nearest Neighbors (kNN) QSAR models were built for known ligands of each GPCR target independently, with a fraction of tested ligands for each target set aside as a validation set. The prediction accuracies of QSAR models for making active/inactive calls for compounds in both training and validation sets were compared to those achieved by the Prediction of Activity Spectra for Substances' (PASS) and the Similarity Ensemble Approach (SEA) tools both available online. Models developed with the kNN QSAR method showed the highest predictive power for almost all tested GPCR datasets. The PASS software, which incorporates multiple end-point specific QSAR models demonstrated a moderate predictive power, while SEA, a chemical similarity based approach, had the lowest prediction power. Our studies suggest that when sufficient amount of data is available to develop and rigorously validate QSAR models such models should be chosen as the preferred virtual screening tool in ligand-based computational drug discovery as compared to chemical similarity based approaches. PMID:27491652

  7. Functional group based Ligand binding affinity scoring function at atomic environmental level

    Science.gov (United States)

    Varadwaj, Pritish Kumar; Lahiri, Tapobrata

    2009-01-01

    Use of knowledge based scoring function (KBSF) for virtual screening and molecular docking has become an established method for drug discovery. Lack of a precise and reliable free energy function that describes several interactions including water-mediated atomic interaction between amino-acid residues and ligand makes distance based statistical measure as the only alternative. Till now all the distance based scoring functions in KBSF arena use atom singularity concept, which neglects the environmental effect of the atom under consideration. We have developed a novel knowledge-based statistical energy function for protein-ligand complexes which takes atomic environment in to account hence functional group as a singular entity. The proposed knowledge based scoring function is fast, simple to construct, easy to use and moreover it tackle the existing problem of handling molecular orientation in active site pocket. We have designed and used Functional group based Ligand retrieval (FBLR) system which can identify and detect the orientation of functional groups in ligand. This decoy searching was used to build the above KBSF to quantify the activity and affinity of high resolution protein-ligand complexes. We have proposed the probable use of these decoys in molecular build-up as a de-novo drug designing approach. We have also discussed the possible use of the said KSBF in pharmacophore fragment detection and pseudo center based fragment alignment procedure. PMID:19255647

  8. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies.

    Science.gov (United States)

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S

    2016-05-15

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (±0.5)×10(5)M(-1), which agreed with a previously reported value of 1.0 (±0.1)×10(5)M(-1). Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein.

  9. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/.

  10. A β-hairpin structure in a 13-mer peptide that binds α-bungarotoxin with high affinity and neutralizes its toxicity

    OpenAIRE

    Scherf, Tali; Kasher, Roni; Balass, Moshe; Fridkin, Mati; Fuchs, Sara; Katchalski-Katzir, Ephraim

    2001-01-01

    Snake-venom α-bungarotoxin is a member of the α-neurotoxin family that binds with very high affinity to the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. The structure of the complex between α-bungarotoxin and a 13-mer peptide (WRYYESSLEPYPD) that binds the toxin with high affinity, thus inhibiting its interactions with AChR with an IC50 of 2 nM, has been solved by 1H-NMR spectroscopy. The bound peptide folds into a β-hairpin structure crea...

  11. Protoporphyrinogen oxidase: high affinity tetrahydrophthalimide radioligand for the inhibitor/herbicide-binding site in mouse liver mitochondria.

    Science.gov (United States)

    Birchfield, N B; Casida, J E

    1996-01-01

    Protoporphyrinogen oxidase (protox), the last common enzyme in heme and chlorophyll biosynthesis, is the target of several classes of herbicides acting as inhibitors in both plants and mammals. N-(4-Chloro-2-fluoro-5-(propargyloxy)phenyl)-3,4,5,6-tetrahydro phthalimide (a potent protox inhibitor referred to as THP) was synthesized as a candidate radioligand ([3H]-THP) by selective catalytic reduction of 3,6-dihydrophthalic anhydride (DHPA) with tritium gas followed by condensation in 45% yield with 4-chloro-2-fluoro-5-(propargyloxy)aniline. Insertion of tritium at the 3 and 6 carbons of DHPA as well as the expected 4 and 5 carbons resulted in high specific activity [3H]THP (92 Ci/mmol). This radioligand undergoes rapid, specific, saturable, and reversible binding to the inhibitor/herbicide binding site of the protox component of cholate-solubilized mouse liver mitochondria with an apparent Kd of 0.41 nM and Bmax of 0.40 pmol/mg of protein. In the standard assay, mouse preparation (150 micrograms of protein) and [3H]THP (0.5 nM) are incubated in 500 microL of phosphate buffer at pH 7.2 for 15 min at 25 degrees C followed by addition of ammonium sulfate and filtration with glass fiber filters. The potencies of five nitrodiphenyl ethers and two other herbicides as inhibitors of [3H]THP binding correlate well with those for inhibition of protox activity (r2 = 0.97, n = 7), thus validating the binding assay as relevant to enzyme inhibition. It is also suitable to determine in vivo block as illustrated by an approximately 50% decrease in [3H]THP binding in liver mitochondria from mice treated ip with oxyfluorfen at 4 mg/kg. This is the first report of a binding assay for protox in mammals. The high affinity and specific activity of [3H]THP facilitate quantitation of protox and therefore research on a sensitive inhibition site for porphyrin biosynthesis. PMID:8902268

  12. High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells.

    OpenAIRE

    Milazzo, G.; Yip, C. C.; Maddux, B A; Vigneri, R; Goldfine, I D

    1992-01-01

    We studied the nature of insulin receptor binding in MCF-7 breast cancer cells. In both intact cells and solubilized receptor preparations, high-affinity insulin binding was seen. However, unlabeled insulin-like growth factor-I (IGF-I) was five-fold more potent in inhibiting 125I-insulin binding than insulin itself. With monoclonal antibodies to the insulin receptor, 30% of 125I-insulin binding was inhibited. In contrast when alpha-IR3, a monoclonal antibody that recognizes typical IGF-I rece...

  13. Predicting accurate absolute binding energies in aqueous solution

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....

  14. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles.

    Science.gov (United States)

    Brender, Jeffrey R; Zhang, Yang

    2015-10-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies.

  15. (/sup 3/H)dihydroergotamine as a high-affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states

    Energy Technology Data Exchange (ETDEWEB)

    Hamblin, M.W.; Ariani, K.; Adriaenssens, P.I.; Ciaranello, R.D.

    1987-12-01

    (/sup 3/H)Dihydroergotamine (DE) labels a population of binding sites in rat brain membranes with an affinity of approximately 70 pM in both hippocampus (maximal binding at saturation (Bmax) = 340 fmol/mg of protein) and cerebral cortex (Bmax = 250 fmol/mg of protein). Specific binding typically comprises about 97% of total binding at the Kd of the radioligand when nonspecific binding is determined in the presence of 100 nM unlabeled DE. Association kinetics at 37 degrees C are consistent with a uniform association rate constant for all sites labeled. Specific binding is completely reversible with addition of excess unlabeled DE, but dissociation does not proceed with simple first-order kinetics, suggesting the presence of more than one discrete binding site. Competition studies with selective drugs reveal alpha adrenergic, 5-HT1A and 5-HT1B components of (/sup 3/H)DE specific binding. When phentolamine (500 nM) is included to block alpha receptors and DPAT (100 nM) or spiroxatrine (500 nM) is included to block 5-HT1A receptors, specific binding is exclusively to sites with drug affinities characteristic of 5-HT1B receptors. Under these 5-HT1B-selective conditions, (/sup 3/H)DE binding is about 90% specific, with a Kd of about 50 to 60 pM and a Bmax of 96 fmol/mg of protein in hippocampus and 77 fmol/mg of protein in cortex. (/sup 3/H)DE binding to 5-HT1B sites is very slowly dissociable, with a T1/2 of greater than 2 h at 37 degrees C. 5-HT1B antagonists and DE itself yield competition curves at (/sup 3/H)DE-labeled 5-HT1B sites that are adequately fit assuming a single site in nonlinear regression analysis. Addition of 100 microM guanylyl 5'-imidodiphosphate appears to convert nearly all 5-HT1B sites to those having low affinity for agonists while having a much smaller effect on the binding of (/sup 3/H)DE.

  16. Radioiodinated ligands for the estrogen receptor: Effect of different 7-cyanoalkyl chains on the binding affinity of novel iodovinyl-6-dehydroestradiols

    International Nuclear Information System (INIS)

    Three novel 17α-ethynyl-Δ6,7-estra-3,17β-diols and their 17α-[125I]-iodovinyl derivatives, containing different C7-cyanoalkyl chains, were studied as potential radioligands for the estrogen receptor. The influence of the chain length on the biological behaviour of the compounds was assessed through in vitro ER binding assays of the ethynyl derivatives and breast cancer cell uptake studies of the 17α-[125I]-iodovinyl-Δ6,7-estra-3,17β-diols. A difference in alkyl chain induced a decrease in ER binding affinities of substances, however, the receptor-binding affinities (RBA) of all compounds were lower than that of estradiol itself. In addition, a non-specific cell binding was observed which is in accordance with the encountered ethynyl RBA values suggesting that the uptake is not ER mediated

  17. Radioiodinated ligands for the estrogen receptor: Effect of different 7-cyanoalkyl chains on the binding affinity of novel iodovinyl-6-dehydroestradiols

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Carina [Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Centro de Investigacao em Meio Ambiente Genetica e Oncobiologia (CIMAGO) (Portugal); Oliveira, Maria Cristina [Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Centro de Investigacao em Meio Ambiente Genetica e Oncobiologia (CIMAGO) (Portugal)], E-mail: cmelo@itn.pt; Gano, Lurdes; Marques, Fernanda; Santos, Isabel [Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Centro de Investigacao em Meio Ambiente Genetica e Oncobiologia (CIMAGO) (Portugal); Morais, Goreti Ribeiro [Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal); Yasuda, Takumi [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka (Japan); Thiemann, Thies [Centro de Investigacao em Meio Ambiente Genetica e Oncobiologia (CIMAGO) (Portugal); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka (Japan); Botelho, Filomena [Centro de Investigacao em Meio Ambiente Genetica e Oncobiologia (CIMAGO) (Portugal); Instituto de Biofisica/Biomatematica, IBILI, FMUC, Coimbra (Portugal); Oliveira, Carlos F. [Centro de Investigacao em Meio Ambiente Genetica e Oncobiologia (CIMAGO) (Portugal); Clinica Ginecologica, FMUC, Coimbra (Portugal)

    2009-02-15

    Three novel 17{alpha}-ethynyl-{delta}{sup 6,7}-estra-3,17{beta}-diols and their 17{alpha}-[{sup 125}I]-iodovinyl derivatives, containing different C7-cyanoalkyl chains, were studied as potential radioligands for the estrogen receptor. The influence of the chain length on the biological behaviour of the compounds was assessed through in vitro ER binding assays of the ethynyl derivatives and breast cancer cell uptake studies of the 17{alpha}-[{sup 125}I]-iodovinyl-{delta}{sup 6,7}-estra-3,17{beta}-diols. A difference in alkyl chain induced a decrease in ER binding affinities of substances, however, the receptor-binding affinities (RBA) of all compounds were lower than that of estradiol itself. In addition, a non-specific cell binding was observed which is in accordance with the encountered ethynyl RBA values suggesting that the uptake is not ER mediated.

  18. Predicting protein ligand binding motions with the conformation explorer

    Directory of Open Access Journals (Sweden)

    Flores Samuel C

    2011-10-01

    Full Text Available Abstract Background Knowledge of the structure of proteins bound to known or potential ligands is crucial for biological understanding and drug design. Often the 3D structure of the protein is available in some conformation, but binding the ligand of interest may involve a large scale conformational change which is difficult to predict with existing methods. Results We describe how to generate ligand binding conformations of proteins that move by hinge bending, the largest class of motions. First, we predict the location of the hinge between domains. Second, we apply an Euler rotation to one of the domains about the hinge point. Third, we compute a short-time dynamical trajectory using Molecular Dynamics to equilibrate the protein and ligand and correct unnatural atomic positions. Fourth, we score the generated structures using a novel fitness function which favors closed or holo structures. By iterating the second through fourth steps we systematically minimize the fitness function, thus predicting the conformational change required for small ligand binding for five well studied proteins. Conclusions We demonstrate that the method in most cases successfully predicts the holo conformation given only an apo structure.

  19. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: synthesis, DNA-binding affinity and cytotoxic activity.

    Science.gov (United States)

    Kamal, Ahmed; Sreekanth, Kokkonda; Shankaraiah, Nagula; Sathish, Manda; Nekkanti, Shalini; Srinivasulu, Vunnam

    2015-04-01

    A new series of C8-linked dithiocarbamate/piperazine bridged pyrrolo[2,1-c][1,4]benzodiazepine conjugates (5a-c, 6a,b) have been synthesized and evaluated for their cytotoxic potential and DNA-binding ability. The representative conjugates 5a and 5b have been screened for their cytotoxicity against a panel of 60 human cancer cell lines. Compound 5a has shown promising cytotoxic activity on selected cancer cell lines that display melanoma, leukemia, CNS, ovarian, breast and renal cancer phenotypes. The consequence of further replacement of the 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate in 5b and 5c with 4-methylpiperazine-1-carbodithioate yielded new conjugates 6a and 6b respectively. In addition, the compounds 5c and 6a,b have been evaluated for their in vitro cytotoxicity on some of the selected human cancer cell lines and these conjugates have exhibited significant cytotoxic activity. Further, the DNA-binding ability of these new conjugates has been evaluated by using thermal denaturation (ΔTm) studies. The correlation between structure and DNA-binding ability has been investigated by molecular modeling studies which predicted that 6b exhibits superior DNA-binding ability and these are in agreement with the experimental DNA-binding studies. PMID:25665519

  20. Thermodynamics of binding of a sulfonamide inhibitor to metal-mutated carbonic anhydrase as studied by affinity capillary electrophoresis.

    Science.gov (United States)

    Sato, Yosuke; Hoshino, Hitoshi; Iki, Nobuhiko

    2015-09-01

    By affinity capillary electrophoresis (ACE), the thermodynamic binding constants of a sulfonamide (SA) inhibitor to bovine carbonic anhydrase II (CA) and metal mutated variants (M-CAs) were evaluated. 1-(4-Aminosulfonylphenylazo)-2-naphthol-6,8-disulfonate was used as the SA in the electrophoretic buffer for ACE. The Scatchard analysis of the dependence of the electrophoretic mobility of native CA on the SA concentration provided the binding constant to be Kb=(2.29±0.05)×10(6) M(-1) (at pH8.4, 25°C). On the other hand, apoCA showed far smaller value [Kb=(3.76±0.14)×10(2) M(-1)], suggesting that the coordination of SA to the Zn(II) center controlled the binding thermodynamics. The ACE of M-CAs showed the same behaviors as native CA but with different Kb values. For example, Co-CA adopting the same tetrahedral coordination geometry as native CA exhibited the largest Kb value [(2.55±0.05)×10(6) M(-1)] among the M-CAs. In contrast, Mn- and Ni-CA, which adopted the octahedral coordination geometry, had Kb values that were about two orders of magnitude lower. Because the hydrophobic cavity of CA around the active center pre-organized the orientation of SA, thereby fixing the ligating NH(-) moiety to the apex of the tetrahedron supported by three basal His3 of CA, metals such as Zn and Co at the center of M-CA gave the most stable CA-SA complex. However, pre-organization was not favored for octahedral geometry. Thus, pre-organization of SA was the key to facilitating the tetrahedral coordination geometry of the Zn(II) active center of CA.

  1. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen.

    Science.gov (United States)

    Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R

    2015-05-01

    Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0

  2. X-ray Crystal Structure of the Novel Enhanced-Affinity Glucocorticoid Agonist Fluticasone Furoate in the Glucocorticoid Receptor−Ligand Binding Domain

    Energy Technology Data Exchange (ETDEWEB)

    Biggadike, Keith; Bledsoe, Randy K.; Hassell, Anne M.; Kirk, Barrie E.; McLay, Iain M.; Shewchuk, Lisa M.; Stewart, Eugene L. (GSKNC); (GSK)

    2008-07-08

    An X-ray crystal structure is reported for the novel enhanced-affinity glucocorticoid agonist fluticasone furoate (FF) in the ligand binding domain of the glucocorticoid receptor. Comparison of this structure with those of dexamethasone and fluticasone propionate shows the 17{alpha} furoate ester to occupy more fully the lipophilic 17{alpha} pocket on the receptor, which may account for the enhanced glucocorticoid receptor binding of FF.

  3. Betaglycan has two independent domains required for high affinity TGF-β binding: proteolytic cleavage separates the domains and inactivates the neutralizing activity of the soluble receptor

    Science.gov (United States)

    Mendoza, Valentín; Vilchis-Landeros, M. Magdalena; Mendoza-Hernández, Guillermo; Huang, Tao; Villarreal, Maria M.; Hinck, Andrew P.; López-Casillas, Fernando; Montiel, Jose-Luis

    2009-01-01

    Summary Betaglycan is a co-receptor for members of the TGF-β superfamily. Mutagenesis has identified two ligand binding regions, one at the membrane-distal and the other at the membrane-proximal half of the betaglycan ectodomain. Here we show that partial plasmin digestion of soluble betaglycan produces two proteolysis-resistant fragments of 45 and 55 kDa, consistent with the predicted secondary structure, which indicates an intervening non-structured linker region separating the highly structured N- and C-terminal domains. Amino terminal sequencing indicates that the 45 and 55 kDa fragments correspond, respectively, to the membrane-distal and -proximal regions. Plasmin treatment of membrane betaglycan results in the production of equivalent proteolysis-resistant fragments. The 45 and 55 kDa fragments, as well as their recombinant soluble counterparts, Sol Δ10 and Sol Δ11, bind TGF-β, nonetheless, compared to intact soluble betaglycan, have severely diminished ability to block TGF-β activity. Surface plasmon resonance (SPR) analysis indicates that soluble betaglycan has Kds in the low nanomolar range for the three TGF-β isoforms, while those for Sol Δ10 and Sol Δ11 are 1 – 2 orders of magnitude higher. SPR analysis further shows that the Kds of Sol Δ11 are not changed in the presence of Sol Δ10, indicating that the high affinity of soluble betaglycan is a consequence of tethering of the domains together. Overall, these results, suggest that betaglycan ectodomain exhibits a bi-lobular structure in which each lobule folds independently, binds TGF-β through distinct non-overlapping interfaces, and that linker modification may be an approach to improve soluble betaglycan’s TGF-β neutralizing activity. PMID:19842711

  4. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    Science.gov (United States)

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc.

  5. CYCLIC CHOLECYSTOKININ ANALOGUES EXHIBIT HIGH BLOOD STABILITY AND BINDING AFFINITY WITH CHOLECYSTOKININ RECEPTOR

    Directory of Open Access Journals (Sweden)

    Eun-Ha Joh

    2014-01-01

    Full Text Available Recently, incidence of Cholecystokinin (CCK receptor is recognized as a factor that determines the aggressive phenotype of pancreatic cancer. In this study, a novel Cholecystokinin (CCK analogues; DOTA-Nle-cyclo (Glu-Trp-Met-Asp-Phe-Lys-NH2 (DOTA-cCCK and DOTA-Nle-cyclo (Glu-Trp-Nle-Asp-Phe-Lys-NH2 (DOTA-[Nle]-cCCK were synthesized and radiolabeled and the targeting abilities on the CCK receptor were evaluated for new CCK receptor targeting agents searching. Peptides were prepared through a solid phase synthesis method and their purity was over 98%. DOTA is the chelating agent for 68Ga-labelling, which the peptides were radiolabeled with 68Ga by a high radiolabeling yield (>98%. Peptides were stable over 98% by incubation in mouse blood at 37°C for 2 h. A competitive displacement of 125I-CCK8 on the AR42J human pancreatic carcinoma cells revealed that 50% inhibitory concentration value (IC50 were 12.31 nM of DOTA-cCCK and 1.69 nM of DOTA-[Nle]-cCCK. Stable in the blood of both DOTA-cCCK and DOTA-[Nle]-cCCK, but the binding rate with the CCK receptor on AR42J cells, DOTA-[Nle]-cCCK confirmed better than DOTA-cCCK. Therefore, it is concluded that 68Ga-DOTA-[Nle]-cCCK can be potential candidate as a targeting modality for the CCK receptor over-expressing tumors and further studies to evaluate their biological characteristics are needed.

  6. Novel radioiodinated {gamma}-hydroxybutyric acid analogues for radiolabeling and Photolinking of high-affinity {gamma}-hydroxybutyric acid binding sites

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Sabbatini, Paola;

    2010-01-01

    ¿-Hydroxybutyric acid (GHB) is a therapeutic drug, a drug of abuse, and an endogenous substance that binds to low- and high-affinity sites in the mammalian brain. To target the specific GHB binding sites, we have developed a (125)I-labeled GHB analog and characterized its binding in rat brain...... homogenate and slices. Our data show that [(125)I]4-hydroxy-4-[4-(2-iodobenzyloxy)phenyl]butanoate ([(125)I]BnOPh-GHB) binds to one site in rat brain cortical membranes with low nanomolar affinity (K(d), 7 nM; B(max), 61 pmol/mg protein). The binding is inhibited by GHB and selected analogs......, but not by ¿-aminobutyric acid. Autoradiography using horizontal slices from rat brain demonstrates the highest density of binding in hippocampus and cortical regions and the lowest density in the cerebellum. Altogether, the findings correlate with the labeling and brain regional distribution of high-affinity GHB sites...

  7. Novel Radioiodinated γ-Hydroxybutyric Acid Analogues for Radiolabeling and Photolinking of High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Sabbatini, Paola;

    2010-01-01

    γ-Hydroxybutyric acid (GHB) is a therapeutic drug, a drug of abuse, and an endogenous substance that binds to low- and high-affinity sites in the mammalian brain. To target the specific GHB binding sites, we have developed a 125I-labeled GHB analog and characterized its binding in rat brain...... homogenate and slices. Our data show that [125I]4-hydroxy-4-[4-(2-iodobenzyloxy)phenyl]butanoate ([125I]BnOPh-GHB) binds to one site in rat brain cortical membranes with low nanomolar affinity (Kd, 7 nM; Bmax, 61 pmol/mg protein). The binding is inhibited by GHB and selected analogs, but not by γ......-aminobutyric acid. Autoradiography using horizontal slices from rat brain demonstrates the highest density of binding in hippocampus and cortical regions and the lowest density in the cerebellum. Altogether, the findings correlate with the labeling and brain regional distribution of high-affinity GHB sites or [3H...

