WorldWideScience

Sample records for binder-free wc bulk

  1. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  2. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    International Nuclear Information System (INIS)

    Deng, Xiangxing; Liu, Zhongwu; Yu, Hongya; Xiao, Zhiyu; Zhang, Guoqing

    2015-01-01

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH) max increased from 65 to 120 kJ/m 3 after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets

  3. Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application

    Science.gov (United States)

    Adu, Kofi; Ma, Danhao; Wang, Yuxiang; Spencer, Michael; Rajagopalan, Ramakrishnan; Wang, C.-Yu; Randall, Clive

    2018-01-01

    We present a liquid phase post synthesis self-assemble protocol that transforms trillions of carbon nanotubes (CNTs) in powder form into densely packed flexible, robust and binder-free macroscopic membranes with a hierarchical pore structure. We employ charge transfer engineering to spontaneously disperse the CNTs in a liquid medium. The processing protocol has limited or no impact on the intrinsic properties of the CNTs. As the thickness of the CNT membrane is increased, we observed a gradual transition from high flexibility to buckling and brittleness in the flexural properties of the membranes. The binder-free CNT membranes have bulk mass density greater than that of water (1.0 g cm-3). We correlate the mass of the CNTs in the membrane to the thickness of the membrane and obtained a bulk mass density of ˜1.11 g cm-3 ± 0.03 g cm-3. We demonstrate the use of the CNT membranes as electrode in a pristine and oxidized single/stacked solid-state capacitor as well as pristine interdigitated microcapacitor that show time constant of ˜32 ms with no degradation in performance even after 10 000 cycles. The capacitors show very good temperature dependence over a wide range of temperatures with good cycling performance up to 90 °C. The specific capacitance of the pseudocapacitive CNT electrode at room temperature was 72 F g-1 and increased to 100 F g-1 at 70 °C. The leakage current of bipolar stacked solid state capacitor was ˜100 nA cm-2 at 2.5 V when held for 72 h.

  4. Influence of reinforcement weight fraction on microstructure and properties of submicron WC-Co{sub p}/Cu bulk MMCs prepared by direct laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)]. E-mail: dongdonggu@hotmail.com; Shen, Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)]. E-mail: yifushen@nuaa.edu.cn

    2007-04-04

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, exhibits a great potential for fabricating complex shaped bulk metal matrix composites (MMCs). In the present work, the submicron WC-10% Co particulate reinforced Cu matrix composites were prepared using DMLS. The influence of reinforcement content on the sintered densification and the attendant microstructures, e.g. the dispersion homogeneity of the reinforcing particulates and the interfacial bonding ability, was investigated using scanning electron microscopy (SEM), energy disperse X-ray (EDX) spectroscopy, and atomic force microscope (AFM). It shows that using a low reinforcement content of 20 wt.% results in a poor densification with severe balling phenomena, due to a higher average composite coefficient of thermal expansion (CTE) and a superheating of the melt. A heterogeneous microstructure with a significant particulate aggregation is obtained at a high reinforcement content of 40 wt.%, because of a limited liquid formation and the resultant high liquid viscosity and reduced Marangoni effect. Using an optimal reinforcement content of 30 wt.% leads to a uniform distribution of the reinforcing particulates and a compatible interfacial microstructure, so as to obtain a favorable sintered density of 90.3% theoretical density.

  5. Influence of reinforcement weight fraction on microstructure and properties of submicron WC-Cop/Cu bulk MMCs prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu, Dongdong; Shen, Yifu

    2007-01-01

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, exhibits a great potential for fabricating complex shaped bulk metal matrix composites (MMCs). In the present work, the submicron WC-10% Co particulate reinforced Cu matrix composites were prepared using DMLS. The influence of reinforcement content on the sintered densification and the attendant microstructures, e.g. the dispersion homogeneity of the reinforcing particulates and the interfacial bonding ability, was investigated using scanning electron microscopy (SEM), energy disperse X-ray (EDX) spectroscopy, and atomic force microscope (AFM). It shows that using a low reinforcement content of 20 wt.% results in a poor densification with severe balling phenomena, due to a higher average composite coefficient of thermal expansion (CTE) and a superheating of the melt. A heterogeneous microstructure with a significant particulate aggregation is obtained at a high reinforcement content of 40 wt.%, because of a limited liquid formation and the resultant high liquid viscosity and reduced Marangoni effect. Using an optimal reinforcement content of 30 wt.% leads to a uniform distribution of the reinforcing particulates and a compatible interfacial microstructure, so as to obtain a favorable sintered density of 90.3% theoretical density

  6. Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material

    International Nuclear Information System (INIS)

    Liu, Yuping; Huang, Kai; Fan, Yu; Zhang, Qing; Sun, Fu; Gao, Tian; Wang, Zhongzheng; Zhong, Jianxin

    2013-01-01

    A nonwoven nanofiber fabric with paper-like qualities composed of Si nanoparticles and carbon as binder-free anode electrode is reported. The nanofiber fabrics are prepared by convenient electrospinning technique, in which, the Si nanoparticles are uniformly confined in the carbon nanofibers. The high strength and flexibility of the nanofiber fabrics are beneficial for alleviating the structural deformation and facilitating ion transports throughout the whole composited electrodes. Due to the absence of binder, the less weight, higher energy density, and excellent electrical conductivity anodes can be attained. These traits make the composited nanofiber fabrics excellent used as a binder-free, mechanically flexible, high energy storage anode material in the next generation of rechargeable lithium ions batteries

  7. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance

    Science.gov (United States)

    He, Shuijian; Chen, Wei

    2015-04-01

    Because of the excellent intrinsic properties, especially the strong mechanical strength, extraordinarily high surface area and extremely high conductivity, graphene is deemed as a versatile building block for fabricating functional materials for energy production and storage applications. In this article, the recent progress in the assembly of binder-free and self-standing graphene-based materials, as well as their application in supercapacitors are reviewed, including electrical double layer capacitors, pseudocapacitors, and asymmetric supercapacitors. Various fabrication strategies and the influence of structures on the capacitance performance of 3D graphene-based materials are discussed. We finally give concluding remarks and an outlook on the scientific design of binder-free and self-standing graphene materials for achieving better capacitance performance.

  8. Binder-free three-dimensional high energy density electrodes for ionic-liquid supercapacitors.

    Science.gov (United States)

    Tran, Chau; Lawrence, Daniel; Richey, Francis W; Dillard, Caitlin; Elabd, Yossef A; Kalra, Vibha

    2015-09-18

    We demonstrate a facile methodology to fabricate binder-free porous carbon nanofiber electrodes for room temperature ionic-liquid supercapacitors. The device provides an energy density of 80 W h kg(-1) based on the mass of two electrodes while retaining the high rate capability of supercapacitors with near-ideal CV curves at a high scan rate of 200 mV s(-1).

  9. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    Science.gov (United States)

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings.

    Science.gov (United States)

    Walsh, Evan D; Han, Xiaogang; Lacey, Steven D; Kim, Jae-Woo; Connell, John W; Hu, Liangbing; Lin, Yi

    2016-11-02

    For commercial applications, the need for smaller footprint energy storage devices requires more energy to be stored per unit area. Carbon nanomaterials, especially graphene, have been studied as supercapacitor electrodes and can achieve high gravimetric capacities affording high gravimetric energy densities. However, most nanocarbon-based electrodes exhibit a significant decrease in their areal capacitances when scaled to the high mass loadings typically used in commercially available cells (∼10 mg/cm 2 ). One of the reasons for this behavior is that the additional surface area in thick electrodes is not readily accessible by electrolyte ions due to the large tortuosity. Furthermore, the fabrication of such electrodes often involves complicated processes that limit the potential for mass production. Here, holey graphene electrodes for supercapacitors that are scalable in both production and areal capacitance are presented. The lateral surface porosity on the graphene sheets was created using a facile single-step air oxidation method, and the resultant holey graphene was compacted under ambient conditions into mechanically robust monolithic shapes that can be directly used as binder-free electrodes. In comparison, pristine graphene discs under similar binder-free compression molding conditions were extremely brittle and thus not deemed useful for electrode applications. The coin cell supercapacitors, based on these holey graphene electrodes exhibited small variations in gravimetric capacitance over a wide range of areal mass loadings (∼1-30 mg/cm 2 ) at current densities as high as 30 mA/cm 2 , resulting in the near-linear increase of the areal capacitance (F/cm 2 ) with the mass loading. The prospects of the presented method for facile binder-free ultrathick graphene electrode fabrication are discussed.

  11. Processing nanoparticle–nanocarbon composites as binder-free electrodes for lithium-based batteries

    Directory of Open Access Journals (Sweden)

    Marya Baloch

    2017-09-01

    Full Text Available Abstract The processing of battery materials into functional electrodes traditionally requires the preparation of slurries using binders, organic solvents, and additives, all of which present economic and environmental challenges. These are amplified in the production of nanostructured carbon electrodes which are often more difficult to disperse in slurries and require more energy-intensive and longer processing. In this study we demonstrate a new process for preparing binder-free nanocarbon/nanoparticle (Fe–C composite electrodes and study the effect of processing on the nanocomposite’s cycling performance in lithium cells. The binder-free electrodes were prepared by a two-step method: pulsed-electrodeposition of iron-based catalyst followed by chemical vapor deposition of a carbon film. SEM and TEM of the Fe–C showed that the active materials have a fibrous and tortuous morphology with disordered nanocrystalline domains characteristic of an amorphous carbon. The Fe–C electrodes showed good mechanical stability and an excellent cycle performance with an average stable capacity of 221 mAhg−1, and 85% capacity retention for up to 50 cycles. By reducing the number of processing steps and eliminating the use of binders and other chemicals this new method offers a “greener” alternative than current processing methods. Graphical abstract Synopsis: gains in sustainability can be achieved by eliminating use of binders, chemicals, and the number of electrode’s processing steps in this new method.

  12. Facile synthesis of porous graphene as binder-free electrode for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guangsheng [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); Academy of Space Technolgy, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Haifu, E-mail: haifuh@gmail.com [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); College of Physics Science and Engineering, Guangxi University, Nanning 530004 (China); Lei, Chenglong; Cheng, Zhenzhi; Wu, Xiaoshan [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); Tang, Shaolong, E-mail: tangsl@nju.edu.cn [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); Du, Youwei [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Our results provide a facile method to fabricate a binder-free porous rGO electrode for supercapacitors. • Polystyrene (PS) colloidal particles were used as spacers to prepare high-performance porous grapheme deposited directly on Ni foam substrate. • The specific capacitance of the rGO/NF electrode decreased by 7% after 2000 cycles and high rate capability of 53% capacitance retention at 100 A g{sup −1}. - Abstract: Here, porous grapheme oxide (GO) gel deposited on nickel foam was prepared by using polystyrene (PS) colloidal particles as spacers for use as electrodes in high rate supercapacitors, then reduced by Vitamin C aqueous solution in ambient condition. The PS particles were surrounded by reduced graphene oxide (rGO) sheets, forming crinkles and rough textures. When PS particles were selectively removed, rGO gel coated on the skeleton of Ni foam can formed an open porous structure, which prevents elf-aggregation and restacking of graphene sheets. The porous rGO-based supercapacitors exhibit excellent electrochemical performances such as a specific capacitance of 152 F g{sup −1} at 1 A g{sup −1}, high rate capability of 53% capacitance retention upon a current increase to 100 A g{sup −1} and good cycle stability, due to effective rapid and short pathways for ionic and electronic transport provided by the sub-micrometer structure of rGO gel and 3D interconnected network of Ni foam.

  13. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun, E-mail: Z.Hu@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester (United Kingdom); Chen, Jia Cing; Chang, Kuo Hsin [BGT Materials Limited, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Geim, Andre K. [Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester (United Kingdom); Novoselov, Kostya S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2015-05-18

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10{sup 4 }S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

  14. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    International Nuclear Information System (INIS)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun; Chen, Jia Cing; Chang, Kuo Hsin; Geim, Andre K.; Novoselov, Kostya S.

    2015-01-01

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10 4  S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks

  15. Silicon-Encapsulated Hollow Carbon Nanofiber Networks as Binder-Free Anodes for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Ding Nan

    2014-01-01

    Full Text Available Silicon-encapsulated hollow carbon nanofiber networks with ample space around the Si nanoparticles (hollow Si/C composites were successfully synthesized by dip-coating phenolic resin onto the surface of electrospun Si/PVA nanofibers along with the subsequent solidification and carbonization. More importantly, the structure and Si content of hollow Si/C composite nanofibers can be effectively tuned by merely varying the concentration of dip solution. As-synthesized hollow Si/C composites show excellent electrochemical performance when they are used as binder-free anodes for Li-ion batteries (LIBs. In particular, when the concentration of resol/ethanol solution is 3.0%, the product exhibits a large capacity of 841 mAh g−1 in the first cycle, prominent cycling stability, and good rate capability. The discharge capacity retention of it was ~90%, with 745 mAh g−1 after 50 cycles. The results demonstrate that the hollow Si/C composites are very promising as alternative anode candidates for high-performance LIBs.

  16. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm-2 (~548 F g-1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  17. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors.

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-04

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm(-2) (~548 F g(-1)) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  18. Novel binder-free forming of Al2O3 ceramics by microwave-assisted hydration reaction

    International Nuclear Information System (INIS)

    Shirai, Takashi; Yasuoka, Masaki; Watari, Koji

    2008-01-01

    A novel binder-free forming of ceramics via microwave irradiation is developed. The irradiation of microwave to an alumina green body enhances the hydration reaction strongly between water and particle surfaces, creating surface aluminum trihydroxides structure adjacent to particles that bind them together tightly. This process makes it possible to manufacture mechanically strong green bodies with excellent shape retention ability without the use of organic binders

  19. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  20. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-01-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  1. Free-standing graphene/vanadium oxide composite as binder-free electrode for asymmetrical supercapacitor.

    Science.gov (United States)

    Deng, Lingjuan; Gao, Yihong; Ma, Zhanying; Fan, Guang

    2017-11-01

    Preparation of free-standing electrode materials with three-dimensional network architecture has emerged as an effective strategy for acquiring advanced portable and wearable power sources. Herein, graphene/vanadium oxide (GR/V 2 O 5 ) free-standing monolith composite has been prepared via a simple hydrothermal process. Flexible GR sheets acted as binder to connect the belt-like V 2 O 5 for assembling three-dimensional network architecture. The obtained GR/V 2 O 5 composite can be reshaped into GR/V 2 O 5 flexible film which exhibits more compact structure by ultrasonication and vacuum filtration. A high specific capacitance of 358Fg -1 for GR/V 2 O 5 monolith compared with that of GR/V 2 O 5 flexible film (272Fg -1 ) has been achieved in 0.5molL -1 K 2 SO 4 solution when used as binder free electrodes in three-electrode system. An asymmetrical supercapacitor has been assembled using GR/V 2 O 5 monolith as positive electrode and GR monolith as negative electrode, and it can be reversibly charged-discharged at a cell voltage of 1.7V in 0.5molL -1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 26.22Whkg -1 at a power density of 425Wkg -1 , much higher than that of the symmetrical supercapacitor based on GR/V 2 O 5 monolith electrode. Moreover, the asymmetrical supercapacitor preserves 90% of its initial capacitance over 1000 cycles at a current density of 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors

    OpenAIRE

    Bingzhi Liu; Lili Zhang; Peirong Qi; Mingyuan Zhu; Gang Wang; Yanqing Ma; Xuhong Guo; Hui Chen; Boya Zhang; Zhuangzhi Zhao; Bin Dai; Feng Yu

    2016-01-01

    Nitrogen-doped banana peel?derived porous carbon foam (N-BPPCF) successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m2/g, large pore volume of 0.77 cm3/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and io...

  3. Cobalt nano-sheet supported on graphite modified paper as a binder free electrode for peroxide electrooxidation

    International Nuclear Information System (INIS)

    Zhang, Dongming; Cao, Dianxue; Ye, Ke; Yin, Jinling; Cheng, Kui; Wang, Guiling

    2014-01-01

    Graphical abstract: - Highlights: • A novel and binder free Co@graphite/paper electrode is employed for H 2 O 2 electrooxidation. • The obtained Co@graphite/paper electrode exhibits remarkably high catalytic activity and good stability for the electrooxidation of H 2 O 2 . • The high catalytic activity, low cost and environment-friendly make the Co@graphite/paper electrode as a promising anode material in DPPFC. - Abstract: A novel and binder free Co@graphite/paper electrode is prepared by electrodeposition Co nano-sheet on the surface of a graphite layer modified paper substrate. The morphology and phase structure of the Co@graphite/paper electrode are characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer, transmission electron microscope and X-ray diffractometer. The catalytic activity of the Co@graphite/paper electrode for H 2 O 2 electrooxidation is investigated by means of cyclic voltammetry and chronoamperometry. The catalyst combines tightly with the paper and exhibits a good stability. The oxidation current density reaches to 580 mA cm −2 in 2 mol dm −3 NaOH and 0.5 mol dm −3 H 2 O 2 at 0.5 V. Besides, we illustrate the reaction mechanization of the H 2 O 2 electrooxidation on the Co film

  4. Nitrogen-Doped Banana Peel-Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors.

    Science.gov (United States)

    Liu, Bingzhi; Zhang, Lili; Qi, Peirong; Zhu, Mingyuan; Wang, Gang; Ma, Yanqing; Guo, Xuhong; Chen, Hui; Zhang, Boya; Zhao, Zhuangzhi; Dai, Bin; Yu, Feng

    2016-01-15

    Nitrogen-doped banana peel-derived porous carbon foam (N-BPPCF) successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m²/g, large pore volume of 0.77 cm³/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and ion diffusion. A comparative analysis on the electrochemical properties of BPPCF electrodes is also conducted under similar conditions. The N-BPPCF electrode offers high specific capacitance of 185.8 F/g at 5 mV/s and 210.6 F/g at 0.5 A/g in 6 M KOH aqueous electrolyte versus 125.5 F/g at 5 mV/s and 173.1 F/g at 0.5 A/g for the BPPCF electrode. The results indicate that the N-BPPCF is a binder-free electrode that can be used for high performance supercapacitors.

  5. Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bingzhi Liu

    2016-01-01

    Full Text Available Nitrogen-doped banana peel–derived porous carbon foam (N-BPPCF successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m2/g, large pore volume of 0.77 cm3/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and ion diffusion. A comparative analysis on the electrochemical properties of BPPCF electrodes is also conducted under similar conditions. The N-BPPCF electrode offers high specific capacitance of 185.8 F/g at 5 mV/s and 210.6 F/g at 0.5 A/g in 6 M KOH aqueous electrolyte versus 125.5 F/g at 5 mV/s and 173.1 F/g at 0.5 A/g for the BPPCF electrode. The results indicate that the N-BPPCF is a binder-free electrode that can be used for high performance supercapacitors.

  6. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2015-03-01

    © 2014 Elsevier B.V. Ultrathin MnO2 nanosheets arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the binder-free electrode for high-performance supercapacitors. This unique well-designed binder-free electrode exhibits a high specific capacitance (595.2 F g-1 at a current density of 0.5 A g-1), good rate capability (64.1% retention), and excellent cycling stability (89% capacitance retention after 3000 cycles). Moreover, an asymmetric supercapacitor is constructed using the as-prepared MnO2 nanosheets arrays as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode. The optimized asymmetric supercapacitor displays excellent electrochemical performance with an energy density of 25.8 Wh kg-1 and a maximum power density of 223.2 kW kg-1. These impressive performances suggest that the MnO2 nanosheet array is a promising electrode material for supercapacitors.

  7. Influence of the ZnO nanoarchitecture on the electrochemical performances of binder-free anodes for Li storage

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Asta, V.; Tealdi, C.; Resmini, A.; Anselmi Tamburini, U.; Mustarelli, P., E-mail: piercarlo.mustarelli@unipv.it; Quartarone, E.

    2017-03-15

    Zinc oxide nanoarchitectures may be employed as binder-free, high specific capacity anodes for lithium batteries. By means of simple and low-impact wet chemistry approaches, we synthesized 1D (nanorods), 2D (single- and multi-layered nanosheets), and 3D (nanobrushes) ZnO arrays. These nanoarchitectures were compared as far as concerns their electrochemical properties and the structural modifications upon lithiation/delithiation. The best results were offered by 2D nanosheets, which showed reversible capacity of the order of 400 mAhg{sup −1} after 100 cycles at 1 Ag{sup −1}. This was due to: i) small nanoparticles, with average diameter of about 10 nm, which maximize the array specific surface area and favor the formation of the LiZn alloy; ii) the presence of a mesoporous texture, which allows larger space for accommodating the volume changes upon lithiation/delithiation. However, also these 2D structures showed large irreversible capacity losses. Our work highlights the need for more efficient buffering solutions in ZnO binder-free nanostructured anodes. - Graphical abstract: ZnO nanosheets as anode materials for lithium batteries.

  8. Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances

    DEFF Research Database (Denmark)

    Wu, Zhong Shuai; Yang, Sheng; Zhang, Lili

    2015-01-01

    Micro-supercapacitors (MSCs) hold great promise as highly competitive miniaturized power sources satisfying the increased demand in microelectronics; however, simultaneously achieving high areal and volumetric capacitances is still a great challenge. Here we demonstrated the designed construction...... of binder-free, electrically conductive, nanoporous activated graphene (AG) compact films for high-performance MSCs. The binder-free AG films are fabricated by alternating deposition of electrochemically exfoliated graphene (EG) and nanoporous AG with a high specific surface area of 2920 m2/g, and then dry...

  9. Random oriented hexagonal nickel hydroxide nanoplates grown on graphene as binder free anode for lithium ion battery with high capacity

    Science.gov (United States)

    Du, Yingjie; Ma, Hu; Guo, Mingxuan; Gao, Tie; Li, Haibo

    2018-05-01

    In this work, two-step method has been employed to prepare random oriented hexagonal hydroxide nanoplates on graphene (Ni(OH)2@G) as binder free anode for lithium ion battery (LIB) with high capacity. The morphology, microstructure, crystal phase and elemental bonding have been characterized. When evaluated as anode for LIB, the Ni(OH)2@G exhibited high initial discharge capacity of 1318 mAh/g at the current density of 50 mA/g. After 80 cycles, the capacity was maintained at 834 mAh/g, implying 63.3% remaining. Even the charge rate was increased to 2000 mA/g, an impressive capacity of 141 mAh/g can be obtained, indicating good rate capability. The superior LIB behavior of Ni(OH)2@G is ascribed to the excellent combination between Ni(OH)2 nanoplates and graphene via both covalent chemical bonding and van der Waals interactions.

  10. Direct laser sintered WC-10Co/Cu nanocomposites

    Science.gov (United States)

    Gu, Dongdong; Shen, Yifu

    2008-04-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  11. Direct laser sintered WC-10Co/Cu nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gu Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)], E-mail: dongdonggu@nuaa.edu.cn; Shen Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)

    2008-04-30

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  12. Direct laser sintered WC-10Co/Cu nanocomposites

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu

    2008-01-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa

  13. Three-dimensional core-shell Fe_2O_3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-01-01

    Highlights: • The 3D core-shell Fe_2O_3@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe_2O_3 nanorods and outer carbon layer. • The Fe_2O_3@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe_2O_3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe_2O_3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe_2O_3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe_2O_3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  14. Atomic layer deposition synthesis and evaluation of core–shell Pt-WC electrocatalysts

    International Nuclear Information System (INIS)

    Hsu, Irene J.; Chen, Jingguang G.; Jiang, Xiaoqiang; Willis, Brian G.

    2015-01-01

    Pt-WC core shell particles were produced using atomic layer deposition (ALD) to deposit Pt layers onto WC particle substrates. A range of Pt depositions were used to determine the growth mechanism for the Pt-WC powder system. TEM imaging and Cu stripping voltammetry found that Pt ALD growth on WC powder substrates was similar to that on WC thin films. However, excess free carbon was found to affect Pt ALD by blocking adsorption sites on WC. The Pt-WC samples were evaluated for the oxygen reduction reaction using a rotating disk electrode to obtain quantitative activity information. The mass and specific activities for the 30 and 50 ALD cycle samples were found to be comparable to a 10 wt. % Pt/C catalyst. However, higher overpotentials and lower limiting currents were observed with ALD Pt-WC compared to Pt/C catalysts, indicating that the oxygen reduction mechanism is not as efficient on Pt-WC as on bulk Pt. Additionally, these Pt-WC catalysts were used to demonstrate hydrogen evolution reaction activity and were found to perform as well as bulk Pt catalyst but with a fraction of the Pt loading, in agreement with the previous work on Pt-WC thin film catalysts

  15. Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications

    Science.gov (United States)

    Sankar, K. Vijaya; Lee, S. C.; Seo, Y.; Ray, C.; Liu, S.; Kundu, A.; Jun, S. C.

    2018-01-01

    One-dimensional (1D) nanostructure exhibits excellent electrochemical performance because of their unique physico-chemical properties like fast electron transfer, good rate capability, and cyclic stability. In the present study, Co3(PO4)2 1D nanograsses are grown on Ni foam using a simple and eco-friendly hydrothermal technique with different reaction times. The open space with uniform nanograsses displays a high areal capacitance, rate capability, energy density, and cyclic stability due to the nanostructure enhancing fast ion and material interactions. Ex-situ microscope images confirm the dependence of structural stability on the reaction time, and the nanograsses promoted ion interaction through material. Further, the reproducibility of the electrochemical performance confirms the binder-free Co3(PO4)2 1D nanograsses to be a suitable high-performance cathode material for application to hybrid supercapacitor. Finally, the assembled hybrid supercapacitor exhibits a high energy density (26.66 Wh kg-1 at 750 W kg-1) and longer lifetimes (80% retained capacitance after 6000 cycles). Our results suggests that the Co3(PO4)2 1D nanograss design have a great promise for application to hybrid supercapacitor.

  16. Ultra-light Hierarchical Graphene Electrode for Binder-Free Supercapacitors and Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zuo, Zicheng; Kim, Tae Young; Kholmanov, Iskandar; Li, Huifeng; Chou, Harry; Li, Yuliang

    2015-10-07

    A mild and environmental-friendly method is developed for fabricating a 3D interconnected graphene electrode with large-scale continuity. Such material has interlayer pores between reduced graphene oxide nanosheets and in-plane pores. Hence, a specific surface area up to 835 m(2) g(-1) and a high powder conductivity up to 400 S m(-1) are achieved. For electrochemical applications, the interlayer pores can serve as "ion-buffering reservoirs" while in-plane ones act as "channels" for shortening the mass cross-plane diffusion length, reducing the ion response time, and prevent the interlayer restacking. As binder-free supercapacitor electrode, it delivers a specific capacitance up to 169 F g(-1) with surface-normalized capacitance close to 21 μF cm(-2) (intrinsic capacitance) and power density up to 7.5 kW kg(-1), in 6 m KOH aqueous electrolyte. In the case of lithium-ion battery anode, it shows remarkable advantages in terms of the initiate reversible Coulombic efficiency (61.3%), high specific capacity (932 mAh g(-1) at 100 mA g(-1)), and robust long-term retention (93.5% after 600 cycles at 2000 mAh g(-1)). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    Science.gov (United States)

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries.

    Science.gov (United States)

    Liao, Mingna; Zhang, Qilun; Tang, Fengling; Xu, Zhiwei; Zhou, Xin; Li, Youpeng; Zhang, Yali; Yang, Chenghao; Ru, Qiang; Zhao, Lingzhi

    2018-03-22

    The synthesis of nanosized CoO anodes with unique morphologies via a hydrothermal method is investigated. By adjusting the pH values of reaction solutions, nanoflakes (CoO-NFs) and nanoflowers (CoO-FLs) are successfully located on copper foam. Compared with CoO-FLs, CoO-NFs as anodes for lithium ion batteries present ameliorated lithium storage properties, such as good rate capability, excellent cycling stability, and large CoO nanoflakes; CoO nanoflowers; anodes; binder free; lithium ion batteriesreversible capacity. The initial discharge capacity is 1470 mA h g -1 , while the reversible capacity is maintained at 1776 m Ah g -1 after 80 cycles at a current density of 100 mA h g -1 . The excellent electrochemical performance is ascribed to enough free space and enhanced conductivity, which play crucial roles in facilitating electron transport during repetitive Li⁺ intercalation and extraction reaction as well as buffering the volume expansion.

  19. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mingna Liao

    2018-03-01

    Full Text Available The synthesis of nanosized CoO anodes with unique morphologies via a hydrothermal method is investigated. By adjusting the pH values of reaction solutions, nanoflakes (CoO-NFs and nanoflowers (CoO-FLs are successfully located on copper foam. Compared with CoO-FLs, CoO-NFs as anodes for lithium ion batteries present ameliorated lithium storage properties, such as good rate capability, excellent cycling stability, and large CoO nanoflakes; CoO nanoflowers; anodes; binder free; lithium ion batteriesreversible capacity. The initial discharge capacity is 1470 mA h g−1, while the reversible capacity is maintained at 1776 m Ah g−1 after 80 cycles at a current density of 100 mA h g−1. The excellent electrochemical performance is ascribed to enough free space and enhanced conductivity, which play crucial roles in facilitating electron transport during repetitive Li+ intercalation and extraction reaction as well as buffering the volume expansion.

  20. Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes

    KAUST Repository

    Huang, Ming; Li, Fei; Zhao, Xiao Li; Luo, Da; You, Xue Qiu; Zhang, Yu Xin; Li, Gang

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam have been fabricated by a facile two-step hydrothermal approach and further investigated as the binder-free electrode for supercapacitors. The core-shell hybrid nanostructure is achieved by decorating ultrathin self-standing MnO2 nanosheets on ZnO pillar arrays grown radically on Nickel foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (423.5 F g-1 at a current density of 0.5 A g-1), and excellent cycling stability (92% capacitance retention after 3000 cycles). The improved electrochemical results show that the ZnO@MnO2 core-shell nanostructure electrode is promising for high-performance supercapacitors. The facile design of the unique core-shell array architectures provides a new and effective approach to fabricate high-performance binder-free electrode for supercapacitors.

  1. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte

    Science.gov (United States)

    Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae

    2016-02-01

    Herein, we are successfully prepared cobalt molybdate (CoMoO4) grown on nickel foam as a binder free electrode by hydrothermal approach for supercapacitors and improved their electrochemical performances using potassium ferricyanide (K3Fe(CN)6) as redox additive. The formation of CoMoO4 on Ni foam with high crystallinity is confirmed using XRD, Raman, and XPS measurements. The nanoplate arrays (NPAs) of CoMoO4 are uniformly grown on Ni foam which is confirmed by FE-SEM analysis. The prepared binder-free CoMoO4 NPAs achieved maximum areal capacity of 227 μAh cm-2 with KOH electrolyte at 2.5 mA cm-2. This achieved areal capacity is further improved about three times using the addition of K3Fe(CN)6 as redox additive. The increased electrochemical performances of CoMoO4 NPAs on Ni foam electrode via redox additive are discussed in detail and the mechanism has been explored. Moreover, the assembled CoMoO4 NPAs on Ni foam//activated carbon asymmetric supercapacitor device with an extended operating voltage window of 1.5 V exhibits an excellent performances such as high energy density and cyclic stability. The overall performances of binder-free CoMoO4 NPAs on Ni foam with redox additives suggesting their potential use as positive electrode material for high performance supercapacitors.

  2. Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2017-09-01

    Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.

  3. Binary cobalt ferrite nanomesh arrays as the advanced binder-free electrode for applications in oxygen evolution reaction and supercapacitors

    Science.gov (United States)

    Liu, Li; Zhang, Huijuan; Mu, Yanping; Bai, Yuanjuan; Wang, Yu

    2016-09-01

    The porous CoFe2O4nanomesh arrays are successfully synthesized on nickel foam substrate through a high temperature and pressure hydrothermal method, following by the thermal post-treatment in air. The CoFe2O4 nanomesh arrays own numerous pores and large specific surface area, which is in favor of exposing more active sites. In consideration of the structural preponderances and versatility of the materials, the CoFe2O4 nanomesh arrays have been researched as the binder-free electrode materials for electrocatalysis and supercapacitors. When the CoFe2O4nanomesh arrays on nickel foam (CoFe2O4 NM-As/Ni) directly act as the free-binder catalyst toward catalyzing the oxygen evolution reaction (OER) of electrochemical water splitting, CoFe2O4 NM-As/Ni exhibits an admirable OER property with a low onset potential of 1.47 V(corresponding to the onset overpotential of 240 mV), a minimal overpotential (η10 = 253 mV), a small Tafel slope (44 mV dec-1), large anodic currents and long-term durability for 35 h in alkaline media. In addition, as an electrode of supercapacitors, CoFe2O4 NM-As/Ni obtains a desired specific capacitance (1426 F/g at the current density of 1 A/g), remarkable rate capability (1024 F/g at the current density of 20 A/g) and eminent capacitance retention (92.6% after 3000 cycles). The above results demonstrate the CoFe2O4 NM-As/Ni possesses great potential application in electrocatalysis and supercapacitors.

  4. Electroless plating of Ni–B film as a binder-free highly efficient electrocatalyst for hydrazine oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiao-Ping; Dai, Hong-Bin, E-mail: mshbdai@scut.edu.cn; Wu, Lin-Song; Wang, Ping, E-mail: mspwang@scut.edu.cn

    2017-07-01

    Graphical abstract: A Ni–B film was grown on Ni foam to form a binder-free highly efficient electrocatalyst for hydrazine oxidation in alkaline medium. The newly-developed Ni–B/Ni foam electrocatalyst may promote the practical application of hydrazine as a viable energy carrier for fuel cells. - Highlights: • A Ni–B film grown on Ni foam electrocatalyst is prepared by the electrless plating. • The Ni–B film shows high activity and stability for N{sub 2}H{sub 4} electrooxidation reaction. • The improved catalytic property is ascribed to B-tuned electronic structure of Ni. • The resultant catalyst may promote application of N{sub 2}H{sub 4} as a viable energy carrier. - Abstract: Hydrazine is a promising energy carrier for fuel cells owing to its combined advantages of high theoretical cell voltage, high-power density, and no greenhouse gas emission. By using an electroless plating process, we have prepared a robust Ni–B film grown on Ni foam that is highly effective for hydrazine electrooxidation in alkaline media. The effects of reaction temperature, concentrations of hydrous hydrazine and sodium hydroxide in the fuel solution on performance of hydrazine electrooxidation reaction are investigated. The mechanistic reason for the property advantage of as-prepared Ni–B/Ni foam catalyst over the relevant catalysts is discussed based on careful kinetics studies and characterization. The facile synthesis of Ni-based catalyst with high activity and good stability is of clear significance for the development of hydrous hydrazine as a viable energy carrier.

  5. Electroless plating of Ni–B film as a binder-free highly efficient electrocatalyst for hydrazine oxidation

    International Nuclear Information System (INIS)

    Wen, Xiao-Ping; Dai, Hong-Bin; Wu, Lin-Song; Wang, Ping

    2017-01-01

    Graphical abstract: A Ni–B film was grown on Ni foam to form a binder-free highly efficient electrocatalyst for hydrazine oxidation in alkaline medium. The newly-developed Ni–B/Ni foam electrocatalyst may promote the practical application of hydrazine as a viable energy carrier for fuel cells. - Highlights: • A Ni–B film grown on Ni foam electrocatalyst is prepared by the electrless plating. • The Ni–B film shows high activity and stability for N_2H_4 electrooxidation reaction. • The improved catalytic property is ascribed to B-tuned electronic structure of Ni. • The resultant catalyst may promote application of N_2H_4 as a viable energy carrier. - Abstract: Hydrazine is a promising energy carrier for fuel cells owing to its combined advantages of high theoretical cell voltage, high-power density, and no greenhouse gas emission. By using an electroless plating process, we have prepared a robust Ni–B film grown on Ni foam that is highly effective for hydrazine electrooxidation in alkaline media. The effects of reaction temperature, concentrations of hydrous hydrazine and sodium hydroxide in the fuel solution on performance of hydrazine electrooxidation reaction are investigated. The mechanistic reason for the property advantage of as-prepared Ni–B/Ni foam catalyst over the relevant catalysts is discussed based on careful kinetics studies and characterization. The facile synthesis of Ni-based catalyst with high activity and good stability is of clear significance for the development of hydrous hydrazine as a viable energy carrier.

  6. Series-Interconnected Plastic Dye-Sensitized Solar Cells Prepared by Low- Temperature Binder-Free Titania Paste

    Directory of Open Access Journals (Sweden)

    Erlyta Septa Rosa

    2014-10-01

    Full Text Available The aim of this research is to study dye-sensitized solar cells (DSSC. This was implemented on a flexible polyethylene terephthalate (PET substrate using a mixture of transparent and scattered mesoporous anatase-titania as the electron transport layer for the photoelectrode. This mixture of anatase titania performed a dual function of light scattering and efficient dye absorption. In this study, a porous nano-TiO2 film was prepared on indium tin oxide (ITO coated polyethylene terephthalate (PET by using a binder-free titania paste; on it, a DSSC was fabricated. The paste which contained a mixture of TiO2 nanoparticles, acid chloride, and ethanol was printed on two patterns of 1x6 cm2 active areas followed by sintered at 120 ºC to form TiO2 films. A commercial dye, N719, was adsorbed on the surface of TiO2 films and assembled to two platinized conductive plastic patterns to form a counter electrode and thus a sandwich-type dye cell. Finally, a solution of KI/I2 electrolytes was injected into the cell in which a couple of sandwich-type dye cells with an active area of 6 cm2 for each cell were series interconnected with a z-type interconnection between the photoelectrode of one cell and the counter electrode of another cell. The cell performance was characterized by employing simulated solar light at an intensity of 50 mW/cm2. The results showed interconnected cells generating a short-circuit photocurrent density of 2.34 mA/cm2, an open-circuit voltage of 1.10 volt, and overall 0.172% power conversion efficiency.

  7. Electrodeposited nickel-cobalt sulfide nanosheet on polyacrylonitrile nanofibers: a binder-free electrode for flexible supercapacitors

    Science.gov (United States)

    Kamran Sami, Syed; Siddiqui, Saqib; Tajmeel Feroze, Muhammad; Chung, Chan-Hwa

    2017-11-01

    To pursue high-performance energy storage devices with both high energy density and power density, one-dimensional (1D) nanostructures play a key role in the development of functional devices including energy conversion, energy storage, and environmental devices. The polyacrylonitrile (PAN) nanofibers were obtained by the versatile electrospinning method. An ultra-thin nickel-cobalt sulfide (NiCoS) layer was conformably electrodeposited on a self-standing PAN nanofibers by cyclic voltammetry to fabricate the light-weighted porous electrodes for supercapacitors. The porous web of PAN nanofibers acts as a high-surface-area scaffold with significant electrochemical performance, while the electrodeposition of metal sulfide nanosheet further enhances the specific capacitance. The fabricated NiCoS on PAN (NiCoS/PAN) nanofibers exhibits a very high capacitance of 1513 F g-1 at 5 A g-1 in 1 M potassium chloride (KCl) aqueous electrolyte with superior rate capability and excellent electrochemical stability as a hybrid electrode. The high capacitance of the NiCoS is attributed to the large surface area of the electrospun PAN nanofibers scaffold, which has offered a large number of active sites for possible redox reaction of ultra-thin NiCoS layer. Benefiting from the compositional features and electrode architectures, the hybrid electrode of NiCoS/PAN nanofibers shows greatly improved electrochemical performance with an ultra-high capacitance (1124 F g-1 at 50 A g-1). Moreover, a binder-free asymmetric supercapacitor device is also fabricated by using NiCoS/PAN nanofibers as the positive electrode and activated carbon (MSP-20) on PAN nanofibers as the negative electrode; this demonstrates high energy density of 56.904 W h kg-1 at a power density of 1.445 kW kg-1, and it still delivers the energy density of 33.3923 W h kg-1 even at higher power density of 16.5013 kW kg-1.

  8. Hierarchical shell/core CuO nanowire/carbon fiber composites as binder-free anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yuan, Wei; Luo, Jian; Pan, Baoyou; Qiu, Zhiqiang; Huang, Shimin; Tang, Yong

    2017-01-01

    Highlights: •The composite anode is composed of CuO nanowire shell and carbon fiber core. •The composite anode avoids completely the use of binders. •Synergistic effect of carbon fibers and CuO nanowires enhances performance. •Carbon fibers improve electrical conductivity and buffer volume change. •CuO nanowires shorten diffusion length and alleviate structural strain. -- Abstract: Developing high-performance electrode structures is of great importance for advanced lithium-ion batteries. This study reports an efficient method to fabricate hierarchical shell/core CuO nanowire/carbon fiber composites via electroless plating and thermal oxidation processes. With this method, a binder-free CuO nanowire/carbon fiber shell/core hierarchical network composite anode for lithium-ion batteries is successfully fabricated. The morphology and chemical composition of the anode are characterized, and the electrochemical performance of the anode is investigated by standard electrochemical tests. Owing to the superior properties of carbon fibers and the morphological advantages of CuO nanowires, this composite anode still retains an excellent reversible capacity of 598.2 mAh g −1 with a capacity retention rate above 86%, even after 50 cycles, which is much higher than the CuO anode without carbon fibers. Compared to the typical CuO/C electrode systems, the novel binder-free anode yields a performance close to that of the typical core/shell electrode systems and a much higher reversible capacity and capacity retention than the similar shell/core patterns as well as the anodes with binders. It is believed that this novel anode will pave the way to the development of binder-free anodes in response to the increasing demands for high-power energy storage.

  9. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Long, Hu; Sun, Yongming; Zhou, Wei; Tang, Zirong

    2014-09-01

    A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g-1 at the current density of 10 A g-1, and the electrode also shows excellent cycling performance, which retains 102% of its initial discharge capacitance after 7,000 cycles. The fabricated binder-free hierarchical composite electrode with superior electrochemical performance is a promising candidate for high-performance supercapacitors.

  10. In-situ Electrodeposition of Highly Active Silver Catalyst on Carbon Fiber Papers as Binder Free Cathodes for Aluminum-air Battery

    OpenAIRE

    Hong, Qingshui; Lu, Huimin

    2017-01-01

    Carbon fiber papers supported Ag catalysts (Ag/CFP) with different coverage of electro-active site are prepared by electrochemical deposition and used as binder free cathodes in primary aluminum-air (Al-air) battery. Scanning Electron Microscopy and X-ray Diffraction studies are carried out to characterize the as-prepared Ag/CFP air cathodes. Oxygen reduction reaction (ORR) activities on these air cathodes in alkaline solutions are systematic studied. A newly designed aluminum-air cell is use...

  11. Sampling and analysis of inactive radioactive waste tanks W-17, W-18, WC-5, WC-6, WC-8, and WC-11 through WC-14 at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Giaquinto, J.M.; Griest, W.H.; Pack, R.T.; Ross, T.; Schenley, R.L.

    1995-12-01

    The sampling and analysis of nine inactive liquid low-level waste (LLLW) tanks at the Oak Ridge National Laboratory (ORNL) are described-tanks W-17, W-18, WC-5, WC-6, WC-8, and WC-11 through WC-14. Samples of the waste tank liquids and sludges were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) metals listed on the US Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of determinations of the EPA Contract Laboratory Program Target Compound List volatile and semivolatile compounds, pesticides, and polychlorinated biphenyis (PCBs). This report provides data (1) to meet requirements under the Federal Facility Agreement (FFA) for the Oak Ridge Reservation to characterize the contents of LLLW tanks which have been removed from service and (2) to support planning for the treatment and disposal of the wastes.

  12. Sampling and analysis of inactive radioactive waste tanks W-17, W-18, WC-5, WC-6, WC-8, and WC-11 through WC-14 at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.; Giaquinto, J.M.; Griest, W.H.; Pack, R.T.; Ross, T.; Schenley, R.L.

    1995-12-01

    The sampling and analysis of nine inactive liquid low-level waste (LLLW) tanks at the Oak Ridge National Laboratory (ORNL) are described-tanks W-17, W-18, WC-5, WC-6, WC-8, and WC-11 through WC-14. Samples of the waste tank liquids and sludges were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) metals listed on the US Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of determinations of the EPA Contract Laboratory Program Target Compound List volatile and semivolatile compounds, pesticides, and polychlorinated biphenyis (PCBs). This report provides data (1) to meet requirements under the Federal Facility Agreement (FFA) for the Oak Ridge Reservation to characterize the contents of LLLW tanks which have been removed from service and (2) to support planning for the treatment and disposal of the wastes

  13. Fracture toughness of a nanoscale WC-Co tool steel

    International Nuclear Information System (INIS)

    Densley, J.M.; Hirth, J.P.

    1997-01-01

    Tungsten carbide tool steels, comprising WC particles with 6.7--25wt% Co distributed in the interparticle regions as a quasi-continuous binder phase, can be considered as WC-Co composites. The fracture toughness of such WC-Co composites is dependent on the volume fraction, contiguity and thickness of the cobalt binder, and the size of the tungsten carbide grains. Research has shown that the ductile binder undergoes nearly all the plastic deformation during fracture, which provides the primary energy consuming process that enhances fracture resistance. Recent manufacturing developments have given rise to the production of a WC-6.7wt% Co cermet having an average WC grain size of 70 nm, with a corresponding binder mean thickness, h, of 9 nm calculated from d = h(1-V f )/V f where d = 70 nm and V f = 0.114. This composite has shown a higher wear resistance than that of conventional cermets in proportion to their hardness. Such improvement has been attributed to the difficulty in forming dislocations in the very small grains. There are also indications that the Co binder in the nanoscale cermet contains higher contents of dissolved W and C than for conventional scale cermets. Because plastic deformation is initially confined to the binder phase, it was of interest to perform mode 1 and mixed mode toughness tests on the nanoscale cermet to determine whether flow localization influenced mixed mode toughness as in bulk materials. Two generations of this cermet were provided by Rogers Tool Works. The first generation, A, had lower binder contiguity, with occasional agglomerations of WC grains. The second generation, B, was cleaner, with the cobalt binder more uniformly separating the WC grains

  14. Fabrication of binder-free graphene-SnO{sub 2} electrodes by laser introduced conversion of precursors for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoxiao, E-mail: xlu@zjut.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Guolong [Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014 (China); Xiong, Qinqin; Qin, Haiying [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Weibin [Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014 (China); Luo, Fang, E-mail: luofang@zjut.edu.cn [Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014 (China); College of Zhijiang, Zhejiang University of Technology, Hangzhou 310001 (China)

    2017-06-01

    Highlights: • Binder-free graphene-SnO{sub 2} electrodes were prepared by a laser irradiation method. • Laser irradiation can well control the conversion of precursors. • As-prepared electrodes present high lithium storage capacity with good cyclablity. - Abstract: Binder-free graphene-SnO{sub 2} electrodes were prepared by laser introduced conversion of precursor (mixture of graphene oxide and stannic oxide sol) coatings on a copper film. The evolution of the microstructure, thermal stability, morphologies and sheet resistance has been studied as a function of laser fluences. It was shown that the conversion of precursors is mainly attributed to the photothermic effect, and a laser fluence of 69.3 J cm{sup −2} is the best condition for sample preparation. When the as-prepared electrode used as an anode for lithium ion batteries, it has been demonstrated with a high lithium storage capacity and good cycling stability. A high capacity of around 700 mAh g{sup −1} can be retained after 50 cycles at a current density of 100 mA g{sup −1}, and even after 400 cycles the specific capacity steadied to around 690 mAh g{sup −1}. Such electrodes have a short preparing procedure and good electrochemical performance, so the fabrication method adopted here could be referable for industrial continuous production.

  15. In situ preparation of MgCo2O4 nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors.

    Science.gov (United States)

    Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun

    2018-05-15

    A binder-free, MgCo2O4 nanosheet-like architecture was prepared on Ni-foam using a hydrothermal method. MgCo2O4/Ni-foam was characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), and transmission electron microscopy techniques. The FESEM image revealed a nanosheet array-like architecture. The MgCo2O4 nanosheets grown on Ni-foam exhibited the maximum specific capacity of 947 C g-1 at a specific current of 2 A g-1. Approximately 96% of the specific capacity was retained from the maximum specific capacity after 5000 continuous charge-discharge cycles. This hybrid device exhibited a maximum specific capacity of 52 C g-1 at a specific current of 0.5 A g-1, and also exhibited a maximum specific energy of 12.99 W h kg-1 at a specific power of 448.7 W kg-1. These results confirmed that the binder-free MgCo2O4 nanosheets grown on Ni-foam are a suitable positive electrode material for hybrid supercapacitors.

  16. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode

    Science.gov (United States)

    Mei, Xiaoguang; Cho, Swee Jen; Fan, Benhu; Ouyang, Jianyong

    2010-10-01

    High-performance dye-sensitized solar cells (DSCs) with binder-free films of carbon nanotubes (CNTs), including single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs), as the counter electrode are reported. The CNT films were fabricated by coating gels, which were prepared by dispersing CNTs in low-molecular-weight poly(ethylene glycol) (PEG) through mechanical grinding and subsequent ultrasonication, on fluorine tin oxide (FTO) glass. PEG was removed from the CNT films through heating. These binder-free CNT films were rough and exhibited good adhesion to substrates. They were used as the counter electrode of DSCs. The DSCs with SWCNT or MWCNT counter electrodes exhibited a light-to-electricity conversion efficiency comparable with that with the conventional platinum (Pt) counter electrode, when the devices were tested immediately after device fabrication. The DSCs with an SWCNT counter electrode exhibited good stability in photovoltaic performance. The efficiency did not decrease after four weeks. On the other hand, DSCs with the MWCNT or Pt counter electrode exhibited a remarkable decrease in the photovoltaic efficiency after four weeks. The high photovoltaic performance of these DSCs is related to the excellent electrochemical catalysis of CNTs on the redox of the iodide/triiodide pair, as revealed by the cyclic voltammetry and ac impedance spectroscopy.