  8. Novel high-affinity and selective biaromatic 4-substituted gamma-hydroxybutyric acid (GHB) analogues as GHB ligands: design, synthesis, and binding studies.

    Science.gov (United States)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte; Frydenvang, Karla; Dahl, Ivar F; Bräuner-Osborne, Hans; Brehm, Lotte; Frølund, Bente; Clausen, Rasmus P

    2008-12-25

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites in brain, of which the latter have not been linked unequivocally to function, but are speculated to be GHB receptors. In this study, a series of biaromatic 4-substituted GHB analogues, including 4'-phenethylphenyl, 4'-styrylphenyl, and 4'-benzyloxyphenyl GHB analogues, were synthesized and characterized pharmacologically in a [3H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid ([3H]NCS-382) binding assay and in GABA(A) and GABA(B) receptor binding assays. The compounds were selective for the high-affinity GHB binding sites and several displayed Ki values below 100 nM. The affinity of the 4-[4'-(2-iodobenzyloxy)phenyl] GHB analogue 17b was shown to reside predominantly with the R-enantiomer (Ki = 22 nM), which has higher affinity than previously reported GHB ligands.

  9. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    . This result shows that in addition to D1, which has an established function in ligand binding (Behrendt, N., Ploug, M., Patthy, L., Houen, G., Blasi, F., and Dano, K. (1991) J. Biol. Chem. 266, 7842-7847), D3 has an important role in governing a high affinity in the intact receptor. Real-time biomolecular...

  10. Automated benchmarking of peptide-MHC class I binding predictions

    DEFF Research Database (Denmark)

    Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason;

    2015-01-01

    the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding...... educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All...

  11. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin.

    Science.gov (United States)

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-08-21

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  12. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface

    DEFF Research Database (Denmark)

    Ahring, Philip K.; Olsen, Jeppe A.; Nielsen, Elsebet O.;

    2015-01-01

    The nicotinic acetylcholine receptor alpha 4 beta 2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (alpha 4)(2)(beta 2)(3) and (alpha 4)(3)(beta 2)(2). While these are similar in many aspects, the (alpha 4)(3)(beta 2)(2) stoichiometry...... differs by harboring a third orthosteric acetylcholine binding site located at the alpha 4-alpha 4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known...

  13. Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity.

    Science.gov (United States)

    Tang, Bin; Huang, Yanmei; Ma, Xiangling; Liao, Xiaoxiang; Wang, Qing; Xiong, Xinnuo; Li, Hui

    2016-12-01

    Structural differences among various dietary polyphenols affect their absorption, metabolism, and bioactivities. In this work, chlorogenic acid (CA) and its two positional isomers, neochlorogenic acid (NCA) and cryptochlorogenic acid (CCA), were investigated for their binding reactions with human serum albumin (HSA) using fluorescence, ultraviolet-visible, Fourier transform infrared and circular dichroism spectroscopies, as well as molecular docking. All three isomers were bound to HSA at Sudlow's site I and affected the protein secondary structure. CCA presented the strongest ability of hydrogen-bond formation, and both CA and NCA generated more electrostatic interactions with HSA. The albumin-binding capacity of these compounds decreased in the order CCA>NCA>CA. The compound with 4-esteryl structure showed higher binding affinity and larger conformational changes to HSA than that with 3- or 5-esteryl structures. These comparative studies on structure-affinity relationship contributed to the structural modification and design of phenolic food additives or new polyphenol-like drugs. PMID:27374553

  14. The Dipole Potential Modifies the Clustering and Ligand Binding Affinity of ErbB Proteins and Their Signaling Efficiency

    Science.gov (United States)

    Kovács, Tamás; Batta, Gyula; Hajdu, Tímea; Szabó, Ágnes; Váradi, Tímea; Zákány, Florina; Csomós, István; Szöllősi, János; Nagy, Peter

    2016-01-01

    Although activation of the ErbB family of receptor tyrosine kinases (ErbB1-4) is driven by oligomerization mediated by intermolecular interactions between the extracellular, the kinase and the transmembrane domains, the transmembrane domain has been largely neglected in this regard. The largest contributor to the intramembrane electric field, the dipole potential, alters the conformation of transmembrane peptides, but its effect on ErbB proteins is unknown. Here, we show by Förster resonance energy transfer (FRET) and number and brightness (N&B) experiments that the epidermal growth factor (EGF)-induced increase in the homoassociation of ErbB1 and ErbB2 and their heteroassociation are augmented by increasing the dipole potential. These effects were even more pronounced for ErbB2 harboring an activating Val → Glu mutation in the transmembrane domain (NeuT). The signaling capacity of ErbB1 and ErbB2 was also correlated with the dipole potential. Since the dipole potential decreased the affinity of EGF to ErbB1, the augmented growth factor-induced effects at an elevated dipole potential were actually induced at lower receptor occupancy. We conclude that the dipole potential plays a permissive role in the clustering of ErbB receptors and that the effects of lipid rafts on ligand binding and receptor signaling can be partially attributed to the dipole potential. PMID:27775011

  15. Development and optimization of a competitive binding assay for the galactophilic low affinity lectin LecA from Pseudomonas aeruginosa.

    Science.gov (United States)

    Joachim, Ines; Rikker, Sebastian; Hauck, Dirk; Ponader, Daniela; Boden, Sophia; Sommer, Roman; Hartmann, Laura; Titz, Alexander

    2016-08-16

    Infections with the Gram-negative bacterium Pseudomonas aeruginosa result in a high mortality among immunocompromised patients and those with cystic fibrosis. The pathogen can switch from planktonic life to biofilms, and thereby shields itself against antibiotic treatment and host immune defense to establish chronic infections. The bacterial protein LecA, a C-type lectin, is a virulence factor and an integral component for biofilm formation. Inhibition of LecA with its carbohydrate ligands results in reduced biofilm mass, a potential Achilles heel for treatment. Here, we report the development and optimization of a fluorescence polarization-based competitive binding assay with LecA for application in screening of potential inhibitors. As a consequence of the low affinity of d-galactose for LecA, the fluorescent ligand was optimized to reduce protein consumption in the assay. The assay was validated using a set of known inhibitors of LecA and IC50 values in good agreement with the known Kd values were obtained. Finally, we employed the optimized assay to screen sets of synthetic thio-galactosides and natural blood group antigens and report their structure-activity relationship. In addition, we evaluated a multivalent fluorescent assay probe for LecA and report its applicability in an inhibition assay. PMID:27488655

  16. ‘maskBAD’ – a package to detect and remove Affymetrix probes with binding affinity differences

    Directory of Open Access Journals (Sweden)

    Dannemann Michael

    2012-04-01

    Full Text Available Abstract Background Hybridization differences caused by target sequence differences can be a confounding factor in analyzing gene expression on microarrays, lead to false positives and reduce power to detect real expression differences. We prepared an R Bioconductor compatible package to detect, characterize and remove such probes in Affymetrix 3’IVT and exon-based arrays on the basis of correlation of signal intensities from probes within probe sets. Results Using completely mouse genomes we determined type 1 (false negatives and type 2 (false positives errors with high accuracy and we show that our method routinely outperforms previous methods. When detecting 76.2% of known SNP/indels in mouse expression data, we obtain at most 5.5% false positives. At the same level of false positives, best previous method detected 72.6%. We also show that probes with differing binding affinity both hinder differential expression detection and introduce artifacts in cancer-healthy tissue comparison. Conclusions Detection and removal of such probes should be a routine step in Affymetrix data preprocessing. We prepared a user friendly R package, compatible with Bioconductor, that allows the filtering and improving of data from Affymetrix microarrays experiments.

  17. Cystatin M/E is a high affinity inhibitor of cathepsin V and cathepsin L by a reactive site that is distinct from the legumain-binding site. A novel clue for the role of cystatin M/E in epidermal cornification.

    NARCIS (Netherlands)

    Cheng, T.; Hitomi, K.; Vlijmen-Willems, I.M.J.J. van; Jongh, G.J. de; Yamamoto, K.; Nishi, K.; Watts, C.; Reinheckel, T.; Schalkwijk, J.; Zeeuwen, P.L.J.M.

    2006-01-01

    Cystatin M/E is a high affinity inhibitor of the asparaginyl endopeptidase legumain, and we have previously reported that both proteins are likely to be involved in the regulation of stratum corneum formation in skin. Although cystatin M/E contains a predicted binding site for papain-like cysteine p

  18. Prediction of chloride ingress and binding in cement paste

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Nielsen, Erik Pram; Herforth, Duncan

    2007-01-01

    Finite Difference Model for the ingress of chlorides into concrete which takes into account its multi-component nature. The “composite theory” was then used to predict the diffusivity of each ion based on the phase assemblage present in the hydrated Portland cement paste. Agreement was found between...... in Portland cement pastes at any content of chloride, alkalis, sulfates and carbonate was verified experimentally and found to be equally valid when applied to other data in the literature. The thermodynamic model for predicting the phase equilibria in hydrated Portland cement was introduced into an existing...... profiles for the Cl/Ca ratio predicted by the model and those determined experimentally on 0.45 water/powder ratio Portland cement pastes exposed to 650 mM NaCl for 70 days. This confirms the assumption of essentially instantaneous binding where quasi-equilibrium is established locally. This does not imply...

  19. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-Cβ antibody

    International Nuclear Information System (INIS)

    Highlights: ► A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. ► TCR-Fc protein immobilized by an anti-Cβ antibody bound to a p/MHC tetramer. ► Binding affinity of TCR-Fc was markedly increased by binding with anti-Cβ antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100–200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-Cβ antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 × 10−5 M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-Cβ antibody, its binding affinity for p/MHC increased by 5-fold (2.2 × 10−6 M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-Cβ antibody, which is probably due to the stabilization of the Vα/Vβ region of the TCR. These findings provide new insights into the binding of sTCRs to p/MHCs and will hopefully be instrumental in establishing

  20. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-C{beta} antibody

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Jin, Aishun [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Department of Immunology, College of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin 150081 (China); Kishi, Hiroyuki, E-mail: immkishi@med.u-toyama.ac.jp [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Muraguchi, Atsushi [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V

  1. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-05-05

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. (Phe/sup -1/, Val/sup 1/, Asn/sup 2/, Gln/sup 3/, His/sup 4/, Ser/sup 8/, His/sup 9/, Glu/sup 12/, Tyr/sup 15/, Leu/sup 16/)IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. (Gln/sup 3/, Ala/sup 4/) IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. (Tyr/sup 15/, Leu/sup 16/) IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, (Gln/sup 3/, Ala/sup 4/, Tyr/sup 15/,Leu/sup 16/)IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.

  2. Synthesis of Biotinylated Inositol Hexakisphosphate To Study DNA Double-Strand Break Repair and Affinity Capture of IP6-Binding Proteins.

    Science.gov (United States)

    Jiao, Chensong; Summerlin, Matthew; Bruzik, Karol S; Hanakahi, Leslyn

    2015-10-20

    Inositol hexakisphosphate (IP6) is a soluble inositol polyphosphate, which is abundant in mammalian cells. Despite the participation of IP6 in critical cellular functions, few IP6-binding proteins have been characterized. We report on the synthesis, characterization, and application of biotin-labeled IP6 (IP6-biotin), which has biotin attached at position 2 of the myo-inositol ring via an aminohexyl linker. Like natural IP6, IP6-biotin stimulated DNA ligation by nonhomologous end joining (NHEJ) in vitro. The Ku protein is a required NHEJ factor that has been shown to bind IP6. We found that IP6-biotin could affinity capture Ku and other required NHEJ factors from human cell extracts, including the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4, and XLF. Direct binding studies with recombinant proteins show that Ku is the only NHEJ factor with affinity for IP6-biotin. DNA-PKcs, XLF, and the XRCC4:ligase IV complex interact with Ku in cell extracts and likely interact indirectly with IP6-biotin. IP6-biotin was used to tether streptavidin to Ku, which inhibited NHEJ in vitro. These proof-of-concept experiments suggest that molecules like IP6-biotin might be used to molecularly target biologically important proteins that bind IP6. IP6-biotin affinity capture experiments show that numerous proteins specifically bind IP6-biotin, including casein kinase 2, which is known to bind IP6, and nucleolin. Protein binding to IP6-biotin is selective, as IP3, IP4, and IP5 did not compete for binding of proteins to IP6-biotin. Our results document IP6-biotin as a useful tool for investigating the role of IP6 in biological systems. PMID:26397942

  3. Simple method for Shiga toxin 2e purification by affinity chromatography via binding to the divinyl sulfone group.

    Directory of Open Access Journals (Sweden)

    Hideyuki Arimitsu

    Full Text Available Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e, a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease.

  4. Dissecting the Binding Mode of Low Affinity Phage Display Peptide Ligands to Protein Targets by Hydrogen/Deuterium Exchange Coupled to Mass Spectrometry

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Lohse, Brian; Ming, Shonoi A;

    2014-01-01

    of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize interactions of low affinity peptides with their cognate protein targets. The HDX-MS workflow was optimized to accurately detect low-affinity peptide-protein interactions by use of ion mobility, electron transfer dissociation, non...... of KDM4C, indicating distinct binding modes. In contrast, the perturbation site of another PD-selected peptide inhibiting the function of KDM1A maps to a GST-tag. Our results demonstrate that HDX-MS can validate and map weak peptide-protein interactions, and pave the way for understanding and optimizing...

  5. The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: Understanding the determinants of binding affinity by comparison with Abl-SH3

    Directory of Open Access Journals (Sweden)

    van Nuland Nico AJ

    2007-04-01

    Full Text Available Abstract Background SH3 domains are small protein modules of 60–85 amino acids that bind to short proline-rich sequences with moderate-to-low affinity and specificity. Interactions with SH3 domains play a crucial role in regulation of many cellular processes (some are related to cancer and AIDS and have thus been interesting targets in drug design. The decapeptide APSYSPPPPP (p41 binds with relatively high affinity to the SH3 domain of the Abl tyrosine kinase (Abl-SH3, while it has a 100 times lower affinity for the α-spectrin SH3 domain (Spc-SH3. Results Here we present the high-resolution structure of the complex between the R21A mutant of Spc-SH3 and p41 derived from NMR data. Thermodynamic parameters of binding of p41 to both WT and R21A Spc-SH3 were measured by a combination of isothermal titration and differential scanning calorimetry. Mutation of arginine 21 to alanine in Spc-SH3 increases 3- to 4-fold the binding affinity for p41 due to elimination at the binding-site interface of the steric clash produced by the longer arginine side chain. Amide hydrogen-deuterium experiments on the free and p41-bound R21A Spc-SH3 domain indicate that binding elicits a strong reduction in the conformational flexibility of the domain. Despite the great differences in the thermodynamic magnitudes of binding, the structure of the R21A Spc-SH3:P41 complex is remarkably similar to that of the Abl-SH3:P41 complex, with only few differences in protein-ligand contacts at the specificity pocket. Using empirical methods for the prediction of binding energetics based on solvent-accessible surface area calculations, the differences in experimental energetics of binding between the two complexes could not be properly explained only on the basis of the structural differences observed between the complexes. We suggest that the experimental differences in binding energetics can be at least partially ascribed to the absence in the R21A Spc-SH3:P41 complex of several

  6. Prediction of Protein-DNA binding by Monte Carlo method

    Science.gov (United States)

    Deng, Yuefan; Eisenberg, Moises; Korobka, Alex

    1997-08-01

    We present an analysis and prediction of protein-DNA binding specificity based on the hydrogen bonding between DNA, protein, and auxillary clusters of water molecules. Zif268, glucocorticoid receptor, λ-repressor mutant, HIN-recombinase, and tramtrack protein-DNA complexes are studied. Hydrogen bonds are approximated by the Lennard-Jones potential with a cutoff distance between the hydrogen and the acceptor atoms set to 3.2 Åand an angular component based on a dipole-dipole interaction. We use a three-stage docking algorithm: geometric hashing that matches pairs of hydrogen bonding sites; (2) least-squares minimization of pairwise distances to filter out insignificant matches; and (3) Monte Carlo stochastic search to minimize the energy of the system. More information can be obtained from our first paper on this subject [Y.Deng et all, J.Computational Chemistry (1995)]. Results show that the biologically correct base pair is selected preferentially when there are two or more strong hydrogen bonds (with LJ potential lower than -0.20) that bind it to the protein. Predicted sequences are less stable in the case of weaker bonding sites. In general the inclusion of water bridges does increase the number of base pairs for which correct specificity is predicted.

  7. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands.

    Science.gov (United States)

    Khandelwal, Akash; Lukacova, Viera; Comez, Dogan; Kroll, Daniel M; Raha, Soumyendu; Balaz, Stefan

    2005-08-25

    To alleviate the problems in the receptor-based design of metalloprotein ligands due to inadequacies in the force-field description of coordination bonds, a four-tier approach was devised. Representative ligand-metalloprotein interaction energies are obtained by subsequent application of (1) docking with metal-binding-guided selection of modes, (2) optimization of the ligand-metalloprotein complex geometry by combined quantum mechanics and molecular mechanics (QM/MM) methods, (3) conformational sampling of the complex with constrained metal bonds by force-field-based molecular dynamics (MD), and (4) a single point QM/MM energy calculation for the time-averaged structures. The QM/MM interaction energies are, in a linear combination with the desolvation-characterizing changes in the solvent-accessible surface areas, correlated with experimental data. The approach was applied to structural correlation of published binding free energies of a diverse set of 28 hydroxamate inhibitors to zinc-dependent matrix metalloproteinase 9 (MMP-9). Inclusion of steps 3 and 4 significantly improved both correlation and prediction. The two descriptors explained 90% of variance in inhibition constants of all 28 inhibitors, ranging from 0.08 to 349 nM, with the average unassigned error of 0.318 log units. The structural and energetic information obtained from the time-averaged MD simulation results helped understand the differences in binding modes of related compounds.

  8. The ryanodine receptor pore blocker neomycin also inhibits channel activity via a previously undescribed high-affinity Ca(2+) binding site.

    Science.gov (United States)

    Laver, Derek R; Hamada, Tomoyo; Fessenden, James D; Ikemoto, Noriaki

    2007-12-01

    In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.

  9. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    International Nuclear Information System (INIS)

    Binding studies were performed with two 125I-labeled Bacillus thuringiensis δ-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One δ-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other δ-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis δ-endotoxins active against M. sexta compete for binding of 125I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles

  10. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, C.; Vanderbruggen, H.; Hoefte, H.; Van Rie, J.; Jansens, S.; Van Mellaert, H. (J. Plateaustraat, Gent (Belgium))

    1988-11-01

    Binding studies were performed with two {sup 125}I-labeled Bacillus thuringiensis {delta}-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One {delta}-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other {delta}-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis {delta}-endotoxins active against M. sexta compete for binding of {sup 125}I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles.

  11. Identification and characterization of GIP1, an Arabidopsis thaliana protein that enhances the DNA binding affinity and reduces the oligomeric state of G-box binding factors

    Institute of Scientific and Technical Information of China (English)

    Paul C. SEHNKE; Beth J. LAUGHNER; Carla R. LYERLY LINEBARGER; William B. GURLEY; Robert J.FERL

    2005-01-01

    Environmental control of the alcohol dehydrogenase (Adh) and other stress response genes in plants is in part brought about by transcriptional regulation involving the G-box cis-acting DNA element and bZIP G-box Binding Factors (GBFs).The mechanisms of GBF regulation and requirements for additional factors in this control process are not well understood.In an effort to identify potential GBF binding and control partners, maize GBF1 was used as bait in a yeast two-hybrid screen of an A. thaliana cDNA library. GBF Interacting Protein 1 (GIP1) arose from the screen as a 496 amino acid protein with a predicted molecular weight of 53,748 kDa that strongly interacts with GBFs. Northern analysis of A.thaliana tissue suggests a 1.8-1.9 kb GIP1 transcript, predominantly in roots. Immunolocalization studies indicate that GIP1 protein is mainly localized to the nucleus. In vitro electrophoretic mobility shift assays using an Adh G-box DNA probe and recombinant A. thaliana GBF3 or maize GBF1, showed that the presence of GIP1 resulted in a tenfold increase in GBF DNA binding activity without altering the migration, suggesting a transient association between GIP1 and GBF. Addition of GIP1 to intentionally aggregated GBF converted GBF to lower molecular weight macromolecular complexes and GIP1 also refolded denatured rhodanese in the absence of ATP. These data suggest GIP1 functions to enhance GBF DNA binding activity by acting as a potent nuclear chaperone or crowbar, and potentially regulates the multimeric state of GBFs, thereby contributing to bZIP-mediated gene regulation.

  12. Affinity-based release of polymer-binding peptides from hydrogels with the target segments of peptides.

    Science.gov (United States)

    Serizawa, Takeshi; Fukuta, Hiroki; Date, Takaaki; Sawada, Toshiki

    2016-02-01

    Peptides with affinities for the target segments of polymer hydrogels were identified by biological screening using phage-displayed peptide libraries, and these peptides exhibited an affinity-based release capability from hydrogels. The results from cell culture assays demonstrated the sustained anticancer effects of the drug-conjugated peptides that were released from the hydrogels.

  13. N-Methylation as a Strategy for Enhancing the Affinity and Selectivity of RNA-binding Peptides: Application to the HIV-1 Frameshift-Stimulating RNA.

    Science.gov (United States)

    Hilimire, Thomas A; Bennett, Ryan P; Stewart, Ryan A; Garcia-Miranda, Pablo; Blume, Alex; Becker, Jordan; Sherer, Nathan; Helms, Eric D; Butcher, Samuel E; Smith, Harold C; Miller, Benjamin L

    2016-01-15

    Human Immunodeficiency Virus (HIV) type 1 uses a -1 programmed ribosomal frameshift (-1 PRF) event to translate its enzymes from the same transcript used to encode the virus' structural proteins. The frequency of this event is highly regulated, and significant deviation from the normal 5-10% frequency has been demonstrated to decrease viral infectivity. Frameshifting is primarily regulated by the Frameshift Stimulatory Signal RNA (FSS-RNA), a thermodynamically stable, highly conserved stem loop that has been proposed as a therapeutic target. We describe the design, synthesis, and testing of a series of N-methyl peptides able to bind the HIV-1 FSS RNA stem loop with low nanomolar affinity and high selectivity. Surface plasmon resonance (SPR) data indicates increased affinity is a reflection of a substantially enhanced on rate. Compounds readily penetrate cell membranes and inhibit HIV infectivity in a pseudotyped virus assay. Viral infectivity inhibition correlates with compound-dependent changes in the ratios of Gag and Gag-Pol in virus particles. As the first compounds with both single digit nanomolar affinities for the FSS RNA and an ability to inhibit HIV in cells, these studies support the use of N-methylation for enhancing the affinity, selectivity, and bioactivity of RNA-binding peptides. PMID:26496521

  14. Allosteric effects of R- and S-citalopram on the human 5-HT transporter: evidence for distinct high- and low-affinity binding sites

    DEFF Research Database (Denmark)

    Plenge, Per; Gether, Ulrik; Rasmussen, Søren G

    2007-01-01

    The human 5-HT transporter (hSERT) has two binding sites for 5-HT and 5-HT uptake inhibitors: the orthosteric high-affinity site and a low-affinity allosteric site. Activation of the allosteric site increases the dissociation half-life for some uptake inhibitors. The objectives of this study were 1......) to identify hSERT mutations that inactivate the high-affinity site without affecting the allosteric site and 2) to observe allosteric effects in which hSERT binds R-citalopram with higher affinity than S-citalopram. Wild-type and mutant (Y95F, I172M, and Y95F/I172M) hSERTs were expressed in COS-7 cells...... nM, and 17.100 nM (mutants). The allosteric site however, in wild-type hSERT and the three mutants was unaffected by the mutations as attenuation of the dissociation rate of the [(3)H]-paroxetine:hSERT complex in the presence of S-citalopram or paroxetine was the same for wild-type h...

  15. Influence of “Glow Discharge Plasma” as an External Stimulus on the Self-Assembly, Morphology and Binding Affinity of Gold Nanoparticle-Streptavidin Conjugates

    Directory of Open Access Journals (Sweden)

    Chang-Jun Liu

    2012-05-01

    Full Text Available In this study, we investigate the influence of glow discharge plasma (GDP on the self-assembly, morphology and binding affinity of streptavidin coated gold nanoparticles (Au-NP-SV and biotinylated antibody (bAb adsorbed on a highly oriented pyrolytic graphite (HOPG substrate. Atomic force microscope (AFM was used to image the pre- and post-GDP treated samples. The analysis of the AFM images showed a considerable change in the aggregation and morphology of Au-NP-conjugates after treatment with GDP. To our knowledge, this is the first report on using GDP to enhance and speed-up the aggregation (sintering of adsorbed NP biomolecular conjugates. These results show a promising route that could be generalized for other NPs and their conjugates. It can also be considered as an alternative and cheap aggregation method for controlling the binding affinity of biomolecular species on different surfaces with interesting applications.

  16. The development of an affinity evaluation and prediction system by using protein–protein docking simulations and parameter tuning

    Directory of Open Access Journals (Sweden)

    Koki Tsukamoto

    2009-01-01

    Full Text Available Koki Tsukamoto1, Tatsuya Yoshikawa1,2, Kiyonobu Yokota1, Yuichiro Hourai1, Kazuhiko Fukui11Computational Biology Research Center (CBRC, National Institute of Advanced Industrial Science and Technology (AIST, Koto-ku, Tokyo, Japan; 2Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, JapanAbstract: A system was developed to evaluate and predict the interaction between protein pairs by using the widely used shape complementarity search method as the algorithm for docking simulations between the proteins. We used this system, which we call the affinity evaluation and prediction (AEP system, to evaluate the interaction between 20 protein pairs. The system first executes a “round robin” shape complementarity search of the target protein group, and evaluates the interaction between the complex structures obtained by the search. These complex structures are selected by using a statistical procedure that we developed called ‘grouping’. At a prevalence of 5.0%, our AEP system predicted protein–protein interactions with a 50.0% recall, 55.6% precision, 95.5% accuracy, and an F-measure of 0.526. By optimizing the grouping process, our AEP system successfully predicted 10 protein pairs (among 20 pairs that were biologically relevant combinations. Our ultimate goal is to construct an affinity database that will provide cell biologists and drug designers with crucial information obtained using our AEP system.Keywords: protein–protein interaction, affinity analysis, protein–protein docking, FFT, massive parallel computing

  17. Cyclic Lactam Hybrid α-MSH/Agouti-Related Protein (AGRP) Analogues with Nanomolar Range Binding Affinities at the Human Melanocortin Receptors

    OpenAIRE

    Mayorov, Alexander V.; Cai, Minying; Palmer, Erin S.; Tanaka, Dustin K.; Cain, James P.; Dedek, Matthew M.; Tan, Bahar; Trivedi, Dev; Victor J. Hruby

    2011-01-01

    A novel hybrid melanocortin pharmacophore was designed based on the topographical similarities between the pharmacophores of Agouti related protein (AGRP) an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. When employed in two different 23-membered macrocyclic lactam peptide templates, the designed hybrid AGRP/MSH pharmacophore yielded non-competitive ligands with nanomolar range binding affinities. The topography-based pha...

  18. Encapsulation of Vitamin B(1) and Its Phosphate Derivatives by Cucurbit[7]uril: Tunability of the Binding Site and Affinity by the Presence of Phosphate Groups.

    Science.gov (United States)

    Li, Shengke; Yin, Hang; Wyman, Ian W; Zhang, Qingwen; Macartney, Donal H; Wang, Ruibing

    2016-02-01

    Vitamin B1 (1) and its phosphate derivatives, thiamine monophosphate (2) and thiamine pyrophosphate (3), are shown to form stable 1:1 host-guest complexes with cucurbit[7]uril (CB[7]) in aqueous solution. The binding sites of CB[7] on these guests shift from the ethylthiazolium region of 1 to the pyrimidine moiety of 2 and 3 due to the presence of phosphate groups, leading to variations of binding affinities as well as C(2)-H/D exchange rate constants and C(2)-H pKa values with these guest molecules. PMID:26745735

  19. On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography.

    Science.gov (United States)

    Anguizola, Jeanethe; Bi, Cong; Koke, Michelle; Jackson, Abby; Hage, David S

    2016-08-01

    An on-column approach for protein entrapment was developed to immobilize alpha1-acid glycoprotein (AGP) for drug-protein binding studies based on high-performance affinity chromatography. Soluble AGP was physically entrapped by using microcolumns that contained hydrazide-activated porous silica and by employing mildly oxidized glycogen as a capping agent. Three on-column entrapment methods were evaluated and compared to a previous slurry-based entrapment method. The final selected method was used to prepare 1.0 cm × 2.1 mm I.D. affinity microcolumns that contained up to 21 (±4) μg AGP and that could be used over the course of more than 150 sample applications. Frontal analysis and zonal elution studies were performed on these affinity microcolumns to examine the binding of various drugs with the entrapped AGP. Site-selective competition studies were also conducted for these drugs. The results showed good agreement with previous observations for these drug-protein systems and with binding constants that have been reported in the literature. The entrapment method developed in this study should be useful for future work in the area of personalized medicine and in the high-throughput screening of drug interactions with AGP or other proteins. Graphical abstract On-column protein entrapment using a hydrazide-activated support and oxidized glycogen as a capping agent.

  20. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  1. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    International Nuclear Information System (INIS)

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ9-tetrahydrocannabinol (Δ9-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs. - Highlights: • JWH-018 and JWH-073 are synthetic cannabinoids present in abused K2 products. • JWH-018, JWH-073 and

  2. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    Science.gov (United States)

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties. PMID:26882128

  3. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour(®).

    Science.gov (United States)

    Lindblom, Peter R; Wu, Guosheng; Liu, Zhijie; Jim, Kam-Chuen; Baldwin, John J; Gregg, Richard E; Claremon, David A; Singh, Suresh B

    2014-09-01

    Contour(®) is a computational structure-based drug design technology that grows drug-like molecules by assembling context sensitive fragments in well-defined binding pockets. The grown molecules are scored by a novel empirical scoring function developed using high-resolution crystal structures of diverse classes of protein-ligand complexes and associated experimental binding affinities. An atomic model bearing features of the valence bond and VSEPR theories embodying their molecular electronic environment has been developed for non-covalent intermolecular interactions. On the basis of atomic hybridization and polarization states, each atom is modeled by features representing electron lone pairs, p-orbitals, and polar and non-polar hydrogens. A simple formal charge model was used to differentiate between polar and non-polar atoms. The interaction energy and the desolvation contribution of the protein-ligand association energy is computed as a linear sum of pair-wise interactions and desolvation terms. The pair-wise interaction energy captures short-range positive electrostatic interactions via hydrogen bonds, electrostatic repulsion of like charges, and non-bond contacts. The desolvation energy is estimated by calculating the energy required to desolvate interaction surfaces of the protein and the ligand in the complex. The scoring function predicts binding energies of a diverse set of protein-ligand complexes used for training with a correlation coefficient of 0.61. It also performs equally well in predicting association energies of a diverse validation set of protein-ligand complexes with a correlation coefficient of 0.57, which is equivalent to or better than 12 other scoring functions tested against this set including X-Score, GOLD, and DrugScore. PMID:25123650

  4. E2F-1 binding affinity for pRb is not the only determinant of the E2F-1 activity.

    Science.gov (United States)

    Sahin, Fikret; Sladek, Todd L

    2010-07-04

    E2F-1 is the major cellular target of pRB and is regulated by pRB during cell proliferation. Interaction between pRB and E2F-1 is dependent on the phosphorylation status of pRB. Despite the fact that E2F-1 and pRB have antagonistic activities when they are overexpressed, the role of the E2F-1-pRB interaction in cell growth largely remains unknown. Ideally, it would be better to study the properties of a pRB mutant that fails to bind to E2F, but retains all other activities. To date, no pRB mutation has been characterized in sufficient detail to show that it specifically eliminates E2F binding but leaves other interactions intact. An alternative approach to this issue is to ask whether mutations that change E2F proteins binding affinity to pRB are sufficient to change cell growth in aspect of cell cycle and tumor formation. Therefore, we used the E2F-1 mutants including E2F-1/S332-7A, E2F-1/S375A, E2F-1/S403A, E2F-1/Y411A and E2F-1/L132Q that have different binding affinities for pRB to better understand the roles of the E2F-1 phosphorylation and E2F-1-pRB interaction in the cell cycle, as well as in transformation and gene expression. Data presented in this study suggests that in vivo phosphorylation at amino acids 332-337, 375 and 403 is important for the E2F-1 and pRB interaction in vivo. However, although E2F-1 mutants 332-7, 375 and 403 showed similar binding affinity to pRB, they showed different characteristics in transformation efficiency, G(0) accumulation, and target gene experiments.

  5. Conformational destabilization of Immunoglobulin G increases the low pH-binding affinity with the Neonatal Fc Receptor

    DEFF Research Database (Denmark)

    Walters, Benjamin T; Jensen, Pernille Foged; Larraillet, Vincent;

    2016-01-01

    Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the...... diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and Fc...

  6. Affinity Chromatography Method for Determination of Binding of Drugs to Melanin and Evaluation of Side Effect Potential of Antipsychotic Agents

    OpenAIRE

    Marszałł, Michał Piotr; Proszowska, Anna; Buciński, Adam; Kaliszan, Roman

    2014-01-01

    The extrapyramidal side effect parameters of typical and atypical antypsychotics were correlated with affinity chromatographic data determined on the melanin-based column. The chromatographic study was performed according to the hypothesis that extrapyramidal symptoms (EPS) as side effects of the use of antipsychotic drugs at clinically effective doses are correlated to the affinity of these drugs to neuromelanin. For that aim the polymerization product of L-DOPA (melanin) was immobilized ont...

  7. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  8. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis

    Science.gov (United States)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  9. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis.

    Science.gov (United States)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb=(7.6±0.21)×10(5)) between complex and protein have been obtained at 298K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2±0.11)×10(6)M(-1). Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  10. Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA) to predict noscapinoid binding to γ-tubulin dimer.

    Science.gov (United States)

    Suri, C; Naik, P K

    2015-06-01

    γ-tubulin plays crucial role in the nucleation and organization of microtubules during cell division. Recent studies have also indicated its role in the regulation of microtubule dynamics at the plus end of the microtubules. Moreover, γ-tubulin has been found to be over-expressed in many cancer types, such as carcinomas of the breast and glioblastoma multiforme. These studies have led to immense interest in the identification of chemical leads that might interact with γ-tubulin and disrupt its function in order to explore γ-tubulin as potential chemotherapeutic target. Recently a colchicine-interacting cavity was identified at the interface of γ-tubulin dimer that might also interact with other similar compounds. In the same direction we theoretically investigated binding of a class of compounds, noscapinoids (noscapine and its derivatives) at the interface of the γ-tubulin dimer. Molecular interaction of noscapine and two of its derivatives, amino-noscapine and bromo-noscapine, was investigated by molecular docking, molecular dynamics simulation and binding free energy calculation. All noscapinoids displayed stable interaction throughout simulation of 25 ns. The predictive binding free energy (ΔGbind) indicates that noscapinoids bind strongly with the γ-tubulin dimer. However, bromo-noscapine showed the best binding affinity (ΔGbind = -37.6 kcal/mol) followed by noscapine (ΔGbind = -29.85 kcal/mol) and amino-noscapine (ΔGbind = -23.99 kcal/mol) using the MM-PBSA method. Similarly using the MM-GBSA method, bromo-noscapine showed highest binding affinity (ΔGbind = -43.64 kcal/mol) followed by amino-noscapine (ΔGbind = -37.56 kcal/mol) and noscapine (ΔGbind = -34.57 kcal/mol). The results thus generate compelling evidence that these noscapinoids may hold great potential for preclinical and clinical evaluation. PMID:26274780

  11. [Prognosis of affinity change of the TATA-binding protein to TATA-boxes upon polymorphisms of the human gene promoter TATA boxes].

    Science.gov (United States)

    Ponomarenko, P M; Ponomarenko, M P; Drachkova, I A; Lysova, M V; Arshinova, T V; Savinkova, L K; Kolchanov, N A

    2009-01-01

    TATA-binding protein (TBP) is a subunit of basal transcription factor TFIID that recognizes and binds to the TATA-box on TATA-containing promoters of class II genes, and starts assembling RNA polymerase II basal transcription complex. It is shown in many works that the sequence of TATA-box with its flanking regions affects the level of basal and activated transcription. TATA-box polymorphisms and human hereditary diseases associated with them show that TBP/TATA interaction may indirectly affect gene regulation in vivo. The object of this work is to determine changes in the TBP/TATA affinity upon polymorphisms in TATA-boxes of human gene promoters. We assess changes in TBP/TATA affinities in silico by using our formula of equilibrium TBP/TATA binding upon four consecutive steps: nonspecific binding sliding braking (stopping) stabilization. Our prognoses agree with known examples of TATA-box polymorphisms and human hereditary diseases associated with them. PMID:19548537

  12. Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface.

    Science.gov (United States)

    Metz, Alexander; Pfleger, Christopher; Kopitz, Hannes; Pfeiffer-Marek, Stefania; Baringhaus, Karl-Heinz; Gohlke, Holger

    2012-01-23

    Protein-protein interfaces are considered difficult targets for small-molecule protein-protein interaction modulators (PPIMs ). Here, we present for the first time a computational strategy that simultaneously considers aspects of energetics and plasticity in the context of PPIM binding to a protein interface. The strategy aims at identifying the determinants of small-molecule binding, hot spots, and transient pockets, in a protein-protein interface in order to make use of this knowledge for predicting binding modes of and ranking PPIMs with respect to their affinity. When applied to interleukin-2 (IL-2), the computationally inexpensive constrained geometric simulation method FRODA outperforms molecular dynamics simulations in sampling hydrophobic transient pockets. We introduce the PPIAnalyzer approach for identifying transient pockets on the basis of geometrical criteria only. A sequence of docking to identified transient pockets, starting structure selection based on hot spot information, RMSD clustering and intermolecular docking energies, and MM-PBSA calculations allows one to enrich IL-2 PPIMs from a set of decoys and to discriminate between subgroups of IL-2 PPIMs with low and high affinity. Our strategy will be applicable in a prospective manner where nothing else than a protein-protein complex structure is known; hence, it can well be the first step in a structure-based endeavor to identify PPIMs. PMID:22087639

  13. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors

    Directory of Open Access Journals (Sweden)

    Sathyanarayana Bangalore K

    2006-10-01

    Full Text Available Abstract Background The mucin MUC16 and the glycosylphosphatidylinositol anchored glycoprotein mesothelin likely facilitate the peritoneal metastasis of ovarian tumors. The biochemical basis and the kinetics of the binding between these two glycoproteins are not clearly understood. Here we have addressed this deficit and provide further evidence supporting the role of the MUC16-mesothelin interaction in facilitating cell-cell binding under conditions that mimic the peritoneal environment. Results In this study we utilize recombinant-Fc tagged human mesothelin to measure the binding kinetics of this glycoprotein to MUC16 expressed on the ovarian tumor cell line OVCAR-3. OVCAR-3 derived sublines that did not express MUC16 showed no affinity for mesothelin. In a flow cytometry-based assay mesothelin binds with very high affinity to the MUC16 on the OVCAR-3 cells with an apparent Kd of 5–10 nM. Maximum interaction occurs within 5 mins of incubation of the recombinant mesothelin with the OVCAR-3 cells and significant binding is observed even after 10 sec. A five-fold molar excess of soluble MUC16 was unable to completely inhibit the binding of mesothelin to the OVCAR-3 cells. Oxidation of the MUC16 glycans, removal of its N-linked oligosaccharides, and treatment of the mucin with wheat germ agglutinin and erythroagglutinating phytohemagglutinin abrogates its binding to mesothelin. These observations suggest that at least a subset of the MUC16-asscociated N-glycans is required for binding to mesothelin. We also demonstrate that MUC16 positive ovarian tumor cells exhibit increased adherence to A431 cells transfected with mesothelin (A431-Meso+. Only minimal adhesion is observed between MUC16 knockdown cells and A431-Meso+ cells. The binding between the MUC16 expressing ovarian tumor cells and the A431-Meso+ cells occurs even in the presence of ascites from patients with ovarian cancer. Conclusion The strong binding kinetics of the mesothelin-MUC16

  14. Constrained H-Phe-Phe-NH2 analogues with high affinity to the substance P 1-7 binding site and with improved metabolic stability and cell permeability.

    Science.gov (United States)

    Fransson, Rebecca; Sköld, Christian; Kratz, Jadel M; Svensson, Richard; Artursson, Per; Nyberg, Fred; Hallberg, Mathias; Sandström, Anja

    2013-06-27

    We recently reported the discovery of H-Phe-Phe-NH2 as a small and high affinity ligand for the substance P 1-7 (SP(1-7), H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH) specific binding site and its intriguing ability to reduce neuropathic pain. With the overall aim to develop stable and orally bioavailable SP(1-7) mimetics, the dipeptide was chosen as a lead compound. Herein the structure-activity relationship (SAR) of a set of modified H-Phe-Phe-NH2 analogues is presented together with their potential active uptake by PEPT1 transporter, intestinal permeability, and metabolic stability. Local constraints via peptide backbone methylation or preparation of cyclized analogues based on pyrrolidine were evaluated and were shown to significantly improve the in vitro pharmacokinetic properties. The SAR was rationalized by deriving a plausible binding pose for the high affinity ligands. Rigidification using a 3-phenylpyrrolidine moiety in the C-terminal of H-Phe-Phe-NH2 resulted in high affinity and improved intrinsic clearance and intestinal epithelial permeability. PMID:23735006

  15. Affinity Capillary Electrophoresis:Study of the Binding of HIV-1 gp41 with a Membrane Protein (P45) on the Human B Cell Line,Raji

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Affinity capillary electrophoresis has been used to study the interaction between a membrane protein (P45) isolated from the Human B cell line, Raji, and rsgp41. P45, rsgp41 and the complexes were well resolved. The entire separation was achieved in less than 3min. Formations of two kinds of stable P45-rsgp41 complexes were confirmed based on migration time comparison; the binding equilibrium was achieved as soon as two proteins were mixed. The results indicate that the interaction between P45 and rsgp41 is strong with a fast association rate and a slow dissociation rate, and there are at least two kinds of binding sites with different binding constants between P45 and rsgp41.

  16. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity.

    Science.gov (United States)

    Czikora, Agnes; Lundberg, Daniel J; Abramovitz, Adelle; Lewin, Nancy E; Kedei, Noemi; Peach, Megan L; Zhou, Xiaoling; Merritt, Raymond C; Craft, Elizabeth A; Braun, Derek C; Blumberg, Peter M

    2016-05-20

    The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7), Tyr(8), Gly(19), and Leu(21), respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [(3)H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation. PMID:27022025

  17. High-affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations.

    OpenAIRE

    Hammer, J.; Belunis, C; Bolin, D; Papadopoulos, J.; Walsky, R; Higelin, J; Danho, W; Sinigaglia, F; Nagy, Z A

    1994-01-01

    We have previously identified four anchor positions in HLA-DRB1*0101-binding peptides, and three anchors involved in peptide binding to DRB1*0401 and DRB1*1101 molecules, by screening of an M13 peptide display library (approximately 20 million independent nonapeptides) for DR-binding activity. In this study, high stringency screening of the M13 library for DRB1*0401 binding has resulted in identification of three further anchor positions. Taken together, a peptide-binding motif has been obtai...