  17. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode

    International Nuclear Information System (INIS)

    Mei Xiaoguang; Cho, Swee Jen; Fan Benhu; Ouyang Jianyong

    2010-01-01

    High-performance dye-sensitized solar cells (DSCs) with binder-free films of carbon nanotubes (CNTs), including single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs), as the counter electrode are reported. The CNT films were fabricated by coating gels, which were prepared by dispersing CNTs in low-molecular-weight poly(ethylene glycol) (PEG) through mechanical grinding and subsequent ultrasonication, on fluorine tin oxide (FTO) glass. PEG was removed from the CNT films through heating. These binder-free CNT films were rough and exhibited good adhesion to substrates. They were used as the counter electrode of DSCs. The DSCs with SWCNT or MWCNT counter electrodes exhibited a light-to-electricity conversion efficiency comparable with that with the conventional platinum (Pt) counter electrode, when the devices were tested immediately after device fabrication. The DSCs with an SWCNT counter electrode exhibited good stability in photovoltaic performance. The efficiency did not decrease after four weeks. On the other hand, DSCs with the MWCNT or Pt counter electrode exhibited a remarkable decrease in the photovoltaic efficiency after four weeks. The high photovoltaic performance of these DSCs is related to the excellent electrochemical catalysis of CNTs on the redox of the iodide/triiodide pair, as revealed by the cyclic voltammetry and ac impedance spectroscopy.

  18. Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors

    KAUST Repository

    Hao, Xiaodong

    2014-11-19

    © The Royal Society of Chemistry. We report a facile decoration of the hierarchical nickel foam-supported CoAl layered double hydroxides (CoAl LDHs) with MnO2 nanowires and nanosheets by a chemical bath method and a hydrothermal approach for high-performance supercapacitors. We demonstrate that owing to the sophisticated configuration of binder-free LDH@MnO2 on the conductive Ni foam (NF), the designed NF/LDH@MnO2 nanowire composites exhibit a highly boosted specific capacitance of 1837.8 F g-1 at a current density of 1 A g-1, a good rate capability, and an excellent cycling stability (91.8% retention after 5000 cycles). By applying the hierarchical NF/LDH@MnO2 nanowires as the positive electrode and activated microwave exfoliated graphite oxide activated graphene as the negative electrode, the fabricated asymmetric supercapacitor produces an energy density of 34.2 Wh kg-1 with a maximum power density of 9 kW kg-1. Such strategies with controllable assembly capability could open up a new and facile avenue in fabricating advanced binder-free energy storage electrodes. This journal is

  19. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection

    KAUST Repository

    Li, Zhenzhen

    2015-06-12

    One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO.

  20. Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors

    Science.gov (United States)

    Zhang, Yimei; Wang, Fei; Zhu, Hao; Zhou, Lincheng; Zheng, Xinliang; Li, Xinghua; Chen, Zhuang; Wang, Yue; Zhang, Dandan; Pan, Duo

    2017-12-01

    Carbon materials derived from various biomasses have aroused forceful interest from scientific community based on their abundant resource, low cost, environment friendly and easy fabrication. Herein, the method has been developed to prepare nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel (NCGA) as the binder-free electrode for supercapacitors. Ethylenediamine (EDA) is select as nitrogen source for its high nitrogen content and strong interaction with graphene oxide (GO) and cellulose nanofibers (CNFs) via hydrothermal self-assembly method to form hybrid hydrogel, and finally converts to NCGA by freeze-drying and carbonization. After carbonization the insulated CNFs converted to high conductivity carbon nanofibers. The NCGA electrode exhibits a high specific capacitance of 289 F g-1 at 5 mV s-1 and high stability of 90.5% capacitance retention ratio after 5000 cycles at 3 A g-1. This novel biomass electrode could be potential candidate for high performance supercapacitors.

  1. Synthesis and characterization of binder-free Cr3C2 coatings on nickel-based alloys for molten fluoride salt corrosion resistance

    International Nuclear Information System (INIS)

    Brupbacher, Michael C.; Zhang, Dajie; Buchta, William M.; Graybeal, Mark L.; Rhim, Yo-Rhin; Nagle, Dennis C.; Spicer, James B.

    2015-01-01

    Under various conditions, chromium carbides appear to be relatively stable in the presence of molten fluoride salts and this suggests that their use in corrosion resistant coatings for fluoride salt environments could be beneficial. One method for producing these coatings is the carburization of sprayed Cr coatings using methane-containing gaseous precursors. This process has been investigated for the synthesis of binder-free chromium carbide coatings on nickel-based alloy substrates for molten fluoride salt corrosion resistance. The effects of the carburization process on coating microstructure have been characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy dispersive spectroscopy (EDS). Both plasma-sprayed and cold-sprayed Cr coatings have been successfully converted to Cr 3 C 2 , with the mechanism of conversion being strongly influenced by the initial porosity in the as-deposited coatings

  2. Facilely scraping Si nanoparticles@reduced graphene oxide sheets onto nickel foam as binder-free electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Suyuan; Xie, Wenhe; Gu, Lili; Liu, Zhengjiao; Hou, Xiaoyi; Liu, Boli; Wang, Qi; He, Deyan

    2016-01-01

    Binder-free electrodes of Si nanoparticles@reducedgrapheneoxidesheets(Si@rGO) for lithium ion batteries were facilely fabricated by scraping the mixture of commercial Si powder, graphene oxide and poly(vinyl pyrrolidone) (PVP) onto nickel foam and following a heat treatment. It was shown that the Si@rGO electrode performs an excellent electrochemical behavior. Even at a current density as high as 4 A/g, a reversible capacity of 792 mAh/g was obtained after 100 cycles. A small amount of PVP additive plays important roles, it not only increases the viscosity of the mixture paint in the coating process, but also improves the conductivity of the overall electrode after carbonization.

  3. Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Jin, Juan; Shi, Zhi-qiang; Wang, Cheng-yang

    2014-01-01

    Highlights: • Electrospun carbon nanofiber webs were prepared by pyrolysis of polyacrylonitrile. • The webs as binder-free and current collector-free electrodes for SIBs and LIBs. • Different layer spacing and pore size for Li and Na lead different electrochemical behavior. • Electrochemical performances of the electrodes were high. - Abstract: A series of hard carbon nanofiber-based electrodes derived from electrospun polyacrylonitrile (PAN) nanofibers (PAN-CNFs) have been fabricated by stabilization in air at about 280 °C and then carbonization in N 2 at heat treatment temperatures (HTT) between 800 and 1500 °C. The electrochemical performances of the binder-free, current collector-free carbon nanofiber-based anodes in lithium-ion batteries and sodium-ion batteries are systematically investigated and compared. We demonstrate the presence of similar alkali metal insertion mechanisms in both cases, but just the differences of the layer spacing and pore size available for lithium and sodium ion lead the discharge capacity delivered at sloping region and plateau region to vary from the kinds of alkali elements. Although the anodes in sodium-ion batteries show poorer rate capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 275 mAh g −1 and similar cycling stability due to the conductive 3-D network, weakly ordered turbostratic structure and a large interlayer spacing between graphene sheets. The feature of high capacity and stable cycling performance makes PAN-CNFs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries

  4. Flexible Fe2O3 and V2O5 nanofibers as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Jiang, He; Niu, Hao; Yang, Xue; Sun, Zhiqin; Li, Fuzhi; Wang, Qian; Qu, Fengyu

    2018-04-16

    Flexible highly porous Fe2O3 and V2O5 nanofibers are synthesized by a facile electrospinning method followed by calcination treatment and directly used as binder-free electrodes for high-performance supercapacitors. These Fe2O3 and V2O5 nanofibers interconnect with each other and construct three-dimensional hierarchical porous films with high specific surface area. Benefiting from the unique structural features, the intriguing binder-free Fe2O3 and V2O5 porous nanofiber electrodes possess high specific capacitance of 255 F g-1 and 256 F g-1 at 2 mV s-1 in 1 M Na2SO4 electrolyte, respectively. An all-solid-state asymmetric supercapacitor is fabricated using Fe2O3 and V2O5 nanofibers as negative and positive electrodes, respectively, and the all-solid-state asymmetric supercapacitor can be operated up to 1.8 V attributed to the wide and opposite potential window of both electrodes. The assembled all-solid-state asymmetric supercapacitor achieves a high energy density up to 32.2 Wh kg-1 at an average power density of 128.7 W kg-1 as well as excellent cycling stability and power capability. The effective and facile synthesis method and superior electrochemical performance provided in this work make electrospun Fe2O3 and V2O5 nanofibers promising electrode materials for high performance asymmetric supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries

    International Nuclear Information System (INIS)

    Shi, Shaojun; Zhang, Ming; Deng, Tingting; Wang, Ting; Yang, Gang

    2017-01-01

    Graphical abstract: The schematic illustration of the strategy for preparations and the mechanism for the stability of structure Display Omitted -- Highlights: •A facile strategy is applied to construct flexible carbonate composite anode. •Carbon nano-fiber matrix serves as fast charge channel and efficient buffer. •High specific capacity of 958 mAh g −1 at 100 mA g −1 is obtained. •After 200 cycles at 1 A g −1 , there is not obvious capacity decline. •The mechanism for stress release is further analyzed. -- Abstract: High temperature is usually necessary for carbon modification or electrospinning to obtain flexible anode with excellent conductivity and stability. However, due to the unstable instinct of carbonate, it’s hard to obtain carbonate when any of the synthesis process undergoes high temperature treatment. Thus, a facile strategy is applied to construct binder-free flexible carbonate composite anode at low temperature with high electrochemical performances. The carbon nano-fiber matrix is first synthesized through electrospinning followed by a facile solvothermal process to in-situ grow carbonate on carbon nano-fibers to form a well combinative flexible anode. The carbon nano-fiber matrix serves not only as a fast channel for charge transfer, but also as an efficient buffer to release the stress resulting from the hysteresis of lithiation for carbonate particles during repeated charge/discharge cycles. Owing to the synergistic effect of carbon nano-fiber and the carbonate, the flexible anode exhibits high specific capacity of 958 mAh g −1 . And after 200 cycles at 1 A g −1 , no obvious capacity decline. The reaction mechanism for stress release is also well analyzed to display the merit of our strategy. It is considered as one of the most promising way to get binder-free flexible carbonate anode with remarkable properties.

  6. Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries

    Science.gov (United States)

    Tan, Hsiang; Cho, Hsun-Wei; Wu, Jih-Jen

    2018-06-01

    In this work, ZnSnO3 quantum dots (QDs), instead of commonly used conductive carbon, are grown on the ZnO nanorod (NR) array to construct the binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode on carbon cloth for lithium-ion battery. The ZnO@ZnSnO3 QDs core-shell NR array electrode exhibits excellent lithium storage performance with an improved cycling performance and superior rate capability compared to the ZnO NR array electrode. At a current density of 200 mAg-1, 15.8% capacity loss is acquired in the ZnO@ZnSnO3 QDs core-shell NR array electrode after 110 cycles with capacity retention of 1073 mAhg-1. Significant increases in reversible capacities from 340 to 545 mAhg-1 and from 95 to 390 mAhg-1 at current densities of 1000 and 2000 mAg-1, respectively, are achieved as the ZnO NR arrays are coated with the ZnSnO3 QD shells. The remarkably improved electrochemical performances result from that the configuration of binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode not only facilitates the charge transfer through the solid electrolyte interface and the electronic/ionic conduction boundary as well as lithium ion diffusion but also effectively accommodates the volume change during repeated charge/discharge processes.

  7. In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells

    International Nuclear Information System (INIS)

    Cao, Chun; Wei, Liling; Wang, Gang; Shen, Jianquan

    2017-01-01

    Highlights: • NiCo 2 O 4 nanoplatelets were in-situ growing on carbon cloth as ORR catalyst in biofuel cells. • Binder-free cathode with the lower internal resistance. • Binder-free cathode was low-cost. • NiCo 2 O 4 -CFC shows better power generation performance than Pt/C. - Abstract: Air-cathode microbial fuel cells (MFCs) was one of most promising sustainable new energy device as well as an advanced sewage treatment technology, and thoroughly studies have been devoted to lower its cost and enhance its power generation. Herein, a binder-free and low-cost catalyst air-cathode was fabricated by in-situ electro-deposition of NiCo 2 O 4 nanoplatelets on carbon cloth, followed by feasible calcinations. The catalytic activity of catalyst air-cathode was optimized by varying the deposition time. And the optimal air-cathode was installed in real MFCs and exhibited distinct maximum out-put power density (645 ± 6 mW m −2 ), which was 12.96% higher than commercial Pt/C (571 ± 11 mW m −2 ). Noted that its remarkable electricity generation performance in MFCs should absolutely attributed to the well catalytic activity for oxygen reduction reaction, and more likely ascribed to its low internal resistance since binder-free catalyst air-cathode can facilitate the electron/charge transfer process. Therefore, it was an efficient strategy to improve the electricity generation performance of MFCs by using this binder-free catalyst air-cathode, which was also potential for application in many other electrochemical devices.

  8. Infiltration Behavior Of Mechanical Alloyed 75 wt% Cu-25 wt% WC Powders Into Porous WC Compacts

    Directory of Open Access Journals (Sweden)

    Şelte A.

    2015-06-01

    Full Text Available In this work infiltration behavior of mechanical alloyed 75 wt% Cu – 25 wt% WC powders into porous WC compacts were studied. Owing to their ductile nature, initial Cu powders were directly added to mechanical alloying batch. On the other hand initial WC powders were high energy milled prior to mechanical alloying. Contact infiltration method was selected for densification and compacts prepared from processed powders were infiltrated into porous WC bodies. After infiltration, samples were characterized via X-Ray diffraction studies and microstructural evaluation of the samples was carried out via scanning electron microscopy observations. Based on the lack of solubility between WC and Cu it was possible to keep fine WC particles in Cu melt since solution reprecipitation controlled densification is hindered. Also microstructural characterizations via scanning electron microscopy confirmed that the transport of fine WC fraction from infiltrant to porous WC skeleton can be carried out via Cu melt flow during infiltration.

  9. Phase composition and microstructure of WC-Co alloys obtained by selective laser melting

    Science.gov (United States)

    Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.

    2018-03-01

    Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.

  10. Synthesis and Characterization of Stable and Binder-Free Electrodes of TiO2 Nanofibers for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Phontip Tammawat

    2013-01-01

    Full Text Available An electrospinning technique was used to fabricate TiO2 nanofibers for use as binder-free electrodes for lithium-ion batteries. The as-electrospun nanofibers were calcined at 400–1,000°C and characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. SEM and TEM images showed that the fibers have an average diameter of ~100 nm and are composed of nanocrystallites and grains, which grow in size as the calcination temperature increases. The electrochemical properties of the nanofibers were evaluated using galvanostatic cycling and electrochemical impedance spectroscopy. The TiO2 nanofibers calcined at 400°C showed higher electronic conductivity, higher discharge capacity, and better cycling performance than the nanofibers calcined at 600, 800, and 1,000°C. The TiO2 nanofibers calcined at 400°C delivered an initial reversible capacity of 325 mAh·g−1 approaching their theoretical value at 0.1 C rate and over 175 mAh·g−1 at 0.3 C rate with limited capacity fading and Coulombic efficiency between 96 and 100%.

  11. Synthesis of a highly efficient 3D graphene-CNT-MnO2-PANI nanocomposite as a binder free electrode material for supercapacitors.

    Science.gov (United States)

    Asif, Muhammad; Tan, Yi; Pan, Lujun; Rashad, Muhammad; Li, Jiayan; Fu, Xin; Cui, Ruixue

    2016-09-29

    Graphene based nanocomposites have been investigated intensively, as electrode materials for energy storage applications. In the current work, a graphene-CNT-MnO 2 -PANI (GCM@PANI) nanocomposite has been synthesized on 3D graphene grown on nickel foam, as a highly efficient binder free electrode material for supercapacitors. Interestingly, the specific capacitance of the synthesized electrode increases up to the first 1500 charge-discharge cycles, and is thus referred to as an electrode activation process. The activated GCM@PANI nanocomposite electrode exhibits an extraordinary galvanostatic specific capacitance of 3037 F g -1 at a current density of 8 A g -1 . The synthesized nanocomposite exhibits an excellent cyclic stability with a capacitance retention of 83% over 12 000 charge-discharge cycles, and a high rate capability by retaining a specific capacitance of 84.6% at a current density of 20 A g -1 . The structural and electrochemical analysis of the synthesized nanocomposite suggests that the astonishing electrochemical performance might be attributed to the growth of a novel PANI nanoparticle layer and the synergistic effect of CNT/MnO 2 nanostructures.

  12. In-situ Electrodeposition of Highly Active Silver Catalyst on Carbon Fiber Papers as Binder Free Cathodes for Aluminum-air Battery.

    Science.gov (United States)

    Hong, Qingshui; Lu, Huimin

    2017-06-13

    Carbon fiber papers supported Ag catalysts (Ag/CFP) with different coverage of electro-active site are prepared by electrochemical deposition and used as binder free cathodes in primary aluminum-air (Al-air) battery. Scanning Electron Microscopy and X-ray Diffraction studies are carried out to characterize the as-prepared Ag/CFP air cathodes. Oxygen reduction reaction (ORR) activities on these air cathodes in alkaline solutions are systematic studied. A newly designed aluminum-air cell is used to further determine the cathodes performance under real operation condition and during the test, the Ag/CFP electrodes show outstanding catalytic activity for ORR in concentrated alkaline electrolyte, and no obvious activity degradation is observed after long-time discharge. The electrochemical test results display the dependence of coverage of the electro-active Ag on the catalytic performance of the air cathodes. The resulting primary Al-air battery made from the best-performing cathode shows an impressive discharge peak power density, outperforming that of using commercial nano-manganese catalyst air electrodes.

  13. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors

    Science.gov (United States)

    Hao, Xiaodong; Wang, Jie; Ding, Bing; Wang, Ya; Chang, Zhi; Dou, Hui; Zhang, Xiaogang

    2017-06-01

    Bacterial cellulose (BC), a typical biomass prepared from the microbial fermentation process, has been proved that it can be an ideal platform for design of three-dimensional (3D) multifunctional nanomaterials in energy storage and conversion field. Here we developed a simple and general silica-assisted strategy for fabrication of interconnected 3D meso-microporous carbon nanofiber networks by confine nanospace pyrolysis of sustainable BC, which can be used as binder-free electrodes for high-performance supercapacitors. The synthesized carbon nanofibers exhibited the features of interconnected 3D networks architecture, large surface area (624 m2 g-1), mesopores-dominated hierarchical porosity, and high graphitization degree. The as-prepared electrode (CN-BC) displayed a maximum specific capacitance of 302 F g-1 at a current density of 0.5 A g-1, high-rate capability and good cyclicity in 6 M KOH electrolyte. This work, together with cost-effective preparation strategy to make high-value utilization of cheap biomass, should have significant implications in the green and mass-producible energy storage.

  14. MoS2 anchored free-standing three dimensional vertical graphene foam based binder-free electrodes for enhanced lithium-ion storage

    International Nuclear Information System (INIS)

    Ouyang, Bo; Wang, Ying; Zhang, Zheng; Rawat, R.S.

    2016-01-01

    The vertical graphene with hierarchical three-dimensional network architecture is a promising substrate for high energy and power density Li-ion battery due to its large surface area, inherent three-dimensional network and excellent ion transport property. Three dimensional vertical graphene (3DVG) is synthesized via plasma enhanced chemical vapor deposition (PECVD) using cost-effective and environment-friendly natural oil of M. alternifolia as precursor. The MoS 2 nanosheets are then anchored on free-standing 3DVG by hydrothermal method to make the binder free MoS 2 @3DVG anode of a Li-ion battery. The MoS 2 @3DVG electrodes deliver an enhanced capacity of 670 mAh g −1 with the capacity retention of 99% after 30 cycles at 100 mA g −1 , much better than that of the reference sample of MoS 2 @3DG (550 mAh g −1 at 100 mA g −1 ) which uses 3D planar graphene. Superior performance of the vertical graphene based electrode is attributed to the unique hierarchical structure and densely packed reactive edges of the as-synthesized 3DVG. The versatility of plasma-assisted natural precursor based vertical graphene as functional nano-structured substrate for MoS 2 , as active material, for advanced energy storage devices is demonstrated.

  15. Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors

    Science.gov (United States)

    Lu, Yao; Fu, Kun; Zhang, Shu; Li, Ying; Chen, Chen; Zhu, Jiadeng; Yanilmaz, Meltem; Dirican, Mahmut; Zhang, Xiangwu

    2015-01-01

    Carbon nanofibers (CNFs), among various carbonaceous candidates for electric double-layer capacitor (EDLC) electrodes, draw extensive attention because their one-dimensional architecture offers both shortened electron pathways and high ion-accessible sites. Creating porous structures on CNFs yields larger surface area and enhanced capacitive performance. Herein, porous carbon nanofibers (PCNFs) were synthesized via centrifugal spinning of polyacrylonitrile (PAN)/poly(methyl methacrylate) (PMMA) solutions combined with thermal treatment and were used as binder-free EDLC electrodes. Three precursor fibers with PAN/PMMA weight ratios of 9/1, 7/3 and 5/5 were prepared and carbonized at 700, 800, and 900 °C, respectively. The highest specific capacitance obtained was 144 F g-1 at 0.1 A g-1 with a rate capability of 74% from 0.1 to 2 A g-1 by PCNFs prepared with PAN/PMMA weight ratio of 7/3 at 900 °C. These PCNFs also showed stable cycling performance. The present work demonstrates that PCNFs are promising EDLC electrode candidate and centrifugal spinning offers a simple, cost-effective strategy to produce PCNFs.

  16. Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors

    Science.gov (United States)

    Abbasi, Laleh; Arvand, Majid

    2018-07-01

    In the present work, we engineer hierarchical ultrathin CuCo2O4 nanosheets arrays on Ni foam through a facile, controllable and low-cost electrodeposition method by controlling deposition time and adjusting precursor's type, as a binder-free electrode for high performance supercapacitors. The effects of deposition time and types of precursors on the morphology of the as-prepared electrodes were investigated by X-ray diffraction, energy dispersive X-ray analysis, field-emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. As a results, the CuCo2O4 electrode prepared by nitrate salts at the deposition time of 10 min, includes the most uniform and ultrathin nanosheet arrays and exhibits the highest capacitance performance, such as ultrahigh specific capacitance of 1330 F g-1 at 2 A g-1 with 70% capacitance retention (938 F g-1) at ultrahigh current density of 60 A g-1, excellent cycling stability of 93.6% capacitance retention after 5000CD cycles and the maximum energy density of 29.55 Wh kg-1 at the power density of 0.4 kW kg-1. These superior electrochemical performances have been attributed to its unique structures with direct connected ultrathin nanosheets on the surface of Ni foam and abundant pores provide large electroactive sites for electrochemical reactions, as well as facile electron, ion transport and high electrical conductivity.

  17. Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors

    Science.gov (United States)

    Deng, Cuifen; Yang, Lishan; Yang, Chunming; Shen, Ping; Zhao, Liping; Wang, Zhiyu; Wang, Chunhui; Li, Junhua; Qian, Dong

    2018-01-01

    Spinel FeCo2S4 nanoflower arrays grown on Ni foam (FeCo2S4@Ni) have been successfully fabricated via a facile hydrothermal sulfurization of the corresponding FeCo2O4 precursor. The results of X-ray diffraction and X-ray photoelectron spectroscopy characterizations affirm that partial Co2+/Co3+ ions in Co3S4 have been substituted by Fe2+/Fe3+ ions to form FeCo2S4. The obtained FeCo2S4@Ni exhibits an ultrahigh specific capacitance (1644.07 mF cm-2 at 50 mA cm-2) and a supreme cycling stability (∼100% after 10,000 cycles at 50 mA cm-2) as binder-free electrodes for supercapacitors. The cycling stability of the fabricated product is the highest among the documented ternary metallic sulfides so far. The excellent supercapacitive performance of FeCo2S4@Ni emanates from the unique architectures of Fe2Co2S4 nanoflower arrays constituted by ultrathin nanoflakes, three-dimensional porous and conductive Ni foam, and solid skeleton of Ni foam for robust connections to the Fe2Co2S4.

  18. Synergetic interface between NiO/Ni3S2 nanosheets and carbon nanofiber as binder-free anode for highly reversible lithium storage

    Science.gov (United States)

    Jiang, Jialin; Ma, Chao; Yang, Yinbo; Ding, Jingjing; Ji, Hongmei; Shi, Shaojun; Yang, Gang

    2018-05-01

    A novel heterostructure of NiO/Ni3S2 nanoflake is synthesized and composited with carbon nanofibers (CNF) membrane. NiO/Ni3S2 nanoflakes are homogeneously dispersed in CNF network, herein, NiO/Ni3S2 like leaf and CNF like branch. Carbon nanofibers network efficiently prevents the pulverization and buffers the volume changes of NiO/Ni3S2, meanwhile, NiO/Ni3S2 nanoflakes through the conductive channels of carbon nanofibers own improved Li+ diffusion ability and structural stability. The capacity of NiO/Ni3S2/CNF reaches to 519.2 mA g-1 after 200 cycles at the current density of 0.5 A g-1 while NiO/Ni3S2 fades to 71 mAh g-1 after 40 cycles. Owing to the synergetic structure, the resultant binder-free electrode NiO/Ni3S2/carbon nanofibers shows an excellent reversible lithium storage capability.

  19. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    Science.gov (United States)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  20. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders

    Directory of Open Access Journals (Sweden)

    Hashemi Seyed R.

    2016-01-01

    Full Text Available In this research, cold compaction behavior and pressureless sinterability of WC, WC-10%wtCu and WC-30%wtCu powders were investigated. WC and WC/Cu powders were milled in a planetary ball mill for 20h. The milled powders were cold compacted at 100, 200, 300 and 400 MPa pressures. The compressibility behavior of the powders was evaluated using the Heckel, Panelli-Ambrosio and Ge models. The results showed that the Panelli-Ambrosio was the preferred equation for description the cold compaction behavior of the milled WC and WC-30%wtCu powders. Also, the most accurate model for describing the compressibility of WC-10%wtCu powders was the Heckel equation. The cold compacts were sintered at 1400°C. It was found that by increasing the cold compaction pressure of powder compacts before sintering, the sinterability of WC-30%wtCu powder compacts was enhanced. However, the cold compaction magnitude was not affected significantly on the sinterability of WC and WC-10%wtCu powders. The microstructural investigations of the sintered samples by Scanning Electron Microscopy (SEM confirmed the presence of porosities at the interface of copper-tungsten carbide phases.

  1. Three-dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua; Zhang, Miao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); He, Fang; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China)

    2016-12-30

    Highlights: • The 3D core-shell Fe{sub 2}O{sub 3}@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe{sub 2}O{sub 3} nanorods and outer carbon layer. • The Fe{sub 2}O{sub 3}@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe{sub 2}O{sub 3} nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe{sub 2}O{sub 3} nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe{sub 2}O{sub 3} to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  2. A combined approach for high-performance Li–O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor–promoter

    Directory of Open Access Journals (Sweden)

    Hyun-Seop Shin

    2018-04-01

    Full Text Available A rechargeable lithium–oxygen (Li–O2 battery is considered as a promising technology for electrochemical energy storage systems because its theoretical energy density is much higher than those of state-of-the-art Li-ion batteries. The cathode (positive electrode for Li–O2 batteries is made of carbon and polymeric binders; however, these constituents undergo parasitic decomposition reactions during battery operation, which in turn causes considerable performance degradation. Therefore, the rational design of the cathode is necessary for building robust and high-performance Li–O2 batteries. Here, a binder-free carbon nanotube (CNT electrode surface-modified by atomic layer deposition (ALD of dual acting RuO2 as an inhibitor–promoter is proposed for rechargeable Li–O2 batteries. RuO2 nanoparticles formed directly on the binder-free CNT electrode by ALD play a dual role to inhibit carbon decomposition and to promote Li2O2 decomposition. The binder-free RuO2/CNT cathode with the unique architecture shows outstanding electrochemical performance as characterized by small voltage gaps (∼0.9 V as well as excellent cyclability without any signs of capacity decay over 80 cycles.

  3. A combined approach for high-performance Li-O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor-promoter

    Science.gov (United States)

    Shin, Hyun-Seop; Seo, Gi Won; Kwon, Kyoungwoo; Jung, Kyu-Nam; Lee, Sang Ick; Choi, Eunsoo; Kim, Hansung; Hwang, Jin-Ha; Lee, Jong-Won

    2018-04-01

    A rechargeable lithium-oxygen (Li-O2) battery is considered as a promising technology for electrochemical energy storage systems because its theoretical energy density is much higher than those of state-of-the-art Li-ion batteries. The cathode (positive electrode) for Li-O2 batteries is made of carbon and polymeric binders; however, these constituents undergo parasitic decomposition reactions during battery operation, which in turn causes considerable performance degradation. Therefore, the rational design of the cathode is necessary for building robust and high-performance Li-O2 batteries. Here, a binder-free carbon nanotube (CNT) electrode surface-modified by atomic layer deposition (ALD) of dual acting RuO2 as an inhibitor-promoter is proposed for rechargeable Li-O2 batteries. RuO2 nanoparticles formed directly on the binder-free CNT electrode by ALD play a dual role to inhibit carbon decomposition and to promote Li2O2 decomposition. The binder-free RuO2/CNT cathode with the unique architecture shows outstanding electrochemical performance as characterized by small voltage gaps (˜0.9 V) as well as excellent cyclability without any signs of capacity decay over 80 cycles.

  4. MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries

    Science.gov (United States)

    Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P.

    2016-02-01

    Manganese dioxide (MnO2) has been recognized as an effective catalyst for the oxygen reduction and oxygen evolution reactions in non-aqueous lithium-oxygen batteries. However, a further improvement in battery performance with the MnO2 catalyst is limited by its low electronic conductivity and catalytic activity, which strongly depend on the morphology and composition. In this work, we develop a carbon- and binder-free MnO2-x nanosheets/stainless steel (SS) cathode via a simple and effective electrodeposition-solvothermal route. The created Mn(III) and oxygen vacancy in MnO2-x nanosheets allows an significant increase in the electronic conductivity and catalytic activity. It is experimentally shown that the use of the present nanostructure MnO2-x/SS cathode in a non-aqueous lithium-oxygen battery results in a rechargeable specific capacity of 7300 mAh g-1 at a current density of 200 mA g-1, which is 39% higher than that with the MnO2/SS cathode. In addition, the specific capacities at 400 mA g-1 and 800 mA g-1 reach 5249 mAh g-1 and 2813 mAh g-1, respectively, which are over 30% higher than that with the MnO2/SS cathode. Furthermore, the discharge/charge cycle test shows no degradation for 120 cycles. All the results show that the present nanostructure MnO2-x/SS cathode is a promising candidate for high-performance lithium-oxygen batteries.

  5. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Zhong Lin; Lu, Xianmao

    2018-04-24

    Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO 2 , Si 3 N 4 , Ag, Ti, Ta, SnIn 2 O 5 , Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al 2 O 3 , HfO 2 , and TiO 2 ) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H 2 -reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm 2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO 4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.

  6. In-situ synthesis of 3D GA on titanium wire as a binder- free electrode for electro-Fenton removing of EDTA-Ni.

    Science.gov (United States)

    Wen, Shulong; Niu, Zhuyu; Zhang, Zhen; Li, Lianghao; Chen, Yuancai

    2018-01-05

    Ethylenediaminetetraacetic acid (EDTA) could form stable complexes with toxic metals such as nickel due to its strong chelation. The three-dimensional (3D) macroporous graphene aerogels (GA), which was in-situ assembled by reduced graphene oxide (rGO) sheets on titanium wire as binder-free electrode, was presented as cathode for the degradation of EDTA-Ni in Electro-Fenton process. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM) and Brunauer-Emmett-Teller (BET) results indicated 3D GA formed three dimensional architecture with large and homogenous macropore structure and surface area. Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV) and Rotating Ring-disk Electrode (RRDE) results showed that the 3D GA cathode at pH 3 displayed the highest current density and electrochemical active surface area (ECSA), and better two-electron selectivity for ORR than other pH value, confirming the 3D-GA cathode at pH 3 has the highest electrocatalytic activity and generates more H 2 O 2 . The factors such as pH, applied current density, concentration of Fe 2+ , Na 2 SO 4, and aeration rates of air were also investigated. Under the optimum conditions, 73.5% of EDTA-Ni was degraded after reaction for 2h. Mechanism analysis indicated that the production of OH on the 3D GA cathode played an important role in the removal of EDTA-Ni in the 3D GA-EF process, where the direct regeneration of Fe 2+ on the cathode would greatly reduce the consumption of H 2 O 2 . Therefore, it is of great promise for 3D-GA catalyst to be developed as highly efficient, cost-effective and durable cathode for the removal of EDTA-Ni. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electrodeposited binder-free NiCo2O4@carbon nanofiber as a high performance anode for lithium ion batteries

    Science.gov (United States)

    Zhang, Jie; Chu, Ruixia; Chen, Yanli; Jiang, Heng; Zhang, Ying; Huang, Nay Ming; Guo, Hang

    2018-03-01

    Binder-free nickel cobaltite on a carbon nanofiber (NiCo2O4@CNF) anode for lithium ion batteries was prepared via a two-step procedure of electrospinning and electrodeposition. The CNF was obtained by annealing electrospun poly-acrylonitrile (PAN) in nitrogen (N2). The NiCo2O4 nanostructures were then grown on the CNF by electrodeposition, followed by annealing in air. Experimental results showed that vertically aligned NiCo2O4 nanosheets had uniformly grown on the surface of the CNF, forming an interconnected network. The NiCo2O4@CNF possessed considerable lithium storage capacity and cycling stability. It exhibited a high reversible capacity of 778 mAhg-1 after 300 cycles at a current density of 0.25 C (1 C = 890 mAg-1) with an average capacity loss rate of 0.05% per cycle. The NiCo2O4@CNF had considerable rate capacities, delivering a capacity of 350 mAhg-1 at a current density of 2.0 C. The outstanding electrochemical performance can be mainly attributed to the following: (1) The nanoscale structure of NiCo2O4 could not only shorten the diffusion path of lithium ions and electrons but also increase the specific surface area, providing more active sites for electrochemical reactions. (2) The CNF with considerable mechanical strength and electrical conductivity could function as an anchor for the NiCo2O4 nanostructure and ensure an efficient electron transfer. (3) The porous structure resulted in a high specific surface area and an effective buffer for the volume changes during the repeated charge-discharge processes. Compared with a conventional hydrothermal method, electrodeposition could significantly simplify the preparation of NiCo2O4, with a shorter preparation period and lower energy consumption. This work provides an alternative strategy to obtain a high performance anode for lithium ion batteries.

  8. Electrospun LiFePO₄/C Composite Fiber Membrane as a Binder-Free, Self-Standing Cathode for Power Lithium-Ion Battery.

    Science.gov (United States)

    Chen, Li-Li; Shen, Xiang-Qian; Jing, Mao-Xiang; Zhu, Sheng-Wen; Pi, Zhi-Chao; Li, Jing-Quan; Zhai, Hong-Ai; Xiao, Ke-Song

    2018-07-01

    A LiFePO4/C composite fiber membrane was fabricated by the electrospinning method and subsequent thermal treatment. The thermal decomposition process was analyzed by TG/DSC, the morphology, microstructure and composition were studied using SEM, TEM, XRD, Raman, respectively. The results indicated that the prepared LiFePO4/C composite fibers were composed of nanosized LiFePO4 crystals and amorphous carbon coatings, which formed a three dimensional (3D) long-range networks, greatly enhanced the electronic conductivity of LiFePO4 electrode up to 3.59× 10-2 S · cm-2. The 3D LiFePO4/C fiber membrane could be directly used as a binder-free, self-standing cathode for lithium-ion battery, and exhibited an improved capacity and rate performance. The LiFePO4/C composite electrode delivered a discharge capacity of 116 mAh·g-1, 109 mAh·g-1, 103 mAh·g-1, 91 mAh·g-1, 80 mAh·g-1 at 0.1 C, 0.5 C, 1 C, 3 C, 5 C, respectively. And a stable cycling performance was also achieved that the specific capacity could retain 75 mA·g-1 after 500 cycles at 5 C. Therefore, this LiFePO4/C composite fiber membrane was promising to be used as a cathode for power lithium ion battery.

  9. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M.

    2005-01-01

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported

  10. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)]. E-mail: music@mch.rwth-aachen.de; Schneider, Jochen M. [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)

    2005-01-15

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported.

  11. Robust binder-free anodes assembled with ultralong mischcrystal TiO2 nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage

    Science.gov (United States)

    Shi, Yongzheng; Yang, Dongzhi; Yu, Ruomeng; Liu, Yaxin; Hao, Shu-Meng; Zhang, Shiyi; Qu, Jin; Yu, Zhong-Zhen

    2018-04-01

    To satisfy increasing power demands of mobile devices and electric vehicles, rationally designed electrodes with short diffusion length are highly imperative to provide highly efficient ion and electron transport paths for high-rate and long-life lithium-ion batteries. Herein, binder-free electrodes with the robust three-dimensional conductive network are prepared by assembling ultralong TiO2 nanowires with reduced graphene oxide (RGO) sheets for high-performance lithium-ion storage. Ultralong TiO2 nanowires are synthesized and used to construct an interconnecting network that avoids the use of inert auxiliary additives of polymer binders and conductive agents. By thermal annealing, a small amount of anatase is generated in situ in the TiO2(B) nanowires to form abundant TiO2(B)/anatase interfaces for accommodating additional lithium ions. Simultaneously, RGO sheets efficiently enhance the electronic conductivity and enlarge the specific surface area of the TiO2/RGO nanocomposite. The robust 3D network in the binder-free electrode not only effectively avoids the agglomeration of TiO2/RGO components during the long-term charging/discharging process, but also provides direct and fast ion/electron transport paths. The binder-free electrode exhibits a high reversible capacity of 259.9 mA h g-1 at 0.1 C and an excellent cycling performance with a high reversible capacity of 111.9 mA h g-1 at 25 C after 5000 cycles.

  12. Preparation of binder-free porous ultrathin Ni(OH)2 nanoleafs using ZnO as pore forming agent displaying both high mass loading and excellent electrochemical energy storage performance

    International Nuclear Information System (INIS)

    Xu, Panpan; Miao, Chenxu; Cheng, Kui; Ye, Ke; Yin, Jinling; Cao, Dianxue; Wang, Guiling; Zhang, Xianfa

    2016-01-01

    Highlights: • Porous Ni(OH) 2 nanoleaf is prepared by using ZnO as pore forming agent. • The mass loading of active material on binder-free Ni(OH) 2 /NF electrode is as high as 10 mg. • The porous Ni(OH) 2 /NF electrode displays high specific capacitance of 1142C g −1 . - Abstract: Ni(OH) 2 has been reported widely as one of the most promising supercapactior electrode materials due to its high specific capacitance, yet which were only based on low mass loading. Thus, it is desirable to promote supercapacitor performance for high mass loading Ni(OH) 2 through optimizing microstructure. In this work, we first prepared crossed ultrathin Ni(OH) 2 /ZnO nanoleafs directly grown on nickel foam via hydrothermal method, and then we produced pores on the nanoleafs by dissolving ZnO in alkaline solution. Definitely, this unique structure design for high mass loading binder-free Ni(OH) 2 electrode could benefit the penetration of electrolyte and the transportation of electrons, efficiently improving the supercapacitor performance. The obtained porous Ni(OH) 2 /NF electrode exhibits a mass specific capacity of 1142C g −1 based on 10 mg active materials, equating to a areal specific capaciy of 11.4C cm −2 , and pleasant cycling stability with retention of 85% of initial capacity after 10000 charge-discharge cycles. The fabricated asymmetric device shows a high energy density of 42 Wh kg −1 (4.73 mWh cm −3 ) at power density of 105 W kg −1 (17 mW cm −3 ). These results demonstrate the optimized structure makes the high mass loading binder-free Ni(OH) 2 /NF electrode could also display excellent supercapacitor performance.

  13. Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors

    International Nuclear Information System (INIS)

    Liu, Sainan; Wu, Jun; Zhou, Jiang; Fang, Guozhao; Liang, Shuquan

    2015-01-01

    Graphical abstract: Mesoporous NiCo 2 O 4 nanoneedles grown on three dimensional graphene networks have been successfully prepared by a facile solvothermal reaction with subsequent annealing treatment. Significantly, as a binder-free electrode for high-performance lithium-ion batteries and supercapacitors, the hybrid exhibits high specific capacity/capacitance and excellent cycling stability over long-term cycling. - Highlights: • Mesoporous NiCo 2 O 4 nanoneedles grown on 3D graphene networks are successfully prepared. • The NiCo 2 O 4 /3DGN hybrid is directly used as binder-free electrode for LIBs and SCs. • The hybrid exhibits superior long-term cycling stability up to 2000 cycles for LIBs application. • The hybrid delivers a high specific capacitance of 970 F g −1 at 20 A g −1 . • The hybrid demonstrates excellent capacitance retention of ∼96.5% after 3000 cycles for SCs application. - Abstract: Mesoporous nickel cobaltite (NiCo 2 O 4 ) nanoneedles grown on three dimensional graphene networks have been successfully prepared by a facile solvothermal reaction with subsequent annealing treatment. The NiCo 2 O 4 /3DGN hybrid is then used as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. The three dimensional graphene based binder-free electrode is considered more desirable than powder nanostructures in terms of shorter Li + ion diffusion and electron transportation paths, good strain accommodation, better interfacial/chemical distributions and high electrical conductivity. As a result, when used as an anode material for lithium-ion batteries (LIBs), it exhibits high specific discharge capacity as well as superior cycling stability up to 2000 cycles. When it is used for supercapacitor application, this hybrid delivers a high specific capacitance of 970 F g −1 at a high current density of 20 A g −1 with excellent capacitance retention of ∼96.5% after 3000 cycles. Moreover, this synthesis strategy is simple

  14. Effects of WC Particle Size and Co Content on the Graded Structure in Functionally Gradient WC-Co Composites

    Directory of Open Access Journals (Sweden)

    Yuan Yigao

    2016-01-01

    Full Text Available Functionally gradient WC-Co composites having a Co depleted surface zone and not comprising the h phase can be manufactured via carburizing process. During carburizing, besides carburizing process parameters, the microstructural parameters of WC-Co materials, such as WC grain size and Co content, also have significant influences on the formation of Co gradient structure. In this study, the effects of WC particle size and Co content on the gradient structure within gradient hardmetals have been studied, based on a series of carburizing experiments of WC-Co materials with different WC particle sizes and cobalt contents. The results show that both the thickness and the amplitude of the gradients within gradient WC-Co materials increase with increasing initial WC particle size and Co content of WC-Co alloys. The reason for this finding is discussed.

  15. 3D hierarchical dandelion-like NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam for an effective binder-free supercapacitor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaoyang; Hong, Wei; Zhao, Huilin; Song, Yahui; Qiu, Haixia, E-mail: haixiaqiuls@163.com; Gao, Jianping

    2017-01-15

    In this work, the 3D hierarchical dandelion-like NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam has been developed by introducing PANI as the precursor of N-doped carbon. Meanwhile, the NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam with a novel 3D hierarchical dandelion-like structure was verified by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy, etc. In addition, the NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam was directly used as a binder-free supercapacitor electrode and its performances were investigated by cycle voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The results show that the obtained NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam electrode owns good electrochemical performances, such as high specific capacitance (864 F/g at 1 A/g) and good cycling stability, owing to the porous feature from its novel 3D hierarchical dandelion-like structure. - Highlights: • The 3D hierarchical dandelion-like NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam was prepared. • It can be directly used as a binder-free supercapacitor electrode. • It owns good electrochemical performances.

  16. Observation of WC grain shapes determined by carbon content during liquid phase sintering of WC-Co alloys

    International Nuclear Information System (INIS)

    Sona Kim; Hyoun-Ee Kim; Seok-Hee Han; Jong-Ku Park

    2001-01-01

    In the composite materials of WC-Co alloys, the faceted WC grains as a hard phase are dispersed in the ductile matrix of cobalt. Properties of WC-Co alloys are affected by microstructural factors such as volume fraction of WC phase, size of WC grains, and carbon content (kinds of constituent phases). Although the properties of WC-Co alloys are inevitably affected by the shape of WC grains, the shape of WC grains has not been thrown light on the properties of WC-Co alloys yet, because it has been regarded to have a uniform shape regardless of alloy compositions. It is proved that the WC grains have various shapes varying reversibly with carbon content in the sintered WC-Co compacts. This dependency of grain shape on the carbon content is attributed to asymmetric atomic structure of WC crystal. The {10 1 - 0} prismatic planes are distinguished into two groups with different surface energy according to their atomic structures. The prismatic planes of high surface energy tend to disappear in the compacts with high carbon content. In addition, these high energy prismatic planes tend to split into low energy surfaces in the large WC grains. (author)

  17. Metal modified tungsten carbide (WC) for catalytic and electrocatalytic applications

    Science.gov (United States)

    Mellinger, Zachary J.

    One of the major challenges in the commercialization of proton exchange membrane fuel cells (PEMFC) is the cost, and low CO tolerance of the anode electrocatalyst material. The anode typically requires a high loading of precious metal electrocatalyst (Pt or Pt--Ru) to obtain a useful amount of electrical energy from the electrooxidation of methanol (CH3OH) or ethanol (C2H5OH). The complete electro--oxidation of methanol or ethanol on these catalysts produces strongly adsorbed CO on the surface, which reduces the activity of the Pt or Pt--Ru catalysts. Another major disadvantage of these electrocatalyst components is the scarcity and consequently high price of both Pt and Ru. Tungsten monocarbide (WC) has shown similar catalytic properties to Pt, leading to the utilization of WC and metal modified WC as replacements to Pt and Pt--Ru. In this thesis we investigated WC and Pt--modified WC as a potentially more CO--tolerant electrocatalysts as compared to pure Pt. These catalysts would reduce or remove the high loading of Pt used industrially. The binding energy of CO, estimated using temperature programmed desorption, is weaker on WC and Pt/WC than on Pt, suggesting that it should be easier to oxidize CO on WC and Pt/WC. This hypothesis was verified using cyclic voltammetry to compare the electro--oxidation of CO on WC, Pt/WC, and Pt supported on carbon substrates, which showed a lower voltage for the onset of oxidation of CO on WC and Pt/WC than on Pt. After observing these improved properties on the Pt/WC catalysts, we decided to expand our studies to investigate Pd--modified WC as Pd is less expensive than Pt and has shown more ideal properties for alcohol electrocatalysis in alkaline media. Pd/WC showed a lower binding energy of CO than both its parent metal Pd as well as Pt. Then, density functional theory (DFT) calculations were performed to determine how the presence of Pd affected the bonding of methanol and ethanol on the WC surface. The DFT studies showed

  18. On the preparation of fine V8C7-WC and V4C3-WC powders

    CSIR Research Space (South Africa)

    Osborne, C

    1997-01-01

    Full Text Available The aim of this work was to produce V8C7-WC and V4C3-WC powders with grain size between 1 and 2mu-m, as a first stage of the preparation of fine grained WC-VC-Co hardmetal. V8C7-WC powder was produced via two routes: starting from preformed V8C7...

  19. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  20. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    International Nuclear Information System (INIS)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K.

    2003-01-01

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications

  1. Sampling and analysis of the inactive waste tanks TH-2, WC-1, and WC-15

    International Nuclear Information System (INIS)

    Autrey, J.W.; Keller, J.M.; Griest, W.H.; Botts, J.L.; Schenley, R.L.; Sipe, M.A.

    1992-02-01

    Thirty-eight inactive liquid low-level radioactive waste tanks are currently managed by the Environmental Restoration Program of Oak Ridge National Laboratory. The contents of these tanks are to be characterized in preparation for future corrective actions and remediation activities as part of compliance with the pending Federal Facility Agreement for the Oak Ridge Reservation. Twenty-nine of these tanks were sampled and analyzed in 1989. Three of the tanks (TH-2, WC-1, and WC-15) were not accessible from the surface and thus were not sampled until 1990. This report presents the sampling and analytical results of that campaign. All three tanks in this report had negligible regulatory organic compounds in the samples that were collected. There were no US Environmental Protection Agency (EPA) Target Compound List (TCL) constituents for volatile organics detected in any of the aqueous samples. The only semivolatile organics detected were 2-chlorophenol (52 μg/L) in tank TH-2 and dichloroethane (14--15 μg/L) and diethyl either (15--17 μg/L) in tank WC-15. A thin oil layer was discovered floating on top of the aqueous contents in tank WC-15. The analysis of the oil layer detected no volatile organics and showed only one EPA TCL constituent, di-n-butylphthalate, at 1900 μg/L. Low levels of Resource Conservation and Recovery Act (RCRA) metals were observed in the samples from tank TH-2, but only the mercury level exceeded the RCRA limit. Samples from tank WC-1 had elevated levels of the RCRA metals barium, chromium, and lead. There were also finely suspended particles in one of the samples from tank WC-1, which was filtered and analyzed separately. This solid fines have levels of transuranium elements 238 Pu and 241 Am high enough to classified as transuranic waste

  2. Contribution to the quantum study of neutral tungsten carbide WC and ionized (WC"q"+, q=1 and 2)

    International Nuclear Information System (INIS)

    Sabor, Said

    2015-01-01

    Metal carbides and oxides are more interesting in catalytic and industrial domains. Tungsten carbide WC has been detected as serious substituent of platinum Pt catalytic. The ultimate goal of this thesis is theoretical studies of electronic structure, stability and the bound nature on WC, WO and its cations. Our preliminary research were motivated by the available spectroscopic data on W, W"+, W"2"+, WC and WC"2"+. We used the methodology (CASSCF/MRCI/MRCI+Q/aug-cc-pV5Z(-PP)) implemented on MOLPRO package to perform quantum calculations with high accuracy taking into account the correlation and relativistic effects with a specific treatment of spin orbit coupling for some low lying excited electronic states of WC"n"+, (n=0, 1 et 2). Our results are shown in good agreement with those available in the literature. Furthermore, in this work for the first time we demonstrated that a carbide dication (WC"2"+) is thermodynamically stable. (author) [fr

  3. The iron curtain of WC9 stars

    International Nuclear Information System (INIS)

    Hucht, K.A. van der; Willis, A.J.