  18. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  19. The increased binding affinity of curcumin with human serum albumin in the presence of rutin and baicalin: A potential for drug delivery system

    Science.gov (United States)

    Liu, Bing-Mi; Zhang, Jun; Hao, Ai-Jun; Xu, Liang; Wang, Dan; Ji, Hui; Sun, Shi-Jie; Chen, Bo-Qi; Liu, Bin

    2016-02-01

    The impacts of rutin and baicalin on the interaction of curcumin (CU) with human serum albumin (HSA) were investigated by fluorescence and circular dichroism (CD) spectroscopies under imitated physiological conditions. The results showed that the fluorescence quenching of HSA by CU was a simultaneous static and dynamic quenching process, irrespective of the presence or absence of flavonoids. The binding constants between CU and HSA in the absence and presence of rutin and baicalin were 2.268 × 105 M- 1, 3.062 × 105 M- 1, and 3.271 × 105 M- 1, indicating that the binding affinity was increased in the case of two flavonoids. Furthermore, the binding distance determined according to Förster's theory was decreased in the presence of flavonoids. Combined with the fact that flavonoids and CU have the same binding site (site I), it can be concluded that they may simultaneously bind in different regions in site I, and formed a ternary complex of flavonoid-HSA-CU. Meanwhile, the results of fluorescence quenching, CD and three-dimensional fluorescence spectra revealed that flavonoids further strengthened the microenvironmental and conformational changes of HSA induced by CU binding. Therefore, it is possible to develop a novel complex involving CU, flavonoid and HSA for CU delivery. The work may provide some valuable information in terms of improving the poor bioavailabiliy of CU.

  20. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  1. Ampicillin/penicillin-binding protein interactions as a model drug-target system to optimize affinity pull-down and mass spectrometric strategies for target and pathway identification.

    Science.gov (United States)

    von Rechenberg, Moritz; Blake, Brian Kelly; Ho, Yew-Seng J; Zhen, Yuejun; Chepanoske, Cindy Lou; Richardson, Bonnie E; Xu, Nafei; Kery, Vladimir

    2005-05-01

    The identification and validation of the targets of active compounds identified in cell-based assays is an important step in preclinical drug development. New analytical approaches that combine drug affinity pull-down assays with mass spectrometry (MS) could lead to the identification of new targets and druggable pathways. In this work, we investigate a drug-target system consisting of ampicillin- and penicillin-binding proteins (PBPs) to evaluate and compare different amino-reactive resins for the immobilization of the affinity compound and mass spectrometric methods to identify proteins from drug affinity pull-down assays. First, ampicillin was immobilized onto various amino-reactive resins, which were compared in the ampicillin-PBP model with respect to their nonspecific binding of proteins from an Escherichia coli membrane extract. Dynal M-270 magnetic beads were chosen to further study the system as a model for capturing and identifying the targets of ampicillin, PBPs that were specifically and covalently bound to the immobilized ampicillin. The PBPs were identified, after in situ digestion of proteins bound to ampicillin directly on the beads, by using either one-dimensional (1-D) or two-dimensional (2-D) liquid chromatography (LC) separation techniques followed by tandem mass spectrometry (MS/MS) analysis. Alternatively, an elution with N-lauroylsarcosine (sarcosyl) from the ampicillin beads followed by in situ digestion and 2-D LC-MS/MS analysis identified proteins potentially interacting noncovalently with the PBPs or the ampicillin. The in situ approach required only little time, resources, and sample for the analysis. The combination of drug affinity pull-down assays with in situ digestion and 2-D LC-MS/MS analysis is a useful tool in obtaining complex information about a primary drug target as well as its protein interactors. PMID:15761956

  2. Silver nanoparticles for SERS-based ultrasensitive chemical detection in aqueous solutions: Role of binding affinity and surface oxidation in the detection limit

    Science.gov (United States)

    Erol, Melek

    Surface-enhanced Raman spectroscopy (SERS) in the presence of noble metal nanostructures holds significant promise for sensing and molecular fingerprinting down to single molecule level. This dissertation explores the effect of binding affinity and surface oxidation of Ag nanoparticles on SERS detection sensitivity of SO42-, CN-, SCN-, ClO4- and nitro-aromatic compounds in water. Specifically positively charged Ag nanoparticles (Ag [+]) were synthesized by UV-assisted reduction of silver nitrate using branched polyethyleneimine (BPEI) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) solutions. Both primary amino and amide groups on the surface of Ag [+] allowed strong binding affinity with anions, critical for sensitive SERS measurements. For substrates with immobilized Ag [+] (30 nanoparticles/mum2), SERS sensitivity increased in the order of SO42- physiological conditions due to steric hindrance from the branched architecture of adsorbed polymer chains. BPEI coated surfaces were also effective for suppression of smaller positively charged proteins such as lysozyme and ribonuclease A at pH 7 and 0.15 M NaCl and of negatively charged proteins such as BSA and fibrinogen at pH 7 and 0.75 M NaCl. Furthermore, using PEI-modified protein-repellent surfaces, selective binding of avidin was achieved to surface-bound Ag nanoparticles, thus providing a promising strategy for SERS-based bio-detection.

  3. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole

    2009-01-01

    this binding event. RESULTS: Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data...

  4. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation.

    Science.gov (United States)

    Assimon, Victoria A; Southworth, Daniel R; Gestwicki, Jason E

    2015-12-01

    Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) require the help of tetratricopeptide repeat (TPR) domain-containing cochaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can interact with only a single TPR cochaperone at a time, and each member of the TPR cochaperone family brings distinct functions to the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR cochaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity among the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR cochaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other cochaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between the Hsp70 and Hsp90 proteins and the TPR cochaperones.

  5. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan

    2011-12-23

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative to all other isoreticular rht-type MOFs. The high adsorption capacity and remarkable selectivity of CO 2 are attributed to the high density of open metal and Lewis basic sites in the framework. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. N- and C-terminal domains determine differential nucleosomal binding geometry and affinity of linker histone isotypes H1(0) and H1c.

    Science.gov (United States)

    Vyas, Payal; Brown, David T

    2012-04-01

    Eukaryotic linker or H1 histones modulate DNA compaction and gene expression in vivo. In mammals, these proteins exist as multiple isotypes with distinct properties, suggesting a functional significance to the heterogeneity. Linker histones typically have a tripartite structure composed of a conserved central globular domain flanked by a highly variable short N-terminal domain and a longer highly basic C-terminal domain. We hypothesized that the variable terminal domains of individual subtypes contribute to their functional heterogeneity by influencing chromatin binding interactions. We developed a novel dual color fluorescence recovery after photobleaching assay system in which two H1 proteins fused to spectrally separable fluorescent proteins can be co-expressed and their independent binding kinetics simultaneously monitored in a single cell. This approach was combined with domain swap and point mutagenesis to determine the roles of the terminal domains in the differential binding characteristics of the linker histone isotypes, mouse H1(0) and H1c. Exchanging the N-terminal domains between H1(0) and H1c changed their overall binding affinity to that of the other variant. In contrast, switching the C-terminal domains altered the chromatin interaction surface of the globular domain. These results indicate that linker histone subtypes bind to chromatin in an intrinsically specific manner and that the highly variable terminal domains contribute to differences between subtypes. The methods developed in this study will have broad applications in studying dynamic properties of additional histone subtypes and other mobile proteins.

  7. Highly sensitive and selective ratiometric fluorescent copper sensors: Different binding affinities modulated by three separate side chains of naphthalimide

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A series of compounds 1-11 with different side chains of naphthalimide as fluorescent copper sensors were designed and synthesized. Compounds 1, 9, 10 and 11 presented a high selectivity to Cu2+ in a neutral aqueous environment. Here 1, 9 and 10 showed selectivity and affinity to Cu2+ with an association constant of about ~106. It gave somewhat response to Ag+, Co2+, Ni2+ and Fe2+ while 1 detected copper. 9 and 10 displayed better selectivity by changing their hydrophobic side chains to the hydrophilic ones on imide moieties. 11, with one flexible side chain, showed high selectivity and an association constant (Ka = 2.2 × 108), which were much higher than those of 1, 9 and 10. These results indicated that the selectivity and affinity could be improved by changing side chains of naphthalimide. That might provide a novel strategy or method for the development of fluorescent sensors.

  8. Highly sensitive and selective ratiometric fluorescent copper sensors: Different binding affinities modulated by three separate side chains of naphthalimide

    Institute of Scientific and Technical Information of China (English)

    XU YuFang; LU Feng; XU ZhaoChao; CHENG TanYu; QIAN XuHong

    2009-01-01

    A series of compounds 1 --11 with different side chains of naphthalimide as fluorescent copper sensors were designed and synthesized. Compounds 1, 9, 10 and 11 presented a high selectivity to Cu2+ in a neutral aqueous environment. Here 1, 9 and 10 showed selectivity and affinity to Cu2+ with an association constant of about ~106. It gave somewhat response to Ag+, Co2+, Ni2+ and Fe2+ while 1 detected copper. 9 and 10 displayed better selectivity by changing their hydrophobic side chains to the hydrophilic ones on imide moieties. 11, with one flexible side chain, showed high selectivity and an association constant (Ka = 2.2 × 108), which were much higher than those of 1, 9 and 10. These results indicated that the selectivity and affinity could be improved by changing side chains of naphthalimide. That might provide a novel strategy or method for the development of fluorescent sensors.

  9. Machine learning competition in immunology – Prediction of HLA class I binding peptides

    DEFF Research Database (Denmark)

    Zhang, Guang Lan; Ansari, Hifzur Rahman; Bradley, Phil;

    2011-01-01

    of peptide binding, therefore, determines the accuracy of the overall method. Computational predictions of peptide binding to HLA, both class I and class II, use a variety of algorithms ranging from binding motifs to advanced machine learning techniques ( [Brusic et al., 2004] and [Lafuente and Reche, 2009...

  10. E2F-1 binding affinity for pRb is not the only determinant of the E2F-1 activity

    Directory of Open Access Journals (Sweden)

    Fikret Sahin, Todd L. Sladek

    2010-01-01

    Full Text Available E2F-1 is the major cellular target of pRB and is regulated by pRB during cell proliferation. Interaction between pRB and E2F-1 is dependent on the phosphorylation status of pRB. Despite the fact that E2F-1 and pRB have antagonistic activities when they are overexpressed, the role of the E2F-1-pRB interaction in cell growth largely remains unknown. Ideally, it would be better to study the properties of a pRB mutant that fails to bind to E2F, but retains all other activities. To date, no pRB mutation has been characterized in sufficient detail to show that it specifically eliminates E2F binding but leaves other interactions intact. An alternative approach to this issue is to ask whether mutations that change E2F proteins binding affinity to pRB are sufficient to change cell growth in aspect of cell cycle and tumor formation. Therefore, we used the E2F-1 mutants including E2F-1/S332-7A, E2F-1/S375A, E2F-1/S403A, E2F-1/Y411A and E2F-1/L132Q that have different binding affinities for pRB to better understand the roles of the E2F-1 phosphorylation and E2F-1-pRB interaction in the cell cycle, as well as in transformation and gene expression. Data presented in this study suggests that in vivo phosphorylation at amino acids 332-337, 375 and 403 is important for the E2F-1 and pRB interaction in vivo. However, although E2F-1 mutants 332-7, 375 and 403 showed similar binding affinity to pRB, they showed different characteristics in transformation efficiency, G0 accumulation, and target gene experiments.

  11. Low oxygen affinity in reptilian hemoglobin D: prediction of residue interactions in Geochelone carbonaria HbD by homology modeling.

    Science.gov (United States)

    Lutfullah, Ghosia; Khalil, Hilal Shahid; Amin, Farhat; Azhar, Noreen

    2008-04-01

    The homology model of hemoglobin D from Geochelone carbonaria, the red-footed tortoise was predicted using the 3D structure coordinates of Geochelone gigantea hemoglobin D as the template. The model was built using the program, MODELLER (8v1) and evaluated with PROCHECK and PROSA. The present study features an in-depth analysis of the 3D model and its conformational changes brought about with variations in its environment. These structural changes are correlated with its ability to adapt to different environmental constraints enabling the organism to better suit to its natural habitat. The model shows additional contacts between amino acid pairs of alpha-119 and beta-55, alpha-35 and beta-124, alpha-103 and beta-112, alpha-115 and beta-116, alpha-120 and beta-52, alpha-120 and beta-55, alpha-36 and beta-127 which are not found in human hemoglobin. It is predicted that these contacts may result in T-state stabilization thus lowering oxygen affinity. Furthermore, decrease in the interaction of phosphate heteroatoms with the amino acid residues of G. carbonaria Hb was also predicted in this study. PMID:18085430

  12. Analysis of drug-protein binding using on-line immunoextraction and high-performance affinity microcolumns: Studies with normal and glycated human serum albumin.

    Science.gov (United States)

    Matsuda, Ryan; Jobe, Donald; Beyersdorf, Jared; Hage, David S

    2015-10-16

    A method combining on-line immunoextraction microcolumns with high-performance affinity chromatography (HPAC) was developed and tested for use in examining drug-protein interactions with normal or modified proteins. Normal human serum albumin (HSA) and glycated HSA were used as model proteins for this work. High-performance immunoextraction microcolumns with sizes of 1.0-2.0 cm × 2.1mm i.d. and containing anti-HSA polyclonal antibodies were developed and tested for their ability to bind normal HSA or glycated HSA. These microcolumns were able to extract up to 82-93% for either type of protein at 0.05-0.10 mL/min and had a binding capacity of 0.34-0.42 nmol HSA for a 1.0 cm × 2.1mm i.d. microcolumn. The immunoextraction microcolumns and their adsorbed proteins were tested for use in various approaches for drug binding studies. Frontal analysis was used with the adsorbed HSA/glycated HSA to measure the overall affinities of these proteins for the drugs warfarin and gliclazide, giving comparable values to those obtained previously using similar protein preparations that had been covalently immobilized within HPAC columns. Zonal elution competition studies with gliclazide were next performed to examine the specific interactions of this drug at Sudlow sites I and II of the adsorbed proteins. These results were also comparable to those noted in prior work with covalently immobilized samples of normal HSA or glycated HSA. These experiments indicated that drug-protein binding studies can be carried out by using on-line immunoextraction microcolumns with HPAC. The same method could be used in the future with clinical samples and other drugs or proteins of interest in pharmaceutical studies or biomedical research.

  13. Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites.

    Directory of Open Access Journals (Sweden)

    Anoop Narayanan

    Full Text Available Expression of KdpFABC, a K(+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABC(BS via the winged helix-turn-helix type DNA binding domain (KdpE(DBD. Exploration of E. coli KdpE(DBD and kdpFABC(BS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpE(DBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpE(DBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpE(DBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins.

  14. Predictive model of cationic surfactant binding to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.

    2011-01-01

    The humic substances (HS) have a high reactivity with other components in the natural environment. An important factor for the reactivity of HS is their negative charge. Cationic surfactants bind strongly to HS by electrostatic and specific interaction. Therefore, a surfactant binding model is devel

  15. Proteome-wide identification of novel binding partners to the oncogenic fusion gene protein, NPM-ALK, using tandem affinity purification and mass spectrometry.

    Science.gov (United States)

    Wu, Fang; Wang, Peng; Young, Leah C; Lai, Raymond; Li, Liang

    2009-02-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion gene protein that is characteristically found in a subset of anaplastic large cell lymphomas, promotes tumorigenesis through its functional and physical interactions with various biologically important proteins. The identification of these interacting proteins has proven to be useful to further our understanding of NPM-ALK-mediated tumorigenesis. For the first time, we performed a proteome-wide identification of NPM-ALK-binding proteins using tandem affinity purification and a highly sensitive mass spectrometric technique. Tandem affinity purification is a recently developed method that carries a lower background and higher sensitivity compared with the conventional immunoprecipitation-based protein purification protocols. The NPM-ALK gene was cloned into an HB-tagged vector and expressed in GP293 cells. Three independent experiments were performed and the reproducibility of the data was 68%. The vast majority of the previously reported NPM-ALK-binding proteins were detected. We also identified proteins that are involved in various cellular processes that were not previously described in association with NPM-ALK, such as MCM6 and MSH2 (DNA repair), Nup98 and importin 8 (subcellular protein transport), Stim1 (calcium signaling), 82Fip (RNA regulation), and BAG2 (proteosome degradation). We believe that these data highlight the functional diversity of NPM-ALK and provide new research directions for the study of the biology of this oncoprotein.

  16. Chiroptical properties, binding affinity, and photostability of a conjugated zinc porphyrin dimer complexed with left-handed Z-DNA and right-handed B-DNA.

    Science.gov (United States)

    Choi, Jung Kyu; Reed, Aisha; Balaz, Milan

    2014-01-14

    We have studied the UV-vis absorption and chiroptical properties, binding affinity and photostability of a conjugated positively charged butadiyne-linked Zn(ii) porphyrin dimer bound to DNA sequence poly(dG-dC)2. Right-handed B-DNA, spermine-induced Z-DNA and Co(iii)-induced Z-DNA have been explored. Resonance light scattering (RLS) spectra showed formation of porphyrin aggregates in the presence of all DNA forms with the largest aggregates formed with B-DNA. The porphyrin dimer gave rise to induced bisignate circular dichroism (CD) signals in the presence of the left-handed Z-DNA conformations. On the other hand, the dimer stayed nearly chiroptically silent when complexed with the B-form of poly(dG-dC)2. Our results indicated that the conjugated Zn(ii) porphyrin dimer can be used as a sensor for the chiroptical detection of Z-DNA in the visible (400-500 nm) and near-infrared region of the electromagnetic spectrum (700-800 nm). The helicity of DNA had little effect on the dimer binding affinities. The photostability of the porphyrin dimer complexed with any form of DNA was higher than that of the free molecule. The porphyrin dimer bound to Z-DNA exhibited slower photobleaching than the B-DNA dimer complex.

  17. NetMHCpan, a method for MHC class I binding prediction beyond humans

    DEFF Research Database (Denmark)

    Hoof, Ilka; Peters, B; Sidney, J;

    2009-01-01

    immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 n...

  18. A novel recombinant AzrC protein proposed by molecular docking and in silico analyses to improve azo dye's binding affinity.

    Science.gov (United States)

    Dehghanian, Fariba; Kay, Maryam; Kahrizi, Danial

    2015-09-15

    Azo dyes are broadly used in different industries through their chemical stability and ease of synthesis. These dyes are usually identified as critical environmental pollutants and many attentions were performed to degradation of azo dyes using biological systems. In this study, the interactions of an azoreductase from mesophilic gram-positive Bacillus sp. B29, AzrC, with four common azo dyes (orange I, orange II, orange G and acid red 88) were investigated. Fifteen points, double, triple and quadruple mutant forms of AzrC were made using Molegro Virtual Docker 6.0 in order to improve the binding affinity of azo dyes to AzrC. The impact of 15 different mutations on azo dye affinity potency of AzrC was computationally analyzed using AzrC-azo dye molecular docking, and each interaction was scored based on AutoDock 4.2 free binding energy. Our results have indicated that Asn 104 (A), Asn 187 (B), and Tyr 151 (A) make stable hydrogen bond between AzrC and azo dyes. The hydrophobic amino acids like Phe105 (A), Phe 125 (B), and Phe 172 (B) in wild type form make hydrophobic interactions. In addition, the presence of more hydrophobic residues F60 (B), I119 (B), I121 (B) and F132 (B) in mutant forms made more powerful hydrophobic pocket in the active site. In conclusion, recombinant AzrC with quadruple mutations was suggested in order to increase the biodegradation capacity of AzrC through improving its affinity to four studied azo dyes. This study would be promising for future experimental analyses in order to produce recombinant form of AzrC.

  19. A novel recombinant AzrC protein proposed by molecular docking and in silico analyses to improve azo dye's binding affinity.

    Science.gov (United States)

    Dehghanian, Fariba; Kay, Maryam; Kahrizi, Danial

    2015-09-15

    Azo dyes are broadly used in different industries through their chemical stability and ease of synthesis. These dyes are usually identified as critical environmental pollutants and many attentions were performed to degradation of azo dyes using biological systems. In this study, the interactions of an azoreductase from mesophilic gram-positive Bacillus sp. B29, AzrC, with four common azo dyes (orange I, orange II, orange G and acid red 88) were investigated. Fifteen points, double, triple and quadruple mutant forms of AzrC were made using Molegro Virtual Docker 6.0 in order to improve the binding affinity of azo dyes to AzrC. The impact of 15 different mutations on azo dye affinity potency of AzrC was computationally analyzed using AzrC-azo dye molecular docking, and each interaction was scored based on AutoDock 4.2 free binding energy. Our results have indicated that Asn 104 (A), Asn 187 (B), and Tyr 151 (A) make stable hydrogen bond between AzrC and azo dyes. The hydrophobic amino acids like Phe105 (A), Phe 125 (B), and Phe 172 (B) in wild type form make hydrophobic interactions. In addition, the presence of more hydrophobic residues F60 (B), I119 (B), I121 (B) and F132 (B) in mutant forms made more powerful hydrophobic pocket in the active site. In conclusion, recombinant AzrC with quadruple mutations was suggested in order to increase the biodegradation capacity of AzrC through improving its affinity to four studied azo dyes. This study would be promising for future experimental analyses in order to produce recombinant form of AzrC. PMID:26026905

  20. LTBP-2 Has a Single High-Affinity Binding Site for FGF-2 and Blocks FGF-2-Induced Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Clementine Menz

    Full Text Available Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2 belongs to the fibrillin-LTBP superfamily of extracellular matrix proteins. LTBPs and fibrillins are involved in the sequestration and storage of latent growth factors, particularly transforming growth factor β (TGF-β, in tissues. Unlike other LTBPs, LTBP-2 does not covalently bind TGF-β, and its molecular functions remain unclear. We are screening LTBP-2 for binding to other growth factors and have found very strong saturable binding to fibroblast growth factor-2 (FGF-2 (Kd = 1.1 nM. Using a series of recombinant LTBP-2 fragments a single binding site for FGF-2 was identified in a central region of LTBP-2 consisting of six tandem epidermal growth factor-like (EGF-like motifs (EGFs 9-14. This region was also shown to contain a heparin/heparan sulphate-binding site. FGF-2 stimulation of fibroblast proliferation was completely negated by the addition of 5-fold molar excess of LTBP-2 to the assay. Confocal microscopy showed strong co-localisation of LTBP-2 and FGF-2 in fibrotic keloid tissue suggesting that the two proteins may interact in vivo. Overall the study indicates that LTBP-2 is a potent inhibitor of FGF-2 that may influence FGF-2 bioactivity during wound repair particularly in fibrotic tissues.