    1982-01-01

    High resolution (Δlambda approximately equal to 0.1 A) IUE spectra have been obtained of the two WC9 stars HD 164270 and HD 136488, covering the wavelength range lambdalambda1150-2050. The former star shows P Cygni profiles indicating a stellar wind terminal velocity of Vsub(infinity) approximately equal to 1400 km s -1 , and the latter Vsub(infinity) approximately equal to -1800 km s -1 . A common feature in the spectra of both stars is narrow displaced absorptions due to Fe III (UV34) transitions arising from a metastable lower level. These features are displaced at sub-terminal velocities (-830 km s -1 for HD 164270 and -1030 km s -1 for Hd 136488) and are believed to be formed in the deceleration region of their stellar winds. The properties of these inferred Fe III circumstellar shells derived from these data are discussed. (Auth.)

  4. Grinding of WC-Co hard-metals

    NARCIS (Netherlands)

    Hegeman, J.B.J.W.; Hosson, de J.Th.M.; With, de G.

    2001-01-01

    Morphol. of ground surface of WC-Co cermets with 10 and 20% Co was studied. A deformed and detached surface layer was found on top of the specimens after surface grinding with a diamond wheel. Etching the surface layer revealed WC grains in the subsurface of the machined specimens. Most of these

  5. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors

    Science.gov (United States)

    Lai, Chuilin; Zhou, Zhengping; Zhang, Lifeng; Wang, Xiaoxu; Zhou, Qixin; Zhao, Yong; Wang, Yechun; Wu, Xiang-Fa; Zhu, Zhengtao; Fong, Hao

    2014-02-01

    Mechanically flexible mats consisting of electrospun carbon nanofibers (ECNFs) were prepared by first electrospinning aqueous mixtures containing a natural product of alkali lignin together with polyvinyl alcohol (PVA) into composite nanofiber mats followed by stabilization in air and carbonization in an inert environment. Morphological and structural properties, as well as specific surface area, total pore volume, average pore size, and pore size distribution, of the lignin-based ECNF mats were characterized; and their electrochemical performances (i.e., capacitive behaviors) were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The lignin-based ECNF mats exhibited outstanding performance as free-standing and/or binder-free electrodes of supercapacitors. For example, the ECNFs made from the composite nanofibers with mass ratio of lignin/PVA being 70/30 (i.e., ECNFs (70/30)) had the average diameter of ∼100 nm and the Brunauer-Emmett-Teller (BET) specific surface area of ∼583 m2 g-1. The gravimetric capacitance of ECNFs (70/30) electrode in 6 M KOH aqueous electrolyte exhibited 64 F g-1 at current density of 400 mA g-1 and 50 F g-1 at 2000 mA g-1. The ECNFs (70/30) electrode also exhibited excellent cycling durability/stability, and the gravimetric capacitance merely reduced by ∼10% after 6000 cycles of charge/discharge.

  6. Hierarchically MnO2-Nanosheet Covered Submicrometer-FeCo2O4-Tube Forest as Binder-Free Electrodes for High Energy Density All-Solid-State Supercapacitors.

    Science.gov (United States)

    Zhu, Baogang; Tang, Shaochun; Vongehr, Sascha; Xie, Hao; Meng, Xiangkang

    2016-02-01

    The current problem of the still relatively low energy densities of supercapacitors can be effectively addressed by designing electrodes hierarchically on micro- and nanoscale. Herein, we report the synthesis of hierarchically porous, nanosheet covered submicrometer tube forests on Ni foam. Chemical deposition and thermal treatment result in homogeneous forests of 750 nm diameter FeCo2O4 tubes, which after hydrothermal reaction in KMnO4 are wrapped in MnO2-nanosheet-built porous covers. The covers' thickness can be adjusted from 200 to 800 nm by KMnO4 concentration. An optimal thickness (380 nm) with a MnO2 content of 42 wt % doubles the specific capacitance (3.30 F cm(-2) at 1.0 mA cm(-2)) of the bare FeCo2O4-tube forests. A symmetric solid-state supercapacitor made from these binder-free electrodes achieves 2.52 F cm(-2) at 2 mA cm(-2), much higher than reported for capacitors based on similar core-shell nanowire arrays. The large capacitance and high cell voltage of 1.7 V allow high energy and power densities (93.6 Wh kg(-1), 10.1 kW kg(-1)). The device also exhibits superior rate capability (71% capacitance at 20 mA cm(-2)) and remarkable cycling stability with 94% capacitance retention being stable after 1500 cycles.

  7. Electrochemical properties of mixed WC and Pt-black powders

    Directory of Open Access Journals (Sweden)

    MAJA D. OBRADOVIC

    2008-12-01

    Full Text Available The electrochemical characteristics of a mixture of Pt-black and WC powders and its catalytic activity for methanol and formic acid oxidation were investigated in acid solution. XRD and AFM measurements revealed that the WC powder employed for the investigation was a single-phase material consisting of crystallites/spherical particles of average size of about 50 nm, which were agglomerated into much larger particles. Cyclic voltammetry showed that the WC underwent electrochemical oxidation, producing tungstate species. In the case of the mixed Pt + WC powders, the tungstate species were deposited on the Pt as a thin film of hydrous tungsten oxide. Enhanced hydrogen intercalation in the hydrous tungsten oxide was observed and it was proposed to be promoted in mixed powders by the presence of hydrogen adatoms on bare Pt sites. The determination of Pt surface area in the Pt + WC layer by stripping of underpotentially deposited Cu revealed that the entire Pt surface was accessible for underpotential deposition of Cu. Investigation of the electrochemical oxidation of methanol and formic acid on Pt + WC and pure Pt layers did not indicate electrocatalytic promotion due to the presence of WC.

  8. The Nature of Bonding in WC and WN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The nature of bonding in the title compounds has been studied by using CASSCF and FOCl techniques. The ground states of WC and WN are found to be 3Δ and 4∑- state arising primarily from:...1σ2σ21π41δ13σ1 and ...1σ2σ21π41δ23σ1 configuration respectively. WC shows a strong character of covalent bond while WN have obvious character of ionic bond and the dissociation energy of WN is larger than that of WC (6.15 and 5.41 eV respective).

  9. Effects of WC phase contents on the microstructure, mechanical properties and tribological behaviors of WC/a-C superlattice coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Jibin [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); He, Dongqing [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Wang, Liping, E-mail: lpwang@licp.cas.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-12-01

    Graphical abstract: - Highlights: • WC/a-C superlattice coatings were synthesized with various WC phase content. • Superlattice structure diminished residual stress and densified microstructure. • Nanocomposite coating with W 5.43 at.% achieved the optimal tribological properties. • Friction triggered WO{sub 3} lead to a low friction coefficient at 200 °C. - Abstract: Nanocomposite WC/a-C coatings with variable contents of tungsten carbide (WC{sub 1−x}) and amorphous carbon (a-C) were successfully fabricated using a magnetron sputtering process. The microstructure, mechanical properties and tribological behaviors of the as-fabricated coatings were investigated and compared. The results showed that the “superlattice coating” feature of an alternating multilayer structure with a-C and WC{sub 1−x} nanocrystallites layers on the nanoscale was formed. These multilayer superlattice structures led to diminished residual stress and improved the strength of the adhesion to the substrate. The WC/a-C coating with W 5.43 at.% exhibited low friction coefficients of 0.05 at 25 °C and 0.28 at 200 °C. This significant improvement in the tribological performances of the WC/a-C coating was mainly attributed to the superior “superlattice” microstructure and the formation of a continuously compacted tribofilms, which was rich in graphitized carbon at 25 °C and dominated by the friction triggered WO{sub 3} at 200 °C. Moreover, the WC/a-C coating with W 5.43 at.% achieved optimal anti-wear properties at 25 °C due to the synergistic combination of the enhancement effects of the WC{sub 1−x} nanoparticles and the partition effect from the transfer film that restricted direct contact of the steel ball with the coating and thus prevented further intense wear. The accelerated wear of the WC/a-C coating with the increase of the WC phase content at 200 °C might be due to the combination of oxidation wear and abrasive wear that originated from the WC{sub 1−x} phase.

  10. Fracture toughness measurements of WC-based hard metals

    International Nuclear Information System (INIS)

    Prakash, L.; Albert, B.

    1983-01-01

    The fracture toughness of WC-based cemented carbides was determined by different methods. The values obtained are dependent on the procedure of measurement. Each method thoughness of hard metals mutually. (orig.) [de

  11. Micromechanics of fracture in WC-Co hardmetals

    International Nuclear Information System (INIS)

    Dusza, J.; Parilak, L.

    1986-01-01

    A study has been made in WC-Co cemented carbides with grain sizes of 2.1 - 3.6 μm and 13 - 32 vol% Co, of the relationship between the fracture toughness and microstructural parameters and micromechanisms of fracture. Regression analyses have been used to derive empirical relationships between fracture toughness, and the binder spacing, the contiguity and the relative proportions of fracture in the binder phase and between contiguous WC grains

  12. Completion report for the isolation and remediation of inactive liquid low-level radioactive waste tanks WC-5, WC-6, WC-8, WC-19, 3002-A, 7560, and 7562 at Oak Ridge National Laboratory Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-12-01

    The Federal Facility Agreement (FFA) between the U.S. Environmental Protection Agency (EPA), Tennessee Department of Environment and Conservation (TDEC), and U.S. Department of Energy (DOE) requires that all liquid low-level waste tanks at Oak Ridge National Laboratory removed from service, designated in the FFA as Category D, be remediated in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. A human health risk screening assessment was conducted for inactive Tanks WC-5, WC-6, WC-8, WC-19, 3002-A, 7560, and 7562 as part of an evaluation to determine the method of remediation necessary to safely and permanently isolate and remediate the tanks. Risk screening assessment results indicated that the health risks associated with these tanks were within or below the EPA range of concern of 1 x 10 -4 to 1 x 10 -6 . On the basis of these results and with regulators concurrence, it was determined that either no action or in-place stabilization of the tanks would satisfy risk-based remediation goals. Therefore, decisions were made and approved by DOE to remediate these tanks in-place as maintenance actions rather than actions under the CERCLA process. Letters documenting these decisions were approved by DOE and subsequently submitted to TDEC and EPA, who concurred with the maintenance actions. Tanks WC-5, WC-6, WC-8, WC-19, 3002-A, 7560, and 7562 were isolated from associated piping, electrical systems, and instrumentation and were grouted in-place. Tank 7562 was originally isolated from associated piping and instrumentation and left in-place empty for future remedial consideration. Upon further consideration, the decision was made by DOE, with concurrence by the regulators, to complete the maintenance action of Tank 7562 by grouting it in-place in March 1997

  13. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  14. Wear resistance and fracture mechanics of WC-Co composites

    International Nuclear Information System (INIS)

    Kaytbay, Saleh; El-Hadek, Medhat

    2014-01-01

    Manufacturing of WC-Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC-Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress-strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented. (orig.)

  15. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  16. Hot isostatic pressing of nanosized WC-Co hardmetals

    International Nuclear Information System (INIS)

    Azcona, I.; Ordonez, A.; Sanchez, J.M.; Castro, F.; Dominguez, L.

    2001-01-01

    A new technique based on hot isostatic pressing (HIP) has been developed to produce dense nanosized WC-Co hardmetals without the addition of grain growth inhibitors. The glass encapsulation process is the key for the effective application of isostatic pressure at temperatures well below those usually required for reaching the closed porosity state in the WC-Co system. Fully dense WC-Co samples with cobalt contents ranging from 10 to 12 wt. % have been obtained by this technique at temperatures between 1000 o C and 1200 o C with 150 MPa of applied isostatic pressure for 30 minutes. The role of isostatic pressure on the activation of densification mechanisms is discussed. (author)

  17. Lightning Tests on the WC-130 Research Aircraft.

    Science.gov (United States)

    1982-12-01

    in the WC-136 tests at various times.) E- Feild Fiber Optic Test Article Sensor Transmitter (Typ)WiePr Indtuced Voltag Sensor"" *Fiber I"=Current optic...well-characterized. 5.1 Skin Current Measurements Skin current vectors were measured at five fuselage locations on the left side of the WC-130 at a...MGL-S7) which were mounted so that they sampled two orthogonal components of the skin current vector . The measured responses were then inte- grated

  18. Phase size distribution in WC/Co hardmetal

    International Nuclear Information System (INIS)

    Roebuck, B.; Bennett, E.G.

    1986-01-01

    A high-resolution field emission scanning electron microscope was used to perform accurate quantitative metallography on a variety of WC/Co hardmetals. Particular attention was paid to obtaining the mean size and size distribution of the cobalt phase by linear analysis. Cobalt regions are frequently submicron and difficult to resolve adequately by conventional methods. The WC linear intercept distributions, and contiguity were also measured at the same time. The results were used to examine the validity of theoretic derivations of cobalt intercept size

  19. Infrared processed Cu composites reinforced with WC particles

    International Nuclear Information System (INIS)

    Deshpande, P.K.; Li, J.H.; Lin, R.Y.

    2006-01-01

    Copper matrix composites with WC particle reinforcements have been prepared with an innovative infrared infiltration technique. The volume content of the reinforcement particles in the composite is about 53%. The relative composite density of as high as 99.9% has been obtained with this process. The electric conductivity of composites prepared in this study as determined by a four-point probe method, is similar to commercially available Cu/W composites containing 52 vol% tungsten. Microhardness, microstructure and wear resistance of the composites were also determined. The microstructure of Cu/WC composite reveals excellent wetting between the two constituent phases, WC and copper. The microhardness values of all completely infiltrated Cu/WC composites were in the range of 360-370 HV which is significantly higher than the microhardness of pure copper, 65 HV. Wear resistance of the composites was determined with a pin on disk wear test technique. The wear test results show that composites prepared in this study performed much better than those commercially available Cu/W composites by more than two-fold against silicon carbide abrasive disks

  20. Pd enhanced WC catalyst to promote heterogeneous methane combustion

    International Nuclear Information System (INIS)

    Terracciano, Anthony Carmine; De Oliveira, Samuel; Siddhanti, Deepti; Blair, Richard; Vasu, Subith S.; Orlovskaya, Nina

    2017-01-01

    Highlights: • Pd enhanced WC catalyst particles were synthesized via mechanochemical alloying. • Catalyst was characterized by XRD, XRF, SEM, and EDS. • Catalyst was deposited on porous ZrO_2 and evaluated in heterogeneous combustion. • During combustion temperature profiles and spectral emissions were collected. - Abstract: The efficiency of combustion for low cost heat production could be greatly enhanced if an active and low cost catalyst would be used to facilitate the chemical reactions occurring during combustor operation. Within this work an experimental study of palladium (Pd) enhanced tungsten carbide (WC) catalyst, synthesized via high energy ball milling and deposited by dip coating onto a magnesia partially stabilized zirconia (MgO-ZrO_2) porous matrix of 10 ppin was evaluated in heterogeneous methane combustion. The synthesized powder was characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) analysis, as well as by X-ray Fluorescence (XRF); and the morphology of the deposited WC-Pd coating was also characterized using SEM and EDS. Performance evaluation of the heterogeneous combustor with WC-Pd coated MgO-ZrO_2 porous media was conducted at constant air flow rate and various equivalence ratios of methane/air gaseous mixtures, while monitoring axial temperature profiles within the combustion chamber using thermocouples, as well as thermal radiative and acoustic emissions from the combustor exhaust using an externally placed CCD camera and a microphone. It was found that there is a strong dependence of flame position and maximum temperature on equivalence ratio (φ) over the range of 0.47 ± 0.02 ⩽ φ ⩽ 0.75 ± 0.02. Additionally it was found that over the same equivalence ratio range, there is a characteristic 4 peak acoustic signature between 200 and 500 Hz. It was found that at higher equivalence ratios 0.51 ± 0.02 ⩽ φ ⩽ 0.75 ± 0.02 the performance of combustor

  1. Binder extrusion of sliding wear of WC-Co alloys

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1985-01-01

    It has previously been proposed that preferential removal of the cobalt binder is an important mechanism in the abrasive wear of cemented carbides in the WC-Co family. It is here demonstrated that binder extrusion occurs also in metal-to-metal sliding wear contacts. The wear scar generated by sliding a hardened steel ball repeatedly over a polished WC-Co surface was studied by SEM. The extruded cobalt fragments accumulate by surface defects, such as cracks caused by the sliding loaded ball, and gradual microfragmentation of the carbide grains follows. The energy required to extrude the cobalt and cause the gradual change in surface layer microstructure is provided by the frictional forces

  2. Morpho-Structural Characterization of WC20Co Deposited Layers

    Science.gov (United States)

    Tugui, C. A.; Vizureanu, P.

    2017-06-01

    Hydroelectric power plants use the power of water to produce electricity. In this paper we propose a solution that will increase the efficiency of turbine operation by implementing new innovative technologies to increase the working characteristics by depositing hard thin films of tungsten carbide. For this purpose hard tough deposits with WC20Co and Jet Plasma Jet on X3CrNiMo13-4 stainless steel were used for the realization of the Francis turbine with vertical shaft.

  3. Compression deformation of WC: atomistic description of hard ceramic material

    Science.gov (United States)

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-01

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  4. Microstructure, Wear Behavior and Corrosion Resistance of WC-FeCrAl and WC-WB-Co Coatings

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2018-05-01

    Full Text Available The paper is focused on investigating the quality of two grades of thermally sprayed coatings deposited by high-velocity oxygen fuel (HVOF technology. One grade contains WC hard particles in an environmentally progressive Ni- and Co-free FeCrAl matrix, while the second coating contains WC and WB hard particles in a cobalt matrix. The aim of the experimental work was to determine the effect of thermal cyclic loading on the coatings’ resistance to adhesive, abrasive and erosive wear. Abrasive wear was evaluated using abrasive cloth of two grit sizes, and erosive wear was evaluated by a dry-pot wear test in a pin mill at two sample angles. Adhesion wear resistance of the coatings was determined by a sliding wear test under dry friction conditions and in a 1 mol water solution of NaCl. Corrosion resistance of the coatings was evaluated using potentiodynamic polarization tests. Metallographic cross-sections were used for measurement of the microhardness and thickness and for line energy-dispersive X-ray (EDX analysis. The tests proved the excellent resistance of both coatings against adhesive, abrasive, and erosive wear, as well as the ability of the WC-WB-Co coating to withstand alternating temperatures of up to 600 °C. The “green carbide” coating (WC-FeCrAl can be recommended as an environmentally friendly replacement for Ni- and Co-containing coatings, but its operating temperature is strictly limited to 500 °C in air.

  5. Performances and reliability of WC based thermal spray coatings

    International Nuclear Information System (INIS)

    Scrivani, A.; Rosso, M.; Salvarani, L.

    2001-01-01

    Thermal spray processes are used for a lot of traditional and innovative applications and their importance is becoming higher and higher. WC/CoCr based thermal spray coatings represent one of the most important class of coatings that find application in a wide range of industrial sectors. This paper will address a review of current applications and characteristics of this kind of coating. The most important spraying processes, namely HVOF (high velocity oxygen fuel) are examined, the characterization of the coatings from the point of view of corrosion and wear resistance is considered. (author)

  6. TEM INVESTIGATIONS OF WC-Co ALLOYS AFTER CREEP EXPERIMENTS

    OpenAIRE

    Lay , S.; Osterstock , F.; Vicens , J.

    1986-01-01

    Carbide tungsten cobalt alloys were deformed in compression or in three point bending in a temperature range 1000-1350°C and in a stress domain 30-1000MPa. In these conditions, the stress exponent n of WC-Co alloys is a function of only the cobalt volumic ratio and tends towards n = 1 for pure carbide. The apparent activation energy is 550 kj mole-1. T.E.M. investigations on pure carbide deformed at 1450°C show an extensive intragranular deformation. Analysis of these defects have been perfor...

  7. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ji Heng; Yang Tao

    2011-01-01

    Research highlights: → Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. → It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved. → Combining the wear resistance of WC with the lubricating properties of Cu and MoS 2 has an extremely beneficial effect on improving the tribological performance of the resulting coating. - Abstract: Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. These coatings were deposited on mild steel substrates by atmospheric plasma spraying (APS). The feedstock powders were prepared by mechanically mixing the solid lubricant powders and WC-Co powder, followed by sintering and crushing the mixtures to avoid different particle flighting trajectories at plasma. The tribological properties of the coatings against stainless steel balls were examined by ball-on-disk (BOD) tribometer under normal atmospheric condition. The microstructure of the coatings was studied by optical microscope, scanning electron microscope and X-ray diffraction. It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved, which were attributed to the protection of Cu around them. The friction and wear behaviors of all the WC-Co-Cu-MoS 2 coatings were superior to that of WC-Co coating. Such behavior was associated to different wear mechanisms operating for WC-Co coating and the WC-Co-Cu-MoS 2 coatings.

  8. Prediction of crack paths in WC-Co alloys

    International Nuclear Information System (INIS)

    Spiegler, R.; Fischmeister, H.F.

    1992-01-01

    This paper reports on a crack propagating through the WC-o microstructure which has to choose between paths along the binder/carbide interface and paths across binder regions. The latter paths are selected when the crack enters a binder region at a large angle from the nearest carbide interface, while the interface paths are preferred by cracks entering at a small angle. A critical angle can be defined for the switch from one type of crack path to the other. Empirical data for the area fractions of the two crack paths in widely different WC-Co alloys can be accounted for by a single critical angle, var-phi c = 25 degrees. Finite element analysis of the stress field in a region of binder enclosed between carbide grains shows that the preferred site for the growth of stress-induced microvoids will move from the carbide grain flanks to the interior of the binder region when the entry angle of the crack exceeds 24 degrees. Thus the observation of a critical angle deciding the crack path is verified by the stress field analysis and given a physical explanation in terms of the most likely site for microvoid formation

  9. Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars

    Science.gov (United States)

    Feibelman, W. A.

    1999-01-01

    We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.

  10. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    Science.gov (United States)

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  11. Theoretical studies on the electronic and optoelectronic properties of [A.2AP(w)/A*.2AP(WC)/C.2AP(w)/C*.2AP(WC)/C.A(w)/C*.A(WC)]-Au8 mismatch nucleobase complexes

    Science.gov (United States)

    Srivastava, Ruby

    2018-01-01

    The electronic and optoelectronic properties of [A.2AP(w)/A*.2AP(WC)/C.2AP(w)/C*.2AP(WC)/C.A(w)/ C*.A(WC)]-Au8 metal-mismatch nucleobase complexes are investigated by means of density functional theory and time-dependent methods. We selected these mispairs as 2-aminopurine (2AP) produces incorporation errors when binding with cytosine (C) into the wobble (w) C.2AP(w) mispair, and is tautomerised into Watson-Crick (WC)-like base mispair C*.2AP(WC) and less effectively produces A.2AP(w)/A*.2AP(WC) mispairs. The vertical ionisation potential, vertical electron affinity, hardness and electrophilicity index of these complexes have also been discussed. The modifications of energy levels and charge density distributions of the frontier orbitals are also analysed. The absorption spectra of these complexes lie in the visible region, which suggests their application in fluorescent-bio imaging. The mechanism of cooperativity effect is studied by molecular orbital potential (MEP), atoms-in-molecules (AIM) and natural bond orbital analyses. Most metalated pairs have smaller HOMO-LUMO band gaps than the isolated mismatch nucleobases which suggest interesting consequences for electron transfer through DNA duplexes.

  12. Study on single step solid state synthesis of WC@C nanocomposite and electrochemical stability of synthesized WC@C & Pt/WC@C for alcohol oxidation (methanol/ethanol)

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu; Pandey, O.P., E-mail: oppandey@thapar.edu

    2016-04-25

    WC@C nano composite was prepared by a single step solid–state reaction through in situ reduction and carburization of WO{sub 3} in the presence of Mg and activated charcoal. The XRD results and thermodynamics analysis showed that the optimization of reaction temperature facilitates the reduction as well as carburization of tungsten oxide(s) at different reaction temperature. Thermogravimetric analysis of the product was done to assess the thermal stability in air. The Raman spectroscopy was used to find out the nature (amorphous/graphitic) of carbon in the obtained phase. The N{sub 2} adsorption–desorption measurement showed a narrow pore size distribution from 3 to 4 nm with BET surface area of up to 522.5 m{sup 2}/g. TEM/HRTEM images confirmed formation of the WC nano particles with spherical morphology. Electrochemical stability of pure and platinized carbide sample (Pt/WC) has been investigated using cyclic voltammetry in acidic media for alcohol (methanol and ethanol) oxidation. - Highlights: • Tungsten carbide nano powder was synthesized using charcoal as carbon source. • Formation of WC occurs through the formation of lower tungsten oxide. • CO{sub 2}/CO ratio effect the formation of WC. • Mesoporous tungsten carbide with surface areas 522.5 m{sup 2}/g obtained by using charcoal. • Pt modified WC powder showed higher electrochemical stability.

  13. Metallography and quality of dies made from WC-Co cemented carbides; Metallographie und Qualitaetskontrolle von WC-Co-Hartmetallmatrizen

    Energy Technology Data Exchange (ETDEWEB)

    Forejt, M. [Inst. of Technology, Faculty of Mechanical Engineering, Technical Univ., Brno (Czech Republic); Krejcova, J. [Inst. of Technology, Faculty of Mechanical Engineering, Technical Univ., Brno (Czech Republic); Smutna, J. [Inst. of Physics of Materials, ASCR, Brno (Czech Republic); Krejci, J. [Inst. of Physics of Materials, ASCR, Brno (Czech Republic)

    1995-05-01

    As opposite to cutting tools made from cemented carbides, forming tools (dies) seem to be on the periphery of the interest, although specific loading conditions (increased temperature, relatively high strain rate, high pressure and cyclic loading) impose different requirements on the material. The present paper contains results of light and SEM metallography of WC + Co cemented carbide dies used for screw nuts production. Two problems were pursued viz. final preparation of the surface of operative cavity after drilling and defects that appear when recycled cemented carbides are used for die production. (orig.) [Deutsch] Im Gegensatz zu Hartmetall-Schneidwerkzeugen scheinen Formwerkzeuge (Matrizen) nur am Rande des Interesses zu liegen, obwohl hier die spezifischen Beanspruchungsbedingungen (hoehere Temperaturen, relativ hohe Dehnrate, hoher Druck und zyklische Belastung) zu besonderen Anforderungen an den Werkstoff fuehren. Es werden die Ergebnisse der lichtmikroskopischen und REM-Untersuchungen an WC-Co-Hartmetallmatrizen fuer die Mutternherstellung beschrieben. Zwei Themen werden behandelt, und zwar die Endbearbeitung der Formhohlraum-Oberflaeche nach dem Bohren und die Fehler, die durch die Verwendung von Hartmetallschrott fuer die Matrizenherstellung auftreten koennen. (orig.)

  14. Adhesion at WC/diamond interfaces - A theoretical study

    International Nuclear Information System (INIS)

    Padmanabhan, Haricharan; Rao, M. S. Ramachandra; Nanda, B. R. K.

    2015-01-01

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m −2 and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface

  15. Adhesion at WC/diamond interfaces - A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Haricharan [Department of Engineering Design, Indian Institute of Technology Madras, Chennai – 600036 (India); Rao, M. S. Ramachandra [Department of Physics and Nano-Functional Materials Technology Centre, Indian Institute of Technology Madras, Chennai – 600036 (India); Nanda, B. R. K., E-mail: nandab@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai – 600036 (India)

    2015-06-24

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m{sup −2} and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.

  16. Macroparticle generation in DC arc discharge from a WC cathode

    Science.gov (United States)

    Zhirkov, Igor; Polcik, Peter; Kolozsvári, Szilard; Rosen, Johanna

    2017-03-01

    We have studied macroparticle generation from a tungsten carbide cathode used in a dc vacuum arc discharge. Despite a relatively high decomposition/melting point (˜3100 K), there is an intensive generation of visible particles with sizes in the range 20-35 μm. Visual observations during the discharge and scanning electron microscopy of the cathode surface and of collected macroparticles indicate a new mechanism for particle formation and acceleration. Based on the W-C phase diagram, there is an intensive sublimation of carbon from the melt resulting from the cathode spot. The sublimation supports the formation of a sphere, which is accelerated upon an explosion initiated by Joule heating at the critical contact area between the sphere and the cathode body. The explosive nature of the particle acceleration is confirmed by surface features resembling the remains of a splash on the droplet surface.

  17. Influence of WC addition on the microstructure and mechanical properties of NbC-Co cermets

    International Nuclear Information System (INIS)

    Huang, S.G.; Li, L.; Van der Biest, O.; Vleugels, J.

    2007-01-01

    NbC-24.5 wt.% Co cermets with up to 30 wt.% WC were obtained by solid state hot pressing at 1300 o C under a pressure of 45 MPa for 10 min and pressureless liquid phase sintering at 1360 o C for 60 min. The effect of WC addition on the microstructure and mechanical properties of NbC-Co based cermets was investigated. The hot pressed cermets exhibited interconnected and irregular niobium carbide (NbC) or (Nb,W)C grains, whereas the shape of the NbC grains changed from faceted with rounded corners to spherical, as the WC content increased in the pressureless sintered cermets. The undissolved WC increased with increasing WC addition. A clear core/rim structure was observed in the hot pressed cermets with 10-30 wt.% WC additions, whereas this structure was gradually eliminated when pressureless sintering. The hardness remains nearly constant whereas the fracture toughness slightly increases with increasing WC addition. The dissolution of WC in the Co binder and NbC grains, as well as the formation of a solid solution (Nb,W)C phase were supported by thermodynamic calculations

  18. An alternative approach to estimate the W/C ratio of hardened concrete using image analysis

    NARCIS (Netherlands)

    Valcke, S.; Nijland, T.G.; Larbi, J.A.

    2009-01-01

    The water cement (w/c) ratio is a typical quality parameter for concrete. The NT Build 361 Nordtest method is a standard for estimating the w/c ratio in hardened concrete and is based on the relationship between the ilc ratio and the capillary porosity in the cement paste. The latter can be

  19. Evaluation of WC-9Co-4Cr laser surface alloyed coatings on stainless steel

    CSIR Research Space (South Africa)

    Obadele, A

    2011-07-01

    Full Text Available spectrometer (EDS), while the phase changed were observed using x-ray diffraction (XRD). The surface hardness was determined using the Vickers microhardness tester. The decomposition of WC-9Co-4Cr into W2C, C and W is as a result of low heat of formation of WC...

  20. Dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions.

    Science.gov (United States)

    Chen, Zhao-Yang; Duan, Long-Fa; Sheng, Tian; Lin, Xiao; Chen, Ya-Feng; Chu, You-Qun; Sun, Shi-Gang; Lin, Wen-Feng

    2017-06-21

    Core-shell composites with strong phase-phase contact could provide an incentive for catalytic activity. A simple, yet efficient, H 2 O-mediated method has been developed to synthesize a mesoscopic core-shell W@WC architecture with a dodecahedral microstructure, via a one-pot reaction. The H 2 O plays an important role in the resistance of carbon diffusion, resulting in the formation of the W core and W-terminated WC shell. Density functional theory (DFT) calculations reveal that adding W as core reduced the oxygen adsorption energy and provided the W-terminated WC surface. The W@WC exhibits significant electrocatalytic activities toward hydrogen evolution and nitrobenzene electroreduction reactions, which are comparable to those found for commercial Pt/C, and substantially higher than those found for meso- and nano-WC materials. The experimental results were explained by DFT calculations based on the energy profiles in the hydrogen evolution reactions over WC, W@WC, and Pt model surfaces. The W@WC also shows a high thermal stability and thus may serve as a promising more economical alternative to Pt catalysts in these important energy conversion and environmental protection applications. The current approach can also be extended or adapted to various metals and carbides, allowing for the design and fabrication of a wide range of catalytic and other multifunctional composites.

  1. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  2. Resource recovery of WC-Co cermet using hydrothermal oxidation technique

    International Nuclear Information System (INIS)

    Gao Ningfeng; Inagaki, F.; Sasai, R.; Itoh, H.; Watari, K.

    2005-01-01

    WC-Co cermet is widely used in industrial applications such as cutting tools, dies, wear parts and so on. It is of great importance to establish the recycling process for the precious metal resources contained in WC-Co cermet, because all these metals used in Japan are imported. In this paper we reported a hydrothermal oxidation technique using nitric acid for the reclamation of WC and Co. The WC-Co cermet specimens with various WC particle sizes and Co contents were hydrothermally treated in HNO 3 aqueous solutions at temperatures of 110-200 C for durations of 6-240 h. The Co was preferentially leached out into the acidic solution, while the WC was oxidized to insoluble WO 3 hydrate which was subsequently separated by filtration. The hydrothermal treatment parameters such as solvent concentrations, treatment temperatures, holding time were optimized in respect to different kinds of WC-Co cermets. A hydrothermal oxidation treatment in 3M HNO 3 aqueous solution at 150 C for 24 h was capable of fully disintegrating the cermet chip composed of coarse WC grains of 1-5 μm in size with 20 wt% of Co as binder. While the more oxidation resistant specimen composed of fine WC grains of 0.5-1.0 μm in size with 13 wt% of Co, was completely disintegrated by a treatment in 7 M HNO 3 aqueous solution at 170 C for 24 h. The filtered solid residues were composed of fine WO 3 .0.33H 2 O powder and a small amount of WO 3 . The recovered WO 3 .0.33H 2 O powder can be easily returned to the industrial process for the synthesis of WC powder so that the overall recycling cost can be possibly lowered. (orig.)

  3. Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions

    International Nuclear Information System (INIS)

    Benea, Lidia; Başa, Sorin-Bogdan; Dănăilă, Eliza; Caron, Nadège; Raquet, Olivier; Ponthiaux, Pierre; Celis, Jean-Pierre

    2015-01-01

    Highlights: • The friction and wear properties of Ni/nano-WC composite were studied. • Nano-WC reinforcement decreased friction coefficient in dry and wet conditions. • Nano-WC reinforcement fraction was seen to be 12 wt.%. • Nanohardness increased by 27% compared to nickel without WC reinforcements. • Ennoblement of OCP corresponding to the Ni/nano-WC composite coating. - Abstract: The fretting and wear behaviors of Ni/nano-WC composite coatings were studied by considering the effect of fretting frequency of 1 Hz during 10,000 cycles, at different applied loads in dry or wet conditions. The studies were performed on a ball-on-disk tribometer and the results were compared with pure Ni coating. The nanohardness of pure Ni and Ni/nano-WC composite coatings was tested by nanoindentation technique. To evaluate the wet wear (tribocorrosion) behavior the open circuit potential (OCP) was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors (PWRs). The results show that Ni/nano-WC composite coatings exhibited a low friction coefficient, high nanohardness and wear resistance compared with pure Ni coatings under similar experimental conditions. Ni/nano-WC composite coatings were obtained on stainless steel support by electrochemical codeposition of nano-sized WC particles (diameter size of ∼60 nm) with nickel, from a standard nickel Watts plating bath. The surface morphology and the composition of the coatings were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) respectively

  4. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.A. da [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)], E-mail: francineac@yahoo.com; Medeiros, F.F.P. de [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Silva, A.G.P. da [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Gomes, U.U. [Departamento de Fisica Teorica e Experimental, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Filgueira, M. [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Souza, C.P. de [Laboratorio de Termodinamica e Reatores, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)

    2008-06-25

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different.

  5. Soft phonon modes driven huge difference on lattice thermal conductivity between topological semimetal WC and WN

    Science.gov (United States)

    Guo, San-Dong; Chen, Peng

    2018-04-01

    Topological semimetals are currently attracting increasing interest due to their potential applications in topological qubits and low-power electronics, which are closely related to their thermal transport properties. Recently, the triply degenerate nodal points near the Fermi level of WC are observed by using angle-resolved photoemission spectroscopy. In this work, by solving the Boltzmann transport equation based on first-principles calculations, we systematically investigate the phonon transport properties of topological semimetals WC and WN. The predicted room-temperature lattice thermal conductivities of WC (WN) along the a and c directions are 1140.64 (7.47) W m-1 K-1 and 1214.69 (5.39) W m-1 K-1. Considering the similar crystal structure of WC and WN, it is quite interesting to find that the thermal conductivity of WC is more than two orders of magnitude higher than that of WN. It is found that, different from WN, the large acoustic-optical (a-o) gap prohibits the acoustic+acoustic → optical (aao) scattering, which gives rise to very long phonon lifetimes, leading to ultrahigh lattice thermal conductivity in WC. For WN, the lack of an a-o gap is due to soft phonon modes in optical branches, which can provide more scattering channels for aao scattering, producing very short phonon lifetimes. Further deep insight can be attained from their different electronic structures. Distinctly different from that in WC, the density of states of WN at the Fermi level becomes very sharp, which leads to destabilization of WN, producing soft phonon modes. It is found that the small shear modulus G and C44 limit the stability of WN, compared with WC. Our studies provide valuable information for phonon transports in WC and WN, and motivate further experimental studies to study their lattice thermal conductivities.

  6. Development and kinetic analysis of cobalt gradient formation in WC-Co composites

    Science.gov (United States)

    Guo, Jun

    2011-12-01

    Functionally graded cemented tungsten carbide (FG WC-Co) is one of the main research directions in the field of WC-Co over decades. Although it has long been recognized that FG WC-Co could outperform conventional homogeneous WC-Co owing to its potentially superior combinations of mechanical properties, until recently there has been a lack of effective and economical methods to make such materials. The lack of the technology has prevented the manufacturing and industrial applications of FG WC-Co from becoming a reality. This dissertation is a comprehensive study of an innovative atmosphere heat treatment process for producing FG WC-Co with a surface cobalt compositional gradient. The process exploited a triple phase field in W-C-Co phase diagram among three phases (solid WC, solid Co, and liquid Co) and the dependence of the migration of liquid Co on temperature and carbon content. WC-Co with a graded surface cobalt composition can be achieved by controlling the diffusion of carbon transported from atmosphere during sintering or during postsintering heat treatment. The feasibility of the process was validated by the successful preparations of FG WC-Co via both carburization and decarburization process following conventional liquid phase sintering. A study of the carburization process was undertaken to further understand and quantitatively modeled this process. The effects of key processing parameters (including heat treating temperature, atmosphere, and time) and key materials variables (involving Co content, WC grain size, and addition of grain growth inhibitors) on the formation of Co gradients were examined. Moreover, a carbon-diffusion controlled kinetic model was developed for simulating the formation of the gradient during the process. The parameters involved in this model were determined by thermodynamic calculations and regression-fit of simulation results with experimental data. In summary, this research first demonstrated the principle of the approach

  7. Erosion resistance of FeAl-TiB2 and FeAl-WC at room and elevated temperatures

    International Nuclear Information System (INIS)

    Alman, D.E.; Tylczak, J.H.; Hawk, J.A.

    2000-01-01

    The resistance of FeAl-40%TiB 2 and FeAl-80%WC cermets to solid particle erosion at 25, 180, 500 and 700 C was evaluated and compared to the behavior of WC-6%Co (Co-90%WC) cemented carbides. Even though the WC-Co contained a higher volume fraction of the hard phase, the erosion rates of the FeAl-cermets were similar in magnitude to the erosion rates of the WC-Co. However, the erosion rates of the FeAl-cermets either were constant (FeAl-TiB 2 ) or decreased (FeAl-WC) with increasing test temperature; whereas, the erosion rates of the WC-Co cemented carbides increased with increasing test temperature. This indicated that once the microstructures of the FeAl-cermets are optimized for wear resistance, these materials might make promising candidates for high-temperature wear applications

  8. A study on erosive wear behavior of HVOF sprayed nanostructured WC-CoCr coatings

    International Nuclear Information System (INIS)

    Thakur, Lalit; Arora, Navneet

    2013-01-01

    WC-CoCr cermet coatings were deposited on stainless steel substrate using high-velocity oxy-fuel (HVOF) thermal spray process. The coatings were developed with two different thermal spray powders: one has WC grains of conventional micron size and the other is composed of nanosized (near-nanostructured) grains. HVOF spraying was assisted with in-flight particle temperature and velocity measurement system to control the process parameters that have resulted in quality coatings. Cavitation erosion testing was performed using a vibratory test apparatus based on ASTM standard G32-98. Surface morphology of powders and coatings was examined using the FESEM images, and phase identification was performed by XRD analysis. The erosion behavior of coatings and mechanism of material removal was discussed by examining the microstructure images of worn-out surfaces. WC-CoCr cermet coating deposited with nanosized WC grains exhibited higher cavitation erosion resistance as compared to conventional coating.

  9. A study on erosive wear behavior of HVOF sprayed nanostructured WC-CoCr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Lalit; Arora, Navneet [Indian Institute of Technology Roorkee, Roorkee (India)

    2013-05-15

    WC-CoCr cermet coatings were deposited on stainless steel substrate using high-velocity oxy-fuel (HVOF) thermal spray process. The coatings were developed with two different thermal spray powders: one has WC grains of conventional micron size and the other is composed of nanosized (near-nanostructured) grains. HVOF spraying was assisted with in-flight particle temperature and velocity measurement system to control the process parameters that have resulted in quality coatings. Cavitation erosion testing was performed using a vibratory test apparatus based on ASTM standard G32-98. Surface morphology of powders and coatings was examined using the FESEM images, and phase identification was performed by XRD analysis. The erosion behavior of coatings and mechanism of material removal was discussed by examining the microstructure images of worn-out surfaces. WC-CoCr cermet coating deposited with nanosized WC grains exhibited higher cavitation erosion resistance as compared to conventional coating.

  10. Bulk oil clauses

    International Nuclear Information System (INIS)

    Gough, N.

    1993-01-01

    The Institute Bulk Oil Clauses produced by the London market and the American SP-13c Clauses are examined in detail in this article. The duration and perils covered are discussed, and exclusions, adjustment clause 15 of the Institute Bulk Oil Clauses, Institute War Clauses (Cargo), and Institute Strikes Clauses (Bulk Oil) are outlined. (UK)

  11. Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure.

    Science.gov (United States)

    Armstead, Andrea L; Li, Bingyun

    As the number of commercial and consumer products containing engineered nanomaterials (ENMs) continually rises, the increased use and production of these ENMs presents an important toxicological concern. Although ENMs offer a number of advantages over traditional materials, their extremely small size and associated characteristics may also greatly enhance their toxic potentials. ENM exposure can occur in various consumer and industrial settings through inhalation, ingestion, or dermal routes. Although the importance of accurate ENM characterization, effective dosage metrics, and selection of appropriate cell or animal-based models are universally agreed upon as important factors in ENM research, at present, there is no "standardized" approach used to assess ENM toxicity in the research community. Of particular interest is occupational exposure to tungsten carbide cobalt (WC-Co) "dusts," composed of nano- and micro-sized particles, in hard metal manufacturing facilities and mining and drilling industries. Inhalation of WC-Co dust is known to cause "hard metal lung disease" and an increased risk of lung cancer; however, the mechanisms underlying WC-Co toxicity, the inflammatory disease state and progression to cancer are poorly understood. Herein, a discussion of ENM toxicity is followed by a review of the known literature regarding the effects of WC-Co particle exposure. The risk of WC-Co exposure in occupational settings and the updates of in vitro and in vivo studies of both micro- and nano-WC-Co particles are discussed.

  12. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    Directory of Open Access Journals (Sweden)

    Chen Chuang

    2012-10-01

    Full Text Available Abstract Background WC1 co-receptors belong to the scavenger receptor cysteine-rich (SRCR superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ γδ T cells. We have previously identified partial or complete genomic sequences for thirteen different WC1 genes through annotation of the bovine genome Btau_3.1 build. We also identified two WC1 cDNA sequences from other cattle that did not correspond to sequences in the Btau_3.1 build. Their absence in the Btau_3.1 build may have reflected gaps in the genome assembly or polymorphisms among animals. Since the response of γδ T cells to bacterial challenge is determined by WC1 gene expression, it was critical to understand whether individual cattle or breeds differ in the number of WC1 genes or display polymorphisms. Results Real-time quantitative PCR using DNA from the animal whose genome was sequenced (“Dominette” and sixteen other animals representing ten breeds of cattle, showed that the number of genes coding for WC1 co-receptors is thirteen. The complete coding sequences of those thirteen WC1 genes is presented, including the correction of an error in the WC1-2 gene due to mis-assembly in the Btau_3.1 build. All other cDNA sequences were found to agree with the previous annotation of complete or partial WC1 genes. PCR amplification and sequencing of the most variable N-terminal SRCR domain (domain 1 which has the SRCR “a” pattern of each of the thirteen WC1 genes showed that the sequences are highly conserved among individuals and breeds. Of 160 sequences of domain 1 from three breeds of cattle, no additional sequences beyond the thirteen described WC1 genes were found. Analysis of the complete WC1 cDNA sequences indicated that the thirteen WC1 genes code for three distinct WC1 molecular forms. Conclusion The bovine WC1 multi-gene family is composed of thirteen genes coding for three structural forms whose

  13. Binder-free Na-mordenite pellets for tritium processing

    International Nuclear Information System (INIS)

    Toci, F.; Viola, A.; Edwards, R.A.H.; Mencarelli, T.; Brossa, P.

    1995-01-01

    Gas separation systems based on adsorption on zeolites are used in various applications involving tritium: air and inert gas detritiation, purification of Q 2 and Q 2 O, and isotope separation. Differential adsorption processes are attractive because efficient separation can be combined with small plant dimensions, low energy consumption and a small tritium inventory. Zeolites are the usual choice for the adsorbate because they combine high adsorption capacity with high selectivity and stability. However, commercial pellets show appreciable tritium retention due to inappropriate activation procedures or the presence of a binder. In this paper we report a research study aimed at producing a pelletized zeolite without binder (self-bound) with low tritium retention. (orig.)

  14. Effect of Load on Friction-Wear Behavior of HVOF-Sprayed WC-12Co Coatings

    Science.gov (United States)

    Yifu, Jin; Weicheng, Kong; Tianyuan, Sheng; Ruihong, Zhang; Dejun, Kong

    2017-07-01

    A WC-12Co coating was sprayed on AISI H13 hot work mold steel using a high-velocity oxygen fuel. The morphologies, phase compositions, and distributions of chemical elements of the obtained coatings were analyzed using a field emission scanning electron microscope, x-ray diffraction, and energy-dispersive spectroscope (EDS), respectively. The friction-wear behaviors under different loads were investigated using a reciprocating wear tester; the morphologies and distributions of the chemical elements of worn tracks were analyzed using a SEM and its configured EDS, respectively. The results show the reunited grains of WC are held together by the Co binder; the primary phases of the coating are WC, Co, and a small amount of W2C and W, owing to the oxidation and decarburization of WC. Inter-diffusion of Fe and W between the coating and the substrate is shown, which indicates a good coating adhesion. The values of the average coefficient of friction under the loads of 40, 80, and 120 N are 0.29, 0.31, and 0.49, respectively. The WC grains are pulled out of the coating during the sliding wear test, but the coating maintains its integrity, suggesting that the coating is intact and continuously protects the substrate from wearing.

  15. Microstructure and property of WC particles ceramic-metal composite coatings by laser surface cladding

    International Nuclear Information System (INIS)

    Zeng Xiaoyan; Zhu Beidi; Tao Zengyi; Yang Shuguo; Cui Kun

    1993-01-01

    Ceramic-metal is widely used as a kind of good hardfacing material. The coarse WC particles ceramic-metal composite coatings with WC density of 67% it weight and the thickness of 1.6-2.0 mm have been cladded on 20Ni 4 Mo steel surface by a 2kw CO 2 laser. The sintered WC particles with the size of 600-1,000 μm are chosen as the main strengthening phase, Ni-base self-flux alloy as the binder in the composite coatings. The microstructure and micro-hardness of both WC particles and binder are analyzed. The rigid ball indention with acoustic emission technique is used to evaluate the brittleness of the coating. Finally, the abrasive wear resistance of the coatings are tested, Besides, the coatings with the same ratio and size of WC particles within low carbon steel tube were cladded on 20Ni 4 Mo steel by atomic hydrogen welding technique and analyzed by the same ways their result are compared

  16. Microstructural examination by TEM of WC/Co composites prepared by conventional and Microwave processes

    International Nuclear Information System (INIS)

    Agrawal, D.; Cheng, J.; Papworth, A.J.; Jain, H.; Williams, D.B.

    2001-01-01

    Recently, significant developments and advances have taken place in the field of microwave processing of ceramics, composites and metals. Microwave sintering technology of WC/Co based hard metal parts has been now developed for commercial products. Microwave processed WC/Co parts reportedly have exhibited superior performance over standard parts. Additionally, the microwave process requires only one tenth of the total cycle time employed in a conventional process. Laboratory corrosion and impact resistance tests have proved that microwave processed WC/Co parts are several times more resistant than the conventional parts of the same composition. The scanning transmission electron microscopic (STEM) examination conducted an conventionally and microwave sintered WC/Co samples exhibited remarkable difference in the chemistry of cobalt binder phase. It is understood that the superior mechanical properties of microwave sintered part are due to the pure cobalt phase present at the grain boundary of WC grains, while the conventionally sintered part showed there was substantial inter-alloying of Co with tungsten. (author)

  17. Physical properties and microstructure of Ti(CN)-based cermets with different WC particle size

    International Nuclear Information System (INIS)

    Deng, Ying; Deng, Ling; Xiong, Xiang; Ye, J.W.; Li, P.P.

    2014-01-01

    Ti(CN)-based cermets with different WC particle sizes from 0.2 to 4 μm were prepared at 1450 °C with 2 MPa Air pressure. The microstructure of cermets was investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), Transmission electron microscope (TEM). The results showed that all the cermets with different WC particle sizes have a typical “core–rim” structure. With the increase of WC powder sizes, the frequency and portion of Ti(C 0.7 N 0.3 ) cores and rim are somewhat decreased while the portion of white core is increased, due to the relative dissolution rate decreasing. In addition, the fracture mode of Ti(C,N) based cermets is a mixture of trans-granular (primary) and inter-granular (subordinate) fracture. The TRS (about 1850 MPa) of the cermets fluctuate slightly with the WC particle sizes from 0.2 to 1.0 μm, but decrease evidently with WC particle sizes up to 2 μm

  18. The Synthesis of Nanostructured WC-Based Hardmetals Using Mechanical Alloying and Their Direct Consolidation

    Directory of Open Access Journals (Sweden)

    N. Al-Aqeeli

    2014-01-01

    Full Text Available Tungsten carbide- (WC- based hardmetals or cemented carbides represent an important class of materials used in a wide range of industrial applications which primarily include cutting/drilling tools and wear resistant components. The introduction and processing of nanostructured WC-based cemented carbides and their subsequent consolidation to produce dense components have been the subject of several investigations. One of the attractive means of producing this class of materials is by mechanical alloying technique. However, one of the challenging issues in obtaining the right end-product is the possible loss of the nanocrystallite sizes due to the undesirable grain growth during powder sintering step. Many research groups have engaged in multiple projects aiming at exploring the right path of consolidating the nanostructured WC-based powders without substantially loosing the attained nanostructure. The present paper highlights some key issues related to powder synthesis and sintering of WC-based nanostructured materials using mechanical alloying. The path of directly consolidating the powders using nonconventional consolidation techniques will be addressed and some light will be shed on the advantageous use of such techniques. Cobalt-bonded hardmetals will be principally covered in this work along with an additional exposure of the use of other binders in the WC-based hardmetals.

  19. Comparative studies on mechanical properties of WC-Co composites sintered by SPS and conventional techniques

    Directory of Open Access Journals (Sweden)

    Pristinskiy Yuri

    2017-01-01

    Full Text Available Spark plasma sintering (SPS is an extremely fast solidification technique for compounds that are difficult to sinter within the material group metals, ceramics, or composites thereof, SPS uses a uniaxial pressure and a very rapid heating cycle to consolidate these materials. With SPS the main benefit is the ability to control the WC grain size due to the short sintering times at high temperature. Additionally, its allows to avoid negative reactions between WC and cobalt and to minimize the formation of undesirable phases in sintered composites. The WC-6wt.% Co cermet prepared by SPS processing achieves the enhanced mechanical properties with the hardness of 18.3 GPa and the fracture toughness of 15.5 MPa·m1/2 in comparison to standard reference tungsten carbide/cobalt material.

  20. Surface analysis of WC--Co composite materials (2) Quantitative Auger electron spectrometry

    International Nuclear Information System (INIS)

    Tongson, L.L.; Biggers, J.V.; Dayton, G.O.; Bind, J.M.; Knox, B.E.

    1978-01-01

    The unique sensitivity of Auger electron spectrometry (AES) to combined carbon has been exploited in measuring the surface compositions of hot-pressed, conventionally sintered and mixed powders of WC--Co composite materials. AES sensitivity factors for tungsten and carbon (in WC) relative to cobalt were determined. The concentrations of the major elements in hot-pressed samples measured with AES using the relative sensitivity method were compared to those obtained independently by electron microprobe (EMP) and x-ray fluorescence (XRF) techniques. Corollary studies using ion scattering spectrometry (ISS) showed the absence of (1) matrix effects in the AES measurements, (2) preferential sputtering during ion bombardment, and (3) deposition of the easier-to-sputter component (cobalt) onto WC

  1. Measuring c-quark polarization in W+c samples at ATLAS and CMS

    CERN Document Server

    Kats, Yevgeny

    2016-01-01

    The process $pp \\to W^-c$ produces polarized charm quarks. The polarization is expected to be partly retained in $\\Lambda_c$ baryons when those form in the $c$-quark hadronization. We argue that it will likely be possible for ATLAS and CMS to measure the $\\Lambda_c$ polarization in the $W$+$c$ samples in Run 2 of the LHC. This can become the first measurement ever of a longitudinal polarization of charm quarks. Its results will provide a unique input to the understanding of polarization transfer in fragmentation. They will also allow applying the same measurement technique to other (e.g., new physics) samples of charm quarks in which the polarization is a priori unknown. The proposed analysis is similar to the ATLAS and CMS measurements of the $W$+$c$ cross section in the 7 TeV run that used reconstructed $D$-meson decays for charm tagging.

  2. COBRA-WC: a version of COBRA for single-phase multiassembly thermal hydraulic transient analysis

    International Nuclear Information System (INIS)

    George, T.L.; Basehore, K.L.; Wheeler, C.L.; Prather, W.A.; Masterson, R.E.

    1980-07-01

    The objective of this report is to provide the user of the COBRA-WC (Whole Core) code a basic understanding of the code operation and capabilities. Included in this manual are the equations solved and the assumptions made in their derivations, a general description of the code capabilities, an explanation of the numerical algorithms used to solve the equations, and input instructions for using the code. Also, the auxiliary programs GEOM and SPECSET are described and input instructions for each are given. Input for COBRA-WC sample problems and the corresponding output are given in the appendices. The COBRA-WC code has been developed from the COBRA-IV-I code to analyze liquid Metal Fast Breeder Reactor (LMFBR) assembly transients. It was specifically developed to analyze a core flow coastdown to natural circulation cooling

  3. Synthesis and Multi Scale Tribological Behavior of WC-Co/Nanodiamond Nanocomposites.

    Science.gov (United States)

    Nieto, Andy; Jiang, Lin; Kim, Jaekang; Kim, Dae-Eun; Schoenung, Julie M

    2017-08-01

    Nanodiamonds (ND) present a unique combination of desirable mechanical, functional, and chemical characteristics that are ideally suited for reinforcing and enhancing the wear resistance of carbide based materials. Tungsten carbide cobalt (WC-Co) matrix nanocomposites reinforced with varying amounts of ND (2 - 10 vol.%) were synthesized here by spark plasma sintering. The rapid thermal consolidation route enabled attainment of dense samples with a significant retention of the metastable diamond phase. NDs affected the microstructural evolution, chemistry, and mechanical properties of WC-Co. Macroscale reciprocating pin-on-disk tests were conducted to assess wear behavior under conditions relevant to service environments, e.g., high cycles and high contact pressure. Microscale tribological properties were assessed using microscratch tests in order to investigate the intrinsic effects of ND on the localized mechanical and tribological response of WC-Co-ND composites. The incorporation of 10 vol.% ND enhanced wear resistance at both the micro- and macroscale, by 28% and 35%, respectively.

  4. Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co nanoparticle exposure

    Directory of Open Access Journals (Sweden)

    Armstead AL

    2016-12-01

    Full Text Available Andrea L Armstead,1,2 Bingyun Li1–3 1Department of Orthopaedics, School of Medicine, 2School of Pharmacy, West Virginia University, 3Mary Babb Randolph Cancer Center, Morgantown, WV, USA Abstract: As the number of commercial and consumer products containing engineered nanomaterials (ENMs continually rises, the increased use and production of these ENMs presents an important toxicological concern. Although ENMs offer a number of advantages over traditional materials, their extremely small size and associated characteristics may also greatly enhance their toxic potentials. ENM exposure can occur in various consumer and industrial settings through inhalation, ingestion, or dermal routes. Although the importance of accurate ENM characterization, effective dosage metrics, and selection of appropriate cell or animal-based models are universally agreed upon as important factors in ENM research, at present, there is no “standardized” approach used to assess ENM toxicity in the research community. Of particular interest is occupational exposure to tungsten carbide cobalt (WC-Co “dusts,” composed of nano- and micro-sized particles, in hard metal manufacturing facilities and mining and drilling industries. Inhalation of WC-Co dust is known to cause “hard metal lung disease” and an increased risk of lung cancer; however, the mechanisms underlying WC-Co toxicity, the inflammatory disease state and progression to cancer are poorly understood. Herein, a discussion of ENM toxicity is followed by a review of the known literature regarding the effects of WC-Co particle exposure. The risk of WC-Co exposure in occupational settings and the updates of in vitro and in vivo studies of both micro- and nano-WC-Co particles are discussed. Keywords: engineered nanomaterial, occupational exposure, lung disease, cancer, toxicity, particle

  5. Benzotriazole (BTA), A Promising Corrosion Inhibitor for WC-Co Hardmetal

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Stoessel-Sittig, C.; Koetz, R.; Hochstrasser-Kurz, S. [ETH Zuerich (Switzerland); Virtanen, S. [ETH Zuerich (Switzerland); Jaeggi, Ch. [University of Bern (Switzerland); Eichenberger, N. [University of Bern (Switzerland); Szoecs, E. [University of Bern (Switzerland); Siegenthaler, H. [University of Bern (Switzerland); Ziegler, P. [AGIE SA (Switzerland); Beltrami, I. [AGIE SA (Switzerland)

    2004-03-01

    Wire Electro-Discharge Machining (W-EDM) of tungsten carbide with Co-binder may lead to corrosion and discolouration at the surface. The corrosion behaviour of WC-Co based hardmetal was investigated in different aqueous solutions (acidic, neutral, and alkaline solutions). At open-circuit potential WC-Co based hardmetals show rather high dissolution rates in all types of electrolyte. An efficient corrosion inhibitor (benzotriazole, C{sub 6}H{sub 5}N{sub 3}) could be found for a borate buffer solution, pH = 8.4. (author)

  6. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition

    Directory of Open Access Journals (Sweden)

    Fang Luo

    2015-03-01

    Full Text Available Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.

  7. PREPARATION OF WC-Co POWDER BY DIRECT REDUCTION AND CARBONIZATION

    Institute of Scientific and Technical Information of China (English)

    Zhonglai Yi; Gangqin Shao; Xinglong Duan; Peng Sun; Xiaoliang Shi; Zhen Xiong; Jingkun Guo

    2005-01-01

    A new approach to produce superfine WC-Co powder by direct reduction and carbonization is proposed.Water-soluble salts containing W and Co were used as raw materials. Tungsten and cobalt oxide powder (CoWO4/WO3)was first formed by a spray-pyrolysis technique, which was then mixed with carbon black and converted to WC-Co composite powder at 950℃ for 4 h in N2 atmosphere. The resulting powder has a particle size of 100-300 nm.

  8. Hydrogen effects in anodic grinding of WC-Co sintered alloy

    International Nuclear Information System (INIS)

    Lunarska, E.; Zaborski, St.

    2001-01-01

    The effects of anodic polarization applied in grinding of sintered WC C o alloy on properties of surface layer, quality of ground surface and efficiency of the treatment were studied. The nonmonotonical change of the surface roughness, the energy consumption and the wear of tool was stated at increasing anodic polarization. The optimum values of above parameters were achieved at application of anodic polarization at which the Co selective dissolution and hydrogen ingress into the ground metal. affecting the internal friction spectra were stated. The assistance of hydrogen induced deterioration and Co selective dissolution in the surface layer in the anodic grinding of WC-Co alloy has been discussed. (author)

  9. Regularities of structure formation on different stages of WC-Co hard alloys fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chernyavskij, K S

    1987-03-01

    Some regularities of structural transformations in powder products of the hard alloys fabrication have been formulated on the basis of results of the author works and other native and foreign reseachers. New data confirming the influene of technological prehistory of carbide powder on the mechanism of its particle grinding as well as the influence of the structural-energy state of WC powder on the course of the WC-Co alloy structure formation processes are given. Some possibilities for the application in practice of the regularities studied are considered.

  10. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Armstead, Andrea L. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Arena, Christopher B. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Li, Bingyun, E-mail: bili@hsc.wvu.edu [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, Morgantown, WV 26506 (United States)

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. - Highlights: • Hard metal (WC-Co) particle toxicity was established in lung epithelial cells. • Nano-WC-Co particles caused greater toxicity than micro-WC-Co particles. • Nano- and micro-WC-Co particles were capable of inducing cellular apoptosis. • Nano-WC-Co particles were internalized by lung epithelial cells. • WC-Co particle internalization was mediated by actin dynamics.

  11. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Armstead, Andrea L.; Arena, Christopher B.; Li, Bingyun

    2014-01-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. - Highlights: • Hard metal (WC-Co) particle toxicity was established in lung epithelial cells. • Nano-WC-Co particles caused greater toxicity than micro-WC-Co particles. • Nano- and micro-WC-Co particles were capable of inducing cellular apoptosis. • Nano-WC-Co particles were internalized by lung epithelial cells. • WC-Co particle internalization was mediated by actin dynamics

  12. WC1 is a hybrid γδ TCR coreceptor and pattern recognition receptor for pathogenic bacteria.

    Science.gov (United States)

    Hsu, Haoting; Chen, Chuang; Nenninger, Ariel; Holz, Lauren; Baldwin, Cynthia L; Telfer, Janice C

    2015-03-01

    WC1 proteins are uniquely expressed on γδ T cells and belong to the scavenger receptor cysteine-rich (SRCR) superfamily. While present in variable, and sometimes high, numbers in the genomes of mammals and birds, in cattle there are 13 distinct genes (WC1-1 to WC1-13). All bovine WC1 proteins can serve as coreceptors for the TCR in a tyrosine phosphorylation dependent manner, and some are required for the γδ T cell response to Leptospira. We hypothesized that individual WC1 receptors encode Ag specificity via coligation of bacteria with the γδ TCR. SRCR domain binding was directly correlated with γδ T cell response, as WC1-3 SRCR domains from Leptospira-responsive cells, but not WC1-4 SRCR domains from Leptospira-nonresponsive cells, bound to multiple serovars of two Leptospira species, L. borgpetersenii, and L. interrogans. Three to five of eleven WC1-3 SRCR domains, but none of the eleven WC1-4 SRCR domains, interacted with Leptospira spp. and Borrelia burgdorferi, but not with Escherichia coli or Staphylococcus aureus. Mutational analysis indicated that the active site for bacterial binding in one of the SRCR domains is composed of amino acids in three discontinuous regions. Recombinant WC1 SRCR domains with the ability to bind leptospires inhibited Leptospira growth. Our data suggest that WC1 gene arrays play a multifaceted role in the γδ T cell response to bacteria, including acting as hybrid pattern recognition receptors and TCR coreceptors, and they may function as antimicrobials. Copyright © 2015 by The American Association of Immunologists, Inc.

  13. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  14. WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Tungsten carbide (WC) nanopowder was tested as a non-platinum cathode electrocatalyst for polymer electrolyte membrane (PEM) water electrolysers, operating at elevated temperatures. It was prepared in thermal plasma reactor with confined plasma jet from WO3 precursor in combination with CH4...

  15. Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites

    Science.gov (United States)

    Özgün, Özgür; Dinler, İlyas

    2018-05-01

    Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.

  16. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  17. Data of evolutionary structure change: 1A9WC-2ZLWD [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1A9WC-2ZLWD 1A9W 2ZLW C D -VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPT...R VQLSGEEKAAVLALWDKVN--EEEVGGEALGRLLVVYPWTQRFFDSFGDLSNPGAVMGNPKVKAHGKKVLHSFGEGVHHLDNLKGTFAALSEL...onfEVID> 1 2ZLW D 2ZLWD... CA 264 LYS CA 243 2ZLW D 2ZLWD DLSNPGAVMGNPKVK HHHH

  18. Pt-Ni/WC Alloy Nanorods Arrays as ORR Catalyst for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Mahbuba; Yurukcu, Mesut; Yurtsever, Fatma; Ergul, Busra; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Polymer electrolyte membrane fuel cells (PEMFCs) among the other types of fuel cell technology are attractive power sources, especially for electric vehicle applications. While significant progress and plausible prospects of PEMFCs have been achieved, there are still some challenges related to the performance, durability, and cost that need to be overcome to make them economically viable for widespread commercialization. Our strategy is to develop thin films of high-active and stable catalyst coated on vertically aligned nanorod arrays of conductive and stable support. In this work, we fabricated tungsten carbide (WC) nanorods as support and coated them with a platinum-nickel (Pt-Ni) alloy shell denoted as Pt-Ni/WC catalysts. The Pt- Ni/WC nanorods were deposited on glassy carbon disks as well as on silicon substrates for evaluation of their electrocatalytic oxygen reduction reaction (ORR) activity and physical properties. Cyclic voltammetry experiments using rotating disk electrode were performed in perchloric acid (0.1 M HClO4) electrolyte at room temperature to characterize the ORR activity and stability of Pt-Ni/WC nanorods catalysts. Scanning electron microscopy and X-ray diffraction techniques were utilized to study the morphology and crystallographic properties, respectively.

  19. Mechanical properties of hot-pressed Al-4.5 wt. % Cu/WC composite

    Directory of Open Access Journals (Sweden)

    Samaneh Bernoosi

    2014-12-01

    Full Text Available In this study, the elemental powders of aluminum and copper were initially subjected to mechanical alloying using an attrition ball mill under argon atmosphere to produce an Al-4.5 wt% Cu powder alloy. The WC nanoparticles were then added to the powder alloy and milled in a planetary ball mill to explore the role of the WC nanoparticles on the mechanical properties of the fabricated composite powder. The experimental results revealed that a solid solution of Al-Cu could be formed after MA and a good dispersion of the WC nanoparticles in the aluminum matrix was obtained as characterized using X-ray diffraction and scanning electron microscopy, respectively. The results of hardness and compression tests of the hot pressed composites indicated that the MA followed by the hot-press processes was successful to fabricate an alloy and a metal matrix composite with considerable mechanical properties. However, a decreasing trend in the hardness and strength of the composites with the WC contents of more than 5wt% was observed. The maximum values of 260 HV and 575 MPa were obtained for a composite containing 5 wt% of nano ceramic particles.

  20. Fundamentals of grinding : surface conditions of ground WC-Co systems

    NARCIS (Netherlands)

    Hegeman, JBJW; De Hosson, JTM; Shulepov, SY; Lousberg, N; de With, G; Brebbia, CA; Kenny, JM

    1999-01-01

    This paper concentrates on the fundamentals of grinding of inorganic materials. A statistical grinding model was developed based on the topography of the grinding wheel. The results of the model are compared with the results of grinding experiments on WC-Co hardmetals. The calculated profiles and

  1. Ultra-short-period WC/SiC multilayer coatings for x-ray applications

    DEFF Research Database (Denmark)

    Fernandez-Perea, M.; Pivovaroff, M. J.; Soufli, R.

    2013-01-01

    developed multilayers with ultra-shortperiods between 1 and 2 nm based on the material system WC/SiC. This material system was selected because it possesses very sharp and stable interfaces. In this article, we show highlights from a series of experiments performed in order to characterize the stress...

  2. Atomic composition of WC/ and Zr/O-terminated diamond Schottky interfaces close to ideality

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Araújo, D. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Fiori, A. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Traoré, A. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Villar, M.P. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Eon, D.; Muret, P.; Pernot, J. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Teraji, T. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2017-02-15

    Highlights: • Metal/O-terminated diamond interfaces are analyzed by a variety of TEM techniques. • Thermal treatment is shown to modify structural and chemical interface properties. • Electrical behavior vs annealing is shown to be related with interface modification. • Interfaces are characterized with atomic resolution to probe inhomogeneities. • Oxide formation and modification is demonstrated in both Schottky diodes. - Abstract: Electrical and nano-structural properties of Zr and WC-based Schottky power diodes are compared and used for investigating oxide-related effects at the diamond/metal interface. Differences in Schottky barrier heights and ideality factors of both structures are shown to be related with the modification of the oxygen-terminated diamond/metal interface configuration. Oxide formation, oxide thickness variations and interfacial oxygen redistribution, associated with thermal treatment are demonstrated. Ideality factors close to ideality (n{sub WC} = 1.02 and n{sub Zr} = 1.16) are obtained after thermal treatment and are shown to be related with the relative oxygen content at the surface (OCR{sub WC} = 3.03 and OCR{sub Zr} = 1.5). Indeed, thermal treatment at higher temperatures is shown to promote an escape of oxygen for the case of the WC diode, while it generates a sharper accumulation of oxygen at the metal/diamond interface for the case of Zr diode. Therefore, the metal-oxygen affinity is shown to be a key parameter to improve diamond-based Schottky diodes.

  3. New results on the relationship between hardness and fracture toughness of WC-Co hardmetal

    CSIR Research Space (South Africa)

    O'Quigley, DGF

    1996-05-01

    Full Text Available Two sets of WC-Co grades were produced, with cobalt content ranging from 3 to 50 wt.%. The mean grain size of the two sets was 2.2 and 6 mu m respectively. The two sets of grades were used to investigate the relationship between hardness...

  4. CVD of alternated microcrystalline (MCD) and nanocrystalline (NCD) diamond films on WC-TIC-CO substrates

    International Nuclear Information System (INIS)

    Campos, Raonei Alves; Contin, Andre; Trava-Airoldi, Vladimir J.; Corat, Evaldo Jose; Barquete, Danilo Maciel

    2010-01-01

    CVD Diamond coating of WC-TiC-Co cutting tools has been an alternative to increase tool lifetime. Experiments have shown that residual stresses produced during films growth on WC-TiC-Co substrates significantly increases with increasing film thickness up to 20 μm and usually leads to film delamination. In this work alternated micro- and nanocrystalline CVD diamond films have been used to relax interface stresses and to increase diamond coatings performance. WC-TiC-Co substrates have been submitted to a boronizing thermal diffusion treatment prior to CVD diamond films growth. After reactive heat treatment samples were submitted to chemical etching in acid and alkaline solution. The diamond films deposition was performed using HFCVD reactor with different gas concentrations for microcrystalline (MCD) and nano-crystalline (NCD) films growth. As a result, we present the improvement of diamond films adherence on WC-TiC-Co, evaluated by indentation and machining tests. Samples were characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) for qualitative analysis of diamond films. X-ray Diffraction (XRD) was used for phases identification after boronizing process. Diamond film compressive residual stresses were analyzed by Raman Scattering Spectroscopy (RSS). (author)

  5. Corrosion of WC-VC-Co hardmetal in neutral chloride containing media

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2013-01-01

    Full Text Available , “Electrochemical oxidation of WC in acidic sulphate solution,” Corrosion Science, vol. 46, no. 2, pp. 453–469, 2004. [18] T. Kubo and Y. Nishikitani, “Deposition temperature depen- dence of optical gap and coloration efficiency spectrum in elec- trochromic tungsten...

  6. The influence of aggregates type on W/C ratio on the strength and other properties of concrete

    Science.gov (United States)

    Malaiskiene, J.; Skripkiunas, G.; Vaiciene, M.; Karpova, E.

    2017-10-01

    The influence of different types of aggregates and W/C ratio on concrete properties is analysed. In order to achieve this aim, lightweight (with expanded clay aggregate) and normal concrete (with gravel aggregate) mixtures are prepared with different W/C ratios. Different W/C ratios are selected by reducing the amount of cement when the amount of water is constant. The following properties of concrete have been determined: density, compressive strength and water absorption. Additionally, the statistical data analysis is performed and influence of aggregate type and W/C ratio on concrete properties is determined. The empirical equations indicating dependence between concrete strength and W/C and strength of aggregate are obtained for normal concrete and light-weight concrete.

  7. Microstructure and mechanical properties of TiB2–TiC–WC composite ceramic tool materials

    International Nuclear Information System (INIS)

    Song, Jinpeng; Huang, Chuanzhen; Zou, Bin; Liu, Hanlian; Wang, Jun

    2012-01-01

    Highlights: ►Effect of sintering parameters on TiB 2 –TiC–WC composites has been investigated. ► Ni element was dispersed in the interface between WC and matrix grains. ► The fracture mode changed from intergranular fracture to transgranular fracture. ► The microstructure and mechanical properties of the composite were improved. -- Abstract: TiB 2 –TiC–WC composites with Ni as a sintering aid were fabricated by a hot-press technique at 1700 °C and 1650 °C for 1 h, respectively. The microstructure and mechanical properties were investigated. The composites were analyzed by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). The matrix phases consisted of TiB 2 and TiC. No severe chemical reactions happened between the additive and matrix. The microstructure consisted of the fine WC grains and uniform matrix grains. When the proper WC content added to TiB 2 –TiC composites, the growth of matrix grains was inhibited and the mechanical properties of the composites were improved. The interface energy was strengthened by Ni that dispersed in the interfaces among WC grains and matrix grains, which made the fracture mode change from intergranular fracture to transgranular fracture. The transgranular fracture and the pulling out of WC grains played a predominant role in the propagating of cracks when WC content was 20 wt.% in TiB 2 –TiC–WC composites. The optimal mechanical properties of TiB 2 –TiC–20 wt.%WC composite were 955.71 MPa of flexural strength, 7.5 MPa m 1/2 of fracture toughness and 23.5 GPa of Vickers hardness.

  8. Liquid Phase Sintering of (Ti,Zr)C with WC-Co.

    Science.gov (United States)

    Ma, Taoran; Borrajo-Pelaez, Rafael; Hedström, Peter; Blomqvist, Andreas; Borgh, Ida; Norgren, Susanne; Odqvist, Joakim

    2017-01-11

    (Ti,Zr)C powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,Zr)C, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,Zr)C phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ₁) or Zr (γ₂). The γ₂ phase grains have a core-shell structure with a (Ti,Zr)C core following the full sintering cycle. The major differences observed in (Ti,Zr)C with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ₁, and γ₂) is about 10% smaller in WC-(Ti,Zr)C-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  9. Analysis of PTA hardfacing with CoCrWC and CoCrMoSi alloys

    Directory of Open Access Journals (Sweden)

    Adriano Scheid

    2013-12-01

    Full Text Available CoCrWC alloys are widely used to protect components that operate under wear and high temperature environments. Enhanced performance has been achieved with the CoCrMoSi alloys but processing this alloy system is still a challenge due to the presence of the brittle Laves phase, particularly when welding is involved. This work evaluated Plasma Transferred Arc coatings processed with the Co-based alloy CoMoCrSi - Tribaloy T400, reinforced with Laves phase, comparing its weldability to the CoCrWC - Stellite 6, reinforced with carbides. Coatings were also analyzed regarding the response to temperature exposure at 600°C for 7 days and subsequent effect on microstructure and sliding abrasive wear. Coatings characterization was carried out by light and scanning electron microscopy, X-ray diffraction and Vickers hardness. CoCrWC coatings exhibited a Cobalt solid solution dendritic microstructure and a thin interdendritic region with eutectic carbides, while CoCrMoSi deposits exhibit a large lamellar eutectic region of Laves phase and Cobalt solid solution and a small fraction of primary Laves phase. Although phase stability was observed by X-ray diffraction, coarsening of the microstructure occurred for both alloys. CoCrMoSi showed thicker lamellar Laves phase and CoCrWC coarser eutectic carbides. Coatings stability assessed by wear tests revealed that although the wear rate of the as-deposited CoCrMoSi alloy was lower than that of CoCrWC alloy its increase after temperature exposure was more significant, 22% against 15%. Results were discussed regarding the protection of industrial components in particular, bearings in 55AlZn hot dip galvanizing components.

  10. Anisotropic atomic packing model for abnormal grain growth mechanism of WC-25 wt.% Co alloy

    International Nuclear Information System (INIS)

    Ryoo, H.S.; Hwang, S.K.

    1998-01-01

    During liquid phase sintering, cemented carbide particles grow into either faceted or non-faceted grain shapes depending on ally system. In case of WC-Co alloy, prism-shape faceted grains with (0001) planes and {1 bar 100} planes on each face are observed, and furthermore an abnormal grain growth has been reported to occur. When abnormal grain growth occurs in WC crystals, dimension ratio, R, of the length of the side of the triangular prism face to the height of the prism is higher than 4 whereas that for normal grains is approximately 2. Abnormal grain growth in this alloy is accelerated by the fineness of starting powders and by high sintering temperature. To account for the mechanism of the abnormal grain growth, there are two proposed models which drew much research attention: nucleation and subsequent carburization and transformation of η (W 3 Co 3 C) phase into WC, and coalescence of coarse WC grains through dissolution and re-precipitation. Park et al. proposed a two-dimensional nucleation theory to explain the abnormal grain growth of faceted grains. There are questions, however, on the role of η phase on abnormal grain growth. The mechanism of coalescence of spherical grains as proposed by Kingery is also unsuitable for faceted grains. So far theories on abnormal grain growth do not provide a satisfactory explanation on the change of R value during the growth process. In the present work a new mechanism of nucleation and growth of faceted WC grains is proposed on the ground of anisotropic packing sequence of each atom

  11. Liquid Phase Sintering of (Ti,ZrC with WC-Co

    Directory of Open Access Journals (Sweden)

    Taoran Ma

    2017-01-01

    Full Text Available (Ti,ZrC powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,ZrC, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,ZrC phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ1 or Zr (γ2. The γ2 phase grains have a core-shell structure with a (Ti,ZrC core following the full sintering cycle. The major differences observed in (Ti,ZrC with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ1, and γ2 is about 10% smaller in WC-(Ti,ZrC-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  12. Influence of electrical discharge machining on the tribological characteristics of WC-Co alloys; Influencia de la electroerosion sobre las caracteristicas tribologicas de materiales compuestos WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Casas, B.; Martinez, E.; Esteve, J.; Anglada, M.; Llanes, L.

    2001-07-01

    The influence of electrical discharge machining (EDM) on the abrasive wear resistance of two WC-10 %{sub w}tCo cemented carbides with different carbide grain size has been studied. Different surface finish conditions were evaluated corresponding to sequential EDM as well as grinding and polishing with diamond. The abrasive wear resistance was determined through microscratch measurements using a nano indentation system. Contrary to the results obtained from hardness measurements, this techniques allows to discern tribological differences among the distinct surface finish conditions studied. Finally, the abrasive wear resistance degradation associated with sequential EDM is discussed as a function of microstructure in terms of a damage parameters. (Author) 9 refs.

  13. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro.

    Science.gov (United States)

    Armstead, Andrea L; Arena, Christopher B; Li, Bingyun

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause "hard metal lung disease" but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Improvement in tribological properties of atmospheric plasma-sprayed WC-Co coating followed by Cu electrochemical impregnation

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ruan Qichao; Ji Heng

    2009-01-01

    The WC-Co coating obtained by atmospheric plasma spraying (APS) was modified by Cu electrochemical impregnation. The copper has infiltrated into and filled up the pores in WC-Co coating. The tribological properties of the coating against the stainless steel ball as sliding pairs were investigated with a ball-on-disc (BOD) configuration in air at room temperature. The as-prepared samples were characterized by means of optical microscope, scanning electron microscope and X-ray diffraction. It was found that the frictional behavior of the WC-Co coating followed by Cu electrochemical impregnation was superior to that of WC-Co coating. The wear mechanism of the WC-Co coating followed by Cu electrochemical impregnation was microcutting, whilst that of a WC-Co coating was the fatigue wear. The improvement in tribological properties of the WC-Co coating followed by Cu electrochemical impregnation was attributed to the formation of self-lubricating Cu film on the wear surface which induces the transformation of wear mechanism.

  15. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications

    International Nuclear Information System (INIS)

    Sein, Htet; Ahmed, Waqar; Jackson, Mark; Woodwards, Robert; Polini, Riccardo

    2004-01-01

    Diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. The application of diamond coatings on cemented tungsten carbide (WC-Co) tools was the subject of much attention in recent years in order to improve cutting performance and tool life. WC-Co tools containing 6% Co and 94% WC substrate with an average grain size 1-3 μm were used in this study. In order to improve the adhesion between diamond and WC substrates, it is necessary to etch away the surface Co and prepare the surface for subsequent diamond growth. Hot filament chemical vapour deposition with a modified vertical filament arrangement has been employed for the deposition of diamond films. Diamond film quality and purity have been characterised using scanning electron microscopy and micro-Raman spectroscopy. The performance of diamond coated WC-Co bur, uncoated WC-Co bur, and diamond embedded (sintered) bur have been compared by drilling a series of holes into various materials such as human teeth, borosilicate glass and porcelain teeth. Flank wear has been used to assess the wear rates of the tools. The materials subjected to cutting processes have been examined to assess the quality of the finish. Diamond coated WC-Co microdrills and uncoated microdrills were also tested on aluminium alloys. Results show that there was a 300% improvement when the drills were coated with diamond compared to the uncoated tools

  16. Superductile bulk metallic glass

    International Nuclear Information System (INIS)

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  17. A theoretical understanding on the CO-tolerance mechanism of the WC(0001) supported Pt monolayer: Some improvement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilin [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Lu, Zhansheng [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China)

    2016-12-15

    Highlights: • The mechanism of CO tolerance and oxidation on Pt{sub ML}/WC(0001) is clarified. • The high tolerance of Pt{sub ML}/WC(0001) to CO originate from the weak adsorption. • The minimum energy path and the rate-determining step are identified. • The activity of Pt{sub ML}/WC(0001) to CO oxidation is comparable to that of Pt(111). • Some probable strategies are proposed to improve the activity of Pt{sub ML}/WC(0001). - Abstract: The deposition of platinum on the tungsten carbide (Pt/WC) have been achieved and proved with high stability, activity and CO-tolerance toward some reactions in experiments. Although a lot of experimental efforts have been focused on understanding the activity, stability and CO-tolerance of Pt/WC, the relevant theoretical works related to the CO-tolerance mechanism are still scarce. In current study, the adsorption and oxidation of CO on the Pt monolayer supported on WC(0001) surface (Pt{sub ML}/WC(0001)) are investigated using density functional theory calculations. It is found that the oxidation of CO on Pt{sub ML}/WC(0001) proceeds preferably along the Langmuir-Hinshelwood mechanism. The energy barrier of 1.06 eV for the rate-determining step of OOCO formation is almost equal to that (1.05 eV) for CO oxidation by atomic O on Pt(111), while the adsorption energy of 1.59 eV for CO on Pt{sub ML}/WC(0001) is smaller than that on Pt(111) (1.85 eV), indicating that the high resistance to CO poisoning of Pt{sub ML}/WC(0001) may originate from the weak interaction between them. To further improve the CO tolerance, some probable strategies are proposed based on the relevant kinetics results. The current results are helpful to understanding the origin of the highly resistant to CO poisoning of Pt{sub ML}/WC(0001) and rationally designing catalysts to improve the CO oxidation activity.

  18. Small-sized and contacting Pt-WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells.

    Science.gov (United States)

    Wang, Ruihong; Xie, Ying; Shi, Keying; Wang, Jianqiang; Tian, Chungui; Shen, Peikang; Fu, Honggang

    2012-06-11

    The synergistic effect between Pt and WC is beneficial for methanol electro-oxidation, and makes Pt-WC catalyst a promising anode candidate for the direct methanol fuel cell. This paper reports on the design and synthesis of small-sized and contacting Pt-WC nanostructures on graphene that bring the synergistic effect into full play. Firstly, DFT calculations show the existence of a strong covalent interaction between WC and graphene, which suggests great potential for anchoring WC on graphene with formation of small-sized, well-dispersed WC particles. The calculations also reveal that, when Pt attaches to the pre-existing WC/graphene hybrid, Pt particles preferentially grow on WC rather than graphene. Our experiments confirmed that highly disperse WC nanoparticles (ca. 5 nm) can indeed be anchored on graphene. Also, Pt particles 2-3 nm in size are well dispersed on WC/graphene hybrid and preferentially grow on WC grains, forming contacting Pt-WC nanostructures. These results are consistent with the theoretical findings. X-ray absorption fine structure spectroscopy further confirms the intimate contact between Pt and WC, and demonstrates that the presence of WC can facilitate the crystallinity of Pt particles. This new Pt-WC/graphene catalyst exhibits a high catalytic efficiency toward methanol oxidation, with a mass activity 1.98 and 4.52 times those of commercial PtRu/C and Pt/C catalysts, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Auctioning Bulk Mobile Messages

    NARCIS (Netherlands)

    S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)

    2003-01-01

    textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added

  20. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  1. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  2. Experimental investigation of surface quality in ultrasonic machining of WC-Co composites through Taguchi method

    Directory of Open Access Journals (Sweden)

    B. S. Pabla

    2016-08-01

    Full Text Available In manufacturing industries, the demand of WC-Co composite is flourishing because of the distinctive characteristics it offers such as: toughness (with hardness, good dimensional stability, higher mechanical strength etc. However, the difficulties in its machining restrict the application and competitiveness of this material. The current article has been targeted at evaluation of the effect of process conditions (varying power rating, cobalt content, tool material, part thickness, tool geometry, and size of abrasive particle on surface roughness in ultrasonic drilling of WC-Co composite. Results showed that abrasive grit size is most influential factor. From the microstructure analysis, the mode of material deformation has been observed and the parameters, i.e. work material properties, grit size, and power rating was revealed as the most crucial for the deformation mode.

  3. THE STRUCTURE AND PROPERTIES OF COMPOSITE LASER CLAD COATINGS WITH Ni BASED MATRIX WITH WC PARTICLES

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-09-01

    Full Text Available In this work, the influence of the processing conditions on the microstructure and abrasive wear behavior of composite laser clad coatings with Ni based matrix reinforced with 50% WC particles is analyzed. Composite powder was applied in the form of coatings onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds. The microstructure of the coatings was analyzed by scanning electron microscopy (SEM. Tribological properties of coatings were evaluated by pin-on-disc wear test. It appeared that the hardness of the matrix of composite coatings decreases with increasing cladding speed. However, wear resistance of composite coatings with decreasing hardness of Ni based matrix increases. Significantly enhanced wear resistance of WC composite coatings in comparison with Ni based coatings is attributed to the hard phase structures in composite coatings.

  4. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  5. PCB extraction from ORNL tank WC-14 using a unique solvent

    International Nuclear Information System (INIS)

    Bloom, G.A.; Lucero, A.J.; Koran, L.J.; Turner, E.N.

    1995-09-01

    This report summarizes the development work of the Engineering Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) for an organic extraction method for removing polychlorinated biphenyls (PCBs) from tank WC-14. Tank WC-14 is part of the ORNL liquid low-level radioactive tank waste system and does not meet new secondary containment and leak detection regulations. These regulations require the tank to be taken out of service, and remediated before tank removal. To remediate the tank, the PCBs must be removed; the tank contents can then be transferred to the Melton Valley Storage Tanks before final disposal. The solvent being used for the PCB extraction experiments is triethylamine, an aliphatic amine that is soluble in water below 60 degrees F but insoluble in water above 90 degrees F. This property will allow the extraction to be carried out under fully miscible conditions within the tank; then, after tank conditions have been changed, the solvent will not be miscible with water and phase separation will occur. Phase separation between sludge, water, and solvent will allow solvent (loaded with PCBs) to be removed from the tank for disposal. After removing the PCBs from the sludge and removing the sludge from the tank, administrative control of the tank can be transferred to ORNL's Environmental Restoration Program, where priorities will be set for tank removal. Experiments with WC-14 sludge show that greater than 90% extraction efficiencies can be achieved with one extraction stage and that PCB concentration in the sludge can be reduced to below 2 ppm in three extractions. It is anticipated that three extractions will be necessary to reduce the PCB concentration to below 2 ppm during field applications. The experiments conducted with tank WC-14 sludge transferred less than 0.03% of the original alpha contamination and less than 0.002% of the original beta contamination

  6. Machinability and scratch wear resistance of carbon-coated WC inserts

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivel, B., E-mail: palcecri@yahoo.co.in; Kumar, T. Prem; Sozhan, G.

    2015-03-15

    Highlights: • Cemented WC inserts were coated with carbon by CVD. • The deposits were either loosely held MWCNTs or adherent carbides. • Co-efficient of friction (ramp load; 1–13 N); 0.2 and 0.1 μ, respectively, for the uncoated and carbide-coated inserts. • The carbide-coated insert exhibited better machinability and surface finish than a commercial TiCN-coated insert. - Abstract: In this work, cemented tungsten carbide (WC) inserts were coated with nanocarbons/carbides by chemical vapor deposition (CVD) and their machinability and scratch wear resistance were investigated. The hardness and surface conditions of the WC substrate were studied before and after coating. The CVD-generated nanocarbons on the insert surfaces were examined by SEM, FE-SEM and TEM. The electron microscopic images revealed that the carbons generated were multi-walled carbon nanotubes (MWCNTs) or carbides depending on the experimental conditions. In both the cases, the cutting edges of the inserts had dense deposits. Scratch wear test with the coated inserts showed that the co-efficient of friction was 0.1 μ as against 0.2 μ for the uncoated inserts under a ramp load of 1–13 N. The machinability characteristics of commercially available TiCN-coated inserts and the carbon-coated WC inserts were compared by using a CNC machine and a Rapid I vision inspection system. It was found that the carbide-coated inserts exhibited machinability with better surface finish comparable to that of the TiCN-coated inserts while the MWCNT-coated inserts showed inferior adhesion properties.

  7. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available Department of Metallurgical & Materials Engineering, IIT Kharagpur, West Bengal, India 2National Laser Centre, CSIR, Pretoria, South Africa Abstract In the present study, laser surface alloying of aluminium with WC+Co+NiCr (in the ratio of 70... be used for dispersion of ceramic materials into metallic matrix and hence, form a ceramic dispersed metal matrix composite on metallic substrate [3]. The advantages of laser surface alloying include refinement of the microstructure, uniform dispersion...

  8. TRIBOLOGICAL PROPERTIES OF TiBx AND WC/C COATINGS

    Directory of Open Access Journals (Sweden)

    PETER KÚŠ

    2011-12-01

    Full Text Available Tribological properties of TiBx and WC/C coatings have been studied using the ball-on-disc method at room and elevated temperatures in air to investigate their behavior under conditions approaching high performance dry cutting. The average room temperature coefficients of friction (COF of both nanocomposite DC magnetron sputtered TiBx coatings and PECVD WC/C coatings were in the range 0.2-0.6. The lowest value of TiBx coatings of 0.16 was achieved in case of prefferentially oriented stuctures deposited at the highest negative bias. The lowest COF of WC/C was around 0.11. The increase of testing temperature to 450°C caused the increase of COF up to approximately 0.7-0.8. The experiments at elevated temperatures suggest the existence of the oxide transfer film with higher COF than that of the sliding contact without the film. Although both coating systems have relatively high COF values at elevated temperatures, they exhibit elements of some adaptive behavior.

  9. DURABILITY AND TRIBOLOGICAL PROPERTIES OF THERMALLY SPRAYED WC CERMET COATING IN LUBRICATED ROLLING WITH SLIDING CONTACT

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2010-09-01

    Full Text Available Durability and tribological properties of thermally sprayed WC-Cr-Ni cermet coating were investigated experimentally in lubricated rolling with sliding contact conditions. By means of the high energy type flame spraying (Hi-HVOF method, the coating was formed onto the axially ground and circumferentially ground roller specimens made of a thermally refined carbon steel. In the experiments, the WC cermet coated steel roller was mated with the carburized hardened steel roller without coating in line contact condition. The coated roller was mated with the smooth non-coated roller under a contact pressure of 1.0 or 1.2 GPa, and it was mated with the rough non-coated roller under a contact pressure of 0.6 or 0.8 GPa. As a result, it was found that in general, the coating on the circumferentially ground substrate shows a lower durability compared with that on the axially ground substrate and this difference appears more distinctly for the higher contact pressure for both smooth mating surface and rough mating surface. It was also found that there are significant differences in the tribological properties of WC cermet coating depending on the contact pressure. In addition, depending on the smooth or rough mating surface, remarkable differences in the tribological properties were found.

  10. Laser pulse heating of steel mixing with WC particles in a irradiated region

    Science.gov (United States)

    Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-12-01

    Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.

  11. Investigation of aperiodic W/C multi-layer mirror for X-ray optics

    International Nuclear Information System (INIS)

    Wang Zhanshan; Cheng Xinbin; Zhu Jingtao; Huang Qiushi; Zhang Zhong; Chen Lingyan

    2011-01-01

    Design, fabrication and characterization of aperiodic tungsten/carbon (W/C) multi-layer mirror were studied. W/C multi-layer was designed as a broad-angle reflective supermirror for Cu-Kα line (λ = 0.154 nm) in the grazing incident angular range (0.9-1.1 deg.) using simulated annealing algorithm. To deposit the W/C depth-graded multi-layer mirror accurately, we introduce an effective layer growth rate as a function of layer thickness. This method greatly improves the reflectivity curve compared to the conventional multi-layer mirror prepared with constant growth rate. The deposited multi-layer mirror exhibits an average reflectivity of 19% over the grazing incident angle range of 0.88-1.08 deg. which mainly coincides with the designed value. Furthermore, the physical mechanisms were discussed and the re-sputtering process of light-atom layers is accounted for the modification of layer thicknesses which leads to the effective growth rates. Using this calibration method, the aperiodic multi-layer mirrors can be better fabricated for X-ray optics.

  12. Validation of HVOF WC/Co Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Aircraft Landing Gear

    National Research Council Canada - National Science Library

    Sartwell, Bruce

    2004-01-01

    .... This document constitutes the final report on a project to quality high-velocity oxygen-fuel (HVOF) thermal spray WC/Co coatings as a replacement for hard chrome plating on landing gear components...

  13. Wear Evaluation of AISI 4140 Alloy Steel with WC/C Lamellar Coatings Sliding Against EN 8 Using Taguchi Method

    Science.gov (United States)

    Kadam, Nikhil Rajendra; Karthikeyan, Ganesarethinam

    2016-10-01

    The purpose of the experiments in this paper is to use the Taguchi methods to investigate the wear of WC/C coated nitrided AISI 4140 alloy steel. A study of lamellar WC/C coating which were deposited by a physical vapor deposition on nitrided AISI 4140 alloy steel. The investigation includes wear evaluation using Pin-on-disk configuration. When WC/C coated AISI 4140 alloy steel slides against EN 8 steel, it was found that carbon-rich coatings show much lower wear of the countersurface than nitrogen-rich coatings. The results were correlated with the properties determined from tribological and mechanical characterization, therefore by probably selecting the proper processing parameters the deposition of WC/C coating results in decreasing the wear rate of the substrate which shows a potential for tribological application.

  14. Characterisation of bulk solids

    Energy Technology Data Exchange (ETDEWEB)

    D. McGlinchey [Glasgow Caledonian University, Glasgow (United Kingdom). Centre for Industrial Bulk Solids Handling

    2005-07-01

    Handling of powders and bulk solids is a critical industrial technology across a broad spectrum of industries, including minerals processing. With contributions from leading authors in their respective fields, this book provides the reader with a sound understanding of the techniques, importance and application of particulate materials characterisation. It covers the fundamental characteristics of individual particles and bulk particulate materials, and includes discussion of a wide range of measurement techniques, and the use of material characteristics in design and industrial practice. Contents: Characterising particle properties; Powder mechanics and rheology; Characterisation for hopper and stockpile design; Fluidization behaviour; Characterisation for pneumatic conveyor design; Explosiblility; 'Designer' particle characteristics; Current industrial practice; and Future trends. 130 ills.

  15. Characterization investigations during mechanical alloying and sintering of Ni-W solid solution alloys dispersed with WC and Y2O3 particles

    International Nuclear Information System (INIS)

    Genc, Aziz; Luetfi Ovecoglu, M.

    2010-01-01

    Research highlights: → Characterization investigations on the Ni-W solid solution alloys fabricated via mechanical alloying and the evolution of the properties of the powders with increasing MA durations. → Reinforcement of the selected Ni-W powders with WC and Y 2 O 3 particles and further MA together for 12 h. → There is no reported literature on the development and characterization of Ni-W solid solution alloys matrix composites fabricated via MA. → Sintering of the developed composites and the characterization investigations of the sintered samples. → Identification of new 'pomegranate-like' structures in the bulk of the samples. - Abstract: Blended elemental Ni-30 wt.% W powders were mechanically alloyed (MA'd) for 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h in a Spex mixer/mill at room temperature in order to investigate the effects of MA duration on the solubility of W in Ni and the grain size, hardness and particle size. Microstructural and phase characterizations of the MA'd powders were carried out using X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). On the basis of achieved saturation on the solid solubility, hardness and particle size, the Ni-30 wt.% W powders MA'd for 48 h were chosen as the matrix which was reinforced with different amounts of WC and/or with 1 wt.% Y 2 O 3 particles. The reinforced powders were further MA'd for 12 h. The MA'd powders were sintered at 1300 o C for 1 h under Ar and H 2 gas flowing conditions. Microstructural characterizations of the sintered samples were conducted via XRD and SEM. Sintered densities were measured by using the Archimedes' method. Vickers microhardness tests were performed on both MA'd powders and the sintered samples. Sliding wear experiments were done in order to investigate wear behaviors of the sintered samples.