  1. Computational Prediction of Heme-Binding Residues by Exploiting Residue Interaction Network

    OpenAIRE

    Rong Liu; Jianjun Hu

    2011-01-01

    Computational identification of heme-binding residues is beneficial for predicting and designing novel heme proteins. Here we proposed a novel method for heme-binding residue prediction by exploiting topological properties of these residues in the residue interaction networks derived from three-dimensional structures. Comprehensive analysis showed that key residues located in heme-binding regions are generally associated with the nodes with higher degree, closeness and betweenness, but lower ...

  2. Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions: I. Construction of an affinity binding model.

    Science.gov (United States)

    Zhang, Lin; Sun, Yan

    2014-04-29

    Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases. PMID:24697616

  3. Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding.

    Directory of Open Access Journals (Sweden)

    Changjiang Zou

    2012-09-01

    Full Text Available The homeodomain and adjacent CVC domain in the visual system homeobox (VSX proteins are conserved from nematodes to humans. Humans with missense mutations in these regions of VSX2 have microphthalmia, suggesting both regions are critical for function. To assess this, we generated the corresponding mutations in mouse Vsx2. The homeodomain mutant protein lacked DNA binding activity and the knock-in mutant phenocopied the null mutant, ocular retardation J. The CVC mutant protein exhibited weakened DNA binding; and, although the corresponding knock-in allele was recessive, it unexpectedly caused the strongest phenotype, as indicated by severe microphthalmia and hyperpigmentation of the neural retina. This occurred through a cryptic transcriptional feedback loop involving the transcription factors Mitf and Otx1 and the Cdk inhibitor p27(Kip1. Our data suggest that the phenotypic severity of the CVC mutant depends on the weakened DNA binding activity elicited by the CVC mutation and a previously unknown protein interaction between Vsx2 and its regulatory target Mitf. Our data also suggest that an essential function of the CVC domain is to assist the homeodomain in high-affinity DNA binding, which is required for eye organogenesis and unhindered execution of the retinal progenitor program in mammals. Finally, the genetic and phenotypic behaviors of the CVC mutation suggest it has the characteristics of a recessive neomorph, a rare type of genetic allele.

  4. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission.

    Science.gov (United States)

    Bardwell, A J; Flatauer, L J; Matsukuma, K; Thorner, J; Bardwell, L

    2001-03-30

    The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo. PMID:11134045

  5. Predicting the binding free energy of the inclusion process of 2-hydroxypropyl-β-cyclodextrin and small molecules by means of the MM/3D-RISM method.

    Science.gov (United States)

    Sugita, Masatake; Hirata, Fumio

    2016-09-28

    A protocol to calculate the binding free energy of a host-guest system is proposed based on the MM/3D-RISM method, taking cyclodextrin derivatives and their ligands as model systems. The protocol involves the procedure to identify the most probable binding mode (MPBM) of receptors and ligands by means of the umbrella sampling method. The binding free energies calculated by the MM/3D-RISM method for the complexes of the seven ligands with the MPBM of the cyclodextrin, and with the fluctuated structures around it, are in agreement with the corresponding experimental data in a semi-quantitative manner. It suggests that the protocol proposed here is promising for predicting the binding affinity of a small ligand to a relatively rigid receptor such as cyclodextrin. PMID:27452185

  6. Predicting the binding free energy of the inclusion process of 2-hydroxypropyl-β-cyclodextrin and small molecules by means of the MM/3D-RISM method

    Science.gov (United States)

    Sugita, Masatake; Hirata, Fumio

    2016-09-01

    A protocol to calculate the binding free energy of a host–guest system is proposed based on the MM/3D-RISM method, taking cyclodextrin derivatives and their ligands as model systems. The protocol involves the procedure to identify the most probable binding mode (MPBM) of receptors and ligands by means of the umbrella sampling method. The binding free energies calculated by the MM/3D-RISM method for the complexes of the seven ligands with the MPBM of the cyclodextrin, and with the fluctuated structures around it, are in agreement with the corresponding experimental data in a semi-quantitative manner. It suggests that the protocol proposed here is promising for predicting the binding affinity of a small ligand to a relatively rigid receptor such as cyclodextrin.

  7. Sugar Binding Residue Affects Apparent Na+ Affinity and Transport Stoichiometry in Mouse Sodium/Glucose Cotransporter Type 3B*

    OpenAIRE

    Díez-Sampedro, Ana; Barcelona, Stephanie

    2010-01-01

    SGLT1 is a sodium/glucose cotransporter that moves two Na+ ions with each glucose molecule per cycle. SGLT3 proteins belong to the same family and are described as glucose sensors rather than glucose transporters. Thus, human SGLT3 (hSGLT3) does not transport sugar, but extracellular glucose depolarizes the cell in which it is expressed. Mouse SGLT3b (mSGLT3b), although it transports sugar, has low apparent sugar affinity and partially uncoupled stoichiometry compared with SGLT1, suggesting t...

  8. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes

    DEFF Research Database (Denmark)

    Morrill, Johan; Kulcinskaja, Evelina; Sulewska, Anna Maria;

    2015-01-01

    β-Mannans are abundant and diverse plant structural and storage polysaccharides. Certain human gut microbiota members including health-promoting Bifidobacterium spp. catabolize dietary mannans. Little insight is available on the enzymology of mannan deconstruction in the gut ecological niche. Here....... Surface plasmon resonance analysis confirmed the binding of the CBM10 to manno-oligosaccharides, albeit with slightly lower affinity than the catalytic module of the enzyme. This is the first example of a low-affinity mannan-specific CBM, which forms a subfamily of CBM10 together with close homologs...... by an exceptionally low Km and the presence of an atypical low affinity CBM, which increases binding to specifically to soluble mannan while causing minimal decrease in catalytic efficiency as opposed to enzymes with canonical mannan binding modules. These features highlight fine tuning of catalytic and binding...

  9. Determining PPARγ-ligand binding affinity using fluorescent assay with cis-parinaric acid as a probe

    Institute of Scientific and Technical Information of China (English)

    GAO Zhenting; LUO Haibin; CHEN Lili; SHEN Jianhua; CHEN Kaixian; JIANG Hualiang; SHEN Xu

    2005-01-01

    Upon the study of small-molecules binding to proteins, the traditional methods for calculating dissociation constants (Kd and Ki) have shortcomings in dealing with the single binding site models. In this paper, two equations have been derived to solve this problem. These two equations are independent of the total concentration or initial degree of saturation of receptor and the activity of the competitive molecule. Through nonlinear fitting against these two equations, Kd value of a probe can be obtained by binding assay, and Ki value of a ligand can be obtained by competitive assay. Moreover, only the total concentrations of receptor([R]t), ligand([L]t) and probe([P]t) are required for the data fitting. In this work, Ki values of some typical ligands of PPARγ were successfully determined by use of our equations, among which the Ki value of PPARγ-LY171883 was reported for the first time.

  10. Affinity labeling of the carbohydrate binding site of the lectin discoidin I using a photoactivatable radioiodinated monosaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Kohnken, R.E.; Berger, E.A.

    1987-12-29

    N-(4-Azidosalicyl) galactosamine (GalNASA), a photoactivatable, radioiodinatable analog of N-acetylgalactosamine (GalNAc), has been prepared and characterized. The authors have used this reagent for labeling of the carbohydrate binding site of discoidin I, an endogenous lectin produced by Dictyostelium discoideum. GalNASA behaved as a ligand for discoidin I, as judged by its ability to compete in an assay measuring the carbohydrate binding activity of discoidin I. In this assay, it exhibited a K/sub i,app/ of 800 ..mu..M, comparable to that of GalNAc. The K/sub i,app/ of GalNASA decreased to 40 ..mu..m upon prior photolysis with ultraviolet light. In contrast, N-(4-azidosalicyl) ethanolamine produced no inhibition of carbohydrate binding regardless of photolysis. Covalent labeling of discoidin I with /sup 125/I-GalNASA was entirely dependent upon ultraviolet light. A portion of labeling, representing 40-60% of the total, was sensitive to reagents which were known to inhibit carbohydrate binding by discoidin I, including GalNAc, asialofetuin, and ethyl-enediaminetetraacetic acid. The carbohydrate-sensitive fraction of discoidin I photolabeling with /sup 125/I-GalNASA exhibited a K/sub d/ of 15-40 ..mu..M, in agreement with the K/sub i,app/ of prephotolyzed GalNASA observed in the carbohydrate binding assay. Partial proteolytic digestion of photolabeled discoidin I revealed specific fragments whose labeling was completely blocked by GalNAc. This indicated that the location of carbohydrate-sensitive labeling within the structure of discoidin I was restricted. One particular tryptic fragment, Tr1, was examined in detail. These data suggest that Tr1 is derived from the carbohydrate binding site of discoidin I.

  11. High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes

    OpenAIRE

    Lang, Benjamin; Blot, Nicolas; Bouffartigues, Emeline; Buckle, Malcolm; Geertz, Marcel; Gualerzi, Claudio O.; Mavathur, Ramesh; Muskhelishvili, Georgi; Pon, Cynthia L.; Rimsky, Sylvie; Stella, Stefano; Babu, M. Madan; Travers, Andrew

    2007-01-01

    The global transcriptional regulator H-NS selectively silences bacterial genes associated with pathogenicity and responses to environmental insults. Although there is ample evidence that H-NS binds preferentially to DNA containing curved regions, we show here that a major basis for this selectivity is the presence of a conserved sequence motif in H-NS target transcriptons. We further show that there is a strong tendency for the H-NS binding sites to be clustered, both within operons and in ge...

  12. Applying DNA affinity chromatography to specifically screen for sucrose-related DNA-binding transcriptional regulators of Xanthomonas campestris.

    Science.gov (United States)

    Leßmeier, Lennart; Alkhateeb, Rabeaa S; Schulte, Fabian; Steffens, Tim; Loka, Tobias Pascal; Pühler, Alfred; Niehaus, Karsten; Vorhölter, Frank-Jörg

    2016-08-20

    At a molecular level, the regulation of many important cellular processes is still obscure in xanthomonads, a bacterial group of outstanding relevance as world-wide plant pathogens and important for biotechnology as producers of the polysaccharide xanthan. Transcriptome analysis indicated a sucrose-dependent regulation of 18 genes in Xanthomonas campestris pv. campestris (Xcc) B100. The expression of 12 of these genes was clearly increased in the presence of sucrose. Only part of these genes was obviously involved in sucrose utilization. To identify regulatory proteins involved in transcriptional regulation, a DNA fragment-specific pull-down approach was established for Xcc. Putative promoter regions were identified and used to isolate DNA-binding proteins, which were separated by SDS PAGE and identified by MALDI-TOF mass spectrometry. This led to the identification of four transcriptional regulators, among them the global transcriptional regulator Clp and a previously identified regulator of sucrose utilization, SuxR, plus a third DNA-binding transcriptional regulator encoded by xcc-b100_2861 and recently shown to interact with a cyclic di-GMP-binding protein. The fourth regulatory protein was encoded by xcc-b100_2791. These results indicate DNA fragment-specific pull-down experiments as promising approaches to screen for specific DNA-binding regulatory proteins in Xcc. PMID:27060555

  13. Cofactor and substrate binding to vanadium chloroperoxidase determined by UV-VIS spectroscopy and evidence for high affinity for pervanadate

    NARCIS (Netherlands)

    Renirie, R.; Hemrika, W.; Piersma, S.R.; Wever, R.

    2000-01-01

    The vanadate cofactor in vanadium chloroperoxidase has been studied using UV-VIS absorption spectroscopy. A band is present in the near-UV that is red-shifted as compared to free vanadate and shifts in both position and intensity upon change in pH. Mutation of vanadate binding residues has a clear e

  14. Characterization of SynCAM surface trafficking using a SynCAM derived ligand with high homophilic binding affinity

    International Nuclear Information System (INIS)

    In order to better probe SynCAM function in neurons, we produced a fusion protein between the extracellular domain of SynCAM1 and the constant fragment of human IgG (SynCAM-Fc). Whether in soluble form or immobilized on latex microspheres, the chimera bound specifically to the surface of hippocampal neurons and recruited endogenous SynCAM molecules. SynCAM-Fc was also used in combination with Quantum Dots to follow the mobility of transfected SynCAM receptors at the neuronal surface. Both immobile and highly mobile SynCAM were found. Thus, SynCAM-Fc behaves as a high affinity ligand that can be used to study the function of SynCAM at the neuronal membrane

  15. A new real-time method for investigation of affinity properties and binding kinetics of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Alexey V. [Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow (Russian Federation); Nikitin, Maxim P. [Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow (Russian Federation); Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, Moscow Region 141700 (Russian Federation); Bragina, Vera A.; Znoyko, Sergey L.; Zaikina, Marina N.; Ksenevich, Tatiana I.; Gorshkov, Boris G. [Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow (Russian Federation); Nikitin, Petr I., E-mail: nikitin@kapella.gpi.ru [Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, 115409 Moscow (Russian Federation)

    2015-04-15

    A method for quantitative investigation of affinity constants of receptors immobilized on magnetic nanoparticles (MP) is developed based on spectral correlation interferometry (SCI). The SCI records with a picometer resolution the thickness changes of a layer of molecules or nanoparticles due to a biochemical reaction on a cover slip, averaged over the sensing area. The method is compatible with other types of sensing surfaces employed in biosensing. The measured values of kinetic association constants of magnetic nanoparticles are 4 orders of magnitude higher than those of molecular antibody association with antigen. The developed method also suggests highly sensitive detection of antigens in a wide dynamic range. The limit of detection of 92 pg/ml has been demonstrated for prostate-specific antigen (PSA) with 50-nm MP employed as labels, which produce 3-order amplification of the SCI signals. The calibration curve features high sensitivity (slope) of 3-fold signal raise per 10-fold increase of PSA concentration within 4-order dynamic range, which is an attractive compromise for precise quantitative and highly sensitive immunoassay. The proposed biosensing technique offers inexpensive disposable sensor chips of cover slips and represents an economically sound alternative to traditional immunoassays for disease diagnostics, detection of pathogens in food and environmental monitoring. - Highlights: • Method for study of affinity constants of magnetic nanoparticles with receptors is proposed. • Association constants of such particles are 4 orders higher than for biomolecules. • Method is compatible with widely used biosensor surfaces and affordable consumables. • It has high sensitivity: 3-fold signal increasing per 10-fold of PSA concentration. • Limit of detection for PSA is 92 pg/ml, dynamic range – 4 orders of concentration.

  16. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics.

    Science.gov (United States)

    Morris, Evan D; Yoder, Karmen K

    2007-03-01

    There is great interest in positron emission tomography (PET) as a noninvasive assay of fluctuations in synaptic neurotransmitter levels, but questions remain regarding the optimal choice of tracer for such a task. A mathematical method is proposed for predicting the utility of any PET tracer as a detector of changes in the concentration of an endogenous competitor via displacement of the tracer (a.k.a., its 'vulnerability' to competition). The method is based on earlier theoretical work by Endres and Carson and by the authors. A tracer-specific predictor, the PET Displacement Sensitivity (PDS), is calculated from compartmental model simulations of the uptake and retention of dopaminergic radiotracers in the presence of transient elevations of dopamine (DA). The PDS predicts the change in binding potential (DeltaBP) for a given change in receptor occupancy because of binding by the endogenous competitor. Simulations were performed using estimates of tracer kinetic parameters derived from the literature. For D(2)/D(3) tracers, the calculated PDS indices suggest a rank order for sensitivity to displacement by DA as follows: raclopride (highest sensitivity), followed by fallypride, FESP, FLB, NMSP, and epidepride (lowest). Although the PDS takes into account the affinity constant for the tracer at the binding site, its predictive value cannot be matched by either a single equilibrium constant, or by any one rate constant of the model. Values for DeltaBP have been derived from published studies that employed comparable displacement paradigms with amphetamine and a D(2)/D(3) tracer. The values are in good agreement with the PDS-predicted rank order of sensitivity to displacement. PMID:16788713

  17. Palmitic acid analogs exhibit nanomolar binding affinity for the HIV-1 CD4 receptor and nanomolar inhibition of gp120-to-CD4 fusion.

    Directory of Open Access Journals (Sweden)

    Elena E Paskaleva

    Full Text Available BACKGROUND: We recently reported that palmitic acid (PA is a novel and efficient CD4 fusion inhibitor to HIV-1 entry and infection. In the present report, based on in silico modeling of the novel CD4 pocket that binds PA, we describe discovery of highly potent PA analogs with increased CD4 receptor binding affinities (K(d and gp120-to-CD4 inhibition constants (K(i. The PA analogs were selected to satisfy Lipinski's rule of drug-likeness, increased solubility, and to avoid potential cytotoxicity. PRINCIPAL FINDINGS: PA analog 2-bromopalmitate (2-BP was most efficacious with K(d approximately 74 nM and K(i approximately 122 nM, ascorbyl palmitate (6-AP exhibited slightly higher K(d approximately 140 nM and K(i approximately 354 nM, and sucrose palmitate (SP was least efficacious binding to CD4 with K(d approximately 364 nM and inhibiting gp120-to-CD4 binding with K(i approximately 1486 nM. Importantly, PA and its analogs specifically bound to the CD4 receptor with the one to one stoichiometry. SIGNIFICANCE: Considering observed differences between K(i and K(d values indicates clear and rational direction for improving inhibition efficacy to HIV-1 entry and infection. Taken together this report introduces a novel class of natural small molecules fusion inhibitors with nanomolar efficacy of CD4 receptor binding and inhibition of HIV-1 entry.

  18. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  19. High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder.

    Science.gov (United States)

    Peng, Zhenling; Kurgan, Lukasz

    2015-10-15

    Intrinsically disordered proteins and regions (IDPs and IDRs) lack stable 3D structure under physiological conditions in-vitro, are common in eukaryotes, and facilitate interactions with RNA, DNA and proteins. Current methods for prediction of IDPs and IDRs do not provide insights into their functions, except for a handful of methods that address predictions of protein-binding regions. We report first-of-its-kind computational method DisoRDPbind for high-throughput prediction of RNA, DNA and protein binding residues located in IDRs from protein sequences. DisoRDPbind is implemented using a runtime-efficient multi-layered design that utilizes information extracted from physiochemical properties of amino acids, sequence complexity, putative secondary structure and disorder and sequence alignment. Empirical tests demonstrate that it provides accurate predictions that are competitive with other predictors of disorder-mediated protein binding regions and complementary to the methods that predict RNA- and DNA-binding residues annotated based on crystal structures. Application in Homo sapiens, Mus musculus, Caenorhabditis elegans and Drosophila melanogaster proteomes reveals that RNA- and DNA-binding proteins predicted by DisoRDPbind complement and overlap with the corresponding known binding proteins collected from several sources. Also, the number of the putative protein-binding regions predicted with DisoRDPbind correlates with the promiscuity of proteins in the corresponding protein-protein interaction networks. Webserver: http://biomine.ece.ualberta.ca/DisoRDPbind/.

  20. Role of hydrophobic mutations on the binding affinity and stability of blood coagulation factor VIIIa: a computational molecular dynamics and free-energy analysis.

    Science.gov (United States)

    Venkateswarlu, Divi

    2014-07-18

    Factor VIIIa is a non-covalently bound hetero-trimer among A1, A2 and A3-C1-C2 domains and an essential co-factor for factor IXa enzyme during proteolytic activation of factor X zymogen. The relatively weak interactions between A2 and the interface A1/A3 domains dampen the functional stability of FVIIIa in plasma and results in rapid degradation. We studied the mutational effect of three charged residues (Asp519, Glu665 and Asp666) to several hydrophobic residues by molecular dynamics simulations. Analysis of the binding free energy by MM-PBSA and MM-GBSA methods shows that the mutation of Asp519 and Glu665 residues to either Val or Ala enhance the A2 domain binding affinity in agreement with the experimental site-specific mutagenesis data. Mutation of Asp666 to Val, Tyr, Met and Phe showed largest improvement in the A2-domain binding among the eight hydrophobic mutants studied. Our studies suggest that the enrichment of hydrophobic interactions in the buried surface regions of A2 domain plays crucial role in improving the overall stability of FVIIIa. PMID:24952158

  1. Isolation of a high affinity neutralizing monoclonal antibody against 2009 pandemic H1N1 virus that binds at the 'Sa' antigenic site.

    Directory of Open Access Journals (Sweden)

    Nachiket Shembekar

    Full Text Available Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (K(D = 2.1±0.4 pM murine MAb, MA2077 that binds specifically to the hemagglutinin (HA surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC(50 = 0.08 µg/ml. MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 µg/ml against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein 'Sa' and 'Sb' sites were independently mutated, localized the binding site of MA2077 within the 'Sa' antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus.

  2. An explicitly solvated full atomistic model of the cardiac thin filament and application on the calcium binding affinity effects from familial hypertrophic cardiomyopathy linked mutations

    Science.gov (United States)

    Williams, Michael; Schwartz, Steven

    2015-03-01

    The previous version of our cardiac thin filament (CTF) model consisted of the troponin complex (cTn), two coiled-coil dimers of tropomyosin (Tm), and 29 actin units. We now present the newest revision of the model to include explicit solvation. The model was developed to continue our study of genetic mutations in the CTF proteins which are linked to familial hypertrophic cardiomyopathies. Binding of calcium to the cTnC subunit causes subtle conformational changes to propagate through the cTnC to the cTnI subunit which then detaches from actin. Conformational changes propagate through to the cTnT subunit, which allows Tm to move into the open position along actin, leading to muscle contraction. Calcium disassociation allows for the reverse to occur, which results in muscle relaxation. The inclusion of explicit TIP3 water solvation allows for the model to get better individual local solvent to protein interactions; which are important when observing the N-lobe calcium binding pocket of the cTnC. We are able to compare in silica and in vitro experimental results to better understand the physiological effects from mutants, such as the R92L/W and F110V/I of the cTnT, on the calcium binding affinity compared to the wild type.