  16. Micromegas in a bulk

    International Nuclear Information System (INIS)

    Giomataris, I.; De Oliveira, R.; Andriamonje, S.; Aune, S.; Charpak, G.; Colas, P.; Fanourakis, G.; Ferrer, E.; Giganon, A.; Rebourgeard, Ph.; Salin, P.

    2006-01-01

    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine

  17. Mechanical Properties and Wear Behavior of AA5182/WC Nanocomposite Fabricated by Friction Stir Welding at Different Tool Traverse Speeds

    Science.gov (United States)

    Paidar, Moslem; Asgari, Ali; Ojo, Olatunji Oladimeji; Saberi, Abbas

    2018-03-01

    Grain growth inhibition at the heat-affected zone, improved weld strength and superior tribological properties of welds are desirable attributes of modern manufacturing. With the focused on these attributes, tungsten carbide (WC) nanoparticles were employed as reinforcements for the friction stir welding of 5-mm-thick AA5182 aluminum alloy by varying tool traverse speeds. The microstructure, microhardness, ultimate tensile strength, fracture and wear behavior of the resultant WC-reinforced welds were investigated, while unreinforced AA5182 welds were employed as controls for the study. The result shows that the addition of WC nanoparticles causes substantial grain refinement within the weld nugget. A decrease in traverse speed caused additional particle fragmentation, improved hardness value and enhanced weld strength in the reinforced welds. Improved wear rate and friction coefficient of welds were attained at a reduced traverse speed of 100 mm/min in the WC-reinforced welds. This improvement is attributed to the effects of reduced grain size/grain fragmentation and homogeneous dispersion of WC nanoparticles within the WC-reinforced weld nugget.

  18. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement—specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1–3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways. PMID:26863616

  19. WC-Co coatings deposited by the electro-thermal chemical spray method

    Energy Technology Data Exchange (ETDEWEB)

    Zhitomirsky, V.N. [Tel Aviv Univ. (Israel). Faculty of Engineering; Wald, S.; Rabani, L.; Zoler, D. [Propulsion Physics Division, SOREQ NRC, 81800, Yavne (Israel); Factor, M.; Roman, I. [School of Applied Sciences, The Hebrew University, 91904, Jerusalem (Israel); Cuperman, S.; Bruma, C. [School of Physics and Astronomy, Tel-Aviv University, 69978, Tel-Aviv (Israel)

    2000-10-02

    A novel thermal spray technology - an electro-thermal chemical spray (ETCS) for producing hard coatings is presented. The experimental coating apparatus consists of a machine gun barrel, a cartridge containing the coating material in powder form, a solid propellant, and a plasma ignition system. The plasma ignition system produces plasma in pulsed mode to ignite the solid propellant. On ignition, the drag force exerted by the combustion gases accelerates the powder particles towards the substrate. Using the ETCS technique, the process of single-shot WC-Co coating deposition on stainless steel substrate was studied. The influence of process parameters (plasma energy, mass of the solid propellant and the coated powder, distance between the gun muzzle and the substrate) on the coating structure and some of its properties were investigated. It was shown that ECTS technique effectively deposited the WC-Co coating with deposition thicknesses of 100-200 {mu}m per shot, while deposition yield of {proportional_to}70% was attained. The WC-Co coatings consisted of carbide particles distributed in amorphous matrix. The powder particle velocity was found to depend on the solid propellant mass and was weakly dependent on the plasma energy, while the particle processing temperature was strongly dependent on the plasma energy and almost independent of the solid propellant mass. Whilst increasing the solid propellant mass from 5 to 7 g, the deposition rate and yield correspondingly increased. When increasing the plasma energy, the temperature of the powder particles increased, the average carbide particle size decreased and their shape became more rounded. The deposition yield and microhardness at first increased and then achieved saturation by increasing the plasma energy. (orig.)

  20. Abnormal growth of faceted (WC) grains in a (Co) liquid matrix

    International Nuclear Information System (INIS)

    Park, Y.J.; Yoon, D.Y.

    1996-01-01

    If the grains dispersed in a liquid matrix are spherical, their surface atomic structure is expected to be rough (diffuse), and their coarsening has been observed to be controlled by diffusion in the matrix. They do not, furthermore, undergo abnormal growth. On the other hand, in some compound material systems, the grains in liquid matrices are faceted and often show abnormal coarsening behavior. Their faceted surface planes are expected to be singular (atomically flat) and therefore grow by a defect-assisted process and two-dimensional (2-D) nucleation. Contrary to the usual coarsening theories, their growth velocity is not linearly dependent on the driving force arising from the grain size difference. If the growth of the faceted grains occurs by 2-D nucleation, the rate is expected to increase abruptly at a critical supersaturation, as has been observed in crystal growth in melts and solutions. It is proposed that this growth mechanism leads to the abnormal grain coarsening. The 2-D nucleation theory predicts that there is a threshold initial grain size for the abnormal grain growth (AGG), and the propensity for AGG will increase with the heat-treatment temperature. The AGG behavior will also vary with the defects in the grains. These predictions are qualitatively confirmed in the sintered WC-Co alloy prepared from fine (0.85-microm) and coarse (5.48-microm) WC powders and their mixtures. The observed dependence of the AGG behavior on the sintering temperature and the milling of the WC powder is also qualitatively consistent with the predicted behavior

  1. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Directory of Open Access Journals (Sweden)

    Jolanta Sroka

    Full Text Available The endogenous electric field (EF may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC and lamellipodia forming (LC WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm. The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes than LC cells (30 minutes. We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  2. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  3. Wear evaluation of WC inserts coated with TiN/TiAlN multinanolayers

    OpenAIRE

    Moreno, L. H.; Ciacedo, J. C.; Martinez, F.; Bejarano, G.; Battaille, T. S.; Prieto, P.

    2010-01-01

    TiN/TiAlN multilayers were deposited by radio frequency, r.f., reactive magnetron sputtering by using titanium and aluminum targets with 10 cm diameter and 99.99% purity in an argon/nitrogen atmosphere, applying a substrate temperature of 300 ºC. WC inserts were used as substrates to improve the mechanical and tribological properties of TiN/TiAlN multilayered coatings compared to other types of coatings like TiAlN monolayers and to manage greater efficiency of these coatings in different indu...

  4. The functionally graded sintered steel WC-Co-NbC matrix

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.A.A.; Silva Junior, J.F. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil)

    2009-07-01

    Full text: The high speed steels are used for machining, including cutting tools at high speeds because their wear resistance, high temperature properties and excellent hardness. They are ferrous based alloys of the Fe-C-X component system where X represents a group of elements comprising Cr, W or Mo, V and Co. The aim of this work was to study the feasibility of powder metallurgy technique to develop functionally graded alloy material added by WC, Co and NbC. The morphology of the composite powders and sintered MMC were characterized by scanning electron microscopy and XRD measurements. (author)

  5. Safety analysis report for packaging: the ORNL DOT Specification 20WC-5 - special form packaging

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1982-10-01

    The ORNL DOT Specification 20WC-5 - Special Form Package was fabricated for the transport of large quantities of solid nonfissile radioactive materials in special form. The package was evaluated on the basis of tests performed at Sandia National Laboratories, Albuquerque, New Mexico on an identical fire and impact shield and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of large quantities of nonfissile radioactive materials in special form

  6. Production and mechanical properties of sintered carbides (hard steels WC-Co)

    International Nuclear Information System (INIS)

    Batalha, G.F.

    1987-09-01

    Densification and mechanical characteristics or WC-Co Cemented Carbides, were investigated by dilatometry, Hardness and bending tests, as a function of the two principal micro-structural parameters: the cobalt content and the particle size of carbide crystals. Vickers hardness of the studied compositions showed a linear variation with the increase of the cobalt content. By three point bending, the transverse rupture strenght increases with cobalt content, however, for larger grain size reaches a maximum, eventually reduced by brittle phases and incomplete dispersion. The results of brittle facture tests were statistically analised and fitted better to the 'Weakest Link Model' (Weibull distribution) than the 'Chain Model' (Gaussian distribution). (author) [pt

  7. Microestructura y propiedades mecánicas de carburos cementados de wc-nbc-co

    OpenAIRE

    Centeno, Oscarly; Sáez, Adolfredo; Piñero, María A; Castro, Gustavo; Barrios, Estebán; Arenas, Freddy J

    2008-01-01

    Se evaluó la densificación, fases constituyentes y cambios microestructurales, dureza y tenacidad de una serie de sólidos de WC-NbC-10%Co, con porcentajes nominales en peso de NbC variable entre 0 y 20%. Los sólidos estudiados fueron manufacturados mediante técnicas convencionales de pulvimetalurgia. La caracterización microestructural de los compactos sinterizados fue realizada utilizando Difracción de Rayos X (DRX), Microscopia Electrónica de Barrido (MEB) y Análisis Químico de Rayos X por ...

  8. Influence of electrical discharge machining on the tribological characteristics of WC-Co alloys

    International Nuclear Information System (INIS)

    Casas, B.; Martinez, E.; Esteve, J.; Anglada, M.; Llanes, L.

    2001-01-01

    The influence of electrical discharge machining (EDM) on the abrasive wear resistance of two WC-10 % w tCo cemented carbides with different carbide grain size has been studied. Different surface finish conditions were evaluated corresponding to sequential EDM as well as grinding and polishing with diamond. The abrasive wear resistance was determined through microscratch measurements using a nano indentation system. Contrary to the results obtained from hardness measurements, this techniques allows to discern tribological differences among the distinct surface finish conditions studied. Finally, the abrasive wear resistance degradation associated with sequential EDM is discussed as a function of microstructure in terms of a damage parameters. (Author) 9 refs

  9. Cross-linked PEEK-WC proton exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Lou, H

    2009-10-01

    Full Text Available was added to the 15 wt% of SsPEEK-WC solution in NMP with magnetic stir. The solution was cast on a glass Petri dish. The solvent was then removed in a vacuum oven at 130 °C. The membrane was peeled off from the Petri dish. Thereafter, the membrane... and polyetherketone for fuel cell applications. Journal of Membrane Science, 2001. 185(1): p. 41-58. [6] Kerres, J.A., Development of ionomer membranes for fuel cells. Journal of Membrane Science, 2001. 185(1): p. 3-27. [7] Basile, A.; Paturzo, L.; Iulianelli, A...

  10. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  11. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-10-17

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. 2014 BMJ Publishing Group Ltd.

  12. Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method

    Science.gov (United States)

    Pal, Arpan; Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta

    2018-03-01

    In the present study, the effects of WC nano-particles content on the microstructure, hardness, wear, and friction behavior of aluminum matrix composites are investigated. Al-WC nano composites with varying wt% of WC (0, 1, 1.5, and 2) are fabricated using ultrasonic cavitation assisted stir-cast method. The microstructure of the nano-composite samples is analyzed using optical microscopy and scanning electron microscopy. Elemental composition is determined by energy dispersive x-ray analysis. Vicker’s microhardness test is performed in different locations on the composite sample surface with a load of 50 gf and 10s dwell time. Wear and friction of the composites under dry sliding is studied using a pin-on-disk tribotester for varying normal load (10–40 N) and sliding speed (0.1–0.4 m/s). Uniform distribution of nano-WC is observed over composite surface without noticeable clustering. Reinforcement of nano-WC particles improves wear resistance and frictional behavior of the composite. Hardness is seen to increase with increase in wt% of nano-particles. Wear behavior of composites depends on formation of layers over the surface mixed with oxidized debris and counter-face particles. Wear mechanism changes from adhesion to abrasion with increase in wt% of hard nano particles.

  13. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Vezin, Hervé; Claude, Nancy; Lorge, Elisabeth; Nesslany, Fabrice

    2015-02-01

    We showed previously that tungsten carbide-cobalt (WC-Co) nanoparticles (NP) can be used as a nanoparticulate positive control in some in vitro mammalian genotoxicity assays. Here, we investigate the mechanisms of action involved in WC-Co NP genotoxicity in L5178Y mouse lymphoma cells and primary human lymphocytes, in vitro. Data from the micronucleus assay coupled with centromere staining and from the chromosome-aberration assay show the involvement of both clastogenic and aneugenic events. Experiments with the formamidopyrimidine DNA glycosylase (FPG)-modified comet assay showed a slight (non-significant) increase in FPG-sensitive sites in the L5178Y mouse lymphoma cells but not in the human lymphocytes. Electron paramagnetic resonance spin-trapping results showed the presence of hydroxyl radicals (•OH) in WC-Co NP suspensions, with or without cells, but with time-dependent production in the presence of cells. However, a significant difference in •OH production was observed between human lymphocytes from two different donors. Using H2O2, we showed that WC-Co NP can participate in Fenton-like reactions. Thus, •OH might be produced either via intrinsic generation by WC-Co NP or through a Fenton-like reaction in the presence of cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    Science.gov (United States)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  15. Arecibo and Goldstone radar images of near-Earth Asteroid (469896) 2005 WC1

    Science.gov (United States)

    Lawrence, Kenneth J.; Benner, Lance A. M.; Brozovic, Marina; Ostro, Steven J.; Jao, Joseph S.; Giorgini, Jon D.; Slade, Martin A.; Jurgens, Raymond F.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A.

    2018-01-01

    We report radar observations of near-Earth asteroid (469896) 2005 WC1 that were obtained at Arecibo (2380 MHz, 13 cm) and Goldstone (8560 MHz, 3.5 cm) on 2005 December 14-15 during the asteroid's approach within 0.020 au The asteroid was a strong radar target. Delay-Doppler images with resolutions as fine as 15 m/pixel were obtained with 2 samples per baud giving a correlated pixel resolution of 7.5 m. The radar images reveal an angular object with 100 m-scale surface facets, radar-dark regions, and an estimated diameter of 400 ± 50 m. The rotation of the facets in the images gives a rotation period of ∼2.6 h that is consistent with the estimated period of 2.582 h ± 0.002 h from optical lightcurves reported by Miles (private communication). 2005 WC1 has a circular polarization ratio of 1.12 ± 0.05 that is one of the highest values known, suggesting a structurally-complex near-surface at centimeter to decimeter spatial scales. It is the first asteroid known with an extremely high circular polarization ratio, relatively low optical albedo, and high radar albedo.

  16. Stripping methods studies for HVOF WC-10Co-4Cr coating removal

    Science.gov (United States)

    Menini, Richard; Salah, Nihad Ben; Nciri, Rachid

    2004-04-01

    The use of high-velocity oxyfuel (HVOF) cermet coatings is considered to be a valuable and innovative alternative technology to replace Cr(VI) electroplating. Among others, a WC-10Co-4Cr coating is one of the best choices for landing gear components due to its excellent tribology and corrosion properties. The stripping process of such a cermet coating was studied due to its importance for the repair and overhaul of landing gear components. Stripping solutions fulfill the following criteria: keep substrate integrity; exhibit a high strip rate (SR); lead to uniform dissolution; show no galvanic corrosion; and be environmentally friendly. Three different high-strength steel substrates (4340, 300M, and Aermet100) were studied. Five different stripping solutions were selected for the electrochemical study. Only three met the targeted criteria: the meta-nitrobenzane sulfonate-sodium cyanide solution; the Rochelle salt; and a commercial nickel stripper. It was found that the process must be electrolytic, and that ultrasonic agitation is needed to enhance the overall mass transport and removal of WC particles and metallic matrix residues. When choosing the most efficient solution and conditions, the SR was found to be as high as 162 µm h-1, which is a very acceptable SR for productivity sake.

  17. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Directory of Open Access Journals (Sweden)

    Andrea Angelastro

    2013-01-01

    Full Text Available As a surface coating technique, laser cladding (LC has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr composite coatings were fabricated by the multilayer laser cladding technique (MLC. An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.

  18. The evaluation of microstructure and mechanical properties of sintered sub-micron WC-Co powders

    International Nuclear Information System (INIS)

    Nor Izan Izura; Mohd Asri Selamat; Noraizham Mohamad Diah; Talib Ria Jaafar

    2007-01-01

    A cemented tungsten carbide (WC-Co) is widely used for a variety of machining, cutting, drilling and other applications. The properties of this tungsten heavy alloy are sensitive to processing and degraded by residual porosity. The sequence of high end powder metallurgy process include mixing, compacting and followed by multi-atmosphere sintering of green compact were analyzed. The sub micron (<1.0 μm) and less than 10.0 μm of WC powders are sintered with a metal binder 6% Co to provide pore-free part. The powder compacts were sintered at temperatures cycle in the range of 1200 degree Celsius-1550 degree Celsius in nitrogen-based sintering atmosphere. To date, however there have been few reported studies in the literature that the best sintering was carried out via liquid phase sintering in vacuum at approximately 1500 degree Celsius. from this study we found that in order to attain high mechanical properties, a fine grain size of powder is necessary. Therefore, the attention of this work is to develop and produce wear resistant component with better properties or comparable to the commercial ones. (author)

  19. Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage

    International Nuclear Information System (INIS)

    Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu

    2007-01-01

    Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix - WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material

  20. Eclipses and dust formation by WC9 type Wolf-Rayet stars

    Science.gov (United States)

    Williams, P. M.

    2014-12-01

    Visual photometry of 16 WC8-9 dust-making Wolf-Rayet (WR) stars during 2001-2009 was extracted from the All-Sky Automated Survey All Star Catalogue (ASAS-3) to search for eclipses attributable to extinction by dust formed in clumps in our line of sight. Data for a comparable number of dust-free WC6-9 stars were also examined to help characterize the data set. Frequent eclipses were observed from WR 104, and several from WR 106, extending the 1994-2001 studies by Kato et al., but not supporting their phasing the variations in WR 104 with its `pinwheel' rotation period. Only four other stars showed eclipses, WR 50 (one of the dust-free stars), WR 69, WR 95 and WR 117, and there may have been an eclipse by WR 121, which had shown two eclipses in the past. No dust eclipses were shown by the `historic' eclipsers WR 103 and WR 113. The atmospheric eclipses of the latter were observed but the suggestion by David-Uraz et al. that dust may be partly responsible for these is not supported. Despite its frequent eclipses, there is no evidence in the infrared images of WR 104 for dust made in its eclipses, demonstrating that any dust formed in this process is not a significant contributor to its circumstellar dust cloud and suggesting that the same applies to the other stars showing fewer eclipses.

  1. Effect of surface texturing on friction properties of WC/Co cemented carbide

    International Nuclear Information System (INIS)

    Wu, Ze; Deng, Jianxin; Xing, Youqiang; Cheng, Hongwei; Zhao, Jun

    2012-01-01

    Highlights: ► Tribological properties of surface textured WC/Co cemented carbide were studied. ► Textured surfaces have better performance of antifriction and antiwear. ► Area density of textures has significant effect on tribological performance. -- Abstract: An experimental study was carried out to investigate the tribological properties of different surface textured WC/Co cemented carbide. The influence of applied load, sliding speed and area density of textures on frictional performance of surface textured patterns was investigated by Taguchi method. Results show that the textured surfaces filled with molybdenum disulfide solid lubricants can reduce the average friction coefficient, wear rates of Ti–6Al–4V alloy balls and adhesion of Ti–6Al–4V alloy materials on the worn track of cemented carbide compared with un-textured ones. Variance analysis of the experimental data indicates that the area density of textures plays major contribution of both average friction coefficient and wear rate of Ti–6Al–4V alloy balls. Higher area density of textures is beneficial to improve tribological performance of the cemented carbide samples. Sliding speed seems to have no effect on the tribological performance of textured surfaces within the reliability interval of 90%. Applied load has effect on both average friction coefficient and wear rate of Ti–6Al–4V alloy balls at the reliability interval of 95%.

  2. Validation study of the COBRA-WC computer program for LMFBR core thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Khan, E.U.; Bates, J.M.

    1982-01-01

    The COBRA-WC (Whole Core) computer program has been developed as a benchmark code to predict flow and temperature fields in LMFBR rod bundles. Consequently, an extensive validation study has been conducted to reinforce its credibility. A set of generalized parameters predicts data well for a wide range of geometries and operating conditions which include conventional (current generation LMFBRs) fuel and blanket assembly geometry in the forced, mixed, and natural convection regimes. The data base used for validating COBRA-WC was obtained from out-of-pile and in-pile tests. Most of the data was obtained in fully heated bundles with bundle power skew across flats up to 3:1 (max:min), Reynolds number between 500 and 80,000, and coolant mixed-mean temperature rise (δ anti T) in the range, 78 0 F less than or equal to δ anti T less than or equal to 340 0 F. Within the bundle, 95% of the predicted coolant temperature data points fall within +-25 0 F for 150 0 F less than or equal to δ anti T less than or equal to 340 0 F and within +-17 0 F for 78 0 F less than or equal to δ anti T less than or equal to 150 0 F

  3. Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates

    International Nuclear Information System (INIS)

    Tang, Y.; Li, Y.S.; Yang, Q.; Hirose, A.

    2010-01-01

    Diamond nucleation and growth on several typical carbide-forming elements (CFE) (Ti, Cr and W) coated Si and WC-Co substrates were studied. The ion beam sputtered CFE interlayers show an amorphous/nanocrystalline microstructure. The diamond formed on the CFE coated substrates shows higher nucleation density and rate and finer grain structure than on uncoated substrates. Consequently, nanocrystalline diamond thin films can be formed on the CFE coated substrates under conventional microcrystalline diamond growth conditions. Among the three tested CFE interlayers, diamond has the highest nucleation density and rate on W layer and the lowest on Ti layer. The diamond nucleation density and rate on CFE coated WC-Co are much higher than those on widely used metal nitride coated WC-Co.

  4. Free energies of formation of WC and WzC and the thermodynamic properties of carbon in solid tungsten

    Science.gov (United States)

    Gupta, D. K.; Seigle, L. L.

    1974-01-01

    The activity of carbon in the two-phase regions - W + WC and W + W2C was obtained from the carbon content of iron rods equilibrated with mixtures of metal plus carbide powders. From this activity data the standard free energies of formation of WC and W2C were calculated. The temperature of the invariant reaction W2C = W + WC was fixed at 1570 + or - 5K. Using available solubility data for C in solid W, the partial molar free energy of C in the dilute solid solution was also calculated. The heat of solution of C in W, and the excess entropy for the interstitial solid solution, were computed, assuming that the carbon atoms reside in the octahedral interstices of bcc W.

  5. Fabrication of hard cermets by in-situ synthesis and infiltration of metal melts into WC powder compacts

    Directory of Open Access Journals (Sweden)

    Guanghua Liu

    2017-12-01

    Full Text Available Hard carbide cermets are prepared by in-situ synthesis and infiltration of metal melts into WC powder compacts. Ni–W and Ni–W–Cr metal melts are in-situ synthesized from thermite reactions and infiltrated into WC powder compacts under high-gravity. During the infiltration, W in the metal melts reacts with WC to form W2C, and more W2C and W are observed at the upper parts of the cermets than the lower parts. The cermets show a maximum hardness of 15.4 GPa, which is higher than most commercial cemented carbides, although they are not fully dense and have a porosity of 15–20%.

  6. Modification of WC-Co Hard Metal by Ion Implantation with Ti+, AI+, N+, C+ and B+

    International Nuclear Information System (INIS)

    Rassoul, El.M.A.; Saleh, Z.A.; Waheed, A.F.; Abdel- Samad, S.M.; EI- Awadi, G.A.

    2010-01-01

    WC/Co hard metal was implanted by Ti + , AI + , N + , C + , and B + ions at a dose of 5x 10 17 ions/cm 2 at different energies ranging from 50 keV to 200 keV. The implanted layers were investigated by means of nano indentation, calotte measurements, SEM, X-ray diffraction XRD, tribometer and EDX. The maximum implanted zone was about 0.13 μm. The hardness of WC-Co was increased by a factor of 140% after its implantation by Ti, AI, and N and increased by a factor of 170 % after implantation by Ti + , AI + , C + , N + and B + ions as compared to the original value. Also friction coefficient of WC/Co was improved after ion implantation.

  7. Properties of hard alloys on the basis of WC-Co with the additives of nanodisperse TiN

    International Nuclear Information System (INIS)

    Ordanyan, S.S.; Andronova, T.E.; Vladimirova, M.A.; Pantelejev, I.B.; Zalite, I.

    2001-01-01

    The addition of nanodisperse titanium nitride (specific surface area of 20 - 30 m 2 /g, medium diameter of grains of 50 - 100 nm) to the starting hard alloy WC-Co in the stage of wet grinding allows to get some advantages: the growth of WC grains is retarded by the nanoparticles of TiN, being as a barrier for the process of secondary crystallization, and the toughness of hard alloy is being increased due to the formation of finely dispersed structure; the exploitation characteristics of cutting instruments are increased due to the volume alloying by means of titanium nitride having a decreased adhesion to the treated metal and decreased coefficient of friction; the formation of diffusion porosity is being eliminated due to the small size of TiN during the unavoidable dissolution of WC in TiN. (author)

  8. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  9. Developing bulk exchange spring magnets

    Science.gov (United States)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  10. Direct laser metal deposition of WC/Co/Cr powder by means of the functionally graded materials strategy

    Science.gov (United States)

    Angelastro, A.; Campanelli, S. L.

    2017-12-01

    One of the many applications of direct laser metal deposition (DLMD) is the realization of multilayer thick coatings having particular mechanical characteristics, such as high hardness. The objective of this work was to obtain a thick, very hard and wear resistant coating, containing a high percentage of tungsten carbide (WC), on an AISI 304 stainless steel substrate. In order to achieve this result, a tungsten carbide-cobalt-chrome (WC/Co/Cr) powder was processed by the DLMD method. WC/Co/Cr is a composite widely used as a wear-resistant material for cutting tools, molds, coatings and other severe applications. Because of its high hardness, poor ductility and low thermal expansion coefficient, depositing this material directly on the stainless steel substrate is very difficult. In order to overcome this problem, the strategy of functionally graded materials (FGM) was used. Colmonoy 227-F nickel alloy was chosen for this purpose in order to generate a mixture with the WC/Co/Cr powder. Four different materials were deposited, layer by layer, by mixing Colmonoy 227-F with an increasing amount of WC/Co/Cr powders, until obtaining a thick surface coating with a maximum amount of WC of 77.4 wt%. For each powder mixture, a mathematical model was applied to calculate optimal values of translation speed and overlap percentages. A metallographic examination was performed in order to detect macro- and micro-structures of the different materials. Finally, Vickers micro-hardness was measured at various locations along the transverse section to appreciate the gradual increase of the FGM hardness, starting from the substrate and culminating at the top surface of the last deposited material.

  11. Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu; Pandey, O.P., E-mail: oppandey@thapar.edu

    2017-01-15

    In this study, carbon coated WC (WC@C) was synthesized through solvothermal reactions in the presence of reducing agent magnesium (Mg) by employing tungsten oxide (WO{sub 3}) as a precursor, acetone (C{sub 3}H{sub 6}O) as a carbon source. The formation of WC@C nano particles is confirmed by X-ray diffraction and Transmission electron microscopy. The thermal stability of the synthesized powder examined in air shows its stability up to 550 °C. In this method, in-situ produced outer carbon layer increase the surface area of materials which is 52.6 m{sup 2} g{sup −1} with pore volume 0.213 cm{sup 3} g{sup −1}. The Electrocatalytic activity of ethanol oxidation on a synthesized sample with and without Pt nano particles have been investigated using cyclic voltammetry (CV). The CV results show the enhancement in oxidation stability of WC@C in acidic media as well as better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles as compared to without Pt nano particles. - Highlights: • Tungsten carbide nano powder was synthesized using acetone as carbon source. • In-situ produced outer carbon layer increase the surface area of materials. • Mesoporous WC with surface areas 52.6 m{sup 2}/g obtained. • Pt modified WC powder showed higher electrochemical stability. • Better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles.

  12. Critical Damage Analysis of WC-Co Tip of Conical Pick due to Coal Excavation in Mines

    Directory of Open Access Journals (Sweden)

    Saurabh Dewangan

    2015-01-01

    Full Text Available WC-Co based tools are widely used in the field of coal and rock excavation because of their unique combination of strength, hardness, and resistance to abrasive wear. Conical pick is one of the coal cutting tools. The tip of the pick is made of WC-Co material. As coal and rock are heterogeneous elements, they pose various constraints during excavation. As a result the tools wear out during the process. Other parameters like cutting techniques, tool orientation, and environmental conditions also affect the tool significantly. The wearing phenomenon greatly reduces the service life of the tools and thereby cuts down the production rate. To prevent such wearing process, it is important to investigate the different wear mechanisms in WC-Co. Simultaneously, there has to be an ongoing endeavour for the development of better quality WC-Co. This paper focuses on different wear mechanisms in a conical pick which has been used in a continuous miner machine for coal cutting. The worn out surface has been observed by using FE-SEM (field emission scanning electron microscopy and EDS (energy dispersive X-ray spectroscopy. The mechanisms, namely, coal/rock intermixing, cracking and crushing of WC grains, and adhesion of rock particles, have been predominantly investigated in this study. A little indication of corrosive decay in the WC grain has also been reported. The EDS has detected material concentration in a selected area or point of the worn-out surface. The spectrograph confirms the presence of coal/rock materials. Elements such as W, C, Ca, K, O, and Co have been mainly found in different concentrations at different positions.

  13. N +-implantation induced enhanced adhesion in WC1-x/Ti-6Al-4V

    Science.gov (United States)

    Laidani, Nadhira; Dorigoni, Carla; Miotello, Antonio

    1996-12-01

    In this work, the potentiality of the N +-implantation to promote adhesion in WC1-x/Ti-6Al-4V bilayers has been investigated. The WC 1- x films were deposited by rf sputtering in Ar discharge. N +-implantations were performed at 160 keV with ion dose ranging from 5 × 10 15 to 2 × 10 17N +/cm 2. The implantations have been carried out at two sample temperatures: 363 K and 423 K. Adhesion strength was measured by means of the scratch test in conjunction with scanning electron microscopy and energy dispersive spectrometry (EDS). Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS) and X-ray diffraction (XRD) analyses were used to study the chemical, compositional and structural changes of the WC1-x/Ti-6Al-4V interface. As a general result, N +-implantation modifies the adhesion failure mechanism which from adhesive, before implantation, becomes cohesive. The implantation temperature had a strong effect on the critical loads Lc. N +-implantation at 423 K resulted in a slight increase of Lc, from 2N (unimplanted systems) to 5N for all ion doses. This weak improvement of the adhesion strength was associated with the particular interface processes which allowed C, but not W, mixing into the substrate. In this case, TiC bondings formed which contributed to the substrate embrittlement. When the implantations were carried out at 363 K, both C and W underwent mixing with Ti-6Al-4V: this favoured not only an interface composition grading but also a graded chemistry across the interface, with a strong increase of Lc for low ion dose ( Lc = 14N for 1 × 10 16 N +/cm 2). Implantation with higher doses (5 × 10 16N -/cm 2 and 2 × 10 17N +/cm 2) exhibited lower efficiency ( Lc = 7N for 2 × 10 17 N +/cm 2). This ion dose dependence of the adhesion strength was attributed to the formation of different phases across the interface, probably structurally incompatible.

  14. Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC

    International Nuclear Information System (INIS)

    Yaldagard, Maryam; Jahanshahi, Mohsen; Seghatoleslami, Naser

    2014-01-01

    Highlights: • In this work nanosized WC/C were successfully coated by PANI. • Pt particles (10.56 nm) were uniformly dispersed on the surface of PANI/WC/C support. • The Pt/PANI/WC/C exhibited higher MOR activity and CO tolerance than Pt/C. • The Pt/PANI/WC/C exhibited higher activity for ORR than Pt/C in RDE experiments. • Pt/PANI/WC/C showed good stability than that of Pt/C in the presence of methanol. - Abstract: In the present study a Pt/PANI/WC/C electrocatalyst was developed to increase the methanol electro-oxidation and oxygen electro-reduction activity and stability of commercial Pt/C electrocatalyst. WC/C was coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. Fourier transform infrared (FTIR) results illustrate the presence of PANI in the composite. The conductivity of PANI coated – WC/C has been compared with the conductivity of the corresponding mixtures of WC/C and Vulcan XC-72. X-ray diffraction results showed that Pt particles were dispersed on the support with mean particle size of about 10.56 nm. Transition electron microscopy images showed that the nanosized WC/C were successfully coated by PANI. Based on the electrochemical properties characterized by cyclic voltammetry, CO stripping and rotating disk electrode measurements it was found that the as prepared Pt/PANI/WC/C electrocatalyst exhibited a comparable activity for methanol oxidation reaction and oxygen reduction reaction with respect to the commercial one. A significant reduction in the potential of CO electro-oxidation peak from 0.75 V for Pt/C to 0.52 V for Pt/PANI/WC/C electrocatalyst indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support by PANI coated WC/C. Chronoamerometry results also showed, in the presence of methanol the Pt/PANI/WC/C electrocatalyst still maintains a higher current density than Pt/WC/C and Pt/C

  15. Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Yaldagard, Maryam, E-mail: m_yaldagard@yahoo.com [Department of Chemical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran, Islamic Republic of); Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Jahanshahi, Mohsen, E-mail: mjahan@nit.um.ac.ir [Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Seghatoleslami, Naser, E-mail: Slami@um.ac.ir [Department of Chemical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran, Islamic Republic of)

    2014-10-30

    Highlights: • In this work nanosized WC/C were successfully coated by PANI. • Pt particles (10.56 nm) were uniformly dispersed on the surface of PANI/WC/C support. • The Pt/PANI/WC/C exhibited higher MOR activity and CO tolerance than Pt/C. • The Pt/PANI/WC/C exhibited higher activity for ORR than Pt/C in RDE experiments. • Pt/PANI/WC/C showed good stability than that of Pt/C in the presence of methanol. - Abstract: In the present study a Pt/PANI/WC/C electrocatalyst was developed to increase the methanol electro-oxidation and oxygen electro-reduction activity and stability of commercial Pt/C electrocatalyst. WC/C was coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. Fourier transform infrared (FTIR) results illustrate the presence of PANI in the composite. The conductivity of PANI coated – WC/C has been compared with the conductivity of the corresponding mixtures of WC/C and Vulcan XC-72. X-ray diffraction results showed that Pt particles were dispersed on the support with mean particle size of about 10.56 nm. Transition electron microscopy images showed that the nanosized WC/C were successfully coated by PANI. Based on the electrochemical properties characterized by cyclic voltammetry, CO stripping and rotating disk electrode measurements it was found that the as prepared Pt/PANI/WC/C electrocatalyst exhibited a comparable activity for methanol oxidation reaction and oxygen reduction reaction with respect to the commercial one. A significant reduction in the potential of CO electro-oxidation peak from 0.75 V for Pt/C to 0.52 V for Pt/PANI/WC/C electrocatalyst indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support by PANI coated WC/C. Chronoamerometry results also showed, in the presence of methanol the Pt/PANI/WC/C electrocatalyst still maintains a higher current density than Pt/WC/C and Pt/C.

  16. Thermal interaction between WC-Co coating and steel substrate in process of HVOF spraying

    International Nuclear Information System (INIS)

    Guilemany, J.M.; Sobolev, V.V.; Nutting, J.; Dong, Z.; Calero, J.A.

    1994-01-01

    The WC-Co powders can be used to produce good adhesive and wear resistant HVOF thermal spray coatings on steel and light alloys substrates. In order to understand the properties of this kind of coating, the phases which are present in the coatings and structure changes during post heat treatments have been investigated. Although the coating properties depend very much on the structure developed in the substrate-coating interfacial region it has not been yet investigated in detail. The present study is devoted to the experimental and theoretical analysis of this interfacial region. The structure characterization has been performed mainly through the use of transmission electron microscopy. To provide a theoretical investigation a realistic prediction model of the process has been developed and on its base the mathematical simulation of the substrate-coating thermal interaction has been undertaken

  17. Regional mapping of photovoltaic plants ranging from 100 to 999 kWc in 2013

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    In a context of the expectation of a strong political lead, small and intermediate photovoltaic installations keep on developing. The map gives for each France's region the number of operating installations whose power output ranges between 100 and 999 kWc, and the number and the capacity of the installations that are completed but not yet connected to the grid. The sunshine level curves are also drawn. Polycrystal and monocrystal technologies are the most used 48% and 32% respectively, while the thin layer technology is used in only 5% of the installations. Concerning the type of the setting a great majority of the installations (85%) are integrated to the building while less than 1% are set on the ground. (A.C.)

  18. Physical chemistry of WC-12 %Co coatings deposited by thermal spraying at different standoff distances

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Muhammad; Ahmed, Furqan; Anwar, Muhammad Yousaf; Ali, Liaqat; Ajmal, Muhammad [Univ. of Engineering and Technology, Metallurgical and Materials Engineering, Lahore (Pakistan); Khan, Aamer Nusair [Institute of Industrial and Control System, Rawalpindi (Pakistan)

    2015-09-15

    In the present research, WC-12 %Co cermet coatings were deposited on AISI-321 stainless steel substrate using air plasma spraying. During the deposition process, the standoff distance was varied from 80 to 130 mm with 10 mm increments. Other parameters such as current, voltage, time, carrier gas flow rate and powder feed rate etc. were kept constant. The objective was to study the effects of spraying distance on the microstructure of as-sprayed coatings. The microscopic analyses revealed that the band of spraying distance ranging from 90 to 100 mm was the threshold distance for optimum results, provided that all the other spraying parameters were kept constant. In this range of threshold distance, minimum percentages of porosity and defects were observed. Further, the formation of different phases, at six spraying distances, was studied using X-ray diffraction, and the phase analysis was correlated with hardness results.

  19. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, J.; Gonzalo, O.; Sanda, A.

    2014-04-01

    The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC) in turning operations. The cutting tools used were hard metal (WC) with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD) and Mono-Crystalline Diamond (MCD). The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 {mu}m. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM). It was observed that the Built Up Edge (BUE) and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool. (Author)

  20. Ultra-short-period WC/SiC multilayer coatings for x-ray applications

    International Nuclear Information System (INIS)

    Fernández-Perea, Mónica; Pivovaroff, Mike J.; Soufli, Regina; Alameda, Jennifer; Mirkarimi, Paul; Descalle, Marie-Anne; Baker, Sherry L.; McCarville, Tom; Ziock, Klaus; Hornback, Donald; Romaine, Suzanne; Bruni, Ric; Zhong, Zhong; Honkimäki, Veijo; Ziegler, Eric; Christensen, Finn E.; Jakobsen, Anders C.

    2013-01-01

    Multilayer coatings enhance x-ray mirror performance at incidence angles steeper than the critical angle, allowing for improved flux, design flexibility and facilitating alignment. In an attempt to extend the use of multilayer coatings to photon energies higher than previously achieved, we have developed multilayers with ultra-short periods between 1 and 2 nm based on the material system WC/SiC. This material system was selected because it possesses very sharp and stable interfaces. In this article, we show highlights from a series of experiments performed in order to characterize the stress, microstructure and morphology of the multilayer films, as well as their reflective performance at photon energies from 8 to 384 keV

  1. Mechanical characterization of cemented carbide WC-6Co (%wt) manufactured by SPS (Spark Plasma Sintering

    International Nuclear Information System (INIS)

    Boidi, G.; Tertuliano, A.J.; Machado, I.F.

    2016-01-01

    This work aimed to manufacture cemented carbide (WC-6%wtCo) obtained by SPS (Spark Plasma Sintering) process and to carry out the mechanical characterization by hardness and fracture toughness. The material was consolidated at 1100 deg C for different holding times (1 min, 5 min, 10 min), in order to evaluate the densification. A reference sample was also used to be compared to SPS. Optical and scanning electron microscopy were carried out to characterize the microstructural features of the samples and mechanical properties were obtained by hardness measurements (micro and macro) and instrumented indentation. The fracture toughness was calculated with the method of Palmqvist. Best results were found in the material sintered by SPS for 10 minutes of holding time, in which 97% of relative density and about 1600 HV_1_0 was reached. (author)

  2. Thermomagnetic method to determine cobalt content in solid WC-Co alloys

    International Nuclear Information System (INIS)

    Tumanov, V.I.; Loshakov, A.L.; Korchakova, E.A.

    1980-01-01

    A thermomagnetic method of cobalt amount determination in tungsten solid alloys is suggested. The method consists in the following: a sample of solid alloy is placed in a magnetic field sufficient to achieve technical saturation (not less than 10 kOe), and specific magnetization of saturation of the alloy σ is determined, then the sample is heated and according to the curves of magnetic permeability dependence on the temperature the Curie point of the alloy THETA is determined and cobalt amount is calculated by the formula qsub(Co)=σ100/(kTHETA+b). The analysis duration is approximately 30 min. Comparative data of cobalt amount determination in solid alloys WC-Co using thermonagnetic and potentiometric methods are presented. Results obtained by thermomagnetic and chemical method are in good agreement. Efficiency of the thermomagnetic method is much higher

  3. Regional mapping of 100 - 999 kWc photovoltaic plants in 2014

    International Nuclear Information System (INIS)

    Tuille, F.

    2014-01-01

    This article presents the distribution over the French soil of intermediate photovoltaic plants in mid 2014. The map gives the number of photovoltaic plants, the total connected capacity per region, and the curves of sunlight. The total number of photovoltaic plants with a capacity ranging from 100 to 999 kWc is 2895 totaling 626,5 MWc. Most of these plants (82%) are integrated into the roofs of buildings while 10% are installed on the roofs. 53% of the solar panels are made of polycrystalline photovoltaic cells while 32% are composed on monocrystalline cells and 7% are based on thin film technology. There are very few plants waiting to be connected to the grid which means that this sector is losing its impetus. (A.C.)

  4. Measurement and modeling of room temperature co-deformation in WC-10 wt.%

    Energy Technology Data Exchange (ETDEWEB)

    Livescu, V. [MST-8/LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)]. E-mail: vlivescu@lanl.gov; Clausen, B. [MST-8/LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Paggett, J.W. [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States); Krawitz, A.D. [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States); Drake, E.F. [REEDHycalogTM/Grant Prideco, Houston, TX 77252 (United States); Bourke, M.A.M. [MST-8/LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    In situ neutron diffraction measurements were performed on a tungsten carbide (WC)-10 wt.% cobalt (Co) cemented carbide composite subjected to compressive loading. The sample was subjected to consecutive load/unload cycles to -500, -1000, -2000 and -2100 MPa. Thermal residual stresses measured before loading reflected large hydrostatic tensile stresses in the binder phase and compressive stresses in the carbide phase. The carbide phase behaved elastically at all but the highest load levels, whereas plasticity was present in the binder phase from values of applied stress as low as -500 MPa. A finite element simulation utilizing an interpenetrating microstructure model showed remarkable agreement with the complex mean phase strain response during the loading cycles despite its under-prediction of thermal residual strains.

  5. Crystal orientation mapping applied to the Y-TZP/WC composite

    CERN Document Server

    Faryna, M; Sztwiertnia, K

    2002-01-01

    Crystal orientation measurements made by electron backscattered diffraction (EBSD) in the scanning electron microscope (SEM) and microscopic observations provided the basis for a quantitative investigation of microstructure in an yttria stabilized, tetragonal zirconia-based (Y-TZP) composite. Automatic crystal orientation mapping (ACOM) in a SEM can be preferable to transmission electron microscopy (TEM) for microstructural characterization, since no sample thinning is required, extensive crystal data is already available, and the analysis area is greatly increased. A composite with a 20 vol.% tungsten carbide (WC) content was chosen since it revealed crystal relationships between the matrix and carbide phase already established by TEM analysis. However, this composite was difficult to investigate in the EBSD/ SEM since it is non-conductive, the Y-TZP grain size is of the order of the system resolution, and the sample surface, though carefully prepared, reveals a distinctive microtopography. In this paper, so...

  6. Self-propagating high-temperature synthesis of TiC-WC composite materials

    International Nuclear Information System (INIS)

    Mas-Guindal, M.J.; Contreras, L.; Turrillas, X.; Vaughan, G.B.M.; Kvick, A.; Rodriguez, M.A.

    2006-01-01

    TiC-WC composites have been obtained in situ by self-propagating high-temperature synthesis (SHS) from a mixture of compacted powders of elemental titanium, tungsten and graphite. The Rietveld method has proved to be a useful tool to quantify the different phases in the reaction and calculate the cell parameters of the solid solution found in the products. The reaction has also been followed in real time by X-ray diffraction at the European Synchrotron Radiation Facility (ESRF ID-11 Materials Science Beamline). The mechanism of the reaction is discussed in terms of the diffusion of liquid titanium to yield titanium carbide with a solid solution of tungsten. The microstructures of the materials obtained by this method are presented

  7. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    Science.gov (United States)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  8. As(III) oxidation by MnO{sub 2} coated PEEK-WC nanostructured capsules

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Alessandra, E-mail: a.criscuoli@itm.cnr.it [Institute on Membrane Technology, ITM-CNR, Via P. Bucci Cubo 17/C, 87030 Rende (CS) (Italy); Majumdar, Swachchha [Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Rd., 700032 Kolkata (India); Figoli, Alberto, E-mail: a.figoli@itm.cnr.it [Institute on Membrane Technology, ITM-CNR, Via P. Bucci Cubo 17/C, 87030 Rende (CS) (Italy); Sahoo, Ganesh C. [Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Rd., 700032 Kolkata (India); Bafaro, Patrizia [Institute on Membrane Technology, ITM-CNR, Via P. Bucci Cubo 17/C, 87030 Rende (CS) (Italy); Department of Chemical Engineering and Materials, University of Calabria, Via P. Bucci Cubo 42/A, 87030 Rende (CS) (Italy); Bandyopadhyay, Sibdas [Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Rd., 700032 Kolkata (India); Drioli, Enrico [Institute on Membrane Technology, ITM-CNR, Via P. Bucci Cubo 17/C, 87030 Rende (CS) (Italy); Department of Chemical Engineering and Materials, University of Calabria, Via P. Bucci Cubo 42/A, 87030 Rende (CS) (Italy)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Successful preparation of PEEK-WC nanostructured capsules coated by MnO{sub 2}. Black-Right-Pointing-Pointer Preliminary tests of As(III) oxidation carried out in batch. Black-Right-Pointing-Pointer Complete oxidation obtained for feed concentrations of 0.1 and 0.3 ppm. - Abstract: PEEK-WC nanostructured capsules were prepared by the phase inversion technique and used as support for the coating of a manganese dioxide layer. The coating was done by a chemical treatment of the capsules followed by a thermal one. The presence of the MnO{sub 2} layer was confirmed by scanning electron microscopy (SEM), back scattering electron (BSE), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis. The produced capsules were, then, tested for As(III) oxidation in batch. The experiments consisted in treating 165 ml of As(III) solution with 1 g of coated capsules at fixed temperature (15 Degree-Sign C) and pH (5.7-5.8). In particular, the efficiency of the system was investigated for different As(III) concentrations (0.1, 0.3, 0.7 and 1 ppm). For feeds at lower As(III) content (0.1-0.3 ppm), tests lasted for 8 h, while prolonged runs (up to 48 h) were carried out on more concentrated solutions (0.7 and 1 ppm). The produced capsules were able to oxidize As(III) into As(V) leading to complete conversion after 3 and 4 h for feed concentrations of 0.1 and 0.3 ppm, respectively.

  9. Nd:YOV4 laser polishing on WC-Co HVOF coating

    Science.gov (United States)

    Giorleo, L.; Ceretti, E.; Montesano, L.; La Vecchia, G. M.

    2017-10-01

    WC/Co coatings are widely applied to different types of components due to their extraordinary performance properties including high hardness and wear properties. In industrial applications High Velocity Oxy-Fuel (HVOF) technique is extensively used to deposit hard metal coatings. The main advantage of HVOF compared to other thermal spray techniques is the ability to accelerate the melted powder particles of the feedstock material at a relatively high velocity, leading to obtain good adhesion and low porosity level. However, despite the mentioned benefits, the surface finish quality of WC-Co HVOF coatings results to be poor (Ra higher than 5 µm) thus a mechanical polishing process is often needed. The main problem is that the high hardness of coating leads the polishing process expensive in terms of time and tool wear; moreover polishing becomes difficult and not always possible in case of limited accessibility of a part, micro dimensions or undercuts. Nowadays a different technique available to improve surface roughness is the laser polishing process. The polishing principle is based on focused radiation of a laser beam that melts a microscopic layer of surface material. Compared to conventional polishing process (as grinding) it ensures the possibility of avoiding tool wear, less pollution (no abrasive or liquids), no debris, less machining time and coupled with a galvo system it results to be more suitable in case of 3D complex workpieces. In this paper laser polishing process executed with a Nd:YOV4 Laser was investigated: the effect of different process parameters as initial coating morphology, laser scan speed and loop cycles were tested. Results were compared by a statistical approach in terms of average roughness along with a morphological analysis carried out by Scanning Electron Microscope (SEM) investigation coupled with EDS spectra.

  10. The study of stiffness modulus values for AC-WC pavement

    Science.gov (United States)

    Lubis, AS; Muis, Z. A.; Iskandar, T. D.

    2018-02-01

    One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.

  11. Characterization investigations during mechanical alloying and sintering of Ni-W solid solution alloys dispersed with WC and Y{sub 2}O{sub 3} particles

    Energy Technology Data Exchange (ETDEWEB)

    Genc, Aziz, E-mail: agenc@itu.edu.t [Particulate Materials Laboratories, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, 34469 Istanbul (Turkey); Luetfi Ovecoglu, M. [Particulate Materials Laboratories, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, 34469 Istanbul (Turkey)

    2010-10-15

    Research highlights: {yields} Characterization investigations on the Ni-W solid solution alloys fabricated via mechanical alloying and the evolution of the properties of the powders with increasing MA durations. {yields} Reinforcement of the selected Ni-W powders with WC and Y{sub 2}O{sub 3} particles and further MA together for 12 h. {yields} There is no reported literature on the development and characterization of Ni-W solid solution alloys matrix composites fabricated via MA. {yields} Sintering of the developed composites and the characterization investigations of the sintered samples. {yields} Identification of new 'pomegranate-like' structures in the bulk of the samples. - Abstract: Blended elemental Ni-30 wt.% W powders were mechanically alloyed (MA'd) for 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h in a Spex mixer/mill at room temperature in order to investigate the effects of MA duration on the solubility of W in Ni and the grain size, hardness and particle size. Microstructural and phase characterizations of the MA'd powders were carried out using X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). On the basis of achieved saturation on the solid solubility, hardness and particle size, the Ni-30 wt.% W powders MA'd for 48 h were chosen as the matrix which was reinforced with different amounts of WC and/or with 1 wt.% Y{sub 2}O{sub 3} particles. The reinforced powders were further MA'd for 12 h. The MA'd powders were sintered at 1300 {sup o}C for 1 h under Ar and H{sub 2} gas flowing conditions. Microstructural characterizations of the sintered samples were conducted via XRD and SEM. Sintered densities were measured by using the Archimedes' method. Vickers microhardness tests were performed on both MA'd powders and the sintered samples. Sliding wear experiments were done in order to investigate wear behaviors of the sintered samples.

  12. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  13. WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Fan, Xiujun; Zhou, Haiqing; Guo, Xia

    2015-05-26

    Single nanocrystalline tungsten carbide (WC) was first synthesized on the tips of vertically aligned carbon nanotubes (VA-CNTs) with a hot filament chemical vapor deposition (HF-CVD) method through the directly reaction of tungsten metal with carbon source. The VA-CNTs with preservation of vertical structure integrity and alignment play an important role to support the nanocrystalline WC growth. With the high crystallinity, small size, and uniform distribution of WC particles on the carbon support, the formed WC-CNTs material exhibited an excellent catalytic activity for hydrogen evolution reaction (HER), giving a η10 (the overpotential for driving a current of 10 mA cm(-2)) of 145 mV, onset potential of 15 mV, exchange current density@ 300 mV of 117.6 mV and Tafel slope values of 72 mV dec(-1) in acid solution, and η10 of 137 mV, onset potential of 16 mV, exchange current density@ 300 mV of 33.1 mV and Tafel slope values of 106 mV dec(-1) in alkaline media, respectively. Electrochemical stability test further confirms the long-term operation of the catalyst in both acidic and alkaline media.

  14. A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot

    International Nuclear Information System (INIS)

    Zhou Shengfeng; Huang Yongjun; Zeng Xiaoyan

    2008-01-01

    Ni-based WC composite coatings by laser induction hybrid rapid cladding (LIHRC) with elliptical spot were investigated. Results indicate that the efficiency using the elliptical spot of 6 mm x 4 mm (the major and minor axis of laser beam are 6 mm and 4 mm, respectively, the major axis is parallel to the direction of laser scanning) is higher than that using the elliptical spot of 4 mm x 6 mm (the major axis is perpendicular to the direction of laser scanning). The precipitated carbides with the blocky and bar-like shape indicate that WC particles suffer from the heat damage of 'the disintegration pattern + the growth pattern', whichever elliptical spot is used at low laser scanning speed. However, at high laser scanning speed, the blocky carbides are only formed if the elliptical spot of 6 mm x 4 mm is adopted, showing that WC particles present the heat damage of 'the disintegration pattern', whereas the fine carbides are precipitated when the elliptical spot of 4 mm x 6 mm is used, showing that WC particles take on the heat damage of 'the radiation pattern'. Especially, the efficiency of LIHRC is increased much four times higher than that of the general laser cladding and crack-free ceramic-metal coatings can be obtained

  15. Semi-empirical relationship between the hardness, grain size and mean free path of WC-Co

    CSIR Research Space (South Africa)

    Makhele-Lekala, L

    2001-01-01

    Full Text Available , grain size of WC and mean free path in Co was obtained. It was found that the empirical formula fitted our measured hardness well. However, when used against results of other researchers, it did not reproduce them satisfactorily at values higher than...

  16. Coating Properties of WC-Ni Cold Spray Coating for the Application in Secondary Piping System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JeongWon; Kim, Seunghyun; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    As a result of FAC(flow accelerated corrosion), severe accidents, failure of carbon steel like a Mihama Unit-3 occurred. Chemical composition change of carbon steel or coating to inner surface is one of methods to improve corrosion properties. Among them, thermal spray coating is convenient solution to apply at industry. Powder is melted at blast furnace and ejected to substrate. After adhesion, substrate and coating layer is cooled down and coated layer protects steel from corrosion finally. However high thermal energy is transferred to substrate and coating layer so it leads high thermal residual stress in coating procedure. Besides, high temperature for melting powder makes unexpected chemical reaction of powder like an oxidation or carburization. Whereas, cold spray uses low temperature comparing with other thermal spray. Thermal energy is used for not melting powder but high kinetic energy of powder and plastic deformation during collision. Therefore, fuel such as oxygen-acetylene gas is not needed. It needs carrier gas, compressed air, nitrogen or helium, to increase kinetic energy of powder and move powder to substrate. Comparing cold spray with high velocity oxy fuel (HVOF), one of thermal spray, cold spray coating layer contains only WC and Co. One of other problem about WC is brittleness during coating. To improve deformability of WC, binder metal is added. For example, Co, Cr, Ni, Cu, Al, Fe or etc. Additionally, binder metal lowering melting temperature of composite powder increases coating properties. Among them, Co which is widely used as binder metal maintains mechanical properties like a hardness and improves corrosion properties. Therefore Co is not suitable for binder metal of WC coating. In contrast, Ni has better corrosion resistance to alkaline environment and makes lower melting temperature. Moreover, in a view of cold spray, FCC structure has better deformability than BCC or HCP, and BCC has lowest deformability. WC is BCC structure so it

  17. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Comparative study of the friction and wear behavior of plasma sprayed conventional and nanostructured WC-12%Co coatings on stainless steel

    International Nuclear Information System (INIS)

    Zhao Xiaoqin; Zhou Huidi; Chen Jianmin

    2006-01-01

    Conventional and nanostructured WC-12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si 3 N 4 at room temperature and elevated temperatures up to 400 deg. C was comparatively studied. The microstructures and worn surface morphologies of the coatings were comparatively analyzed as well by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA). It was found that the as-sprayed WC-12%Co coatings were composed of WC as the major phase and W 2 C, WC 1-x , and W 3 Co 3 C as the minor phases. The plasma sprayed nanostructured WC-12%Co coating had much higher hardness and refined microstructures than the conventional WC-12%Co coating. This largely accounted for the better wear resistance of the nanostructured WC-12%Co coating than the conventional coating. Besides, the two types of WC-12%Co coatings showed minor differences in friction coefficients, though the nanostructured WC-12%Co coating roughly had slightly smaller friction coefficient than the conventional coating under the same sliding condition. Moreover, both the conventional and nanostructured WC-12%Co coatings recorded gradually increased wear rate with increasing temperature, and the nanostructured coating was less sensitive to the temperature rise in terms of the wear resistance. The worn surfaces of the conventional WC-12%Co coating at different sliding conditions showed more severe adhesion, microfracture, and peeling as compared to the nanostructured WC-12%Co coating, which well conformed to the corresponding wear resistance of the two types of coatings. The nanostructured WC-12%Co coating with a wear rate as small as 1.01 x 10 -7 mm 3 /Nm at 400 deg. C could be promising candidate coating for the surface-modification of some sliding components subject to harsh working conditions involving elevated

  19. The Electro-Spark Deposited WC-Cu Coatings Modified by Laser Treatment / Powłoki WC-Cu Naniesione Elektroiskrowo I Modyfikowane Obróbką Laserową

    Directory of Open Access Journals (Sweden)

    Radek N.

    2015-12-01

    Full Text Available The main objective of the present work was to determine the influence of laser treatment on microstructure, X-ray diffraction, microhardness, surface geometric structure and roughness, corrosion resistance and tribological properties of coatings deposited on C45 carbon steel by the electro-spark deposition (ESD process. The studies were conducted using WC-Cu electrodes produced by the powder metallurgy route. The tests show that the laser-treated electro-spark deposited WC-Cu coatings are characterized by higher corrosion resistance, surface roughness and seizure resistance which come at the expense of lower microhardness. The laser treatment process causes the homogenization of the chemical composition, structure refinement and healing of microcracks and pores of the electro-spark deposited coatings. Laser treated ESD coatings can be applied in sliding friction pairs and as protective coatings.

  20. WC1+ γδ T cells from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis respond differentially to stimulation with PPD-J.

    Science.gov (United States)

    Albarrak, S M; Waters, W R; Stabel, J R; Hostetter, J M

    2017-08-01

    A role for γδ T cells in protection against mycobacterial infections including Johne's disease (JD) has been suggested. In neonatal calves where the risk to infection with Mycobacterium avium subsp. paratuberculosis (MAP) is high, the majority of circulating CD3 + lymphocytes are γδ TCR + . Bovine γδ T cells are divided into two major subsets based on the surface expression of workshop cluster 1 (WC1). The WC1 + subset, the predominant subset in periphery, is further divided into WC1.1 + and WC1.2 + subpopulations. The ability of γδ T cells to produce IFN-γ prior to CD4 + αβ T cell activation could be crucial to the outcome of MAP infection. In the current study, cattle were naturally infected with MAP and were classified as either in the subclinical or clinical stage of infection. Compared to the control non-infected group, γδ T cell frequency in circulating lymphocytes was significantly lower in the clinical group. The observed decline in frequency was restricted to the WC1.2 + subset, and was not associated with preferential migration to infection sites (distal-ileum). γδ T cells proliferated significantly in recall responses to stimulation with purified protein derivative from MAP (PPD-J) only in subclinically infected cattle. These responses were a heterogeneous mixture of WC1.1 and WC1.2 subsets. Proliferation and IFN-γ production by the WC1.1 + γδ T cell subset was significantly higher in the subclinical group compared to the control and clinical groups. Our data indicates differences in MAP-specific ex-vivo responses of peripheral WC1 + γδ T cells of cattle with the subclinical or clinical form of JD. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modelling of bulk superconductor magnetization

    International Nuclear Information System (INIS)

    Ainslie, M D; Fujishiro, H

    2015-01-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)

  2. High hardness-high toughness WC-20Co nanocomposites: Effect of VC variation and sintering temperature

    International Nuclear Information System (INIS)

    Kumar, Devender; Singh, K.

    2016-01-01

    WC-Co nanocomposites with variable VC content are synthesized by liquid phase sintering at two different temperatures. The as synthesized samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and optical microscope. The mechanical properties are obtained by Vickers indentation method. The high content of VC, lead to high porosity when sintering temperature is increased from 1350 to 1400 °C. The relative density of all the samples is more than 95%. Microstructure reveals that agglomeration of W-Co-C and V-W-C increases at 1400 °C, which generates layered interfaces in radial direction and hence the material inhomogeneity. XRD pattern shows that the formation of η phase increases at 1400 °C, which is responsible to decrease the fracture toughness of the present samples. The average particle size of 102 nm, highest hardness of 1870.6 kgf/mm"2 with fracture toughness of 14.4 MN/mm"3"/"2 is observed in sample having 7.5 wt% VC, sintered at 1350 °C for one minute. This combination shows the highest hardness and reasonably high toughness as compared to conventionally sintered materials reported so far.

  3. Investigation of cosputtered W--C thin films as diffusion barriers

    International Nuclear Information System (INIS)

    Yang, H.Y.; Zhao, X.

    1988-01-01

    Polycrystalline thin films of W--C were deposited on single-crystal Si or SiO 2 substrates by rf planar magnetron cosputtering of graphite (C) and W targets. The performance of cosputtered W 75 C 25 thin films as diffusion barriers between a Si substrate and metallic overlayers of Ag, Au, or Al was investigated. Backscattering spectrometry and x-ray diffraction are used to detect metallurgical interactions. Four-point probe measurement of resistance is employed to monitor the electrical stability of the metallization schemes upon thermal annealing in a vacuum for 30 min in temperature ranges from 500 to 700 0 C. The electrical resistivity of W 75 C 25 films is 140 μΩ cm. A W 75 C 25 layer 1100 A thick prevents metallurgical interdiffusion and reaction between Au or Ag overlayers and the Si substrates up to 700 0 C, and between an Al overlayer and the Si substrate up to 450 0 C.tential

  4. Tribology study on TiB2+WSi2 composite against WC

    Science.gov (United States)

    Murthy, T. S. R. Ch.; Basha, M. M.; Sonber, J. K.; Singh, K.; Raju, K.; Sairam, K.; Nagaraj, A.; Majumdar, S.; Rao, G. V. S. Nageswara; Kain, Vivekanand

    2018-04-01

    Titanium diboride (TiB2) is one of the potential material for green energy applications such as neutron absorber in high temperature/advanced nuclear reactors, receiver materials for second generation concentrated solar power. We developed the process flow sheet for synthesis and consolidation of various series of TiB2 based materials in our laboratory. Amongst these, TiB2+WSi2 exhibited better sinterability and oxidation resistance properties. In the present work, tribology properties of TiB2+2.5%WSi2 composite was studied against WC-Co ball using different normal loads (5, 10 and 20 N) and frequencies (10, 15 Hz) under dry condition. Coefficient of friction (COF) and wear rate was measured at all test conditions. Wear mechanism was analyzed by microstructural characterization. It was found that COF is decreased from 0.46 to 0.36 with increasing load (5 to 20 N) at 15 Hz frequency; whereas at 10 Hz frequency COF is measured a constant average value of 0.49. The specific wear rate measured was minimum at 5 N load and 15 Hz frequency combination and was found to be 2.84×10-6 mm3/N m. The wear mechanisms identified during reciprocative sliding wear of composite were abrasion and surface tribo-oxidative reactions with delamination from tribo-zone.

  5. Sintering, microstructure and properties of WC-AISI304 powder composites

    International Nuclear Information System (INIS)

    Marques, B.J.; Fernandes, C.M.; Senos, A.M.R.

    2013-01-01

    Highlights: ► Total replacement of Co binder by stainless steel AISI 304 in WC based composites. ► Processing conditions for WC–stainless steel composites. ► Mechanical behavior and oxidation resistance of WC–stainless steel composites. -- Abstract: Tungsten carbide–stainless steel (AISI 304) based composites were successfully prepared by powder metallurgy routes using vacuum sintering at a maximum temperature of 1500 °C. The effects of the binder amount (between 6 and 15 wt.%) on the phase composition, microstructure and mechanical properties, namely hardness and fracture toughness, were investigated. Appreciable amount of (M,W) 6 C up to 12 wt.% was detected, especially for the higher SS contents. However, a good compromise between toughness and hardness was observed. Besides that, improved oxidation resistance was noticed in WC–SS based composites compared with WC–Co composites. The results are discussed having in mind the correlation between chemical composition, phase composition, microstructure and mechanical behavior

  6. Corrosion behaviour of WC-Co based hardmetal in neutral chloride and acid sulphate media

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, B.; Serra, M.; Fanigliulo, A.; Bogani, F. [Lecce Univ. (Italy). Dipt. di Ingegneria dell' Innovazione; Gaudenzi, G.P. de [Harditalia s.r.l. (OMCD Group), Genova (Italy)

    2002-05-01

    A comparative study of the corrosion behaviour of WC-Co based hardmetals with Ni and Cr{sub 3}C{sub 2} additions is carried out. The aggressive environments are neutral and acidic aerated aqueous solutions of NaCl and H{sub 2}SO{sub 4}. This study is based on electrochemical (linear sweep voltammery), compositional (surface EDX analyses, AAS analyses of attack solutions), structural (XRD) and morphological (SEM) investigations. Electrochemical figures of merit were computed from linear sweep voltammograms in order to rank the corrosion behaviour close to free-immersion conditions in the studied environments and with presence of oxidising agents. EDX and XRD analyses allow to accurately characterise the penetration depth of the attack as well as the preferential dissolution of the constituents. Binders containing Ni show a significantly improved corrosion resistance in the studied systems. The amount of Ni in the binder is the single most important factor affecting corrosion performance. Cr{sub 3}C{sub 2} additions to hardmetals with lower-Ni binders cannot balance the effect of Ni, but give an improved resistance in neutral chloride-containing solutions. (orig.)

  7. On modeling the CNC end milling characteristics of Al-7075/WC powder metallurgy composites

    Science.gov (United States)

    Hanuman, N. S. V. N.; Rao, P. Gangadhara; Kumar, B. Sudheer; Karthik, N.

    2017-07-01

    Surface finish and material removal rate are two important factors in the manufacturing which affect acceptability of the product which in turn reflects on the profitability of the organization. The worth of the production setup to produce the components with high material removal rate (MRR) without sacrificing the surface requirements can play vital role in sustainability and profitability of the organization. In this paper, the effect of process parameters on metal removal rate and surface roughness has been investigated in milling of Al7075-MMC with WC as reinforcement element. Cutting speed, feed and depth of cut have been taken as input factors in three level response surface methodologies used for experimentation. Mathematical models have been developed using response surface methodology to predict surface finish, and metal removal rate in term of machining parameters. Depth of cut and feed rate are found to be a dominant parameter for surface roughness; whereas feed rate mainly affects the metal removal rate. The results of mathematical models have been compared with the experimental and found to be in good agreement. The results of predicted model can be used in selection of process parameters to insure desired quality and improved productivity.

  8. Material mixing on W/C twin limiter in TEXTOR-94

    International Nuclear Information System (INIS)

    Tanabe, T.; Ohgo, T.; Wada, M.; Rubel, M.; Philipps, V.; Seggern, J. von; Ohya, K.; Huber, A.; Pospieszczyk, A.; Schweer, B.

    2000-01-01

    In order to investigate the effect of mutual contamination between tungsten (W) and carbon (C) and its influence on the plasma, a W-C twin test limiter, half made of W and the other half of C, was inserted into the edge plasma of TEXTOR-94 under ohmic and NBI heating conditions. The contamination process was observed by spectroscopy, and the intensity distribution of WI showed migration of W onto the C side by the successive cycles of sputtering and prompt redeposition. On the other hand, the deposition of C on the W surface was not obvious. Most of the hydrogen (deuterium) on the limiter was found to be retained in the deposited layers and that in the deposited C layer much higher than that in the deposited W layer. This indicates that tritium retention is smaller in metallic deposits above 500 K. The AES analysis conducted after the exposure of the test limiter showed that W deposited on C reacted with the substrate to form carbides at higher temperatures. The thickness of carbide layer, and/or the content of W in C were influenced by the temperature and flux distributions, and no carbide layer was formed at the limiter edge where the temperature was relatively low

  9. Action memorandum for the Waste Area Grouping 1 Tank WC-14 removal action at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-11-01

    This action memorandum documents approval for a Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended (CERCLA), time-critical action. The action will remove radiologically contaminated water from Tank WC-14. The water contains a polychlorinated biphenyl (PCB) at a level below regulatory concern. Tank WC-14 is located in the Waste Area Grouping (WAG) 1 WC-10 Tank Farm at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. Contaminated sludge remaining in the tank after removal of the liquid will be the subject of a future action

  10. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount

    Directory of Open Access Journals (Sweden)

    Yun-Yong Kim

    2014-01-01

    Full Text Available Water is often added to concrete placing for easy workability and finishability in construction site. The additional mixing water can help easy mixing and workability but causes increased porosity, which yields degradation of durability and structural performances. In this paper, cement mortar samples with 0.45 of W/C (water to cement ratio are prepared for control case and durability performances are evaluated with additional water from 0.45 to 0.60 of W/C. Several durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed, and they are analyzed with changed porosity. The changing ratios and patterns of durability performance are evaluated considering pore size distribution, total porosity, and additional water content.

  11. Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Dai, Jun; Kometani, Reo; Ishihara, Sunao; Warisawa, Shin’ichi; Onomitsu, Koji; Krockenberger, Yoshiharu; Yamaguchi, Hiroshi

    2014-01-01

    A tungsten-carbide (W-C) superconductor/normal metal/superconductor (SNS) Josephson junction has been fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). Under certain process conditions, the component ratio has been tuned from W: C: Ga = 26%: 66%: 8% in the superconducting wires to W: C: Ga = 14%: 79%: 7% in the metallic junction. The critical current density at 2.5 K in the SNS Josephson junction is 1/3 of that in W-C superconducting nanowire. Also, a Fraunhofer-like oscillation of critical current in the junction with four periods is observed. FIB-CVD opens avenues for novel functional superconducting nanodevices. (paper)

  12. SiC interlayer by laser-cladding on WC-Co substrates for CVD diamond deposition

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Andre; Fraga, Mariana Amorim; Vieira, Jose; Trava-Airoldi, Vladimir Jesus; Corat, Evaldo Jose, E-mail: andrecontin@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Campos, Raonei Alves [Universidade Federal do Sul e Sudeste do Para (UNIFESSPA), Belem, PA (Brazil); Vasconcelos, Getulio [Instituto de Estudos Avancados (IEA), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Despite their huge industrial potential and commercial interest, the direct diamond coating on cemented carbide (WC-Co) is limited, mainly because of the catalytic effect of Cobalt (Co) and the high difference in thermal expansion coefficient [1]. This results in poor adherence between diamond and WC-Co. In addition, the low diamond film adhesion to the cemented carbide useless for machining applications. Removal of Co binder from the substrate surface by superficial etching is one of the techniques used to improve the adhesion between diamond and WC-Co. For the present study, diamond films were deposited on WC-Co substrates with an intermediate barrier to block the Co diffusion to the surface substrate. The laser cladding process produced the SiC barrier, in which a powder layer is melted by a laser irradiation to create the coating on the substrate. The use of laser cladding is the novel method for an intermediate barrier for cemented carbides. The advantages of laser cladding include a faster processing speed, precision, versatility. We reported the application of pretreatment method called ESND (Electrostatic self-assembly seeding of nanocrystalline diamond). The nucleation density was around 10{sup 11}part/cm{sup 2}. Diamond films were grown by Hot Filament Chemical Vapor Deposition. Characterization of samples included Field Emission Gun-Scanning Electron Microscopy (FEG-SEM), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD) and Raman Scattering Spectroscopy. Results showed that laser irradiation formed stable Co compounds in the interfacial barrier. It is because nucleation and good quality of diamond film since the cobalt are no longer free to migrate to the surface during the CVD diamond deposition. Reference: [1] Y. X. Cui, B. Shen, F. H. Sun. Diamond deposition on WC–Co substrate with amorphous SiC interlayer, Surface Engineering, 30, (2014) 237-243. (author)

  13. 1-Methoxy-agroclavine from Penicillium sp. WC75209, a novel inhibitor of the Lck tyrosine kinase.

    Science.gov (United States)

    Padmanabha, R; Shu, Y Z; Cook, L S; Veitch, J A; Donovan, M; Lowe, S; Huang, S; Pirnik, D; Manly, S P

    1998-03-17

    A high-throughput screen was developed and implemented to identify inhibitors of the Lck tyrosine kinase. This report describes the identification of a specific inhibitor of this enzyme from the solid fermentation culture of the Penicillium sp., WC75209. The active compound was isolated and structurally characterized as 1-methoxy-5R, 10S-agroclavine, a new member of the ergot alkaloid family.

  14. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  15. Laboratorium Study of Asphalt Starbit E-55 Polymer Modified Application on Asphalt Concrete Wearing Course (Ac-Wc

    Directory of Open Access Journals (Sweden)

    Damianus Kans Pangaraya

    2015-09-01

    Full Text Available The conventional asphalt road has almost been considered fail to serve the transportation needs. It is indicated by the occurrence of premature damage which is caused by vehicle load and climate. Starbit E-55, the polymer modified bitumen, is formulated to meet the requirement of transport development. Considering those needs, it is important to investigate the feasibility level of that modified bitumen as alternate asphalt instead of the conventional one. This research began with the measurement of the properties of hard layered AC-WC Starbit E-55, then comparing the result to 60/70 penetration of Pertamina asphalt. The next step is then, to determine the converted value so as to be close to that of Pertamina (60/70 penetration. This step is conducted by applying durability and ITS tests on the mixture. Result of the tests showed that hard layered AC-WC Starbit E-55 has better characteristic at 5.7% optimum level asphalt and 6.4% of Pertamina asphalt (60/70 penetration. Starbit E-55 converted level within hard-layered ACWC is 5.6%. The performance test result on immersion with variance of 1, 3, 5, 7 and 14 days shows that durability value of Starbit E-55 AC-WC has better performance. During the process, Starbit E-55 required 15.38% higher energy consumption.

  16. FIB-SEM Sectioning Study of Decarburization Products in the Microstructure of HVOF-Sprayed WC-Co Coatings

    Science.gov (United States)

    Katranidis, Vasileios; Gu, Sai; Cox, David C.; Whiting, Mark J.; Kamnis, Spyros

    2018-05-01

    The thermal dissolution and decarburization of WC-based powders that occur in various spray processes are a widely studied phenomenon, and mechanisms that describe its development have been proposed. However, the exact formation mechanism of decarburization products such as metallic W is not yet established. A WC-17Co coating is sprayed intentionally at an exceedingly long spray distance to exaggerate the decarburization effects. Progressive xenon plasma ion milling of the examined surface has revealed microstructural features that would have been smeared away by conventional polishing. Serial sectioning provided insights on the three-dimensional structure of the decarburization products. Metallic W has been found to form a shell around small splats that did not deform significantly upon impact, suggesting that its crystallization occurs during the in-flight stage of the particles. W2C crystals are more prominent on WC faces that are in close proximity with splat boundaries indicating an accelerated decarburization in such sites. Porosity can be clearly categorized in imperfect intersplat contact and oxidation-generated gases via its shape.

  17. Nanoindentation study of WC-12Co hardmetals obtained from nanocrystalline powders: Evaluation of hardness and modulus on individual phases

    International Nuclear Information System (INIS)

    Bonache, V.; Rayon, E.; Salvador, M.D.; Busquets, D.

    2010-01-01

    With the development of finer hardmetals, the study of mechanical properties of the different constituents down the micrometric level is a question of concern for materials optimization. Nanoindentation has been developed in last years in order to cope with mechanical characterisation at the nanolevel, but difficulties on phase detection are an issue. In the present work, individual hardness and Young's modulus of the constituents of WC-12Co composite were obtained by the use of very shallow nanoindentations (30 nm depth), with the aid of in situ 3D imaging to identify these. By this method three different phases at the sub-micrometric level have been identified and characterised: namely cobalt matrix, tungsten carbide and η phase. The presence of the latter phase and its characterisation is of paramount importance in understanding the behaviour of hardmetals. Values of hardness from 8 (cobalt matrix) to 25 GPa (η phase) have been obtained. Also, for these phases Young's modulus varied from 250 to 400 GPa respectively. Furthermore, it is firstly reported these values for the WC prismatic planes {1 0 1 0} being in the range of 40-55 and 700-900 GPa respectively. These values decrease to a hardness in the range of 25-30 GPa and modulus in the range from 450 to 550 GPa for the WC basal plane {0 0 0 1}.

  18. Reduction of travellers' diarrhoea by WC/rBS oral cholera vaccine in young, high-risk travellers.

    Science.gov (United States)

    Torrell, Josep Ma Ramon; Aumatell, Cristina Masuet; Ramos, Sergi Morchon; Mestre, Laura Gavaldà; Salas, Carme Micheo

    2009-06-19

    A bidirectional cohort study investigates whether pre-travel vaccination with whole cell/recombinant B subunit inactivated, killed oral cholera vaccine reduces the incidence of diarrhoea in young adult travellers to high-risk areas. Risk of travellers' diarrhoea was assessed according to destination and reason for travel in high-risk travellers of a travel clinic in Barcelona, Spain. Those at high-risk between January and December 2005 were advised on water/food safety and hygiene. High-risk travellers between January and December 2006 were additionally vaccinated with WC/rBS oral cholera vaccine. Data regarding diarrhoea were gathered by structured telephone interview or e-mailed questionnaire following the travellers' return. The incidence of diarrhoea in the group vaccinated with WC/rBS oral cholera vaccine (n=321) was 17.4%, compared with 39.7% in the non-vaccinated group (n=337) (adjusted risk ratio 0.40). The first episode was significantly shorter in the vaccinated group (mean 2.3 days) than in the non-vaccinated group (mean 3.8 days) (pyoung, high-risk travellers. Vaccination with the WC/rBS oral cholera vaccine as well as food safety and hygiene advice could offer effective means of reducing the risk of diarrhoea while abroad.

  19. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  20. New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour

    Science.gov (United States)

    Tejado, E.; Dias, M.; Correia, J. B.; Palacios, T.; Carvalho, P. A.; Alves, E.; Pastor, J. Y.

    2018-01-01

    The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 °C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.

  1. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    International Nuclear Information System (INIS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-01-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  2. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Woo, WanChuck [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Sunhong [Research Institute of Industrial Science & Technology, Hyo-ja-dong, Po-Hang, Kyoung-buk, San 32 (Korea, Republic of)

    2015-08-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  3. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  4. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  5. Bulk viscosity of molecular fluids

    Science.gov (United States)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  6. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    Science.gov (United States)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  7. Role of WC additive on reaction, solid-solution and densification in HfB2–SiC ceramics

    DEFF Research Database (Denmark)

    Hu, Dong-Li; Zheng, Qiang; Gu, Hui

    2014-01-01

    A comparative study of phase components and compositions was performed for the pressureless sintered HfB2–SiC–WC composites by various analytical methods. The relative decrease of HfB2 phase leads to a new reaction of HfO2 removal by WC to create B2O3. By using SiC instead of Si3N4 as milling med...

  8. Tribological Behavior of Multilayered WC-Ti1-xAlxN Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

    International Nuclear Information System (INIS)

    Kim, Jung Gu; Hwang, Woon Suk

    2006-01-01

    Recently, much of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel. The prepared samples are designed as WC-Ti 0.6 Al 0.4 N, WC-Ti 0.53 Al 0.47 N, WC-Ti 0.5 Al 0.5 N and WC-Ti 0.43 Al 0.57 N. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behavior. Especially, wear tests of four multilayered coatings were preformed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec, 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball (H R = 66) having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Results have showed an improved wear resistance of the WC-Ti 1-x 6Al x N coatings with increasing of Al concentration. WC-Ti 0.43 Al 0.57 N coating with the lower surface roughness and porosity with good adhesion enhanced wear resistance

  9. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  10. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  11. Friction and wear properties of Ti6Al4V/WC-Co in cold atmospheric plasma jet

    International Nuclear Information System (INIS)

    Xu Wenji; Liu Xin; Song Jinlong; Wu Libo; Sun Jing

    2012-01-01

    Highlights: ► Cold plasma jet can effectively reduce the friction coefficients of Ti6Al4V/WC-Co friction pairs. ► Cold plasma jet can easily form nitrides on the surface of Ti6Al4V and on new surfaces generated by tool wear. ► The nitrides can reduce the friction coefficients and protect the friction surface. - Abstract: The friction and wear properties of Ti6Al4V/WC-Co friction pair were studied using an autonomous atmospheric pressure bare electrode cold plasma jet generating device and block-on-ring friction/wear tester, respectively. The study was conducted under air, air jet, nitrogen jet, air cold plasma jet, and nitrogen cold plasma jet atmospheres. Both nitrogen cold and air cold plasma jets effectively reduced the friction coefficients of the friction pairs and decreased friction temperature. The friction coefficient in the nitrogen cold plasma jet decreased to almost 60% compared with that in the air. The scanning electron microscope, energy-dispersive X-ray spectroscope, and X-ray diffraction analyses illustrated that adhesive wear was relieved and the friction surfaces of Ti6Al4V were smoother, both in the nitrogen cold and air cold plasma jets. The roughness value R a of the Ti6Al4V friction surfaces can reach 1.107 μm. A large number of nitrogen particles in the ionic and excited states contained by cold plasma jets reacts easily on the friction surface to produce a large amount of nitrides, which can excellently reduce the wear of Ti6Al4V/WC-Co friction pairs in real-time.

  12. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    Science.gov (United States)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  13. UTILIZATION OF TORAY FLY ASH AS FILLER SUBSTITUTION IN THE HOT ROLLED SHEET-WEARING COURSE (HRS-WC MIXTURE

    Directory of Open Access Journals (Sweden)

    F. Candra

    2012-02-01

    Full Text Available In road construction materials, the utilization of fly ash as additive materials is limited and also small in quantity, while the disposal of fly ash is quite high. An abundance of fly ash can be found at PT Toray Company in Jakarta and Surabaya. Toray fly ash is disposed coal ash resulting from coal-fired electricity generating power plants. Toray fly ash in this research is used as substitute mineral filler in asphalt paving mixtures. Research on utilization of Toray fly ash as filler is conducted in the Hot Rolled Sheet – Wearing Course Mixture.  Filler content in the HRS –WC mixture is 9%. Variations of Toray fly ash in the mixture tested are 0%, 25%, 50%, 75%, 100% and the variations of asphalt content are 6%, 6.5%, 7%, 7.5%, 8%. Marshall test is  performed to determine the Optimum Asphalt Content  and Marshall Stability, Indirect Tensile Strength (ITS test and Tensile Strength Ratio (TSR to select the optimum Toray fly ash utilization in the mixture based on the moisture susceptibility of specimens. The research results show that in variations of 0%, 25%, 50%, 75% and 100% Toray fly ash in the HRS-WC Mixture, the Optimum Asphalt Contents are at 6.8%, 7.0%, 7.0%, 7.1% and 7.6%  and Marshall Stability values of the variations are 1649 kg, 1541 kg, 1568 kg, 1678 kg, 1718 kg respectively. TSR values in variations of Toray fly ash are 98.32%, 90.28%, 89.38%, 87.62%, 64.71% respectively, with Minimum TSR value required is 80%. Based on the overall parameters, the optimum Toray fly ash utilization in the HRS-WC Mixture recommended is 75% of Toray fly ash at 7.1% Optimum Asphalt Content.

  14. Influence of the microstructure of WC-Co cemented carbides on the fracture toughness and abrasive wear

    International Nuclear Information System (INIS)

    Zum Gahr, K.H.; Fischer, A.

    1981-01-01

    Fracture toughness and abrasive wear resistance of WC-Co cemented carbides were investigated by using the indentation cracking test (Palmqvist test) and the pin-on-disk method respectively. Size distribution of tungsten carbides and means free path between them were found to be important microstructural parameters related to the mechanical behavior. Results showed that selection of cemented carbides for heavy wear loading is complicated by contradictory influence of microstructural parameters on fracture toughness and abrasion resistance. Knowledge of the relation between microstructure and resistance to fracture or wear is necessary for optimum use of cemented carbides. (orig.) [de

  15. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com

    2015-10-05

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser

  16. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  17. Effect of helium plasma gas flow rate on the properties of WC-12 wt.%Co coatings sprayed by atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-06-01

    Full Text Available The cermet coatings of WC-12wt.%Co are extensively used to improve the wear resistance of a wide range of technical components. This paper analyses the influence of the plasma gas flow of helium on the microstructure and mechanical properties of WC-12wt.%Co coatings deposited by plasma spraying at atmospheric pressure (APS. In order to obtain homogeneous and denser coatings, three different flows of He ( 8 l/min., 16 l/min. and 32 l/min were used in the research. With the application of He, coatings achieved higher values of hardness due to less degradation of the primary WC carbides. The main goal was to deposit dense and homogeneous layers of WC-12wt.%Co coatings with improved wear resistance for different applications. The test results of the microstructure of the layers were evaluated under a light microscope. The analysis of the microstructure and the mechanical properties of the deposited layers was made in accordance with the standard of Pratt-Whitney. The morphology of the powder particles and the microstructure of the best coating was examined on the SEM (scanning electron microscope. The evaluation of the mechanical properties of the layers was done by applying the HV0.3 method for microhardness testing and by applying tensile testing to test the bond strength. The research has shown that the flow of He plasma gas significantly affects the microstructure, the mechanical properties and the structure of WC-12 wt.%Co coatings.

  18. On the sintering behaviour of steel bonded TiC-Cr3C2 and TiC-Cr3C2-WC mixed carbides

    International Nuclear Information System (INIS)

    Stojanov, L.G.; Exner, H.E.

    1978-01-01

    Powder mixtures of TiC+Cr 3 C 2 and TiC+Cr 3 C 2 + WC were hot pressed to nearly full density. The lattice parameter of the resulting cubic mixed crystal decreases linearly with increasing additions of Cr 3 C 2 and (Cr 3 C 2 +WC 1:1). Microhardness increases with Cr 3 C 2 content up to 20 wt.%. By addition of WC, microhardness is increased further and reaches a maximum value of approx. 38 000 MN/m 2 for 20 wt.% Cr 3 C 2 and 20 wt.% WC. From these solid solutions powder compositions of Ferro-TiC type were produced by milling with 55 wt.% Fe and 0.4 wt.% C. The sintering behaviour of these powders was studied in a vacuum dilatometer. The pronounced increase of shrinkage by Cr 3 C 2 and higher amounts of Cr 3 C 2 +WC dissolved in TiC previous to binder phase melting is attributed to the increased solubility of the carbide in solid iron. Presintering at 700 0 C in hydrogen has a negative influence on sintering activity and requires much higher temperatures for complete densification during subsequent vacuum sintering. (orig.) [de

  19. Improvement of Surface Properties of Inconel718 by HVOF Coating with WC-Metal Powder and by Laser Heat Treatment of the Coating

    Directory of Open Access Journals (Sweden)

    Hui Gon Chun

    2015-01-01

    Full Text Available High-velocity oxygen-fuel (HVOF thermal spray coating with WC-metal powder was carried out by using optimal coating process on an Inconel718 surface for improvement of the surface properties, friction, wear, and corrosion resistance. Binder metals such as Cr and Ni were completely melted and WC was decomposed partially to W2C and graphite during the high temperature (up to 3500°C thermal spraying. The melted metals were bonded with WC and other carbides and were formed as WC-metal coating. The graphite and excessively sprayed oxygen formed carbon oxide gases, and these gases formed porous coating by evolution of the gases. The surface properties were improved by HVOF coating and were improved further by CO2 laser heat treatment (LH. Wear resistance of In718 surface was improved by coating and LH at 25°C and an elevated temperature of 450°C, resulting in reduction of wear trace traces, and was further improved by LH of the coating in reducing wear depth. Corrosion resistance due to coating in sea water was improved by LH. HVOF coating of WC-metal powder on a metal surface and a LH of the coating were highly recommended for the improvement of In718 surface properties, the friction behavior, and wear resistance.

  20. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    Science.gov (United States)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  1. Studi Karakteristik Campuran Aspal Beton Lapis Aus (AC-WC Menggunakan Aspal Penetrasi 60/70 dengan Penambahan Lateks

    Directory of Open Access Journals (Sweden)

    I Nyoman Arya Thanaya

    2016-12-01

    Full Text Available Asphalt on pavement in long term may undergo hardening, so it needs addition of additive that can make it remain flexible. This experiment tried to produce asphalt concrete wearing course (AC-WC using asphalt penetration 60/70 with the addition of latex, with aim to know the characteristic of AC-WC mix at the optimum of asphalt content with addition of  latex in variation of 0%, 2%, 4%, 6%, 8%, and 10% of the total binder. Latex was initially mixed with the asphalt, then the aggregates were proportioned based on ideal grading. The samples were produced in hotmix process. The density of latex was found 0.977 with dry rubber content of 61.95%. The optimum of asphalt content that was 5.7%, where all Marshall characteristics were met. It was chosen the mix with 4% latex by total binder where all properties of asphalt binder were still met. It was obtained that the Stability value  was 1439.26 kg (≥ 800 kg, Flow 3.84 mm (2-4 mm, Marshall Quotient 379.66 kg / mm (≥ 250 kg / mm, VIM  4.437% (3-5%, VMA 15.280% (≥ 15%, VFB 70.961 (≥ 65%. The mixture that contains latex had better resistance to deformation under dynamic creep loading at 40 °C.

  2. Erosion-oxidation behavior of thermal sprayed Ni20Cr alloy and WC and Cr3C2 cermet coatings

    Directory of Open Access Journals (Sweden)

    Clarice Terui Kunioshi

    2005-06-01

    Full Text Available An apparatus to conduct high temperature erosion-oxidation studies up to 850 °C and with particle impact velocities up to 15 m.s-1 was designed and constructed in the Corrosion Laboratories of IPEN. The erosion-oxidation behavior of high velocity oxy fuel (HVOF sprayed alloy and cermet coatings of Ni20Cr, WC 20Cr7Ni and Cr3C2 Ni20Cr on a steel substrate has been studied. Details of this apparatus and the erosion-oxidation behavior of these coatings are presented and discussed. The erosion-oxidation behavior of HVOF coated Cr3C2 25(Ni20Cr was better than that of WC 20Cr7Ni, and the erosion-oxidation regimes have been identified for these coatings at particle impact velocity of 3.5 m.s-1, impact angle of 90° and temperatures in the range 500 to 850 °C.

  3. Sliding friction of nanocomposite WC1-x/C coatings: transfer film and its influence on tribology.

    Science.gov (United States)

    Liu, Y; Gubisch, M; Spiess, L; Schaefer, J A

    2009-06-01

    The transfer film on steel spheres formed in reciprocating sliding against nanocomposite coatings based on nanocrystalline WC1-x in amorphous carbon matrix is characterized and correlated with the tribological properties measured by a precision microtribometer. With the presence of transfer film, a coefficient of friction approximately 0.13 and a depth wear rate approximately 0.35 x 10(-10) m/N.Pass were obtained. The central zone of the transfer film covering approximately 25% of the Hertz contact area is intact while cracks and wear debris are found in the vast peripheral area. It is also heavily oxidized due to the absence of carbon, which is located at the peripherals and acts as lubricants. We propose that the oxidation of WC and adhesion of the oxides to the surface of sphere is the main mechanism for the buildup of the transfer films. With the thickening of the film, the internal stress increases. Under the shear stress, spalling and cracking of the transfer film take place. The overall tribological performance of the coatings is therefore a competing process of buildup and spalling of transfer films.

  4. The effect of w/c ratio on microstructure of self-compacting concrete (SCC) with sugarcane bagasse ash (SCBA)

    Science.gov (United States)

    Hanafiah, Saloma, Victor, Amalina, Khoirunnisa Nur

    2017-11-01

    Self-Compacting Concrete (SCC) is a concrete that can flow and compact by itself without vibrator. The ability of SCC to flow by itself makes this concrete very suitable for construction that has very small reinforcement gaps. In this study, SCC was designed to get a compressive strength above 60 MPa at the age of 28 days. Sugarcane bagasse ash was used as substitution material for cement replacement. Percentages of sugarcane bagasse ash used were 10%, 15%, and 20%. There were three w/c values that vary from 0.275, 0.300, and 0.325. Testing standards referred to ASTM, EFNARC and ACI. The fresh concrete test was slump flow, L-box and V-funnel. The maximum compressive strength was in the mixture with the sugarcane bagasse ash composition of 15% and w/c=0.275 which was 67.24 MPa. The result of SEM test analysis found that the mixture composition with 15% sugarcane bagasse ash has solid CSH structure, small amount of pores, and smaller pore diameter than other mixtures.

  5. Influence of powder and spray parameters on erosion and corrosion properties of HVOF sprayed WC-Co-Cr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Berget, John

    1998-07-01

    Thermal spraying is a generic term including various processes used to deposit coatings on surfaces. The coating material is in the form of powder or a wire and is melted or softened by means of a heat source. A gas stream accelerates the material towards a prepared surface and deposits it there to form the coating. Examples of components being maintained by application of thermal spray coatings are gate valves and ball valves for the offshore industry and turbine blades in power generations installations. Recent investigation has shown that the commonly used coating material WC-Co is not corrosion resistant. But it can be improved by the addition of Cr. The main objective of this thesis is to study the influence of spray process control variables and powder characteristics on the erosion and erosion-corrosion properties of the coatings. Spray process variables investigated include energy input, powder feed rate and spray distance. Powder characteristics studied are average size of the WC particles, relative proportions of Co and Cr in the metal phase and powder grain size distribution.

  6. Sulfonation of PEEK-WC polymer via chloro-sulfonic acid for potential PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Iulianelli, A.; Clarizia, G.; Gugliuzza, A.; Ebrasu, D.; Basile, A. [Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, Cubo 17/C, 87030 Rende (CS) (Italy); Bevilacqua, A. [Research Centre Italsistemi S.r.l., Via Avogadro, 88900 Crotone (KR) (Italy); Trotta, F. [Department of Organic Chemistry, University of Torino, C.So M. D' Azeglio 48, 10125 Torino (TO) (Italy)

    2010-11-15

    The preparation and characterization of thin dense sulfonated poly-ether-ether-ketone with cardo group (PEEK-WC) membranes for proton exchange membrane fuel cell (PEMFC) applications are described. The sulfonation of PEEK-WC polymer was realized via chloro-sulfonic acid and different kinds of membrane samples were prepared with a sulfonation degree ranging from 67 to 99%. The degree of sulfonation, homogeneity and thickness significantly affect both the membrane transport properties and the electrochemical performances. The dense character of the membranes was confirmed by SEM analysis. Proton conductivity measurements were carried out in a temperature range from 30 to 80 C and at 100% of relative humidity, reaching 5.40 x 10{sup -3} S/cm{sup -1} as best value at 80 C and with a sulfonation degree (DS) of 99%. At the same conditions, a water uptake of 17% was achieved. DSC and TGA characterizations were used in order to determine the thermal stability of the membranes, confirming a T{sub g} ranging between 206 and 216 C depending on the DS, whereas FT-IR yielded indication about intermolecular interactions and water uptake at various sulfonation degrees. (author)

  7. On the performances and wear of WC-diamond like carbon coated tools in drilling of CFRP/Titanium stacks

    Science.gov (United States)

    Boccarusso, L.; Durante, M.; Impero, F.; Minutolo, F. Memola Capece; Scherillo, F.; Squillace, A.

    2016-10-01

    The use of hybrid structures made of CFRP and titanium alloys is growing more and more in the last years in the aerospace industry due to the high strength to weight ratio. Because of their very different characteristics, the mechanical fastening represent the most effective joining technique for these materials. As a consequence, drilling process plays a key role in the assembly. The one shot drilling, i.e. the contemporary drilling of the stack of the two materials, seems to be the best option both in terms of time saving and assembly accuracy. Nevertheless, due to the considerable different machinability of fiber reinforced plastics and metallic materials, the one shot drilling is a critical process both for the holes quality and for the tools wear. This research was carried out to study the effectiveness of new generation tools in the drilling of CFRP/Titanium stacks. The tools are made of sintered grains of tungsten carbide (WC) in a binder of cobalt and coated with Diamond like carbon (DLC), and are characterized by a patented geometry; they mainly differ in parent WC grain size and binder percentage. Both the cutting forces and the wear phenomena were accurately investigated and the results were analyzed as a function of number of holes and their quality. The results show a clear increase of the cutting forces with the number of holes for all the used drilling tools. Moreover, abrasive wear phenomena that affect initially the tools coating layer were observed.

  8. The role of La2O3 in direct laser sintering of submicrometre WC-Cop/Cu MMCs

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu

    2008-01-01

    This paper presents a detailed investigation of the influence of rare earth (RE) oxide (La 2 O 3 ) addition on densification and microstructure of direct laser sintered submicrometre WC-Co p /Cu metal matrix composites (MMCs) possessing 50.0 wt% reinforcement (WC-Co). It was found that with increasing La 2 O 3 addition to a suitable amount (1.0 wt%), the particulate dispersion was homogenized and the particulate/matrix interfacial bonding was improved. However, with an excessive addition of La 2 O 3 (1.5 wt%), a heterogeneous microstructure consisting of highly accumulated particulates was present. The exact metallurgical roles of RE element in direct laser sintering of particulate reinforced MMCs were addressed. It showed that a proper addition of RE element (i) decreased surface tension of the melt and enhanced solid-liquid wettability; (ii) dragged and/or pinned grain/phase boundaries and resisted grain coarsening and particulate aggregating. However, the balling phenomenon occurred and the activity of RE atoms decreased at an even higher La 2 O 3 content, thereby producing detrimental effects on laser forming ability

  9. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  10. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  11. Slurry Erosion Behavior of F6NM Stainless Steel and High-Velocity Oxygen Fuel-Sprayed WC-10Co-4Cr Coating

    Science.gov (United States)

    Cui, S. Y.; Miao, Q.; Liang, W. P.; Huang, B. Z.; Ding, Z.; Chen, B. W.

    2017-02-01

    WC-10Co-4Cr coating was applied to the surface of F6NM stainless steel by high-velocity oxygen-fuel spraying. The slurry erosion behavior of the matrix and coating was examined at different rotational speeds using a self-made machine. This experiment effectively simulates real slurry erosion in an environment with high silt load. At low velocity (<6 m/s), the main failure mechanism was cavitation. Small bubbles acted as an air cushion, obstructing direct contact between sand and the matrix surface. However, at velocity above 9 m/s, abrasive wear was the dominant failure mechanism. The results indicate that WC-10Co-4Cr coating significantly improved the slurry resistance at higher velocity, because it created a thin and dense WC coating on the surface.