  3. High Throughput Screening of High-Affinity Ligands for Proteins with Anion-Binding Sites using Desorption Electrospray Ionization (DESI) Mass Spectrometry

    Science.gov (United States)

    Lu, Xin; Ning, Baoming; He, Dacheng; Huang, Lingyun; Yue, Xiangjun; Zhang, Qiming; Huang, Haiwei; Liu, Yang; He, Lan; Ouyang, Jin

    2014-03-01

    A high throughput screening system involving a linear ion trap (LTQ) analyzer, a house-made platform and a desorption electrospray ionization (DESI) source was established to screen ligands with a high affinity for proteins with anion-binding sites. The complexes were analyzed after incubation, ultrafiltration, washing, and displacement. A new anionic region inhibited dissociation (ARID) mechanism that was suitable for a protein with anion-binding site was proposed. We utilized the differences in detectable dissociation of protein-ligand complexes, combined with displacement experiments, to distinguish free ligands displaced from anion-binding sites from liberated ligands dissociated from nonspecific interactions. The method was validated by α1-acid glycoprotein (AGP) and (R), (S)-amlodipine. Site-specific enantioselectivity shown in our experiments was consistent with earlier studies. Obtaining all of the qualitative information of 15*3 samples in 2.3 min indicates that the analysis process is no longer the time-limiting step in the initial stage of drug discovery. Quantitative information verified that our method was at least a semiquantitative method.

  4. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    Science.gov (United States)

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design. PMID:27399277

  5. Understanding binding affinity : A combined isothermal titration calorimetry/molecular dynamics study of the binding of a series of hydrophobically modified benzamidinium chloride inhibitors to trypsin

    NARCIS (Netherlands)

    Talhout, Reinskje; Villa, Alessandra; Mark, AE; Engberts, JBFN

    2003-01-01

    The binding of a series of p-alkylbenzamidinium chloride inhibitors to the serine proteinase trypsin over a range of temperatures has been studied using isothermal titration (micro)calorimetry and molecular dynamics simulation techniques. The inhibitors have small structural variations at the para p

  6. Assessing high affinity binding to HLA-DQ2.5 by a novel peptide library based approach

    DEFF Research Database (Denmark)

    Jüse, Ulrike; Arntzen, Magnus; Højrup, Peter;

    2011-01-01

    Here we report on a novel peptide library based method for HLA class II binding motif identification. The approach is based on water soluble HLA class II molecules and soluble dedicated peptide libraries. A high number of different synthetic peptides are competing to interact with a limited amount...... to HLA are then isolated by size exclusion chromatography and sequenced by tandem mass spectrometry online coupled to liquid chromatography. The MS/MS data are subsequently searched against a library defined database using a search engine such as Mascot, followed by manual inspection of the results. We...... library. The eluted sequences fit very well with the previously described HLA-DQ2.5 peptide binding motif. This novel method, limited by library complexity and sensitivity of mass spectrometry, allows the analysis of several thousand synthetic sequences concomitantly in a simple water soluble format....

  7. Automated Solution-Phase Synthesis of Insect Glycans to Probe the Binding Affinity of Pea Enation Mosaic Virus.

    Science.gov (United States)

    Tang, Shu-Lun; Linz, Lucas B; Bonning, Bryony C; Pohl, Nicola L B

    2015-11-01

    Pea enation mosaic virus (PEMV)--a plant RNA virus transmitted exclusively by aphids--causes disease in multiple food crops. However, the aphid-virus interactions required for disease transmission are poorly understood. For virus transmission, PEMV binds to a heavily glycosylated receptor aminopeptidase N in the pea aphid gut and is transcytosed across the gut epithelium into the aphid body cavity prior to release in saliva as the aphid feeds. To investigate the role of glycans in PEMV-aphid interactions and explore the possibility of viral control through blocking a glycan interaction, we synthesized insect N-glycan terminal trimannosides by automated solution-phase synthesis. The route features a mannose building block with C-5 ester enforcing a β-linkage, which also provides a site for subsequent chain extension. The resulting insect N-glycan terminal trimannosides with fluorous tags were used in a fluorous microarray to analyze binding with fluorescein isothiocyanate-labeled PEMV; however, no specific binding between the insect glycan and PEMV was detected. To confirm these microarray results, we removed the fluorous tag from the trimannosides for isothermal titration calorimetry studies with unlabeled PEMV. The ITC studies confirmed the microarray results and suggested that this particular glycan-PEMV interaction is not involved in virus uptake and transport through the aphid. PMID:26457763

  8. Automated Solution-Phase Synthesis of Insect Glycans to Probe the Binding Affinity of Pea Enation Mosaic Virus.

    Science.gov (United States)

    Tang, Shu-Lun; Linz, Lucas B; Bonning, Bryony C; Pohl, Nicola L B

    2015-11-01

    Pea enation mosaic virus (PEMV)--a plant RNA virus transmitted exclusively by aphids--causes disease in multiple food crops. However, the aphid-virus interactions required for disease transmission are poorly understood. For virus transmission, PEMV binds to a heavily glycosylated receptor aminopeptidase N in the pea aphid gut and is transcytosed across the gut epithelium into the aphid body cavity prior to release in saliva as the aphid feeds. To investigate the role of glycans in PEMV-aphid interactions and explore the possibility of viral control through blocking a glycan interaction, we synthesized insect N-glycan terminal trimannosides by automated solution-phase synthesis. The route features a mannose building block with C-5 ester enforcing a β-linkage, which also provides a site for subsequent chain extension. The resulting insect N-glycan terminal trimannosides with fluorous tags were used in a fluorous microarray to analyze binding with fluorescein isothiocyanate-labeled PEMV; however, no specific binding between the insect glycan and PEMV was detected. To confirm these microarray results, we removed the fluorous tag from the trimannosides for isothermal titration calorimetry studies with unlabeled PEMV. The ITC studies confirmed the microarray results and suggested that this particular glycan-PEMV interaction is not involved in virus uptake and transport through the aphid.

  9. "Assessment of human AT1 Binding Affinity of Some Novel 2-alkylthio-1-[4-(N-α-ethoxycarbonyl-nzylaminobenzyl-5-hydroxymethylimidazoles "

    Directory of Open Access Journals (Sweden)

    Setareh Badakhshannoory

    2004-06-01

    Full Text Available Antagonists of various components of the renin-angiotensin system have been the subject of many studies for the control of blood pressure. Compounds with a phenoxyphenylacetic acid moiety that mimic the structure of losartan which is a powerful competitive antagonist of angiotensin receptor, have shown to be effective. In this study, the affinity of some 2-alkylthio-1-[4-(N-α-ethoxycarbonylbenzylaminobenzyl]-5-hydroxymethyl imidazoles for the human AT1 receptor was assessed in a radioligand binding assay. It was found that an alkyl chain of appropriate length would be most suitable if situated on the imidazole ring. Furthermore, variations of the lower phenyl rings demonstrated that introduction of a methyl group in this position will account for the most desired effect.

  10. LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor.

    Science.gov (United States)

    Fliegmann, Judith; Jauneau, Alain; Pichereaux, Carole; Rosenberg, Charles; Gasciolli, Virginie; Timmers, Antonius C J; Burlet-Schiltz, Odile; Cullimore, Julie; Bono, Jean-Jacques

    2016-05-01

    LYR3, LYK3, and NFP are lysin motif-containing receptor-like kinases (LysM-RLKs) from Medicago truncatula, involved in perception of symbiotic lipo-chitooligosaccharide (LCO) signals. Here, we show that LYR3, a high-affinity LCO-binding protein, physically interacts with LYK3, a key player regulating symbiotic interactions. In vitro, LYR3 is phosphorylated by the active kinase domain of LYK3. Fluorescence lifetime imaging/Förster resonance energy transfer (FLIM/FRET) experiments in tobacco protoplasts show that the interaction between LYR3 and LYK3 at the plasma membrane is disrupted or inhibited by addition of LCOs. Moreover, LYR3 attenuates the cell death response, provoked by coexpression of NFP and LYK3 in tobacco leaves. PMID:27129432

  11. Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions

    DEFF Research Database (Denmark)

    Kim, Yohan; Sidney, John; Buus, Søren;

    2014-01-01

    Background: It is important to accurately determine the performance of peptide: MHC binding predictions, as this enables users to compare and choose between different prediction methods and provides estimates of the expected error rate. Two common approaches to determine prediction performance ar...

  12. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  13. Neurotensin high affinity binding sites and endopeptidase 24. 11 are present respectively in the meningothelial and in the fibroblastic components of human meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Mailleux, P.; Przedborski, S.; Beaumont, A.; Verslijpe, M.; Depierreux, M.; Levivier, M.; Kitabgi, P.; Roques, B.P.; Vanderhaeghen, J.J. (Brugmann Hospital, Bruxelles (Belgium))

    1990-11-01

    The presence of neurotensin receptors and endopeptidase 24.11 (E-24.11) in 16 human meningioma specimens, obtained at surgery, was assessed by measuring the binding of {sup 125}I-(tyrosyl3)neurotensin(1-13) ({sup 125}I-NT) and the inhibitor {sup 3}H-N(2RS)-3-hydroxyaminocarbonyl-2-benzyl-1-(oxopropyl)glycine ({sup 3}H-HACBO-Gly), for the receptor and enzyme, respectively. E-24.11 activity was also measured. Autoradiography, on the 16 meningiomas, showed that specific {sup 125}I-NT labeling (nonspecific labeling was assessed in the presence of excess NT) was exclusively located in the meningothelial regions. In contrast, specific {sup 3}H-HACBO-Gly labeling (nonspecific labeling was assessed in the presence of an excess of the E-24.11 inhibitor thiorphan) was exclusively found in fibroblastic regions. No specific labeling of either ligand was found on collagen or blood vessels. In vitro binding assays were performed on membranes of 10 of the 16 meningiomas. In the 4 meningiomas rich in meningothelial cells, {sup 125}I-NT specifically bound to one population of sites with Bmax ranging from 57 to 405 fmol/mg protein and Kd around 0.3 nM. These sites share common properties with the brain NT receptor, since the carboxy terminal acetyl NT(8-13) fragment bound to the same sites but with a higher affinity. The carboxy terminal analogue of NT, neuromedin N, also bound to the same sites with a 10-fold lower affinity and the sites were bradykinin and levocabastine insensitive. In the 4 meningiomas rich in fibroblastic cells, {sup 3}H-HACBO-Gly specifically bound to one population of sites with Bmax ranging from 251 to 739 fmol/mg protein and Kd around 2.8 nM.

  14. Exploring the Origin of Differential Binding Affinities of Human Tubulin Isotypes αβII, αβIII and αβIV for DAMA-Colchicine Using Homology Modelling, Molecular Docking and Molecular Dynamics Simulations.

    Science.gov (United States)

    Kumbhar, Bajarang Vasant; Borogaon, Anubhaw; Panda, Dulal; Kunwar, Ambarish

    2016-01-01

    Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII > αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher

  15. Exploring the Origin of Differential Binding Affinities of Human Tubulin Isotypes αβII, αβIII and αβIV for DAMA-Colchicine Using Homology Modelling, Molecular Docking and Molecular Dynamics Simulations.

    Science.gov (United States)

    Kumbhar, Bajarang Vasant; Borogaon, Anubhaw; Panda, Dulal; Kunwar, Ambarish

    2016-01-01

    Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII > αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher

  16. Synthesis and Evaluation of In Vitro DNA/Protein Binding Affinity, Antimicrobial, Antioxidant and Antitumor Activity of Mononuclear Ru(II) Mixed Polypyridyl Complexes.

    Science.gov (United States)

    Putta, Venkat Reddy; Chintakuntla, Nagamani; Mallepally, Rajender Reddy; Avudoddi, Srishailam; K, Nagasuryaprasad; Nancherla, Deepika; V V N, Yaswanth; R S, Prakasham; Surya, Satyanarayana Singh; Sirasani, Satyanarayana

    2016-01-01

    The four novel Ru(II) complexes [Ru(phen)2MAFIP](2+) (1) [MAFIP = 2-(5-(methylacetate)furan-2-yl)-1 H-imidazo[4,5-f] [1, 10]phenanthroline, phen = 1,10-Phenanthroline], [Ru(bpy)2MAFIP](2+) (2) (bpy = 2,2'-bipyridine) and [Ru(dmb)2MAFIP](2+) (3) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(hdpa)2MAFIP](2+) (4) (hdpa = 2,2-dipyridylamine) have been synthesized and fully characterized via elemental analysis, NMR spectroscopy, EI-MS and FT-IR spectroscopy. In addition, the DNA-binding behaviors of the complexes 1-4 with calf thymus DNA were investigated by UV-Vis absorption, fluorescence studies and viscosity measurement. The DNA-binding experiments showed that the complexes 1-4 interact with CT-DNA through an intercalative mode. BSA protein binding affinity of synthesized complexes was determined by UV/Vis absorption and fluorescence emission titrations. The binding affinity of ruthenium complexes was supported by molecular docking. The photoactivated cleavage of plasmid pBR322 DNA by ruthenium complexes 1-4 was investigated. All the synthesized compounds were tested for antimicrobial activity by using three Gram-negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and three Gram-positive (Micrococcus luteus, Bacillus subtilis and Bacillus megaterium) organisms, these results indicated that complex 3 was more activity compared to other complexes against all tested microbial strains while moderate antimicrobial activity profile was noticed for complex 4. The antioxidant activity experiments show that the complexes exhibit moderate antioxidant activity. The cytotoxicity of synthesized complexes on HeLa cell lines has been examined by MTT assay. The apoptosis assay was carried out with Acridine Orange (AO) staining methods and the results indicate that complexes can induce the apoptosis of HeLa cells. The cell cycle arrest investigated by flow cytometry and these results indicate that complexes 1-4 induce the cell cycle arrest at G0/G1

  17. Nuclear DNA sensor IFI16 as circulating protein in autoimmune diseases is a signal of damage that impairs endothelial cells through high-affinity membrane binding.

    Directory of Open Access Journals (Sweden)

    Francesca Gugliesi

    Full Text Available IFI16, a nuclear pathogenic DNA sensor induced by several pro-inflammatory cytokines, is a multifaceted protein with various functions. It is also a target for autoantibodies as specific antibodies have been demonstrated in the sera of patients affected by systemic autoimmune diseases. Following transfection of virus-derived DNA, or treatment with UVB, IFI16 delocalizes from the nucleus to the cytoplasm and is then eventually released into the extracellular milieu. In this study, using an in-house capture enzyme-linked immunsorbent assay we demonstrate that significant levels of IFI16 protein can also exist as circulating form in the sera of autoimmune patients. We also show that the rIFI16 protein, when added in-vitro to endothelial cells, does not affect cell viability, but severely limits their tubulogenesis and transwell migration activities. These inhibitory effects are fully reversed in the presence of anti-IFI16 N-terminal antibodies, indicating that its extracellular activity resides within the N-terminus. It was further demonstrated that endogenous IFI16 released by apoptotic cells bind neighboring cells in a co-culture. Immunofluorescence assays revealed existence of high-affinity binding sites on the plasma membrane of endothelial cells. Free recombinant IFI16 binds these sites on HUVEC with dissociation constant of 2.7 nM, radioiodinated and unlabeled IFI16 compete for binding sites, with inhibition constant (Ki of 14.43 nM and half maximal inhibitory concentration (IC50 of 67.88 nM; these data allow us to estimate the presence of 250,000 to 450,000 specific binding sites per cell. Corroborating the results from functional assays, this binding could be completely inhibited using anti-IFI16 N-terminal antibody, but not with an antibody raised against the IFI16 C-terminal. Altogether, these data demonstrate that IFI16 may exist as circulating protein in the sera of autoimmune patients which binds endothelial cells causing damage

  18. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Majuri, R. (Minerva Foundation Institute for Medical Research, Helsinki (Finland))

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of {sup 35}S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with {sup 35}S. The same two bands were observed if the cell surface proteins were labeled with {sup 125}I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author).

  19. Dissecting the Relation between a nuclear receptor and GATA: binding affinity studies of thyroid hormone receptor and GATA2 on TSHβ promoter.

    Directory of Open Access Journals (Sweden)

    Ana Carolina Migliorini Figueira

    Full Text Available BACKGROUND: Much is known about how genes regulated by nuclear receptors (NRs are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up- or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf has an important role in down-regulation of the thyrotropin gene (TSHβ by liganded thyroid hormone receptor (TR. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to better understand the mechanism that drives TSHβ down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSHβ promoter. Surprisingly, we observed that ligand (T3 weakens TR binding to a negative regulatory element (NRE present in the TSHβ promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs. Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. CONCLUSIONS: Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.

  20. Correction: Identification of specific calcitonin-like receptor residues important for calcitonin gene-related peptide high affinity binding

    OpenAIRE

    Banerjee, Sugato; Evanson, Janel; Harris, Erik; Lowe, Stephen L; Speth, Robert C.; Thomasson, Kathryn A; Porter, James E.

    2006-01-01

    This is a correction article. After publication of this work [1], we became aware of the fact that Robert C. Speth was not included as an author. Dr. Speth put a considerable amount of time and effort into developing and preparing the radiopeptide used to carry out the radioligand binding studies reported in this manuscript and therefore should have originally been included as an author. We apologize to Dr. Speth for any inconvenience that this oversight might have caused and thank him for hi...

  1. Detection of Interaction of Binding Affinity of Aromatic Hydrocarbon Receptor to the Specific DNA by Exonuclease Protection Mediated PCR Assay

    Institute of Scientific and Technical Information of China (English)

    SUN Xi; XU Shunqing

    2005-01-01

    A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A double-stranded DNA fragment containing two binding sites was designed and incubated with the aryl hydrocarbon receptor (AhR) transformed by 2,3,7,8-tet rachlorodibenzo p dioxin (TCDD) to generate TCDD: AhR: DNA complex which could protect receptor-binding DNA against exonuclease Ⅲ (Exo Ⅲ) digestion. With ExoⅢ treatment, free DNAs were digested and receptor-bound DNAs remained that could be amplified by PCR. By agarose gel electrophoreses a clear band (285bp) was detected using TCDD-treated sample, while nothing with control samples. To detect transformed AhR-DRE complex, 2 fmol DNAs and 3 ug cytosol proteins were found to be sufficient in the experiment. Compared with gel retardation assay, this new method is more sensitive for monitoring the Ah receptor-enhancer interaction without radioactive pollution.

  2. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases

    Science.gov (United States)

    Evangelisti, Elisa; Cascella, Roberta; Becatti, Matteo; Marrazza, Giovanna; Dobson, Christopher M.; Chiti, Fabrizio; Stefani, Massimo; Cecchi, Cristina

    2016-01-01

    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca2+ across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane. PMID:27619987

  3. Striatal binding of 2-amino-6,7-(/sup 3/H)dihydroxy-1,2,3,4-tetrahydronaphthalene to two dopaminergic sites distinguished by their low and high affinity for neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    List, S.J.; Wreggett, K.A.; Seeman, P.

    1982-07-01

    In order to develop more selective methods for labeling brain dopamine receptors, this study describes in detail the properties of 2-amino-6,7,-(/sup 3/H)dihydroxy-1,2,3,4,-tetrahydronaphthalene ((/sup 3/H) ADTN) binding to dopaminergic sites in rat, calf, and human brain. (/sup 3/H)ADTN labeled two distinct types of dopaminergic binding sites in the brain striatum of the rat, calf, and human. Very low concentrations of dopamine and dopaminergic catecholamines (with IC50 values of 1 to 10 nM) inhibited the binding of (/sup 3/H)ADTN to both sites. Neuroleptics, however, inhibited the binding of (/sup 3/H)ADTN in two distinctly separate concentration ranges, with IC50 values of 0.15 to 40 nM at one site and 100 and 50,000 nM at the other site. The site with high affinity for dopamine and low affinity for neuroleptics had binding properties that corresponded to those of the previously characterized D3 site). The (/sup 3/H)ADTN binding site with high affinity for neuroleptics demonstrated binding characteristics similar to a site labeled by /sup 3/H-Neuroleptics. (/sup 3/H)Apomorphine appeared to label the same two sites as (/sup 3/H)ADTN, while (/sub 3/H)dopamine labeled only the D3 site. Scatchard analysis of (/sup 3/H)ADTN or (/sub 3/H)apomorphine binding, under conditions for selective labeling of the low affinity neuroleptic site (D3) and the high affinity site for neuroleptics, detected a density of 70 fmol/mg of protein for each. The density of the D3 site in the calf striatum (170 fmol/mg of protein) was much greater than that of the high affinity neuroleptic site (50 fmol/mg). In the rat, the dissociation constant (KD) of (/sup 3/H)ADTN was 2 nM for both sites. (/sup 3/H)Apomorphine, however, had a higher affinity for the D3 site (KD.1.6 nM) than for the high affinity neuroleptic site (KD.4.2 nM).

  4. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size

    DEFF Research Database (Denmark)

    Knudsen, J; Faergeman, N J; Skøtt, H;

    1994-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein characterized in vertebrates. We have isolated two ACBP homologues from the yeast Saccharomyces carlsbergensis, named yeast ACBP types 1 and 2. Both proteins contain 86 amino acid residues and are identical except for four conservative substitut...... resulted in a significant expansion of the intracellular acyl-CoA pool. Finally, Southern-blotting analysis of the two genes encoding ACBP types 1 and 2 in S. carlsbergensis strongly indicated that this species is a hybrid between S. cerevisiae and Saccharomyces monacensis....

  5. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes

    DEFF Research Database (Denmark)

    Morrill, Johan; Kulcinskaja, Evelina; Sulewska, Anna Maria;

    2015-01-01

    and displays the highest catalytic efficiency reported to date for a GH5 mannanase owing to a very high kcat (1828 ± 87 s-1) and a low Km (1.58 ± 0.23 g · L-1) using locust bean galactomannan as substrate. The novel CBM of BlMan5_8 mediates increased binding to soluble mannan based on affinity electrophoresis....... Surface plasmon resonance analysis confirmed the binding of the CBM10 to manno-oligosaccharides, albeit with slightly lower affinity than the catalytic module of the enzyme. This is the first example of a low-affinity mannan-specific CBM, which forms a subfamily of CBM10 together with close homologs...... by an exceptionally low Km and the presence of an atypical low affinity CBM, which increases binding to specifically to soluble mannan while causing minimal decrease in catalytic efficiency as opposed to enzymes with canonical mannan binding modules. These features highlight fine tuning of catalytic and binding...

  6. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins

    Science.gov (United States)

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-07-01

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10-4 M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine.The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the

  7. Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed.

    Science.gov (United States)

    Stojadinovic, Marija; Radosavljevic, Jelena; Ognjenovic, Jana; Vesic, Jelena; Prodic, Ivana; Stanic-Vucinic, Dragana; Cirkovic Velickovic, Tanja

    2013-02-15

    Non-covalent interactions between β-lactoglobulin (BLG) and polyphenol extracts of teas, coffee and cocoa were studied by fluorescence and CD spectroscopy at pH values of the gastrointestinal tract (GIT). The biological implications of non-covalent binding of polyphenols to BLG were investigated by in vitro pepsin and pancreatin digestibility assay and ABTS radical scavenging activity of complexes formed. The polyphenol-BLG systems were stable at pH values of the GIT. The most profound effect of pH on binding affinity was observed for polyphenol extracts rich in phenolic acids. Stronger non-covalent interactions delayed pepsin and pancreatin digestion of BLG and induced β-sheet to α-helix transition at neutral pH. All polyphenols tested protected protein secondary structure at an extremely acidic pH of 1.2. A positive correlation was found between the strength of protein-polyphenol interactions and (a) half time of protein decay in gastric conditions (R(2)=0.85), (b) masking of total antioxidant capacity of protein-polyphenol complexes (R(2)=0.95).

  8. Genome-wide prediction, display and refinement of binding sites with information theory-based models

    Directory of Open Access Journals (Sweden)

    Leeder J Steven

    2003-09-01

    Full Text Available Abstract Background We present Delila-genome, a software system for identification, visualization and analysis of protein binding sites in complete genome sequences. Binding sites are predicted by scanning genomic sequences with information theory-based (or user-defined weight matrices. Matrices are refined by adding experimentally-defined binding sites to published binding sites. Delila-Genome was used to examine the accuracy of individual information contents of binding sites detected with refined matrices as a measure of the strengths of the corresponding protein-nucleic acid interactions. The software can then be used to predict novel sites by rescanning the genome with the refined matrices. Results Parameters for genome scans are entered using a Java-based GUI interface and backend scripts in Perl. Multi-processor CPU load-sharing minimized the average response time for scans of different chromosomes. Scans of human genome assemblies required 4–6 hours for transcription factor binding sites and 10–19 hours for splice sites, respectively, on 24- and 3-node Mosix and Beowulf clusters. Individual binding sites are displayed either as high-resolution sequence walkers or in low-resolution custom tracks in the UCSC genome browser. For large datasets, we applied a data reduction strategy that limited displays of binding sites exceeding a threshold information content to specific chromosomal regions within or adjacent to genes. An HTML document is produced listing binding sites ranked by binding site strength or chromosomal location hyperlinked to the UCSC custom track, other annotation databases and binding site sequences. Post-genome scan tools parse binding site annotations of selected chromosome intervals and compare the results of genome scans using different weight matrices. Comparisons of multiple genome scans can display binding sites that are unique to each scan and identify sites with significantly altered binding strengths

  9. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene

    Directory of Open Access Journals (Sweden)

    Pirrello Julien

    2012-10-01

    Full Text Available Abstract Background The phytohormone ethylene is involved in a wide range of developmental processes and in mediating plant responses to biotic and abiotic stresses. Ethylene signalling acts via a linear transduction pathway leading to the activation of Ethylene Response Factor genes (ERF which represent one of the largest gene families of plant transcription factors. How an apparently simple signalling pathway can account for the complex and widely diverse plant responses to ethylene remains yet an unanswered question. Building on the recent release of the complete tomato genome sequence, the present study aims at gaining better insight on distinctive features among ERF proteins. Results A set of 28 cDNA clones encoding ERFs in the tomato (Solanum lycopersicon were isolated and shown to fall into nine distinct subclasses characterised by specific conserved motifs most of which with unknown function. In addition of being able to regulate the transcriptional activity of GCC-box containing promoters, tomato ERFs are also shown to be active on promoters lacking this canonical ethylene-responsive-element. Moreover, the data reveal that ERF affinity to the GCC-box depends on the nucleotide environment surrounding this cis-acting element. Site-directed mutagenesis revealed that the nature of the flanking nucleotides can either enhance or reduce the binding affinity, thus conferring the binding specificity of various ERFs to target promoters. Based on their expression pattern, ERF genes can be clustered in two main clades given their preferential expression in reproductive or vegetative tissues. The regulation of several tomato ERF genes by both ethylene and auxin, suggests their potential contribution to the convergence mechanism between the signalling pathways of the two hormones. Conclusions The data reveal that regions flanking the core GCC-box sequence are part of the discrimination mechanism by which ERFs selectively bind to their target

  10. A Novel Approach to Predict Core Residues on Cancer-Related DNA-Binding Domains

    OpenAIRE

    Ka-Chun Wong

    2016-01-01

    Protein–DNA interactions are involved in different cancer pathways. In particular, the DNA-binding domains of proteins can determine where and how gene regulatory regions are bound in different cell lines at different stages. Therefore, it is essential to develop a method to predict and locate the core residues on cancer-related DNA-binding domains. In this study, we propose a computational method to predict and locate core residues on DNA-binding domains. In particular, we have selected the ...

  11. Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks.

    Science.gov (United States)

    Pettie, Kade P; Dresch, Jacqueline M; Drewell, Robert A

    2016-08-01

    In the development of the Drosophila embryo, gene expression is directed by the sequence-specific interactions of a large network of protein transcription factors (TFs) and DNA cis-regulatory binding sites. Once the identity of the typically 8-10bp binding sites for any given TF has been determined by one of several experimental procedures, the sequences can be represented in a position weight matrix (PWM) and used to predict the location of additional TF binding sites elsewhere in the genome. Often, alignments of large (>200bp) genomic fragments that have been experimentally determined to bind the TF of interest in Chromatin Immunoprecipitation (ChIP) studies are trimmed under the assumption that the majority of the binding sites are located near the center of all the aligned fragments. In this study, ChIP/chip datasets are analyzed using the corresponding PWMs for the well-studied TFs; CAUDAL, HUNCHBACK, KNIRPS and KRUPPEL, to determine the distribution of predicted binding sites. All four TFs are critical regulators of gene expression along the anterio-posterior axis in early Drosophila development. For all four TFs, the ChIP peaks contain multiple binding sites that are broadly distributed across the genomic region represented by the peak, regardless of the prediction stringency criteria used. This result suggests that ChIP peak trimming may exclude functional binding sites from subsequent analyses.

  12. Computational prediction of heme-binding residues by exploiting residue interaction network.

    Directory of Open Access Journals (Sweden)

    Rong Liu

    Full Text Available Computational identification of heme-binding residues is beneficial for predicting and designing novel heme proteins. Here we proposed a novel method for heme-binding residue prediction by exploiting topological properties of these residues in the residue interaction networks derived from three-dimensional structures. Comprehensive analysis showed that key residues located in heme-binding regions are generally associated with the nodes with higher degree, closeness and betweenness, but lower clustering coefficient in the network. HemeNet, a support vector machine (SVM based predictor, was developed to identify heme-binding residues by combining topological features with existing sequence and structural features. The results showed that incorporation of network-based features significantly improved the prediction performance. We also compared the residue interaction networks of heme proteins before and after heme binding and found that the topological features can well characterize the heme-binding sites of apo structures as well as those of holo structures, which led to reliable performance improvement as we applied HemeNet to predicting the binding residues of proteins in the heme-free state. HemeNet web server is freely accessible at http://mleg.cse.sc.edu/hemeNet/.

  13. Computational prediction of heme-binding residues by exploiting residue interaction network.

    Science.gov (United States)

    Liu, Rong; Hu, Jianjun

    2011-01-01

    Computational identification of heme-binding residues is beneficial for predicting and designing novel heme proteins. Here we proposed a novel method for heme-binding residue prediction by exploiting topological properties of these residues in the residue interaction networks derived from three-dimensional structures. Comprehensive analysis showed that key residues located in heme-binding regions are generally associated with the nodes with higher degree, closeness and betweenness, but lower clustering coefficient in the network. HemeNet, a support vector machine (SVM) based predictor, was developed to identify heme-binding residues by combining topological features with existing sequence and structural features. The results showed that incorporation of network-based features significantly improved the prediction performance. We also compared the residue interaction networks of heme proteins before and after heme binding and found that the topological features can well characterize the heme-binding sites of apo structures as well as those of holo structures, which led to reliable performance improvement as we applied HemeNet to predicting the binding residues of proteins in the heme-free state. HemeNet web server is freely accessible at http://mleg.cse.sc.edu/hemeNet/. PMID:21991319

  14. Computer modelling in combination with in vitro studies reveals similar binding affinities of Drosophila Crumbs for the PDZ domains of Stardust and DmPar-6.

    Science.gov (United States)

    Kempkens, Ozlem; Médina, Emmanuelle; Fernandez-Ballester, Gregorio; Ozüyaman, Susann; Le Bivic, André; Serrano, Luis; Knust, Elisabeth

    2006-08-01

    Formation of multiprotein complexes is a common theme to pattern a cell, thereby generating spatially and functionally distinct entities at specialised regions. Central components of these complexes are scaffold proteins, which contain several protein-protein interaction domains and provide a platform to recruit a variety of additional components. There is increasing evidence that protein complexes are dynamic structures and that their components can undergo various interactions depending on the cellular context. However, little is known so far about the factors regulating this behaviour. One evolutionarily conserved protein complex, which can be found both in Drosophila and mammalian epithelial cells, is composed of the transmembrane protein Crumbs/Crb3 and the scaffolding proteins Stardust/Pals1 and DPATJ/PATJ, respectively, and localises apically to the zonula adherens. Here we show by in vitro analysis that, similar as in vertebrates, the single PDZ domain of Drosophila DmPar-6 can bind to the four C-terminal amino acids (ERLI) of the transmembrane protein Crumbs. To further evaluate the binding capability of Crumbs to DmPar-6 and the MAGUK protein Stardust, analysis of the PDZ structural database and modelling of the interactions between the C-terminus of Crumbs and the PDZ domains of these two proteins were performed. The results suggest that both PDZ domains bind Crumbs with similar affinities. These data are supported by quantitative yeast two-hybrid interactions. In vivo analysis performed in cell cultures and in the Drosophila embryo show that the cytoplasmic domain of Crumbs can recruit DmPar-6 and DaPKC to the plasma membrane. The data presented here are discussed with respect to possible dynamic interactions between these proteins.

  15. A conserved motif in the linker domain of STAT1 transcription factor is required for both recognition and release from high-affinity DNA-binding sites.

    Directory of Open Access Journals (Sweden)

    Bettina Hüntelmann

    Full Text Available Binding to specific palindromic sequences termed gamma-activated sites (GAS is a hallmark of gene activation by members of the STAT (signal transducer and activator of transcription family of cytokine-inducible transcription factors. However, the precise molecular mechanisms involved in the signal-dependent finding of target genes by STAT dimers have not yet been very well studied. In this study, we have characterized a sequence motif in the STAT1 linker domain which is highly conserved among the seven human STAT proteins and includes surface-exposed residues in close proximity to the bound DNA. Using site-directed mutagenesis, we have demonstrated that a lysine residue in position 567 of the full-length molecule is required for GAS recognition. The substitution of alanine for this residue completely abolished both binding to high-affinity GAS elements and transcriptional activation of endogenous target genes in cells stimulated with interferon-γ (IFNγ, while the time course of transient nuclear accumulation and tyrosine phosphorylation were virtually unchanged. In contrast, two glutamic acid residues (E559 and E563 on each monomer are important for the dissociation of dimeric STAT1 from DNA and, when mutated to alanine, result in elevated levels of tyrosine-phosphorylated STAT1 as well as prolonged IFNγ-stimulated nuclear accumulation. In conclusion, our data indicate that the kinetics of signal-dependent GAS binding is determined by an array of glutamic acid residues located at the interior surface of the STAT1 dimer. These negatively charged residues appear to align the long axis of the STAT1 dimer in a position perpendicular to the DNA, thereby facilitating the interaction between lysine 567 and the phosphodiester backbone of a bound GAS element, which is a prerequisite for transient gene induction.

  16. Is It Reliable to Use Common Molecular Docking Methods for Comparing the Binding Affinities of Enantiomer Pairs for Their Protein Target?

    Science.gov (United States)

    Ramírez, David; Caballero, Julio

    2016-01-01

    Molecular docking is a computational chemistry method which has become essential for the rational drug design process. In this context, it has had great impact as a successful tool for the study of ligand-receptor interaction modes, and for the exploration of large chemical datasets through virtual screening experiments. Despite their unquestionable merits, docking methods are not reliable for predicting binding energies due to the simple scoring functions they use. However, comparisons between two or three complexes using the predicted binding energies as a criterion are commonly found in the literature. In the present work we tested how wise is it to trust the docking energies when two complexes between a target protein and enantiomer pairs are compared. For this purpose, a ligand library composed by 141 enantiomeric pairs was used, including compounds with biological activities reported against seven protein targets. Docking results using the software Glide (considering extra precision (XP), standard precision (SP), and high-throughput virtual screening (HTVS) modes) and AutoDock Vina were compared with the reported biological activities using a classification scheme. Our test failed for all modes and targets, demonstrating that an accurate prediction when binding energies of enantiomers are compared using docking may be due to chance. We also compared pairs of compounds with different molecular weights and found the same results. PMID:27104528

  17. A C1q domain containing protein from Crassostrea gigas serves as pattern recognition receptor and opsonin with high binding affinity to LPS.

    Science.gov (United States)

    Jiang, Shuai; Li, Hui; Zhang, Daoxiang; Zhang, Huan; Wang, Lingling; Sun, Jinsheng; Song, Linsheng

    2015-08-01

    C1q proteins serve as pattern recognition receptors and involve in the pathogen recognition and complement pathway activation. In the present study, a novel C1q domain containing protein from Crassostrea gigas (designated CgC1qDC-1) was isolated by liposaccharide-Sepharose 6B affinity chromatography. The coding sequence of CgC1qDC-1 gene was determined by performing a homologous search of eight tryptic peptides identified by MALDI-TOF/TOF-MS against the genome of C. gigas. The coding sequence of CgC1qDC-1 was of 387 bp encoding a polypeptide of 128 amino acids containing a typical globular C1q domain. The globular C1q domain possessed eight β strands with a jelly-roll topology structure, which was similar to the structure of human gC1q domain. The mRNA transcripts of CgC1qDC-1 were dominantly expressed in mantle and hemocytes, while low expressed in hepatopancreas, gonad, gill and muscle. The expression level of CgC1qDC-1 increased drastically at 6 h after Vibrio splendidus stimulation, and then gradually fell to the normal level at about 24 h. ELISA assay quantified that CgC1qDC-1 bound to LPS with high binding affinity (Kd = 0.09 × 10(-6) M). Moreover, CgC1qDC-1 significantly enhanced the phagocytosis of oyster hemocytes towards Gram-negative bacteria Escherichia coli and V. splendidus. These results collectively indicated that CgC1qDC-1 could serve as pattern recognition receptor and opsonin in the innate immune response against invading Gram-negative bacteria.

  18. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design

    Science.gov (United States)

    Larsson, Andreas; Nordlund, Paer; Jansson, Anna; Anand, Ganesh S.

    2016-01-01

    A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD). PMID:27253209

  19. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design.

    Directory of Open Access Journals (Sweden)

    Arun Chandramohan

    2016-06-01

    Full Text Available A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower. Amide hydrogen deuterium Exchange mass spectrometry (HDXMS is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD.

  20. cis- and trans-2,3,3a,4,5,9b-Hexahydro-1H-benz[e]indoles: synthesis and evaluation of dopamine D2, and D3 receptor binding affinity

    DEFF Research Database (Denmark)

    Song, Xiaodong; Crider, Michael A.; Cruse, Sharon F.;

    1999-01-01

    cis- and trans-2,3,3a,4,5,9b-hexahydro-1H-benz [e]indoles were synthesized as conformationally rigid analogues of 3-phenylpyrrolidine and evaluated for dopamine (DA) D2S and D3 receptor binding affinity. The tricyclic benz[e]indole nucleus was constructed by a previously reported reductive aminat...

  1. Sneaking Up On The Criegee Intermediate From Below: Predicted Photoelectron Spectrum Of The CH_2OO$^-$ Anion And W3-F12 Electron Affinity Of CH$_2$OO

    CERN Document Server

    Karton, Amir; Wild, Duncan Andrew

    2013-01-01

    High level ab initio calculations were undertaken on the CH$_2$OO anion and neutral species to predict the electron affinity and anion photoelectron spectrum. The electron affinity of CH$_2$OO, \\SI{0.567}{eV}, and barrier height for dissociation of CH$_2$OO$^-$ to O$^-$ and CH$_2$O}, 16.5 kJ mol$^{-1}$, are obtained by means of the W3-F12 thermochemical protocol. Two major geometric differences between the anion and neutral, being the dihedral angle of the terminal hydrogen atoms with respect to C-O-O plane, and the O-O bond length, are reflected in the predicted spectrum as pronounced vibrational progressions.

  2. Major histocompatibility complex class I binding predictions as a tool in epitope discovery

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lund, Ole; Buus, Søren;

    2010-01-01

    Over the last decade, in silico models of the major histocompatibility complex (MHC) class I pathway have developed significantly. Before, peptide binding could only be reliably modelled for a few major human or mouse histocompatibility molecules; now, high-accuracy predictions are available...... for any human leucocyte antigen (HLA) -A or -B molecule with known protein sequence. Furthermore, peptide binding to MHC molecules from several non-human primates, mouse strains and other mammals can now be predicted. In this review, a number of different prediction methods are briefly explained...

  3. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides

    Science.gov (United States)

    Kang, Juanjuan; Ru, Beibei; Zhou, Peng

    2016-01-01

    Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p < 0.001) of peptides were correctly classified. As a web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community.

  4. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides.

    Science.gov (United States)

    He, Bifang; Kang, Juanjuan; Ru, Beibei; Ding, Hui; Zhou, Peng; Huang, Jian

    2016-01-01

    Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community. PMID:27610387

  5. Prediction of the key binding site of odorant-binding protein of Holotrichia oblita Faldermann (Coleoptera: Scarabaeida).

    Science.gov (United States)

    Zhuang, X; Wang, Q; Wang, B; Zhong, T; Cao, Y; Li, K; Yin, J

    2014-06-01

    The scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae) is a predominant underground pest in the northern parts of China, and its larvae (grubs) cause great economic losses because of its wide range of host plants and covert habitats. Environmentally friendly strategies for controlling adults would have novel and broad potential applications. One potential pest management measure is the regulation of olfactory chemoreception to control target insect pests. In the process of olfactory recognition, odorant-binding proteins (OBPs) are believed to carry hydrophobic odorants from the environment to the surface of olfactory receptor neurons. To obtain a better understanding of the relationship between OBP structures and their ligands, homology modelling and molecular docking have been conducted on the interaction between HoblOBP1 and hexyl benzoate in the present study. Based on the results, site-directed mutagenesis and binding experiments were combined to describe the binding sites of HoblOBP1 and to explore its ligand-binding mechanism. After homology modelling of HoblOBP1, it was found that the three-dimensional structure of HoblOBP1 consists of six α-helices and three disulphide bridges that connect the helices, and the hydrophobic pockets are both composed of five helices. Based on the docking study, we found that van der Waals interactions and hydrophobic interactions are both important in the bonding between HoblOBP1 and hexyl benzoate. Intramolecular residues formed the hydrogen bonds in the C terminus of the protein and the bonds are crucial for the ligand-binding specificity. Finally, MET48, ILE80 and TYR111 are binding sites predicted for HoblOBP1. Using site-directed mutagenesis and fluorescence assays, it was found that ligands could not be recognized by mutant of Tyr111. A possible explanation is that the compound could not be recognized by the mutant, and remains in the binding cavity because of the loss of the intramolecular

  6. Regression applied to protein binding site prediction and comparison with classification

    Directory of Open Access Journals (Sweden)

    Gala Jean-Luc

    2009-09-01

    Full Text Available Abstract Background The structural genomics centers provide hundreds of protein structures of unknown function. Therefore, developing methods enabling the determination of a protein function automatically is imperative. The determination of a protein function can be achieved by studying the network of its physical interactions. In this context, identifying a potential binding site between proteins is of primary interest. In the literature, methods for predicting a potential binding site location generally are based on classification tools. The aim of this paper is to show that regression tools are more efficient than classification tools for patches based binding site predictors. For this purpose, we developed a patches based binding site localization method usable with either regression or classification tools. Results We compared predictive performances of regression tools with performances of machine learning classifiers. Using leave-one-out cross-validation, we showed that regression tools provide better predictions than classification ones. Among regression tools, Multilayer Perceptron ranked highest in the quality of predictions. We compared also the predictive performance of our patches based method using Multilayer Perceptron with the performance of three other methods usable through a web server. Our method performed similarly to the other methods. Conclusion Regression is more efficient than classification when applied to our binding site localization method. When it is possible, using regression instead of classification for other existing binding site predictors will probably improve results. Furthermore, the method presented in this work is flexible because the size of the predicted binding site is adjustable. This adaptability is useful when either false positive or negative rates have to be limited.

  7. Binding and degradation of /sup 125/I-insulin by isolated rat renal brush border membranes: evidence for low affinity, high capacity insulin recognition sites

    Energy Technology Data Exchange (ETDEWEB)

    Meezan, E.; Pillion, D.J.; Elgavish, A.