  12. Structural analysis of sputtered (W-C)1-xMx (M≡Fe,Co) films with 0≤x≤0.20

    International Nuclear Information System (INIS)

    Cavaleiro, A.; Trindade, B.; Vieira, M.T.

    1993-01-01

    Structural characterization of (W-C) 1-x M x (M≡Fe,Co) films with 0≤x≤0.20 was carried out using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and transmission electron microscopy-electron diffraction (TEM-ED). The results showed that the structure of these films depends on the percentage of iron and cobalt and becomes amorphous with increasing content of these elements. The microstructure of the crystalline coatings was found to be composed of small grains of β-WC 1-x with a high number of defects. A strong β-WC 1-x [311] texture was observed for iron and cobalt contents around 5.5 at.%. The films richer in iron and cobalt showed typical amorphous XRD and ED patterns, exhibiting two broad peaks and two wide diffuse rings respectively. Moreover, bright-field analysis revealed fairly contrasted images, the structure of these films being difficult to resolve. (orig.)

  13. Binder-free carbon nanotube electrode for electrochemical removal of chromium.

    Science.gov (United States)

    Wang, Haitao; Na, Chongzheng

    2014-11-26

    Electrochemical treatment of chromium-containing wastewater has the advantage of simultaneously reducing hexavalent chromium (CrVI) and reversibly adsorbing the trivalent product (CrIII), thereby minimizing the generation of waste for disposal and providing an opportunity for resource reuse. The application of electrochemical treatment of chromium is often limited by the available electrochemical surface area (ESA) of conventional electrodes with flat surfaces. Here, we report the preparation and evaluation of carbon nanotube (CNT) electrodes consisting of vertically aligned CNT arrays directly grown on stainless steel mesh (SSM). We show that the 3-D organization of CNT arrays increases ESA up to 13 times compared to SSM. The increase of ESA is correlated with the length of CNTs, consistent with a mechanism of roughness-induced ESA enhancement. The increase of ESA directly benefits CrVI reduction by proportionally accelerating reduction without compromising the electrode's ability to adsorb CrIII. Our results suggest that the rational design of electrodes with hierarchical structures represents a feasible approach to improve the performance of electrochemical treatment of contaminated water.

  14. Ultrasensitive binder-free glucose sensors based on the pyrolysis of in situ grown Cu MOF

    DEFF Research Database (Denmark)

    Zhang, Xuan; Luo, Jiangshui; Tang, Pengyi

    2017-01-01

    A non-enzymatic glucose sensor based on carbon/Cu composite materials was developed by the in-situ growth and subsequent pyrolysis of metal-organic frameworks (MOFs) on Cu foam. After pyrolysis, SEM, HRTEM and STEM-EELS were employed to clarify the hierarchical Cu@porous carbon electrode. It is f......A non-enzymatic glucose sensor based on carbon/Cu composite materials was developed by the in-situ growth and subsequent pyrolysis of metal-organic frameworks (MOFs) on Cu foam. After pyrolysis, SEM, HRTEM and STEM-EELS were employed to clarify the hierarchical Cu@porous carbon electrode...... matrix electrode displays ultrahigh sensitivity (10.1 mA cm−2 mM−1), low detection limit (sensors....

  15. Binder-free manganese oxide/carbon nanomaterials thin film electrode for supercapacitors.

    Science.gov (United States)

    Wang, Ning; Wu, Chuxin; Li, Jiaxin; Dong, Guofa; Guan, Lunhui

    2011-11-01

    A ternary thin film electrode was created by coating manganese oxide onto a network composed of single-walled carbon nanotubes and single-walled carbon nanohorns. The electrode exhibited a porous structure, which is a promising architecture for supercapacitors applications. The maximum specific capacitances of 357 F/g for total electrode at 1 A/g were achieved in 0.1 M Na(2)SO(4) aqueous solution.

  16. Interconnected Ni_2P nanorods grown on nickel foam for binder free lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Qin; Ma, Jingjing; Wang, Huijun; Yang, Xia; Yuan, Ruo; Chai, Yaqin

    2016-01-01

    Herein, we report a moderate and simple approach to synthesize nickel phosphide nanorods on nickel foam (Ni_2P/NF), which was employed as anode material for lithium ion batteries (LIBs). In this paper, interconnected Ni_2P nanorods were fabricated through hydrothermal treatment of NF and subsequently by high temperature phosphating. NF is not only regarded as nickel source and metal current collector, but also as a support to grow electro-active material (Ni_2P). Therefore, Ni_2P/NF could act as a self-supported working electrode for LIBs without any extra addition of cohesive binders. Moreover, benefiting from the conductive capacity of Ni_2P/NF, the active compound behaved superior lithium storage performance and cycling reversibility during electrochemical cycling process. The Ni_2P/NF delivered excellent reversibility of 507 mAh g"−"1 at the current density of 50 mA g"−"1 after 100 cycles. This work may provide a potential method for preparation of metal phosphides as promising materials for LIBs, hydrogen evolution reaction (HER) or other fields.

  17. Facile synthesis and electrochemical performances of binder-free flexible graphene/acetylene black sandwich film

    International Nuclear Information System (INIS)

    Xu, Juan; Wei, Xicheng; Cao, Jianyu; Dong, Yuanzhu; Wang, Guoxin; Xue, Yufei; Wang, Wenchang; Chen, Zhidong

    2015-01-01

    Graphene/acetylene black sandwich film was fabricated by a simple vacuum filtration procedure using a stable complex suspension of graphene oxide (GO) and acetylene black followed by a hydroiodic acid (HI) immersion process to fully reduce the GO to graphene sheets. The self-restacking of individual graphene sheets were greatly alleviated and electric conductivity was obviously improved using the acetylene black nanoparticles as both effective spacers to expand the inter-layer interval of the individual graphene sheets during the film assembly course and highly conducting bridges to facilitate the electron/ion transfer between the upper and lower graphene sheets. The flexible graphene/acetylene black film was utilized as supercapacitor electrode without additional conductive additives, binders and current collectors, which achieved an obviously higher specific capacitance (ca. 136.6 F g −1 at 0.5 A g −1 ) and much better specific capacitance retention at high current densities than that of the pure graphene film electrode, indicating that such a novel sandwich film structure allows for a higher charge storage capability. More importantly, the assembled symmetric supercapacitor device displayed a satisfactory specific capacitance of 59.2 F g −1 at 0.1 A g −1 , 47.6 F g −1 at 0.5 A g −1 and 42.8 F g −1 at 1 A g −1 , and only negligible 4.05% capacitance degradation have been found after 1000 continuous charge-discharge cycles at 0.5 A g −1 , revealing outstanding rate capability, excellent electrochemical reversibility and long-term cyclability. These results proved that such a flexible and highly conductive graphene/acetylene black film can be promising electroactive materials in the development of advanced electrochemical energy storage devices

  18. Binder free MnO2/PIn electrode material for supercapacitor application

    Science.gov (United States)

    Purty, B.; Choudhary, R. B.; Kandulna, R.; Singh, R.

    2018-05-01

    Electrochemically stable MnO2/PIn nanocomposite was synthesized via in-situ chemical oxidative polymerization process. The structural and morphological properties were studied through FTIR and FESEM characterizing techniques. Sphere like PIn and MnO2 nanorods offers interacting surface for charge transfer action. The electrochemical properties were investigated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The significant enhancement in capacitance value with 95% coulombic efficiency and relatively low equivalent series resistance (ESR)˜0.4 Ω proved that MnO2/PIn nanocomposite is an excellent performer as an electrode material in the spectrum of supercapcitors and optoelectronic devices.

  19. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Sanjaya D.; Patel, Bijal; Seitz, Oliver; Ferraris, John P.; Balkus, Kenneth J. Jr. [Department of Chemistry and the Alan G. MacDiarmid Nanotech Institute, 800 West Campbell Rd, University of Texas at Dallas, Richardson, TX 75080 (United States); Nijem, Nour; Roodenko, Katy; Chabal, Yves J. [Laboratory for Surface and Nanostructure Modification, Department of Material Science and Engineering, 800 West Campbell Rd, University of Texas Dallas, Richardson, TX 75080 (United States)

    2011-10-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) layered nanostructures are known to have very stable crystal structures and high faradaic activity. The low electronic conductivity of V{sub 2}O{sub 5} greatly limits the application of vanadium oxide as electrode materials and requires combining with conducting materials using binders. It is well known that the organic binders can degrade the overall performance of electrode materials and need carefully controlled compositions. In this study, we develop a simple method for preparing freestanding carbon nanotube (CNT)-V{sub 2}O{sub 5} nanowire (VNW) composite paper electrodes without using binders. Coin cell type (CR2032) supercapacitors are assembled using the nanocomposite paper electrode as the anode and high surface area carbon fiber electrode (Spectracarb 2225) as the cathode. The supercapacitor with CNT-VNW composite paper electrode exhibits a power density of 5.26 kW Kg{sup -1} and an energy density of 46.3 Wh Kg{sup -1}. (Li)VNWs and CNT composite paper electrodes can be fabricated in similar manner and show improved overall performance with a power density of 8.32 kW Kg{sup -1} and an energy density of 65.9 Wh Kg{sup -1}. The power and energy density values suggest that such flexible hybrid nanocomposite paper electrodes may be useful for high performance electrochemical supercapacitors. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Effect of Mo2C/(Mo2C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    International Nuclear Information System (INIS)

    Xu, Qingzhong; Zhao, Jun; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-01-01

    To optimize the Mo 2 C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo 2 C/(Mo 2 C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K IC ). The results indicate that the Mo 2 C/(Mo 2 C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo 2 C/(Mo 2 C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo 2 C/(Mo 2 C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo 2 C/(Mo 2 C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo 2 C. • The cermets with a Mo 2 C/(Mo 2 C + WC) ratio of 0.4 can be used to machine 42CrMo steel

  1. Bulk handling benefits from ICT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The efficiency and accuracy of bulk handling is being improved by the range of management information systems and services available today. As part of the program to extend Richards Bay Coal Terminal, Siemens is installing a manufacturing execution system which coordinates and monitors all movements of raw materials. The article also reports recent developments by AXSMarine, SunGuard Energy, Fuelworx and Railworx in providing integrated tools for tracking, managing and optimising solid/liquid fuels and rail car maintenance activities. QMASTOR Ltd. has secured a contract with Anglo Coal Australia to provide its Pit to Port.net{reg_sign} and iFuse{reg_sign} software systems across all their Australians sites, to include pit-to-product stockpile management. 2 figs.

  2. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Borsaru, M.; Holmes, R.J.; Mathew, P.J.

    1983-01-01

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  3. Mechanical characterization of cemented carbide WC-6Co (%wt) manufactured by SPS (Spark Plasma Sintering; Caracterizacao mecanica de metal duro WC-6Co (%massa) sinterizado via SPS (Spark Plasma Sintering)

    Energy Technology Data Exchange (ETDEWEB)

    Boidi, G.; Tertuliano, A.J.; Machado, I.F., E-mail: guido.boidi@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Mecatronica e Sistemas Mecanicos; Rodrigues, D. [BRATS- Filtros Sinterizados e Pos Metalicos, Cajamar, SP (Brazil)

    2016-07-01

    This work aimed to manufacture cemented carbide (WC-6%wtCo) obtained by SPS (Spark Plasma Sintering) process and to carry out the mechanical characterization by hardness and fracture toughness. The material was consolidated at 1100 deg C for different holding times (1 min, 5 min, 10 min), in order to evaluate the densification. A reference sample was also used to be compared to SPS. Optical and scanning electron microscopy were carried out to characterize the microstructural features of the samples and mechanical properties were obtained by hardness measurements (micro and macro) and instrumented indentation. The fracture toughness was calculated with the method of Palmqvist. Best results were found in the material sintered by SPS for 10 minutes of holding time, in which 97% of relative density and about 1600 HV{sub 10} was reached. (author)

  4. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling; Estudio del comportamiento durante la sinterizacion de mezclas WC-Co finas, ultrafinas y nanocristalinas obtenidas por molienda de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-07-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs.

  5. Attritor milling of WC + 6% Co: Effects on powder characteristics and compaction behavior

    International Nuclear Information System (INIS)

    Mashl, S.J.; Smith, D.W.; Becking, G.H.; Hale, T.E.

    1987-01-01

    This study examines the effects of attritor milling on the characteristics and bulk behavior of fine tungsten carbide powders (initial median particle size ≅ 1.5 μm) blended with 6 wt. % cobalt (mps ≅ 1.5 μm). Experiments are performed in order to: Develop a process model relating the specific energy input to the milled median particle size. Examine the effect that changes in milling variables have on the specific energy - median particle size relationship. Observe the effects of variation in the initial particle size distribution on the as-milled particle size distribution, the compaction characteristics of the powder, and the shrinkage which will occur during sintering. The process model is based on Charles' equation, E-bar = A (d/sup -α/ - d/sub o//sup -α/) in which E-bar = the specific energy consumed in milling, d and d = the initial and milled median particle sizes respectively, and A and α are constants. Computer curve fitting techniques are employed to determine the values of the coefficient and exponent in the above equation. The resulting model predicts the experimental data within about +- over 10% over a significant range of d/sub o/ and E-Bar values. The apparent density and compactibility of the attritor milled powders are observed to be very sensitive to the milled particle size distribution

  6. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling

    International Nuclear Information System (INIS)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-01-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs

  7. The Effect of ZrO₂ Nanoparticles on the Microstructure and Properties of Sintered WC-Bronze-Based Diamond Composites.

    Science.gov (United States)

    Sun, Youhong; Wu, Haidong; Li, Meng; Meng, Qingnan; Gao, Ke; Lü, Xiaoshu; Liu, Baochang

    2016-05-06

    Metal matrix-impregnated diamond composites are widely used in diamond tool manufacturing. In order to satisfy the increasing engineering requirements, researchers have paid more and more attention to enhancing conventional metal matrices by applying novel methods. In this work, ZrO₂ nanoparticles were introduced into the WC-bronze matrix with and without diamond grits via hot pressing to improve the performance of conventional diamond composites. The effects of ZrO₂ nanoparticles on the microstructure, density, hardness, bending strength, and wear resistance of diamond composites were investigated. The results indicated that the hardness and relative density increased, while the bending strength decreased when the content of ZrO₂ nanoparticles increased. The grinding ratio of diamond composites increased significantly by 60% as a result of nano-ZrO₂ addition. The enhancement mechanism was discussed. Diamond composites showed the best overall properties with the addition of 1 wt % ZrO₂ nanoparticles, thus paving the way for further applications.

  8. Wear resistance of nano- and micro-crystalline diamond coatings onto WC-Co with Cr/CrN interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Polini, Riccardo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy); Barletta, Massimiliano, E-mail: barletta@ing.uniroma2.i [Dipartimento di Ingegneria Meccanica, Universita di Roma Tor Vergata, Via del Politecnico, 1, Rome, 00133 (Italy); Cristofanilli, Giacomo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy)

    2010-12-30

    Cr/CrN bi-layers have been used recently to promote the growth of high quality Hot Filament Chemical Vapour Deposition (HFCVD) diamond coatings onto Co-cemented tungsten carbide (WC-6 wt.%Co) substrates. In the present investigation, the influence of the crystalline size of the diamond coatings on their wear endurance is looked into. Nano- (NDC) and micro-crystalline Diamond Coatings (MDC) were deposited by HFCVD onto untreated and Fluidized Bed (FB) treated Cr/CrN interlayers. NDCs, characterized by a cauliflower-like morphology, showed improved wear resistance. However, the superimposition of NDCs onto Cr/CrN interlayers micro-corrugated by FB treatment was found to be the most promising choice, leading to the formation of highly adherent and wear resistant coatings.

  9. Physico-chemical profiles of the wobble ↔ Watson-Crick G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) tautomerisations: a QM/QTAIM comprehensive survey.

    Science.gov (United States)

    Brovarets', Ol'ha O; Voiteshenko, Ivan S; Hovorun, Dmytro M

    2017-12-20

    This study is intended to clarify in detail the tautomeric transformations of the wobble (w) G*·2AP(w) and A·2AP(w) nucleobase mispairs involving 2-aminopurine (2AP) into the Watson-Crick (WC) G·2AP(WC) and A*·2AP(WC) base mispairs (asterisks denote mutagenic tautomers of the DNA bases), respectively, by quantum-mechanical methods and Bader's Quantum Theory of Atoms in Molecules. Our previously reported methodology has been used, which allows the evolution of the physico-chemical parameters to be tracked along the entire internal reaction coordinate (IRC), not exclusively in the stationary states of these reactions. These biologically important G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) w ↔ WC tautomerisations, which are involved in mutagenic tautomerically-conformational pathways, determine the origin of the transitions and transversions induced by 2AP. In addition, it is established that they proceed through planar, highly stable, zwitterionic transition states and they exhibit similar physico-chemical profiles and stages of sequential intrapair proton transfer, followed by spatial rearrangement of the nucleobases relative to each other within the base pairs. These w ↔ WC tautomerisations occur non-dissociatively and are accompanied by a significant alteration in geometry (from wobble to Watson-Crick and vice versa) and redistribution of the specific intermolecular interactions, which can be divided into 10 patterns including AHB H-bonds and loosened A-H-B covalent bridges along the IRC of tautomerisation. Based on the redistribution of the geometrical and electron-topological parameters of the intrapair hydrogen bonds, exactly 9 key points have been allocated to characterize the evolution of these reactions.

  10. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  11. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  12. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  13. Aspects of silicon bulk lifetimes

    Science.gov (United States)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  14. Southern Vermont College (SVC) and Wheelock College (WC): 2010 Urban and Rural Healthcare Academy Program (HAP) for College Progress and Workforce Development

    Science.gov (United States)

    DeCiccio, Albert C.

    2010-01-01

    (Purpose) This is a report about the Urban and Rural Healthcare Academy Pilot Program (HAP) that launched at Southern Vermont College (SVC) and Wheelock College (WC) in summer 2010. HAP enabled 18 vulnerable high school students to learn about how to progress to college, how to transition when they arrive on a college campus, and how to prepare…

  15. An imitative calculation of W/C, Mo/Si articifial multilayered films' structures and properties as X-ray monochromators

    International Nuclear Information System (INIS)

    Liu Wen; Liu Wenhan; Wu Ziqin

    1989-01-01

    An imitative calculation on W/C and Mo/Si artificial multilayered films have been made. The influences of total period numbers and deviation of period thickness on X-ray diffraction peak were given. Two difference diviations, random fluctuation and system linear deviation have been imitated, their influences on X-ray energy distinguish power have been compared

  16. Empirical ranking of a wide range of WC-Co grades in terms of their abrasion resistance measured by the ASTM standard B 611-85 test

    CSIR Research Space (South Africa)

    O'Quigley, DGF

    1997-01-01

    Full Text Available This paper reports the results of a comprehensive investigation into the abrasion resistance of WC-Co alloys, as measured by the ASTM Standard B 611-85 test. The alloys ranged from 3 to 50 wt% and from 0.6 to 5 mu-m average grain size. Careful...

  17. Composite coating containing WC/12Co cermet and Fe-based metallic glass deposited by high-velocity oxygen fuel spraying

    International Nuclear Information System (INIS)

    Terajima, Takeshi; Takeuchi, Fumiya; Nakata, Kazuhiro; Adachi, Shinichiro; Nakashima, Koji; Igarashi, Takanori

    2010-01-01

    A composite coating containing WC/12Co cermet and Fe 43 Cr 16 Mo 16 C 15 B 10 metallic glass was successfully deposited onto type 304 stainless steel by high-velocity oxygen fuel (HVOF) spraying, and the microstructure and tribological properties were investigated. The microstructure of the coating was characterized by scanning electron microscopy/electron probe micro-analysis (SEM/EPMA) and X-ray diffractometry (XRD). The hardness, adhesion strength and tribological properties of the coating were tested with a Vickers hardness tester, tensile tester and reciprocating wear tester, respectively. The composite coating, in which flattened WC/12Co was embedded in amorphous Fe 43 Cr 16 Mo 16 C 15 B 10 layers, exhibited high hardness, good wear resistance and a low friction coefficient compared to the monolithic coating. The addition of 8% WC/12Co to the Fe 43 Cr 16 Mo 16 C 15 B 10 matrix increased the cross-sectional hardness from 660 to 870 HV and reduced the friction coefficient from 0.65 to 0.5. WC/12Co reinforcement plays an important role in improving the tribological properties of the Fe 43 Cr 16 Mo 16 C 15 B 10 coating.

  18. Effect of SiC Nanowhisker on the Microstructure and Mechanical Properties of WC-Ni Cemented Carbide Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Xiaoyong Ren

    2014-01-01

    Full Text Available Ultrafine tungsten carbide-nickel (WC-Ni cemented carbides with varied fractions of silicon carbide (SiC nanowhisker (0–3.75 wt.% were fabricated by spark plasma sintering at 1350°C under a uniaxial pressure of 50 MPa with the assistance of vanadium carbide (VC and tantalum carbide (TaC as WC grain growth inhibitors. The effects of SiC nanowhisker on the microstructure and mechanical properties of the as-prepared WC-Ni cemented carbides were investigated. X-ray diffraction analysis revealed that during spark plasma sintering (SPS Ni may react with the applied SiC nanowhisker, forming Ni2Si and graphite. Scanning electron microscopy examination indicated that, with the addition of SiC nanowhisker, the average WC grain size decreased from 400 to 350 nm. However, with the additional fractions of SiC nanowhisker, more and more Si-rich aggregates appeared. With the increase in the added fraction of SiC nanowhisker, the Vickers hardness of the samples initially increased and then decreased, reaching its maximum of about 24.9 GPa when 0.75 wt.% SiC nanowhisker was added. However, the flexural strength of the sample gradually decreased with increasing addition fraction of SiC nanowhisker.

  19. Effectiveness and economic analysis of the whole cell/recombinant B subunit (WC/rbs inactivated oral cholera vaccine in the prevention of traveller's diarrhoea

    Directory of Open Access Journals (Sweden)

    Diez-Diaz Rosa

    2009-05-01

    Full Text Available Abstract Background Nowadays there is a debate about the indication of the oral whole-cell/recombinant B-subunit cholera vaccine (WC/rBS in traveller's diarrhoea. However, a cost-benefit analysis based on real data has not been published. Methods A cost-effectiveness and cost-benefit study of the oral cholera vaccine (WC/rBS, Dukoral® for the prevention of traveller's diarrhoea (TD was performed in subjects travelling to cholera risk areas. The effectiveness of WC/rBS vaccine in the prevention of TD was analyzed in 362 travellers attending two International Vaccination Centres in Spain between May and September 2005. Results The overall vaccine efficacy against TD was 42,6%. Direct healthcare-related costs as well as indirect costs (lost vacation days subsequent to the disease were considered. Preventive vaccination against TD resulted in a mean saving of 79.26 € per traveller. Conclusion According to the cost-benefit analysis performed, the recommendation for WC/rBS vaccination in subjects travelling to zones at risk of TD is beneficial for the traveller, regardless of trip duration and visited continent.

  20. Characterisation of Pristine and Recoated electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings on AISI M2 steel and WC-Co substrates

    International Nuclear Information System (INIS)

    Avelar-Batista, J.C.; Spain, E.; Housden, J.; Fuentes, G.G.; Rebole, R.; Rodriguez, R.; Montala, F.; Carreras, L.J.; Tate, T.J.

    2005-01-01

    This paper is focussed on the characterisation of electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings deposited on AISI M2 steel and hardmetal (K10) substrates in two different conditions: Pristine (i.e., coated) and Recoated (i.e., stripped and recoated). Analytical methods, including X-ray diffraction (XRD), scanning electron microscopy, scratch adhesion and pin-on-disc tests were used to evaluate several coating properties. XRD analyses indicated that both Pristine and Recoated coatings consisted of a mixture of hexagonal Cr 2 N and cubic CrN, regardless of substrate type. For the M2 steel substrate, only small differences were found in terms of coating phases, microstructure, adhesion, friction and wear coefficients between Pristine and Recoated. Recoated on WC-Co (K10) exhibited a less dense microstructure and significant inferior adhesion compared to Pristine on WC-Co (K10). The wear coefficient of Recoated on WC-Co was 100 times higher than those exhibited by all other specimens. The results obtained confirm that the stripping process did not adversely affect the Cr-N properties when this coating was deposited onto M2 steel substrates, but it is clear from the unsatisfactory tribological performance of Recoated on WC-Co that the stripping process is unsuitable for hardmetal substrates

  1. Effects of NbC additions on the microstructure and properties of non-uniform structure WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yang; Yan, Ming-Yuan, E-mail: 704878879@qq.com; Luo, Bing-Hui, E-mail: luobinghui@csu.edu.cn; Ouyang, Sheng; Chen, Wei; Bai, Zhen-hai; Jing, Hui-bo; Zhang, Wen-Wen

    2017-02-27

    In this work, the effects of NbC additions on microstructure and properties of non-uniform structure WC-7Co cemented carbides were investigated X-ray diffractometer, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), mechanical properties tester and electrochemical workstation, respectively. The results show that WC phase can be partially dissolved into the NbC to form a (Nb,W)C solid solution. According to EPMA analysis, the amount of W atoms, dissolving into the NbC grains, increases with the NbC addition. Moreover, when the content of NbC is beyond 1%, the WC-Co cemented carbides with non-uniform structure are formed with significant reduction of average grain size of WC. With NbC addition increasing from 0 wt% to 2 wt%, the hardness is increased from 1475 MPa to 1570 MPa while the fracture toughness decreased from 12.1 MPa m{sup 1/2} to 10.3 MPa m{sup 1/2}. However, with the further addition of NbC, the hardness slightly decreased. With NbC addition between 0 and 1 wt%, the TRS is gradually decreased from 2982 MPa to 2745 MPa, while, as the NbC content exceeds 1 wt%, the TRS leveled off. Because of the decrease of grain size and the (Nb,W)C phase formation, caused by NbC addition, the crack defection was weakened, which led to the decrease of fracture toughness. Meanwhile, the corrosion resistance of non-uniform structure WC-Co cemented carbides can be significantly improved by adding NbC to the material due to increased α-Co in binder phase.

  2. Investigations of mussel-inspired polydopamine deposition on WC and Al{sub 2}O{sub 3} particles: The influence of particle size and material

    Energy Technology Data Exchange (ETDEWEB)

    Mondin, Giovanni, E-mail: giovanni.mondin@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Haft, Marcel, E-mail: m.haft@ifw-dresden.de [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Solid State Research, Helmholtzstr. 20, 01069 Dresden (Germany); Wisser, Florian M., E-mail: florian.wisser@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Leifert, Annika, E-mail: annika.leifert@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Mohamed-Noriega, Nasser, E-mail: nasser.mohamed-noriega@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Dörfler, Susanne, E-mail: susanne.doerfler@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Hampel, Silke, E-mail: s.hampel@ifw-dresden.de [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Solid State Research, Helmholtzstr. 20, 01069 Dresden (Germany); Grothe, Julia, E-mail: stefan.kaskel@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Kaskel, Stefan, E-mail: julia.grothe@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany)

    2014-12-15

    Polydopamine, formed by oxidation of dopamine, is a bioinspired polymer developed for multifunctional coatings by Lee et al. in 2007 by drawing inspiration from the adhesive proteins found in mussels. Due to their high versatility and substrate-independence, polydopamine coatings are gaining considerable attention in a plethora of research fields, particularly in the coating of particles, but systematic investigations of the polydopamine coating process are lacking in the literature. In this study, we explore by TEM and thermogravimetric analysis the polydopamine coating process on alumina microparticles, tungsten carbide microparticles and tungsten carbide nanoparticles. By choosing two substrates with similar size but different material (Al{sub 2}O{sub 3} and WC), as well as two substrates of the same material but different size (WC micro- and nanoparticles) we investigate the effects of both substrate material and substrate size, in order to gain some insights into the polydopamine particle coating process. As opposed to what is generally assumed in the literature, we found that the polydopamine coating thicknesses on particles, as well as the thickness growing trend, depend on the particles size and material. In particular, after 24 h of polymerization time the polydopamine coatings reached a thickness of 65 ± 10 nm in the case of Al{sub 2}O{sub 3} microparticles, 18 ± 4 nm in the case of WC microparticles and 33 ± 6 nm in the case of WC nanoparticles. - Highlights: • The coating of different particles with polydopamine was systematically investigated. • Al{sub 2}O{sub 3} microparticles and WC microparticles and nanoparticles were investigated. • The thickness of the polydopamine coating depends on the particle size. • The thickness of the polydopamine coating depends on the particle material.

  3. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  4. On the bulk viscosity of relativistic matter

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  5. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  6. Comportamiento a desgaste de recubrimientos de WC proyectados por plasma a partir de polvos micro y nanoestructurados

    Directory of Open Access Journals (Sweden)

    Salvador, M. D.

    2008-06-01

    Full Text Available The aim of the present work is the study of wear behaviour of different WC coatings deposited on stainless steel substrate by means of atmospheric plasma spraying (APS. Two types of WC commercial powders, with different metal binder (12% Cobalt and 10% Nickel have been deposited in order to analyse the influence of the metal matrix and thickness of the coating in tribological properties.The microstructure of the depositions was characterized using scanning electron microscopy (SEM and X-ray diffraction analysis (XRD. On the other hand, tribology characterization of the coatings was made by pin-on-disk wear tests against alumina (2400HV and silicon nitride (1600HV ceramic balls, without lubrication. Wear rates and friction coefficient evolution have been calculated. Finally, wear tracks and wear debris have been analysed with the help of SEM.The results of each pair of tested materials show different mechanisms of wear related to the nature of the ball that has been used, obtaining higher wear rates with silicone nitride ball..In a second phase of the study, in order to examine the influence of the initial particle size on the wear properties of the coatings, cobalt based coatings have been analysed with different initial particle size (micrometric and nanometric particles.Results show that nanostructured coatings have higher wear resistance than microstrutured ones for high loads. However for low loads, behaviour is similar in spite of the microstructural differences appreciated.

    El objetivo de este trabajo es estudiar el comportamiento a desgaste de distintos recubrimientos de WC sobre acero inoxidable mediante proyección por plasma atmosférico. Se proyectan dos tipos de polvos comerciales con base cobalto (12 % y níquel (10 %, con el objeto de analizar la influencia de la matriz e incluso del espesor del recubrimiento. Los recubrimientos obtenidos se caracterizan microestructuralmente por microscopía electrónica de barrido y

  7. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  8. XMM-Newton X-ray observations of γ2 Velorum (WC8 + O7.5III)

    International Nuclear Information System (INIS)

    Raassen, A.J.J.; Mewe, R.; Hucht, K.A. van der; Schmutz, W.; Schild, H.; Dumm, T.; Guedel, M.; Audard, M.; Leutenegger, M.A.; Skinner, S.L.

    2004-01-01

    The spectrum of the binary system γ 2 Velorum (WC8 + O7.5III) has been observed with RGS and EPIC-MOS aboard XMM-Newton. The system shows a 'high state' when the O-star is between the Wolf-Rayet star and the observer (near periastron) and a 'low state' when most of the spectrum is absorbed by the dense stellar wind of the Wolf-Rayet star (near apastron). The spectrum has been model-led by a 4-T plasma, using SPEX. The absorption affects the hot temperature component (kT = 1.5 keV) that is formed by the collision of the Wolf-Rayet wind and the O-star wind, and the second hot component (kT 0.65 keV) for which the origin is still unclear. Part of the spectrum is not sensitive to the absorption by the stellar wind. This concerns a low-temperature component (kT = 0.23 keV) and features that are produced by plasma that has been photoionized by X-ray radiation from the hot component. In the RGS spectrum features of Radiative Recombination Continua (RRC) of C VI and C V of this photoionized plasma are detected

  9. Statistical Optimization of Reactive Plasma Cladding to Synthesize a WC-Reinforced Fe-Based Alloy Coating

    Science.gov (United States)

    Wang, Miqi; Zhou, Zehua; Wu, Lintao; Ding, Ying; Xu, Feilong; Wang, Zehua

    2018-04-01

    A new compound Fe-W-C powder for reactive plasma cladding was fabricated by precursor carbonization process using sucrose as a precursor. The application of quadratic general rotary unitized design was highlighted to develop a mathematical model to predict and accomplish the desired surface hardness of plasma-cladded coating. The microstructure and microhardness of the coating with optimal parameters were also investigated. According to the developed empirical model, the optimal process parameters were determined as follows: 1.4 for C/W atomic ratio, 20 wt.% for W content, 130 A for scanning current and 100 mm/min (1.67 mm/s) for scanning rate. The confidence level of the model was 99% according to the results of the F-test and lack-of-fit test. Microstructural study showed that the dendritic structure was comprised of a mechanical mixture of α-Fe and carbides, while the interdendritic structure was a eutectic of α-Fe and carbides in the composite coating with optimal parameters. WC phase generation can be confirmed from the XRD pattern. Due to good preparation parameters, the average microhardness of cladded coating can reach 1120 HV0.1, which was four times the substrate microhardness.

  10. Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings.

    Science.gov (United States)

    Amadeh, A; Ebadpour, R

    2013-02-01

    Metal-ceramic composite coatings are widely used in automotive and aerospace industries as well as micro-electronic systems. Electrodeposition is an economic method for application of these coatings. In this research, nickel-cobalt coatings reinforced by nano WC particles were applied on carbon steel substrate by pulse electrodeposition from modified Watts bath containing different amounts of cobalt sulphate as an additive. Saccharin and sodium dodecyl sulphate (SDS) were also added to electroplating bath as grain refiner and surfactant, respectively. The effect of cobalt content on wear and corrosion behavior of the coatings was investigated. Wear and corrosion properties were assessed by pin-on-disk and potentiodynamic polarization methods, respectively. Phase analysis was performed by X-ray diffraction (XRD) using CuK(alpha) radiation and the worn surfaces were studied by means of Scanning Electron Microscopy (SEM). The results showed that the addition of cobalt improved the wear resistance of the coatings. In the presence of 18 g/L cobalt in electrodeposition bath, the wear rate of the coating decreased to 0.002 mg/m and the coefficient of friction reduced to 0.695 while they were 0.004 mg/m and 0.77 in the absence of cobalt, respectively. This improvement in wear properties can be attributed to the formation of hcp phase in metallic matrix. Meanwhile, the corrosion resistance of the coatings slightly reduced because cobalt is more active metal with respect to nickel.

  11. Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel

    International Nuclear Information System (INIS)

    Farhat, Z.N.

    2003-01-01

    The wear behavior of tungsten carbide (WC)-TiC-Co cutting tools during cutting P20 tool steel was investigated. Orthogonal cutting tests were performed on a CNC lathe using five speeds, namely, 60, 120, 240, 380 and 600 m/min. Wear, as the width of the wear land, was monitored at five time intervals. Wear characterization of the rake and the flank surfaces as well as the collected chips was performed using scanning electron microscopy (SEM), backscattered electron imaging and energy-dispersive X-ray analysis (EDX). Microhardness of collected chips was also performed to monitor strain hardening effects during cutting. Two dominant wear mechanisms were identified: at high speed (380-600 m/min), wear was found to occur by a melt wear mechanism; at low speed (60-120 m/min), adhesion (built-up edge) followed by delamination was found to be the cause of wear damage. It was also found that deformation in the chips occurred by localized shear deformation

  12. Design and simulation of thermal residual stresses of coatings on WC-Co cemented carbide cutting tool substrate

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Zang, Jian; Zheng, Wei

    2016-01-01

    Large thermal residual stresses in coatings during the coating deposition process may easily lead to coating delamination of coated carbide tools in machining. In order to reduce the possibility of coating delamination during the tool failure process, a theoretical method was proposed and a numerical method was constructed for the coating design of WC-Co cemented carbide cutting tools. The thermal residual stresses of multi-layered coatings were analytically modeled based on equivalent parameters of coating properties, and the stress distribution of coatings are simulated by Finite element method (FEM). The theoretically calculated results and the FEM simulated results were verified and in good agreement with the experimental test results. The effects of coating thickness, tool substrate, coating type and interlayer were investigated by the proposed geometric and FEM model. Based on the evaluations of matchability of tool substrate and tool coatings, the basic principles of tool coating design were proposed. This provides theoretical basis for the selection and design of coatings of cutting tools in high-speed machining

  13. Bulk Leisure--Problem or Blessing?

    Science.gov (United States)

    Beland, Robert M.

    1983-01-01

    With an increasing number of the nation's work force experiencing "bulk leisure" time because of new work scheduling procedures, parks and recreation offices are encouraged to examine their program scheduling and content. (JM)

  14. Technical specifications for the bulk shielding reactor

    International Nuclear Information System (INIS)

    1986-05-01

    This report provides information concerning the technical specifications for the Bulk Shielding Reactor. Areas covered include: safety limits and limiting safety settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and monitoring of airborne effluents. 10 refs

  15. Force measurements for levitated bulk superconductors

    International Nuclear Information System (INIS)

    Tachi, Y.; Sawa, K.; Iwasa, Y.; Nagashima, K.; Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M.

    2000-01-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  16. Force measurements for levitated bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Y. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan). E-mail: tachi at istec.or.jp; Uemura, N. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan); Sawa, K. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nagashima, K. [Railway Technical Research Institute, Hikari-cho, Kokubunji-shi, Tokyo (Japan); Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M. [ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan)

    2000-06-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  17. ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI

    Directory of Open Access Journals (Sweden)

    Azizul Khakim

    2015-10-01

    Full Text Available ABSTRAK ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI. Bulk shielding merupakan fasilitas yang terintegrasi dengan reaktor Kartini yang berfungsi sebagai penyimpanan sementara bahan bakar bekas. Fasilitas ini merupakan fasilitas yang termasuk dalam struktur, sistem dan komponen (SSK yang penting bagi keselamatan. Salah satu fungsi keselamatan dari sistem penanganan dan penyimpanan bahan bakar adalah mencegah kecelakaan kekritisan yang tak terkendali dan membatasi naiknya temperatur bahan bakar. Analisis keselamatan paling kurang harus mencakup analisis keselamatan dari sisi neutronik dan termo hidrolik Bulk shielding. Analisis termo hidrolik ditujukan untuk memastikan perpindahan panas dan proses pendinginan bahan bakar bekas berjalan baik dan tidak terjadi akumulasi panas yang mengancam integritas bahan bakar. Code tervalidasi PARET/ANL digunakan untuk analisis pendinginan dengan mode konveksi alam. Hasil perhitungan menunjukkan bahwa mode pendinginan konvekasi alam cukup memadai dalam mendinginkan panas sisa tanpa mengakibatkan kenaikan temperatur bahan bakar yang signifikan. Kata kunci: Bulk shielding, bahan bakar bekas, konveksi alam, PARET.   ABSTRACT THERMAL HYDRAULIC SAFETY ANALYSIS OF BULK SHIELDING KARTINI REACTOR. Bulk shielding is an integrated facility to Kartini reactor which is used for temporary spent fuels storage. The facility is one of the structures, systems and components (SSCs important to safety. Among the safety functions of fuel handling and storage are to prevent any uncontrolable criticality accidents and to limit the fuel temperature increase. Safety analyses should, at least, cover neutronic and thermal hydraulic calculations of the bulk shielding. Thermal hydraulic analyses were intended to ensure that heat removal and the process of the spent fuels cooling takes place adequately and no heat accumulation that challenges the fuel integrity. Validated code, PARET/ANL was used for analysing the

  18. Characterizing the Effects of Micro Electrical Discharge Machining Parameters on Material Removal Rate during Micro EDM Drilling of Tungsten Carbide (WC-Co)

    Science.gov (United States)

    Hourmand, Mehdi; Sarhan, Ahmed A. D.; Sayuti, Mohd

    2017-10-01

    Micro-dies, molds and miniaturized products can be manufactured using micro EDM process. In this research, EDM machine and on-machine fabricated CuW micro-electrode were utilized to produce the micro holes in WC-16%Co. The effects of voltage, current, pulse ON time, pulse OFF time, capacitor and rotating speed on Material removal rate (MRR) during micro EDM drilling of WC-16% Co was analyzed using fractional factorial design method. ANOVA analysis shows that increasing current, rotating speed, capacitor and decreasing voltage and pulse ON time lead to the amplify in MRR. It was found that out of all the factors, current and capacitor had the most significant effect on MRR, while the effect of capacitor was more than current. Eventually, it can be concluded that micro holes can be produced using EDM machine.

  19. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.

    Science.gov (United States)

    Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng

    2016-10-01

    The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na 2 CO 3 amendment or NaHCO 3 amendment. However, Na 2 CO 3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L -1 Na 2 CO 3 amendment and 15 g L -1 sea salt, respectively.

  20. The Applicability of Taylor’s Model to the Drilling of CFRP Using Uncoated WC-Co Tools: The Influence of Cutting Speed on Tool Wear

    OpenAIRE

    Merino Perez, J.L.; Merson, E.; Ayvar-Soberanis, S.; Hodzic, A.

    2014-01-01

    This work investigates the applicability of Taylor’s model on the drilling of CFRP using uncoated WC-Co tools, by assessing the influence of cutting speed (Vc) on tool wear. Two different resins, possessing low and high glass transition temperatures (Tg), and two different reinforcements, high strength and high modulus woven fabrics, were combined into three different systems. Flank wear rate gradient exhibited to be more reinforcement dependent, while the actual flank wear rate showed to be ...

  1. Abrasive wear of WC-NiMoCrFeCo thermally sprayed coatings in dependence on different types of abrasive sands

    Czech Academy of Sciences Publication Activity Database

    Kašparová, M.; Zahálka, F.; Houdková, Š.; Ctibor, Pavel

    2010-01-01

    Roč. 48, č. 1 (2010), s. 75-85 ISSN 0023-432X R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : WC-Hastelloy * abrasive wear * Al2O3 sand * SiO2 sand * braun size * abrasive efficiency Subject RIV: JG - Metallurgy Impact factor: 0.471, year: 2010 http://kovmat.sav.sk/abstract.php?rr=48&cc=1&ss=73

  2. THE EFFECT OF PRESSURE, BIAS VOLTAGE AND ANNEALING TEMPERATURE ON N₂ AND N₂+SiH₄ DOPED WC/C DC MAGNETRON SPUTTERED LAYERS

    Directory of Open Access Journals (Sweden)

    Peter Hornak

    2017-12-01

    Full Text Available Tungsten carbide (WC/C layers are often researched due to their outstanding mechanical and tribological properties. Here, optimized indented hardness (HIT, indentation modulus (EIT and coefficient of friction (COF values were measured to study the effect of pressure and bias voltage on WC/C layers, deposited on Si by DC magnetron spluttering. Maximal values of HIT=37.2±4.8 GPa, EIT=447±28 GPa and COF=0.64±0.09 were obtained. Additionally, the effect of temperature on optimized layers deposited with and without N₂ and N₂+SiH₄ annealed at 200 °C, 500 °C and 800 °C, were also investigated. The values of HIT, EIT and COF and, observed morphology and structural composition of these contaminated and non-contaminated WC/C layers were evaluated. It was found that layer degradation occurred at different rates depending on the temperature and gas mixture used during the annealing and deposition process, respectively.

  3. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    Science.gov (United States)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  4. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  5. Module 13: Bulk Packaging Shipments by Highway

    International Nuclear Information System (INIS)

    Przybylski, J.L.

    1994-07-01

    The Hazardous Materials Modular Training Program provides participating United States Department of Energy (DOE) sites with a basic, yet comprehensive, hazardous materials transportation training program for use onsite. This program may be used to assist individual program entities to satisfy the general awareness, safety training, and function specific training requirements addressed in Code of Federal Regulation (CFR), Title 49, Part 172, Subpart H -- ''Training.'' Module 13 -- Bulk Packaging Shipments by Highway is a supplement to the Basic Hazardous Materials Workshop. Module 13 -- Bulk Packaging Shipments by Highway focuses on bulk shipments of hazardous materials by highway mode, which have additional or unique requirements beyond those addressed in the ten module core program. Attendance in this course of instruction should be limited to those individuals with work experience in transporting hazardous materials utilizing bulk packagings and who have completed the Basic Hazardous Materials Workshop or an equivalent. Participants will become familiar with the rules and regulations governing the transportation by highway of hazardous materials in bulk packagings and will demonstrate the application of these requirements through work projects and examination

  6. Bulk-memory processor for data acquisition

    International Nuclear Information System (INIS)

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user

  7. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  8. Holographic bulk reconstruction with α' corrections

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  9. Big bang nucleosynthesis constraints on bulk neutrinos

    International Nuclear Information System (INIS)

    Goh, H.S.; Mohapatra, R.N.

    2002-01-01

    We examine the constraints imposed by the requirement of successful nucleosynthesis on models with one large extra hidden space dimension and a single bulk neutrino residing in this dimension. We solve the Boltzmann kinetic equation for the thermal distribution of the Kaluza-Klein modes and evaluate their contribution to the energy density at the big bang nucleosynthesis epoch to constrain the size of the extra dimension R -1 ≡μ and the parameter sin 2 2θ which characterizes the mixing between the active and bulk neutrinos

  10. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  11. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  12. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled barges...

  13. 33 CFR 127.313 - Bulk storage.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...: (1) LNG. (2) LPG. (3) Vessel fuel. (4) Oily waste from vessels. (5) Solvents, lubricants, paints, and...

  14. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  15. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  16. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization is cond...

  17. Bulk viscosity in 2SC quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G; Schmitt, Andreas

    2007-01-01

    The bulk viscosity of three-flavour colour-superconducting quark matter originating from the nonleptonic process u + s ↔ u + d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T c for 2SC pairing, the bulk viscosity of colour-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T ∼> T c /30 the colour-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star

  18. Combating wear in bulk solids handling plants

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A total of five papers presented at a seminar on problems of wear caused by abrasive effects of materials in bulk handling. Topics of papers cover the designer viewpoint, practical experience from the steel, coal, cement and quarry industries to create an awareness of possible solutions.

  19. THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS

    Directory of Open Access Journals (Sweden)

    VINEREANU Adam

    2014-05-01

    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  20. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Characteristics of bulk liquid undercooling and crystallization behaviors ... cooling rate is fixed, the change of undercooling depends on the melt processing tem- ... solidification and a deep knowledge of undercooling of ... evolution, to obtain the information for the nucleation and ..... When cooling rate is fixed, the change.

  1. A stereoscopic look into the bulk

    Energy Technology Data Exchange (ETDEWEB)

    Czech, Bartłomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Sully, James [Theory Group, SLAC National Accelerator LaboratoryMenlo Park, CA 94025 (United States)

    2016-07-26

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.

  2. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model.

  3. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane shear...

  4. Hexaferrite multiferroics: from bulk to thick films

    Science.gov (United States)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  5. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with integration of a 50-80% efficient power management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of <1microW in active-mode (measured) and <5pA in sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  6. Evaluación de las transformaciones estructurales en recubrimientos de WC10Ni depositados por laser cladding sobre acero para herramienta EN 12379

    Directory of Open Access Journals (Sweden)

    Candel, J. J.

    2011-08-01

    Full Text Available Carbide metal matrix composite materials are known for a high resistance to all types of wear. It is due to a beneficial combination of properties given by hard phase particles included in a tough matrix. Different kinds of those materials have been employed in the development of new high properties cutting tools. Laser cladding (LC technique allows obtaining an accurate defect-free coating with a low thermal affectation of the component. But in the case of WC cermet coatings due to its high laser absorption and the different mechanical and thermal properties between substrate and coating can appear a wide range of different defects as cracks, pores, massive carbide dilution and lacks of adherence. The aim of the present work is to study the metallurgical transformations during LC process of WC cermet coating on cold work tool steel substrate (EN 12379. Also it has been related process parameters with defects generation. Microstructure and composition of the coating and the heat affected zone have been analysed. Microhardness evolution profile has been obtained. Results show that although process parameters control reduce the generation of defects, in the deposition of overlapped layers appear different metallurgical transformations related with massive WC decomposition and the diffusion of alloying elements from substrate to the coating.

    Los materiales compuestos de matriz metálica reforzados con carburos, son conocidos por su elevada resistencia a todos los tipos de desgaste, debido a la combinación de las partículas duras en una matriz metálica tenaz. Diferentes tipos de estos materiales, se han empleado en el desarrollo de nuevas herramientas de corte de altas prestaciones. La técnica de láser cladding (LC, permite obtener recubrimientos libres de defectos sobre zonas muy concretas, con un aporte de calor muy localizado. Pero en el caso de carburos de wolframio (WC, debido a la enorme absorción de energía y la

  7. Safety of the recombinant cholera toxin B subunit, killed whole-cell (rBS-WC oral cholera vaccine in pregnancy.

    Directory of Open Access Journals (Sweden)

    Ramadhan Hashim

    Full Text Available Mass vaccinations are a main strategy in the deployment of oral cholera vaccines. Campaigns avoid giving vaccine to pregnant women because of the absence of safety data of the killed whole-cell oral cholera (rBS-WC vaccine. Balancing this concern is the known higher risk of cholera and of complications of pregnancy should cholera occur in these women, as well as the lack of expected adverse events from a killed oral bacterial vaccine.From January to February 2009, a mass rBS-WC vaccination campaign of persons over two years of age was conducted in an urban and a rural area (population 51,151 in Zanzibar. Pregnant women were advised not to participate in the campaign. More than nine months after the last dose of the vaccine was administered, we visited all women between 15 and 50 years of age living in the study area. The outcome of pregnancies that were inadvertently exposed to at least one oral cholera vaccine dose and those that were not exposed was evaluated. 13,736 (94% of the target women in the study site were interviewed. 1,151 (79% of the 1,453 deliveries in 2009 occurred during the period when foetal exposure to the vaccine could have occurred. 955 (83% out of these 1,151 mothers had not been vaccinated; the remaining 196 (17% mothers had received at least one dose of the oral cholera vaccine. There were no statistically significant differences in the odds ratios for birth outcomes among the exposed and unexposed pregnancies.We found no statistically significant evidence of a harmful effect of gestational exposure to the rBS-WC vaccine. These findings, along with the absence of a rational basis for expecting a risk from this killed oral bacterial vaccine, are reassuring but the study had insufficient power to detect infrequent events.ClinicalTrials.gov NCT00709410.

  8. Study of interface correlation in W/C multilayer structure by specular and non-specular grazing incidence X-ray reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, A., E-mail: arupb@barc.gov.in; Bhattacharyya, D.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Maidul Haque, S.; Tripathi, S.; De, Rajnarayan [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, VIZAG Centre, Visakhapatnam 530012 (India); Rai, S. [Indus Synchrotron Utilization Division, Raja Raman Centre for Advanced Technology, Indore 452013 (India)

    2015-10-28

    W/C/W tri-layer thin film samples have been deposited on c-Si substrates in a home-built Ion Beam Sputtering system at 1.5 × 10{sup −3} Torr Ar working pressure and 10 mA grid current. The tri-layer samples have been deposited at different Ar{sup +} ion energies between 0.6 and 1.2 keV for W layer deposition and the samples have been characterized by specular and non-specular grazing incidence X-ray reflectivity (GIXR) measurements. By analyzing the GIXR spectra, various interface parameters have been obtained for both W-on-C and C-on-W interfaces and optimum Ar{sup +} ion energy for obtaining interfaces with low imperfections has been found. Subsequently, multilayer W/C samples with 5-layer, 7-layer, 9-layer, and 13-layer have been deposited at this optimum Ar{sup +} ion energy. By fitting the specular and diffused GIXR data of the multilayer samples with the parameters of each interface as fitting variables, different interface parameters, viz., interface width, in-plane correlation length, interface roughness, and interface diffusion have been estimated for each interface and their variation across the depth of the multilayers have been obtained. The information would be useful in realizing W/C multilayers for soft X-ray mirror application in the <100 Å wavelength regime. The applicability of the “restart of the growth at the interface” model in the case of these ion beam sputter deposited W/C multilayers has also been investigated in the course of this study.

  9. Bulk solitary waves in elastic solids

    Science.gov (United States)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  10. Fluctuation effects in bulk polymer phase behavior

    International Nuclear Information System (INIS)

    Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.

    1990-01-01

    Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation

  11. Nuclear Matter Bulk Parameter Scales and Correlations

    International Nuclear Information System (INIS)

    Santos, B. M.; Delfino, A.; Dutra, M.; Lourenço, O.

    2015-01-01

    We study the arising of correlations among some isovector bulk parameters in nonrelativistic and relativistic hadronic mean-field models. For the former, we investigate correlations in the nonrelativistic (NR) limit of relativistic point-coupling models. We provide analytical correlations, for the NR limit model, between the symmetry energy and its derivatives, namely, the symmetry energy slope, curvature, skewness and fourth order derivative, discussing the conditions in which they are linear ones. We also show that some correlations presented in the NR limit model are reproduced for relativistic models presenting cubic and quartic self-interactions in its scalar field. As a direct application of such linear correlations, we remark its association with possible crossing points in the density dependence of the linearly correlated bulk parameter. (author)

  12. Structural determinants in the bulk heterojunction.

    Science.gov (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  13. ANFO bulk loading in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gajjar, A.

    1987-08-01

    With India's total coal production projected to increase from 152 to 237 million tons by 1990, net additional production from new mines must be more because of substantial depletion in existing mines. This article discusses the best possible application of explosive techniques in open-cast coal mines to economize production cost. The most energy-efficient and safest explosive is ANFO (ammonium nitrate, fuel oil); however, manual charging by INFO is not possible. Therefore, the solution is the application of bulk-loading systems of ANFO for giant mining operations. Cost of blasting per ton of coal production in India is in the range of Rs 25. Thus, the author suggests it will be the responsibility of mining engineers to see that the ANFO based bulk-loading system is implemented and the cost of production per ton reduced to Rs 19.50.

  14. Nonlinear AC susceptibility, surface and bulk shielding

    Science.gov (United States)

    van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.

    1996-02-01

    We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.

  15. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  16. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  17. Induction detection of concealed bulk banknotes

    International Nuclear Information System (INIS)

    Fuller, Christopher; Chen, Antao

    2011-01-01

    Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects

  18. Induction detection of concealed bulk banknotes

    Science.gov (United States)

    Fuller, Christopher; Chen, Antao

    2012-06-01

    The smuggling of bulk cash across borders is a serious issue that has increased in recent years. In an effort to curb the illegal transport of large numbers of paper bills, a detection scheme has been developed, based on the magnetic characteristics of bank notes. The results show that volumes of paper currency can be detected through common concealing materials such as plastics, cardboard, and fabrics making it a possible potential addition to border security methods. The detection scheme holds the potential of also reducing or eliminating false positives caused by metallic materials found in the vicinity, by observing the stark difference in received signals caused by metal and currency. The detection scheme holds the potential to detect for both the presence and number of concealed bulk notes, while maintaining the ability to reduce false positives caused by metal objects.

  19. Bulk viscous cosmology with causal transport theory

    International Nuclear Information System (INIS)

    Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried

    2011-01-01

    We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8

  20. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  1. Depositing bulk or micro-scale electrodes

    Science.gov (United States)

    Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.

    2016-11-01

    Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.

  2. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  3. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A bulk viscosity driven inflationary model

    International Nuclear Information System (INIS)

    Waga, I.; Falcao, R.C.; Chanda, R.

    1985-01-01

    Bulk viscosity associated with the production of heavy particles during the GUT phase transition can lead to exponential or 'generalized' inflation. The condition of inflation proposed is independent of the details of the phase transition and remains unaltered in presence of a cosmological constant. Such mechanism avoids the extreme supercooling and reheating needed in the usual inflationary models. The standard baryongenesis mechanism can be maintained. (Author) [pt

  5. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  6. Accelerating universes driven by bulk particles

    International Nuclear Information System (INIS)

    Brito, F.A.; Cruz, F.F.; Oliveira, J.F.N.

    2005-01-01

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory

  7. Characterization of microstructure and surface properties of hybrid coatings of WC-CoCr prepared by laser heat treatment and high velocity oxygen fuel spraying

    International Nuclear Information System (INIS)

    Zhang Shihong; Cho, Tong-Yul; Yoon, Jae-Hong; Fang, Wei; Song, Ki-O; Li Mingxi; Joo, Yun-Kon; Lee, Chan Gyu

    2008-01-01

    The microstructure and microhardness of high velocity oxygen fuel-sprayed WC-CoCr coatings were comparatively studied both before and after laser heat treatment of the coatings. Optical microscopy, scanning electron microscopy, X-ray diffraction and microhardness testing were applied to investigate the microstructure, phase composition, porosity and microhardness. The results indicate that WC is still present, and W 2 C has appeared, while neither cobalt nor σ-CrCo is detectable. Co 4 W 2 C has appeared in the high velocity oxygen fuel-sprayed coating after laser heat treatment as compared to the coating before laser treatment. The relative content of the W 2 C has not increased with laser treatment, but the laser treatment has essentially eliminated the porosity almost entirely, providing a more homogeneous and densified microstructure. The laser heat treatment has effected the formation of a denser compact coating on the substrate. After laser heat treatment, the thickness of the coating has decreased from 300 μm to 225 μm. This corresponds to an average porosity in the high velocity oxygen fuel-sprayed coating that is approximately five times greater than that in the subsequently laser heat-treated coating. The laser treatment has also resulted in an increased hardness of the coating near the surface, where the average value increased from Hv 0.2 = 1262.4 in the coating before laser heat treatment to Hv 0.2 = 1818.7 after laser heat treatment

  8. Estudio por emisión acústica del comportamiento a flexión de recubrimientos WC-Co obtenidos por plasma atmosférico

    Directory of Open Access Journals (Sweden)

    Segovia, F.

    2007-12-01

    Full Text Available Plasma sprayed cermet coatings WC-Co are used in a wide range of industrial applications, mainly due to their wear resistance even in corrosive environments. The objective of this work is to analyze mechanical response of hard metal coatings by means of three- and four-points bend tests applying acoustic emission technique to determine failure critical strength. It has been observed the effect of supported charge level in structural damage by means of optical microscopy and scanning electron microscopy. Acoustic emission has allowed us to relate damage level to stresses level and then to understand coatings failure mechanism.

    Los recubrimientos de cermet WC-Co proyectados por plasma se utilizan en un amplio rango de aplicaciones industriales, principalmente por su resistencia al desgaste, incluso en medio corrosivo. El objetivo de este trabajo es analizar la respuesta mecánica de los recubrimientos de metal duro mediante ensayos de flexión a 3 y 4 puntos aplicando el método de emisión acústica para determinar las tensiones críticas de fallo. Se ha observado el efecto del nivel de carga soportado en el dañado estructural mediante microscopia óptica y electrónica de barrido. La emisión acústica ha permitido relacionar el grado de dañado con el nivel de tensiones y, así, entender el mecanismo de fallo de los recubrimientos.

  9. Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part I: Dry Sliding

    Directory of Open Access Journals (Sweden)

    D. Kekes

    2014-12-01

    Full Text Available The influence of the cermet fraction in cermet/ metal composite coatings developed by High-Velocity Oxyfuel Flame (HVOF spraying on their tribological behaviour was studied. Five series of coatings, each one containing different proportion of cermet-metal components, prepared by premixing commercially available feedstocks of NiCrFeBSiC metallic and WC-Co/Cr cermet powders were deposited on AISI 304 stainless steel substrate. The microstructure of as-sprayed coatings was characterized by partial decomposition of the WC particles, lamellar morphology and micro-porosity among the solidified splats. Tribological behavior was studied under sliding friction conditions using a Si3N4 ball as counterbody and the friction coefficient and volume loss were determined as a function of the cermet fraction. Microscopic examinations of the wear tracks and relevant cross sections identified the wear mechanisms involved. Coatings containing only the metallic phase were worn out through a combination of ploughing, micro-cracking and splat exfoliation, whilst those containing only the cermet phase primarily by micro-cracking at the individual splat scale. The wear mechanisms of the composite coatings were strongly affected by their randomly stratified structure. In-depth cracks almost perpendicular to the coating/ substrate interface occurring at the wear track boundaries resulted in cermet trans-splat fracture.

  10. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    Science.gov (United States)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  11. Effects of bias voltage and annealing on the structure and mechanical properties of WC0.75N0.25 thin films

    International Nuclear Information System (INIS)

    Su, Y.D.; Hu, C.Q.; Wen, M.; Wang, C.; Liu, D.S.; Zheng, W.T.

    2009-01-01

    We investigated the effects of both bias voltage and annealing on the structure and mechanical properties of WC 0.75 N 0.25 thin films, deposited on Si (1 0 0) substrates by a direct current reactive magnetron sputtering system, in which the negative substrate bias voltage (V b ) was varied from floating (-1.6 V) to -200 V, and the deposited films were annealed at 800 deg. C for 2 h. The X-ray photoelectron spectroscopy and selected area electron diffraction analyses, along with the density-functional theory (DFT) calculations on the electronic structure, showed that WC 0.75 N 0.25 films were a single-phase of carbonitrides. After annealing, a significant decrease in hardness for the films was observed, being a result of point-defect annihilation as V b was in the range of floating to -120 V. However, when V b was in the range of -160 to -200 V, the hardness increased from ∼37 GPa for the as-deposited film to a maximum of ∼43 GPa for the annealed one. This increase in hardness after annealing might be attributed to age-hardening.

  12. Influence of Plasma Transferred Arc Process Parameters on Structure and Mechanical Properties of Wear Resistive NiCrBSi-WC/Co Coatings

    Directory of Open Access Journals (Sweden)

    Eitvydas GRUZDYS

    2011-07-01

    Full Text Available Self-fluxing NiCrBSi and related coatings received considerable interest due to their good wear as well as corrosion resistance at moderate and elevated temperatures. Hard tungsten carbide (WC particles can be included in NiCrBSi for further increase of the coating hardness and abrasive wear resistance. Flame spray technique is widely used for fabrication of NiCrBSi films. However, in such a case, subsequent remelting of the deposited coatings by flame, arc discharge or high power laser beam is necessary. In present study NiCrBSi-WC/Co coatings were formed using plasma transferred arc process. By adjusting plasma parameters, such as current, plasma gas flow, shielding gas flow, a number of coatings were formed on steel substrates. Structure of the coatings was investigated using X-ray diffractometry. Microstructure of cross-sectioned coatings was examined using scanning electron microscopy. Hardness of the coating was evaluated by means of the Vickers hardness tests. Wear tests were also performed on specimens to determine resistance to abrasive wear. Acquired results allowed estimating the influence of the deposition process parameters on structure and mechanical properties of the coatings.http://dx.doi.org/10.5755/j01.ms.17.2.482

  13. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  14. Transfer points of belt conveyors operating with unfavorable bulk

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, H [Technische Universitaet, Dresden (German Democratic Republic)

    1989-06-01

    Describes design of belt conveyor chutes that transfer bulk of surface mines from one conveyor to another. Conveyor belt velocity is a significant parameter. Unfavorable chute design may lead to bulk flow congestion, bulk velocity losses etc. The bulk flow process is analyzed, bulk flow velocities, belt inclinations and bulk feeding from 2 conveyors into one chute are taken into account. Conventional chutes have parabolic belt impact walls. An improved version with divided impact walls is proposed that maintains a relatively high bulk velocity, reduces friction at chute walls and decreases wear and dirt build-up. Design of the improved chute is explained. It is built to adapt to existing structures without major modifications. The angle between 2 belt conveyors can be up to 90 degrees, the best bulk transfer is noted at conveyor angles below 60 degrees. Various graphs and schemes are provided. 6 refs.

  15. Brane Lorentz symmetry from Lorentz breaking in the bulk

    Energy Technology Data Exchange (ETDEWEB)

    Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Carvalho, C [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal)

    2007-05-15

    We propose the mechanism of spontaneous symmetry breaking of a bulk vector field as a way to generate the selection of bulk dimensions invisible to the standard model confined to the brane. By assigning a nonvanishing vacuum value to the vector field, a direction is singled out in the bulk vacuum, thus breaking the bulk Lorentz symmetry. We present the condition for induced Lorentz symmetry on the brane, as phenomenologically required.

  16. Effect of Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Zhao, Jun, E-mail: zhaojun@sdu.edu.cn; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-11-15

    To optimize the Mo{sub 2}C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The results indicate that the Mo{sub 2}C/(Mo{sub 2}C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo{sub 2}C/(Mo{sub 2}C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo{sub 2}C/(Mo{sub 2}C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo{sub 2}C. • The cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 can be used to machine 42CrMo steel.

  17. Posterior bulk-filled resin composite restorations.

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using...... Class II, 4 SDR-CeramX mono+ and 6 CeramXmono+-only restorations. The main reasons for failurewere tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1...

  18. Characterization and bulk properties of oxides

    International Nuclear Information System (INIS)

    Sonder, E.; Connolly, T.F.

    1979-06-01

    The bulk properties of oxides are divided into two classes, intrinsic properties which depend solely on the identity of the material, and extrinsic ones, which differ for different samples of the same compound. Sources of tabulated numerical values of intrinsic properties are given and modern developments in information storage and retrieval are discussed. Extrinsic properties are shown to depend on defects and trace impurities in the samples. Techniques of trace impurity analysis are discussed and realistic limits of detection and accuracies are given for routine analyses

  19. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  20. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  1. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  2. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...

  3. Thulium-based bulk metallic glass

    International Nuclear Information System (INIS)

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-01-01

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs

  4. Bulk monitoring and segregation of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Beddow, H.; Adsley, I.; Pearman, I.; Sweeney, A.; Davies, M., E-mail: helen.beddow@nuvia.co.uk [Nuvia Limited, Harwell Oxford, Didcot, Oxfordshire (United Kingdom)

    2014-07-01

    Several sites in the UK are contaminated by radioactive legacy wastes. These include; radium luminising sites and more recently the oil, and (potentially) fracking industries; sites contaminated from thorium gas mantle factories; old nuclear research sites; nuclear power sites, and the Sellafield reprocessing site. Nuvia has developed a suite of technologies to map the location of and to recover and process wastes during remedial operations. The main method for delineating contaminated areas in-situ is by use of the Groundhog system, whilst bulk monitoring methods employ the Gamma Excavation Monitor, the High Resolution Assay Monitor, and the Conveyor Active Particle System. (author)

  5. Bulk monitoring and segregation of radioactive wastes

    International Nuclear Information System (INIS)

    Beddow, H.; Adsley, I.; Pearman, I.; Sweeney, A.; Davies, M.

    2014-01-01

    Several sites in the UK are contaminated by radioactive legacy wastes. These include; radium luminising sites and more recently the oil, and (potentially) fracking industries; sites contaminated from thorium gas mantle factories; old nuclear research sites; nuclear power sites, and the Sellafield reprocessing site. Nuvia has developed a suite of technologies to map the location of and to recover and process wastes during remedial operations. The main method for delineating contaminated areas in-situ is by use of the Groundhog system, whilst bulk monitoring methods employ the Gamma Excavation Monitor, the High Resolution Assay Monitor, and the Conveyor Active Particle System. (author)

  6. Fundamental study of bulk power HVDC transmission

    International Nuclear Information System (INIS)

    1981-01-01

    Study on the HVDC power transmission have been conducted since 1956. Shinshinano-Frequency Changer had been operated at first on 1977, as our home product, and Hokkaido-Honshu DC transmission also realized at 1979. Research and Development of the bulk power HVDC have been promoted by the UHV transmission special committee in our Institute from 1980. This paper is a comprehensive report published in the parts of operating control, insulation of DC line and countermeasure of fault current, and interferences in order to contribute for planning, design and operating of the UHV DC transmission in future. (author)

  7. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  8. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...... isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved....

  9. 7 CFR 58.313 - Print and bulk packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Print and bulk packaging rooms. 58.313 Section 58.313 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....313 Print and bulk packaging rooms. Rooms used for packaging print or bulk butter and related products...

  10. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  11. Enhancement of surface magnetism due to bulk bond dilution

    International Nuclear Information System (INIS)

    Tsallis, C.; Sarmento, E.F.; Albuquerque, E.L. de

    1985-01-01

    Within a renormalization group scheme, the phase diagram of a semi-infinite simple cubic Ising ferromagnet is discussed, with arbitrary surface and bulk coupling constants, and including possible dilution of the bulk bonds. It is obtained that dilution makes easier the appearance of surface magnetism in the absence of bulk magnetism. (Author) [pt

  12. Use of containers to carry bulk and break bulk commodities and its impact on gulf region ports and international trade.

    Science.gov (United States)

    2014-08-01

    The University of New Orleans Transportation Institute was tasked by the Louisiana Transportation Research Center (LTRC) in mid-2012 to assess the use of containers to transport bulk and break bulk commodities and to determine what their impact would...

  13. Elastic properties of superconducting bulk metallic glasses

    International Nuclear Information System (INIS)

    Hempel, Marius

    2015-01-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  14. Boundary-bulk relation in topological orders

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-09-01

    Full Text Available In this paper, we study the relation between an anomaly-free n+1D topological order, which are often called n+1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n+1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the “bulk” for a given gapped boundary phase. In this paper, we show that the n+1D “bulk” phase is given by the “center” of the nD boundary phase. In other words, the geometric notion of the “bulk” corresponds precisely to the algebraic notion of the “center”. We achieve this by first introducing the notion of a morphism between two (potentially anomalous topological orders of the same dimension, then proving that the notion of the “bulk” satisfies the same universal property as that of the “center” of an algebra in mathematics, i.e. “bulk = center”. The entire argument does not require us to know the precise mathematical description of a (potentially anomalous topological order. This result leads to concrete physical predictions.

  15. Bulk delivery of explosives offers positive advantages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    The bulk delivery of precisely-formulated explosives directly to the shothole is a safe, secure and cost effective way of bringing rock to the quarry floor. This article describes several of the latest generation of Anfo trucks. The typical Anfo truck carries ammonium nitrate and fuel oil in bulk, together with several other mix constituents, including an emulsifying agent. These are designed to form the basis of a range of emulsion-type explosives. In effect, these are water in oil emulsions where the water phase consists of droplets of a saturated solution of the oxidizing material suspended in oil. The formulations may be further tailored to the shothole requirements by the addition of oils or waxes, which can alter the viscosity of the explosive. The precise and programmable controls which determine the exact quantities of materials delivered to the mixer mean that the explosive mixtures can be tailored exactly to the requirements of the blasting operation, be it the amount of rock to be dislodged, the geological conditions, or the state of the shothole - either wet or dry. 4 systems are described in detail. 3 figs.

  16. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Science.gov (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  17. Binder-Free Graphene Organogels as Cost-Efficient Counter Electrodes for Dye-sensitized Solar Cells

    International Nuclear Information System (INIS)

    Pan, Dengyu; Feng, Chuanqi; Wang, Liang; Liu, Yuan; Chen, Zhiwen; Shi, Wenyan; Li, Zhen

    2016-01-01

    Graphene organogels (GOGs) filled with organic electrolytes may function as high-activity, low-cost electrodes for energy conversion and storage devices such as Li ion batteries, supercapacitors, and dye-sensitized solar cells (DSSCs), because of their ideal electron-transport and ion-diffusion pathways through an interconnected 3D porous framework self-assembled from highly conductive and high-specific-area graphene sheets. Here, graphene hydrogels prepared by a modified hydrothermal method are converted into organogels with a specific surface area up to ∼1298 m 2 g −1 by a simple solvent-exchange approach, and pressed onto titanium meshes to form GOG films as economical, wearable counter electrodes for DSSCs. Without optimizing TiO 2 photoanodes, GOG-based DSSCs show a markedly enhanced short-circuit current density (16.34 mA cm −2 ) and thus an impressive power conversion efficiency of 7.2%, higher than those using graphene aerogels (11.6 mA cm −2 , 5.9%) and commercial Pt films (10.2 mA cm −2 , 5.9%) as counter electrodes under otherwise identical conditions. The improved efficiency is ascribed to a substantial reduction in charge-transfer resistance and series resistance, which is correlated with the high conductivity and high specific area of GOGs.

  18. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung

    2012-10-10

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating these additives, we are able to improve the battery capacity/weight ratio. The NP film is formed by using electrophoretic deposition (EPD) of colloidally synthesized, monodisperse cobalt NPs that are transformed through the nanoscale Kirkendall effect into hollow Co 3O 4. EPD forms a network of NPs that are mechanically very robust and electrically connected, enabling them to act as the Li-ion battery anode. The morphology change through cycles indicates stable 5-10 nm NPs form after the first lithiation remained throughout the cycling process. This NP-film battery made without binders and conductive additives shows high gravimetric (>830 mAh/g) and volumetric capacities (>2100 mAh/cm 3) even after 50 cycles. Because similar films made from drop-casting do not perform well under equal conditions, EPD is seen as the critical step to create good contacts between the particles and electrodes resulting in this significant improvement in battery electrode assembly. This is a promising system for colloidal nanoparticles and a template for investigating the mechanism of lithiation and delithiation of NPs. © 2012 American Chemical Society.

  19. Redox Additive-Improved Electrochemically and Structurally Robust Binder-Free Nickel Pyrophosphate Nanorods as Superior Cathode for Hybrid Supercapacitors.

    Science.gov (United States)

    Sankar, Kalimuthu Vijaya; Seo, Youngho; Lee, Su Chan; Chan Jun, Seong

    2018-03-07

    For several decades, one of the great challenges for constructing a high-energy supercapacitor has been designing electrode materials with high performance. Herein, we report for the first time to our knowledge a novel hybrid supercapacitor composed of battery-type nickel pyrophosphate one-dimensional (1D) nanorods and capacitive-type N-doped reduced graphene oxide as the cathode and anode, respectively, in an aqueous redox-added electrolyte. More importantly, ex situ microscopic images of the nickel pyrophosphate 1D nanorods revealed that the presence of the battery-type redox additive enhanced the charge storage capacity and cycling life as a result of the microstructure stability. The nickel pyrophosphate 1D nanorods exhibited their maximum specific capacitance (8120 mF cm -2 at 5 mV s -1 ) and energy density (0.22 mWh cm -2 at a power density of 1.375 mW cm -2 ) in 1 M KOH + 75 mg K 3 [Fe(CN) 6 ] electrolyte. On the other side, the N-doped reduced graphene oxide delivered an excellent electrochemical performance, demonstrating that it was an appropriate anode. A hybrid supercapacitor showed a high specific capacitance (224 F g -1 at a current density of 1 A g -1 ) and high energy density (70 Wh kg -1 at a power density of 750 W kg -1 ), as well as a long cycle life (a Coulombic efficiency of 96% over 5000 cycles), which was a higher performance than most of those in recent reports. Our results suggested that the materials and redox additive in this novel design hold great promise for potential applications in a next-generation hybrid supercapacitor.

  20. Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in binder-free supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kaibing, E-mail: kbhuang8888@163.com; Yao, Yiyuan; Yang, Xiuwen; Chen, Zhenhua; Li, Min

    2016-02-01

    Hierarchical porous nitrogen-doped carbon nanofiber (HPNCNF) films were prepared via a simple electrospinning process, in which polyacrylonitrile and silicone surfactants were adopted as carbon source and porogen, respectively, followed by a thermal treatment. The morphology, chemical composition, and porosity of the HPNCNFs were investigated by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and nitrogen adsorption–desorption experiments. The as-prepared HPNCNFs with a specific surface area of 656 m{sup 2} g{sup −1}, a hierarchical pore structure, and a nitrogen content of 8.1 at% showed a specific capacitance of 289 F g{sup −1} in a 6 mol L{sup −1} KOH aqueous solution with excellent cycle durability, making HPNCNF films a promising electrode material for a future application in supercapacitors. - Highlights: • HPNCNF films are prepared by electrospinning followed by thermal treatment. • Silicone surfactants are adopted as porogen to prepare HPNCNF films. • The HPNCNF films show a specific capacitance of 289 F g{sup −1} at a current density of 0.2 A g{sup −1}.

  1. Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in binder-free supercapacitors

    International Nuclear Information System (INIS)

    Huang, Kaibing; Yao, Yiyuan; Yang, Xiuwen; Chen, Zhenhua; Li, Min

    2016-01-01

    Hierarchical porous nitrogen-doped carbon nanofiber (HPNCNF) films were prepared via a simple electrospinning process, in which polyacrylonitrile and silicone surfactants were adopted as carbon source and porogen, respectively, followed by a thermal treatment. The morphology, chemical composition, and porosity of the HPNCNFs were investigated by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and nitrogen adsorption–desorption experiments. The as-prepared HPNCNFs with a specific surface area of 656 m"2 g"−"1, a hierarchical pore structure, and a nitrogen content of 8.1 at% showed a specific capacitance of 289 F g"−"1 in a 6 mol L"−"1 KOH aqueous solution with excellent cycle durability, making HPNCNF films a promising electrode material for a future application in supercapacitors. - Highlights: • HPNCNF films are prepared by electrospinning followed by thermal treatment. • Silicone surfactants are adopted as porogen to prepare HPNCNF films. • The HPNCNF films show a specific capacitance of 289 F g"−"1 at a current density of 0.2 A g"−"1.

  2. Atomic Layer Deposited MoS2 as a Carbon and Binder Free Anode in Li-ion Battery

    International Nuclear Information System (INIS)

    Nandi, Dip K; Sen, Uttam K; Choudhury, Devika; Mitra, Sagar; Sarkar, Shaibal K

    2014-01-01

    Molybdenum sulfide is deposited by atomic layer deposition (ALD) using molybdenum hexacarbonyl and hydrogen sulfide. Film growth is studied using in-situ quartz crystal microbalance, ex-situ X-ray reflectivity and ellipsometry. Deposition chemistry is further investigated with in-situ Fourier transform infrared spectroscopy. Self-limiting nature of the reaction is observed, typical of ALD. Saturated growth rate of 2.5 Å per cycle at 170 °C is obtained. As-deposited films are found amorphous in nature. As-grown films are tested as lithium-ion battery anode under half cell configuration. Electrochemical charge-discharge measurements demonstrate a stable cyclic performance with good capacity retention. Discharge capacity of 851 mAh g −1 is obtained after 50 cycles which corresponds to 77% of capacity retention of the initial capacity

  3. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

    Science.gov (United States)

    Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.

    2017-01-10

    An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

  4. Template-Free Synthesis of Nanoporous Nickel and Alloys as Binder- Free Current Collectors of Li Ion Batteries

    NARCIS (Netherlands)

    Lu, Liqiang; Andela, Paul; De Hosson, J.T.M.; Pei, Yutao T.

    2018-01-01

    This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth.

  5. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming; Zhao, Xiao Li; Li, Fei; Zhang, Li Li; Zhang, Yu Xin

    2015-01-01

    -free electrode exhibits a high specific capacitance (595.2 F g-1 at a current density of 0.5 A g-1), good rate capability (64.1% retention), and excellent cycling stability (89% capacitance retention after 3000 cycles). Moreover, an asymmetric supercapacitor

  6. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung; Islam, Mohammad A.; Robinson, Richard D.

    2012-01-01

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating

  7. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    Science.gov (United States)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  8. Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors

    Science.gov (United States)

    Miao, Fujun; Shao, Changlu; Li, Xinghua; Wang, Kexin; Lu, Na; Liu, Yichun

    2016-10-01

    Freestanding hierarchically porous carbon electrode materials with favorable features of large surface areas, hierarchical porosity and continuous conducting pathways are very attractive for practical applications in electrochemical devices. Herein, three-dimensional freestanding hierarchically porous carbon (HPC) materials have been fabricated successfully mainly by the facile phase separation method. In order to further improve the energy storage ability, polyaniline (PANI) with high pseudocapacitance has been decorated on HPC through in situ chemical polymerization of aniline monomers. Benefiting from the synergistic effects between HPC and PANI, the resulting HPC/PANI composites as electrode materials present dramatic electrochemical performance with high specific capacitance up to 290 F g-1 at 0.5 A g-1 and good rate capability with ∼86% (248 F g-1) capacitance retention at 64 A g-1 of initial capacitance in three-electrode configuration. Moreover, the as-assembled symmetric supercapacitor based on HPC/PANI composites also demonstrates good capacitive properties with high energy density of 9.6 Wh kg-1 at 223 W kg-1 and long-term cycling stability with 78% capacitance retention after 10 000 cycles. Therefore, this work provides a new approach for designing high-performance electrodes with exceptional electrochemical performance, which are very promising for practical application in the energy storage field.

  9. 78 FR 72841 - List of Bulk Drug Substances That May Be Used in Pharmacy Compounding; Bulk Drug Substances That...

    Science.gov (United States)

    2013-12-04

    .... FDA-2013-N-1525] List of Bulk Drug Substances That May Be Used in Pharmacy Compounding; Bulk Drug... proposed rule to list bulk drug substances used in pharmacy compounding and preparing to develop a list of... Formulary monograph, if a monograph exists, and the United States Pharmacopoeia chapter on pharmacy...

  10. Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part II: Cavitation Erosion

    Directory of Open Access Journals (Sweden)

    D. Kekes

    2014-12-01

    Full Text Available Composite coatings with five different proportions of WC-Co/Cr and NiCrFeBSiC components were deposited on stainless steel by HVOF spraying. Cavitation erosion tests were performed and the material removal micro-mechanisms were identified by SEM of both the eroded areas and the specimens’ cross-sections. Waves’ propagation and deflection at the weak interfaces within the coatings resulted in local tensile stresses perpendicular to the interface direction that eventually led to material removal. Such weak interfaces are the boundaries of the carbide particles with the metal binder within the same splat, those between splats along the same layer and those between successively deposited layers.

  11. Application of in-plane x-ray diffraction technique for residual stress measurement of TiN film/WC-Co alloy

    International Nuclear Information System (INIS)

    Takago, Shigeki; Yasui, Haruyuki; Awazu, Kaoru; Sasaki, Toshihiko; Hirose, Yukio; Sakurai, Kenji

    2006-01-01

    An in-plane X-ray diffraction technique was used to measure the residual stress of a CVD (chemical vapor deposition) TiN-coated WC-Co alloy. We could obtain the diffraction pattern from a thin film layer, eliminating that of the substrate. In the case of a conventional X-ray diffractometer, the X-ray penetration depth is about few μm. However, for a grazing incidence beam it is only 0.2μm. Depth profiles of residual stress in TiN film layer were evaluated by the present method and the conventional sin 2 ψ technique. We concluded that the in-plane diffraction technique enables us to determine the residual stress in a DVD-TiN film having an oriented texture. It was found that the residual tensile stress generated a mismatch of the coefficient of thermal expansion between the film and the substrate. (author)

  12. Application of in-plane x-ray diffraction technique for residual stress measurement of TiN film/WC-Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Takago, Shigeki; Yasui, Haruyuki; Awazu, Kaoru [Industrial Research Inst. of Ishikawa, Kanazawa, Ishikawa (Japan); Sasaki, Toshihiko; Hirose, Yukio [Kanazawa Univ., Dept. of Materials Science and Engineering, Kanazawa, Ishikawa (Japan); Sakurai, Kenji [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2006-06-15

    An in-plane X-ray diffraction technique was used to measure the residual stress of a CVD (chemical vapor deposition) TiN-coated WC-Co alloy. We could obtain the diffraction pattern from a thin film layer, eliminating that of the substrate. In the case of a conventional X-ray diffractometer, the X-ray penetration depth is about few {mu}m. However, for a grazing incidence beam it is only 0.2{mu}m. Depth profiles of residual stress in TiN film layer were evaluated by the present method and the conventional sin{sup 2}{psi} technique. We concluded that the in-plane diffraction technique enables us to determine the residual stress in a DVD-TiN film having an oriented texture. It was found that the residual tensile stress generated a mismatch of the coefficient of thermal expansion between the film and the substrate. (author)

  13. Phenolic polyketides from the co-cultivation of marine-derived Penicillium sp. WC-29-5 and Streptomyces fradiae 007.

    Science.gov (United States)

    Wang, Yi; Wang, Liping; Zhuang, Yibin; Kong, Fandong; Zhang, Cuixian; Zhu, Weiming

    2014-04-04

    Penicillium sp. WC-29-5 was co-cultured with Streptomyces fradiae 007 to produce five natural products (1-3, 4a and 4b) that were isolated and characterized by spectroscopic analysis. Interestingly, these compounds were found to be different from those produced in discrete fungal and bacterial controls. Among these compounds, the absolute configurations of compounds 4a and 4b were determined for the first time by X-ray single crystal diffraction experiments and electronic circular dichroism (ECD) calculations. An evaluation of the cytotoxic activities of these compounds revealed that 4b was moderately cytotoxic towards HL-60 and H1975 tumor cells with IC₅₀ values of 3.73 and 5.73 µM, respectively, whereas compound 4a was only moderately cytotoxic towards H1975 cells with an IC₅₀ value of 3.97 µM.

  14. Phenolic Polyketides from the Co-Cultivation of Marine-Derived Penicillium sp. WC-29-5 and Streptomyces fradiae 007

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2014-04-01

    Full Text Available Penicillium sp. WC-29-5 was co-cultured with Streptomyces fradiae 007 to produce five natural products (1–3, 4a and 4b that were isolated and characterized by spectroscopic analysis. Interestingly, these compounds were found to be different from those produced in discrete fungal and bacterial controls. Among these compounds, the absolute configurations of compounds 4a and 4b were determined for the first time by X-ray single crystal diffraction experiments and electronic circular dichroism (ECD calculations. An evaluation of the cytotoxic activities of these compounds revealed that 4b was moderately cytotoxic towards HL-60 and H1975 tumor cells with IC50 values of 3.73 and 5.73 µM, respectively, whereas compound 4a was only moderately cytotoxic towards H1975 cells with an IC50 value of 3.97 µM.

  15. Modelizacion de la formación de recubrimientos de WC-Co por proyección HVOF sobre sustratos de cobre

    Directory of Open Access Journals (Sweden)

    Sobolev, V. V.

    1997-10-01

    Full Text Available Present paper deals with the mathematical simulation of the heat transfer between a WC-Co coating and a copper substrate during HVOF spraying. This modelling includes the investigation of temperature variation, coating solidification, melting and subsequent solidification in the substrate interfacial region and specific features of the substrate-coating thermal interaction. The results obtained are used for modelling of the development of the coating structure and adhesion during HVOF spraying of the WC-Co powder on a copper substrate. Two types of substrate were considered: smooth (polished and rough. Variations of solidification times, solidification velocity, thermal gradient and cooling velocity in the coating and substrate interfacial region are studied. Development of the amorphous and crystalline structures in the coating and of the crystalline structure in the substrate interfacial region is discussed. Behaviour of the crystal size and intercrystalline distance with respect to the thermal spray parameters and morphology of the substrate surface is analyzed. Optimal conditions for the formation of fine and dense crystalline structure are determined. Structural changes in the solid state of the substrate occurring because of heating and rapid cooling are considered. Mechanical and thermal mechanisms of development of the substrate-coating adhesion are discussed. Results obtained agree well with experimental data.

    En el presente trabajo se ha investigado la simulación matemática de la transferencia de calor entre un recubrimiento de WC-Co y un sustrato de cobre durante la proyección HVOF. Este modelo incluye el estudio de la variación de termperatura, solidificación del recubrimiento, la fusión y posterior solidificación en la región interfacial del sustrato, y caracerísticas especiales de la interacción térmica sustrato- recubrimiento. Los resultados obtenidos han sido utilizados en la modelización del desarrollo de la

  16. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  17. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  18. Thermal characterization of semiconducting polymer bulk heterojunctions

    Science.gov (United States)

    Remy, Roddel A.

    Polymer semiconductors are intriguing due to their potential use in flexible electronics. Poly (3-hexylthiophene) (P3HT)--a very common polymer in this field--is semicrystalline and it is known that crystalline P3HT has a higher hole mobility than amorphous P3HT. Quantifying each fraction in the bulk and thin film states is therefore crucial to understanding its performance in transistor and other applications. In polymer solar cells, it acts as an electron donor and is typically mixed with the nanoparticle-like molecule, phenyl-C61-butyric acid methyl ester (PCBM)--an electron acceptor--in a thin film morphology termed a bulk heterojunction (BHJ). The structural hierarchy within the bulk heterojunction is complicated and its characterization, with a focus on P3HT morphology, is the topic of this dissertation. Calorimetry can play an important role in the elucidation of P3HT morphology with quantitative analysis of the crystalline and amorphous fractions present in the material. This was demonstrated by employing differential scanning calorimetry (DSC) to obtain the enthalpy of fusion of 100% crystalline P3HT (42.9 J/g) using oligomeric P3HT measurements. The more sensitive temperature modulated DSC (TMDSC) was then used to examine the glass transition of P3HT and the crystalline, mobile amorphous and rigid amorphous phases were quantified. The presence of these phases can play a large role in understanding the charge transfer process in polymer semiconductors. BHJ thin films of 50 wt.% PCBM were then analyzed and a polymer crystallinity of 30% was found after thermal annealing from initially non-crystalline polymer material. With assistance from previously acquired small angle neutron scattering data, a thorough analysis of the entire BHJ morphology was accomplished. A surprisingly large rigid amorphous polymer phase is present in the BHJ which could be located at the P3HT/PCBM interface, affecting charge transfer. Finally, interlayer diffusion of PCBM was

  19. Radiation effects in bulk and nanostructured silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holmstrom, E.

    2012-07-01

    Understanding radiation effects in silicon (Si) is of great technological importance. The material, being the basis of modern semiconductor electronics and photonics, is subjected to radiation already at the processing stage, and in many applications throughout the lifetime of the manufactured component. Despite decades of research, many fundamental questions on the subject are still not satisfactorily answered, and new ones arise constantly as device fabrication shifts towards the nanoscale. In this study, methods of computational physics are harnessed to tackle basic questions on the radiation response of bulk and nanostructured Si systems, as well as to explain atomic-scale phenomena underlying existing experimental results. Empirical potentials and quantum mechanical models are coupled with molecular dynamics simulations to model the response of Si to irradiation and to characterize the created crystal damage. The threshold displacement energy, i.e., the smallest recoil energy required to create a lattice defect, is determined in Si bulk and nanowires, in the latter system also as a function of mechanical strain. It is found that commonly used values for this quantity are drastically underestimated. Strain on the nanowire causes the threshold energy to drop, with an effect on defect production that is significantly higher than in an another nanostructure with similar dimensions, the carbon nanotube. Simulating ion irradiation of Si nanowires reveals that the large surface area to volume ratio of the nanostructure causes up to a three-fold enhancement in defect production as compared to bulk Si. Amorphous defect clusters created by energetic neutron bombardment are predicted, on the basis of their electronic structure and abundance, to cause a deleterious phenomenon called type inversion in Si strip detectors in high-energy physics experiments. The thinning of Si lamellae using a focused ion beam is studied in conjunction with experiment to unravel the cause for

  20. Performance of Asphalt Concrete Wearing Course (AC-WC) Utilizing Reclaimed Asphalt Pavement from Cold Milling Bound with 80/100 Pen Asphalt

    Science.gov (United States)

    Thanya, I. N. A.; Suweda, I. W.; Putra, G. K.

    2018-03-01

    Demands on natural aggregate materials for road pavement can be reduced by utilizing reclaimed asphalt pavement (RAP). This research was aimed at evaluating the performance of AC-WC mixture using RAP materials from cold milling, bound with 80/100 pen asphalt. The RAP aggregate gradation was adjusted by adding the required amount of natural aggregates to meet the specification in Indonesia. The RAP and added aggregates were hotmixed and compacted with Marshall hummer at 2×75 blows. The asphalt content were varied. It was found that the optimum asphalt content was 6.05 % with the following Marshall characteristics: stability 1237.08 kg; flow 3.36 mm; Marshall quotient 324,73kg/mm; void in mix (VIM) 3,360%; void in mineral aggregate (VMA) 15.103; and void filled with bitumen (VFB) 77.759% and residual stability 91.04; all met the Indonesian specification. The cantabro abration loss (CAL) at 30°C was 9,02%. The indirect tensile stiffness modulus (ITSM) at 20 °C was 7961.4 MPa; dynamic creep with 100 kPa pressure at 40°C gave slope 0.0112 microsstrain/pulse which is suitable for heavy load traffic. The fatigue test results was obtained at increased stress level, i.e. at 900, 1100, and 1300 kPa. Based on the equation derived from the fatigue strain and repeated loading relationship, at 100 microstrain (με) the repeated load was 434,661.58 times, and at one million (106) repeated loading, the samples could withstand strain of 92,38 microstrain. The performance of the samples were overall better than AC-WC mixture using virgin aggregates bound with 60/70 pen asphalt.

  1. Transformation of bulk alloys to oxide nanowires

    Science.gov (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  2. Organic hybrid planar-nanocrystalline bulk heterojunctions

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  3. Bulk nanoscale materials in steel products

    International Nuclear Information System (INIS)

    Chehab, B; Wang, X; Masse, J-P; Zurob, H; Embury, D; Bouaziz, O

    2010-01-01

    Although a number of nanoscale metallic materials exhibit interesting mechanical properties the fabrication paths are often complex and difficult to apply to bulk structural materials. However a number of steels which exhibit combinations of plasticity and phase transitions can be deformed to produce ultra high strength levels in the range 1 to 3 GPa. The resultant high stored energy and complex microstructures allow new nanoscale structures to be produced by combinations of recovery and recrystallisation. The resultant structures exhibit totally new combinations of strength and ductility to be achieved. In specific cases this also enables both the nature of the grain boundary structure and the spatial variation in structure to be controlled. In this presentation both the detailed microstructural features and their relation to the strength, work-hardening capacity and ductility will be discussed for a number of martensitic and austenitic steels.

  4. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  5. Criticality in Bulk Metallic Glass Constituent Elements

    Science.gov (United States)

    Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan

    2017-11-01

    Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.

  6. Solid state properties from bulk to nano

    CERN Document Server

    Dresselhaus, Mildred; Cronin, Stephen; Gomes Souza Filho, Antonio

    2018-01-01

    This book fills a gap between many of the basic solid state physics and materials science books that are currently available. It is written for a mixed audience of electrical engineering and applied physics students who have some knowledge of elementary undergraduate quantum mechanics and statistical mechanics. This book, based on a successful course taught at MIT, is divided pedagogically into three parts: (I) Electronic Structure, (II) Transport Properties, and (III) Optical Properties. Each topic is explained in the context of bulk materials and then extended to low-dimensional materials where applicable. Problem sets review the content of each chapter to help students to understand the material described in each of the chapters more deeply and to prepare them to master the next chapters.

  7. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo

    2012-07-23

    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanical reliability of bulk high Tc superconductors

    International Nuclear Information System (INIS)

    Freiman, S.W.

    1990-01-01

    Most prospective applications for high T c superconductors in bulk form, e.g. magnets, motors, will require appreciable mechanical strength. Work at NIST [National Institute of Standards and Technology] has begun to address issues related to mechanical reliability. For example, recent studies on Ba-Y-Cu-O have shown that the intrinsic crack growth resistance, K IC , of crystals of this material is even smaller than was first reported, less than that of window glass, and is sensitive to moisture. Processing conditions, particularly sintering and annealing atmosphere, have been shown to have a major influence on microstructure and internal stresses in the material. Large internal stresses result from the tetragonal to orthorhombic phase transformation as well as the thermal expansion anisotropy in the grains of the ceramic. Because stress relief is absent, microcracks form which have a profound influence on strength

  9. On bulk viscosity and moduli decay

    International Nuclear Information System (INIS)

    Laine, Mikko

    2010-01-01

    This pedagogically intended lecture, one of four under the header 'Basics of thermal QCD', reviews an interesting relationship, originally pointed out by Boedeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form. (author)

  10. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system......In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  11. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  12. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-01-01

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W_2CoB_2. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W_2CoB_2 with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  13. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  14. Bulk temperature measurement in thermally striped pipe flows

    International Nuclear Information System (INIS)

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique

  15. A CFT perspective on gravitational dressing and bulk locality

    Energy Technology Data Exchange (ETDEWEB)

    Lewkowycz, Aitor; Turiaci, Gustavo J. [Physics Department, Princeton University,Princeton, NJ 08544 (United States); Verlinde, Herman [Physics Department, Princeton University,Princeton, NJ 08544 (United States); Princeton Center for Theoretical Science, Princeton University,Princeton, NJ 08544 (United States)

    2017-01-02

    We revisit the construction of local bulk operators in AdS/CFT with special focus on gravitational dressing and its consequences for bulk locality. Specializing to 2+1-dimensions, we investigate these issues via the proposed identification between bulk operators and cross-cap boundary states. We obtain explicit expressions for correlation functions of bulk fields with boundary stress tensor insertions, and find that they are free of non-local branch cuts but do have non-local poles. We recover the HKLL recipe for restoring bulk locality for interacting fields as the outcome of a natural CFT crossing condition. We show that, in a suitable gauge, the cross-cap states solve the bulk wave equation for general background geometries, and satisfy a conformal Ward identity analogous to a soft graviton theorem. Virasoro symmetry, the large N conformal bootstrap and the uniformization theorem all play a key role in our derivations.

  16. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  17. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-06-17

    ... reduced iron (DRI) as briquettes molded at a temperature of 650 [deg]C or higher that have a density of 5... temperature of 650 [deg]C or higher or had a density of 5.0 g/cm[sup3] or greater. In this proposed rule, we... bulk materials of Hazard Classes 4 through 9. c. One comment recommended that a DCM be required for...

  18. Curing characteristics of flowable and sculptable bulk-fill composites

    OpenAIRE

    Miletic, Vesna; Pongpruenska, Pong; De Munck, Jan; Brooks, Neil R; Van Meerbeek, Bart

    2016-01-01

    OBJECTIVES: The aim of this study was to determine and correlate the degree of conversion (DC) with Vickers hardness (VH) and translucency parameter (TP) with the depth of cure (DoC) of five bulk-fill composites. MATERIALS AND METHODS: Six specimens per group, consisting of Tetric EvoCeram Bulk Fill ("TEC Bulk," Ivoclar Vivadent), SonicFill (Kerr), SDR Smart Dentin Replacement ("SDR," Dentsply), Xenius base ("Xenius," StickTech; commercialized as EverX Posterior, GC), Filtek Bul...

  19. Theory of bulk-surface coupling in topological insulator films

    Science.gov (United States)

    Saha, Kush; Garate, Ion

    2014-12-01

    We present a quantitative microscopic theory of the disorder- and phonon-induced coupling between surface and bulk states in doped topological insulator films. We find a simple mathematical structure for the surface-to-bulk scattering matrix elements and confirm the importance of bulk-surface coupling in transport and photoemission experiments, assessing its dependence on temperature, carrier density, film thickness, and particle-hole asymmetry.

  20. Localization of bulk form fields on dilatonic domain walls

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-06-01

    We study the localization properties of bulk form potentials on dilatonic domain walls. We find that bulk form potentials of any ranks can be localized as form potentials of the same ranks or one lower ranks, for any values of the dilaton coupling parameter. For large enough values of the dilaton coupling parameter, bulk form potentials of any ranks can be localized as form potentials of both the same ranks and one lower ranks. (author)