    1988-10-01

    The kidney plays a major role in the handling of circulating insulin in the blood, primarily via reuptake of filtered insulin at the luminal brush border membrane. 125I-insulin associated with rat renal brush border membrane vesicles (BBV) in a time- and temperature-dependent manner accompanied by degradation of the hormone to trichloroacetic acid (TCA)-soluble fragments. Both association and degradation of 125I-insulin were linearly proportional to membrane protein concentration with virtually all of the degradative activity being membrane associated. Insulin, proinsulin and desoctapeptide insulin all inhibited the association and degradation of 125I-insulin by BBV, but these processes were not appreciably affected by the insulin-like growth factors IGF-I and IGF-II or by cytochrome c and lysozyme, low molecular weight, filterable, proteins, which are known to be reabsorbed in the renal tubules by luminal endocytosis. When the interaction of 125I-insulin with BBV was studied at various medium osmolarities (300-1100 mosM) to alter intravesicular space, association of the ligand with the vesicles was unaffected, but degradation of the ligand by the vesicles decreased progressively with increasing medium osmolarity. Therefore, association of 125I-insulin to BBV represented binding of the ligand to the membrane surface and not uptake of the hormone or its degradation products into the vesicles. Attempts to crosslink 125I-insulin to a high-affinity insulin receptor using the bifunctional reagent disuccinimidyl suberate revealed only trace amounts of an 125I-insulin-receptor complex in brush border membrane vesicles in contrast to intact renal tubules where this complex was readily observed. Both binding and degradation of 125I-insulin by brush border membranes did not reach saturation even at concentrations of insulin approaching 10(-5) M.

  8. Binding and degradation of 125I-insulin by isolated rat renal brush border membranes: evidence for low affinity, high capacity insulin recognition sites

    International Nuclear Information System (INIS)

    The kidney plays a major role in the handling of circulating insulin in the blood, primarily via reuptake of filtered insulin at the luminal brush border membrane. 125I-insulin associated with rat renal brush border membrane vesicles (BBV) in a time- and temperature-dependent manner accompanied by degradation of the hormone to trichloroacetic acid (TCA)-soluble fragments. Both association and degradation of 125I-insulin were linearly proportional to membrane protein concentration with virtually all of the degradative activity being membrane associated. Insulin, proinsulin and desoctapeptide insulin all inhibited the association and degradation of 125I-insulin by BBV, but these processes were not appreciably affected by the insulin-like growth factors IGF-I and IGF-II or by cytochrome c and lysozyme, low molecular weight, filterable, proteins, which are known to be reabsorbed in the renal tubules by luminal endocytosis. When the interaction of 125I-insulin with BBV was studied at various medium osmolarities (300-1100 mosM) to alter intravesicular space, association of the ligand with the vesicles was unaffected, but degradation of the ligand by the vesicles decreased progressively with increasing medium osmolarity. Therefore, association of 125I-insulin to BBV represented binding of the ligand to the membrane surface and not uptake of the hormone or its degradation products into the vesicles. Attempts to crosslink 125I-insulin to a high-affinity insulin receptor using the bifunctional reagent disuccinimidyl suberate revealed only trace amounts of an 125I-insulin-receptor complex in brush border membrane vesicles in contrast to intact renal tubules where this complex was readily observed. Both binding and degradation of 125I-insulin by brush border membranes did not reach saturation even at concentrations of insulin approaching 10(-5) M

  9. Accuracy of binding mode prediction with a cascadic stochastic tunneling method.

    Science.gov (United States)

    Fischer, Bernhard; Basili, Serena; Merlitz, Holger; Wenzel, Wolfgang

    2007-07-01

    We investigate the accuracy of the binding modes predicted for 83 complexes of the high-resolution subset of the ASTEX/CCDC receptor-ligand database using the atomistic FlexScreen approach with a simple forcefield-based scoring function. The median RMS deviation between experimental and predicted binding mode was just 0.83 A. Over 80% of the ligands dock within 2 A of the experimental binding mode, for 60 complexes the docking protocol locates the correct binding mode in all of ten independent simulations. Most docking failures arise because (a) the experimental structure clashed in our forcefield and is thus unattainable in the docking process or (b) because the ligand is stabilized by crystal water.

  10. Accuracy of binding mode prediction with a cascadic stochastic tunneling method.

    Science.gov (United States)

    Fischer, Bernhard; Basili, Serena; Merlitz, Holger; Wenzel, Wolfgang

    2007-07-01

    We investigate the accuracy of the binding modes predicted for 83 complexes of the high-resolution subset of the ASTEX/CCDC receptor-ligand database using the atomistic FlexScreen approach with a simple forcefield-based scoring function. The median RMS deviation between experimental and predicted binding mode was just 0.83 A. Over 80% of the ligands dock within 2 A of the experimental binding mode, for 60 complexes the docking protocol locates the correct binding mode in all of ten independent simulations. Most docking failures arise because (a) the experimental structure clashed in our forcefield and is thus unattainable in the docking process or (b) because the ligand is stabilized by crystal water. PMID:17427957

  11. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Blicher, Thomas;

    2007-01-01

    surpassed 1500. Characterizing the specificity of each separately would be a major undertaking. PRINCIPAL FINDINGS: Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and...... generates quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune epitopes and endogenous presented peptides, all...... provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan....

  12. Isolation of the Binding Protein of Periplocoside E from BBMVs in Midgut of the Oriental Amyworm Mythimna separata Walker (Lepidoptera: Noctuidae) through Affinity Chromatography.

    Science.gov (United States)

    Feng, Mingxing; He, Zhenyu; Wang, Yuanyuan; Yan, Xiufang; Zhang, Jiwen; Hu, Zhaonong; Wu, Wenjun

    2016-01-01

    Periplocosides, which are insecticidal compounds isolated from the root bark of Periploca sepium Bunge, can affect the digestive system of insects. However, the mechanism though which periplocosides induces a series of symptoms remains unknown. In this study, affinity chromatography was conducted by coupling periplocoside E-semi-succinic acid ester with epoxy amino hexyl (EAH) sepharose 4B. Sodium dodecyl sulfonate-polyacrylamide gelelectrophoresis (SDS-PAGE) was performed to analyze the fraction eluted by periplocoside E. Eight binding proteins (luciferin 4-monooxygenase, aminopeptidase N, aminopeptidase N3, nicotinamide adenine dinucleotide health (NADH) dehydrogenase subunit 5, phosphatidylinositol 3-phosphate 3-phosphatase myotubularin, actin, uncharacterized family 31 glucosidase KIAA1161, and 2OG-Fe(2) oxygenase superfamily protein) were obtained and identified through liquid chromatography/quadrupole-time of flight-mass spectrometry (LC/Q-TOF-MS) analysis of the midgut epithelium cells of Mythimna separata larvae. Aminopeptidase N and N3 are potential putative targets of periplocosides. This study establishes the foundation for further research on the mechanism of action and target localization of periplocosides in agricultural pests. PMID:27153092

  13. Acceleration of wound healing in acute full-thickness skin wounds using a collagen-binding peptide with an affinity for MSCs

    Directory of Open Access Journals (Sweden)

    Huili Wang

    2014-10-01

    Full Text Available Mesenchymal stem cells (MSCs have been accepted as a promising cell source in tissue repair and regeneration. However, the inability to enrich MSCs in target areas limits their wide application. As a result, it has been a major goal to induce MSCs to be abundantly and specifically recruited to the injury site. In this study, a peptide with a specific affinity for MSCs (E7 peptide was immobilized to a collagen scaffold via a collagen-binding domain (CBD to construct a functional collagen scaffold. In addition, the hypothesis that this method could recruit MSCs specifically was evaluated in a porcine model. In vivo investigations indicated that due to the immunoreaction, the CBD-MSC-peptide collagen scaffold enhanced MSC adhesion and infiltration and promoted wound healing. At day 7 after surgery, we found more infiltrating cells and capillaries in the Collagen/CBD-E7 peptide group compared to the Scaffold group. At day 14, 21 and 28, a faster healing process was observed in the Collagen/CBD-E7 peptide group, with significant differences compared with the other groups (P < 0.05, P < 0.01. The results demonstrate the potential use of targeted therapy to rapidly heal skin wounds.

  14. Rearrangements of α-helical structures of FlgN chaperone control the binding affinity for its cognate substrates during flagellar type III export.

    Science.gov (United States)

    Kinoshita, Miki; Nakanishi, Yuki; Furukawa, Yukio; Namba, Keiichi; Imada, Katsumi; Minamino, Tohru

    2016-08-01

    The bacterial flagellar type III export chaperones not only act as bodyguards to protect their cognate substrates from aggregation and proteolysis in the cytoplasm but also ensure the order of export through their interactions with an export gate protein FlhA. FlgN chaperone binds to FlgK and FlgL with nanomolar affinity and transfers them to FlhA for their efficient and rapid transport for the formation of the hook-filament junction zone. However, it remains unknown how FlgN releases FlgK and FlgL at the FlhA export gate platform in a timely manner. Here, we have solved the crystal structure of Salmonella FlgN at 2.3 Å resolution and carried out structure-based functional analyses. FlgN consists of three α helices, α1, α2 and α3. Helix α1 adopts two distinct, extended and bent conformations through the conformational change of N-loop between α1 and α2. The N-loop deletion not only increases the probability of FlgN dimer formation but also abolish the interaction between FlgN and FlgK. Highly conserved Asn-92, Asn-95 and Ile-103 residues in helix α3 are involved in the strong interaction with FlgK. We propose that the N-loop coordinates helical rearrangements of FlgN with the association and dissociation of its cognate substrates during their export. PMID:27178222

  15. Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    DEFF Research Database (Denmark)

    Zhang, Hao; Lund, Ole; Nielsen, Morten;

    2010-01-01

    Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based...... on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical...... methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results...

  16. The High Affinity Binding Site on Plasminogen Activator Inhibitor-1 (PAI-1) for the Low Density Lipoprotein Receptor-related Protein (LRP1) Is Composed of Four Basic Residues.

    Science.gov (United States)

    Gettins, Peter G W; Dolmer, Klavs

    2016-01-01

    Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13-800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association. PMID:26555266

  17. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  18. Computational predictions suggest that structural similarity in viral polymerases may lead to comparable allosteric binding sites.

    Science.gov (United States)

    Brown, Jodian A; Espiritu, Marie V; Abraham, Joel; Thorpe, Ian F

    2016-08-15

    The identification of ligand-binding sites is often the first step in drug targeting and design. To date there are numerous computational tools available to predict ligand binding sites. These tools can guide or mitigate the need for experimental methods to identify binding sites, which often require significant resources and time. Here, we evaluate four ligand-binding site predictor (LBSP) tools for their ability to predict allosteric sites within the Hepatitis C Virus (HCV) polymerase. Our results show that the LISE LBSP is able to identify all three target allosteric sites within the HCV polymerase as well as a known allosteric site in the Coxsackievirus polymerase. LISE was then employed to identify novel binding sites within the polymerases of the Dengue, West Nile, and Foot-and-mouth Disease viruses. Our results suggest that all three viral polymerases have putative sites that share structural or chemical similarities with allosteric pockets of the HCV polymerase. Thus, these binding locations may represent an evolutionarily conserved structural feature of several viral polymerases that could be exploited for the development of small molecule therapeutics. PMID:27262620

  19. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information

    Directory of Open Access Journals (Sweden)

    Su Emily

    2008-12-01

    Full Text Available Abstract Background RNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities. Results We propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%~6.83%, 0.88%~5.33%, and 0.10~0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%~26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed. Conclusion Our results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding

  20. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data

    Science.gov (United States)

    Ribay, Kathryn; Kim, Marlene T.; Wang, Wenyi; Pinolini, Daniel; Zhu, Hao

    2016-01-01

    Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR

  1. Calciomics:prediction and analysis of EF-hand calcium binding proteins by protein engineering

    Institute of Scientific and Technical Information of China (English)

    YANG; Jenny; Jie

    2010-01-01

    Ca2+ plays a pivotal role in the physiology and biochemistry of prokaryotic and mammalian organisms.Viruses also utilize the universal Ca2+ signal to create a specific cellular environment to achieve coexistence with the host,and to propagate.In this paper we first describe our development of a grafting approach to understand site-specific Ca2+ binding properties of EF-hand proteins with a helix-loop-helix Ca2+ binding motif,then summarize our prediction and identification of EF-hand Ca2+ binding sites on a genome-wide scale in bacteria and virus,and next report the application of the grafting approach to probe the metal binding capability of predicted EF-hand motifs within the streptococcal hemoprotein receptor(Shr) of Streptococcus pyrogenes and the nonstructural protein 1(nsP1) of Sindbis virus.When methods such as the grafting approach are developed in conjunction with prediction algorithms we are better able to probe continuous Ca2+-binding sites that have been previously underrepresented due to the limitation of conventional methodology.

  2. Prediction and experimental characterization of nsSNPs altering human PDZ-binding motifs.

    Directory of Open Access Journals (Sweden)

    David Gfeller

    Full Text Available Single nucleotide polymorphisms (SNPs are a major contributor to genetic and phenotypic variation within populations. Non-synonymous SNPs (nsSNPs modify the sequence of proteins and can affect their folding or binding properties. Experimental analysis of all nsSNPs is currently unfeasible and therefore computational predictions of the molecular effect of nsSNPs are helpful to guide experimental investigations. While some nsSNPs can be accurately characterized, for instance if they fall into strongly conserved or well annotated regions, the molecular consequences of many others are more challenging to predict. In particular, nsSNPs affecting less structured, and often less conserved regions, are difficult to characterize. Binding sites that mediate protein-protein or other protein interactions are an important class of functional sites on proteins and can be used to help interpret nsSNPs. Binding sites targeted by the PDZ modular peptide recognition domain have recently been characterized. Here we use this data to show that it is possible to computationally identify nsSNPs in PDZ binding motifs that modify or prevent binding to the proteins containing the motifs. We confirm these predictions by experimentally validating a selected subset with ELISA. Our work also highlights the importance of better characterizing linear motifs in proteins as many of these can be affected by genetic variations.

  3. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules.

    Directory of Open Access Journals (Sweden)

    Lianming Zhang

    Full Text Available MOTIVATION: Accurate identification of peptides binding to specific Major Histocompatibility Complex Class II (MHC-II molecules is of great importance for elucidating the underlying mechanism of immune recognition, as well as for developing effective epitope-based vaccines and promising immunotherapies for many severe diseases. Due to extreme polymorphism of MHC-II alleles and the high cost of biochemical experiments, the development of computational methods for accurate prediction of binding peptides of MHC-II molecules, particularly for the ones with few or no experimental data, has become a topic of increasing interest. TEPITOPE is a well-used computational approach because of its good interpretability and relatively high performance. However, TEPITOPE can be applied to only 51 out of over 700 known HLA DR molecules. METHOD: We have developed a new method, called TEPITOPEpan, by extrapolating from the binding specificities of HLA DR molecules characterized by TEPITOPE to those uncharacterized. First, each HLA-DR binding pocket is represented by amino acid residues that have close contact with the corresponding peptide binding core residues. Then the pocket similarity between two HLA-DR molecules is calculated as the sequence similarity of the residues. Finally, for an uncharacterized HLA-DR molecule, the binding specificity of each pocket is computed as a weighted average in pocket binding specificities over HLA-DR molecules characterized by TEPITOPE. RESULT: The performance of TEPITOPEpan has been extensively evaluated using various data sets from different viewpoints: predicting MHC binding peptides, identifying HLA ligands and T-cell epitopes and recognizing binding cores. Among the four state-of-the-art competing pan-specific methods, for predicting binding specificities of unknown HLA-DR molecules, TEPITOPEpan was roughly the second best method next to NETMHCIIpan-2.0. Additionally, TEPITOPEpan achieved the best performance in

  4. Structural arrangement of tRNA binding sites on Escherichia coli ribosomes, as revealed from data on affinity labelling with photoactivatable tRNA derivatives.

    Science.gov (United States)

    Graifer, D M; Babkina, G T; Matasova, N B; Vladimirov, S N; Karpova, G G; Vlassov, V V

    1989-07-01

    A systematic study of protein environment of tRNA in ribosomes in model complexes representing different translation steps was carried out using the affinity labelling of the ribosomes with tRNA derivatives bearing aryl azide groups scattered statistically over tRNA guanine residues. Analysis of the proteins crosslinked to tRNA derivatives showed that the location of the derivatives in the aminoacyl (A) site led to the labelling of the proteins S5 and S7 in all complexes studied, whereas the labelling of the proteins S2, S8, S9, S11, S14, S16, S17, S18, S19, S21 as well as L9, L11, L14, L15, L21, L23, L24, L29 depended on the state of tRNA in A site. Similarly, the location of tRNA derivatives in the peptidyl (P) site resulted in the labelling of the proteins L27, S11, S13 and S19 in all states, whereas the labelling of the proteins S5, S7, S9, S12, S14, S20, S21 as well as L2, L13, L14, L17, L24, L27, L31, L32, L33 depended on the type of complex. The derivatives of tRNA(fMet) were found to crosslink to S1, S3, S5, S7, S9, S14 and L1, L2, L7/L12, L27. Based on the data obtained, a general principle of the dynamic functioning of ribosomes has been proposed: (i) the formation of each type of ribosomal complex is accompanied by changes in mutual arrangement of proteins - 'conformational adjustment' of the ribosome - and (ii) a ribosome can dynamically change its internal structure at each step of initiation and elongation; on the 70 S ribosome there are no rigidly fixed structures forming tRNA-binding sites (primarily A and P sites).

  5. Thyroid hormones and glucocorticoids act synergistically in the regulation of the low affinity glucocorticoid binding sites in the male rat liver.

    Science.gov (United States)

    Chirino, R; Fernández, L; López, A; Navarro, D; Rivero, J F; Díaz-Chico, J C; Díaz-Chico, B N

    1991-12-01

    The low affinity glucocorticoid binding sites (LAGS) have been described and partially characterized in both the nuclei and microsomes of rat liver. The LAGS concentration is under endocrine regulation, as proved by their decrease after adrenalectomy and their almost complete disappearance after hypophysectomy. This article describes new data that also implicate the thyroid hormones in the endocrine regulation of LAGS. The LAGS were measured by [3H]dexamethasone exchange assay in crude microsome suspensions of rat liver. Propylthiouracil-induced hypothyroidism (TX) provoked a 90% reduction in the LAGS levels with respect to the control value. The administration of T3 to TX rats was able to completely restore the LAGS level. On the other hand, adrenalectomy (ADX) provoked a 50% decrease in LAGS levels, and this effect could be reverted by treatment with corticosterone acetate. TX rats that were also adrenalectomized (TX-ADX) showed a LAGS level similar to that of the TX rats. However, treatment of these rats with T3 was much less effective than in TX rats. A complete restoration of the LAGS level in TX-ADX rats could be achieved only with a combined treatment of corticosterone acetate plus T3. Similar results to those obtained in TX-ADX rats were also obtained in immature or hypophysectomized rats, two experimental models known to possess very low or undetectable levels of LAGS. From these findings we conclude that: 1) thyroid hormones, as well as glucocorticoids, play an important role in the regulation of the LAGS level; 2) glucocorticoids and thyroid hormones act synergistically in the endocrine regulation of LAGS; and 3) the results obtained in the hypophysectomized rats point to a direct action of glucocorticoids and T3 on the LAGS level of the rat liver. PMID:1954893

  6. The mild phenotype in severe hemophilia A with Arg1781His mutation is associated with enhanced binding affinity of factor VIII for factor X.

    Science.gov (United States)

    Yada, Koji; Nogami, Keiji; Wakabayashi, Hironao; Fay, Philip J; Shima, Midori

    2013-06-01

    The clinical severity in some patients with haemophilia A appears to be unrelated to the levels of factor (F)VIII activity (FVIII:C), but mechanisms are poorly understood. We have investigated a patient with a FVIII gene mutation at Arg1781 to His (R1781H) presenting with a mild phenotype despite FVIII:C of 0.9 IU/dl. Rotational thromboelastometry using the patient's whole blood demonstrated that the clot time and clot firmness were comparable to those usually observed at FVIII:C 5-10 IU/dl. Thrombin and FXa assays using plasma samples also showed that the peak levels of thrombin formation and the initial rate of FXa generation were comparable to those observed at FVIII:C 5-10 IU/dl. The results suggested a significantly greater haemostatic potential in this individual than in those with severe phenotype. The addition of incremental amounts of FX to control plasma with FVIII:C 0.9 IU/dl in clot waveform analyses suggested that the enhanced functional tenase assembly might have been related to changes in association between FVIII and FX. To further investigate this mechanism, we prepared a stably expressed, recombinant, B-domainless FVIII R1781H mutant. Thrombin generation assays using mixtures of control plasma and FVIII revealed that the coagulation function observed with the R1781H mutant (0.9 IU/dl) was comparable to that seen with wild-type FVIII:C at ~5 IU/dl. In addition, the R1781H mutant demonstrated an ~1.9-fold decrease in Km for FX compared to wild type. These results indicated that relatively enhanced binding affinity of FVIII R1781H for FX appeared to moderate the severity of the haemophilia A phenotype. PMID:23467620

  7. Description and prediction of peptide-MHC binding: the 'human MHC project'

    DEFF Research Database (Denmark)

    Buus, S

    1999-01-01

    MHC molecules are crucially involved in controlling the specific immune system. They are highly polymorphic receptors sampling peptides from the cellular environment and presenting these peptides for scrutiny by immune cells. Recent advances in combinatorial peptide chemistry have improved the de...... the description and prediction of peptide-MHC binding. It is envisioned that a complete mapping of human immune reactivities will be possible....

  8. STarMir Tools for Prediction of microRNA Binding Sites.

    Science.gov (United States)

    Kanoria, Shaveta; Rennie, William; Liu, Chaochun; Carmack, C Steven; Lu, Jun; Ding, Ye

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous short noncoding RNAs that regulate gene expression by targeting messenger RNAs (mRNAs), which results in translational repression and/or mRNA degradation. As regulatory molecules, miRNAs are involved in many mammalian biological processes and also in the manifestation of certain human diseases. As miRNAs play central role in the regulation of gene expression, understanding miRNA-binding patterns is essential to gain an insight of miRNA mediated gene regulation and also holds promise for therapeutic applications. Computational prediction of miRNA binding sites on target mRNAs facilitates experimental investigation of miRNA functions. This chapter provides protocols for using the STarMir web server for improved predictions of miRNA binding sites on a target mRNA. As an application module of the Sfold RNA package, the current version of STarMir is an implementation of logistic prediction models developed with high-throughput miRNA binding data from cross-linking immunoprecipitation (CLIP) studies. The models incorporated comprehensive thermodynamic, structural, and sequence features, and were found to make improved predictions of both seed and seedless sites, in comparison to the established algorithms (Liu et al., Nucleic Acids Res 41: