WorldWideScience

Sample records for binary uranium alloys

  1. First-principles investigations of the physical properties of binary uranium silicide alloys

    International Nuclear Information System (INIS)

    Yang, Jin; Long, Jianping; Yang, Lijun; Li, Dongmei

    2013-01-01

    Graphical abstract: Total density of states for USi 2 . Display Omitted -- Abstract: The structural, elastic properties and the Debye temperature of binary Uranium Silicide (U-Si) alloys are investigated by using the first-principles plane-wave pseudopotential density function theory within the generalized gradient approximation (GGA). The ground states properties are found to agree with the available experimental data. The mechanical properties like shear modulus, Young’s modulus, Poisson’s ratio σ and ratio B/G are also calculated. Finally, The averaged sound velocity (v m ), the longitudinal sound velocity (v l ), transverse sound velocity (v t ) and the Debye temperature (θ D ) are obtained. However, the theoretical values are slightly different from few existed experiment data because the latter was obtained at room temperature while the former one at 0 K

  2. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    Science.gov (United States)

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  3. Annex 4 - Task 08/13 final report, Producing the binary uranium alloys with alloying components Al, Mo, Zr, Nb, and B

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1961-01-01

    Due to reactivity of uranium in contact with the gasses O 2 , N 2 , H 2 , especially under higher temperatures uranium processing is always done in vacuum or inert gas. Melting, alloying and casting is done in high vacuum stoves. This report reviews the type of furnaces and includes detailed description of the electric furnace for producing uranium alloys which is available in the Institute

  4. Machining of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Morris, T.O.

    1981-01-01

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures

  5. Oxidation of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Orman, S.

    1976-01-01

    The corrosion behaviour of uranium in oxygen, water and water + oxygen mixtures is compared and contrasted. A considerable amount of work, much of it conflicting, has been published on the U + H 2 O and U + H 2 O + O 2 systems. An attempt has been made to summarise this data and to explain the reasons for the lack of agreement between the experimental results. The evidence for the mechanism involving OH - ion diffusion as the reacting entity in both the U + H 2 O and U + O 2 + H 2 O reactions is advanced. The more limited corrosion data on some lean uranium alloys and on some higher addition alloys referred to as stainless materials is summarised together with some previously unreported results obtained with these materials at AWRE. The data indicates that in the absence of oxygen the lean alloys behave in a similar manner to uranium and evolve hydrogen in approximately theoretical quantities. But the stainless alloys absorb most of the product hydrogen and assessments of reactivity based on hydrogen evolution would be very inaccurate. The direction that future corrosion work on these materials should take is recommended

  6. Phonons in fcc binary alloys

    International Nuclear Information System (INIS)

    Sharma, Amita; Rathore, R.P.S.

    1992-01-01

    Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs

  7. Texture in low-alloyed uranium alloys

    International Nuclear Information System (INIS)

    Sariel, J.

    1982-08-01

    The dependence of the preferred orientation of cast and heat-treated polycrystalline adjusted uranium and uranium -0.1 w/o chromium alloys on the production process was studied. The importance of obtaining material free of preferred orientation is explained, and a survey of the regular methods to determine preferred orientation is given. Dilatometry, tensile testing and x-ray diffraction were used to determine the extent of the directionality of these alloys. Data processing showed that these methods are insufficient in a case of a material without any plastic forming, because of unreproducibility of results. Two parameters are defined from the results of Schlz's method diffraction test. These parameters are shown theoretically and experimentally (by extreme-case samples) to give the deviation from isotropy. Application of these parameters to the examined samples showes that cast material has preferred orientation, though it is not systematic. This preferred orientation was reduced by adequate heat treatments

  8. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  9. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  10. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Clark, C.R.; Meyer, M.K.

    1998-01-01

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  11. Stochastic simulation of nucleation in binary alloys

    Science.gov (United States)

    L’vov, P. E.; Svetukhin, V. V.

    2018-06-01

    In this study, we simulate nucleation in binary alloys with respect to thermal fluctuations of the alloy composition. The simulation is based on the Cahn–Hilliard–Cook equation. We have considered the influence of some fluctuation parameters (wave vector cutoff and noise amplitude) on the kinetics of nucleation and growth of minority phase precipitates. The obtained results are validated by the example of iron–chromium alloys.

  12. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    Science.gov (United States)

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  13. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  14. Composition profile determination in isomorphous binary alloys

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1983-07-01

    The inhomogeneity along the growth axis of the pseudo-binary alloys is due to the segregation of the solute which will be mixed in the melt due to convective and diffusive flows. A process for determination of the exact composition profile by measurements of the crystal density, for alloys of the type A sub(1-x) B sub(x), is shown. (Author) [pt

  15. Corrosion resistant coatings for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Weirick, L.J.; Lynch, C.T.

    1977-01-01

    Coatings to prevent the corrosion of uranium and uranium alloys are considered in two military applications: kinetic energy penetrators and aircraft counterweights. This study, which evaluated organic films and metallic coatings, demonstrated that the two most promising coatings are based on an electrodeposited nickel system and a galvanized zinc system

  16. Structure Map for Embedded Binary Alloy Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  17. Void formation in irradiated binary nickel alloys

    International Nuclear Information System (INIS)

    Shaikh, M.A.; Ahmed, M.; Akhter, J.I.

    1994-01-01

    In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported

  18. Method for electrodeposition of nickel--chromium alloys and coating of uranium

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Lundquist, J.R.

    1975-01-01

    High-quality electrodeposits of nickel-chromium binary alloys in which the percentage of chromium is controlled can be obtained by the addition of a complexing agent such as ethylenediaminetetraacetic disodium salt to the plating solution. The nickel-chromium alloys were found to provide an excellent hydrogen barrier for the protection of uranium fuel elements. (U.S.)

  19. Enthalpies of a binary alloy during solidification

    Science.gov (United States)

    Poirier, D. R.; Nandapurkar, P.

    1988-01-01

    The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.

  20. Amorphous uranium alloy and use thereof

    International Nuclear Information System (INIS)

    Gambino, R.J.; McElfresh, M.W.; McGuire, T.R.; Plaskett, T.S.

    1991-01-01

    An amorphous alloy containing uranium and a member selected from the group N, P, As, Sb, Bi, S, Se, Te, Po and mixtures thereof; and use thereof for storage medium, light modulator or optical isolator. (author) figs

  1. Tracer diffusion study in binary alloys

    International Nuclear Information System (INIS)

    Bocquet, Jean-Louis

    1973-01-01

    The diffusional properties of dilute alloys are quite well described with 5 vacancy jump frequencies: the diffusion experiments allow as to determine only 3 jump frequency ratios. The first experiment set, found by Howard and Manning, was used in order to determine the 3 frequency ratios in the dilute Cu-Fe alloy. N.V. Doan has shown that the isotope effect measurements may be replaced by easier electromigration experiments: this new method was used with success for the dilute Ag-Zn and Ag-Cd alloys. Two effects which take place in less dilute alloys cannot be explained with the 5 frequency model, these are: the linear enhancement of solute diffusion and the departure from linear enhancement of solvent diffusion versus solute concentration. To explain these effects, we have had to take account of the influence of solute pairs on diffusion via 53 new vacancy jump frequencies. Diffusion in a concentrated alloy can be described with a quasi-chemical approach: we show that a description with 'surrounded atoms' allows the simultaneous explanation of the thermodynamical properties of the binary solid solution, the dependence of atomic jump frequencies with respect to the local concentration of the alloy. In this model, the two atomic species have a jump frequency spectrum at their disposal, which seems to greatly modify Manning's correlation analysis. (author) [fr

  2. Irradiation creep in simple binary alloys

    International Nuclear Information System (INIS)

    Nagakawa, J.; Sethi, V.K.; Turner, A.P.L.

    1981-07-01

    Creep enhancement during 21-MeV deuteron irradiation was examined at 350 0 C for two simple binary alloys with representative microstructures, i.e., solid-solution (Ni - 4 at. % Si) and precipitation-hardened (Ni - 12.8 at. % Al) alloys. Coherent precipitates were found to be very effective in suppressing irradiation-enhanced creep. Si solute atoms depressed irradiation creep moderately and caused irradiation hardening via radiation-induced segregation. The stress-dependence of irradiation creep in Ni - 4 at. % Si should a transition, which seems to reflect a change of mechanism from dislocation climb due to stress-induced preferential absorption (SIPA) to climb-controlled dislocation glide enhanced by irradiation

  3. Annex 4 - Task 08/13 final report, Producing the binary uranium alloys with alloying components Al, Mo, Zr, Nb, and B; Prilog 4 - Zavrsni izvestaj o podzadatku 08/13, Dobijanje binarnih legura urana sa legirajucim komponentama Al, Mo, Zr, Nb i B

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, Dj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Due to reactivity of uranium in contact with the gasses O{sub 2}, N{sub 2}, H{sub 2}, especially under higher temperatures uranium processing is always done in vacuum or inert gas. Melting, alloying and casting is done in high vacuum stoves. This report reviews the type of furnaces and includes detailed description of the electric furnace for producing uranium alloys which is available in the Institute.

  4. Low alloy additions of iron, silicon, and aluminum to uranium: a literature survey

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1980-01-01

    A survey of the literature has been made on the experimental results of small additions of iron, silicon, and aluminum to uranium. Information is also included on the constitution, mechanical properties, heat treatment, and deformation of various binary and ternary alloys. 42 references, 24 figures, 13 tables

  5. Development of casting techniques for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Singh, S.P.

    2003-01-01

    The casting process concerning furnace set-up, mould temperatures, pouring temperatures, out gassing, post heating, casting recovery and crucible and mould clean-up is discussed. Some applications of casting theory can be made in practice, but experience in handling the metal is most valuable in the successful solution of a new problem. The casting of uranium alloys using induction stirring of the melt to promote homogeneity in the casting is described. A few remarks are made concerning safety aspects associated with the casting of uranium

  6. Solidification microstructures of aluminium-uranium alloys

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Vieira, R.R.

    1976-01-01

    The solidification of microstrutures of aluminium-uranium alloys in the range of 4 to 20% uranium is investigated. The solidification was obtained both in ingot molds and under controlled directional solidification. The conditions for the presence of primary crystals and eutectic are discussed and an analysis of the influence of variables (growth rate and thermal gradient in the liquid) on the alloy structure is made. The effect of cooling rate on the alloy structures has been determined. It is found that the resulting structure can be derived from the kinectics concept, as required by the coupled-zone theory. Suggestions on the qualitative intervals of composition and temperatures with eutectic growth are presented [pt

  7. Thermal stress relieving of dilute uranium alloys

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1981-01-01

    The kinetics of thermal stress relieving of uranium - 2.3 wt % niobium, uranium - 2.0 wt % molybdenum, and uranium - 0.75 wt % titanium are reported and discussed. Two temperature regimes of stress relieving are observed. In the low temperature regime (T 0 C) the process appears to be controlled by an athermal microplasticity mechanism which can be completely suppressed by prior age hardening. In the high temperature regime (300 0 C 0 C) the process appears to be controlled by a classical diffusional creep mechanism which is strongly dependent on temperature and time. Stress relieving is accelerated in cases where it occurs simultaneously with age hardening. The potential danger of residual stress induced stress corrosion cracking of uranium alloys is discussed

  8. Welding of a powder metallurgy uranium alloy

    International Nuclear Information System (INIS)

    Holbert, R.K.; Doughty, M.W.; Alexander-Morrison, G.M.

    1989-01-01

    The interest at the Oak Ridge Y-12 Plant in powder metallurgy (P/M) uranium parts is due to the potential cost savings in the fabrication of the material, to achieving a more homogeneous product, and to the reduction of uranium scrap. The joining of P/M uranium-6 wt-% niobium (U-6Nb) alloys by the electron beam (EB) welding process results in weld porosity. Varying the EB welding parameters did not eliminate the porosity. Reducing the oxygen and nitrogen content in this P/M uranium material did minimize the weld porosity, but this step made the techniques of producing the material more difficult. Therefore, joining wrought and P/M U-6Nb rods with the inertia welding technique is considered. Since no gases will be evolved with the solid-state welding process and the weld area will be compacted, porosity should not be a problem in the inertia welding of uranium alloys. The welds that are evaluated are wrought-to-wrought, wrought-to-P/M, and P/M-to-P/M U-6Nb samples

  9. Thermal stress relieving of dilute uranium alloys

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1980-01-01

    The kinetics of thermal stress relieving of uranium - 2.3 wt. % niobium, uranium - 2.0 wt. % molybdenum, and uranium - 0.75 wt. % titanium are reported and discussed. Two temperature regimes of stress relieving are observed. In the low temperature regime (T 0 C) the process appears to be controlled by an athermal microplasticity mechanism which can be completely suppressed by prior age hardening. In the high temperature regime (300 0 C 0 C) the process appears to be controlled by a classical diffusional creep mechanism which is strongly dependent on temperature and time. Stress relieving is accelerated in cases where it occurs simultaneously with age hardening. The potential danger of residual stress induced stress corrosion cracking of uranium alloys is discussed. It is shown that the residual stress relief which accompanies age hardening of uranium - 0.75% titanium more than compensates for the reduction in K/sub ISCC/ caused by aging. As a result, age hardening actually decreases the susceptibility of this alloy to residual stress induced stress corrosion cracking

  10. Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Ray, Allison E.

    1998-01-01

    Uranium alloys are candidates for the fuel phase in aluminium matrix dispersion fuels requiring high uranium loading. Certain uranium alloys have been shown to have good irradiation performance at intermediate burnup. previous studies have shown that acceptable fission gas swelling behavior and fuel-aluminium interaction is possible only if the fuel alloy can be maintained in the high temperature body-centered-cubic γ-phase during fabrication and irradiation, at temperatures at which αU is the equilibrium phase. transition metals in Groups V through VIII are known to allow metastable retention of the gamma phase below the equilibrium isotherm. These metals have varying degrees of effectiveness in stabilizing the gamma phase. Certain alloys are metastable for very long times at the relatively low fuel temperatures seen in research operation. In this paper, the existing data on the gamma stability of binary and ternary uranium alloys is analysed. The mechanism and kinetics of decomposition of the gamma phase are assessed with the help of metal alloy theory. Alloys with the highest possible uranium content, good gamma-phase stability, and good neutronic performance are identified for further metallurgical studies and irradiation tests. Results from theory will be compared with experimentally generated data. (author)

  11. Thermodynamic properties of uranium in gallium–aluminium based alloys

    International Nuclear Information System (INIS)

    Volkovich, V.A.; Maltsev, D.S.; Yamshchikov, L.F.; Chukin, A.V.; Smolenski, V.V.; Novoselova, A.V.; Osipenko, A.G.

    2015-01-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  12. Thermodynamic properties of uranium in gallium–aluminium based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Volkovich, V.A., E-mail: v.a.volkovich@urfu.ru [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Maltsev, D.S.; Yamshchikov, L.F. [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Chukin, A.V. [Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Smolenski, V.V.; Novoselova, A.V. [Institute of High-Temperature Electrochemistry UD RAS, Ekaterinburg, 620137 (Russian Federation); Osipenko, A.G. [JSC “State Scientific Centre - Research Institute of Atomic Reactors”, Dimitrovgrad, 433510 (Russian Federation)

    2015-10-15

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  13. Method of removing niobium from uranium-niobium alloy

    International Nuclear Information System (INIS)

    Pollock, E.N.; Schlier, D.S.; Shinopulos, G.

    1992-01-01

    This patent describes a method of removing niobium from a uranium-niobium alloy. It comprises dissolving the uranium-niobium alloy metal pieces in a first aqueous solution containing an acid selected from the group consisting of hydrochloric acid and sulfuric acid and fluoboric acid as a catalyst to provide a second aqueous solution, which includes uranium (U +4 ), acid radical ions, the acids insolubles including uranium oxides and niobium oxides; adding nitric acid to the insolubles to oxidize the niobium oxides to yield niobic acid and to complete the solubilization of any residual uranium; and separating the niobic acid from the nitric acid and solubilized uranium

  14. Mechanism of serrated flow in binary Al-Li alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Pink, E. [Austrian Academy of Sciences, Leoben (Austria). Erich-Schmid-Inst. of Solid State Physics; Krol, J. [Polish Academy of Sciences, Krakow (Poland). Alexander-Krupkowski-Inst. of Metallurgy and Materials Science

    1996-09-15

    The work on serrated flow in Al-Li alloys has given rise to a controversy--whether serrations in these alloys are caused by lithium atoms in solid solution or by {delta}{prime}(Al{sub 3}Li)-precipitates. This controversy calls for further work to clarify the mechanism of serrated flow in the Al-Li alloys. Kumar and McShane have shown that in an Al-2.5Li-2Mg-0.14Zr alloy, non-shearable {delta}{prime}-precipitates, which are obtained in the under-aged and peak-aged conditions, might directly initiate serrated flow. However, the latter result was ambiguous because of the presence of other alloying elements, and the need to work on a binary Al-Li alloy was emphasized. The present work discusses the results from the binary Al-Li alloys.

  15. Modified analytic EAM potentials for the binary immiscible alloy systems

    International Nuclear Information System (INIS)

    Fang, F.; Shu, X.L.; Deng, H.Q.; Hu, W.Y.; Zhu, M.

    2003-01-01

    Modified analytic embedded atom method (MAEAM) type potentials have been constructed for seven binary immiscible alloy systems: Al-Pb, Ag-Ni, Fe-Cu, Ag-Cu, Cu-Ta, Cu-W and Cu-Co. The potentials are fitted to the lattice constant, cohesive energy, unrelaxed monovacancy formation energy and elastic constants for only pure metals which consist the immiscible alloy systems. In order to test the reliability of the constructed MAEAM potentials, formation enthalpies of disordered alloys for those seven binary immiscible alloy systems have been calculated. The calculated results are in general agreement with the experimental data available and those theoretical results calculated by other authors. As only very limited experimental information is available for alloy properties in immiscible alloy systems, the MAEAM is demonstrated to be a reasonable method to construct the interatomic potentials for immiscible alloy systems because only the properties of pure elements are needed in calculation

  16. Many-Body Potentials For Binary Immiscible liquid Metal Alloys

    International Nuclear Information System (INIS)

    Karaguelle, H.

    2004-01-01

    The modified analytic embedded atom method (MAEAM) type many- body potentials have been constructed for three binary liquid immiscible alloy systems: Al-Pb, Ag-Ni, Ag- Cu. The MAEAM potential functions are fitted to both solid and liquid state properties for only liquid pure metals which consist the immiscible alloy. In order to test the reliability of the constructed MAEAM effective potentials, partial structure factors and pair distribution functions of these binary liquid metal alloys have been calculated using the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquids. A good agreement with the available experimental data for structure has

  17. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  18. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Roca, M.

    1967-01-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO 3 . Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO 3 . (Author) 5 refs

  19. Fluorimetric determination of uranium in zirconium and zircaloy alloys

    International Nuclear Information System (INIS)

    Acosta L, E.

    1991-05-01

    The objective of this procedure is to determine microquantities of uranium in zirconium and zircaloy alloys. The report also covers the determination of uranium in zirconium alloys and zircaloy in the range from 0.25 to 20 ppm on 1 g of base sample of radioactive material. These limit its can be variable if the size of the used aliquot one is changed for the final determination of uranium. (Author)

  20. Irradiation Stability of Uranium Alloys at High Exposures

    International Nuclear Information System (INIS)

    McDonell, W.R.

    2001-01-01

    Postirradiation examinations were begun of a series of unrestrained dilute uranium alloy specimens irradiated to exposures up to 13,000 MWD/T in NaK-containing stainless steel capsules. This test, part of a program of development of uranium metal fuels for desalination and power reactors sponsored by the Division of Reactor Development and Technology, has the objective of defining the temperature and exposure limits of swelling resistance of the alloyed uranium. This paper discusses those test results

  1. Measurement of thermoelectric power of Fe-Cu binary alloys

    International Nuclear Information System (INIS)

    Joubouji, Katsuo

    2007-01-01

    In INSS, non-destructive evaluation (NDE) of irradiation embrittlement of low alloy steel using thermoelectric power (TEP) measurement has been considered, as well as NDE of thermal aging of cast duplex stainless steel which has been studied in recent years. Material degradation is evaluated based on a relation between progress of the degradation and change in TEP due to change in material structure caused by the degradation event. So it is necessary for NDE of irradiation embrittlement to measure the change in TEP due to precipitation of Cu contained as an impurity, which is known as one of the reasons for the embrittlement. In this study, TEP of Fe-Cu binary alloys with different Cu content was measured for investigation of the relationship between TEP of the alloys and Cu content. In addition, appropriateness of measuring TEP of Fe-Cu binary alloy in the same way to measure TEP of duplex stainless steel was examined. It was found that increment of Cu contained in the alloys changed TEP in a negative direction and the rate was evaluated as -6.6μV/K/wt%Cu. There were the cases that it took 20 minutes for measurement values to become stable in measurement of Fe-Cu binary alloys. It was much longer than the time taken in measurement of duplex stainless steel. So the measurement time per a point was extended to 60 minutes in case of Fe-Cu binary alloys. (author)

  2. Atmospheric corrosion of uranium-carbon alloys

    International Nuclear Information System (INIS)

    Rousset, P.; Accary, A.

    1965-01-01

    The authors study the corrosion of uranium-carbon alloys having compositions close to that of the mono-carbide; they show that the extent of the observed corrosion effects increases with the water vapour content of the surrounding gas and they conclude that the atmospheric corrosion of these alloys is due essentially to the humidity of the air, the effect of the oxygen being very slight at room temperature. They show that the optimum conditions for preserving U-C alloys are either a vacuum or a perfectly dry argon atmosphere. The authors have also established that the type of corrosion involved is a corrosion which 'cracks under stress' and is transgranular (it can also be intergranular in the case of sub-stoichiometric alloys). They propose, finally, two hypotheses for explaining this mechanism, one of which is illustrated by the existence, at the fissure interface, of corrosion products which can play the role of 'corners' in the mono-carbide grains. (authors) [fr

  3. Plutonium microstructures. Part 2. Binary and ternary alloys

    International Nuclear Information System (INIS)

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described

  4. Microstructure and properties of Mg-Al binary alloys

    Directory of Open Access Journals (Sweden)

    ZHENG Wei-chao

    2006-11-01

    Full Text Available The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.

  5. Electrical resistivity of Al-Cu liquid binary alloy

    Science.gov (United States)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  6. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  7. In vitro corrosion and biocompatibility of binary magnesium alloys.

    Science.gov (United States)

    Gu, Xuenan; Zheng, Yufeng; Cheng, Yan; Zhong, Shengping; Xi, Tingfei

    2009-02-01

    As bioabsorbable materials, magnesium alloys are expected to be totally degraded in the body and their biocorrosion products not deleterious to the surrounding tissues. It's critical that the alloying elements are carefully selected in consideration of their cytotoxicity and hemocompatibility. In the present study, nine alloying elements Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr were added into magnesium individually to fabricate binary Mg-1X (wt.%) alloys. Pure magnesium was used as control. Their mechanical properties, corrosion properties and in vitro biocompatibilities (cytotoxicity and hemocompatibility) were evaluated by SEM, XRD, tensile test, immersion test, electrochemical corrosion test, cell culture and platelet adhesion test. The results showed that the addition of alloying elements could influence the strength and corrosion resistance of Mg. The cytotoxicity tests indicated that Mg-1Al, Mg-1Sn and Mg-1Zn alloy extracts showed no significant reduced cell viability to fibroblasts (L-929 and NIH3T3) and osteoblasts (MC3T3-E1); Mg-1Al and Mg-1Zn alloy extracts indicated no negative effect on viabilities of blood vessel related cells, ECV304 and VSMC. It was found that hemolysis and the amount of adhered platelets decreased after alloying for all Mg-1X alloys as compared to the pure magnesium control. The relationship between the corrosion products and the in vitro biocompatibility had been discussed and the suitable alloying elements for the biomedical applications associated with bone and blood vessel had been proposed.

  8. Vertical solidification of dendritic binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  9. X-ray topography of uranium alloys

    International Nuclear Information System (INIS)

    Le Naour, L.

    1984-01-01

    The limitations of x-ray topography methods are due to the variety of structures studied and to the variation of the amplitude of the scattering of incident beams. It is difficult to evaluate the aberrations and the imperfections of the material studied. Interpretation of the x-ray images will often be delicate and that is aggravated by the complexity of the diffraction spectrum of uranium. This negative aspect is compensated for by the advantage that chemical or electrochemical preparations of the alloy surface, along with alterations that can take place and the lack of trueness are avoided. Precise and very reproducible numerical data can be derived from the patterns. The structure of alloys, at a given scale, is revealed and characterized by quantitative parameters such as size of grains or sub-grains, dispersion of their dimensions, mutual disorientations and the continuous or discontinuous nature of the latter. The results of this research, therefore, justify the use of methods inspired by the Berg-Barrett technique. These diffraction procedures constitute a useful means for investigating many elements of microstructure that closely govern the behavior under irradiation of the materials being examined

  10. Graph theory and binary alloys passivated by nickel

    International Nuclear Information System (INIS)

    McCafferty, E.

    2005-01-01

    The passivity of a nickel binary alloy is considered in terms of a network of -Ni-O-Ni- bridges in the oxide film, where Ni is the component of the binary alloy which produces passivity. The structure of the oxide is represented by a mathematical graph, and graph theory is used to calculate the connectivity of the oxide, given by the product of the number of edges in the graph and the Randic index. A stochastic calculation is employed to insert ions of the second metal into the oxide film so as to disrupt the connectivity of the -Ni-O-Ni- network. This disruption occurs at a critical ionic concentration of the oxide film. Mathematical relationships are developed for the introduction of a general ion B +n into the oxide film, and critical ionic compositions are calculated for oxide films on the nickel binary alloys. The notation B refers to any metal B which produces B +n ions in the oxide film, where +n is the oxidation number of the ion. The results of this analysis for Fe-Ni and Cu-Ni binary alloys are in good agreement with experimental results

  11. Thermodynamic properties of some gallium-based binary alloys

    International Nuclear Information System (INIS)

    Awe, O.E.; Odusote, Y.A.; Akinlade, O.; Hussain, L.A.

    2008-01-01

    We have studied the concentration dependence of the free energy of mixing, concentration-concentration fluctuations in the long-wavelength limit, the chemical short-range order parameter, the enthalpy and entropy of mixing of Ga-Zn, Ga-Mg and Al-Ga binary alloys at different temperatures using a quasi-chemical approximation for compound forming binary alloys and that for simple regular alloys. From the study of the thermodynamic quantities, we observed that thermodynamic properties of Ga-Zn and Al-Ga exhibit positive deviations from Raoultian behaviour, while Ga-Mg exhibits negative deviation. Hence, this study reveals that both Ga-Zn and Al-Ga are segregating systems, while chemical order exists in Ga-Mg alloy in the whole concentration range. Furthermore, our investigation indicate that Al-Ga binary alloy have a tendency to exhibit ideal mixture behaviour in the concentration range 0≤c Al ≤0.30 and 0.7≤c Al ≤1

  12. Phase transformations in the titanium-niobium binary alloy system

    International Nuclear Information System (INIS)

    Moffat, D.L.

    1985-01-01

    A fundamental study of the phase transformations in the Ti-Nb binary alloy system was completed. Eight alloys in the range 20 to 70 at% Nb were investigated using transmission electron microscopy, light metallography, and x-ray diffraction. Measurements of electric resistivity and Vicker's microhardness also were performed. Emphasis was placed on the minimization of interstitial contamination in all steps of alloy fabrication and specimen preparation. In order to eliminate the effects of prior cold working, the alloys studied were recrystallized at 1000 0 C. Phase transformations were studied in alloys quenched to room temperature after recrystallization and then isothermally aged, and in those isothermally aged without a prior room temperature quench. It was found that the microstructures of the quenched 20 and 25% Nb alloys were extremely sensitive to quench rate - with a fast quench producing martensite, a slow quench, the omega phase. Microstructures of the higher niobium content alloys were much less sensitive to quench rate. The microstructures of the isothermally aged 20 and 25% Nb alloys were found to be sensitive to prior thermal history. Alloys quenched to room temperature and then aged at 400 0 C contained large omega precipitates, while those aged without an intermediate room temperature quench contained alpha precipitates

  13. The use of slightly alloyed uranium as fuel: its influence on the dissolution and other stages of treatment

    International Nuclear Information System (INIS)

    Faugeras, P.; Leroy, P.; Lheureux, C.

    1959-01-01

    This report deals chiefly with the treatment of binary alloys (UAI, UMo, UZr, UCr, USi) with a low concentration of the additional element (≤2 per cent). The investigation was pursued with a view to the continued utilisation, with a minimum of modification, of the existing plants for treatment of non-alloyed irradiated uranium. In the first part, the usual process for the treatment of irradiated uranium by solvent extraction is briefly recalled. The second part is devoted to a study of the selective dissolution of the canning around certain of these alloys. The third part gives the behaviour of these different alloys at various phases of the usual treatment: a) dissolution; b) extractions; c) final treatment of fission products; d) final purification of plutonium. To conclude, possible alloys are classed as a function of their repercussions on the normal treatment. (author) [fr

  14. Characterization of the uranium--2 weight percent molybdenum alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1976-01-01

    The uranium-2 wt percent molybdenum alloy was prepared, processed, and age hardened to meet a minimum 930-MPa yield strength (0.2 percent) with a minimum of 10 percent elongation. These mechanical properties were obtained with a carbon level up to 300 ppM in the alloy. The tensile-test ductility is lowered by the humidity of the laboratory atmosphere

  15. On the corrosion of binary magnesium-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Birbilis, N. [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); CAST Co-operative Research Centre (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia)], E-mail: nick.birbilis@eng.monash.edu.au; Easton, M.A. [CAST Co-operative Research Centre (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Sudholz, A.D. [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Zhu, S.M. [CAST Co-operative Research Centre (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Gibson, M.A. [CAST Co-operative Research Centre (Australia); CSIRO Division of Materials Science and Engineering (Australia)

    2009-03-15

    The corrosion properties of high-pressure die cast (HPDC) magnesium-rare earth (RE) based alloys have been studied. Binary additions of La, Ce and Nd to commercially pure Mg were made up to a nominal 6 wt.%. It was found that the intermetallic phases formed in the eutectic were Mg{sub 12}La, Mg{sub 12}Ce and Mg{sub 3}Nd, respectively. Results indicated that increasing RE alloying additions systematically increased corrosion rates. This was also described in the context of the electrochemical response of Mg-RE intermetallics - which were independently assessed by the electrochemical microcapillary technique. This study is a discrete effort towards revealing the electrochemical effect of carefully controlled binary alloying additions to magnesium in order to elucidate the microstructure-corrosion relationship more generally for HPDC Mg alloys. Such fundamental information is seen to not only be useful in understanding the corrosion of alloys which presently contain RE additions, but may be exploited in the design of magnesium alloys with more predictable corrosion behaviour. There is a special need to understand this relationship - particularly for magnesium that commonly displays poor corrosion resistance.

  16. Radiation induced segregation and point defects in binary copper alloys

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1984-01-01

    Considerable progress, both theoretical and experimental, has been made in establishing and understanding the influence of factors such as temperature, time, displacement rate dependence and the effect of initial solute misfit on radiation induced solute diffusion and segregation. During irradiation, the composition of the alloy changes locally, due to defect flux driven non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries. This change in composition could influence properties and phenomena such as ductility, corrosion resistance, stress corrosion cracking, sputtering and blistering of materials used in thermo-nuclear reactors. In this work, the effect of 1 MeV electron irradiation on the initiation and development of segregation and defect diffusion in binary copper alloys has been studied in situ, with the aid of a high voltage electron microscope. The binary copper alloys had Be, Pt and Sn as alloying elements which had atomic radii less than, similar and greater than that of copper, respectively. It has been observed that in a wide irradiation temperature range, stabilization and growth of dislocation loops took place in Cu-Sn and Cu-Pt alloys. Whereas in the Cu-Be alloy, radiation induced precipitates formed and transformed to the stable γ phase. (Author) [pt

  17. Magnetic properties of the binary Nickel/Bismuth alloy

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa; Şarlı, Numan, E-mail: numansarli82@gmail.com

    2017-09-01

    Highlights: • We model and investigate the magnetic properties of the Ni/Bi alloy within the EFT. • Magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc. • Magnetization of the Bi1 is dominant and Ni is at least dominant T < Tc. • Total magnetization of the Ni/Bi alloy is close to those of Ni at T < Tc. • Hysteresis curves are overlap at T < 0.1 and they behave separately at T > 0.1. - Abstract: Magnetic properties of the binary Nickel/Bismuth alloy (Ni/Bi) are investigated within the effective field theory. The Ni/Bi alloy has been modeled that the rhombohedral Bi lattice is surrounded by the hexagonal Ni lattice. According to lattice locations, Bi atoms have two different magnetic properties. Bi1 atoms are in the center of the hexagonal Ni atoms (Ni/Bi1 single layer) and Bi2 atoms are between two Ni/Bi1 bilayers. The Ni, Bi1, Bi2 and Ni/Bi undergo a second-order phase transition from the ferromagnetic phase to paramagnetic phase at Tc = 1.14. The magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc; hence the magnetization of the Bi1 is dominant and Ni is at least dominant. However, the total magnetization of the Ni/Bi alloy is close to magnetization of the Ni at T < Tc. The corcivities of the Ni, Bi1, Bi2 and Ni/Bi alloy are the same with each others, but the remanence magnetizations are different. Our theoretical results of M(T) and M(H) of the Ni/Bi alloy are in quantitatively good agreement with the some experimental results of binary Nickel/Bismuth systems.

  18. Equations of state for enriched uranium and uranium alloy to 3500 MPa

    International Nuclear Information System (INIS)

    Bai Chaomao; Hai Yuying; Liu Jenlong; Li Zhenrong

    1990-04-01

    The volume compressions of 6 kinds of cast materials including enriched uranium, poor uranium, U-0.57 wt% Ti, U-0.33 wt% Nb, U-2.85 wt% Nb and U-7.5 wt% Nb-3.3 wt% Zr have been determined by monitoring piston displacements in a piston cylinder apparatus with double strengthening rings to 3500 MPa at room temperature. The dilation of the cylinder vessel and the press deformation were corrected by some experiments. The calculational data free from using the standard sample closed with used standard sample. The volume compressions of enriched uranium and poor uranium are nearly coincident. Pure uranium is more compressible than uranium alloys. These values of enriched uranium are in close agreement with values of Bridgman's pure uranium. The fitting coefficients of Bridgman's polynomial and Anderson's equation of state and isothermal bulk modules for the above materials are given

  19. Shape memory effects in a uranium + 14 at. % niobium alloy

    International Nuclear Information System (INIS)

    Vandermeer, R.A.; Ogle, J.C.; Snyder, W.B. Jr.

    1978-01-01

    There is a class of alloys that, on cooling from elevated temperatures, experience a martensitic phase change. Some of these, when stressed in the martensitic state to an apparently plastic strain, recover their predeformed shape simply by heating. This striking shape recovery is known as the ''shape memory effect'' (SME). Up to a certain limiting strain, epsilon/sub L/, 100% shape recovery may be accomplished. This memory phenomenon seems to be attributable to the thermoelastic nature of and deformational modes associated with the phase transformation in the alloy. Thus, shape recovery results when a stress-biased martensite undergoes a heat-activated reversion back to the parent phase from which it originated. There are uranium alloys that demonstrate SME-behavior. Uranium-rich, uranium--niobium alloys were the first to be documented; New experimental observations of SME in a polycrystalline uranium--niobium alloy are presented. This alloy can exhibit a two-way memory under cetain circumstances. Additional indirect evidence is presented suggesting that the characteristics of the accompanying phase transformation in this alloy meet the criteria or ''selection rules'' deemed essential for SME

  20. GRAIN-BOUNDARY PRECIPITATION UNDER IRRADIATION IN DILUTE BINARY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    S.H. Song; Z.X. Yuan; J. Liu; R.G.Faulkner

    2003-01-01

    Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions ofγ'-Ni3Si precipitation at grain boundaries ave made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundaryγ'-Ni3 Si precipitation over a certain temperature range.

  1. Study of the pyrophoric characteristics of uranium-iron alloys

    International Nuclear Information System (INIS)

    Duplessis, X.

    2000-01-01

    The objective of the study is to understand the pyrophoric characteristics of uranium-iron alloys. In order to carry out this research we have elected to use uranium-iron alloy powder with granules of 200 μm and 1000 μm diameter with 4%, 10.8% and 14% iron content. The experiments were performed on small samples of few milligrams and on larger quantities of few hundred grams. The main conclusions obtained are the followings: -The reaction start at 453 K (180 deg. C) and the ignition at 543 K (270 deg. C) - The influence of the specific area seems more important than the iron concentration in the alloys - When the alloy ignites, the fire spreads quickly and the alloy rapidly consumes. (author)

  2. Alloys of uranium and aluminium with low aluminium content

    International Nuclear Information System (INIS)

    Cabane, G.; Englander, M.; Lehmann, J.

    1955-01-01

    Uranium, as obtained after spinning in phase γ, presents an heterogeneous structure with large size grains. The anisotropic structure of the metal leads to an important buckling and surface distortion of the fuel slug which is incompatible with its tubular cladding for nuclear fuel uses. Different treatments have been made to obtain an isotropic structure presenting high thermal stability (laminating, hammering and spinning in phase α) without success. Alloys of uranium and aluminium with low aluminium content present important advantage in respect of non allied uranium. The introduction of aluminium in the form of intermetallic compound (UAl 2 ) gives a better resistance to thermal fatigue. Alloys obtained from raw casting present an improved buckling and surface distortion in respect of pure uranium. This improvement is obtained with uranium containing between 0,15 and 0,5 % of aluminium. An even more improvement in thermal stability is obtained by thermal treatments of these alloys. These new characteristics are explained by the fine dispersion of the UAl 2 particles in uranium. The results after treatments obtained from an alloy slug containing 0,4 % of aluminium show no buckling or surface distortion and no elongation. (M.P.)

  3. Surface tension of liquid Al-Cu binary alloys.

    OpenAIRE

    Schmitz, Julianna; Brillo, Jürgen; Egry, Ivan; Schmid-Fetzer, Rainer

    2009-01-01

    Surface tension data of liquid Al–Cu binary alloys have been measured contactlessly using the technique of electromagnetic levitation. A digital CMOS-camera (400 fps) recorded image sequences of the oscillating liquid sample and surface tensions were determined from analysis of the frequency spectra. Measurements were performed for samples covering the entire range of composition and precise data were obtained in a broad temperature range. It was found that the surface tensions can ...

  4. Radiation-induced segregation in binary and ternary alloys

    International Nuclear Information System (INIS)

    Okamoto, P.R.; Rehn, L.E.

    1979-01-01

    A review is given of our current knowledge of radiation-induced segregation of major and minor elements in simple binary and ternary alloys as derived from experimental techniques such as Auger electron spectroscopy, secondary-ion mass spectroscopy, ion-backscattering, infrared emissivity measurements and transmission electron microscopy. Measurements of the temperature, dose and dose-rate dependences as well as of the effects of such materials variables as solute solubility, solute misfit and initial solute concentration has proved particularly valuable in understanding the mechanisms of segregation. The interpretation of these data in terms of current theoretical models which link solute segregation behavior to defect-solute binding interactions and/or to the relative diffusion rates of solute and solvent atoms the interstitial and vacancy migration mechanisms has, in general, been fairly successful and has provided considerable insight into the highly interrelated phenomena of solute-defect trapping, solute segregation, phase stability and void swelling. Specific examples in selected fcc, bcc and hcp alloy systems are discussed with particular emphasis given to the effects of radiation-induced segregation on the phase stability of single-phase and two-phase binary alloys and simple Fe-Cr-Ni alloys. (Auth.)

  5. Two-dimensional model of laser alloying of binary alloy powder with interval of melting temperature

    Science.gov (United States)

    Knyzeva, A. G.; Sharkeev, Yu. P.

    2017-10-01

    The paper contains two-dimensional model of laser beam melting of powders from binary alloy. The model takes into consideration the melting of alloy in some temperature interval between solidus and liquidus temperatures. The external source corresponds to laser beam with energy density distributed by Gauss law. The source moves along the treated surface according to given trajectory. The model allows investigating the temperature distribution and thickness of powder layer depending on technological parameters.

  6. Internal hydrogen embrittlement of gamma-stabilized uranium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Koger, J.W.; Bennett, R.K.; Williamson, A.L.; Hemperly, V.C.

    1976-01-01

    Relationships between the tensile ductility and fracture characteristics of as-quenched, gamma-stabilized uranium alloys (uranium--10 wt percent molybdenum, uranium--8.5 wt percent niobium, uranium--10 wt percent niobium, and uranium--7.5 wt percent niobium--2.5 wt percent zirconium), the hydrogen content of the tensile specimens, and the hydrogen gas pressure during the annealing at 850 0 C of the tensile test blanks prior to quenching were established. For these alloys, the tensile ductility decreases only slightly with increasing hydrogen content up to a critical hydrogen concentration above which the tensile ductility drops to nearly zero. The only alloy not displaying this sharp drop in tensile ductility was U--7.5 Nb--2.5 Zr, probably because sufficiently high hydrogen contents could not be achieved under our experimental arrangements. The critical hydrogen content for ductility loss increased with increasing hydrogen solubility in the alloy. Fracture surfaces produced by internal hydrogen embrittlement do not resemble those produced by stress corrosion cracking (SCC) in aqueous environments containing chloride ions. 8 figs

  7. Study on segregation of aluminium-uranium alloys

    International Nuclear Information System (INIS)

    Lima, Rui Marques de

    1979-01-01

    The relations between alloy solidification and solute segregation were considered. The solidification structure and the solute redistribution during the solidification of alloys with dendritic micro morphology were studied. The macro and micro segregation theories were reviewed. The mechanisms that could change the solidification structure were taken into account in the context of more homogeneous alloy production. Aluminum alloys solidification structures and segregation were studied experimentally in the 13 to 45% uranium range, usually considering solidification in static molds. The uranium alloys with up to 20% uranium were studied both for solidification in ingot molds and for controlled directional solidification. It was verified that these alloy compositions had structures similar to those of hipoeutectic alloys, showing an a phase with dendritic morphology and inter dendritic eutectic. For the alloys with more than 25% uranium, it was observed the formation of UAl 3 and UAl 4 phases with dendritic morphology. The dendritic UAl 3 , phase morphology was affected both by the solute concentration in the alloy and by the growth rate. The dendritic UAl 3 phase non-singular aspect could be destroyed with decrease of the alloy solute concentration. In the alloys obtained with higher cooling rates it was found a tendency for the formation of substantial quantities of equi axial crystals of the solute enriched phases in the central regions of the ingot upper half. In the more external regions it was observed dendritic growth of these phases, for alloy compositions with over 25% uranium. An adequate reduction in the cooling rate changed the solidification structure form and distribution, as well as the segregation type and intensity. The uranium content in the solidified macro structures is presented as a function of: cooling rate, superheating, mold size, mold form and its temperature, number of remelting and time for the melt homogenization and agitation. It was

  8. Electrical and Magnetic Properties of Binary Amorphous Transition Metal Alloys.

    Science.gov (United States)

    Liou, Sy-Hwang

    The electrical, superconductive and magnetic properties of several binary transition metal amorphous and metastable crystalline alloys, Fe(,x)Ti(,100-x) (30 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Zr(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 93), Fe(,x)Hf(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Nb(,100 -x) (22 (LESSTHEQ) x (LESSTHEQ) 85), Ni(,x)Nb(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 80), Cu(,x)Nb(,100-x) (10 (LESSTHEQ) x (LESSTHEQ) 90) were studied over a wide composition range. Films were made using a magnetron sputtering system, and the structure of the films was investigated by energy dispersive x-ray diffraction. The composition region of each amorphous alloys system was determined and found in good agreement with a model proposed by Egami and Waseda. The magnetic properties and hyperfine interactions in the films were investigated using a conventional Mossbauer spectrometer and a ('57)Co in Rh matrix source. In all Fe-early transition metal binary alloys systems, Fe does not retain its moment in the low iron concentration region and the result is that the critical concentration for magnetic order (x(,c)) is much larger than anticipated from percolation considerations. A direct comparison between crystalline alloys and their amorphous counterparts of the same composition illustrate no clear correlation between crystalline and amorphous states. Pronounced discontinuities in the magnetic properties with variation in Fe content of all Fe-early transition metal alloys at phase boundaries separating amorphous and crystalline states have been observed. This is caused by the differences in the atomic arrangement and the electronic structure between crystalline and amorphous solids. The temperature dependence of resistivity, (rho)(T), of several binary amorphous alloys of Fe-TM (where TM = Ti, Zr, Hf, Nb etc.) has been studied from 2K to 300K. The Fe-poor (x x(,c)) samples have distinctive differences in (rho)(T) at low temperature (below 30K). All the magnetic samples

  9. The experimental search for new predicted binary-alloy structures

    Science.gov (United States)

    Erb, K. C.; Richey, Lauren; Lang, Candace; Campbell, Branton; Hart, Gus

    2010-10-01

    Predicting new ordered phases in metallic alloys is a productive line of inquiry because configurational ordering in an alloy can dramatically alter their useful material properties. One is able to infer the existence of an ordered phase in an alloy using first-principles calculated formation enthalpies.ootnotetextG. L. W. Hart, ``Where are Nature's missing structures?,'' Nature Materials 6 941-945 2007 Using this approach, we have been able to identify stable (i.e. lowest energy) orderings in a variety of binary metallic alloys. Many of these phases have been observed experimentally in the past, though others have not. In pursuit of several of the missing structures, we have characterized potential orderings in PtCd, PtPd and PtMo alloys using synchrotron x-ray powder diffraction and symmetry-analysis tools.ootnotetextB. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, ``ISODISPLACE: a web-based tool for exploring structural distortions,'' J. Appl. Cryst. 39, 607-614 (2006)

  10. Superconducting properties of amorphous Zr-Ge binary alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Takahashi, Y.; Toyota, N.; Fukase, T.; Masumoto, T.

    1982-01-01

    A new type of refractory metal-metalloid amorphous alloys exhibiting superconductivity has been found in a binary Zr-Ge system by a modified melt-spinning technique. Specimens are in the form of continuous ribbons 1 to 2 mm wide and 0.02 to 0.03 mm thick. The germanium content in the amorphous alloys is limited to the range of 13 to 21 at%. These amorphous alloys are so ductile that no cracks are observed even after closely contacted bending test. Data are reported for various alloy compositions for the Vickers hardness and crystallization temperature, the tensile fracture strength, superconducting transition temperature Tsub(c), upper critical magnetic field, critical current density in the absence of an applied field, upper critical field gradient at Tsub(c) and the electrical resistivity at 4.2 K. The Ginzburg-Landau (GL) parameter and the GL coherence length were estimated to be 72 to 111 and about 7.9 nm, respectively, from these experimental values by using the Ginzburg-Landau-Abrikosov-Gorkov theory and hence it is concluded that the Zr-Ge amorphous alloys are extremely 'soft' type-II superconductor with high degree of dirtiness which possesses the Tsub(c) values higher than zirconium metal, in addition to high strength combined with good ductility. (author)

  11. A New Thermodynamic Calculation Method for Binary Alloys: Part I: Statistical Calculation of Excess Functions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.

  12. Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data

    Directory of Open Access Journals (Sweden)

    Mohammad Mezbahul-Islam

    2014-01-01

    Full Text Available Magnesium-based alloys are becoming a major industrial material for structural applications because of their potential weight saving characteristics. All the commercial Mg alloys like AZ, AM, AE, EZ, ZK, and so forth series are multicomponent and hence it is important to understand the phase relations of the alloying elements with Mg. In this work, eleven essential Mg-based binary systems including Mg-Al/Zn/Mn/Ca/Sr/Y/Ni/Ce/Nd/Cu/Sn have been reviewed. Each of these systems has been discussed critically on the aspects of phase diagram and thermodynamic properties. All the available experimental data has been summarized and critically assessed to provide detailed understanding of the systems. The phase diagrams are calculated based on the most up-to-date optimized parameters. The thermodynamic model parameters for all the systems except Mg-Nd have been summarized in tables. The crystallographic information of the intermetallic compounds of different binary systems is provided. Also, the heat of formation of the intermetallic compounds obtained from experimental, first principle calculations and CALPHAD optimizations are provided. In addition, reoptimization of the Mg-Y system has been done in this work since new experimental data showed wider solubility of the intermetallic compounds.

  13. Metallurgical processing of the uranium-0.75 titanium alloy

    International Nuclear Information System (INIS)

    Jessen, N.C.

    1976-01-01

    Although the addition of titanium is an effective means of strengthening uranium, careful control of casting, homogenization, and heat treatment are necessary to optimize mechanical properties. Quenching of the alloy provides increased strength and elongation; however, subsequent low temperature aging will increase the strength even higher at the sacrifice of ductility. The properties of the alloy are quench rate sensitive and quenching produces high residual stresses in the alloy. The residual stresses can be reduced by mechanical deformation with only slight degradation of the mechanical properties. 15 figures

  14. An investigation of the γ → α martensitic transformation in uranium alloys

    International Nuclear Information System (INIS)

    Speer, J.G.; Edmonds, D.V.

    1988-01-01

    A detailed study of the γ → chi martensite transformation in uranium alloys is presented. Five binary uranium-base alloys containing 0.77 Ti, 1.2 Mo, 2.2 Mo, 4.3 Mo and 5.0 Mo, respectively, were examined. As quenched, the U-0.77 Ti and U-1.2 Mo alloys consisted of an orthorhombic α'/sub a/ martensite phase with an acicular morphology. The acicular martensite plates contain deformation twins which result from transformation stresses. The U-2.2 Mo and U-4.3 Mo alloys transformed during quenching to orthorhomic chi'/sub b/ and monoclinic chi'/sub b/ martensite phases, respectively. The banded morphology observed in these two alloys consists of long, parallel martensite plates containing fine arrays of transformation twins. The type I transformation twinning modes were identified as /021/, /130/ and /131/. There was also evidence for a type II /111/ mode. It was found that adjacent bands could contain different kinds of transformation twins. In the U-5.0 Mo alloy, some of the cubic parent phase was retained during water quenching, and chi/γ orientation relationship was determined. The γ phase was completely retained in this alloy by slow cooling from the solution treatment temperature of 800 0 C, and it was found that a martensitic reaction could be induced by deformation. The strain-induced martensite plates contained /021/ transformation twins. The chi/γ orientation relationship was found to be different than the one determined in the quenched condition, and both orientation relationships are irrational. The invariant plane strain theory of martensite crystallography was applied to the twinned martensites, and a number of different parent/product lattice correspondences were considered for the γ → chi transformations. It was concluded that more than one correspondence may be operative during these transformations

  15. Measurement of chemical diffusion coefficients in liquid binary alloys

    International Nuclear Information System (INIS)

    Keita, M.; Steinemann, S.; Kuenzi, H.U.

    1976-01-01

    New measurements of the chemical diffusion coefficient in liquid binary alloys are presented. The wellknown geometry of the 'capillary-reservoir' is used and the concentration is obtained from a resistivity measurement. The method allows to follow continuously the diffusion process in the liquid state. A precision of at least 10% in the diffusion coefficient is obtained with a reproductibility better than 5%. The systems Hg-In, Al-Sn, Al-Si have been studied. Diffusion coefficients are obtained as a function of temperature, concentration, and geometrical factors related to the capillary (diameter, relative orientation of density gradient and gravity). (orig.) [de

  16. Influence of mobile dislocations on phase separation in binary alloys

    International Nuclear Information System (INIS)

    Haataja, Mikko; Leonard, Francois

    2004-01-01

    We introduce a continuum model to describe the phase separation of a binary alloy in the presence of mobile dislocations. The kinetics of the local composition and dislocation density are coupled through their elastic fields. We show both analytically and numerically that mobile dislocations modify the standard spinodal decomposition process, and lead to several regimes of growth. Depending on the dislocation mobility and observation time, the phase separation may be accelerated, decelerated, or unaffected by mobile dislocations. For any finite dislocation mobility, we show that the domain growth rate asymptotically becomes independent of the dislocation mobility, and is faster than the dislocation-free growth rate

  17. High-frequency dynamics in a molten binary alloy

    International Nuclear Information System (INIS)

    Alvarez, M.; Bermejo, F.J.; Verkerk, P.; Roessli, B.

    1999-01-01

    The nature of the finite wavelength collective excitations in liquid binary mixtures composed of atoms of very different masses has been of interest for more than a decade. The most prominent fact is the high frequencies at which they appear, well above those expected for a continuation to large wave vector of hydrodynamic sound. To better understand the microscopic dynamics of such systems, an inelastic neutron scattering experiment was performed on the molten alloy Li 4 Pb. We present the high-frequency excitations of molten Li 4 Pb which indeed show features substantially deviating from those expected for the propagation of an acoustic mode. (authors)

  18. Thermophysical properties of some liquid binary Mg-based alloys

    Directory of Open Access Journals (Sweden)

    Plevachuk Y.

    2017-01-01

    Full Text Available In this study, some structure-sensitive thermophysical properties, namely, electrical conductivity, thermal conductivity and thermoelectric power of liquid binary alloys Al33.3Mg66.7, Mg47.6Zn52.4 and Mg33.3Zn66.7 (all in wt.%, as the most promising cast alloys to fabricate components for cars, aircraft and other complex engineering products, were investigated. The electrical conductivity and thermoelectric power were measured in a wide temperature range by the four-point contact method. The thermal conductivity was measured by the steady-state concentric cylinder method. The obtained results are compared with literature experimental and calculated data.

  19. Enhanced upper critical fields in binary Nb-Ti alloys

    International Nuclear Information System (INIS)

    Hariharan, Y.; Sastry, V.S.; Janawadkar, M.P.; Radhakrishnan, T.S.

    1986-01-01

    The authors report the enhancement of H/sub c2/ in quenched and suitably heat treated binary Nb-65 at % Ti alloys. The inherent metastability of the bcc β phase and its instability towards athermal ω are used to realise high values of normal state resistivity ε/sub n/. The consequences of this on the upper critical field have been experimentally determined by the measurement of dH/sub c2//dT at T/sub c/ and of T/sub c/. These together with our similar measurements on Nb-83 at % Ti alloy to which at 1 at % N was added (to retain it in the β phase) are analysed in terms of the existing theories for upper critical fields. It is shown that a peak in H/sub c2/(o) occurs at 17 - 18 T when ε/sub n/ has a value of approximately 100 μΩcm

  20. Numerical model for dendritic solidification of binary alloys

    Science.gov (United States)

    Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.

    1993-01-01

    A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.

  1. Some potential strategies for the treatment of waste uranium metal and uranium alloys

    International Nuclear Information System (INIS)

    Burns, C.J.; Frankcom, T.M.; Gordon, P.L.; Sauer, N.N.

    1993-01-01

    Large quantities of uranium metal chips and turnings stored throughout the DOE Complex represent a potential hazard, due to the reactivity of this material toward air and water. Methods are being sought to mitigate this by conversion of the metal, via room temperature solutions routes, to a more inert oxide form. In addition, the recycling of uranium and concomitant recovery of alloying metals is a desirable goal. The emphasis of the authors' research is to explore a variety of oxidation and reduction pathways for uranium and its compounds, and to investigate how these reactions might be applied to the treatment of bulk wastes

  2. Experimental study on uranium alloys for hydrogen storage

    International Nuclear Information System (INIS)

    Deaconu, M.; Meleg, T.; Dinu, A.; Mihalache, M.; Ciuca, I.; Abrudeanu, M.

    2013-01-01

    The heaviest isotope of hydrogen is one of critically important elements in the field of fusion reactor technology. Conventionally, uranium metal is used for the storage of heavier isotopes of hydrogen (D and T). Under appropriate conditions, uranium absorbs hydrogen to form a stable UH 3 compound when exposed to molecular hydrogen at the temperature range of 300-500 O C at varied operating pressure below one atmosphere. However, hydriding-dehydriding on pure uranium disintegrates the specimen into fine powder. The powder is highly pyrophoric and has low heat conductivity, which makes it difficult to control the temperature, and has a high possibility of contamination Due to the powdering effect as hydrogen in uranium, alloying uranium with other metal looks promising for the use of hydrogen storage materials. This paper has the aim to study the hydriding properties of uranium alloys, including U-Ti U-Mo and U-Ni. The uranium alloys specimens were prepared by melting the constituent elements by means of simultaneous measurements of thermo-gravimetric and differential thermal analyses (TGA-DTA) and studied in as cast condition as hydrogen storage materials. Then samples were thermally treated under constant flow of hydrogen, at various temperatures between 573-973 0 K. The structural and absorption properties of the products obtained were examined by thermo-gravimetric analysis (TG), X-ray diffraction (XRD) and scanning electron microscopy (SEM). They slowly reacted with hydrogen to form the ternary hydride and the hydrogenated samples mainly consisted of the pursued ternary hydride bat contained also U or UO 2 and some transient phase. (authors)

  3. Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution

    International Nuclear Information System (INIS)

    Elmer, J.W.; Teruya, A.T.; Terrill, P.E.

    2000-01-01

    Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities

  4. Durability of adhesive bonds to uranium alloys, tungsten, tantalum, and thorium

    International Nuclear Information System (INIS)

    Childress, F.G.

    1975-01-01

    Long-term durability of epoxy bonds to alloys of uranium (U-Nb and Mulberry), nickel-plated uranium, thorium, tungsten, tantalum, tantalum--10 percent tungsten, and aluminum was evaluated. Significant strengths remain after ten years of aging; however, there is some evidence of bond deterioration with uranium alloys and thorium stored in ambient laboratory air

  5. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  6. Corrosion and protection of uranium alloy penetrators

    International Nuclear Information System (INIS)

    Weirick, L.J.; Johnson, H.R.; Dini, J.W.

    1975-06-01

    Penetrators made from either a U--3/4 percent Ti alloy or a U--3/4 percent Mo--3/4 percent Zr--3/4 percent Nb--1/2 percent Ti alloy (''Quad'') corrode mildly in moist air, significantly in moist nitrogen, and severely in salt fog. Adequate protection was provided in moist air and nitrogen by coating with electroplated nickel, electroplated nickel and zinc with a chromate finish, and galvanized zinc with a chromate finish. In salt fog, electroplated nickel offered only temporary protection whereas galvanized zinc and electroplated nickel-zinc provided long-lasting protection. The resistance of uncoated penetrators was affected variously by dissimilar metal couplings. Aluminum protected the Quad alloy and adversely affected the U--3/4 percent Ti alloy, whereas steel enhanced localized corrosion in both. (U.S.)

  7. Low content uranium alloys for nuclear fuels

    International Nuclear Information System (INIS)

    Aubert, H.; Laniesse, J.

    1964-01-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small α grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [fr

  8. Determination of uranium in fissium-uranium alloy and in fissium dross

    International Nuclear Information System (INIS)

    Bodnar, L.Z.

    1976-01-01

    Dissolution and analysis techniques for fissium-uranium alloy and fissium dross are described. The fuming technique of dissolution effectively eliminated all interferring elements in the titration determination of U. The results from the semiquantitative analysis of fission dross by spark source mass spectrometry were tabulated

  9. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    Oliveira, Fabio Branco Vaz de

    2008-01-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and

  10. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    precipitate-free microstructure known as expanded austenite or S-phase, which can enhance surface hardness, fatigue properties and corrosion properties.Nitriding of multicomponent Ni-based alloys is usually applied in the industry. Nevertheless, the understanding of nitriding is mostly based on phenomenological research and experience. Thereby there is still absence of complete understanding of nitriding of Ni-based alloys, which requires further detailed investigations. Since studying the nitrided multicomponent alloys is complicated, in this thesis fundamental investigations were performed on pure nickel and binary Ni-based model alloys.This thesis focuses on the nitriding behavior of pure nickel, which will result with an thermodynamic evaluation of the Ni-N system. Furthermore, deeper insights in the nitriding behavior of the binary Ni-based alloys is obtained upon nitriding Ni-4 wt.% Ti and Ni-2 wt.% Ti (Ni-5 at.% Ti and Ni-2.5 at.% Ti) alloys. Thereby, the development of large residual macrostresses parallel to the surface of the specimen is related with the N concentration gradient in the nitrided zone.

  11. Point Defects in Binary Laves-Phase Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, P.K.; Liu, C.T.; Pike, L.M.; Zhu, J.H.

    1999-01-11

    Point defects in the binary C15 NbCrQ and NbCoz, and C 14 NbFe2 systems on both sides of stoichiometry were studied by both bulk density and X-ray Iattiee parameter measurements. It was found that the vacancy concentrations in these systems after quenching from 1000"C are essentially zero. The constitutional defects on both sides of stoichiometry for these systems were found to be of the anti-site type in comparison with the model predictions. Thermal vacancies exhibiting a maximum at the stoichiometric composition were obtained in NbCr2 Laves phase alloys after quenching from 1400"C. However, there are essentially no thermal vacancies in NbFe2 alloys after quenching from 1300oC. Anti-site hardening was found on both sides of stoichiometry for all the tie Laves phase systems studied, while the thermal vacancies in NbCr2 alloys quenched from 1400'C were found to soften the Laves phase. The anti-site hardening of the Laves phases is similar to that of the B2 compounds and the thermal vacancy softening is unique to the Laves phase. Neither the anti-site defects nor the thermal vacancies affect the fracture toughness of the Laves phases significantly.

  12. Estimation of the viscosities of liquid binary alloys

    Science.gov (United States)

    Wu, Min; Su, Xiang-Yu

    2018-01-01

    As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.

  13. Uranium alloys for using in fast breeder reactors

    International Nuclear Information System (INIS)

    Moura Neto, C.; Pires, O.S.

    1988-08-01

    The U-Zr and U-Ti alloys are studied, given emphasis to the high solute solubility in gamma phase of uranium, which is suitable for using as metal fuel in fast breeder reactors. The alloys were prepared in electron beam furnaces and submitted to X-ray diffraction, X-ray fluorescence, microhardness, optical metallography, and chemical analysis. The obtained values are good agreements with the literature data. The study shows that the U-Zr presents better characteristics than the U-Ti for using as fuel in fast breeder reactors. (M.C.K.) [pt

  14. Metallurgical structures in a high uranium-silicon alloy

    International Nuclear Information System (INIS)

    Wyatt, B.S.; Berthiaume, L.C.; Conversi, J.L.

    1968-10-01

    The effects of fabrication and heat treatment variables on the structure of a uranium -- 3.96 wt% silicon alloy have been studied using optical microscopy, quantitative metallography and hardness determinations. It has been shown that an optimum temperature exists below the peritectoid temperature where the maximum amount of transformation to U 3 Si occurs in a given period of time. The time required to fully transform an as-cast alloy at this optimum temperature is affected by the size of the primary U 3 Si 2 dendrites. With a U 3 Si 2 particle size of <12 μm complete transformation can be achieved in four hours. (author)

  15. Contribution to the micrographic study of uranium and its alloys

    International Nuclear Information System (INIS)

    Monti, H.

    1956-06-01

    The present report is the result of research carried out by the radio metallurgy section, to perfect micrographic techniques applicable to the study of samples of irradiated uranium. In the first part of this work, two polishing baths are developed, having the qualities with a minimum of disadvantages inherent in their respective compositions: they are, on the one hand perchloric acid-ethanol mixtures, and on the other hand a phospho-chromic-ethanol bath. In the chapter following, the micrographic attack of uranium is studied. The only satisfactory process is oxidation by cathode bombardment forming epitaxic layers. In the third chapter, an attempt is made to characterise the different surface states of the uranium by dissolution potential measurements and electronic diffraction. In the fourth chapter are given some examples of the application of these techniques to the micrographic study of various uranium alloys. In an appendix, it is shown how the chemical oxidation after phospho-chromic-alcohol polishing allows the different inclusions present in the molten uranium to be distinguished. By X-ray diffraction, uranium monocarbide and mononitride inclusions in particular are characterised. (author) [fr

  16. Study of behaviour during a quench treatment of ferrite delta of binary and pseudo-binary alloys

    International Nuclear Information System (INIS)

    Champin, B.

    1970-01-01

    Focusing of Fe-Cr and Fe-Mo alloys (and extending results to different binary alloys like Fe-W, Fe-Al and Fe-Si, and even to some ternary systems such as Fe-Cr-Ni and Fe-Mo-Ni), and after having recalled some previous results and presented experimental materials and processes, this research thesis describes the behaviour of the considered alloys, reports a detailed study of Fe-Mo alloys (influence of carbon content), a bibliographical study of the gamma-to-delta transformation, the study of hybrid alloys (behaviour, partial transformations, diffusion), the study of other types of alloys (hyper-quench of delta ferrite of Fe-Mo alloys, adsorption and diffusion). It discusses the case of two-phase structures, and the mechanism and kinetics of the delta-to-gamma transformation

  17. X-ray diffraction (XRD) characterization of microstrain in some iron and uranium alloys

    International Nuclear Information System (INIS)

    Kimmel, G.; Dayan, D.; Frank, G.A.; Landau, A.

    1996-01-01

    The high linear attenuation coefficient of steel, uranium and uranium based alloys is associated with the small penetration depth of X-rays with the usual wavelength used for diffraction. Nevertheless, by using the proper surface preparation technique, it is possible of obtaining surfaces with bulk properties (free of residual mechanical microstrain). Taking advantage of the feasibility to obtain well prepared surfaces, extensive work has been conducted in studying XRD line broadening effects from flat polycrystalline samples of steel, uranium and uranium alloys

  18. Nuclear criticality safety parameter evaluation for uranium metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andrea; Abe, Alfredo, E-mail: andreasdpz@hotmail.com, E-mail: abye@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Energia Nuclear

    2013-07-01

    Nuclear criticality safety during fuel fabrication process, transport and storage of fissile and fissionable materials requires criticality safety analysis. Normally the analysis involves computer calculations and safety parameters determination. There are many different Criticality Safety Handbooks where such safety parameters for several different fissile mixtures are presented. The handbooks have been published to provide data and safety principles for the design, safety evaluation and licensing of operations, transport and storage of fissile and fissionable materials. The data often comprise not only critical values, but also subcritical limits and safe parameters obtained for specific conditions using criticality safety calculation codes such as SCALE system. Although many data are available for different fissile and fissionable materials, compounds, mixtures, different enrichment level, there are a lack of information regarding a uranium metal alloy, specifically UMo and UNbZr. Nowadays uranium metal alloy as fuel have been investigated under RERTR program as possible candidate to became a new fuel for research reactor due to high density. This work aim to evaluate a set of criticality safety parameters for uranium metal alloy using SCALE system and MCNP Monte Carlo code. (author)

  19. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    Science.gov (United States)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  20. A method for the electrolytic coating of uranium or uranium alloy parts, and parts thus obtained

    International Nuclear Information System (INIS)

    1973-01-01

    A method, preceded by a surface treatment, for applying an electrolytic coating (e.g. of nickel) on uranium, or uranium alloy parts. This method is characterized in that the previous surface treatment comprises a chemical removal of grease in halogenated solvent bath (free from halogen ions) and an anodic scouring in a buffered aqueous solution solution of an acid free from halogen ions. The coating can be applied to fuel elements for nuclear industry, counter-weight for aeronautics and space industries and to radiation shields [fr

  1. Hot tearing susceptibility of binary Mg–Y alloy castings

    International Nuclear Information System (INIS)

    Wang, Zhi; Huang, Yuanding; Srinivasan, Amirthalingam; Liu, Zheng; Beckmann, Felix; Kainer, Karl Ulrich; Hort, Norbert

    2013-01-01

    Highlights: ► Quantitatively and qualitatively assessing hot tearing susceptibility for different alloys. ► Monitoring the hot tearing propagation process. ► Detecting the hot tearing initiation/onset temperature. ► Recording the stress and strain evolution during the casting solidification and the subsequent cooling. - Abstract: The influence of Y content on the hot tearing susceptibility (HTS) of binary Mg–Y alloys has been predicted using thermodynamic calculations based on Clyne and Davies model. The calculated results are compared with experimental results determined using a constrained rod casting (CRC) apparatus with a load cell and data acquisition system. Both thermodynamic calculations and experimental measurements indicate that the hot tearing susceptibility as a function of Y content follows the “λ” shape. The experimental results show that HTS first increases with increase in Y content, reaches the maximum at about 0.9 wt.%Y and then decreases with further increase the Y content. The maximum susceptibility observed in Mg–0.9 wt.%Y alloy is attributed to its coarsened columnar microstructure, large solidification range and small amount of eutectic at the time of hot tearing. The initiation of hot cracks is monitored during CRC experiments. It corresponds to a drop in load increment on the force curves. The critical solid fractions at which the hot cracks are initiated are in the range from 0.9 to 0.99. It is also found that it decreases with increasing the content of Y. The hot cracks propagate along the dendritic or grain boundaries through the interdendritic separation or tearing of interconnected dendrites. Some of the formed cracks are possible to be healed by the subsequent refilling of the remained liquids

  2. Nucleation of dislocation loops during irradiation in binary FCC alloys with different alloy compositions

    International Nuclear Information System (INIS)

    Hashimoto, T.; Shigenaka, N.; Fuse, M.

    1992-01-01

    Dislocation loop nucleation is analyzed using a rate theory based model for face-centered cubic (fcc) binary alloys containing A- and B-atoms. In order to calculate the nucleation process in concentrated alloys, the model considers three types of interstitial dumbbells composed of A- and B-atoms, AA-, BB-, and AB-type dumbbells. Conversions between these interstitial dumbbells are newly introduced in the formulation in consideration of dumbbell configurations and movements. The model also includes reactions, such as point defect production by irradiation, mutual recombination of an interstitial and a vacancy, and dislocation loop nucleation and growth. Parameter values are chosen based on the atom size of the alloy component elements, and dislocation loop nucleation kinetics are investigated while varying alloy compositions. Two different types of kinetics are obtained in accordance with the dominant loop nucleus type. The migration energy difference of AA- and BB-type interstitial dumbbells is important in the determination of the dominant loop nucleus type. The present model predicts that the dislocation loop concentration decrease with increasing under sized atoms content, but defect production rate and temperature dependences of loop concentration are insensitive to alloy compositions. (author)

  3. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tsuyoshi, E-mail: m-tsuyo@criepi.denken.or.j [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Kato, Tetsuya; Kurata, Masaki [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Yamana, Hajimu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2009-11-15

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the delta-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag{sup +}/Ag) in LiCl-KCl melts containing 0.13 in mol% UCl{sub 3} and 0.23 in mol% ZrCl{sub 4} at 773 K. To our knowledge, this is the first report on the electrochemical formation of the delta-(U, Zr) phase. The relative partial molar properties of uranium in the delta-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared delta-phase electrode.

  4. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    International Nuclear Information System (INIS)

    Murakami, Tsuyoshi; Kato, Tetsuya; Kurata, Masaki; Yamana, Hajimu

    2009-01-01

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the δ-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag + /Ag) in LiCl-KCl melts containing 0.13 in mol% UCl 3 and 0.23 in mol% ZrCl 4 at 773 K. To our knowledge, this is the first report on the electrochemical formation of the δ-(U, Zr) phase. The relative partial molar properties of uranium in the δ-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared δ-phase electrode.

  5. A two potential embedding approach to the electronic structure of disordered binary alloys

    International Nuclear Information System (INIS)

    Ahmed, M.; Mookerjee, A.

    1988-06-01

    Using an embedding technique introduced in a recent publication by one of us, we study the electronic structure of disordered binary alloys within a pair-cluster coherent potential approximation. (author). 4 refs, 3 figs

  6. Special quasirandom structures for binary/ternary group IV random alloys

    KAUST Repository

    Chroneos, Alexander I.; Jiang, Chao; Grimes, Robin W.; Schwingenschlö gl, Udo

    2010-01-01

    Simulation of defect interactions in binary/ternary group IV semiconductor alloys at the density functional theory level is difficult due to the random distribution of the constituent atoms. The special quasirandom structures approach is a

  7. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  8. Fabrication and characterisation of uranium, molybdenum, chromium, niobium and aluminium; Dobijanje i karakterizacija legura uranijuma sa molibdenom, hromom, niobijumom i aluminijumom

    Energy Technology Data Exchange (ETDEWEB)

    Sofrenovic, R; Isailovic, M; Kotur, Z [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This paper describes fabrication of binary uranium alloys by melting and casting. The following alloys with nominal composition were obtained by melting in the vacuum furnace: uranium with niobium contents from 0.5%- 4.0% and uranium with molybdenum contents from 0.4% - 1.2%. Uranium alloys with chromium content from 0.4% - 1.2% and uranium alloy with 0.12% of aluminium were obtained by vacuum induction furnace (electric arc melting)

  9. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

    Science.gov (United States)

    Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  10. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  11. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    Science.gov (United States)

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-05-29

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.

  12. Surface preparation process of a uranium titanium alloy, in particular for chemical nickel plating

    International Nuclear Information System (INIS)

    Henri, A.; Lefevre, D.; Massicot, P.

    1987-01-01

    In this process the uranium alloy surface is attacked with a solution of lithium chloride and hydrochloric acid. Dissolved uranium can be recovered from the solution by an ion exchange resin. Treated alloy can be nickel plated by a chemical process [fr

  13. Some properties of aluminum-uranium alloys in the cast, rolled and annealed conditions

    International Nuclear Information System (INIS)

    Jones, T.I.; McGee, I.J.; Norlock, L.R.

    1960-06-01

    The metallographic and hardness changes associated with the rolling and subsequent. annealing of aluminum alloys containing up to 30-wt.% uranium have been described. The alloys possessed good rolling properties. However the richer alloys were unusual in that after an initial reduction,, further cold rolling caused softening. In the alloy range examined, increasing uranium contents caused reduced preferred orientation. Qualitative explanations have been proposed to account for the observations on roll softening and preferred orientation. Heat-treating and ageing experiments confirmed that the solid solubility of uranium in aluminum is negligible. (author)

  14. Metallurgical examination of powder metallurgy uranium alloy welds

    International Nuclear Information System (INIS)

    Morrison, A.G.M.; Dobbins, A.G.; Holbert, R.K.; Doughty, M.W.

    1986-01-01

    Inertia welding provided a successful technique for joining full density, powder metallurgy uranium-6 wt pct niobium alloy. Initial joining attempts concentrated on the electron beam method, but this method failed to produce a sound weld. The electron beam welds and the inertia welds were evaluated by radiography and metallography. Electron beam welds were attempted on powder metallurgy plates which contained various levels of oxygen and nitrogen. All welds were porous. Sixteen inertia welds were made and all welds were radiographically sound. The tensile properties of the joints were found to be equivalent to the p/m base metal properties

  15. Spectrographic determination of niobium in uranium - niobium alloys

    International Nuclear Information System (INIS)

    Charbel, M.Y.; Lordello, A.R.

    1984-01-01

    A method for the spectrographic determination of niobium in uranium-niobium alloys in the concentration range 1-10% has been developed. The metallic sample is converted to oxide by calcination in a muffle furnace at 800 0 C for two hours. The standards are prepared synthetically by dry-mixing. One part of the sample or standard is added to nineteen parts of graphite powder and the mixture is excited in a DC arc. Hafnium has been used as internal standard. The precision of the method is + - 4.8%. (Author) [pt

  16. Free energy change of off-eutectic binary alloys on solidification

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  17. Solubility of uranium in liquid gallium, indium and their alloys

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Maltsev, Dmitry S.; Yamschikov, Leonid F.; Osipenko, Alexander G.; Kormilitsyn, Mikhail V.

    2014-01-01

    Pyrochemical reprocessing of spent nuclear fuels (SNF) employing molten salts and liquid metals as working media is considered as a possible alternative to the existing liquid extraction (PUREX) processes. Liquid salts and metals allow reprocessing highly irradiated high burn-up fuels with short cooling times, including the fuels of fast neutron reactors. Pyrochemical technology opens a way to practical realization of short closed fuel cycle. Liquid low-melting metals are immiscible with molten salts and can be effectively used for separation (or selective extraction) of SNF components dissolved in fused salts. Binary or ternary alloys of eutectic compositions can be employed to lower the melting point of the metallic phase. However, the information on SNF components behaviour and properties in ternary liquid metal alloys is very scarce

  18. Icosahedral binary clusters of glass-forming Lennard-Jones binary alloy

    International Nuclear Information System (INIS)

    Iwamatsu, Masao

    2007-01-01

    It is widely believed that the local icosahedral structure is related to the formation of bulk metallic glasses (BMGs). Specifically the existence of 13-atom icosahedral cluster in undercooled liquid is imagined to play a key role to initiate the glass formation as the seed of amorphous structure or to block the nucleation of regular crystal as the impurity. The existence of 13-atom icosahedral clusters in one-component liquids was predicted more than half a century ago by Frank from his total energy calculation for isolated clusters. In BMG alloys, however, the situation is less clear. In this report, we present the lowest-energy structures of 13-atom Lennard-Jones binary cluster calculated from the modified space-fixed genetic algorithm. We study, in particular, the artificial Lennard-Jones potential designed by Kob and Andersen [W. Kob, H.C. Andersen, Phys. Rev. E 51 (1995) 4626] that is known to form BMG. Curiously, the lowest-energy structures of 13-atom cluster are non-icosahedral for almost all compositions. Our result suggests that the existence of the icosahedral cluster is not a necessary condition but only a sufficient condition for glass formation

  19. Computation of infinite dilute activity coefficients of binary liquid alloys using complex formation model

    Energy Technology Data Exchange (ETDEWEB)

    Awe, O.E., E-mail: draweoe2004@yahoo.com; Oshakuade, O.M.

    2016-04-15

    A new method for calculating Infinite Dilute Activity Coefficients (γ{sup ∞}s) of binary liquid alloys has been developed. This method is basically computing γ{sup ∞}s from experimental thermodynamic integral free energy of mixing data using Complex formation model. The new method was first used to theoretically compute the γ{sup ∞}s of 10 binary alloys whose γ{sup ∞}s have been determined by experiments. The significant agreement between the computed values and the available experimental values served as impetus for applying the new method to 22 selected binary liquid alloys whose γ{sup ∞}s are either nonexistent or incomplete. In order to verify the reliability of the computed γ{sup ∞}s of the 22 selected alloys, we recomputed the γ{sup ∞}s using three other existing methods of computing or estimating γ{sup ∞}s and then used the γ{sup ∞}s obtained from each of the four methods (the new method inclusive) to compute thermodynamic activities of components of each of the binary systems. The computed activities were compared with available experimental activities. It is observed that the results from the method being proposed, in most of the selected alloys, showed better agreement with experimental activity data. Thus, the new method is an alternative and in certain instances, more reliable approach of computing γ{sup ∞}s of binary liquid alloys.

  20. Spectrographic analysis of uranium-based alloys; Analyse spectrographique d'alliages a base d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G.; Blum, P.

    1959-07-01

    The authors describe a spectrographic method for dosing cobalt in cobalt-uranium alloys with cobalt content from 0.05 to 10 per cent. They describe sample preparation, alloy solution, spectrographic conditions, and photometry operations. In a second part, they address the dosing of boron in uranium borides. They implement the so-called 'porous cup' method. Boride is dissolved by fusion with Co{sub 3}-NaK [French] Uranium-Cobalt: il est decrit une methode spectrographique de dosage de cobalt dans des alliages cobalt-uranium pour des teneurs de 0,05 pour cent a 10 pour cent de Co. On opere sur solution avec le fer comme standard interne. Borure d'Uranium: ici encore on opere par la methode dite 'porous cup', le fer etant conserve comme standard interne. Le borure est mis en solution par fusion avec Co{sub 3}NaK. (auteurs)

  1. Kr ion irradiation study of the depleted-uranium alloys

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M.

    2010-12-01

    Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si) 3, (U, Mo)(Al, Si) 3, UMo 2Al 20, U 6Mo 4Al 43 and UAl 4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 °C to ion doses up to 2.5 × 10 19 ions/m 2 (˜10 dpa) with an Kr ion flux of 10 16 ions/m 2/s (˜4.0 × 10 -3 dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

  2. Kr ion irradiation study of the depleted-uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gan, J., E-mail: Jian.Gan@inl.go [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Keiser, D.D. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Miller, B.D. [University of Wisconsin, 1500 Engineering Drive, Madison, WI 53706 (United States); Kirk, M.A.; Rest, J. [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States); Allen, T.R. [University of Wisconsin, 1500 Engineering Drive, Madison, WI 53706 (United States); Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2010-12-01

    Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si){sub 3}, (U, Mo)(Al, Si){sub 3}, UMo{sub 2}Al{sub 20}, U{sub 6}Mo{sub 4}Al{sub 43} and UAl{sub 4}. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 {sup o}C to ion doses up to 2.5 x 10{sup 19} ions/m{sup 2} ({approx}10 dpa) with an Kr ion flux of 10{sup 16} ions/m{sup 2}/s ({approx}4.0 x 10{sup -3} dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

  3. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  4. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  5. Thermodynamic analysis of transition pressure of δ-stabilized binary plutonium alloys

    International Nuclear Information System (INIS)

    Wang Qinghui

    1992-01-01

    The transformation of δ-stabilized binary plutonium alloys to α-Pu was studies by thermodynamic analysis. A transition pressure-composition equation which can characterize the high pressure transformation from δ to α was derived. Values calculated by the equation and values measured by experiments of published references have the same tendency. the following facts can be explained properly by this equation. (1)The transformation pressure increases linearly with the amount of an alloying element. (2) The slope of the plot of transformation pressure versus composition of δ-Pu alloys is inversely proportional to the minimum amount of solute required to retain δ-phase at room temperature and pressure. (3) Curves showing the relationship between transformation pressure and composition of various δ-stabilized binary alloys interact at the same point of zero solute (transformation pressure axis). In addition, some transformation pressures from δ to α of δ-stabilized alloys are predicted by using the modified theoretical equation

  6. Study of the pyrophoric characteristics of uranium-iron alloys; Etude du caractere pyrophorique des alliages uranium fer

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, X

    2000-02-23

    The objective of the study is to understand the pyrophoric characteristics of uranium-iron alloys. In order to carry out this research we have elected to use uranium-iron alloy powder with granules of 200 {mu}m and 1000 {mu}m diameter with 4%, 10.8% and 14% iron content. The experiments were performed on small samples of few milligrams and on larger quantities of few hundred grams. The main conclusions obtained are the followings: -The reaction start at 453 K (180 deg. C) and the ignition at 543 K (270 deg. C) - The influence of the specific area seems more important than the iron concentration in the alloys - When the alloy ignites, the fire spreads quickly and the alloy rapidly consumes. (author)

  7. Alloys of uranium and aluminium with low aluminium content; Alliages uranium-aluminium a faible teneur en aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Cabane, G; Englander, M; Lehmann, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Uranium, as obtained after spinning in phase {gamma}, presents an heterogeneous structure with large size grains. The anisotropic structure of the metal leads to an important buckling and surface distortion of the fuel slug which is incompatible with its tubular cladding for nuclear fuel uses. Different treatments have been made to obtain an isotropic structure presenting high thermal stability (laminating, hammering and spinning in phase {alpha}) without success. Alloys of uranium and aluminium with low aluminium content present important advantage in respect of non allied uranium. The introduction of aluminium in the form of intermetallic compound (UAl{sub 2}) gives a better resistance to thermal fatigue. Alloys obtained from raw casting present an improved buckling and surface distortion in respect of pure uranium. This improvement is obtained with uranium containing between 0,15 and 0,5 % of aluminium. An even more improvement in thermal stability is obtained by thermal treatments of these alloys. These new characteristics are explained by the fine dispersion of the UAl{sub 2} particles in uranium. The results after treatments obtained from an alloy slug containing 0,4 % of aluminium show no buckling or surface distortion and no elongation. (M.P.)

  8. Simultaneous determination of a binary mixture: kinetic method for determination of uranium and vanadium

    International Nuclear Information System (INIS)

    Jianhua, W.; Ronghuan, H.

    1993-01-01

    A kinetic method for simultaneous determination of a binary mixture is proposed, and a procedure for simultaneous determination of uranium (IV) and vanadium (IV) is established based on their inductive effect on chromium (VI)-iodide redox reaction in a weak acidic medium. The reaction was monitored by FIA-spectrophotometry using the I 3 - -starch complex as indicator. The calibration graphs are linear for uranium (IV) and vanadium (IV) within the range of 0 ∼ 3.6 μg/ml and 0 ∼ 2.5 μg/ml respectively. Most foreign ions, except for iron (II) and antimony (III), do not interfere with the determination. The uranium and vanadium content in different samples was determined, and the results were satisfactory. (author). 2 tabs., 2 figs., 9 refs

  9. Numerical simulation of freckle formation in directional solidification of binary alloys

    Science.gov (United States)

    Felicelli, Sergio D.; Heinrich, Juan C.; Poirier, David R.

    1992-01-01

    A mathematical model of solidification is presented which simulates the formation of segregation models known as 'freckles' during directional solidification of binary alloys. The growth of the two-phase or dendritic zone is calculated by solving the coupled equations of momentum, energy, and solute transport, as well as maintaining the thermodynamic constraints dictated by the phase diagram of the alloy. Calculations for lead-tin alloys show that the thermosolutal convection in the dendritic zone during solidification can produce heavily localized inhomogeneities in the composition of the final alloy.

  10. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys

    International Nuclear Information System (INIS)

    Bakhsheshi-Rad, H.R.; Idris, M.H.; Abdul-Kadir, M.R.; Ourdjini, A.; Medraj, M.; Daroonparvar, M.; Hamzah, E.

    2014-01-01

    Highlights: • Quaternary alloy show better mechanical and corrosion properties than binary alloy. • Mg–2Ca–0.5Mn–2Zn alloy showed suitable mechanical properties for bone application. • The improved corrosion resistance with addition of Mn and Zn into the Mg–Ca alloy. • Formation of protective surface film Mn-containing magnesium on quaternary alloy. • Secondary phases have strong effect on micro-galvanic corrosion of Mg alloys. - Abstract: Binary Mg–xCa alloys and the quaternary Mg–Ca–Mn–xZn were studied to investigate their bio-corrosion and mechanical properties. The surface morphology of specimens was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of mechanical properties show that the yield strength (YS), ultimate tensile strength (UTS) and elongation of quaternary alloy increased significantly with the addition of zinc (Zn) up to 4 wt.%. However, further addition of Zn content beyond 4 wt.% did not improve yield strength and ultimate tensile strength. In contrast, increasing calcium (Ca) content has a deleterious effect on binary Mg–Ca alloys. Compression tests of the magnesium (Mg) alloys revealed that the compression strength of quaternary alloy was higher than that of binary alloy. However, binary Mg–Ca alloy showed higher reduction in compression strength after immersion in simulated body fluid. The bio-corrosion behaviour of the binary and quaternary Mg alloys were investigated using immersion tests and electrochemical tests. Electrochemical tests shows that the corrosion potential (E corr ) of binary Mg–2Ca significantly shifted toward nobeler direction from −1996.8 to −1616.6 mV SCE with the addition of 0.5 wt.% manganese (Mn) and 2 wt.% Zn content. However, further addition of Zn to 7 wt.% into quaternary alloy has the reverse effect. Immersion tests show that the quaternary

  11. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  12. Elastic properties of zinc, cadmium, bismuth, thallium, tin, lead and their binary alloys with indium

    International Nuclear Information System (INIS)

    Magomedov, A.M.

    1986-01-01

    Rates of propagation of longitudinal and transverse acoustic waves in samples as well as density of Tl, Pb, Sn, Bi, Cd, Zn and their binary alloys with indium are determined. The results obtained are used for calculation of elasticity constants of these materials. It is stated that concentration dependences of elasticity constants for indium alloys have non-linear character; negative deflection from the additive line is observed

  13. Surface effect theory in binary alloys: surfaces with cut-off

    International Nuclear Information System (INIS)

    Kumar, V.; Silva, C.E.T.G. da; Moran-Lopez, J.L.

    1981-01-01

    A surface effect theory in binary alloys which ore ordered with surfaces with cut-off is presented. This theory is based in a model of pair interaction between first neighbours and includes long and short range effects. The (120) surface with sup(-) (110) monoatomic cut-off and terrace in the (110) planes of an alloy with body centered cubic structure is presented as example. Results for the concentrations in all the different surface sites are given. (L.C.) [pt

  14. Density and atomic volume in liquid Al-Fe and Al-Ni binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Plevachuk, Yu. [Ivan Franko National Univ., Lviv (Ukraine). Dept. of Metal Physics; Egry, I.; Brillo, J.; Holland-Moritz, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany). Inst. fuer Raumsimulation; Kaban, I. [Chemnitz Univ. of Technolgy (Germany). Inst. of Physics

    2007-02-15

    The density of liquid Al-Fe and Al-Ni binary alloys have been determined over a wide temperature range by a noncontact technique combining electromagnetic levitation and optical dilatometry. The temperature and composition dependences of the density are analysed. A negative excess volume correlates with the negative enthalpy of mixing, compound forming ability and chemical short-range ordering in liquid Al-Fe and Al-Ni alloys. (orig.)

  15. Effect of Cu content on wear resistance and mechanical behavior of Ti-Cu binary alloys

    Science.gov (United States)

    Yu, Feifei; Wang, Hefeng; Yuan, Guozheng; Shu, Xuefeng

    2017-04-01

    Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti-Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti-Cu binary alloy was Ti(100- x) Cu x ( x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti-Cu alloys. Nanoindentation testing results showed that the moduli of the Ti-Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.

  16. The study on binary Mg-Co hydrogen storage alloys with BCC phase

    International Nuclear Information System (INIS)

    Zhang Yao; Tsushio, Yoshinori; Enoki, Hirotoshi; Akiba, Etsuo

    2005-01-01

    Novel Mg-Co binary alloys were successfully synthesized by mechanical alloying. These alloys were studied by X-ray diffraction (XRD), transmission electron micrograph (TEM), pressure-composition-isotherms measurements (P-C-T) and differential scanning calorimetry (DSC). Both XRD Rietveld analysis and TEM observation confirmed that these binary alloys contain BCC phase and that the BCC phase existed in the range from 37 to 80 at.% Co. The lattice parameter of the BCC phase increased with the increase of the Co content from 37 to 50 at.%. When the Co content reached 50 at.%, the lattice parameter reached a maximum value, and then turned to decrease gradually with further increase of the Co content. Most of Mg-Co BCC alloys absorbed hydrogen at 373 K under 6 MPa of hydrogen pressure. The Mg 60 Co 40 alloy showed the highest hydrogen absorption capacity, about 2.7 mass% hydrogen. However, all the Mg-Co alloys studied did not desorb hydrogen at 373 K. By means of DSC measurements and in situ XRD analysis, it was found that under 4 MPa hydrogen atmosphere, Mg 50 Co 50 alloy transformed from BCC solid solution to Mg 2 CoH 5 tetragonal hydride at 413 K

  17. Atmospheric corrosion of uranium-carbon alloys; Corrosion atmospherique des alliages uranium-carbone

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, P; Accary, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The authors study the corrosion of uranium-carbon alloys having compositions close to that of the mono-carbide; they show that the extent of the observed corrosion effects increases with the water vapour content of the surrounding gas and they conclude that the atmospheric corrosion of these alloys is due essentially to the humidity of the air, the effect of the oxygen being very slight at room temperature. They show that the optimum conditions for preserving U-C alloys are either a vacuum or a perfectly dry argon atmosphere. The authors have also established that the type of corrosion involved is a corrosion which 'cracks under stress' and is transgranular (it can also be intergranular in the case of sub-stoichiometric alloys). They propose, finally, two hypotheses for explaining this mechanism, one of which is illustrated by the existence, at the fissure interface, of corrosion products which can play the role of 'corners' in the mono-carbide grains. (authors) [French] Les auteurs etudient la corrosion des alliages uranium-carbone de composition voisine du monocarbure; ils montrent que l'importance des effets de la corrosion observee augmente avec la teneur en vapeur d'eau du milieu gazeux ambiant et concluent que la corrosion atmospherique de ces alliages est due essentiellement a l'humidite de l'air, l'action de l'oxygene de l'air etant tres faible a la temperature ambiante. Ils indiquent que les conditions optimales de conservation des alliages U-C sont le vide ou une atmosphere d'argon parfaitement desseches. D'autre part, les auteurs etablissent que le type de corrosion mis en jeu est une corrosion 'fissurante sous contrainte', transgranulaire (pouvant egalement etre intergranulaire dans le cas d'alliages sous-stoechiometriques). Ils proposent enfin deux hypotheses pour rendre compte de ce mecanisme, dont l'une est illustree par la mise en evidence, a l'interface des fissures, de produits de corrosion pouvant jouer le role de 'coins' dans les grains de

  18. Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications

    International Nuclear Information System (INIS)

    Yang Lei; Huang Yuanding; Peng Qiuming; Feyerabend, Frank; Kainer, Karl Ulrich; Willumeit, Regine; Hort, Norbert

    2011-01-01

    Microstructure, mechanical and corrosion properties of binary magnesium–dysprosium (Mg-5, 10, 15, 20 wt.% Dy) alloys were investigated for medical applications. In the as-cast condition, the distribution of Dy is quite inhomogeneous. Mg–10Dy alloy exhibits a moderate tensile and compression yield strength, and the best elongation and corrosion resistance. After T4 (solutionizing) treatment, the distribution of Dy becomes homogeneous. The tensile and compression yield strength of all Mg–Dy alloys decreases. The elongation remains unchanged, while the corrosion resistance is largely improved after T4 treatment.

  19. Mechanical and corrosion properties of binary Mg-Dy alloys for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Lei, E-mail: lei.yang@hzg.de [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Yuanding, Huang; Qiuming, Peng; Feyerabend, Frank; Kainer, Karl Ulrich; Willumeit, Regine; Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany)

    2011-12-15

    Microstructure, mechanical and corrosion properties of binary magnesium-dysprosium (Mg-5, 10, 15, 20 wt.% Dy) alloys were investigated for medical applications. In the as-cast condition, the distribution of Dy is quite inhomogeneous. Mg-10Dy alloy exhibits a moderate tensile and compression yield strength, and the best elongation and corrosion resistance. After T4 (solutionizing) treatment, the distribution of Dy becomes homogeneous. The tensile and compression yield strength of all Mg-Dy alloys decreases. The elongation remains unchanged, while the corrosion resistance is largely improved after T4 treatment.

  20. Analysis of uranium and of some of its compounds and alloys. Copper spectrophotometric determination

    International Nuclear Information System (INIS)

    Copper determination in uranium, uranium oxides (UO 2 , UO 3 , U 3 O 8 ), ammonium diuranate, U-Al-Fe alloy (700 ppm Al and 300 ppm Fe) and U-Mo alloy (1.1 percent Mo) by acid dissolution reduction of copper by hydroxylamine hydrochloride and formation of a complex with diquinolyle-2,2' amyl alcohol (pH value 6 to 7) and spectrophotometry at 550 nm. The method is applicable for copper content between 5 to 40 ppm in respect of uranium contained in the material [fr

  1. Mechanical Characterisation and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants

    Directory of Open Access Journals (Sweden)

    Aritza Brizuela-Velasco

    2017-01-01

    Full Text Available The objective of the study is to characterise the mechanical properties of Ti-15Zr binary alloy dental implants and to describe their biomechanical behaviour as well as their osseointegration capacity compared with the conventional Ti-6Al-4V (TAV alloy implants. The mechanical properties of Ti-15Zr binary alloy were characterised using Roxolid© implants (Straumann, Basel, Switzerland via ultrasound. Their biomechanical behaviour was described via finite element analysis. Their osseointegration capacity was compared via an in vivo study performed on 12 adult rabbits. Young’s modulus of the Roxolid© implant was around 103 GPa, and the Poisson coefficient was around 0.33. There were no significant differences in terms of Von Mises stress values at the implant and bone level between both alloys. Regarding deformation, the highest value was observed for Ti-15Zr implant, and the lowest value was observed for the cortical bone surrounding TAV implant, with no deformation differences at the bone level between both alloys. Histological analysis of the implants inserted in rabbits demonstrated higher BIC percentage for Ti-15Zr implants at 3 and 6 weeks. Ti-15Zr alloy showed elastic properties and biomechanical behaviours similar to TAV alloy, although Ti-15Zr implant had a greater BIC percentage after 3 and 6 weeks of osseointegration.

  2. Phenomenon of discontinuous recrystallization in binary alloys of nickel-tin and copper-indium

    International Nuclear Information System (INIS)

    Cohn, J.A.; Abreu, R.M.D.; Solorzano, G.

    1988-01-01

    Microstructural evidences of grain formation in binary alloys of Ni-8,0%at. Sn and Cu-7,5%at. In are presented. The two materials were annealed for remove the stored energy by any plastic deformation. The motive powers for this phenomenon are discussed, specifically the precipitate/matrix interfaces. (C.G.C.) [pt

  3. Theoretical model of the density of states of random binary alloys

    International Nuclear Information System (INIS)

    Zekri, N.; Brezini, A.

    1991-09-01

    A theoretical formulation of the density of states for random binary alloys is examined based on a mean field treatment. The present model includes both diagonal and off-diagonal disorder and also short-range order. Extensive results are reported for various concentrations and compared to other calculations. (author). 22 refs, 6 figs

  4. Nature of the eigenstates near the mobility edge in random binary alloys

    International Nuclear Information System (INIS)

    Dahmani, L.; Sebbani, M.; Brezini, A.

    1986-06-01

    We present a calculation of the probability of non-diffusion and the localization length in a disordered Cayley tree in the case of a binary alloy distribution for the site energies. Particular attention is paid to the states near the mobility edge E c and numerical data for the critical exponent υ of the localization length are deduced. (author)

  5. PREDICTION OF THE MIXING ENTHALPIES OF BINARY LIQUID ALLOYS BY MOLECULAR INTERACTION VOLUME MODEL

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; D.P.Tao; Z.H.Zhou

    2008-01-01

    The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.

  6. A study of serrated plastic flow behavior in an aluminum-lithium binary alloy

    International Nuclear Information System (INIS)

    Sun, D.L.; Yang, D.Z.; Lei, T.Q.

    1990-01-01

    The serrated plastic flow behavior of an Al-2.73wt%Li alloy at various aging conditions is investigated. The stress-strain curve of the alloy is examined using an Instron machine. The microstructure of the alloy before and after deformation is observed using a transmission electron microscope. It has been shown that the stress-strain curve in the alloy is serrated and both time and/or temperature of aging affect the formation of serrations. The δ' phase (Al 3 Li) which is induced by plastic deformation precipitates along dislocations. The formation mechanism of the serrated stress-strain curve in the Al-Li binary alloy is discussed. (orig.)

  7. Dendritic morphology observed in the solid-state precipitation in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Husain, S.W.; Ahmed, M.S.; Qamar, I. [Dr. A.Q. Khan Research Labs., Rawalpindi (Pakistan)

    1999-06-01

    The precipitation of {gamma}{sub 2} phase in Cu-Al {beta}-phase alloys has been observed to occur in the dendritic morphology. Such morphology is rarely observed in the solid-state transformations. Earlier it was reported that the {gamma} precipitates were formed in the dendritic shape when Cu-Zn {beta}-phase alloys were cooled from high temperature. The characteristics of these two alloy systems have been examined to find the factors promoting the dendritic morphology in the solid-state transformations. Rapid bulk diffusion and fast interfacial reaction kinetics would promote such morphology. The kinetics of atom attachment to the growing interface is expected to be fast when crystallographic similarities exist between the parent phase and the precipitate. The authors have predicted the dendritic morphology in the solid-state precipitation in many binary alloy systems simply based on such crystallographic similarities. These alloys include, in addition to Cu-Al and Cu-Zn, the {beta}-phase alloys in Ag-Li, Ag-Zn, Cu-Ga, Au-Zn, and Ni-Zn systems, {gamma}-phase alloys in Cu-Sn and Ag-Cd systems, and {delta}-phase alloys in Au-Cd system. Of these, the alloys in Ag-Zn, Ni-Zn, Ag-Cd, and Cu-Sn systems were prepared and it was indeed found that the precipitates formed in the dendritic shape.

  8. Postirradiation examination of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Strain, R.V.

    1998-01-01

    Two irradiation test vehicles, designated RERTR-2, were inserted into the Advanced Test reactor in Idaho in August 1997. These tests were designed to obtain irradiation performance information on a variety of potential new, high-density uranium alloy dispersion fuels, including U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru and U-10Mo-0.05Sn: the intermetallic compounds U 2 Mo and U-10Mo-0.-5Sn; the intermetallic compounds U 2 Mo and U 3 Si 2 were also included in the fuel test matrix. These fuels are included in the experiments as microplates (76 mm x 22 mm x 1.3mm outer dimensions) with a nominal fuel volume loading of 25% and irradiated at relatively low temperature (∼100 deg C). RERTR-1 and RERTR-2 were discharged from the reactor in November 1997 and July 1998, respectively at calculated peak fuel burnups of 45 and 71 at %-U 235 Both experiments are currently under examination at the Alpha Gamma Hot Cell Facility at Argonne National Laboratory in Chicago. This paper presents the postirradiation examination results available to date from these experiments. (author)

  9. Nanotubular surface and morphology of Ti-binary and Ti-ternary alloys for biocompatibility

    International Nuclear Information System (INIS)

    Choe, Han-Cheol

    2011-01-01

    The nanotubular surface of Ti-binary and Ti-ternary alloys for biomaterials has been investigated using various methods of surface characterization. Binary Ti-xNb (x = 10, 20, 30, and 40 wt.%) and ternary Ti-30Ta-xNb (x = 3, 7 and 15 wt.%) alloys were prepared by using the high-purity sponges; Ti, Ta and Zr spheres. The nanotube on the alloy surface was formed in 1.0 M H 3 PO 4 with small additions of NaF (0.5 and 0.8 wt.%), using a potentiostat. For cell proliferation, an MC3T3-E1 mouse osteoblast was used. The surface characteristics were investigated using field-emission scanning electron microscope, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Binary Ti-xZr alloys had a lamellar and a needle-like structure, whereas, ternary Ti-30Ta-xZr alloys had equiaxed grains with a lamellar martensitic α' structure. The thickness of the needle-like laths of the α-phase increased as the Zr content increased. The nanotubes formed on the α phase and β phase showed a different size and shape appearance with Zr content. As the Zr content increased from 3 to 40 wt.%, the diameter of the nanotubes in Ti-xZr and Ti-30Ta-xZr alloy decreased from 200 nm to 50 nm. The nanotubular Ti-30Ta-15Zr alloy surface with a diameter of 50 nm provided a good osseointegration; cell proliferation, migration and differentiation.

  10. Electrical Resistivity of Ten Selected Binary Alloy Systems.

    Science.gov (United States)

    1981-04-01

    219. Kaul , S.N., "Anisotropy in Low Field Transverse Magnetoresistivity of Nickel-Copper Alloys at Room Temperature," Indian J. Phys., 49, 143-54...for Use in Determining Temperature Below 1 K," Cryogenics, 329-32, 1965. 251. Srivastava , B.N., Cbatterjee, S., and Sen, S.K., "Thermal and

  11. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1976-01-01

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe 0 . 75 P 0 . 25 , Ni 0 . 75 P 0 . 25 , Co 0 . 75 P 0 . 25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  12. Impact strength of the uranium-6 weight percent niobium alloy between -1980 and +2000C

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1981-09-01

    A study was conducted to determine if a ductile-to-brittle transition wxisted for the uranium-6 wt % niobium (U-6Nb) alloy. Standard V-notched Charpy bars were made from both solution-quenched and solution-quenched and aged U-6Nb alloy and were tested between -198 0 and +200 0 C. It was found that a sharp ductile-brittle transition does not exist for the alloy. A linear relationship existed between test temperature and impact strength, and the alloy retained a significant amount of impact strength even at very low temperatures. 9 figures

  13. Finite-element solidification modelling of metals and binary alloys

    International Nuclear Information System (INIS)

    Mathew, P.M.

    1986-12-01

    In the Canadian Nuclear Fuel Waste Management Program, cast metals and alloys are being evaluated for their ability to support a metallic fuel waste container shell under disposal vault conditions and to determine their performance as an additional barrier to radionuclide release. These materials would be cast to fill residual free space inside the container and allowed to solidify without major voids. To model their solidification characteristics following casting, a finite-element model, FAXMOD-3, was adopted. Input parameters were modified to account for the latent heat of fusion of the metals and alloys considered. This report describes the development of the solidification model and its theoretical verification. To model the solidification of pure metals and alloys that melt at a distinct temperature, the latent heat of fusion was incorporated as a double-ramp function in the specific heat-temperature relationship, within an interval of +- 1 K around the solidification temperature. Comparison of calculated results for lead, tin and lead-tin eutectic melts, unidirectionally cooled with and without superheat, showed good agreement with an alternative technique called the integral profile method. To model the solidification of alloys that melt over a temperature interval, the fraction of solid in the solid-liquid region, as calculated from the Scheil equation, was used to determine the fraction of latent heat to be liberated over a temperature interval within the solid-liquid zone. Comparison of calculated results for unidirectionally cooled aluminum-4 wt.% copper melt, with and without superheat, showed good agreement with alternative finite-difference techniques

  14. Solid state amorphisation in binary systems prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Bonyuet, D.; D'Angelo, L.; Villalba, R.

    2009-01-01

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  15. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  16. Special quasirandom structures for binary/ternary group IV random alloys

    KAUST Repository

    Chroneos, Alexander I.

    2010-06-01

    Simulation of defect interactions in binary/ternary group IV semiconductor alloys at the density functional theory level is difficult due to the random distribution of the constituent atoms. The special quasirandom structures approach is a computationally efficient way to describe the random nature. We systematically study the efficacy of the methodology and generate a number of special quasirandom cells for future use. In order to demonstrate the applicability of the technique, the electronic structures of E centers in Si1-xGex and Si1-x -yGexSny alloys are discussed for a range of nearest neighbor environments. © 2010 Elsevier B.V. All rights reserved.

  17. Corrosion behavior of Zr-x(Nb, Sn and Cu) binary alloys

    International Nuclear Information System (INIS)

    Kim, M. H.; Lee, M. H.; Park, S. Y.; Jung, Y. H.; We, M. Y.

    1999-01-01

    For the development of advanced zirconium alloys for nuclear fuel cladding, the corrosion behaviors of zirconium binary alloys were studied on the Zr-xNb, Zr-xSn, and Zr-xCu alloys. The corrosion test were performed in water at 360 deg C, steam at 400 deg C and LiOH at 360 deg C for 45 days. The corrosion behaviors of Zr-xNb was similar to that of Zr-xCu alloys. However, the corrosion behavior of Zr-xSn was different from Zr-xNb and Zr-xCu. The weight gain of Zr-xNb and Zr-xCu was increased with addition of alloying elements. When Sn is added to Zr matrix in range below the solubility limit, the corrosion resistance decrease with increasing Sn-content, while in the range over solubility limit, Sn has an adverse effect on the corrosion resistance. Especially, Zr-xSn alloys showed higher corrosion resistance than Zr-xNb and Zr-xCu alloys in LiOH solution

  18. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element

    International Nuclear Information System (INIS)

    Delaplace, J.

    1960-09-01

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the γ → β transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the β → α transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form β at ordinary temperatures after quenching from the β and γ regions. The β phase is particularly unstable and changes into needles of the α form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The β phase obtained by quenching from the β phase region is more stable than that obtained by quenching from the γ region. Chromium is a more effective stabiliser of the β phase than is iron. Unfortunately it causes serious surface cracking. The β → α transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct γ → α transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C/s. He has however observed the formation of several martensitic structures. (author) [fr

  19. Fluorimetric determination of uranium in zirconium and zircaloy alloys; Determinacion fluorimetrica de uranio en aleaciones de zirconio y zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Acosta L, E [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1991-05-15

    The objective of this procedure is to determine microquantities of uranium in zirconium and zircaloy alloys. The report also covers the determination of uranium in zirconium alloys and zircaloy in the range from 0.25 to 20 ppm on 1 g of base sample of radioactive material. These limit its can be variable if the size of the used aliquot one is changed for the final determination of uranium. (Author)

  20. Effect of passivation with CO on the electrochemical corrosion behavior of uranium-niobium alloy

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Dai Lianxin; Zou Juesheng; Bai Chaomao; Wang Xiaolin

    2000-01-01

    Electrochemical studies are performed to investigate the corrosion resistance of uranium-niobium alloy before and after passivated with carbon monoxide. Using X-ray photoelectron spectroscopy (XPS), the surface composition of specimen passivated with carbon monoxide is determined. The corrosion resistance of uranium-niobium alloy is well improved because the passive layer (UC/UC x O y + Nb 2 O 5 + UO 2 ) on surface serves as passive film and increases the anodic impedance after the specimen is passivated with carbon monoxide

  1. Development and properties of Ti–In binary alloys as dental biomaterials

    International Nuclear Information System (INIS)

    Wang, Q.Y.; Wang, Y.B.; Lin, J.P.; Zheng, Y.F.

    2013-01-01

    The objective of this study is to investigate the effect of alloying element indium on the microstructure, mechanical properties, corrosion behavior and in vitro cytotoxicity of Ti–In binary alloys, with the addition of 1, 5, 10 and 15 at.% indium. The phase constitution was studied by optical microscopic observation and X-ray diffraction measurements. The mechanical properties were characterized by tension and microhardness tests. Potentiodynamic polarization measurements were employed to investigate the corrosion behavior in artificial saliva solutions with and without fluoride. In vitro cytotoxicity was conducted by using L929 and NIH 3T3 mouse fibroblast cell lines, with commercially pure Ti (CP–Ti, ASTM grade 2) as negative control. All of the binary Ti–In alloys investigated in this work were found to have higher strength and microhardness than CP–Ti. Electrochemical results showed that Ti–In alloys exhibited the same order of magnitude of passivation current densities with CP–Ti in artificial saliva solutions. With the presence of NaF, Ti–10In and Ti–15In showed transpassive behavior and lower current densities at high potentials. All experimental Ti–In alloys showed good cytocompatibility, at the same level as CP–Ti. The addition of indium to titanium was effective on increasing the strength and microhardness, without impairing its good corrosion resistance and cytocompatibility. - Highlights: ► The addition of In into Ti can increase the mechanical property. ► Ti-In alloys exhibited similar passivation behavior with CP-Ti. ► Ti-In alloys had good cytocompatibility comparable with CP-Ti. ► Ti-10In and Ti-15In showed transpassive baheviour with the addition of NaF

  2. Geometric relationships for homogenization in single-phase binary alloy systems

    Science.gov (United States)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1978-01-01

    A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship.

  3. Sufficient condition for generation of multiple solidification front in one-dimensional solidification of binary alloys

    International Nuclear Information System (INIS)

    Bobula, E.; Kalicka, Z.

    1981-10-01

    In the paper we consider the one-dimensional solidification of binary alloys in the finite system. The authors present the sufficient condition for solidification in the liquid in front of the moving solid-liquid interface. The effect may produce a fluctuating concentration distributin in the solid. The convection in the liquid and supercooling required for homogeneous nucleation are omitted. A local-equilibrium approximation at the liquid-solid interface is supposed. (author)

  4. Obtention of uranium-molybdenum alloy ingots technique to avoid carbon contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Paula, Joao Bosco de; Reis, Sergio C.; Brina, Jose Giovanni M.; Faeda, Kelly Cristina M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The replacement of high enriched uranium (U{sup 235} > 85 wt%) by low enriched uranium (U{sup 235} < 20wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Among the several uranium alloys investigated since then, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloy is being performed at the Nuclear Technology Development Centre (CDTN) and also at IPEN. The carbon contamination of the alloy is one of the great concerns during the melting process. It was observed that U-Mo alloy is more critical considering carbon contamination when using graphite crucibles. Alternative melting technique was implemented at CDTN in order to avoid carbon contamination from graphite crucible using Yttria stabilized ZrO{sub 2} crucibles. Ingots with low carbon content and good internal quality were obtained. (author)

  5. Chemical leaching of rapidly solidified Al-Si binary alloys

    International Nuclear Information System (INIS)

    Yamauchi, I.; Takahara, K.; Tanaka, T.; Matsubara, K.

    2005-01-01

    Various particulate precursors of Al 100-x Si x (x = 5-12) alloys were prepared by a rapid solidification process. The rapidly solidified structures of the precursors were examined by XRD, DSC and SEM. Most of Si atoms were dissolved into the α-Al(fcc) phase by rapid solidification though the solubility of Si in the α-Al phase is negligibly small in conventional solidification. In the case of 5 at.% Si alloy, a single α-Al phase was only formed. The amount of the primary Si phase increased with increase of Si content for the alloys beyond 8 at.% Si. Rapid solidification was effective to form super-saturated α-Al precursors. These precursors were chemically leached by using a basic solution (NaOH) or a hydrochloric acid (HCl) solution. All Al atoms were removed by a HCl solution as well as a NaOH solution. Granules of the Si phase were newly formed during leaching. The specific surface area was about 50-70 m 2 /g independent of Si content. The leaching behavior in both solutions was slightly different. In the case of a NaOH solution, the shape of the precursor often degenerated after leaching. On the other hand, it was retained after leaching by a HCl solution. Fine Si particles precipitated in the α-Al phase by annealing of as-rapidly solidified precursors at 773 K for 7.2 x 10 3 s. In this case, it was difficult to obtain any products by NaOH leaching, but a few of Si particles were obtained by HCl leaching. Precipitated Si particles were dissolved by the NaOH solution. The X-ray diffraction patterns of leached specimens showed broad lines of the Si phase and its lattice constant was slightly larger than that of the pure Si phase. The microstructures of the leached specimens were examined by transmission electron microscopy. It showed that the leached specimens had a skeletal structure composed of slightly elongated particles of the Si phase and quite fine pores. The particle size was about 30-50 nm. It was of comparable order with that evaluated by Scherer

  6. Reducing thermal conductivity of binary alloys below the alloy limit via chemical ordering

    International Nuclear Information System (INIS)

    Duda, John C; English, Timothy S; Jordan, Donald A; Norris, Pamela M; Soffa, William A

    2011-01-01

    Substitutional solid solutions that exist in both ordered and disordered states will exhibit markedly different physical properties depending on their exact crystallographic configuration. Many random substitutional solid solutions (alloys) will display a tendency to order given the appropriate kinetic and thermodynamic conditions. Such order-disorder transitions will result in major crystallographic reconfigurations, where the atomic basis, symmetry, and periodicity of the alloy change dramatically. Consequently, the dominant scattering mechanism in ordered alloys will be different than that in disordered alloys. In this study, we present a hypothesis that ordered alloys can exhibit lower thermal conductivities than their disordered counterparts at elevated temperatures. To validate this hypothesis, we investigate the phononic transport properties of disordered and ordered AB Lennard-Jones alloys via non-equilibrium molecular dynamics and harmonic lattice dynamics calculations. It is shown that the thermal conductivity of an ordered alloy is the same as the thermal conductivity of the disordered alloy at ∼0.6T melt and lower than that of the disordered alloy above 0.8T melt .

  7. Surface segregation in binary alloy first wall candidate materials

    International Nuclear Information System (INIS)

    Gruen, D.M.; Krauss, A.R.; Mendelsohn, M.H.; Susman, S.; Argonne National Lab., IL

    1982-01-01

    We have been studying the conditions necessary to produce a self-sustaining stable lithium monolayer on a metal substrate as a means of creating a low-Z film which sputters primarily as secondary ions. It is expected that because of the toroidal field, secondary ions originating at the first wall will be returned and contribute little to the plasma impurity influx. Aluminum and copper have, because of their high thermal conductivity and low induced radioactivity, been proposed as first wall candidate materials. The mechanical properties of the pure metals are very poorly suited to structural applications and an alloy must be used to obtain adequate hardness and tensile strength. In the case of aluminum, mechanical properties suitable for aircraft manufacture are obtained by the addition of a few at% Li. In order to investigate alloys of a similar nature as candidate structural materials for fusion machines we have prepared samples of Li-doped aluminum using both a pyro-metallurgical and a vapor-diffusion technique. The sputtering properties and surface composition have been studied as a function of sample temperature and heating time, and ion beam mass. The erosion rate and secondary ion yield of both the sputtered Al and Li have been monitored by secondary ion mass spectroscopy and Auger analysis providing information on surface segregation, depth composition profiles, and diffusion rates. The surface composition ahd lithium depth profiles are compared with previously obtained computational results based on a regular solution model of segregation, while the partial sputtering yields of Al and Li are compared with results obtained with a modified version of the TRIM computer program. (orig.)

  8. Microstructural investigation of as-cast uranium rich U–Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuting, E-mail: zhangyuting@caep.cn [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China); Wang, Xin [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); Zeng, Gang [Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan (China); Wang, Hui [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); Jia, Jianping [Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan (China); Sheng, Liusi [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China); Zhang, Pengcheng, E-mail: zpc113@sohu.com [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China)

    2016-04-01

    The present study evaluates the microstructure in as-cast uranium rich U–Zr alloys, an important subsystem of U–Pu–Zr ternary metallic nuclear reactor fuel, as a function of the Zr content, from 2wt.% to 15wt.%Zr. It has been previously suggested that the unique intermetallic compound δ phase in U–Zr alloys is only present in as-cast U–Zr alloys with a Zr content exceeding 10wt.%Zr. However, our analysis of transmission electron microscopy (TEM) data shows that the δ phase is common to all as-cast alloys studied in this work. Furthermore, specific coherent orientation relationship is found between the α and δ phases, consistent with previous findings, and a third variant is discovered in this paper. - Highlights: • Initially, lattice parameter of as-cast U–Zr alloys decrease with the increasing Zr content, and then increase. • XRD data show the presence of δ-UZr{sub 2} phase in as-cast U–Zr alloys with a Zr content of more than 8wt.% Zr. • Finding δ-UZr{sub 2} phase exists in all as-cast uranium rich U–Zr alloys, even for alloys with a lean Zr content. • Three kinds of preferential orientations of the δ phase grow.

  9. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A., E-mail: sabriggs2@wisc.edu [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Barr, Christopher M. [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pakarinen, Janne [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); SKC-CEN Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Mamivand, Mahmood [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Hattar, Khalid [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Morgan, Dane D. [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Taheri, Mitra [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Sridharan, Kumar [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States)

    2016-10-15

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni{sup 4+} ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy. - Highlights: • Binary Ni-Cr alloys were irradiated with protons or Ni ions at 400 and 500 °C. • Higher irradiation temperatures yield increased size, decreased density of defects. • Hypothesize that varying Cr content affects interstitial binding energy. • Fitting CD models for loop nucleation to data supports this hypothesis.

  10. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    Science.gov (United States)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  11. Model many-body Stoner Hamiltonian for binary FeCr alloys

    Science.gov (United States)

    Nguyen-Manh, D.; Dudarev, S. L.

    2009-09-01

    We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.

  12. Optimization method for the study of the properties of Al-Sn binary liquid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, G.K. [University Department of Physics, T.M. Bhagalpur University, Bhagalpur (India); Pulchowk Campus, IOE, Tribhuvan University, Lalitpur (Nepal); Singh, B.K. [University Department of Physics, T.M. Bhagalpur University, Bhagalpur (India); Jha, I.S. [M.M.A.M. Campus, Tribhuvan University, Biratnagar (Nepal); Singh, B.P. [University Department of Physics, T.M. Bhagalpur University, Bhagalpur (India); Adhikari, D., E-mail: adksbdev@yahoo.com [M.M.A.M. Campus, Tribhuvan University, Biratnagar (Nepal)

    2017-06-01

    The best fit value of order energy parameter (W) has been estimated over the entire range of concentration in Al-Sn binary liquid alloy at a specified temperature to determine the thermodynamic properties and concentration fluctuations, obtained by a theoretical formalism in which the combined effect of size ratio, entropic and enthalpic effect is considered. The values of W at different temperatures have been determined by finding the temperature derivative of W which are then used for the optimization procedure in order to determine the corresponding values of excess free energy of mixing, partial excess free energy of mixing and activity of the components involved in the alloy. These parameters have been used to calculate the concentration fluctuations in long wavelength limit {S_c_c(0)} at different temperatures over the entire range of concentration which predict the stability of the alloy at different temperatures.

  13. A review of the environmental behavior of uranium derived from depleted uranium alloy penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Erikson, R.L.; Hostetler, C.J.; Divine, J.R.; Price, K.R.

    1990-01-01

    The use of depleted uranium (DU) penetrators as armor-piercing projectiles in the field results in the release of uranium into the environment. Elevated levels of uranium in the environment are of concern because of radioactivity and chemical toxicity. In addition to the direct contamination of the soil with uranium, the penetrators will also chemically react with rainwater and surface water. Uranium may be oxidized and leached into surface water or groundwater and may subsequently be transported. In this report, we review some of the factors affecting the oxidation of the DU metal and the factors influencing the leaching and mobility of uranium through surface water and groundwater pathways, and the uptake of uranium by plants growing in contaminated soils. 29 refs., 10 figs., 3 tabs.

  14. Preparation, heat treatment, and mechanical properties of the uranium-5 weight percent chromium eutectic alloy

    International Nuclear Information System (INIS)

    Townsend, A.B.

    1980-10-01

    The eutectic alloy of uranium-5 wt % chromium (U-5Cr) was prepared from high-purity materials and cast into 1-in.-thick ingots. This material was given several simple heat treatments, the mechanical properties of these heat-treated samples were determined; and the microstructure was examined. Some data on the melting point and transformation temperatures were obtained

  15. Determination of crystalline texture in aluminium - uranium alloys by neutron diffraction

    International Nuclear Information System (INIS)

    Azevedo, A.M.V. de.

    1978-01-01

    Textures of hot-rolled aluminum-uranium alloys and of aluminum were determined by neutron diffraction. Sheets of alloys containing 8.0, 21.5 and 23.7 wt pct U, as well as pure aluminum, were obtained in a stepped rolling process, 15% reduction each step, 75% total reduction. During the rolling the temperature was 600 0 C. Alloys with low uranium contents are two phase systems in which an intermetallic compound UAl 4 , orthorhombic, is dispersed in a pure aluminum matrix. The addition of a few percent of Si in such alloys leads to the formation of UAl 3 , simple cubic, instead of UAl 4 . The Al -- 23.7 wt pct U alloy was prepared with 2,2 wt pct of Si. The results indicate that the texture of the matrix is more dependent on the uranium concentration than on the texture of the intermetallic phases. An improvement in the technique applied to texture measurements by using a sample fully bathed in the neutron beam is also presented. The method takes advantage of the low neutron absorption of the studied materials as well as of the neglibible variation in the multiple scattering which occurs in a conveniently shaped sample having a weakly developed texture. (Author) [pt

  16. Effects of Surface Structure and Chemical Composition of Binary Ti Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ok-Sung Han

    2016-07-01

    Full Text Available Binary Ti alloys containing Fe, Mo, V and Zr were micro-arc oxidized and hydrothermally treated to obtain micro- and nano-porous layers. This study aimed to investigate cell differentiation on micro and micro/nanoporous oxide layers of Ti alloys. The properties of the porous layer formed on Ti alloys were characterized by X-ray diffraction pattern, microstructural and elemental analyses and inductively coupled plasma mass spectrometry (ICP-MS method. The MTT assay, total protein production and alkaline phosphatase (ALPase activity were evaluated using human osteoblast-like cells (MG-63. Microporous structures of micro-arc oxidized Ti alloys were changed to micro/nanoporous surfaces after hydrothermal treatment. Micro/nanoporous surfaces consisted of acicular TiO2 nanoparticles and micron-sized hydroxyapatite particles. From ICP and MTT tests, the Mo and V ions released from porous oxide layers were positive for cell viability, while the released Fe ions were negative for cell viability. Although the micro/nanoporous surfaces led to a lower total protein content than the polished and microporous Ti surfaces after cell incubation for 7 days, they caused higher ALPase activities after 7 days and 14 days of incubation except for V-containing microporous surfaces. The micro/nanoporous surfaces of Ti alloys were more efficient in inducing MG-63 cell differentiation.

  17. Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Mitlin, D. [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, T6G 2V4, Edmonton, Alberta (Canada); Poirier, E.; Fritzsche, H. [National Research Council Canada, SIMS, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2010-03-15

    This study focused on hydrogen sorption properties of 1.5 {mu}m thick Mg-based films with Al, Fe and Ti as alloying elements. The binary alloys are used to establish as baseline case for the ternary Mg-Al-Ti, Mg-Fe-Ti and Mg-Al-Fe compositions. We show that the ternary alloys in particular display remarkable sorption behavior: at 200 C the films are capable of absorbing 4-6 wt% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable over cycling for the Mg-Al-Ti and Mg-Fe-Ti alloys. Even after 100 absorption/desorption cycles, no degradation in capacity or kinetics is observed. For Mg-Al-Fe, the properties are clearly worse compared to the other ternary combinations. These differences are explained by considering the properties of all the different phases present during cycling in terms of their hydrogen affinity and catalytic activity. Based on these considerations, some general design principles for Mg-based hydrogen storage alloys are suggested. (author)

  18. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  19. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  20. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.

    Science.gov (United States)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian

    2013-12-01

    The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong β stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility. © 2013 Elsevier Ltd. All rights reserved.

  1. Glass forming ability: Miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Chemical, Materials and Biomolecular Engineering, 191 Auditorium Road, University of Connecticut, Storrs 06269, CT (United States)], E-mail: jbasu@engr.uconn.edu; Murty, B.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ranganathan, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2008-10-06

    Miedema's approach has been useful in determining the glass forming composition range for a particular alloy system. The concept of mixing enthalpy and mismatch entropy can be used in order to quantify Inoue's criteria of bulk metallic glass formation. In the present study, glass forming composition range has been determined for different binary and ternary (Zr, Ti, Hf)-(Cu, Ni) alloys based on the mixing enthalpy and mismatch entropy calculations. Though copper and nickel appear next to each other in the periodic table, the glass forming ability of the copper and nickel bearing alloys is different. Thermodynamic analysis reveals that the glass forming behaviour of Zr and Hf is similar, whereas it is different from that of Ti. The smaller atomic size of Ti and the difference in the heat of mixing of Ti, Zr, Hf with Cu and Ni leads to the observed changes in the glass forming behaviour. Enthalpy contour plots can be used to distinguish the glass forming compositions on the basis of the increasing negative enthalpy of the composition. This method reveals the high glass forming ability of binary Zr-Cu, Hf-Cu, Hf-Ni systems over a narrow composition range.

  2. Mechanical properties of some binary, ternary and quaternary III-V compound semiconductor alloys

    International Nuclear Information System (INIS)

    Navamathavan, R.; Arivuoli, D.; Attolini, G.; Pelosi, C.; Choi, Chi Kyu

    2007-01-01

    Vicker's microindentation tests have been carried out on InP/InP, GaAs/InP, InGaAs/InP and InGaAsP/InP III-V compound semiconductor alloys. The detailed mechanical properties of these binary, ternary and quaternary epilayers were determined from the indentation experiments. Microindentation studies of (1 1 1) GaAs/InP both A and B faces show that the hardness value increases with load and attains a constant for further increase in load and the microhardness values were found to lie between 3.5 and 4.0 GPa. The microhardness values of InGaAs/InP epilayers with different thickness were found to lie between 3.93 and 4.312 GPa. The microhardness values of InGaAsP/InP with different elemental composition were found to lie between 5.08 and 5.73 GPa. The results show that the hardness of the quaternary alloy drastically increases, the reason may be that the increase in As concentration hardens the lattice when phosphorous concentration is less and hardness decreases when phosphorous is increased. It was interestingly observed that the hardness value increases as we proceed from binary to quaternary III-V compound semiconductor alloys

  3. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    Science.gov (United States)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  4. Study of uranium-plutonium alloys containing from 0 to 20 peri cent of plutonium (1963)

    International Nuclear Information System (INIS)

    Paruz, H.

    1963-05-01

    The work is carried out on U-Pu alloys in the region of the solid solution uranium alpha and in the two-phase region uranium alpha + the zeta phase. The results obtained concern mainly the influence of the addition of plutonium on the physical properties of the uranium (changes in the crystalline parameters, the density, the hardness) in the region of solid solution uranium alpha. In view of the discrepancies between various published results as far as the equilibrium diagram for the system U-Pu is concerned, an attempt was made to verify the extent of the different regions of the phase diagram, in particular the two phased-region. Examinations carried out on samples after various thermal treatments (in particular quenching from the epsilon phase and prolonged annealings, as well as a slow cooling from the epsilon phase) confirm the results obtained at Los Alamos and Harwell. (author) [fr

  5. X-ray topography of uranium alloys; Topographie aux rayons X d'alliages d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Le Naour, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A description of the structure of uranium alloys has been made using the data obtained by X-ray diffraction techniques derived from the Berg-Barrette method. In the first.stage the use of a monochromatic beam of X-rays having a very low divergence makes it possible to obtain very reproducible and exact numerical data concerning the grain and sub-grain sizes, and also the distribution of the sizes. It is thereby possible to detect any disorientation greater than 30 seconds of arc.The results obtained have been completed using a variable incidence device which- gives simultaneously an overall picture of a grain and an idea of the importance of internal disorientations; a more rigorous measurement of this latter parameter is then deduced from the Debye-Scherrer diagrams obtained using a fine-focus equipment. Observations are carried out on various one-phase or two phase uranium alloys which are compared successively to technical and to high-purity uranium. It is shown that the use of X-ray topographies, although limited in certain respects, allows a quantitative characterization of the structure. (author) [French] Une description des structures d'alliages d'uranium a ete faite a partir des donnees fournies par des techniques de diffraction de rayons X derivees de la methode de BERG--BARRETT. Dans une premiere etape, l'utilisation d'un faisceau de rayons X monochromatique et de tres faible divergence permet d'obtenir des donnees numeriques precises et tres reproductibles, relatives aux dimensions des grains, des sous-grains et a la distribution de ces grandeurs. Toute desorientation superieure a 30 secondes d'arc peut ainsi etre decelee. Les resultats obtenus ont ete completes en utilisant un montage a incidence variable, qui fournit simultanement l'image globale d'un grain et l'ordre de grandeur des desorientations internes; une mesure plus rigoureuse de ce dernier parametre se deduit ensuite de diagrammes DEBYE SHERRER realises avec un montage a foyer fin. Des

  6. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  7. Homogeneous nucleation ahead of the solid-liquid interface during rapid solidification of binary alloys

    International Nuclear Information System (INIS)

    Smith, P.M.; Elmer, J.W.

    1996-01-01

    In recent rapid solidification experiments on Al-5%Be alloys, a Liquid Phase Nucleation (LPN) model was developed to explain the formation of periodic arrays of randomly-oriented Be-rich particles in an Al-rich matrix. In the LPN model, Be droplets were assumed to nucleate in the liquid ahead of the solid-liquid interface, but no justification for this was given. Here the authors present a model which considers the geometric constraints (imposed by proximity to the interface) on the number of solute atoms available to form a nucleus. Calculations based on this model predict that nucleation of second-phase particles can be most likely a short distance ahead of the interface in immiscible binary systems such as Al-Be. As part of the nucleation calculations, a semi-empirical method of calculating solid-liquid surface tensions in binary systems was developed, and is presented in the Appendix

  8. Antagonism in the extraction of uranium(VI) by the binary mixture of PC88A and benzimidazole

    International Nuclear Information System (INIS)

    Mukherjee, A.; Kamila, S.; Chakravortty, V.

    1999-01-01

    Extraction studies of uranium(VI) by the binary mixture of PC88A and benzimidazole show an antagonistic behavior in the concentration range 10 -5 -10 -6 M of PC88A and 0.005M of benzimidazole. Antagonism is observed due to the deprotonation of PC88A by benzimidazole forming an adduct resulting in the virtual removal of PC88A from the system. (author)

  9. An empirical relationship for homogenization in single-phase binary alloy systems

    Science.gov (United States)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1979-01-01

    A semiempirical formula is developed for describing the extent of interaction between constituents in single-phase binary alloy systems with planar, cylindrical, or spherical interfaces. The formula contains two parameters that are functions of mean concentration and interface geometry of the couple. The empirical solution is simple, easy to use, and does not involve sequential calculations, thereby allowing quick estimation of the extent of interactions without lengthy calculations. Results obtained with this formula are in good agreement with those from a finite-difference analysis.

  10. Localization in presence of magnetic field in 2-D disordered binary alloys

    International Nuclear Information System (INIS)

    Brezini, A.; Zekri, N.

    1993-08-01

    The conductance fluctuations in the presence of a magnetic field B for a disordered binary alloy are numerically examined. The Hamiltonian is quite different from the Anderson model. We calculate the participation ration for finite systems in the whole range spectrum to discriminate the nature of eigenstates. We then evaluate the conductivity from the usual Kubo Greenwood formula. The fluctuations are therefore extracted as a function of energy for a given value of B and system size L. The data predict a delocalization of the eigenstates due to the magnetic field and a factor of 2 reduction of the universal conductance fluctuations in agreement with the theory. (author). 28 refs, 3 figs

  11. Energy of formation for AgIn liquid binary alloys along the line of phase separation

    CERN Document Server

    Bhuiyan, G M; Ziauddin-Ahmed, A Z

    2003-01-01

    We have investigated the energy of formation for AgIn liquid binary alloys along the solid-liquid phase separation line. A microscopic theory based on the first order perturbation has been applied. The interionic interaction and a reference liquid are the fundamental components of the theory. These are described by a local pseudopotential and the hard sphere liquids, respectively. The results of calculations reveal a characteristic feature that the energy of formation becomes minimum at the equiatomic composition, and thus indicates maximal mix-ability at this concentration. The energy of formation at a particular thermodynamic state that is at T 1173 K predicts the experimental trends fairly well.

  12. Variations of Microsegregation and Second Phase Fraction of Binary Mg-Al Alloys with Solidification Parameters

    Science.gov (United States)

    Paliwal, Manas; Kang, Dae Hoon; Essadiqi, Elhachmi; Jung, In-Ho

    2014-07-01

    A systematic experimental investigation on microsegregation and second phase fraction of Mg-Al binary alloys (3, 6, and 9 wt pct Al) has been carried out over a wide range of cooling rates (0.05 to 700 K/s) by employing various casting techniques. In order to explain the experimental results, a solidification model that takes into account dendrite tip undercooling, eutectic undercooling, solute back diffusion, and secondary dendrite arm coarsening was also developed in dynamic linkage with an accurate thermodynamic database. From the experimental data and solidification model, it was found that the second phase fraction in the solidified microstructure is not determined only by cooling rate but varied independently with thermal gradient and solidification velocity. Lastly, the second phase fraction maps for Mg-Al alloys were calculated from the solidification model.

  13. Computer simulation for the effect of coherent strain on the precipitation progress of binary alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has obvious effect on the coherent two-phase morphology and precipitation mechanism. With the increase of coherent strain energy, the particles shape changes from the randomly distributed equiaxed particels to elliptical precipitate shapes, their arrangement orientation increases; in the late stage of precipitation, the particle arrangement presents obvious directionality along the [10] and [01] directions, and the precipitation mechanism of alloy changes from typical spinodal decomposition mechanism to the mixture process which possesses the characteristics of both non-classical nucleation growth and spinodal decomposition mechanisms.

  14. Analytical model of radiation-induced precipitation at the surface of dilute binary alloy

    Science.gov (United States)

    Pechenkin, V. A.; Stepanov, I. A.; Konobeev, Yu. V.

    2002-12-01

    Growth of precipitate layer at the foil surface of an undersaturated binary alloy under uniform irradiation is treated analytically. Analytical expressions for the layer growth rate, layer thickness limit and final component concentrations in the matrix are derived for coherent and incoherent precipitate-matrix interfaces. It is shown that the high temperature limit of radiation-induced precipitation is the same for both types of interfaces, whereas layer thickness limits are different. A parabolic law of the layer growth predicted for both types of interfaces is in agreement with experimental data on γ '-phase precipitation at the surface of Ni-Si dilute alloys under ion irradiation. Effect of sputtering on the precipitation rate and on the low temperature limit of precipitation under ion irradiation is discussed.

  15. Structure and electrical resistivity of alkali-alkali and lithium-based liquid binary alloys

    International Nuclear Information System (INIS)

    Mishra, A.K.; Mukherjee, K.K.

    1990-01-01

    Harmonic model potential, developed and used for simple metals is applied here to evaluate hardsphere diameters, which ensure minimum interionic pair potential for alkali-alkali (Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs) and lithium-based (Li-Na, Li-Mg, Li-In, Li-Tl) liquid binary alloys as a function of composition for use in the determination of their partial structure factors. These structure factors are then used to calculate electrical resistivities of alloys considered. The computed values of electrical resistivity as a function of composition agree both, in magnitude and gradient reasonably well with experimental values in all cases except in Cs systems, where the disagreement is appreciable. (author)

  16. Obtention of uranium-molybdenum alloy ingots microstructure and phase characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Braga, Daniel M.; Paula, Joao Bosco de; Brina, Jose Giovanni M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: bragadm@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The replacement of high enriched uranium (U-{sup 235} > 85 wt%) by low enriched uranium (U-{sup 235} < 20 wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Several uranium alloys that fill this requirement has been investigated since then. Among these alloys, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloys is being performed at the Nuclear Technology Development Centre (CDTN) and also at the Institute of Energetic and Nuclear Research - IPEN. U-{sup 10}Mo ingots were melted in an induction furnace with protective argon atmosphere. The microstructure of the ingots were characterized through optical and scanning electronic microscopy in the as cast and heat treated conditions. Energy Dispersive Spectrometry and X-Ray Diffraction were used as characterization techniques for elemental analysis and phases determination. It was confirmed the presence of metastable gamma-phase in the as cast condition, surrounded by hypereutectoid alpha-phase (uranium-rich phase), as well as a pearlite-like constituent, composed by alternated lamellas of U{sub 2}Mo compound and alpha-phase, in the heat treated condition. (author)

  17. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  18. Stress corrosion cracking of uranium--niobium alloys

    International Nuclear Information System (INIS)

    Magnani, N.J.

    1978-03-01

    The stress corrosion cracking behavior of U-2 1 / 4 , 4 1 / 2 , 6 and 8 wt % Nb alloys was evaluated in laboratory air and in aqueous Cl - solutions. Thresholds for crack propagation were obtained in these environments. The data showed that Cl - solutions are more deleterious than air environments. Tests were also conducted in pure gases to identify the species in the air responsible for cracking. These data showed the primary stress corrodent is water vapor for the most reactive alloy, U-2 1 / 4 % Nb, while O 2 is primarily responsible for cracking in the more corrosion resistant alloys, U-6 and 8% Nb. The 4 1 / 2 % alloy was found to be susceptible in both H 2 O and O 2 environments

  19. Dilatometric studies on uranium-zirconium-fissium alloy

    International Nuclear Information System (INIS)

    Banerjee, Aparna; Kulkarni, S.G.; Kulkarni, R.V.; Kaity, Santu

    2012-01-01

    The knowledge of thermophysical properties of U-Zr alloys are important for modelling fuel behaviour in nuclear reactor. Fissium is an alloy that approximates the equilibrium concentration of the metallic fission product elements left by metallurgical reprocessing. Coefficient of thermal expansion (CTE) data is needed to calculate stresses occurring in fuel and cladding with change in temperature. Coefficient of thermal expansion can be utilized to determine the change of alloy density as a function of temperature. In the present investigation, thermophysical properties like coefficient of thermal expansion and density were determined using dilatometer for U-20wt.%Zr-5wt.%Fs alloy prepared by arc melting process. The microstructural investigation was carried out using scanning electron microscope

  20. Contribution towards the study of β→α transformation in uranium and its alloys (1962)

    International Nuclear Information System (INIS)

    Aubert, H.

    1962-05-01

    The kinetics of the transformation of uranium alloys containing 0.5 - 0.75 - 1.0 - 1.5 and 3 atoms per cent have been studied. The influence of heat treatment before decomposition has been discussed. The study of the transformation characteristics such as kinetics, residual phases, phenomena connected with the coherence between phases, reversibility below the equilibrium temperature, shows the following mechanisms exhibited during the decomposition of the β phase on lowering the temperature: 1 ) eutectoid, 2) bainitic, 3) martensitic. The study of the TTT diagrams of alloys containing decreasing percentages of chromium indicates that the unalloyed uranium transforms without maintaining the coherence above 600 deg. C, where as at lower temperatures the transformation is mainly martensitic. The various alloying elements can be characterised by their influence on the three TTT curves corresponding to the three possible transformation mechanisms. The ability of the uranium alloys to alpha grain refining during isothermal decomposition or ambient temperature quenching is directly connected with the characteristics of the TTT diagrams and especially to the mode of bainitic transformation. (author) [fr

  1. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures; Desenvolvimento de um combustivel de alta densidade a base das ligas uranio-molibdenio com alta compatibilidade em altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de

    2008-07-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature

  2. Theory of surface enrichment in disordered monophasic binary alloys. Numerical computations for Ag-Au alloys

    NARCIS (Netherlands)

    Santen, van R.A.; Boersma, M.A.M.

    1974-01-01

    The regular solution model is used to compute the surface enrichment in the (111)- and (100)-faces of silver-gold alloys. Surface enrichment by silver is predicted to increase if the surface plane becomes less saturated and decreases if one raises the temperature. The possible implications of these

  3. Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys

    International Nuclear Information System (INIS)

    Swaminathan, Srinivasan; Spiegel, Michael

    2007-01-01

    Segregation and selective oxidation phenomena of minor alloying elements during annealing of steel sheets lead to the formation of bare spots after hot dip galvanizing. In order to understand the influence of common alloying elements on the surface chemistry after annealing, model alloys of binary (Fe-2Si, Fe-2Mn and Fe-0.8Cr), ternary (Fe-2Mn-2Si, Fe-2Mn-0.8Cr and Fe-2Si-0.8Cr) and quarternary (Fe-2Mn-2Si-0.8Cr) systems were investigated. The specimens were annealed for 60 s at 820 deg. C in N 2 -5% H 2 gas atmospheres with different dew points -80 and -40 deg. C, respectively. Surface chemistry of the annealed specimens was obtained by using X-ray photoelectron spectroscopy (XPS). The field emission scanning electron microscopy (FE-SEM) was used to view surface morphology. At low dew point -80 deg. C, apart from the thermodynamical calculations such as solubility product of oxides and their critical solute concentrations, kinetics play a decisive role on the selective oxidation, i.e. oxygen competition. As expected, the amount of external selective oxidation of alloying elements are well pronounced at higher dew point -40 deg. C. An attempt has been made to explain the dominant process of Si and Mn on Cr-oxidation and segregation. It is observed that annealing of quarternary system at higher dew point shifts the Cr-oxidation from external to internal

  4. Simultaneous study of sputtering and secondary ion emission of binary Fe-based alloys

    International Nuclear Information System (INIS)

    Riadel, M.M.; Nenadovic, T.; Perovic, B.

    1976-01-01

    The sputtering and secondary ion emission of binary Fe-based alloys of simple phase diagrams have been studied simultaneously. A series FeNi and FeCr alloys in the concentration range of 0-100% have been bombarded by 4 keV Kr + ions in a secondary ion mass spectrometer. The composition of the secondary ions has been analysed and also a fraction of the sputtered material has been collected and analysed by electron microprobe. The surface topography of the etched samples has been studied by scanning electron microscope. The relative sputtering coefficients of the metals have been determined, and the preferential sputtering of the alloying component of lower S have been proved. The etching pictures of samples are in correlation with the sputtering rates. Also the degree of secondary ionization has been calculated from the simultaneously measured ion emission and sputtering data. α + shows the change in the concentration range of the melting point minimum. This fact emphasizes the connection between the physico-chemical properties of alloys and their secondary emission process. From the dependence of the emitted homo- and hetero-cluster ions, conclusions could be shown concerning the production mechanism of small metallic aggregates

  5. Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, Srinivasan [High Temperature Reactions Group, Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany)]. E-mail: s.swaminathan@mpie.de; Spiegel, Michael [High Temperature Reactions Group, Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany)

    2007-03-15

    Segregation and selective oxidation phenomena of minor alloying elements during annealing of steel sheets lead to the formation of bare spots after hot dip galvanizing. In order to understand the influence of common alloying elements on the surface chemistry after annealing, model alloys of binary (Fe-2Si, Fe-2Mn and Fe-0.8Cr), ternary (Fe-2Mn-2Si, Fe-2Mn-0.8Cr and Fe-2Si-0.8Cr) and quarternary (Fe-2Mn-2Si-0.8Cr) systems were investigated. The specimens were annealed for 60 s at 820 deg. C in N{sub 2}-5% H{sub 2} gas atmospheres with different dew points -80 and -40 deg. C, respectively. Surface chemistry of the annealed specimens was obtained by using X-ray photoelectron spectroscopy (XPS). The field emission scanning electron microscopy (FE-SEM) was used to view surface morphology. At low dew point -80 deg. C, apart from the thermodynamical calculations such as solubility product of oxides and their critical solute concentrations, kinetics play a decisive role on the selective oxidation, i.e. oxygen competition. As expected, the amount of external selective oxidation of alloying elements are well pronounced at higher dew point -40 deg. C. An attempt has been made to explain the dominant process of Si and Mn on Cr-oxidation and segregation. It is observed that annealing of quarternary system at higher dew point shifts the Cr-oxidation from external to internal.

  6. Thermophysical property of undercooled liquid binary alloy composed of metallic and semiconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H P; Wei, B, E-mail: bbwei@nwpu.edu.c [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2009-02-07

    The thermophysical properties of the liquid Ni-Si binary alloy system were investigated by the molecular dynamics method. The properties investigated include density, excessive volume, enthalpy, mixing enthalpy and specific heat at both superheated and undercooled states. It is found that the density decreases with an increase in the Si content, and so do the temperature coefficients. If the Si content is smaller than 30%, the density changes linearly with the temperature. If it is larger than 30%, the density is a quadratic function of the temperature. The simulated enthalpies of different composition alloys increase linearly with a rise in temperature. This indicates that the specific heats of Ni-Si alloys change little with temperature. The specific heat versus composition first decreases to a minimum value at 50% Si, then experiences a rise to a maximum value at 90% Si and finally falls again. According to the excessive volume and mixing enthalpy, it can be deduced that the Ni-Si alloy system seriously deviates from the ideal solution. Moreover, a comparison was also performed between the present results and the approximated values by the Neumann-Kopp rule. It reveals that this work provides reasonable data in a broad temperature range, especially for the metastable undercooled liquid state.

  7. Effect of Ni +-ION bombardment on nickel and binary nickel alloys

    Science.gov (United States)

    Roarty, K. B.; Sprague, J. A.; Johnson, R. A.; Smidt, F. A.

    1981-03-01

    Pure nickel and four binary nickel alloys have been subjected to high energy Ni ion bombardment at 675, 625 and 525°C. After irradiation, each specimen was studied by transmission electron microscopy. The pure nickel control was found to swell appreciably (1 to 5%) and the Ni-Al and the Ni-Ti samples were found to swell at all temperatures, but to a lesser degree (0.01 to 0.35%). The Ni-Mo contained a significant density of voids only at 525° C, while swelling was suppressed at all temperatures in the Ni-Si alloy. The dislocation structure progressed from loops to tangles as temperature increased in all materials except the Ni-Ti, in which there was an absence of loops at all temperatures. Dislocation densities decreased as temperature increased in all samples. These results do not correlate well with the relative behavior of the same alloys observed after neutron irradiation at 455°C. The differences between these two sets of data appear to be caused by different mechanisms controlling void nucleation in ion and neutron irradiation of these alloys.

  8. Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys

    Directory of Open Access Journals (Sweden)

    Henrique Silva Furtado

    2009-09-01

    Full Text Available Numerical simulation of solute trapping during solidification, using two phase-field model for dilute binary alloys developed by Kim et al. [Phys. Rev. E, 60, 7186 (1999] and Ramirez et al. [Phys. Rev. E, 69, 05167 (2004] is presented here. The simulations on dilute Cu-Ni alloy are in good agreement with one dimensional analytic solution of sharp interface model. Simulation conducted under small solidification velocity using solid-liquid interface thickness (2λ of 8 nanometers reproduced the solute (Cu equilibrium partition coefficient. The spurious numerical solute trapping in solid phase, due to the interface thickness was negligible. A parameter used in analytical solute trapping model was determined by isothermal phase-field simulation of Ni-Cu alloy. Its application to Si-As and Si-Bi alloys reproduced results that agree reasonably well with experimental data. A comparison between the three models of solute trapping (Aziz, Sobolev and Galenko [Phys. Rev. E, 76, 031606 (2007] was performed. It resulted in large differences in predicting the solidification velocity for partition-less solidification, indicating the necessity for new and more acute experimental data.

  9. Thermophysical property of undercooled liquid binary alloy composed of metallic and semiconductor elements

    Science.gov (United States)

    Wang, H. P.; Wei, B.

    2009-02-01

    The thermophysical properties of the liquid Ni-Si binary alloy system were investigated by the molecular dynamics method. The properties investigated include density, excessive volume, enthalpy, mixing enthalpy and specific heat at both superheated and undercooled states. It is found that the density decreases with an increase in the Si content, and so do the temperature coefficients. If the Si content is smaller than 30%, the density changes linearly with the temperature. If it is larger than 30%, the density is a quadratic function of the temperature. The simulated enthalpies of different composition alloys increase linearly with a rise in temperature. This indicates that the specific heats of Ni-Si alloys change little with temperature. The specific heat versus composition first decreases to a minimum value at 50% Si, then experiences a rise to a maximum value at 90% Si and finally falls again. According to the excessive volume and mixing enthalpy, it can be deduced that the Ni-Si alloy system seriously deviates from the ideal solution. Moreover, a comparison was also performed between the present results and the approximated values by the Neumann-Kopp rule. It reveals that this work provides reasonable data in a broad temperature range, especially for the metastable undercooled liquid state.

  10. Electrolytic etching of uranium and of its alloys for examination under ordinary light

    International Nuclear Information System (INIS)

    Bouleau, M.

    1958-12-01

    The author reports a metallographic study of uranium and of some of its alloys (U-Mo with different Mo contents, U-Sn, U-Al) performed by using electrolytic etching. Samples are polished before being etched. Metallographic images are provided and results are briefly stated in terms of presence of grain boundaries, twins, platelets, pitting, metallic and non-metallic inclusions or eutectoid decomposition. The authors notice that, in some alloys with a gamma-stabilized structure, electrolytic etching allows an oxidation under reduced oxygen pressure, and then phase structure to be perfectly revealed

  11. Highlighting micrographic structures of uranium alloys containing 0.5 to 10 per cent wt molybdenum

    International Nuclear Information System (INIS)

    Laniesse, J.; Bouleau, M.

    1959-02-01

    The authors report a study which aimed at determining for different uranium molybdenum alloys and with respect to their molybdenum content a polishing method which allows a relatively simple grain examination in the as-cast condition, an as perfect as possible resolution of eutectic decompositions, and the appropriate conditions to highlight structures (beta-alpha and gamma-alpha martensite transformations, beta phase retention and decomposition, transient structures, eutectoid decomposition, and so on). Alloys differ by their molybdenum content: from 0.5 to 1 per cent wt, 1.5 to 3 per cent wt, 5 to 10 per cent wt

  12. NEUTRON-INDUCED SWELLING OF Fe-Cr BINARY ALLOYS IN FFTF AT ∼400 DEGREES C

    International Nuclear Information System (INIS)

    Garner, Francis A.; Greenwood, Lawrence R.; Okita, Taira; Sekimura, Naoto; Wolfer, W. G.

    2002-01-01

    The purpose of this effort is to determine the influence of dpa rate, He/dpa ratio and composition on the void swelling of simple binary Fe-Cr alloys. Contrary to the behavior of swelling of model fcc Fe-Cr-Ni alloys irradiated in the same FFTF-MOTA experiment, model bcc Fe-Cr alloys do not exhibit a dependence of swelling on dpa rate at approximately 400 degrees C. This is surprising in that an apparent flux-sensitivity was observed in an earlier comparative irradiation of Fe-Cr binaries conducted in EBR-II and FFTF. The difference in behavior is ascribed to the higher helium generation rates of Fe-Cr alloys in EBR-II compared to that of FFTF, and also the fact that lower dpa rates in FFTF are accompanied by progressively lower helium generation rates.

  13. Determination of impurities in uranium--niobium (7.5%)--zirconium (2.5%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Arragon, Y

    1973-10-01

    The determination of 11 impurities in uranium--niobium-- zirconium alloys was studied. Elements of which the alloy is composed are considered and information is given on the determination of niobium by niobic acid precipitation. Selective elimination of the three components is discussed. Two liquid-liquid extractions are used. The nioblum is separated by methylisobutylketone in a hydrochloric --hydrofluoric medium and the zirconium and uranium by tributyl phosphate in a nitric medium. The determination of trace elements using electrochemical methods is discussed. Anodic re-dissolution polarography or square wave polarography enabled six elements (cadmium, copper, lead, zinc, bismuth, and thallium) to be determined in a carbonate medium together with aluminium in tetraethylammonium perchlorate, molybdenum in nitric acid, ammonium nitrate, and tungsten in hydrochloric acid with added double sodium and potassium tartrate. Fluorine was determined using ionometric techniques with a specific electrode and carbon was titrated by conductometry after combustion of the sample in an oxygen current. (auth)

  14. The fracture mechanism of uranium-niobium alloys near hypoeutectoid composition aged at low temperature

    International Nuclear Information System (INIS)

    Wang Xiaoying; Ren Dapeng; Yang Jianxiong; Jiang Guifen

    2006-01-01

    The microstructures and the crack propagation of uranium-niobium alloys near hypoeutectoid composition aged at temperature 200 degree C for 2 hours during a tension was investigated by means of in situ tension tests using TEM. The results show that the twinning planes inside and between the martensite laths move and merge, and then disintegrate in uranium-niobium alloys with monoclinic α structure during the tension. The crack propagation can be described as follows. Under the tension, the thinning zone which is locally plastically deformed emerges in the front of the crack tip. After the process of nucleation, growth and conjunction, the microvoids connect with the main crack, which results in the fracture. Neither of emission, propagation and movement of dislocation was observed during the tension. (authors)

  15. Fabrication and characterization of uranium-6--niobium alloy plate with improved homogeneity

    International Nuclear Information System (INIS)

    Snyder, W.B.

    1978-01-01

    Chemical inhomogeneities produced during arc melting of uranium--6 weight percent niobium alloy normally persist during fabrication of the ingot to a finished product. An investigation was directed toward producing a more homogeneous product (approx. 13.0-mm plate) by a combination of mechanical working and homogenization. Ingots were cast, forged to various reductions, homogenized under different conditions, and finally rolled to 13.0-mm-thick plate. It was concluded that increased forging reductions prior to homogenization resulted in a more homogeneous plate. Comparison of calculated and experimentally measured niobium concentration profiles indicated that the activation energy for the diffusion of niobium in uranium--niobium alloys may be lower than previously observed

  16. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  17. Computer simulation of quenching uranium-0.75 weight per cent titanium alloy

    International Nuclear Information System (INIS)

    Ludtka, G.M.; Llewellyn, G.H.; Aramayo, G.A.; Siman-Tov, M.; Childs, K.W.

    1986-01-01

    A ''QUENCH SIMULATOR'' has been developed which uses finite difference heat transfer and finite element stress analysis techniques to predict the behavior of a metal during quenching. The actual nonlinear temperature- and microstructure-dependent physical, thermophysical, and mechanical properties are incorporated as input into the computer model as well as the continuous cooling transformation (CCT) behavior and heats of transformation of the alloy. The final output provides the transient temperature distribution, details the final residual profile, predicts and shows where distortion occurs, and maps out the microstructure distribution throughout the entire sample. These data are available in tabulated form, contour plots, or color-coded graphics. This analysis has been demonstrated on simple shapes for unalloyed uranium and the uranium-0.75 weight per titanium alloy which undergoes a martensite transformation and is quench-rate sensitive. The results of this study are discussed in detail in addition to other applications of this analysis approach which is generic in nature

  18. Toxicity of a binary mixture on Daphnia magna: biological effects of uranium and selenium isolated and in mixture

    International Nuclear Information System (INIS)

    Zeman, F.

    2008-10-01

    Among the multiple substances that affect freshwater ecosystems, uranium and selenium are two pollutants found worldwide in the environment, alone and in mixture. The aim of this thesis work was to investigate the effect of uranium and selenium mixture on daphnia (Daphnia magna). Studying effects of a mixture requires the assessment of the effect of single substances. Thus, the first experiments were performed on single substance. Acute toxicity data were obtained: EC 50 48h = 0, 39±0, 04 mg.L -1 for uranium and EC 50 48h 1, 86±0, 85 mg.L -1 for selenium. Chronic effects were also studied. Data on fecundity showed an EC 10 reproduction of 14±7 μg. L -1 for uranium and of 215±25 μg. L -1 for selenium. Uranium-selenium mixture toxicity experiments were performed and revealed an antagonistic effect. This study further demonstrates the importance of taking into consideration different elements in binary mixture studies such as the choice of reference models (concentration addition or independent action), statistical method, time exposure and endpoints. Using integrated parameters like energy budget was shown to be an interesting way to better understand interactions. An approach including calculation of chemical speciation in the medium and bioaccumulation measurements in the organism permits assumptions to be made on the nature of possible interactions between mixture components (toxico-dynamic et toxico-kinetic interactions). (author)

  19. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  20. Study on thermo-oxide layers of uranium-niobium alloy

    International Nuclear Information System (INIS)

    Luo Lizhu; Yang Jiangrong; Zhou Ping

    2010-01-01

    Surface oxides structure of uranium-niobium alloys which were annealed under different temperatures (room temperature, 100, 200, 300 degree C, respectively)in air were studied by X-ray photoelectron spectroscopy (XPS) analysis and depth profile. Thickness of thermo-oxide layers enhance with the increasing oxide temperature, and obvious changes to oxides structure are observed. Under different delt temperatures, Nb 2 O 5 are detected on the initial surface of U-Nb alloys, and a layer of NbO mixed with some NbO x (0 2 O 5 and Nb metal. Dealing samples in air from room temperature to 200 degree C, non-stoichiometric UO 2+x (UO 2 + interstitial oxygen, P-type semiconductor) are found on initial surface of U-Nb alloys, which has 0.7 eV shift to lower binding energy of U 4f 7/2 characteristics comparing to that of UO 2 . Under room temperature, UO 2 are commonly detected in the oxides layer, while under temperature of 100 and 200 degree C, some P-type UO 2+x are found in the oxide layers,which has a satellite at binding energy of 396.6 eV. When annealing at 300 degree C, higher valence oxides, such as U 3 O 8 or UO x (2 5/2 and U 4f 7/2 peaks are 392.2 and 381.8 eV, respectively. UO 2 mixed uranium metal are the main compositions in the oxide layers. From the results, influence of temperature to oxidation of uranium is more visible than to niobium in uranium-niobium alloys. (authors)

  1. Vacuum-induction melting, refining, and casting of uranium and its alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R J

    1989-10-11

    The vacuum-induction melting (VIM), refining, and casting of uranium and its alloys are discussed. Emphasis is placed on historical development, VIM equipment, crucible and mold design, furnace atmospheres, melting parameters, impurity pickup, ingot quality, and economics. The VIM procedures used to produce high-purity, high-quality sound ingots at the US Department of Energy Rocky Flats Plant are discussed in detail.

  2. Effect of nickel plating upon tensile tests of uranium--0.75 titanium alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1975-01-01

    Electrolytic-nickel-plated specimens of uranium-0.75 wt percent titanium alloy were tested in air at 20 and 100 percent relative humidities. Tensile-test ductility values were lowered by a high humidity and also by nickel plating alone. Baking the nickel-plated specimens did not eliminate the ductility degradation. Embrittlement because of nickel plating was also evident in tensile tests at -34 0 C. (U.S.)

  3. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element; Etude de la trempe et du revenu a la temperature ordinaire d'alliages uranium-chrome, uranium-fer et uranium-molybdene, a faible teneur en element d'alliage

    Energy Technology Data Exchange (ETDEWEB)

    Delaplace, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-09-15

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the {gamma} {yields} {beta} transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the {beta} {yields} {alpha} transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form {beta} at ordinary temperatures after quenching from the {beta} and {gamma} regions. The {beta} phase is particularly unstable and changes into needles of the {alpha} form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The {beta} phase obtained by quenching from the {beta} phase region is more stable than that obtained by quenching from the {gamma} region. Chromium is a more effective stabiliser of the {beta} phase than is iron. Unfortunately it causes serious surface cracking. The {beta} {yields} {alpha} transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct {gamma} {yields} {alpha} transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C

  4. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element; Etude de la trempe et du revenu a la temperature ordinaire d'alliages uranium-chrome, uranium-fer et uranium-molybdene, a faible teneur en element d'alliage

    Energy Technology Data Exchange (ETDEWEB)

    Delaplace, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-09-15

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the {gamma} {yields} {beta} transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the {beta} {yields} {alpha} transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form {beta} at ordinary temperatures after quenching from the {beta} and {gamma} regions. The {beta} phase is particularly unstable and changes into needles of the {alpha} form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The {beta} phase obtained by quenching from the {beta} phase region is more stable than that obtained by quenching from the {gamma} region. Chromium is a more effective stabiliser of the {beta} phase than is iron. Unfortunately it causes serious surface cracking. The {beta} {yields} {alpha} transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct {gamma} {yields} {alpha} transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C

  5. Physiological response of the nematode Caenorhabditis elegans exposed to binary mixture of uranium and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Margerit, A.; Gilbin, R. [French Institute for Radiological Protection and Nuclear Safety - IRSN (France); Gomez, E. [Universite Montpellier 1 (France)

    2014-07-01

    Both uranium (U) and cadmium (Cd) are natural ubiquitous substances whose occurrence may be magnified in the vicinity of some Nuclear Fuel Cycle Facility (NFCF) (e.g. uranium mining area) or intensive farming areas. Natural U is a mainly chemo-toxic radioelement, with a slight radio-toxic activity, while Cd is a fully chemo-toxic trace metal. Due to their possible co-occurrence, the study of their combined effects on ecosystems may be of interest in a risk assessment perspective. MixTox tool is a simple descriptive model commonly used to study the effects of chemical mixtures. It relies on dose response, concentration addition and response addition concepts to describe combined toxicant effects and identify possible Synergistic/Antagonistic - Constant/Dose-level/Dose ratio dependent - interactions. In the present study, toxicity of binary mixture of U and Cd was assessed on physiological parameters, maximal length and brood size, in the soil nematode Caenorhabditis elegans. A 49 condition fractional factorial design was used with U and Cd concentrations ranging from 0.95 to 1.3 mM and 0.006 to 0.04 mM, respectively. Dose response curves obtained for U and Cd on maximal length and brood size were consistent with published data. Using MixTox tool, the best description of these endpoints was met with the response addition concept and the dose-ratio dependent interaction model. A significant antagonism was identified when Cd toxicity is preponderant in the mixture and was confirmed with experimental observations. On the other hand, no significant interaction could be identified when U toxicity was preponderant in the mixture. Interaction between the two chemicals may occur during the exposure, the toxicokinetics and/or during the toxico-dynamic phases. Based on the results of this study, a probable hypothesis would be that U, whose toxicity is in the mM range, reduces bioaccumulation of Cd, whose toxicity is in the range of 10 μM. A bioaccumulation assay of U and Cd

  6. Mechanical properties of depleted uranium-2 w/o molybdenum alloy

    International Nuclear Information System (INIS)

    Deel, O.L.; Burian, R.J.

    1979-01-01

    The primary objective of this program is to develop data and techniques for determining the dynamic impact response of radioactive-material shipping-container systems for environmental control and safety overview and assessment. One phase of this program is the dynamic testing of 1/8-, 1/4-, and 1/2-scale models of uranium-shielded truck casks. These linearly scaled models are fabricated from the same materials typically used in full-size prototype casks. In order to analytically evaluate the results of dynamic tests, it is necessary to know the mechanical properties of the materials of construction. Since the properties of cast uranium--molybdenum alloys vary significantly with casting and heat-treating techniques, it is necessary to fully characterize the mechanical properties of the uranium used in the model tests. This report presents the results of these studies. The uranium alloy exhibited a tensile strength equal to or greater than that reported by others. As indicated by the percentage of elongation and reduction in area, the ductility was lower. Comparative data for the other mechanical properties measured were not found in the literature

  7. Use of binary alloys of the lanthanides for tritium recovery from CTR blankets

    International Nuclear Information System (INIS)

    Carstens, D.H.W.

    1978-01-01

    Liquid binary alloys of the lanthanide metals have been proposed as getters of tritium from breeder blankets of controlled thermonuclear reactors. Because of the high stability of the lanthanide hydrides at reactor temperatures (500--1000 0 C), these alloys should prove highly efficient in this application and a series of experiments designed to test this applicability are summarized here. Sieverts' experiments using deuterium were carried out on a series of alloys of La and Ce. For eutectics of the approximate composition Ln 5 M where Ln is La or Ce and M is an iron-group metal, it was found that the deuteriding capacities and the equilibrium pressures were close to those of the parent metal. Experiments measuring the extraction rate of low-level tritium from helium streams using La 5 . 25 Ni were carried out. The tritium was rapidly gettered down to about 10 ppM and more slowly over periods of 1--2 h to below 0.1 ppM

  8. Microstructure and mechanical properties in cast magnesium-neodymium binary alloys

    International Nuclear Information System (INIS)

    Yan Jingli; Sun Yangshan; Xue Feng; Xue Shan; Tao Weijian

    2008-01-01

    The microstructure, tensile properties and creep behavior of three binary magnesium-neodymium (Mg-Nd) based alloys were investigated. The microstructure of all the alloys consists of the dendritic α-Mg matrix and a divorced eutectic Mg 12 Nd. With the increase of neodymium addition, the volume fraction of the Mg 12 Nd phase increases and an interphase network is visible with 4 wt% of neodymium addition. The addition of Nd to Mg causes significant improvement of creep properties and the creep resistance increases with the increase of Nd addition, which is account for by the combination of precipitation and solid solution hardening. For the Mg-2 wt%Nd alloy, a stress exponent of 4.5 and an apparent activation energy of 151.8 kJ/mol were obtained at 175 deg. C/50-90 MPa and 150-225 deg. C/70 MPa, respectively, suggesting that the mechanism responsible for creep in the present investigation is dislocation climb

  9. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    Science.gov (United States)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  10. Uranium determination in U-Al alloy with statistical tools support

    International Nuclear Information System (INIS)

    Furusawa, Helio Akira; Medalla, Felipe Quirino; Cotrim, Marycel Elena Barbosa; Pires, Maria Aparecida Faustino

    2011-01-01

    ICP-OES was used to quantify total uranium in natural UAl x powder alloy. A simple solubilisation procedure using diluted HNO 3 /HCl was successfully applied. Only 100 mg of sample were used which is an advantage over the volumetric methodologies. Only two dilutions were needed to reach measurable concentration. No other treatment was applied to the solutions. Calibration curves of three uranium lines (367.007, 385.958 and 409.014 nm) were evaluated using ANOVA. Comparing the indicators, the 367.007 nm line was the poorer one but exhibiting a R 2 = 0.998 and 0.9996 and 0.999 for the other two lines. No significant difference was found between these two lines. If needed, the 385.958 nm line could be used to quantify uranium in very low concentrations but with few advantages over the 409.014 nm line, if so. The average uranium concentration found was 0.80±0.01 μg.g-1, as expected for a predominant UAl 2 phase alloy. Higher uranium concentrations are also expected to be successfully quantified using these lines. In order to verify possibly inhomogeneity due to the high uranium concentration, one-way ANOVA was applied to 3 replicates. Homogeneity was confirmed measuring in both 385.958 and 409.014 nm lines. The uncertainty of solution homogeneity was estimated also in these two emission lines giving 0.006 and 0.005 μg.g-1, respectively. These two values are in compliance with the standard deviation of the average. (author)

  11. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2011-01-01

    beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A - MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled 'Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications' A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled 'Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications' A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled 'Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors' Appendix B - External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, 'Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,' Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, 'Uranium Powder Production Using a Hydride-Dehydride Process,' Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C - Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled 'Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys' presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow

  12. Study on hydrogen absorption/desorption properties of uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen absorption/desorption properties of two U-Mn intermetallic compounds, U{sub 6}Mn and UMn{sub 2}, were investigated. U{sub 6}Mn absorbed hydrogen and the hydrogen desorption pressure of U{sub 6}Mn obtained from this experiment was higher than that of U, which was considered to be the effect of alloying, whereas UMn{sub 2} was not observed to absorb hydrogen up to 50 atm at room temperature. (author)

  13. Processing and Applications of Depleted Uranium Alloy Products

    Science.gov (United States)

    1976-09-01

    ammunition, weapons, gyrorotors, and ballast. Depleted uranium used in fly- wheel devices, nuclear fuel casks, and ammunition could consume a significant...from straight in the range of 0,002 to 0.060-inch TIR (total indicated runout ) with an average of 0.025-inch TIR.* Solution heat treatment of the as-cast...an envelope thickness of 0.050 inch to allow for runout and to clean up surface imperfections. The runout resulting from heat treatment was in the

  14. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  15. Uranium-molybdenum alloys containing 0,5 to 3 per cent by weight of molybdenum

    International Nuclear Information System (INIS)

    Lehmann, J.

    1959-01-01

    The following properties have been determined in the new cast state of uranium alloys containing 0.5-1-1.8-2 and 3.5 per cent of molybdenum: micro-graphical aspect, crystalline structure, thermal expansion, the mechanical characteristics, behaviour when subjected to cyclic temperature variations, and heat treatment. The transformation curves have been established for continuous cooling at rates varying between 2.5 and 200 deg. C per minute, using a dilatation method for the alloys containing 1.0, 2.0 and 3.0 per cent Mo. T.T.T. curves have been traced for 0.5 and 1.0 per cent Mo alloys and the Ms points determined for alloys containing 2.0 and 3.0 par cent Mo. In this way it has been possible to show the different results of transformation, brought about either by nucleation and diffusion or by shear - the alloy containing 1 per cent Mo, give two martensites α' and α'' and the alloys containing 2 and 3 per cent Mo give one martensite with a band structure. (author) [fr

  16. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    Science.gov (United States)

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  17. Retraction Note to: Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    Science.gov (United States)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2018-05-01

    The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).

  18. Surface morphological structures and electrochemical activity properties of iridium–niobium binary alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Toru, E-mail: matsumoto.t@jemai.or.jp [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Sata, Naoaki [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Kobayashi, Kiyoshi [Advanced Ceramic Group, Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Yamabe-Mitarai, Yoko [High Temperature Materials Unit Functional Structure Materials Group, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-10-01

    Highlights: • An Ir–23Nb alloy has the best oxidation capability among other Nb concentrations. • The reason is the Ir–23Nb has a large surface area which results from Ir + Ir{sub 3}Nb. • An Ir–23Nb glucose sensor detects glucose much better than an Ir glucose sensor. -- Abstract: The electrochemical activities of Ir–Nb binary alloys were investigated as functions of the alloy compositions, crystal structures, and surface morphologies for a hydrogen peroxide and ascorbic acid redox reaction. High activities for the redox reaction of hydrogen peroxide were observed when pure Ir and an alloy with a composition of 77 at% Ir–23 at% Nb (Ir–23Nb) were used. Tests on eight electrodes—Ir, Ir–13Nb, Ir–17Nb, Ir–23Nb, Ir–30Nb, Ir–43Nb, Ir–62Nb, and Nb—showed that at a constant potential difference of 0.7 V vs. Ag/AgCl, the Ir–23Nb electrode had the best hydrogen peroxide oxidation capability: 9.2 μA/mm{sup 2} for 2 mM hydrogen peroxide. Apart from Nb, Ir–23Nb gave the best performance in terms of preferential hydrogen peroxide oxidation against ascorbic acid. Subsequently, the Ir and Ir–23Nb electrodes were used for the fabrication of amperometric glucose sensors. We first coated the two electrodes with a γ-aminopropyltriethoxysilane membrane and then with a glucose oxidase membrane. Tests on the Ir and Ir–23Nb electrode glucose sensors showed that the latter had better glucose detection capability than the former: 0.226 μA/(mm{sup 2} mM) for the Ir–23Nb sensor with 1.67 mM glucose. We investigated the relationship between the electrode responses to both hydrogen peroxide and ascorbic acid and the electrode surface structures.

  19. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis

  20. Mechanisms of the plastic deformation of uranium alloys at low temperature

    International Nuclear Information System (INIS)

    Le Poac, P.; Nomine, A.M.; Miannay, D.

    1976-01-01

    The mechanical characteristics of the bcc binary alloys U-6Mo, U-8Mo, U-10Mo, U-12Mo and bcc ternary alloys U-8Mo-1Ti, U-10Mo-1Ti, U-10Mo-1Zr, stressed in compression, were determined between -196 deg C and + 450 deg C. The plastic flow shear stress in non-dependent on temperature above 300 deg C. At lower temperature shear stress is highly activated, except for the alloy U-6Mo and U-12Mo. Athermal shear stress above 300 deg C is due to the hardening of the solid solution described by Mott and Nabarro. In the thermal range, the recombination of the dissociated dislocations controls the plastic deformation [fr

  1. Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

    International Nuclear Information System (INIS)

    Zhi-Jun, Wang; Jin-Cheng, Wang; Gen-Cang, Yang

    2010-01-01

    All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed. (cross-disciplinary physics and related areas of science and technology)

  2. δ' precipitation in a binary Al-3.2 Wt % Li alloy

    International Nuclear Information System (INIS)

    Mahadev, V.; Mahalingam, K.; Liedl, G.L.; Sanders, T.H. Jr.

    1992-01-01

    This paper reports on a study of the early stages of Al 3 Li(δ') precipitation in a binary Al-3.2wt% Li alloy that was performed by X-ray scattering experiments. Efforts were made to understand the very early stages of precipitation. Particle size measurements were made on samples in the as quenched state and after isothermally aging for various times ranging from 5 minutes to 10 days at 433K, 453K and 473K. Short range order parameters and average atomic displacements were determined for early aging times. A simple simulation model based upon the particle size distribution is proposed to examine the implications of the experimental observations. This simulation fits the assumption that the particles are fully ordered and coherent with the matrix even in the very early stages of aging. Kinetics of the early stages were found to be consistent with data obtained for longer aging times and supports an early growth stage

  3. Determination of Systems Suitable for Study as Monotectic Binary Metallic Alloy Solidification Models

    Science.gov (United States)

    Smith, J. E., Jr.

    1983-01-01

    Succinonitrile-water and diethylene glycol-ethyl salicylate are two transparent systems which have been studied as monotectic binary metallic alloy solidification models. Being transparent, these systems allow for the direct observations of phase transformations and solidification reactions. The objective was to develop a screening technique to find systems of interest and then experimentally measure those systems. The succinonitrile-water system was used to check the procedures. To simulate the phase diagram of the system, two computer programs which determine solid-liquid and liquid-liquid equilibria were obtained. These programs use the UNIFAC method to determine activity coefficients and together with several other programs were used to predict the phase diagram. An experimental apparatus was developed and the succinonitrile-water phase diagram measured. The diagram was compared to both the simulation and literature data. Substantial differences were found in the comparisons which serve to demonstrate the need for this procedure.

  4. Development of an atomic mobility database for liquid phase in multicomponent Al alloys. Focusing on binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoqing; Du, Yong; Zhang, Lijun [Central South Univ., Changsha, Hunan (China). State Key Laboratory of Powder Metallurgy; Liu, Dandan [Central South Univ., Changsha, Hunan (China). State Key Laboratory of Powder Metallurgy; Central South Univ., Changsha, Hunan (China). School of Materials Science and Engineering; Chen, Qing; Engstroem, Anders [Thermo-Calc Software AB, Stockholm (Sweden)

    2013-08-15

    An atomic mobility database for binary liquid phase in multicomponent Al-Cu-Fe-Mg-Mn-Ni-Si-Zn alloys was established based on critically reviewed experimental and theoretical diffusion data by using DICTRA (Diffusion Controlled TRAnsformation) software. The impurity diffusivities of the elements with limited experimental data are obtained by means of the least-squares method and semi-empirical correlations. Comprehensive comparisons between the calculated and measured diffusivities indicate that most of the reported diffusivities can be well reproduced by the currently obtained atomic mobilities. The reliability of this diffusivity database is further validated by comparing the simulated concentration profiles with the measured ones, as well as the measured main inter-diffusion coefficients of liquid Al-Cu-Zn alloys with the extrapolated ones from the present binary atomic mobility database. The approach is of general validity and applicable to establish mobility databases of other liquid alloys. (orig.)

  5. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1992-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both nominal use and accident conditions to serve the dual-role of shielding and containment, the use of other structure materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describesa two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature. The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracmm resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as win be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term ''structural credit'' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.)

  6. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1993-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both normal use and accident conditions to serve the dual-role of shielding and containment, the use of other structural materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describes a two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature (Eckelmeyer, 1991). The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracture resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as will be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term 'structural credit' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.) (J.P.N.)

  7. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  8. Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Michael; Berezutski, Vadim [National Academy of Sciences, Kyiv (Ukraine). I. Frantsevich Institute for Problems of Materials Science; Usenko, Natalia; Kotova, Natalia [Taras Shevchenko National Univ., Kyiv (Ukraine). Dept. of Chemistry

    2017-01-15

    The enthalpies of mixing in binary liquid alloys of lutetium with chromium, cobalt, nickel and copper were determined at 1 773 - 1 947 K by isoperibolic calorimetry. The enthalpies of mixing in the Lu-Cr melts (measured up to 40 at.% Cr) demonstrate endothermic effects (ΔH = 6.88 ± 0.66 kJ . mol{sup -1} at x{sub Lu} = 0.60), whereas significant exothermic enthalpies of mixing have been established within a wide composition region for the Co-Lu, Ni-Lu and Cu-Lu liquid alloys. Minimum values of the integral enthalpy of mixing are as follows: ΔH{sub min} = -23.57 ± 1.41 kJ . mol{sup -1} at x{sub Lu} = 0.38 for the Co-Lu system; ΔH{sub min} = -48.65 ± 2.83 kJ . mol{sup -1} at x{sub Lu} = 0.40 for the Ni-Lu system; ΔH{sub min} = -24.63 ± 1.52 kJ . mol{sup -1} at x{sub Lu} = 0.37 for the Cu-Lu system.

  9. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    International Nuclear Information System (INIS)

    Tikhonchev, M.; Svetukhin, V.; Kadochkin, A.; Gaganidze, E.

    2009-01-01

    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is ∼0.2 NRT that is slightly higher than for pure α-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  10. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.r [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Joint Stock Company, ' State Scientific Center Research Institute of Atomic Reactors' , 433510 Dimitrovgrad-10 (Russian Federation); Svetukhin, V.; Kadochkin, A. [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Gaganidze, E. [Forschungszentrum Karlsruhe, IMF II, 3640, D-76021 Karlsruhe (Germany)

    2009-12-15

    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is approx0.2 NRT that is slightly higher than for pure alpha-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  11. Determination of thermodynamic properties of aluminum based binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Altıntas, Yemliha [Abdullah Gül University, Faculty of Engineering, Department of Materials Science and Nanotechnology, 38039, Kayseri (Turkey); Aksöz, Sezen [Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Science, Department of Physics, 50300, Nevşehir (Turkey); Keşlioğlu, Kâzım, E-mail: kesli@erciyes.edu.tr [Erciyes University, Faculty of Science, Department of Physics, 38039, Kayseri (Turkey); Maraşlı, Necmettin [Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, 34210, Davutpaşa, İstanbul (Turkey)

    2015-11-15

    In the present work, the Gibbs–Thomson coefficient, solid–liquid and solid–solid interfacial energies and grain boundary energy of a solid Al solution in the Al–Cu–Si eutectic system were determined from the observed grain boundary groove shapes by measuring the thermal conductivity of the solid and liquid phases and temperature gradient. Some thermodynamic properties such as the enthalpy of fusion, entropy of fusion, the change of specific heat from liquid to solid and the electrical conductivity of solid phases at their melting temperature were also evaluated by using the measured values of relevant data for Al–Cu, Al–Si, Al–Mg, Al–Ni, Al–Ti, Al–Cu–Ag, Al–Cu–Si binary and ternary alloys. - Highlights: • The microstructure of the Al–Cu–Si eutectic alloy was observed through SEM. • The three eutectic phases (α-Al, Si, CuAl{sub 2}) have been determined by EDX analysis. • Solid–liquid and solid–solid interfacial energies of α-Al solution were determined. • ΔS{sub f},ΔH{sub M}, ΔC{sub P}, electrical conductivity of solid phases for solid Al solutions were determined. • G–T coefficient and grain boundary energy of solid Al solution were determined.

  12. Atomic size and local order effects on the high temperature strength of binary Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abaspour, Saeideh, E-mail: s.abaspour78@gmail.com [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia); Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland (Australia); Zambelli, Victor [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia); Dargusch, Matthew [Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland (Australia); Cáceres, Carlos H. [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia)

    2016-09-15

    The solid solution strengthening introduced by Ca (0.6 and 0.9 at%) and Sn 0.5–2.5 at%) was studied through tensile, compression and stress relaxation tests at room temperature, 373 K (100 °C) and 453 K (180 °C) on solution heat-treated and quenched specimens and compared with existing data for binary alloys containing Ca, Sn, Y, Gd, Nd, Zn and Al as well as for AZ91 alloy. At room temperature the solution-hardening rate introduced by Ca and Sn was much higher than that of Al, matching those of Y, Gd and Zn. Calcium also reduced the tension/compression asymmetry. At high temperature Ca effectively prevented stress relaxation, nearly matching Y, Gd and Nd. Tin was less effective, but still outperformed Al and AZ91 at low stresses. The effects at room and high temperature introduced by Ca and Sn appeared consistent with the presence of short-range order, in line with those introduced by Y, Nd, Gd and Zn. The larger than Mg atom size of Ca, Nd, Gd and Y can be expected to intensify the local order by strengthening the atomic bonds through its effects on the local electron density, accounting for their greater strengthening at high temperature. For given difference in atomic size, the effects on the local order are expected to be lesser for smaller sized atoms like Sn and Zn, hence their more subdued effects.

  13. Study of the effect of magnetic ordering on order–disorder transitions in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Ambika Prasad [Department of Condensed Matter and Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Sanyal, Biplab [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Mookerjee, Abhijit, E-mail: abhijit@bose.res.in [Department of Condensed Matter and Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India)

    2014-06-01

    We set up a mean-field approximation in a random Ising model characterized by two order parameters: the local sublattice magnetization and a mean-field occupation variable which act as an order parameter for the order–disorder transition. In the effective model Hamiltonian the two order-parameters are coupled. We solve the coupled equations arising from this to describe the total phase diagram. The exchange energies for FeCo alloys have then been accurately obtained from first-principles based on the technique of orbital peeling and a Monte Carlo analysis using a coupled Metropolis-Kawasaki updating has been carried out. Our results reasonably successfully agree with earlier experimental data. - Highlights: • In this paper we study the effect of magnetic ordering on order–disorder transitions in binary alloys. • It describes a system with two order parameters, magnetic and chemical ordering, which are coupled. • We set up a mean-field theory for initial understanding and then carry out Monte Carlo simulations. • One parameter follows Kawasaki-dynamics and the other Metropolis. • It is an interesting system for study and we apply it to FeCo with exchanges calculated from first principles techniques.

  14. Coarsening of Ni(3)Si precipitates in binary Ni-Si alloys

    Science.gov (United States)

    Cho, Jin-Hoon

    The coarsening behavior of coherent gammasp'\\ (Nisb3Si) precipitates with volume fractions, f, ranging from 0.017 to 0.32 in binary Ni-Si alloys was investigated. All of the alloys were aged at 650sp° C for times as long as 2760 h and measurements were made of the kinetics of coarsening, particle size distributions and the evolution of particle morphologies using transmission electron microscopy. The kinetics of solute depletion were investigated using measurements of the ferromagnetic Curie temperature. We successfully overcame the difficulties in obtaining uniform spatial distributions of precipitates at small f by employing an up-quenching treatment; alloys with f less than 0.1 were pre-aged at 530sp° C prior to re-aging at the normal aging temperature of 650sp° C. Almost identical coarsening behavior exhibited by an alloy subjected to both isothermal and up-quenching treatments confirm that the up-quenching treatments do not affect any aspect of the coarsening behavior. Consistent with previous studies, the particles are spherical in shape when small and evolve to a cuboidal shape, with flat faces parallel to {}, as they grow. This shape transition was characterized quantitatively by analyzing the intensity distributions of Fast Fourier Transform spectra generated from the digitized images of TEM micrographs. The precipitates display no tendency towards becoming plate-shaped and they resist coalescence even at the largest sizes, which approach 400 nm in diameter at 2760 h of aging for higher volume fraction alloys. For f < 0.1, the kinetics of coarsening and solute depletion as well as the standard deviation of the particle size distributions decrease as f increases. This anomalous behavior has been documented previously by other investigators, but is contrary to the predictions of theories that incorporate the volume fraction effect in coarsening kinetics. We find no convincing evidence to suggest that f influences any aspect of the coarsening behavior at

  15. Optimisation by plastic deformation of structural and mechanical uranium alloys properties

    International Nuclear Information System (INIS)

    Prunier, Claude.

    1981-08-01

    Structural and mechanical properties evolution of rich and poor uranium alloys are investigated. Good usual properties are obtained with few metallic additions with a limited effect giving a fine and isotrope grain structure. Amelioration is observed with heat treatment from β and γ phases high temperature range. However, dynamic recrystallisation, related to hot working, is the better phenomena to maximize the usual mechanical and structural properties. So high temperature behaviour of rich and poor uranium alloys in α, β and γ crystalline structure is studied: - dynamic recrystallisation phenomena begins only in α, and β phases high temperature range; - high strength and brittle β phase shows a very large ductility above 700 deg C. Recrystallisation is a thermal actived phenomena localised at grain boundary, dependant with alloys concentration and crystalline structure. β phase activation energy and deformation rate for dynamic recrystallisation beginning are most important, than α and γ phases in relation with quadratic structure complexity. Both temperature and deformation rate are the main dynamic recrystallisation factors. Optimal usual mechanical and structural properties obtained by hot working (forging, milling) are sensible to hydrogen embrittlement [fr

  16. FORMATION REGULARITIES OF PHASE COMPOSITION, STRUCTURE AND PROPERTIES DURING MECHANICAL ALLOYING OF BINARY ALUMINUM COMPOSITES

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The paper presents investigation results pertaining to  ascertainment of formation regularities of phase composition and structure during mechanical alloying of binary aluminium composites/substances. The invetigations have been executed while applying a wide range of methods, devices and equipment used in modern material science. The obtained data complement each other. It has been established that presence of oxide and hydro-oxide films on aluminium powder  and introduction of surface-active substance in the composite have significant effect on mechanically and thermally activated phase transformations and properties of semi-finished products.  Higher fatty acids have been used as a surface active substance.The mechanism of mechanically activated solid solution formation has been identified. Its essence is  a formation of  specific quasi-solutions at the initial stage of processing. Mechanical and chemical interaction between components during formation of other phases has taken place along with dissolution  in aluminium while processing powder composites. Granule basis is formed according to the dynamic recrystallization mechanism and possess submicrocrystal structural type with the granule dimension basis less than 100 nm and the grains are divided in block size of not more than 20 nm with oxide inclusions of 10–20 nm size.All the compounds  with the addition of  surface-active substances including aluminium powder without alloying elements obtained by processing in mechanic reactor are disperse hardened. In some cases disperse hardening is accompanied by dispersive and solid solution hardnening process. Complex hardening predetermines a high temperature of recrystallization in mechanically alloyed compounds,  its value exceeds 400 °C.

  17. Fermi energy 5f spectral weight variation in uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Denlinger, J.D.; Clack, J.; Allen, J.W. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varying degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.

  18. Thermal cycling behaviour and thermal stability of uranium-molybdenum alloys of low molybdenum content

    International Nuclear Information System (INIS)

    Decours, J.; Fabrique, B.; Peault, O.

    1963-01-01

    We have studied the behaviour during thermal cycling of as-cast U-Mo alloys whose molybdenum content varies from 0.5 to 3 per cent; results are given concerning grain stability during extended heat treatments and the effect of treatments combining protracted heating with thermal cycling. The thermal cycling treatments were carried out at 550, 575, 600 and 625 deg C for 1000 cycles; the protracted heating experiments were done at 550, 575, 600 and 625 deg C for 2000 hours (4000 hrs at 625 deg C). The 0.5 per cent alloy resists much better to the thermal cycling than does the non-alloyed uranium. This resistance is, however, much lower than that of alloys containing over l per cent, even at 550 deg C it improves after a heat treatment for grain-refining. Alloys of over 1.1 per cent have a very good resistance to a cycling treatment even at 625 deg C, and this behaviour improves with increasing concentrations up to 3 per cent. An increase in the temperature up to the γ-phase has few disadvantages provided that it is followed by rapid cooling (50 to 100 deg C/min). The α grain is fine, the γ-phase is of the modular form, and the behaviour during a thermal cycling treatment is satisfactory. If this cooling is slow (15 deg /hr) the α-grain is coarse and cycling treatment behaviour is identical to that of the 0.5 per cent alloy. The protracted heat treatments showed that the α-grain exhibits satisfactory stability after 2000 hours at 575, 600 and 625 deg C, and after 4000 hours at 625 deg C. A heat cycling treatment carried out after these tests affects only very little the behaviour of these alloys during cycling. (authors) [fr

  19. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  20. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  1. Spectrographic analysis of uranium-molybdenum alloys; Analisis espectrografico de aleaciones uranio-molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M

    1967-07-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO{sub 3}. Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO{sub 3}. (Author) 5 refs.

  2. Determination of hydrogen in uranium-niobium-zirconium alloy by inert-gas fusion

    International Nuclear Information System (INIS)

    Carden, W.F.

    1979-12-01

    An improved method has been developed using inert-gas fusion for determining the hydrogen content in uranium-niobium-zirconium (U-7.5Nb-2.5Zr) alloy. The method is applicable to concentrations of hydrogen ranging from 1 to 250 micrograms per gram and may be adjusted for analysis of greater hydrogen concentrations. Hydrogen is determined using a hydrogen determinator. The limit of error for a single determination at the 95%-confidence level (at the 3.7-μg/g-hydrogen level) is +-1.4 micrograms per gram hydrogen

  3. Elastic-plastic waves in UV 0.2 Uranium alloy

    International Nuclear Information System (INIS)

    Bernier, H.; Lalle, P.

    1984-09-01

    Release waves coming from the back face of an uranium alloy projectile in a symmetric collision are used to estimate some dynamic characteristics of this material. In the pressure range experimentally covered (<=29GPa) the velocity of the elastic precursor is about 3,45 km/s, and the Hugoniot elastic limit (HEL) is 1,15GPa. The pressure decrease behind the 20GPa (29GPa) shock wave begins with a quasi-elastic wave which velocity is 3,9 km/s (4,2 km/s), and pressure jump of 3GPa (3,7GPa)

  4. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  5. GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy

    International Nuclear Information System (INIS)

    Sakane, S; Takaki, T; Ohno, M; Shimokawabe, T; Aoki, T

    2015-01-01

    Phase-field method has emerged as the most powerful numerical scheme to simulate dendrite growth. However, most phase-field simulations of dendrite growth performed so far are limited to two-dimension or single dendrite in three-dimension because of the large computational cost involved. To express actual solidification microstructures, multiple dendrites with different preferred growth directions should be computed at the same time. In this study, in order to enable large-scale phase-field dendrite growth simulations, we developed a phase-field code using multiple graphics processing units in which a quantitative phase-field method for binary alloy solidification and moving frame algorithm for directional solidification were employed. First, we performed strong and weak scaling tests for the developed parallel code. Then, dendrite competitive growth simulations in three-dimensional binary alloy bicrystal were performed and the dendrite interactions in three-dimensional space were investigated. (paper)

  6. Experimental investigations of multiple scattering of 662 keV gamma photons in elements and binary alloys

    International Nuclear Information System (INIS)

    Singh, Gurvinderjit; Singh, Manpreet; Sandhu, B.S.; Singh, Bhajan

    2008-01-01

    The energy, intensity and angular distributions of multiple scattering of 662 keV gamma photons, emerging from targets of pure elements and binary alloys, are observed as a function of target thickness in reflection and transmission geometries. The observed spectra recorded by a properly shielded NaI (Tl) scintillation detector, in addition to singly scattered events, consist of photons scattered more than once for thick targets. To extract the contribution of multiply scattered photons from the measured spectra, a singly scattered distribution is reconstructed analytically. We observe that the numbers of multiply scattered events increase with increase in target thickness, and saturate for a particular thickness called saturation thickness. The saturation thickness decreases with increasing atomic number. The multiple scattering, an interfering background noise in Compton profiles and Compton cross-section measurements, has been successfully used as a new technique to assign the 'effective atomic number' to binary alloys. Monte Carlo calculations support the present experimental results

  7. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  8. Monte Carlo criticality analysis of simple geometries containing tungsten-rhenium alloys engrained with uranium dioxide and uranium mononitride

    International Nuclear Information System (INIS)

    Webb, Jonathan A.; Charit, Indrajit

    2011-01-01

    Highlights: → The addition of rhenium to the tungsten matrix within W-UO 2 and W-UN CERMET materials can help reduce the risk of submersion criticality accidents while increasing the strength and ductility of tungsten based nuclear fuel elements. → The addition of rhenium up to 30 at.% to simple geometries containing W-UO 2 mixtures can increase the critical mass by 65 kg. → The addition of rhenium up to 30 at.% to simple geometries containing W-UN mixtures can increase the critical mass by 22 kg. → The addition of rhenium by up to 30 at.% to simple geometries containing W-UO 2 mixtures can reduce the change in reactivity change due to water submersion by $5.07. → The addition of rhenium by up to 30 at.% to simple geometries containing W-UN mixtures can reduce the change in reactivity due to water submersion by $3.24. - Abstract: The critical mass and dimensions of simple geometries containing highly enriched uranium dioxide (UO 2 ) and uranium mononitride (UN) encapsulated in tungsten-rhenium alloys are determined using MCNP5 criticality calculations. Spheres as well as cylinders with length to radius ratios of 1.82 are computationally built to consist of 60 vol.% fuel and 40 vol.% metal matrix. Within the geometries, the uranium is enriched to 93 wt.% uranium-235 and the rhenium content within the metal alloy was modeled over the range of 0-30 at.%. The spheres containing UO 2 were determined to have a critical radius of 18.29-19.11 cm and a critical mass ranging from 366 kg to 424 kg. The cylinders containing UO 2 were found to have a critical radius ranging from 17.07 cm to 17.84 cm with a corresponding critical mass of 406-471 kg. Spheres engrained with UN were determined to have a critical radius ranging from 14.82 cm to 15.19 cm and a critical mass between 222 kg and 242 kg. Cylinders which were engrained with UN were determined to have a critical radius ranging from 13.81 cm to 14.15 cm and a corresponding critical mass of 245-267 kg. The critical

  9. Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1961-04-15

    The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.

  10. A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior

    International Nuclear Information System (INIS)

    Kim, Ji Yong; Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Kim, Si Hyung

    2010-01-01

    The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is 'electrowinning' which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to 40.8 g/cm 2 /h within a temperature range of 773 ∼ 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller

  11. A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Yong [University of Science and Technology, Daejeon (Korea, Republic of); Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Kim, Si Hyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-12-15

    The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is 'electrowinning' which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to 40.8 g/cm{sup 2}/h within a temperature range of 773 {approx} 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller.

  12. Characteristics and heat treatment of cold-sprayed Al-Sn binary alloy coatings

    International Nuclear Information System (INIS)

    Ning, Xian-Jin; Kim, Jin-Hong; Kim, Hyung-Jun; Lee, Changhee

    2009-01-01

    In this study, Al-Sn binary alloy coatings were prepared with Al-5 wt.% Sn (Al-5Sn) and Al-10 wt.% Sn (Al-10Sn) gas atomized powders by low pressure and high pressure cold spray process. The microstructure and microhardness of the coatings were characterized. To understand the coarsening of tin in the coating, the as-sprayed coatings were annealed at 150, 200, 250 and 300 o C for 1 h, respectively. The effect of annealing on microstructure and the bond strength of the coatings were investigated. The results show that Al-5Sn coating can be deposited by high pressure cold spray with nitrogen while Al-10Sn can only be deposited by low pressure cold spray with helium gas. Both Al-5Sn and Al-10Sn coatings present dense structures. The fraction of Sn in as-sprayed coatings is consistent with that in feed stock powders. The coarsening and/or migration of Sn phase in the coatings were observed when the annealing temperature exceeds 200 deg. C. Furthermore, the microhardness of the coatings decreased significantly at the annealing temperature of 250 deg. C. EDXA analysis shows that the heat treatment has no significant effect on fraction of Sn phase in Al-5Sn coatings. Bonding strength of as-sprayed Al-10Sn coating is slightly higher than that of Al-5Sn coating. Annealing at 200 o C can increase the bonding strength of Al-5Sn coatings.

  13. PLEPS study of thermal annealing influence on binary Fe-11.62 % Cr alloys

    International Nuclear Information System (INIS)

    Sojak, S.; Slugen, V.; Petriska, V.; Stancek, S.; Vitazek, K.; Stacho, M.; Veternikova, J.; Sabelova, V.; Krsjak, V.; Egger, W.; Ravelli, L.; Skarba, M.; Priputen, P.

    2012-01-01

    Lifetime of structural materials is one of the crucial factors for operation of nuclear power plants (NPP). Therefore, high expectations and requirements are put on these materials from the radiation, heat and mechanical resistance point of view. Even higher stresses are expected in new generations of nuclear power plants, such as Generation IV and fusion reactors. Therefore, investigation of new structural materials is among others focused on study of reduced activation ferritic/martensitic (RAFM) steels with good characteristics as lower activation, good resistance to volume swelling, good radiation, and heat resistance (up to 550 grad C). Our research is focused on study of radiation damage simulated by ion implantations and thermal treatment evaluation of RAFM steels in form of binary Fe-Cr model alloys. Due to the defect production by ions, there was applied an approach for restoration of initial physical and mechanical characteristics of structural materials in the form of thermal annealing, with goal to decrease size and amount of accumulated defects. Experimental analysis of material damage at microstructural level was performed by Pulsed Low Energy Positron System (PLEPS) at the high intensity positron source NEPOMUC at the Munich research reactor FRM-II. (authors)

  14. Entropic stabilisation of topologically close-packed phases in binary transition-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hammerschmidt, Thomas; Fries, Suzana G.; Steinbach, Ingo; Drautz, Ralf [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany); Seiser, Bernhard; Pettifor, David G. [Department of Materials, University of Oxford, Oxford (United Kingdom)

    2010-07-01

    The formation of topologically close-packed (tcp) phases in Ni-based superalloys leads to the degradation of the mechanical properties of the alloys. The precipitation of the tcp phases is attributed to refractory elements that are added in low concentration to improve creep resistance. It is well known that the structural stability of the tcp phases A15, {sigma} and {chi} is driven by the average d-band filling. For a direct comparison to experimental phase diagrams, we carried out extensive density-functional theory (DFT) calculations of the tcp phases A15, C14, C15, C36, {mu}, {sigma}, and {chi} in tcp-forming binary transition-metal (TM) systems. We observe several systems such as W-Re with positive values of the heat of formation for all tcp phases although some of the phases are observed experimentally. By combining our DFT total energies with the CALPHAD methodology, we can demonstrate that configurational entropy can stabilise the tcp phases in these systems.

  15. Electronic structure of disordered binary alloys with short range correlation in Bethe lattice

    International Nuclear Information System (INIS)

    Moreno, I.F.

    1987-01-01

    The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt

  16. Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy

    Directory of Open Access Journals (Sweden)

    Changsheng Zhu

    2018-03-01

    Full Text Available In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.

  17. Numerical simulation of boundary heat flow effects on directional solidification microstructure of a binary alloy

    Directory of Open Access Journals (Sweden)

    Xue Xiang

    2010-08-01

    Full Text Available The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W·cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W·cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W·cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.

  18. Properties of low content uranium-molybdenum alloys which may be used as nuclear fuels

    International Nuclear Information System (INIS)

    Lehmann, J.; Decours, J.

    1964-01-01

    Metallurgical properties are given in this report of uranium-molybdenum alloys containing 0,5 to 3 per cent of molybdenum. Since some of these alloys are used in EDF power reactors are given: briefly the operating conditions imposed on nuclear fuels: maximum temperature, temperature gradient and external pressure. In the first part are considered the structural properties of the alloys correlation with the phase transformation kinetics; a description is given of the effects of certain physico-metallurgical factors on the morphology and the crystalline structure of the materials: - solidification conditions and the heredity of the γ structure, - cooling rate at the transformation points, - whether or not the intermediate γ → β transformation is suppressed In the second part we show how a knowledge of the phase transformation processes has made it possible to define the optimum preparation conditions for these materials in the form of fuel tubes intended for the EDF reactors: casting conditions, controlled cooling treatments, weldability. In the third part we study the thermal, stability during the long duration high temperature treatments and the cycles in the two zones of the diagram α + γ; β + γ the effects of the morphology (in particular the two types of α pseudo-grains observed) and of the cooling rate during the transformation point transitions are described. In the fourth part are discussed the mechanical properties: resistance to a tractive force, resistance to creep, resilience. These properties can also be affected by the γ structure heredity and by the cooling rate to which the alloy has been subjected. In conclusion we discuss the reasons which led to the choice of some of these alloys for the first EDF reactors in particular the advantages of their high creep resistance between 450 and 600 deg C for use in the form of tubes subjected to an external pressure. (authors) [fr

  19. Numerical and Experimental Investigation of the Influence of Growth Restriction on Grain Size in Binary Cu Alloys

    Directory of Open Access Journals (Sweden)

    Andreas Cziegler

    2017-09-01

    Full Text Available Grain refinement by elemental addition has been extensively investigated within the last decades in Al or Mg alloys. In contrast, in the Cu system, the role of solute on grain size is less investigated. In this study, the grain refinement potency of several alloying elements of the Cu system was examined. To predict grain size depending on the growth restriction factor Q, grain size modelling was performed. The results obtained by the grain size model were compared to variations in the grain size of binary Cu alloys with increasing solute content under defined cooling conditions of the TP-1 grain refiner test of the Aluminium Association©. It was found that the experimental results differed significantly from the predicted grain size values for several alloying elements. A decreasing grain size with increasing alloy concentration was observed independently of the growth restriction potency of the alloying elements. Furthermore, excessive grain coarsening was found for several solutes beyond a transition point. It is assumed that contradictory variations in grain size result from a change in the nucleating particle density of the melt. Significant decreases in grain size are supposed to be due to the in-situ formation of potent nucleation sites. Excessive grain coarsening with increasing solute content may occur due to the removal of nucleating particles. The model shows that the difference in the actual number of particles before and beyond the transition point must be in the range of several orders of magnitude.

  20. Efficient analytical expressions for dynamic structure of liquid binary alloys: K–Cs as a case study

    International Nuclear Information System (INIS)

    Wax, Jean-François; Bryk, Taras; Johnson, Mark R

    2016-01-01

    A fitting scheme for analysis of collective dynamics in liquid binary alloys is proposed. It is based on explicit treatment of contributions from three relaxing modes and two types of propagating modes to the partial density–density time correlation functions and corresponding partial dynamic structure factors. Exact sum rules for each partial dynamic structure factor were taken into account. The proposed fitting scheme was applied to the liquid equimolar K–Cs alloy. Analysis of simulation-derived partial time correlation functions as well as of their corresponding Bhatia–Thornton ‘number-concentration’ combinations allowed dispersion and damping of the two branches of collective excitations and the behaviour of relaxing modes in a wide range of wave numbers to be obtained. A comparison with the inelastic neutron-scattering intensities for the liquid K–Cs alloy was performed. (paper)

  1. A note on the entropy of mixing of liquid sodium-caesium and other binary alkali alloys

    International Nuclear Information System (INIS)

    Alonso, J.A.; Gallego, L.J.

    1985-01-01

    The entropy of formation of Na-Cs liquid alloys. ΔS, is nearly ideal. This is surprising considering that the ratio between the pure metal volumes is about 3.0. In this Letter it is shown by means of a density functional calculation that the ratio between the effective volumes in the liquid alloy changes to nearly 1.5. This ratio, used in conjunction with Flory's formula for the entropy of mixing, allows quite accurate reproduction of the ideal behaviour of ΔS. It is also shown that this feature of the ratios of atomic volumes is not exclusive to Na-Cs but is common to all the family of binary liquid alkali alloys. (author)

  2. Melting, casting, and alpha-phase extrusion of the uranium-2.4 weight percent niobium alloy

    International Nuclear Information System (INIS)

    Anderson, R.C.; Beck, D.E.; Kollie, T.G.; Zorinsky, E.J.; Jones, J.M.

    1981-10-01

    The experimental details of the melting, casting, homogenization, and alpha-phase extrusion process used to fabricate the uranium-2.4 wt % niobium alloy into 46-mm-diameter rods is described. Extrusion defects that were detected by an ultrasonic technique were eliminated by proper choice of extrusion parameters; namely, reduction ratio, ram speed, die angle, and billet preheat temperature

  3. Effect of small additions of silicon, iron, and aluminum on the room-temperature tensile properties of high-purity uranium

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1983-01-01

    Eleven binary and ternary alloys of uranium and very low concentrations of iron, silicon, and aluminum were prepared and tested for room-temperature tensile properties after various heat treatments. A yield strength approximately double that of high-purity derby uranium was obtained from a U-400 ppM Si-200 ppM Fe alloy after beta solution treatment and alpha aging. Higher silicon plus iron alloy contents resulted in increased yield strength, but showed an unacceptable loss of ductility

  4. Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Schreiber, D. K.

    2018-02-01

    The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.

  5. High-strength uranium-0.8 weight percent titanium alloy penetrators

    International Nuclear Information System (INIS)

    Northcutt, W.G.

    1978-09-01

    Long-rod kinetic-energy penetrators, produced from a uranium-0.8 titanium (U-0.8 Ti) alloy, are normally water quenched from the gamma phase (approximately 800 0 C) and aged to the desired hardness and strength levels. High cooling rates from 800 0 C in U-0.8 Ti alloy cylindrical bodies larger than about 13 mm in diameter cause internal voids, while slower rates of cooling can produce material that is unresponsive to aging. For the present study, elimination of quenching voids was of paramount importance; therefore, a process including the quenching of plate was explored. Vacuum-induction-cast ingots were forged and rolled into plate and cut into blanks from which the penetrators were obtained. Quenched U-0.8 Ti alloy blanks were aged at 350 to 500 0 C to determine the treatment that would provide maximum tensile and impact strengths. Both tensile and impact strengths were maximized by aging in vacuum for six hours at 450 0 C

  6. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  7. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  8. Determination of the growth restriction factor and grain size for aluminum alloys by a quasi-binary equivalent method

    International Nuclear Information System (INIS)

    Mitrašinović, A.M.; Robles Hernández, F.C.

    2012-01-01

    Highlights: ► A new method to determine the growth restricting factor. (Q) is proposed ► The proposed method is highly accurate (R 2 = 0.99) and simple. ► A major novelty of this method is the determination of Q for non-dilute samples. ► The method proposed herein is based on quasi-binary phase diagrams and composition. ► This method can be easily implemented industrially or as a research tool. - Abstract: In the present research paper is suggested a new methodology to determine the growth restricting factor (Q) and grain size (GS) for various Al-alloys. The present method combines a thermodynamical component based on the liquidus behavior of each alloying element that is later incorporated into the well known growth restricting models for multi-component alloys. This approach that can be used to determine Q and/or GS based on the chemical composition and the slope of the liquidus temperature of any Al-alloy solidified in close to equilibrium conditions. This method can be modified further in order to assess the effect of cooling rate or thermomechanical processing on growth restricting factor and grain size. In the present paper is proposed a highly accurate (R 2 = 0.99) and validated model for Al–Si alloys, but it can be modified for any other Al–X alloying system. The present method can be used for alloys with relatively high solute content and due to the use of the thermodynamics of liquidus this system considers the poisoning effects of single and multi-component alloying elements.

  9. Contribution to the micrographic study of uranium and its alloys; Contribution a l'etude micrographique de l'uranium et de ses alliages

    Energy Technology Data Exchange (ETDEWEB)

    Monti, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-06-15

    The present report is the result of research carried out by the radio metallurgy section, to perfect micrographic techniques applicable to the study of samples of irradiated uranium. In the first part of this work, two polishing baths are developed, having the qualities with a minimum of disadvantages inherent in their respective compositions: they are, on the one hand perchloric acid-ethanol mixtures, and on the other hand a phospho-chromic-ethanol bath. In the chapter following, the micrographic attack of uranium is studied. The only satisfactory process is oxidation by cathode bombardment forming epitaxic layers. In the third chapter, an attempt is made to characterise the different surface states of the uranium by dissolution potential measurements and electronic diffraction. In the fourth chapter are given some examples of the application of these techniques to the micrographic study of various uranium alloys. In an appendix, it is shown how the chemical oxidation after phospho-chromic-alcohol polishing allows the different inclusions present in the molten uranium to be distinguished. By X-ray diffraction, uranium monocarbide and mononitride inclusions in particular are characterised. (author) [French] Le present rapport est le resultat de recherches effectuees au service de radiometallurgie pour la mise au point de techniques micrographiques applicables a l'etude d'echantillons d'uranium irradie. Dans la premiere partie de ce travail, nous mettons au point deux bains de polissage qui presentent les qualites inherentes a leur composition respective, avec le minimum d'inconvenients: ce sont d'une part des melanges acide perchlorique-ethanol, et d'autre part un bain phospho-chromique-ethanol. Dans le chapitre suivant, nous etudions l'attaque micrographique de l'uranium. Seul le procede d'oxydation par bombardement cathodique formant des couches epitaxiques, est satisfaisant. Dans le troisieme chapitre, nous essayons de caracteriser les differents etats de

  10. Contribution to the micrographic study of uranium and its alloys; Contribution a l'etude micrographique de l'uranium et de ses alliages

    Energy Technology Data Exchange (ETDEWEB)

    Monti, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-06-15

    The present report is the result of research carried out by the radio metallurgy section, to perfect micrographic techniques applicable to the study of samples of irradiated uranium. In the first part of this work, two polishing baths are developed, having the qualities with a minimum of disadvantages inherent in their respective compositions: they are, on the one hand perchloric acid-ethanol mixtures, and on the other hand a phospho-chromic-ethanol bath. In the chapter following, the micrographic attack of uranium is studied. The only satisfactory process is oxidation by cathode bombardment forming epitaxic layers. In the third chapter, an attempt is made to characterise the different surface states of the uranium by dissolution potential measurements and electronic diffraction. In the fourth chapter are given some examples of the application of these techniques to the micrographic study of various uranium alloys. In an appendix, it is shown how the chemical oxidation after phospho-chromic-alcohol polishing allows the different inclusions present in the molten uranium to be distinguished. By X-ray diffraction, uranium monocarbide and mononitride inclusions in particular are characterised. (author) [French] Le present rapport est le resultat de recherches effectuees au service de radiometallurgie pour la mise au point de techniques micrographiques applicables a l'etude d'echantillons d'uranium irradie. Dans la premiere partie de ce travail, nous mettons au point deux bains de polissage qui presentent les qualites inherentes a leur composition respective, avec le minimum d'inconvenients: ce sont d'une part des melanges acide perchlorique-ethanol, et d'autre part un bain phospho-chromique-ethanol. Dans le chapitre suivant, nous etudions l'attaque micrographique de l'uranium. Seul le procede d'oxydation par bombardement cathodique formant des couches epitaxiques, est satisfaisant. Dans le troisieme chapitre, nous essayons

  11. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  12. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  13. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  14. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  15. Basic design of a rotating disk centrifugal atomizer for uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Alzari, Silvio

    2001-01-01

    One of the most used techniques to produce metallic powders is the centrifugal atomization with a rotating disk. This process is employ to fabricate ductile metallic particles of uranium-molybdenum alloys (typically U- 7 % Mo, by weight) for nuclear fuel elements for research and testing reactors. These alloys exhibit a face-centered cubic structure (γ phase) which is stable above 700 C degrees and can be retained at room temperature. The rotating disk centrifugal atomization allows a rapid solidification of spherical metallic droplets of about 40 to 100 μm, considered adequate to manufacture nuclear fuel elements. Besides the thermo-physical properties of both the alloy and the cooling gas, the main parameters of the process are the radius of the disk (R), the diameter of the atomization chamber (D), the disk rotation speed (ω), the liquid volume flow rate (Q) and the superheating of the liquid (ΔT). In this work, they were applied approximate analytical models to estimate the optimal geometrical and operative parameters to obtain spherical metallic powder of U- 7 % Mo alloy. Three physical phenomena were considerate: the liquid metal flow along the surface of the disk, the fragmentation and spheroidization of the droplets and the cooling and solidification of the droplets. The principal results are the more suitable gas is helium; R ≅ 20 mm; D ≥ 1 m; ≅ 20,000 - 50,000 rpm; Q ≅ 4 - 10 cm 3 /s; ΔT ≅ 100 - 200 C degrees. By applying the relevant non-dimensional parameters governing the main physical phenomena, the conclusion is that the more appropriate non-radioactive metal to simulate the atomization of U- 7 % Mo is gold [es

  16. Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt% titanium alloy

    International Nuclear Information System (INIS)

    Roeper, Donald F.; Chidambaram, Devicharan; Clayton, Clive R.; Halada, Gary P.; Derek Demaree, J.

    2006-01-01

    Molybdenum oxide-based conversion coatings have been formed on the surface of the depleted uranium-0.75 wt% titanium alloy using either concentrated nitric acid or fluorides for surface activation prior to coating formation. The acid-activated surface forms a coating that offers corrosion protection after a period of aging, when uranium species have migrated to the surface. X-ray photoelectron spectroscopy (XPS) revealed that the protective coating is primarily a polymolybdate bound to a uranyl ion. Rutherford backscattering spectroscopy (RBS) on the acid-activated coatings also shows uranium dioxide migrating to the surface. The fluoride-activated surface does not form a protective coating and there are no uranium species on the surface as indicated by XPS. The coating on the fluoride-activated samples has been found to contain a mixture of molybdenum oxides of which the main component is molybdenum trioxide and a minor component of an Mo(V) oxide

  17. Time evolution of a quenched binary alloy: computer simulation of a three-dimensional model system

    International Nuclear Information System (INIS)

    Marro, J.; Bortz, A.B.; Kalos, M.H.; Lebowitz, J.L.; Sur, A.

    1976-01-01

    Results are presented of computer simulation of the time evolution for a model of a binary alloy, such as ZnAl, following quenching. The model system is a simple cubic lattice the sites of which are occupied either by A or B particles. There is a nearest neighbor interaction favoring segregation into an A rich and a B rich phase at low temperatures, T less than T/sub c/. Starting from a random configuration, T much greater than T/sub c/, the system is quenched to and evolves at a temperature T less than T/sub c/. The evolution takes place through exchanges between A and B atoms on nearest neighbor sites. The probability of such an exchange is assumed proportional to e/sup -βΔU/ [1 + e/sup -βΔU/] -1 where β = (k/sub B/T) -1 and ΔU is the change in energy resulting from the exchange. In the simulations either a 30 x 30 x 30 or a 50 x 50 x 50 lattice is used with various fractions of the sites occupied by A particles. The evolution of the Fourier transform of the spherically averaged structure function S(k,t), the energy, and the cluster distribution were computed. Comparison is made with various theories of this process and with some experiments. It is found in particular that the results disagree with the predictions of the linearized Cahn-Hilliard theory of spinodal decomposition. The qualitative form of the results appear to be unaffected if the change in the positions of the atoms takes place via a vacancy mechanism rather than through direct exchanges

  18. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    Science.gov (United States)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  19. β → α isothermal transformation in pure and weakly alloyed uranium

    International Nuclear Information System (INIS)

    Aubert, H.; Lelong, C.

    1966-01-01

    The TTT diagrams describing the β → α isothermal transformation have been made by isothermal dilatometry for pure uranium and 21 alloys based on chromium, silicon, molybdenum, iron, aluminium, zirconium. The thermal cycle preceding the isothermal step influences the decomposition kinetics at temperature corresponding to the eutectoid and martensitic mechanisms, but not in the range where the bainitic transformation occurs. The stability of the β phase decreases with the chromium, molybdenum and silicon concentration: it is affected differently for each of the three transformation mechanisms. The ternary additions, even at very low concentration have a considerable effect on the stability. When the concentration decreases the martensitic mechanism is active at progressively higher temperature, diminishing to the point of disappearance the temperature range where the transformation is considered as being of the bainitic mode. (author) [fr

  20. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    International Nuclear Information System (INIS)

    Travelli, A.

    1988-01-01

    A nuclear fuel-containing plate structure for a nuclear reactor is described; such structure comprising a pair of malleable metallic non-fissionable matrix plates having confronting surfaces which are pressure bonded together and fully united to form a bonded surface, and elongated malleable wire-like fissionable fuel members separately confined and fully enclosed between the matrix plates along the interface to afford a high fuel density as well as structural integrity and effective retention of fission products. The plates have separate recesses formed in the confronting surfaces for closely receiving the wire-like fissionable fuel members. The wire-like fissionable fuel members are made of a maleable uranium alloy capable of being formed into elongated wire-like members and capable of withstanding pressure bonding. The wire-like fissionable fuel members are completely separated and isolated by fully united portions of the interface

  1. Evaluation of Solid-Solution Hardening in Several Binary Alloy Systems Using Diffusion Couples Combined with Nanoindentation

    Science.gov (United States)

    Kadambi, Sourabh B.; Divya, V. D.; Ramamurty, U.

    2017-10-01

    Analysis of solid-solution hardening (SSH) in alloys requires the synthesis of large composition libraries and the measurement of strength or hardness from these compositions. Conventional methods of synthesis and testing, however, are not efficient and high-throughput approaches have been developed in the past. In the present study, we use a high-throughput combinatorial approach to examine SSH at large concentrations in binary alloys of Fe-Ni, Fe-Co, Pt-Ni, Pt-Co, Ni-Co, Ni-Mo, and Co-Mo. The diffusion couple (DC) method is used to generate concentration ( c) gradients and the nanoindentation (NI) technique to measure the hardness ( H) along these gradients. The obtained H -c profiles are analyzed within the framework of the Labusch model of SSH, and the c^{2/3} dependence of H predicted by the model is found to be generally applicable. The SSH behavior obtained using the combinatorial method is found to be largely consistent with that observed in the literature using conventional and DC-NI methods. This study evaluates SSH in Fe-, Ni-, Co-, and Pt-based binary alloys and confirms the applicability of the DC-NI approach for rapidly screening various solute elements for their SSH ability.

  2. Determination of ultratrace amounts of uranium and thorium in aluminium and aluminium alloys by electrothermal vaporization/ICP-MS

    International Nuclear Information System (INIS)

    Nakamura, Yasushi; Kobayashi, Yoshio; Kakurai, Yousuke

    1993-01-01

    A method has been developed for determining the 0.01 ng g -1 level of uranium and thorium in aluminium and aluminium alloys by electrothermal vaporization (ETV)/ICP-MS. This method was found to be significantly interfered with any matrices or other elements contained. An ion-exchange technique was therefore applied to separate uranium and thorium from aluminium and other elements. It was known that uranium are adsorbed on an anion-exchange resin and thorium are adsorbed on cation-exchange resin. However, aluminium and copper were eluted with 6 M hydrochloric acid. Dissolve the sample with hydrochloric acid containing copper which was added for analysis of pure aluminium, and oxidize with hydrogen peroxide. Concentration of hydrochloric acid in the solution was adjusted to 6 M, and then passed the solution through the mixed ion-exchange resin column. After the uranium and thorium were eluted with 1 M hydrofluoric acid-0.1 M hydrochloric acid, the solution was evaporated to dryness. It was then dissolved with 1 M hydrochloric acid. Uranium and thorium were analyzed by ETV/ICP-MS using tungsten and molybdenum boats, respectively, since the tungsten boat contained high-level thorium and the molybdenum boat contained uranium. The determination limit of uranium and thorium were 0.003 and 0.005 ng g -1 , respectively. (author)

  3. Quantum chemical analysis of binary and ternary ferromagnetic alloys; Quantenchemische Untersuchungen binaerer und ternaerer ferromagnetischer Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Yasemin Erika Charlotte

    2007-02-23

    In this work the electronic structures, densities of states, chemical bonding, magnetic exchange Parameters and Curie temperatures of binary and ternary ferromagnetic alloys are analyzed. The electronic structure of ferromagnetic MnAl has been calculated using density-functional techniques (TB-LMTO-ASA, FPLAPW) and quantum chemically analyzed by means of the crystal orbital Hamilton population analysis. The crystal structure of the ferromagnetic tetragonal MnAl may be understood to originate from the structure of nonmagnetic cubic MnAl with a CsCl motif through a two-step process. While the nonmagnetic cubic structure is stable against a structural deformation, antibonding Mn-Mn interactions at the Fermi level lead to spin polarization and the onset of magnetism, i.e., a symmetry reduction taking place solely in the electronic degrees of freedom, by that emptying antibonding Mn-Mn states. Residual antibonding Al--Al states can only be removed by a subsequent, energetically smaller structural deformation towards the tetragonal system. As a final result, homonuclear bonding is strengthened and heteronuclear bonding is weakened. Corresponding DFT calculations of the electronic structure as well as the calculation of the chemical bonding and the magnetic exchange interactions have been performed on the basis of LDA and GGA for a series of ferromagnetic full Heusler alloys of general formula Co2MnZ (Z=Ga,Si,Ge,Sn), Rh2MnZ (Z=Ge,Sn,Pb), Ni2MnZ (Z=Ga,In,Sn), Pd2MnZ (Z=Sn,Sb) and Cu2MnZ (Z=Al,In,Sn). The connection between the electronic spectra and the magnetic interactions have been studied. Correlations between the chemical bondings in Heusler alloys derived from COHP analysis and magnetic phenomena are obvious, and different mechanisms leading to spin polarization and ferromagnetism are derived. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique

  4. Study on direct dissolution of U-10Zr alloy and distribution of uranium and zirconium in liquid cadmium

    International Nuclear Information System (INIS)

    Ye Yuxing; Gao Yuan

    1997-09-01

    The effect of dissolution time, temperature, total surface area of U-10Zr alloy pellets and stirring on the dissolution and dissolution rate of uranium in liquid cadmium were studied. Cadmium containing U and Zr dissolved from U-10Zr alloy at 475 degree C and 500 degree C respectively was analyzed with electron microanalyzer. The experimental results show that at 400 degree and 500 degree C with the stirring rate of some 150 r/min, the solubilities of uranium in liquid cadmium are 0.4% and 2.2%, respectively. At the first 30 min, the dissolution rates of U-10Zr alloy pellets are 0.05 g/(cm 2 ·h) and 0.32 g/(cm 2 ·h), respectively. The suitable dissolution conditions for U-10Zr alloy pellets in liquid cadmium (the ratio of the mass of liquid cadmium to that of the pellets ≅7) are: temperature, about 480 degree C; stirring rate, about 150 r/min; dissolution time, 4 h. The distribution of uranium and zirconium in cadmium is homogeneous

  5. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    Patinet, S.

    2009-12-01

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  6. Structure and mechanical properties of TiZr binary alloy after Al addition

    International Nuclear Information System (INIS)

    Jiang, X.J.; Jing, R.; Liu, C.Y.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Microstructure and mechanical properties of hot-rolled TiZrAl alloys were studied. The results showed that the microstructure of all alloys mainly consisted of lamellar α phase. The thickness of the lamellar α phase gradually increased with increasing aluminum content. Moreover, large numbers of stacking faults was observed in Ti–25Zr–15Al (at%) alloy. The aluminum addition strongly affected the mechanical properties of the TiZrAl alloys. With increased aluminum contents, the strength increased evidently, whereas, the elongation decreased. Ti–25Zr–15Al (at%) with the highest aluminum contents in all alloys, possessed the highest tensile strength (σ b =1319 MPa), i.e. strengthened by 41% compared with Ti–25Zr (at%) alloy, and still retained the elongation of 5.5%. According to the classical size and/or modulus misfits model, the effect of aluminum addition was significant in TiZr alloys because of the considerable misfits between aluminum and zirconium

  7. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  8. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Shin-ichi, E-mail: yamaura@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Nakajima, Takashi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Satoh, Takenobu; Ebata, Takashi [Tohoku Steel, Co., Ltd., 23 Nishigaoka, Murata, Murata-machi, Shibata 989-1393 (Japan); Furuya, Yasubumi [North Japan Research Institute for Sustainable Energy, Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813 (Japan)

    2015-03-15

    Highlights: • The as-forged Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe{sub 1−x}Co{sub x} (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe{sub 25}Co{sub 75} alloy was 108 ppm and that of the as-cold rolled Fe{sub 25}Co{sub 75} alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe{sub 25}Co{sub 75} alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe{sub 25}Co{sub 75} and Fe{sub 20}Co{sub 80} alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction.

  9. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    International Nuclear Information System (INIS)

    Yamaura, Shin-ichi; Nakajima, Takashi; Satoh, Takenobu; Ebata, Takashi; Furuya, Yasubumi

    2015-01-01

    Highlights: • The as-forged Fe 25 Co 75 alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe 25 Co 75 alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe 1−x Co x (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe 25 Co 75 alloy was 108 ppm and that of the as-cold rolled Fe 25 Co 75 alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe 25 Co 75 alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe 25 Co 75 and Fe 20 Co 80 alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction

  10. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  11. Report of the panel on the use of depleted uranium alloys for large caliber long rod kinetic energy penetrators

    International Nuclear Information System (INIS)

    Sandstrom, D.J.; Jessen, N.; Loewenstein, P.; Weirick, L.

    1980-01-01

    In early 1977 the National Materials Advisory Board, an operating unit in the Commission on Sociotechnical Systems of the National Research Council, NAS/NAE, formed a study committee on High Density Materials for Kinetic Energy Penetrators. The Specific objectives of the Committee were defined as follows. Assess the potential of two materials for use in kinetic energy penetrators, including such factors as: (a) properties (as applied to this application: strength, toughness, and dynamic behavior); (b) uniformity, reliability and reproducibility; (c) deterioration in storage; (d) production capability; (e) ecological impact; (f) quality assurance; (g) availability, and (h) cost. The Committee was divided into two Panels; one panel devoted to the study of tungsten alloys and the other devoted to the study of depleted uranium alloys for use in Kinetic energy penetrators. This report represents the findings and recommendation of the Panel on Uranium

  12. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling

    International Nuclear Information System (INIS)

    Amore, S.; Brillo, J.; Egry, I.; Novakovic, R.

    2011-01-01

    The surface tension of liquid Cu-Ti alloys has been measured by using the containerless technique of electromagnetic levitation and theoretically calculated in the framework of the compound formation model. Measurements have been carried out on alloys covering the entire range of composition and over the temperature range 1275-2050 K. For all investigated alloys the surface tension can be described by a linear function of the temperature with negative slope. Due to the presence of different intermetallic compounds in the solid state the surface properties of liquid Cu-Ti alloys are satisfactory described by the compound formation model.

  13. Influence of solutes on heavy ion induced void-swelling in binary copper alloys

    International Nuclear Information System (INIS)

    Leister, K.H.

    1983-05-01

    As radiation induced swelling of metals depends on their constitution, swelling of copper and copper alloys with low solute concentration is studied. Diffusion coefficients and solubility of solute in copper were used as criteria of selection of the alloys. The samples were irradiated by 200keV copper ions. Swelling and void densities were measured by transmission electron microscopy. The measurements show low dependence of swelling upon the diffusibility of the solute in the solvent and a strong dependence on their concentration. Alloys of 0.1at% solute show more swelling than pure copper, and alloys of 1at% show less swelling under the irradiation conditions. The different swelling behavior in Cu-Ni alloys is due to the different void densities. (orig.) [de

  14. Investigations of binary and ternary phase change alloys for future memory applications

    International Nuclear Information System (INIS)

    Rausch, Pascal

    2012-01-01

    The understanding of phase change materials is of great importance because it enables us to predict properties and tailor alloys which might be even better suitable to tackle challenges of future memory applications. Within this thesis two topics have been approached: on the one hand the understanding of the alloy In 3 Sb 1 Te 2 and on the other hand the so called resistivity drift of amorphous Ge-Sn-Te phase change materials. The main topic covers an in depth discussion of the ternary alloy In 3 Sb 1 Te 2 . At first glance, this alloy does not fit into the established concepts of phase alloys: e.g. the existence of resonant bonding in the crystalline phase is not obvious and the number of p-electrons is very low compared to other phase change alloys. Furthermore amorphous phase change alloys with high indium content are usually not discussed in literature, an exception being the recent work by Spreafico et al. on InGeTe 2 . For the first time a complete description of In 3 Sb 1 Te 2 alloy is given in this work for the crystalline phase, amorphous phase and crystallization process. In addition comparisons are drawn to typical phase change materials like Ge 2 Sb 2 Te 5 /GeTe or prototype systems like AgInTe 2 and InTe. The second topic of this thesis deals with the issue of resistivity drift, i.e. the increase of resistivity of amorphous phase change alloys with aging. This drift effect greatly hampers the introduction of multilevel phase change memory devices into the market. Recently a systematic decrease of drift coefficient with stoichiometry has been observed in our group going from GeTe over Ge 3 Sn 1 Te 4 to Ge 2 Sn 2 Te 4 . These alloys are investigated with respect to constraint theory.

  15. Uranium-Based Cermet Alloys; Cermets a base d'uranium; Metallokeramicheskie splavy na osnove urana; Cermets a base de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V. E.; Zelenskij, V. F.; Voloshchuk, A. I.; Grishok, V. N. [Fiziko-Tekhnicheskij Institut an USSR, Khar' kov, SSSR (Russian Federation)

    1963-11-15

    The paper describes certain features of dispersion-hardened uranium-based cermets. As possible hardening materials, consideration was given to UO{sub 2}, UC, Al{sub 2}O{sub 3}, MgO and UBe{sub 13}. Data were obtained on the behaviour of uranium alloys containing the above-mentioned admixtures during creep tests, short-term strength tests and cyclic thermal treatment. The corrosion resistance o f UBe{sub 13}-based uranium alloys was also studied. )author) [French] Les auteurs decrivent certaines proprietes de cermets a base d'uranium, dont la resistance a ete accrue a l'aide de particules dispersees. Les materiaux utilises a cette fin sont notamment: UO{sub 2}, UC, Al{sub 2}O{sub 3}, MgO et UBe{sub 13}. Les auteurs indiquent les donnees obtenues sur le comportement des cermets a l'uranium; durant les essais de fluage, les essais de resistance a court terme et le traitement thermique cyclique, en mentionnant les substances ajoutees. Ils etudient enfin la resistance a la corrosion des cermets d'uranium et UBe{sub 13}. (author) [Spanish] Los autores describen algunas propiedades de los cermets a base de uranio, reforzados por particulas de diversos compuestos en dispersion. En calidad de posibles materiales de refuerzo, ensayaron el UO{sub 2}, el UC, el Al{sub 2}O{sub 3}, el MgO y el UBe{sub 13}. Obtuvieron datos sobre el comportamiento de esas aleaciones en ensayos de fluencia, ensayoe rapidos de resistencia y tratamiento termico ciclico. Por ultimo, estudiaron la resistencia a la corrosion de las aleaciones de uranio a base de UBe{sub 13}. (author) [Russian] Daetsya opisanie nekotorykh svojstv metallokeramicheskikh splavov urana, uprochnennykh dispersionnymi chastitsami. V kachestve vozmozhnykh uprochnyayushchikh materialov izuchalis' UO{sub 2}, UC, Al{sub 2}O{sub 3} , MgO i UBe{sub 13}. Polucheny dannye o povedenii splavov urana s ukazannymi primesyami pri kripovykh ispytaniyakh, pri kratkovremennykh prochnostnykh ispytaniyakh i pri tsiklicheskoj termoobrabotke

  16. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  17. Effect of aging on the general corrosion and stress corrosion cracking of uranium--6 wt % niobium alloy

    International Nuclear Information System (INIS)

    Koger, J.W.; Ammons, A.M.; Ferguson, J.E.

    1975-11-01

    Mechanical properties of the uranium-6 wt percent niobium alloy change with aging time and temperature. In general, the ultimate tensile strength and hardness reach a peak, while elongation becomes a minimum at aging temperatures between 400 and 500 0 C. The first optical evidence of a second phase was in the 400 0 C-aged alloy, while complete transformation to a two-phase structure was seen in the 600 0 C-aged alloy. The maximum-strength conditions correlate with the minimum stress corrosion cracking (SCC) resistance. The maximum SCC resistance is found in the as-quenched and 150, 200, and 600 0 C-aged specimens. The as-quenched and 300 0 C-aged specimens had the greatest resistance to general corrosion in aqueous chloride solutions; the 600 0 C-aged specimen had the least resistance

  18. Modeling of Disordered Binary Alloys Under Thermal Forcing: Effect of Nanocrystallite Dissociation on Thermal Expansion of AuCu3

    Science.gov (United States)

    Kim, Y. W.; Cress, R. P.

    2016-11-01

    Disordered binary alloys are modeled as a randomly close-packed assembly of nanocrystallites intermixed with randomly positioned atoms, i.e., glassy-state matter. The nanocrystallite size distribution is measured in a simulated macroscopic medium in two dimensions. We have also defined, and measured, the degree of crystallinity as the probability of a particle being a member of nanocrystallites. Both the distribution function and the degree of crystallinity are found to be determined by alloy composition. When heated, the nanocrystallites become smaller in size due to increasing thermal fluctuation. We have modeled this phenomenon as a case of thermal dissociation by means of the law of mass action. The crystallite size distribution function is computed for AuCu3 as a function of temperature by solving some 12 000 coupled algebraic equations for the alloy. The results show that linear thermal expansion of the specimen has contributions from the temperature dependence of the degree of crystallinity, in addition to respective thermal expansions of the nanocrystallites and glassy-state matter.

  19. Microstructure and mechanical properties of sintered Ti Binary alloys for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz Atay, H.; Haro Rodriguez, M.; Amigo Mata, A.; Vicente Escuder, V.; Amigo Borras, V.

    2016-07-01

    Biomaterials have shown rapid growth in the field of elderly population demands with the prolongation of human life. One of those biomaterials, titanium, has excellent properties and biocompatibility though it may cause weakening in the structures due to its higher stiffness. In this study, powder metallurgy process was used to produce Ti-Cr, Ti-Mo and Ti-Cu metal alloys to overcome this problem. Metal powders were mixed by mechanical alloying. After pressing and sintering, alloys structures were investigated. Characterizations were carried out by size analyzer, SEM-EDX, optical microscope and three points bending test. (Author)

  20. Gaseous oxygen and hydrogen embrittlements of the uranium-10 weight % molybdenum alloy

    International Nuclear Information System (INIS)

    Corcos, Jean.

    1979-07-01

    The stress corrosion of an Uranium-10 weight % Molybdenum alloy in high purity gaseous oxygen and hydrogen was studied. Tests were performed with fracture-mechanic specimens, fatigue precracked and carried out in tension with a constant sustained load. The experimental procedure enabled to determine the S.C. morphology during the test, and its kinetics. Tests in gaseous oxygen were performed with p02=0.15 MPa from 0 0 C to 100 0 C, and at 20 0 C for p02=0.15, 0.15.10 -2 and 0.15.10 -4 MPa. Two kinetic laws are proposed. Cracking is transgranular with a quasi-clivage type, and occurs on the (1 1 1) planes of the matrix. Tests in gaseous hydrogen were performed with pH2=0.15 MPa from - 50 0 C to + 135 0 C; for all the tests, even those under no exterior load, there is a failure by S.C. and macroscopic hydruration occurs. We propose a kinetic law, which may display that the hydruration phenomenon rules the S.C. propagation. We have performed the identification of the hydride, as well as the study of the precipitation. These phenomena don't occur with pH2=0.15.10 -2 MPa. The embrittlement is thought to be due to a formation-failure cycle of an hydride precipitate at the crack tip [fr

  1. Neutron diffraction study of the deformation mechanisms of the uranium-7 wt.% niobium shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W. [Los Alamos National Lab, Los Alamos, NM 87545 (United States)]. E-mail: dbrown@lanl.gov; Bourke, M.A.M. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Field, R.D. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Hults, W.L. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Teter, D.F. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Thoma, D.J. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Vogel, S.C. [Los Alamos National Lab, Los Alamos, NM 87545 (United States)

    2006-04-15

    The shape memory effect (SME) has been reported in the uranium-niobium alloy system in the region of the phase diagram surrounding U-6.5 wt.% Nb. In this regime, the material may have either an {alpha}'' monoclinic (U-6 wt.% Nb), or {gamma}{sup 0} tetragonal structure (U-7 wt.% Nb) and is two phase near 6.5 wt.% niobium. In situ neutron diffraction studies during uniaxial compressive loading of U-7 wt.% Nb indicate that strain in the recoverable region is accommodated by both motion of existing twin boundaries within {gamma}{sup 0}-phase and stress-induced phase transformation from the {gamma}{sup 0} to the {alpha}'' structure. The volume fraction of the {gamma}{sup 0}-phase decreases from 100% initially to {approx}26% after 4% total strain and some reversion is observed on release. The initial stress state of the stress-induced {alpha}'' grains will be discussed as well as the load sharing between the two phases.

  2. Mathematic modeling of reactor fuel radiation creep at example of uranium and its alloys

    International Nuclear Information System (INIS)

    Tarasov, V.A.

    2001-01-01

    The model of a radiation creep is explained within the framework of the mechanism of gliding and climbing dislocations based on the conception of a dislocation as not ideal sink for point radiation defects (PRD). The offered model is efficient for installed concentration PRD, considerably exceeding thermally steady state concentration. The gliding of dislocation are describing as due to moving dislocation kinks in Peierl's relief. The climbing of dislocation are describing as due to moving dislocation jogs. The mathematical model for the computer program simulating the offered model of radiation creep is developed. The complex of the computer programs simulating the radiation creep is developed. The computer simulation researches are conducted and the outcomes of a research of a kinetics of a flexible sliding and climbing dislocation interacting to obstacles of a various type (spherical centre of extension, dislocation prismatic loop and their spatially random distributions) for various installed concentration PRD, external loadings and temperatures are represented. The curves of installed rate of a radiation creep from temperature for uranium and its alloys with small additions of molybdenum (from 0,9 to 1,3 %) are obtained

  3. Hydrogen storage in binary and ternary Mg-based alloys. A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Miltin, D. [Alberta Univ., Edmonton (Canada); Poirier, E.; Fritzsche, H. [Canadian Neutron Beam Centre, Chalk River, ON (Canada)

    2010-07-01

    This study focuses on hydrogen sorption properties of cosputtered 1.5 micrometer thick Mg-based films with Al, Fe and Ti as alloying elements. We show that ternary Mg-Al-Ti and Mg-Fe-Ti alloys in particular display remarkable sorption behavior: at 200 C, the films are capable of absorbing 4-6 wt.% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable for over 100 ab- and desorption cycles for Mg-Al-Ti and Mg-Fe-Ti alloys. No degradation in capacity or kinetics is observed. Based on these observations, some general design principles for Mg-based hydrogen storage alloys are suggested. For Mg-Fe-Ti, encouraging preliminary results on multilayered systems are also presented. (orig.)

  4. Investigations of binary and ternary phase change alloys for future memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Pascal

    2012-09-13

    The understanding of phase change materials is of great importance because it enables us to predict properties and tailor alloys which might be even better suitable to tackle challenges of future memory applications. Within this thesis two topics have been approached: on the one hand the understanding of the alloy In{sub 3}Sb{sub 1}Te{sub 2} and on the other hand the so called resistivity drift of amorphous Ge-Sn-Te phase change materials. The main topic covers an in depth discussion of the ternary alloy In{sub 3}Sb{sub 1}Te{sub 2}. At first glance, this alloy does not fit into the established concepts of phase alloys: e.g. the existence of resonant bonding in the crystalline phase is not obvious and the number of p-electrons is very low compared to other phase change alloys. Furthermore amorphous phase change alloys with high indium content are usually not discussed in literature, an exception being the recent work by Spreafico et al. on InGeTe{sub 2}. For the first time a complete description of In{sub 3}Sb{sub 1}Te{sub 2} alloy is given in this work for the crystalline phase, amorphous phase and crystallization process. In addition comparisons are drawn to typical phase change materials like Ge{sub 2}Sb{sub 2}Te{sub 5}/GeTe or prototype systems like AgInTe{sub 2} and InTe. The second topic of this thesis deals with the issue of resistivity drift, i.e. the increase of resistivity of amorphous phase change alloys with aging. This drift effect greatly hampers the introduction of multilevel phase change memory devices into the market. Recently a systematic decrease of drift coefficient with stoichiometry has been observed in our group going from GeTe over Ge{sub 3}Sn{sub 1}Te{sub 4} to Ge{sub 2}Sn{sub 2}Te{sub 4}. These alloys are investigated with respect to constraint theory.

  5. In situ oxidation of zirconium binary alloys by environmental SEM and analysis by AFM, FIB, and TEM

    International Nuclear Information System (INIS)

    Proff, C.; Abolhassani, S.; Dadras, M.M.; Lemaignan, C.

    2010-01-01

    Binary Zr-alloys containing 1%Fe and 1% Ni (large precipitates) and 1% Cr and 0.6% Nb (small precipitates), as well as a pure Zr sample were exposed in situ at 130 Pa water vapour pressure at 415 o C in an environmental SEM. The surface topography and composition of each sample was characterised before in situ experiments, during and after oxidation. After oxidation the surface was characterised by SEM and EDS, AFM and TEM combined with EDS. Focused ion beam was used to prepare cross sections of the metal-oxide interface and for the preparation of TEM thin foils. The oxidation behaviour of precipitates for these alloying elements can be characterised into two large families, those which show a rapid oxidation and those which induce a delayed oxidation in comparison with the Zr-matrix. At 415 o C after 1 h of oxidation for Zr1%Fe and Zr1%Ni, the formation of protrusions could be detected at the surface, being related to underlying SPP in the oxide. On Zr1%Cr and Zr0.6%Nb unoxidised SPPs were observed in the oxide, close to the metal-oxide interface. These SPPs were, however, oxidised close to the outer surface of the oxide. The surface roughness was increased for all materials after in situ oxidation, however, only for Zr1%Fe and Zr1%Ni protrusions appeared on the surface during oxidation. It was subsequently demonstrated that these latter correspond to the position of SPPs. For Zr1%Fe the surface roughness increased more than in the other materials and on these protrusions small iron oxide crystals have been observed at the surface. These observations confirm that Fe has a different behaviour compared to the other SPP forming elements, and it diffuses out to the free surface of the material. These alloying elements being the constituents of the commercial alloys (Fe and Cr for Zircaloy-4; Fe, Cr and Ni for Zircaloy-2 and Nb for all Nb-containing alloys), this study allows to separate their individual influence and can allow a subsequent comparison to the behaviour

  6. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  7. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  8. High pressure study of Pu{sub 0.92}Am{sub 0.08} binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Klosek, V; Faure, P; Genestier, C [CEA, Valduc, F-21120 Is-sur-Tille (France); Griveau, J C; Wastin, F [European Commission JRC, Institute for Transuranium Elements, Postfach 2340, D-76125 Karlsruhe (Germany); Baclet, N [CEA, DRT/DTMN, F-38054 Grenoble (France)], E-mail: vincent.klosek@cea.fr

    2008-07-09

    The phase transitions (by means of x-ray diffraction) and electrical resistivity of a Pu{sub 0.92}Am{sub 0.08} binary alloy were determined under pressure (up to 2 GPa). The evolution of atomic volume with pressure gives detailed information concerning the degree of localization of 5f electronic states and their delocalization process. A quasi-linear V = f(P) dependence reflects subtle modifications of the electronic structure when P increases. The electrical resistivity measurements reveal the very high stability of the {delta} phase for pressures less than 0.7 GPa, since no martensitic-like transformation occurs at low temperature. Remarkable electronic behaviours have also been observed. Finally, resistivity curves have shown the temperature dependence of the phase transformations together with unexpected kinetic effects.

  9. Microstructural and mechanical properties of binary Ni–Si eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Musa, E-mail: gogebakan@ksu.edu.tr [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Kursun, Celal [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Gunduz, Kerem Ozgur; Tarakci, Mehmet; Gencer, Yucel [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey)

    2015-09-15

    Highlights: • Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} were prepared by arc melting method. • The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy. • The microhardness values decreases with increase of Si/Ni ratio. • Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} are paramagnetic. - Abstract: In the present work, Ni–Si eutectic alloys with nominal compositions of Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} (Ni and Si with the purity of 99.99%) were prepared by arc melting method under vacuum/argon atmosphere. The effects of Si/Ni ratio on the microstructural properties, thermal transformation behavior, micro-hardness and magnetic properties of the Ni–Si eutectic alloys were investigated. These alloys were characterized by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), differential thermal analysis (DTA), Vickers microhardness measurement and Vibrating Sample Magnetometer (VSM). The phases expected according to Ni–Si phase diagram for conventional solidified eutectic Ni–Si alloys are considerably consistent with phase detected by XRD in this study. The quantitative results confirm that the chemical composition of the alloys very close to eutectic compositions and the microstructures are in typical lamellar eutectic morphology. The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy which has highest melting temperature amongst Ni–Si eutectics. The microhardness values decreases with increase of Si/Ni ratio. Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} alloys are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} alloys are paramagnetic with no magnetic saturation.

  10. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys

    International Nuclear Information System (INIS)

    Liu Ming; Schmutz, Patrik; Uggowitzer, Peter J.; Song Guangling; Atrens, Andrej

    2010-01-01

    Research highlights: → The Y-intermetallic can accelerate corrosion and Y can increase the protectiveness of the surface layer. → In 0.1 M NaCl, the corrosion rate of Mg-Y alloys increased with increasing Y due to the Y intermetallic. → In 0.1 M NaCl, there was filiform corrosion. → In 0.1 M Na 2 SO 4 , the corrosion rate of Mg-Y alloys decreased with increasing Y in the range 3-7%Y. → Hydrogen evolution was observed from particular parts of the alloy surface. - Abstract: Corrosion of Mg-Y alloys was studied using electrochemical evaluations, immersion tests and direct observations. There were two important effects. In 0.1 M NaCl, the corrosion rate increased with increasing Y content due to increasing amounts of the Y-containing intermetallic. In 0.1 M Na 2 SO 4 , the corrosion rate decreased with increasing Y content above 3%, attributed to a more protective surface film, despite the intermetallic. The corrosion rate evaluated by electrochemical impedance spectroscopy was somewhat smaller than that evaluated from H evolution as expected from the Mg corrosion mechanism. A mechanism is proposed for filiform corrosion. Direct in situ corrosion observations revealed that a predominant feature was hydrogen evolution from particular parts of the alloy surface.

  11. Effect of solute interaction on interfacial and grain boundary embrittlement in binary alloys

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 6 (2013), 2574-2580 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * grain boundary embrittlement * binary interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  12. Control of segregation in squeeze cast Al-4.5Cu binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, G. [Oxford Univ. (United Kingdom). Dept. of Materials; Gallerneault, M. [Alcan International Ltd., Kingston, ON (Canada); Cantor, B. [Oxford Univ. (United Kingdom). Dept. of Materials

    1997-10-01

    The high pressure applied in squeeze casting allows Al alloys of wrought composition to be cast to near net-shape, although their long freezing range leads to the segregation of alloying elements. In this paper we present results on the squeeze casting and gravity casting of a model Al-4.5 wt%Cu alloy. Squeeze cast Al-4.5Cu has a normal segregation pattern with eutectic macrosegregates towards the centre of the billet, whereas gravity cast material has a typical inverse segregation pattern. Normal segregation in squeeze cast Al-4.5Cu is due to large temperature gradients during solidification. Segregation can be minimized by releasing the applied pressure during solidification to allow backflow of the interdendritic fluid, or by the addition of grain refiner to remove the large columnar dendritic growth structure. (orig.)

  13. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  14. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  15. Separation of uranium(V I) from binary solution mixtures with thorium(IV), zirconium(IV) and cerium(III) by foaming

    International Nuclear Information System (INIS)

    Shakir, K.; Aziz, M.; Benyamin, K.

    1992-01-01

    Foam separation has been investigated for the removal of uranium(V I), thorium(IV), zirconium(IV) and cerium(III) from dilute aqueous solutions at pH values ranging from about I to about II. Sodium laurel sulphate (Na L S) and acetyl trimethyl ammonium bromide (CTAB), being a strong anionic and a strong cationic surfactants, were used as collectors. The results indicate that Na L S can efficiently remove thorium(IV), zirconium(IV) and cerium(III) but not uranium(V I). CTAB, on the other hand, can successfully float only uranium(V I) and zirconium(IV). These differences in flotation properties of the different cations could be used to establish methods for the separation of uranium(V I) from binary mixtures with thorium(IV), zirconium(IV) or cerium(III). The results are discussed in terms of the hydrolytic behaviour of the tested cations and properties of used collectors.2 fig., 1 tab

  16. Major constituent quantitative determination in uranium alloys by coupled plasma atomic emission spectrometry and X ray fluorescence wavelength dispersive spectrometry

    International Nuclear Information System (INIS)

    Oliveira, Luis Claudio de; Silva, Adriana Mascarenhas Martins da; Gomide, Ricardo Goncalves; Silva, Ieda de Souza

    2013-01-01

    A wavelength-dispersive X-ray fluorescence (WD-XRF) spectrometric method for determination of major constituents elements (Zr, Nb, Mo) in Uranium/Zirconium/Niobium and Uranium/Molybdenum alloy samples were developed. The methods use samples taken in the form of chips that were dissolved in hot nitric acid and precipitate particles melted with lithium tetraborate and dissolved in hot nitric acid and finally analyzed as a solution. Studies on the determination by inductively coupled plasma optic emission spectrometry (ICP OES) using matched matrix in calibration curve were developed. The same samples solution were analyzed in both methods. The limits of detection (LOD), linearity of the calibrations curves, recovery study, accuracy and precision of the both techniques were carried out. The results were compared. (author)

  17. Lattice misfits in four binary Ni-Base γ/γ1 alloys at ambient and elevated temperatures

    Science.gov (United States)

    Kamara, A. B.; Ardell, A. J.; Wagner, C. N. J.

    1996-10-01

    High-temperature X-ray diffractometry was used to determine the in situlattice parameters, a γ and a γ', and lattice misfits, δ = ( a γ', - a γ)/ a γ, of the matrix (γ) and dispersed γ'-type (Ni3X) phases in polycrystalline binary Ni-Al, Ni-Ga, Ni-Ge, and Ni-Si alloys as functions of temperature, up to about 680 °C. Concentrated alloys containing large volume fractions of the γ' phase (˜0.40 to 0.50) were aged at 700 °C to produce large, elastically unconstrained precipitates. The room-temperature misfits are 0.00474 (Ni-Al), 0.01005 (Ni-Ga), 0.00626 (Ni-Ge), and -0.00226 (Ni-Si), with an estimated error of ± 4 pct. The absolute values of the lattice constants of the γ and γ' phases, at compositions corresponding to thermodynamic equilibrium at about 700 °C, are in excellent agreement with data from the literature, with the exception of Ni3Ga, the lattice constant of which is much larger than expected. In Ni-Ge alloys, δ decreases to 0.00612 at 679 °C, and in Ni-Ga alloys, the decrease is to 0.0097. In Ni-Si and Ni-Al alloys, δ exhibits a stronger temperature dependence, changing to-0.00285 at 683 °C (Ni-Si) and to 0.00424 at 680 °C (Ni-Al). Since the times required to complete the high-temperature X-ray diffraction (XRD) scans were relatively short (2.5 hours at most), we believe that the changes in δ observed are attributable to differences between the thermal expansion coefficients of the γ and γ' phases, because the compositions of the phases in question reflect the equilibrium compositions at 700 δC. Empirical equations are presented that accurately describe the temperature dependences of a γ, a γ', and δ over the range of temperatures of this investigation.

  18. A survey of the mechanical properties of uranium alloys U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, G.

    1969-04-15

    In a continuing program on the development of soft and ductile uranium alloys for armament applications, two compositions were studied. These gamma extruded uranium alloys were U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%. This study was carried out to determine the influence of tempering heat treatments associated with extrusion on the ductility of these uranium alloys. The mechanical properties of both alloys were measured in the extruded condition, in the extruded and annealed condition and in the quenched and tempered condition. A maximum elongation of 13.7% in tension with a low amount of work hardening was obtained for the U-3Mo-3Nb wt.% alloy after 1 1/2 hours anneal at 1200 deg F (650 deg C) followed by a rapid cooling in water at 70 deg F (21 deg C). A maximum elongation of 17.3% with a large amount of work hardening was obtained for alloy U-5Mo-3Nb wt.% after vacuum annealing, normalizing, gamma phase solubilizing at 1500 deg F (815 deg C) and quenching in water at 700 deg F (210 deg C). The maximum ductility achieved in these two alloys by our approaches is low compared with the ductility of Armco Iron employed for the same applications in the field of ballistics.

  19. The two bands model for the high temperature conductivity of the binary rare earth alloys

    International Nuclear Information System (INIS)

    Borgiel, W.

    1983-09-01

    The formula for the high temperature spin disorder resistivity for the concentrated Asub(1-x)Bsub(x)C alloys where A,B is an element of Rare Earth (RE) is determined on the basis of two bands model and the coherent potential approximation (CPA). The conductivity given by the 5d bands coming from the RE compounds has been taken into account

  20. Rapid theory-guided prototyping of ductile Mg alloys: from binary to multi-component materials

    Czech Academy of Sciences Publication Activity Database

    Pei, Z.; Friák, Martin; Sandlöbes, S.; Nazarov, R.; Svendsen, B.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 17, č. 9 (2015), Art. n. 093009 ISSN 1367-2630 Institutional support: RVO:68081723 Keywords : magnesium * alloys * ductile * ternary * rare-earth * ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.570, year: 2015

  1. Configurational energies and effective cluster interactions in substitutionally disordered binary alloys

    International Nuclear Information System (INIS)

    Gonis, A.; Zhang, X.h.; Freeman, A.J.; Turchi, P.; Stocks, G.M.; Nicholson, D.M.

    1987-01-01

    The determination of configurational energies in terms of effective cluster interactions in substitutionally disordered alloys from a knowledge of the alloy electronic structure is examined within the methods of concentration waves (CW) and the generalized perturbation method (GPM), and for the first time within the embedded-cluster method (ECM). It is shown that the ECM provides the exact summation to all orders of the effective cluster interaction expansions obtained in the partially renormalized GPM. The connection between the various methods (CW, GPM, and ECM) is discussed and illustrated by means of numerical calculations for model one-dimensional tight-binding (TB) systems and for TB Hamiltonians chosen to describe Pd-V alloys. These calculations, and the formal considerations presented in the body of the paper, show the complete equivalence of converged GPM summations within specific clusters and the ECM. In addition, it is shown that an exact expansion of the configurational energy can be obtained in terms of fully renormalized effective cluster interactions. In principle, these effective cluster interactions can be used in conjunction with statistical models to determine stable ordered structures at low temperatures and alloy phase diagrams

  2. Standard enthalpies of formation of some Lanthanide–Cobalt binary alloys by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); University of Chicago, Gordon Center of Interactive Science, 929 E 57th Street, Chicago, IL 60637 (United States); Nash, P. [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); Gao, Q.N.; Wang, J.C.; Du, Y. [Central South University, State Key Laboratory of Powder Metallurgy, Changsha, Hunan 410083 (China)

    2013-11-25

    Highlights: •Studied binary Lanthanide–Cobalt intermetallic alloys by high temperature calorimetry. •Determined the enthalpies of formation of 16 magnetostrictive alloys. •Compared the experimental measurements with theoretical predictions by two different models. -- Abstract: The standard enthalpies of formation of intermetallic compounds of some Lanthanide–Cobalt systems have been measured by high temperature direct synthesis calorimetry at 1373 ± 2 K. The following results in kJ/mol of atoms are reported: CeCo{sub 5}(−9.4 ± 3.3); Ce{sub 2}Co{sub 17}(−6.8 ± 3.2); PrCo{sub 5}(−10.5 ± 2.4); Pr{sub 2}Co{sub 17}(−6.8 ± 3.6); NdCo{sub 5}(−12.7 ± 2.6); Nd{sub 2}Co{sub 17}(−6.6 ± 2.7); SmCo{sub 5}(−12.2 ± 1.8); Sm{sub 2}Co{sub 17}(−7.2 ± 2.5); GdCo{sub 5}(−10.0 ± 2.4); Tb{sub 2}Co{sub 17}(−7.7 ± 2.9); Dy{sub 2}Co{sub 17}(−8.1 ± 2.9); HoCo{sub 3}(−17.5 ± 2.2); ErCo{sub 3}(−19.7 ± 3.3); TmCo{sub 3}(−22.9 ± 3.0); LuCo{sub 3}(−23.0 ± 2.6). The measurements are compared with values from the literature and with predicted values of the semi empirical model of Miedema and Coworkers. We also compare the measurements with predicted values by ab initio calculations. We will present a systematic picture of how the enthalpies of formation may be related to the atomic number of the Lanthanide element (LA). We will also compare the thermochemical behavior of the Fe, Co and Ni binary alloys with Lanthanide elements.

  3. X-ray diffraction study of reversible deformation mechanisms in the aged uranium-6.5 niobium alloy

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1985-01-01

    The x-ray diffraction (XRD) data from 200 0 C/2h-aged uranium-6.5 wt % niobium (U-6.5Nb) alloys, taken under stress as a function of strain, revealed a gamma-zero (γ 0 )→ alpha prime-prime (α'') thermoelastic martensitic phase transformation. It was concluded that the primary reversible deformation modes consisted of the movement of γ 0 /α'' interphase interfaces and α'' intervariant interfaces. Specimen elasticity at low strains was associated with the retreat of interphase interfaces. At higher strains, interphase interfaces did not recover significantly on unloading, and elasticity was due primarily to the retreat of α'' intervariant interfaces

  4. Examination of temperature-induced shape memory of uranium--5.3-to 6.9 weight percent niobium alloys

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1976-01-01

    The uranium-niobium alloy system was examined in the range of 5.3-to-6.9 weight percent niobium with respect to shape memory, mechanical properties, metallography, Coefficients of linear thermal expansion, and differential thermal analysis. Shape memory increased with increasing niobium levels in the study range. There were no useful correlations found between shape memory and the other tests. Coefficients of linear thermal expansion tests of as-quenched 5.8 and 6.2 weight percent niobium specimens, but not 5.3 and 6.9 weight percent niobium specimens, had a contraction component on heating, but the phenomenon was not a contributor to shape memory

  5. Determination of five kinds of impurity elements such as titanium in uranium titanium alloy by ICP-OES

    International Nuclear Information System (INIS)

    Jiao Yan; Hu Haihong

    2010-01-01

    New description is given of an ICP-OES method in which 5 impurities, Ti, Fe, Ni, Cu, and Al in U-Ti alloy can be determined simultaneously. Studying the dissolution of the sample preparation, separation condition of impurity elements; determining analysis of instrument line, detection limit and detection lower limit; eliminating the matrix effect of Ti and TiO 2 on the measurement of precipitation; standard addition method verify the method accuracy and precision. The results show: taking Uranium titanium alloys containing 0.1000 g sample, 5 kinds of elements Ti detection lower limits is 0.2-0.7 μg·g -1 , recovery were in the range of 98.8%-102.1%, and RSD'S found were less than 8%. The method of measurement proved is accurate and reliable. (authors)

  6. On the role of structure-dynamic relationship in determining the excess entropy of mixing and chemical ordering in binary square-well liquid alloys

    Science.gov (United States)

    Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar

    2018-05-01

    Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.

  7. The structural, electronic, magnetic and optical properties of the half-metallic binary alloys ZCl3 (Z=Be, Mg, Ca, Sr): A first-principles study

    Science.gov (United States)

    Song, Jun-Tao; Zhang, Jian-Min

    2018-06-01

    The investigations of the electronic and magnetic properties show the binary Heusler alloys ZCl3 (Z = Be, Mg, Ca, Sr) are half-metallic (HM) ferromagnets with an integer magnetic moment (Mt) of 1 μB /f.u.. The alloy BeCl3 is thermodynamic meta-stable, while other alloys are thermodynamic stable according to their cohesive energies and formation energies. Moreover, wide HM regions for alloys ZCl3 (Z = Be, Mg, Ca, Sr) show their HM characters are robust when the lattices are expanded or compressed under uniform and tetragonal strains. Finally, some optical properties are analyzed in detail, such as the dielectric function, the absorption coefficient, the refractive index and the extinction coefficient.

  8. Formation and transformation of binary intermetallic phases in high purity Al-Fe alloys

    International Nuclear Information System (INIS)

    Griger, A.; Stefaniay, V.; Kovacs-Csetenyi, E.; Turmezey, T.

    1990-01-01

    The solid solubility of iron in aluminium is very low (<0.04%), (all compositions are given in w%) therefore most of the iron content appears as intermetallic phases in combination with aluminium and other elements. The amount of iron does not exceed the level of the eutectic concentration in the commercial aluminium alloys, however the non-desired effect of these primary phases of large size must be taken into consideration. In the case of rapid solidification (RS) the eutectic point shifts to higher values of iron content. The eutectic has a very fine structure and the primary phases formed at high cooling rates have also very low particle size. Because of it, for the sake of improvement of the thermo-mechanical properties of the RS aluminium alloys the quantity of iron can be increased up to 8-10%. Above this concentration the favourable properties do not develop while the elongation decreases

  9. Corrosion behavior of as-cast binary Mg-Bi alloys in Hank's solution

    Directory of Open Access Journals (Sweden)

    Wei-li Cheng

    2015-11-01

    Full Text Available Biodegradable Mg-xBi (x = 3, 6 and 9wt.% alloys were fabricated by ingot casting, and the change of corrosion behavior of the alloys in the Hank's solution was analyzed with respect to the microstructure using optical micrograph (OM, X-ray diffraction (XRD, scanning electron microscope (SEM equipped with an energy dispersive X-ray spectrometer (EDS, electrochemical and immersion tests. The results show that the microstructures of the as-cast Mg-Bi alloys mainly consisted of dendritic ?Mg grains and Mg3Bi2 phase in common, with the secondary dendrite arm spacing (SDAS decreasing significantly from 41.2 靘 to 25.4 靘 and the fraction of Mg3Bi2 increasing from 3.1% to 10.7%. Furthermore, the corrosion rate increasing from 1.32 mm昦-1 to 8.07 mm昦-1 as the Bi content was increased from 3wt.% to 9wt.%. The reduced corrosion resistance was mainly ascribed to the increasing fraction of the second phase particles, which bring positive effects on the development of pitting.

  10. Segregation and diffusion of deffects induced by radiation in binary copper alloys

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1984-01-01

    Actually considerable theoretical and experimental progress has been made in establishing and in understanding the general feactures of the Radiation Induced Solute Difusion or Segregation such as its temperature, time and displacement rate dependence and the effects of some important materials factors such as the initial solute misfit. During irradiation, the local alloy compositions will change by defect flux driven, non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries and the compositional change are likely to influence a number of properties and phenomena important to Thermonuclear Reactors, as for example, Ductility, Corrosion, Stress, Corrosion Craking, Sputtering and Blistering. Our work is correlated with the 1 MeV electrons irradiations effects in Copper alloys where the alloying elements are Be, Pt, Sn. These three elements are undersized, similar and oversized relating the Copper atom radius, respectively. How starts and develops the Segregation Induced by Irradiation 'In Situ' with help of the High Voltage Electron Microscopy as technique. (Author) [pt

  11. Influence of silicon concentration on linear contraction process of Al-Si binary alloy

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2008-12-01

    Full Text Available Investigations of shrinkage phenomena during solidification and cooling of aluminium and aluminium-silicon alloys (AlSi5, AlSi7, AlSi9, AlSi11, AlSi12.5, AlSi18, AlSi21 have been conducted. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. By constant cross-section a test channel mould was parted and allowed a constrained contraction to examine. No parted test channel mould was tapered and allowed an unconstrained contraction to investigate. In the experiments the dimensions changes of solidifying test bar and the test mould have been registered, what has allowed to explain a mechanism of pre-shrinkage extension of solidifying metals and alloys. Registered time dependence of the test bar and the test mould dimension changes have shown, that so-called pre-shrinkage extension has been by mould thermal extension caused. The investigation results have also shown that time- and temperature dependences of shrinkage of Al-Si alloys have been on silicon concentration depended.

  12. Calculation of glass forming ranges in Al-Ni-RE (Ce, La, Y) ternary alloys and their sub-binaries based on Miedema's model

    International Nuclear Information System (INIS)

    Sun, S.P.; Yi, D.Q.; Liu, H.Q.; Zang, B.; Jiang, Y.

    2010-01-01

    Research highlights: → A method based on semi-empirical Miedema's and Toop's model for predicting glass forming range of ternary alloy system has been systematically described. → The method is superior to conventional models by considering the effect of the thermodynamic asymmetric component when dealing with a ternary alloy system. → The glass forming ranges of Al-Ni-RE (Al-Ni-Ce, Al-Ni-Y and Al-Ni-La) systems and their sub-binaries have been successfully calculated. → The present calculations using the method are in well agreement with experiments. → This model is especially useful for predicting the glass forming range of ternary alloy system because the calculations do not require experimental data. - Abstract: A method based on the semi-empirical Miedema's and Toop's model for calculating the glass forming range of a ternary alloy system was systematically described. The method is superior to conventional models by considering the effect of the thermodynamic asymmetric component when dealing with a ternary alloy system. Using this method, the glass forming ranges of Al-Ni-RE (Ce, La, Y) systems and their sub-binaries were successfully predicted. The mixing enthalpy and mismatch entropy were calculated, and their effects on the glass forming abilities of Al-Ni-RE (Ce, La, Y) systems were also discussed. The glass forming abilities of Al-Ni-Ce, Al-Ni-La and Al-Ni-Y are found to be close. The calculated glass forming ranges agree with experiments well. Meanwhile, the enthalpy change from amorphous phase to solid solution in the glass forming ranges was calculated, and the results suggest that those alloys close to the Ni-RE sub-binary system have higher glass forming abilities.

  13. Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effect in γ(bcc) Uranium-Molybdenum Alloy

    Science.gov (United States)

    Huang, Ke; Keiser, Dennis D.; Sohn, Yongho

    2013-02-01

    U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.

  14. Thermal Analysis of Pure Uranium Metal, UMo and UMoSi Alloys Using a Differential Thermal Analyzer

    International Nuclear Information System (INIS)

    Yanlinastuti; Sutri Indaryati; Rahmiati

    2010-01-01

    Thermal analysis of pure uranium metal, U-7%Mo and U-7%Mo-1%Si alloys have been done using a Differential Thermal Analyzer (DTA). The experiments are conducted in order to measure the thermal stability, thermochemical properties of elevated temperature and enthalpy of the specimens. From the analysis results it is showed that uranium metal will transform from α to β phases at temperature of 667.16°C and enthalpy of 2.3034 cal/g and from β to γ phases at temperature of 773.05 °C and enthalpy of 2.8725 cal/g and start melting at temperature of 1125.26 °C and enthalpy of 2.1316 cal/g. The U-7%Mo shows its thermal stability up to temperature of 650 °C and its thermal changes at temperature of 673.75 °C indicated by the formation of an endothermic peak and enthalpy of 0.0257 cal/g. The U-7%Mo-1%Si alloys shows its thermal stability up to temperature of 550 °C and its thermal changes at temperature of 574.18 °C indicated by the formation of an endothermic peak and enthalpy of 0.613 cal/g. From the three specimens it is showed that they have a good thermal stability at temperature up to 550 °C. (author)

  15. Low content uranium alloys for nuclear fuels; Alliages d'uranium a faible teneur pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H.; Laniesse, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small {alpha} grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [French] Sont decrits la structure et les proprietes d'alliages a faible teneur, contenant de 0,1 a 0,5 pour cent en poids de Al, Fe, Cr, Si, Mo ou une combinaison de ces elements. L'etude des cinetiques et du mode de transformation permet de choisir le traitement thermique le plus favorable. On a cherche a mettre, au point des alliages se pretant a une mise en oeuvre industrielle economique et presentant une structure a petits grains {alpha}, sans orientation preferentielle marquee, avec des precipites tres fins et stables ainsi qu'une bonne resistance au fluage. Les proprietes physiques et la resistance mecanique de ces alliages sont decrites entre la temperature ambiante et 600 deg C. Irradies sous forme d'elements combustibles de dimensions normales, ces alliages ont montre un bon comportement. (auteurs)

  16. Low content uranium alloys for nuclear fuels; Alliages d'uranium a faible teneur pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H; Laniesse, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small {alpha} grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [French] Sont decrits la structure et les proprietes d'alliages a faible teneur, contenant de 0,1 a 0,5 pour cent en poids de Al, Fe, Cr, Si, Mo ou une combinaison de ces elements. L'etude des cinetiques et du mode de transformation permet de choisir le traitement thermique le plus favorable. On a cherche a mettre, au point des alliages se pretant a une mise en oeuvre industrielle economique et presentant une structure a petits grains {alpha}, sans orientation preferentielle marquee, avec des precipites tres fins et stables ainsi qu'une bonne resistance au fluage. Les proprietes physiques et la resistance mecanique de ces alliages sont decrites entre la temperature ambiante et 600 deg C. Irradies sous forme d'elements combustibles de dimensions normales, ces alliages ont montre un bon comportement. (auteurs)

  17. The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry

    International Nuclear Information System (INIS)

    Meschel, S.V.; Pavlu, J.; Nash, P.

    2011-01-01

    Research highlights: → We studied 14 shape memory alloys. → The enthalpies of formation and structure characteristics are summarized. → Theoretical predictions by ab initio calculations compare better with experimental measurements than Miedema's semi empirical model. - Abstract: The standard enthalpies of formation of some shape memory alloys have been measured by high temperature direct synthesis calorimetry at 1373 K. The following results (in kJ/mol of atoms) are reported: CoCr (-0.3 ± 2.9); CuMn (-3.7 ± 3.2); Cu 3 Sn (-10.4 ± 3.1); Fe 2 Tb (-5.5 ± 2.4); Fe 2 Dy (-1.6 ± 2.9); Fe 17 Tb 2 (-2.1 ± 3.1); Fe 17 Dy 2 (-5.3 ± 1.7); FePd 3 (-16.0 ± 2.7); FePt (-23.0 ± 1.9); FePt 3 (-20.7 ± 2.3); NiMn (-24.9 ± 2.6); TiNi (-32.7 ± 1.0); TiPd (-60.3 ± 2.5). The results are compared with some earlier experimental values obtained by calorimetry and by EMF technique. They are also compared with predicted values on the basis of the semi empirical model of Miedema and co-workers and with ab initio calculations when available. We will also assess the available information regarding the structures of these alloys.

  18. Application of the Positron Annihilation Spectroscopy for Chromium Effect Investigation in Binary Fe-Cr Alloys

    International Nuclear Information System (INIS)

    Sojak, S.; Krsjak, V.; Slugen, V.; Stancek, S.; Petriska, M.; Vitazek, K.; Stacho, M.

    2008-01-01

    Positron annihilation spectroscopy (PAS) is one of the non-destructive techniques applied with advantage for evaluation of the radiation treated materials microstructure. In this work, the PAS was used for study of different Fe-Cr alloys implanted by ions of helium. Investigation was focused on the chromium effect and the radiation defects resistance. In particular, the vacancy type defects (mono-vacancies, vacancy clusters) have been studied. The results show that the specific content of chromium has important influence on the size and distribution of induced defects. (authors)

  19. On strain-induced dissolution of θ' and θ particles in Al-Cu binary alloy during equal channel angular pressing

    International Nuclear Information System (INIS)

    Liu Zhiyi; Bai Song; Zhou Xuanwei; Gu Yanxia

    2011-01-01

    Research highlights: → θ' particles in Al-Cu binary alloy was found to dissolve more rapidly than θ particles. → The different dissolution behavior of the θ' and θ phase was thermodynamically analysed. → The critical radius and free energy barrier for the strain-induced dissolution were calculated. - Abstract: The deformable θ' particle in Al-Cu binary alloy was found to dissolve more rapidly than the indeformable θ particle due to an additional increasing strain energy accumulated in the deformed θ' plate as well as an increasing interface energy led by the formation of sub-boundary in the θ' plate and fragmentation of the particle during equal channel angular pressing (ECAP). The critical radius and the free energy barrier for the strain-induced dissolution of both θ' and θ particles were calculated.

  20. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  1. Difference between Cr and Ni K-edge XANES spectra of rust layers formed on Fe-based binary alloys exposed to Cl-rich environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    The rust layer formed on weathering steel possesses a strong protective ability against corrosives in an atmospheres. This ability is related to the structure of the rust layer. The difference in the protective ability of a rust layer. The difference in the protective ability of a rust layer in a Cl-rich environment between conventional weathering steel containing Cr and advanced weathering steel containing Ni is believed to be caused by the differences in local structural and chemical properties between alloying elements. Cr and Ni, in the rust layer. In order to examine the effect of these alloying elements on the structure of the rust layer formed on steel in a Cl-rich environment, we have performed Cr and Ni K-edge X-ray absorption near-edge structure (XANES) measurements for the rust layer of Fe-Cr and Fe-Ni binary alloys exposed to a Cl-rich atmosphere using synchrotron radiation. The results of the Cr K-edge XANES measurements for the rust layer of Fe-Cr binary alloys show that the atomic geometry around Cr depends on the concentration of Cr. Therefore, it is expected that the local structure around Cr in the rust layer is unstable. On the other hand, from the results of the Ni K-edge XANES measurements for the rust layer of Fe-Ni binary alloys. Ni is considered to be positioned at a specific site in the crystal structure of a constituent of the rust layer, such as akaganeite or magnetite. As a consequence, Ni negligibly interacts with Cl - ions in the rust layer. (author)

  2. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  3. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    International Nuclear Information System (INIS)

    Kalay, Yunus Eren

    2008-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T 0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T 0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 (micro)m with a Peclet number of ∼0.2, JH and TMK deviate from each other. This

  4. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  5. Properties of low content uranium-molybdenum alloys which may be used as nuclear fuels; Proprietes des alliages uranium-molybdene de faibles teneurs utilisables comme materiaux combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J; Decours, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Metallurgical properties are given in this report of uranium-molybdenum alloys containing 0,5 to 3 per cent of molybdenum. Since some of these alloys are used in EDF power reactors are given: briefly the operating conditions imposed on nuclear fuels: maximum temperature, temperature gradient and external pressure. In the first part are considered the structural properties of the alloys correlation with the phase transformation kinetics; a description is given of the effects of certain physico-metallurgical factors on the morphology and the crystalline structure of the materials: - solidification conditions and the heredity of the {gamma} structure, - cooling rate at the transformation points, - whether or not the intermediate {gamma} {yields} {beta} transformation is suppressed In the second part we show how a knowledge of the phase transformation processes has made it possible to define the optimum preparation conditions for these materials in the form of fuel tubes intended for the EDF reactors: casting conditions, controlled cooling treatments, weldability. In the third part we study the thermal, stability during the long duration high temperature treatments and the cycles in the two zones of the diagram {alpha} + {gamma}; {beta} + {gamma} the effects of the morphology (in particular the two types of {alpha} pseudo-grains observed) and of the cooling rate during the transformation point transitions are described. In the fourth part are discussed the mechanical properties: resistance to a tractive force, resistance to creep, resilience. These properties can also be affected by the {gamma} structure heredity and by the cooling rate to which the alloy has been subjected. In conclusion we discuss the reasons which led to the choice of some of these alloys for the first EDF reactors in particular the advantages of their high creep resistance between 450 and 600 deg C for use in the form of tubes subjected to an external pressure. (authors) [French] Dans ce rapport

  6. Precipitation kinetics in binary Fe–Cu and ternary Fe–Cu–Ni alloys via kMC method

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-08-01

    Full Text Available The precipitation kinetics of coherent Cu rich precipitates (CRPs in binary Fe–Cu and ternary Fe–Cu–Ni alloys during thermal aging was modelled by the kinetic Monte Carlo method (kMC. A good agreement of the precipitation kinetics of Fe–Cu was found between the simulation and experimental results, as observed by means of advancement factor and cluster number density. This agreement was obtained owing to the correct description of the fast cluster mobility. The simulation results indicate that the effects of Ni are two-fold: Ni promotes the nucleation of Cu clusters; while the precipitation kinetics appears to be delayed by Ni addition during the coarsening stage. The apparent delayed precipitation kinetics is revealed to be related with the cluster mobility, which are reduced by Ni addition. The reduction effect of the cluster mobility weakens when the CRPs sizes increase. The results provide a view angle on the effects of solute elements upon Cu precipitation kinetics through the consideration of the non-conventional cluster growth mechanism, and kMC is verified to be a powerful approach on that.

  7. Simulation of the precipitation process of ordered intermetallic compounds in binary and ternary Ni-Al-based alloys by the phase-field model

    International Nuclear Information System (INIS)

    Hou Hua; Zhao Yuhong; Zhao Yuhui

    2009-01-01

    With the microscopic phase-field model, atomic-scale computer simulation programs for the precipitation mechanism of the ordered intermetallic compound γ' in binary Ni-15.5 at.%Al alloy, θ and γ' in ternary Ni 75 Al x V 25-x alloys were worked out based on the microscopic diffusion equation and non-equilibrium free energy. The simulation can be applied to the whole precipitation process and composition range. A prior assumptions on the new phase structure or transformation path was unnecessary, the possible non-equilibrium phases, atomic clustering and ordering could be described automatically, and atomic images, order parameters and volume fractions of precipitates were obtained. Computer simulation was performed systematically on the precipitation mechanism, precipitation sequence of θ and γ' in complicated system with ordering and clustering simultaneously. Through the simulated atomic images and chemical order parameters of precipitates, we can explain the complex precipitation mechanisms of θ (Ni 3 V) and γ' (Ni 3 Al) ordered phases. For the binary alloy, the precipitation mechanism of γ' phase has the characteristic of both non-classical nucleation and growth (NCNG) and congruent ordering and spinodal decomposition (COSD). For the ternary alloys, the precipitation characteristic of γ' phase transforms from NCNG to COSD gradually, otherwise, the precipitation characteristic of θ phase transforms from COSD to NCNG mechanism gradually

  8. Evaluation of methods for cleaning low carbon uranium metal and alloy samples

    International Nuclear Information System (INIS)

    Kirchner, K.; Dixon, M.

    1979-01-01

    Several methods for cleaning uranium samples prior to carbon analysis, using a Leco Carbon Analyzer, were evaluated. Use of Oakite Aluminum NST Cleaner followed by water and acetone rinse was found to be the best overall technique

  9. Solubility of hydrogen and deuterium in bcc-uranium-titanium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Kirkpatrick, J.R.

    1996-01-01

    For the bcc-U-Ti alloy system, H and D solubility measurements have been made on 12 alloy specimens ranging in composition from pure U to pure Ti and temperature range bounded by 900 K to 1,500 K. The results are described by a model within a standard error of 3%

  10. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method

  11. Investigations of linear contraction and shrinkage stresses development in hypereutectic al-si binary alloys

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2009-07-01

    Full Text Available Shrinkage phenomena during solidification and cooling of hypereutectic aluminium-silicon alloys (AlSi18, AlSi21 have been examined. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. Two type of experiments have been conducted: 1 on development of the test sample linear dimension changes (linear expansion/contraction, 2 on development of shrinkage stresses in the test sample. By the linear contraction experiments the linear dimension changes of the test sample and the metal test mould as well a temperature in six points of the test sample have been registered. By shrinkage stresses examination a shrinkage tension force and linear dimension changes of the test sample as well a temperature in three points of the test sample have been registered. Registered time dependences of the test bar and the test mould linear dimension changes have shown, that so-called pre-shrinkage extension has been mainly by mould thermal extension caused. The investigation results have shown that both: the linear contraction as well as the shrinkage stresses development are evident dependent on metal temperature in a warmest region the sample (thermal centre.

  12. Multiscale modeling of θ' precipitation in Al-Cu binary alloys

    International Nuclear Information System (INIS)

    Vaithyanathan, V.; Wolverton, C.; Chen, L.Q.

    2004-01-01

    We present a multiscale model for studying the growth and coarsening of θ' precipitates in Al-Cu alloys. Our approach utilizes a novel combination of the mesoscale phase-field method with atomistic approaches such as first-principles total energy and linear response calculations, as well as a mixed-space cluster expansion coupled with Monte Carlo simulations. We give quantitative first-principles predictions of: (i) bulk energetics of the Al-Cu solid solution and θ ' precipitate phases, (ii) interfacial energies of the coherent and semi-coherent θ ' /Al interfaces, and (iii) stress-free misfit strains and coherency strain energies of the θ ' /Al system. These first-principles data comprise all the necessary energetic information to construct our phase-field model of microstructural evolution. Using our multiscale approach, we elucidate the effects of various energetic contributions on the equilibrium shape of θ ' precipitates, finding that both the elastic energy and interfacial energy anisotropy contributions play critical roles in determining the aspect ratio of θ ' precipitates. Additionally, we have performed a quantitative study of the morphology of two-dimensional multi-precipitate microstructures during growth and coarsening, and compared the calculated results with experimentally observed morphologies. Our multiscale first-principles/phase-field method is completely general and should therefore be applicable to a wide variety of problems in microstructural evolution

  13. Phase transformations in the B2 phase of Co-rich Co-Al binary alloys

    International Nuclear Information System (INIS)

    Niitsu, K.; Omori, T.; Nagasako, M.; Oikawa, K.; Kainuma, R.; Ishida, K.

    2011-01-01

    Research highlights: → Bainitic transformation and a martensite-like structure from B2-CoAl were observed depending on quenching rate. → The phase separation into the metastable A2 + B2 structure was found in the as-quenched B2-CoAl. → The two-phase structure of A2 and B2 was found to show some coercive force after aging under a magnetic field. - Abstract: Phase transformations in the β (B2) phase of Co-21 and -23 at.% Al alloys were examined using transmission electron microscopy, energy dispersive X-ray spectroscopy and differential scanning calorimetry. The microstructures obtained from as-quenched specimens were found to be strongly affected by the quenching condition. While relatively thick sheet-specimens with a lower quenching rate showed bainitic plate precipitates with a fcc structure, a martensite-like structure was observed by optical microscopy in relatively thin specimens with a higher quenching rate. Regardless of the quenching condition, a spinodal-like microstructure composed of A2 and B2 phases was also detected and the A2 phase changed to a metastable hcp phase during further aging.

  14. Development of an aging integrator for uranium-0.75 weight percent titanium alloy part aging control

    International Nuclear Information System (INIS)

    Howington, L.C.

    1977-12-01

    An instrumentation system (Aging Integrator) has been developed to provide more precise control of the heat-treatment process used on uranium-0.75 wt.% titanium alloy material. The Aging Integrator calculates the integral of a predetermined aging function to control the aging period in the heat-treatment process. This control was employed to compensate for discrepancies caused by variations in heatup times, furnace-control fluctuations, and disagreement as to the temperature at which aging actually starts. Although the Aging Integrator hardware has been installed and satisfactorily tested on a production-area furnace, sufficient data to estimate a statistically sound aging integration function will not be available for approximately one year

  15. Study of uranium-plutonium alloys containing from 0 to 20 peri cent of plutonium (1963); Etude des alliages uranium-plutonium aux concentrations comprises entre 0 et 20 pour cent de plutonium (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Paruz, H [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-05-15

    The work is carried out on U-Pu alloys in the region of the solid solution uranium alpha and in the two-phase region uranium alpha + the zeta phase. The results obtained concern mainly the influence of the addition of plutonium on the physical properties of the uranium (changes in the crystalline parameters, the density, the hardness) in the region of solid solution uranium alpha. In view of the discrepancies between various published results as far as the equilibrium diagram for the system U-Pu is concerned, an attempt was made to verify the extent of the different regions of the phase diagram, in particular the two phased-region. Examinations carried out on samples after various thermal treatments (in particular quenching from the epsilon phase and prolonged annealings, as well as a slow cooling from the epsilon phase) confirm the results obtained at Los Alamos and Harwell. (author) [French] L'etude porte sur des alliages U-Pu du domaine de la solution solide uranium alpha et du domaine biphase uranium + phase zeta. Les resultats obtenus concernent en premier lieu l'influence de l'addition de plutonium sur les proprietes physiques de l'uranium (changement des parametres cristallins, densite, durete) dans le domaine de la solution solide uranium alpha. Compte tenu des divergences entre les differents resultats publies en ce qui concerne le diagramme d'equilibre du systeme U-Pu, on a essaye ensuite de verifier l'etendue des differents domaines du diagramme des phases, en particulier du domaine biphase zeta + uranium alpha. Les examens par micrographie et par diffraction des rayons X des echantillons apres differents traitements thermiques (notamment trempe a partir de la phase epsilon et recuits prolonges, ainsi qu'un refroidissement lent etage a partir de la phase epsilon) confirment les resultats obtenus a Los Alamos et a Harwell. (auteur)

  16. Highlighting micrographic structures of uranium-zirconium alloys with 6 per cent of weight of Zr

    International Nuclear Information System (INIS)

    Bouleau, Maurice

    1961-01-01

    In order to study the transformation kinetics of U-Zr alloys with a Zr content of 6 per cent in weight, the authors searched for a slow enough electrolytic polishing bath, and for an attack and examination method to highlight martensite structures produced by austempering and water tempering, and ultra-fine decomposition structures obtained by austempering. The authors explain the choice of a perchloric-butyl glycol polishing bath, of an examination under polarized light or normal light after appropriate attacks. These studies are reported for annealed alloys, and for processed alloys with martensite or ultra-fine decomposition structures [fr

  17. Simulation of self-assembled nanopatterns in binary alloys on the fcc(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Sebastian

    2008-07-01

    results of growth simulations are presented. At first, we introduce a model in order to realize off-lattice Kinetic Monte Carlo simulations. Since the costs in simulation time are enormous, some simplifications in the calculation of diffusion barriers are necessary and therefore the previous model is supplemented with some elements from the so-called ball and spring model. The next point is devoted to the calculation of energy barriers followed by the presentation of the growth simulations. Binary systems with only one sort of adsorbate are investigated as well as ternary systems with two different adsorbates. Finally, a comparison to the equilibrium simulations is drawn. Chapter 6 contains some concluding remarks and gives an outlook to possible further investigations. (orig.)

  18. Mechanical properties of aluminium-uranium alloy and aluminium commercially pure at several temperatures

    International Nuclear Information System (INIS)

    Quadros, N.F. de.

    1976-01-01

    The mechanical properties of Ai-U (18,4 wt %) alloy with and without heat treatment were determined, and they were compared with the mechanical properties of aluminum alloy of commercial purity, AI-1100, at tempiratures of 25, 500, 550 and 600 0 C, the changes of both the yield point stress and the ultimate tensile strength as a function of temperature may be described through two emperical relationships. A fractography study was also made [pt

  19. Uranium and plutonium extraction from fluoride melts by lithium-tin alloys

    International Nuclear Information System (INIS)

    Kashcheev, I.N.; Novoselov, G.P.; Zolotarev, A.B.

    1975-01-01

    Extraction of small amounts of uranium (12 wt. % concentration) and plutonium (less than 1.10sup(-10) % concentration) from lithium fluoride melts into the lithium-tin melts is studied. At an increase of temperature from 850 to 1150 deg the rate of process increases 2.5 times. At an increase of melting time the extraction rapidly enhances at the starting moment and than its rate reduces. Plutonium is extracted into the metallic phase for 120 min. (87-96%). It behaves analogously to uranium

  20. Thermodynamic study contribution of U-Fe and U-Ga alloys by high temperature mass spectroscopy, and of the wetting of yttrium oxide by uranium

    International Nuclear Information System (INIS)

    Gardie, P.

    1992-01-01

    High temperature thermodynamic properties study of U-Fe and U-Ga alloys, and wetting study of yttrium oxide by uranium are presented. High temperature mass spectrometry coupled to a Knudsen effusion multi-cell allows to measure iron activity in U-Fe alloys and of gallium in U-Ga alloys, the U activity is deduced from Gibbs-Duhem equation. Wetting of the system U/Y_2O_3_-_x is studied between 1413 K and 1973 K by the put drop method visualized by X-rays. This technique also furnishes density, surface tension of U and of U-Fe alloys put on Y_2O_3_-_x. A new model of the interfacial oxygen action on wetting is done for the system U/Y_2O_3_-_x. (A.B.)

  1. Review of DREV uranium research

    International Nuclear Information System (INIS)

    Drolet, J.P.; Erickson, W.H.; Tardif, H.P.

    1976-01-01

    This report presents a brief review of the DREV uranium research carried out on various aspects of the physical metallurgy of depleted uranium alloys. It includes (1) a survey of the early work on polynary alloys, (2) recent metallurgical investigations on various alloy systems and (3) miscellaneous studies on grain size refinement, grain growth, powder metallurgy, pyrophoricity and directional casting of uranium alloys. A general summary of most of the studies carried out during the last ten years is also presented

  2. Study of the transformation of uranium-niobium alloys with low niobium concentrations, tempered from the gamma and beta + gamma 1 regions and then annealed at different temperatures. Comparison with uranium-molybdenum alloys (1963); Etude des transformations des alliages uranium-niobium a faible teneur en niobium trempes depuis les domaines gamma et beta + gamma 1 puis revenus a differentes temperatures. Comparaison avec les alliages uranium-molybdene (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Collot, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-09-15

    The author shows that uranium-niobium alloys, like uranium-molybdenum alloys, tempered from the gamma region, give a martensitic phase with a structure deriving from that of alpha uranium by a slight contraction parallel to the axis [001], The critical cooling rate allowing the formation of this martensite is 80 deg. C/s at 750 deg. C. Retention of the beta phase of uranium-niobium alloys is particularly difficult, the critical retention rate being 700 deg. C/s at 668 deg. C for an alloy containing 2.5 at. per cent of Nb. This beta phase is completely converted to the alpha phase at room temperature in about 6 hours. The TTT curves of this beta alloy are effectively reduced to the lower branch of the lower 'C'. The beta phase conversion law is expressed as: 1-x = exp. (kt){sup n} x being the degree of progression of the conversion, t the time, n an exponent no-varying with temperature and having approximately the value 2 for the alloy considered, k an increasing function of temperature. The activation energy of conversion is of the order of 14,600 cal/mole. Niobium is much less active than molybdenum as a stabiliser of beta uranium. (author) [French] Dans ce travail l'auteur montre que les alliages uranium-niobium, comme d'ailleurs les alliages uranium-molybdene, trempes depuis le domaine gamma, donnent une phase martensitique dont la structure derive de celle de l'uranium alpha par une legere contraction parallele de l'axe [001]. La vitesse critique de refroidissement permettant la formation de cette martensite est de 80 deg. C/s a 750 deg. C. La retention de la phase beta des alliages uranium-niobium est particulierement delicate car la vitesse critique de retention est de 700 deg. C/s a 668 deg. C pour l'alliage a 2,5 at. pour cent de Nb. Cette phase beta se transforme completement en phase alpha a la temperature ordinaire en 6 heures environ. Les courbes TTT de cet alliage de structure beta se reduisent pratiquement a la branche inferieure du 'C' inferieur. La

  3. Investigation of point defects diffusion in bcc uranium and U–Mo alloys

    International Nuclear Information System (INIS)

    Smirnova, D.E.; Kuksin, A.Yu.; Starikov, S.V.

    2015-01-01

    We present results of investigation of point defects formation and diffusion in pure γ-U and γ-U–Mo fuel alloys. The study was performed using molecular dynamics simulation with the different interatomic potentials. The point defects formation and migration energies were estimated for bcc γ-U and U–9 wt.%Mo alloy. The calculated diffusivities of atoms via defects are provided for pure γ-U and for the alloy components. Analysis of simulation results shows that self-interstitial atoms play a leading role in the self-diffusion processes in the materials studied. This fact can explain a remarkably high self-diffusion mobility observed experimentally for γ-U. The self-diffusion coefficients in γ-U calculated in this assumption agree with the data measured experimentally. It is shown that alloying of γ-U with Mo increase formation energy for self-interstitial atoms and decelerate their mobility. These changes lead to decrease of self-diffusion coefficients in U–Mo alloy compared to pure U

  4. Modeling of uranium alloy response in plane impact and reverse ballistic experiments

    International Nuclear Information System (INIS)

    Herrmann, B.; Landau, A.; Shvarts, D.; Favorsky, V.; Zaretsky, E.

    2002-01-01

    The dynamic behavior of a solution heat-treated, water-quenched and aged U-0.75wt%Ti alloy was studied in planar (disk-on-disk) and reverse ballistic (disk-on-rod) impact experiments performed with a 25 mm light-gas gun. The impact velocity ranged from 100 to 500 m/sec. The impacted samples were softly recovered for further metallographic examination. The VISAR records of the sample free surface velocity, obtained in planar impact experiments, were simulated with 1-D hydrocode for calibrating the parameters of modified Steinberg-Cochran-Guinan (SCG) constitutive equation of the alloy. The same SCG equation was employed in 2-D AUTODYN simulation of the alloy response in the reverse ballistic experiments, with VISAR monitoring of the lateral sample surface velocity. Varying the parameters of the strain-dependent failure model allows relating the features of the recorded velocity profiles with the results of the examination of the damaged samples

  5. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.; Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.

    2015-01-01

    Recent modifications to fast reactor metallic fuels have been directed toward improving the melting and phase behaviors of the fuel alloy, for the purpose of ultra-high burnup and transuranic (TRU) burning. Improved melting temperatures increase the safety margin for uranium-based fast reactor fuel alloys, which is especially important for transuranic burning because the introduction of plutonium and neptunium acts to lower the alloy melting temperature. Improved phase behavior—single-phase, body-centered cubic—is desired because the phase is isotropic and the alloy properties are more predictable. An optimal alloy with both improvements was therefore sought through a comprehensive literature survey and theoretical analyses, and the creation and testing of some alloys selected by the analyses. Summarized here are those analyses, the impact of alloy modifications, and recent experimental results for selected pseudo-binary alloy systems that are hoped to accomplish the goals in a short timeframe. (author)

  6. Physical properties of Pd and Al transition metals and Pd-Al binary metal alloy investigated by using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Coruh, A.; Uludogan, M.; Tomak, M.; Cagin, T.

    2002-01-01

    In this study, physical properties, such as Pair Distribution Function g(r), Structure Factor S(k)''1'',''4, Diffusion Coefficient D''2''.''4, Intermediate Scattering function S(k,t)''3'',''4 and Dynamical Structure Factor S(k,w)''3'',''4 of some transition metals and metal alloys are investigated by using molecular dynamics simulation method. The simulation is specified for Pd, Al transition metals and Pd-Al binary metal alloys in the liquid form for different concentrations and at various temperatures by using Quantum Sutton-Chen (Q-SC) inter atomic potential. Intermediate scattering function and dynamical structure factor are calculated for various values of wave vector k. Results are in good agreement with published data''1'',''3'',''4

  7. Metallic uranium as fuel for fast reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  8. Contribution towards the study of {beta}{yields}{alpha} transformation in uranium and its alloys (1962); Contribution a l'etude de la transformation {beta}{yields}{alpha} dans l'uranium et ses alliages (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-05-15

    The kinetics of the transformation of uranium alloys containing 0.5 - 0.75 - 1.0 - 1.5 and 3 atoms per cent have been studied. The influence of heat treatment before decomposition has been discussed. The study of the transformation characteristics such as kinetics, residual phases, phenomena connected with the coherence between phases, reversibility below the equilibrium temperature, shows the following mechanisms exhibited during the decomposition of the {beta} phase on lowering the temperature: 1 ) eutectoid, 2) bainitic, 3) martensitic. The study of the TTT diagrams of alloys containing decreasing percentages of chromium indicates that the unalloyed uranium transforms without maintaining the coherence above 600 deg. C, where as at lower temperatures the transformation is mainly martensitic. The various alloying elements can be characterised by their influence on the three TTT curves corresponding to the three possible transformation mechanisms. The ability of the uranium alloys to alpha grain refining during isothermal decomposition or ambient temperature quenching is directly connected with the characteristics of the TTT diagrams and especially to the mode of bainitic transformation. (author) [French] II a ete etudie la cinetique de transformation des alliages uranium-chrome de teneur 0,5 - 0,75 - 1 - 1,5 - et 3 atomes pour cent. L'influence des traitements thermiques precedant la decomposition a ete discutee. L'etude des caracteristiques de la transformation: cinetique, phases residuelles, phenomenes lies a la coherence entre phases, reversibilite au-dessous de la temperature d'equilibre, permet de conclure que la decomposition met en jeu successivement les trois mecanismes eutectoide, bainitique et martensitique quand la temperature baisse. L'etude de l'evolution des diagrammes TTT quand la teneur en Cr decroit indique que dans l'uranium non allie la transformation se fait sans maintien de la coherence au-dessus de 600 deg. C; a

  9. Contribution towards the study of {beta}{yields}{alpha} transformation in uranium and its alloys (1962); Contribution a l'etude de la transformation {beta}{yields}{alpha} dans l'uranium et ses alliages (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-05-15

    The kinetics of the transformation of uranium alloys containing 0.5 - 0.75 - 1.0 - 1.5 and 3 atoms per cent have been studied. The influence of heat treatment before decomposition has been discussed. The study of the transformation characteristics such as kinetics, residual phases, phenomena connected with the coherence between phases, reversibility below the equilibrium temperature, shows the following mechanisms exhibited during the decomposition of the {beta} phase on lowering the temperature: 1 ) eutectoid, 2) bainitic, 3) martensitic. The study of the TTT diagrams of alloys containing decreasing percentages of chromium indicates that the unalloyed uranium transforms without maintaining the coherence above 600 deg. C, where as at lower temperatures the transformation is mainly martensitic. The various alloying elements can be characterised by their influence on the three TTT curves corresponding to the three possible transformation mechanisms. The ability of the uranium alloys to alpha grain refining during isothermal decomposition or ambient temperature quenching is directly connected with the characteristics of the TTT diagrams and especially to the mode of bainitic transformation. (author) [French] II a ete etudie la cinetique de transformation des alliages uranium-chrome de teneur 0,5 - 0,75 - 1 - 1,5 - et 3 atomes pour cent. L'influence des traitements thermiques precedant la decomposition a ete discutee. L'etude des caracteristiques de la transformation: cinetique, phases residuelles, phenomenes lies a la coherence entre phases, reversibilite au-dessous de la temperature d'equilibre, permet de conclure que la decomposition met en jeu successivement les trois mecanismes eutectoide, bainitique et martensitique quand la temperature baisse. L'etude de l'evolution des diagrammes TTT quand la teneur en Cr decroit indique que dans l'uranium non allie la transformation se fait sans maintien de la coherence au-dessus de 600 deg. C; a plus basse temperature la

  10. Synthesis and Mechanical Characterization of Binary and Ternary Intermetallic Alloys Based on Fe-Ti-Al by Resonant Ultrasound Vibrational Methods.

    Science.gov (United States)

    Chanbi, Daoud; Ogam, Erick; Amara, Sif Eddine; Fellah, Z E A

    2018-05-07

    Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density.

  11. The status of uranium-silicon alloy fuel development for the RERTR program

    International Nuclear Information System (INIS)

    Domagala, R.F.; Wiencek, T.C.; Thresh, H.R.; Stahl, D.

    1983-01-01

    As part of the national Reduced Enrichment Research and Test Reactor (RERTR) Program, Argonne National Laboratory (ANL) is engaged in a fuel-alloy development project. The fuel alloys are dispersed in an aluminum matrix and metallurgically roll-bonded within 6061 Al alloy. To date, 'miniplates' with up to 40 vol. fuel alloy have been successfully fabricated. Thirty-one of these plates have been or are being irradiated in the Oak Ridge Reactor (ORR). Three different fuels have been used in the ANL miniplates: U 3 Si (U + 4 wt.% Si), U 3 Si 2 (U + 7.4 wt.% Si), or ''U 3 SiAl'' (U + 3.5 wt.% Si + 1.5 wt.% Al). All three are candidates for permitting higher fuel loadings and thus lower enrichments of 235 U than would be possible with either UAl x or U 3 O 8 , the current fuels for plate-type elements. The enrichment level employed at ANL is ∼19.8%. Continuing effort involves the production of miniplates with up to ∼60 vol. % fuel, the development of a technology for full-size plate fabrication, and post-irradiation examination of miniplates already removed from the ORR. (author)

  12. Dissolution of metallic uranium and its alloys. Part II. Screening study results: Identification of an effective non-thermal uranium dissolution method

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    Screening experiments were performed to evaluate reagent systems that deactivate pyrophoric, metallic depleted uranium waste streams at ambient temperature. The results presented led to the selection of two systems, which would be investigated further, for the design of the LLNL onsite treatment process of metallic depleted uranium wastes. The two feasible systems are: (a) 7.5 mol/l H 2 SO 4 - 1 mol/l HNO 3 and (b) 3 mol/l HCl - 1 mol/l H 3 PO 4 . The sulfuric acid system dissolves uranium metal completely, while the hydrochloric-phosphoric acid system converts the metal completely into a solid, which might be suitable for direct disposal. Both systems combine oxidation of metallic uranium with complexation of the uranium ions formed to effectively deactivate uranium.s pyrophoricity at ambient temperature. (author)

  13. Aluminum titanate crucible for molten uranium

    International Nuclear Information System (INIS)

    Asbury, J.J.

    1975-01-01

    An improved crucible for molten uranium is described. The crucible or crucible liner is formed of aluminum titanate which essentially eliminates contamination of uranium and uranium alloys during molten states thereof. (U.S.)

  14. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    Science.gov (United States)

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Study of uranium - 20 Wt per cent plutonium-niobium alloys (1963)

    International Nuclear Information System (INIS)

    Abgrall, J.; Barthelemy, P.; Boucher, R.

    1963-01-01

    U-Pu-Nb alloys containing 20 wt per cent Pu and 10 - 20 - 30 - 40 - 50 or 60 wt per cent Nb have been studied principally to determine the feasibility of their use as fuel element. The fabrication, casting and homogenisation presented certain difficulties due specially to niobium. The transformation temperatures, thermal expansion coefficients and nature of phases have been determined by thermal analysis, dilatometry, micrography and X Rays diffraction. For similar compositions, U-Pu-Mo and U-Pu-Nb alloys have many common points concerning the presence of zeta phase (up to 40 wt per cent Nb), the coefficients of expansion, the good behaviour during thermal cycling and the good resistance to air oxidation in spite of zeta phase. In consequence, irradiation tests in EL 3 reactor (Saclay) will be carried out in the near future. (authors) [fr

  16. Microsegregation of heat and homogenization treatments in uranium-niobium alloys (U-Nb)

    International Nuclear Information System (INIS)

    Leal, J.F.

    1988-01-01

    In the following sections microsegration results in U-3,6 Wt% Nb and U-6,1 Wt% Nb alloys casted in noconsumable electrode arc furnace are presented. The microsegration is studied qualitatively by optical microscopy and quantitatively by electron microprobe. The degree of homogenization has been measured after 800 and 850 0 C heat treatments in tubular resistive furnace. The microstructures after heat treatments are quantitatively analysed to check effects on the casting structures, mainly the variations in solute along the dendrite arm spacing. Some solidification phenomena are then discussed on reference to theorical models of dendritic solidification, including microstructure and microsegregation. The experimental results are compared to theoretical on basis of initial and residual microsegregation after homogenization treatments. The times required for homogenization of the alloys are also discussed in function of the microsegregation from casting structures and the temperatures of the treatments. (author) [pt

  17. Micro segregation and homogenization treatments of uranium-niobium alloys (U-Nb)

    International Nuclear Information System (INIS)

    Leal, Jose Fernando

    1988-01-01

    In the following sections micro segregation results in 0-3,6 wt% Nb and U-6,1 wt% Nb alloys casted in no consumable electrode arc furnace are presented. The micro segregation is studied qualitatively by optical microscopy and quantitatively by electron microprobe. The degree of homogenization has been measured after 800 and 850 deg C heat treatments in tubular resistive furnace. The microstructures after heat treatments are quantitatively analysed to check effects on the casting structures, mainly the variations in solute along the dendrite arm spacing. Some solidification phenomena are then discussed on reference to theoretical models of dendritic solidification , including microstructure and micro segregation. The experimental results are compared to theoretical on basis of initial and residual micro segregation after homogenization treatments. The times required for homogenization of the alloys are also discussed in function of the micro segregation from casting structures and the temperatures of the treatments. (author)

  18. Qualification of uranium-molybdenum alloy fuel - conclusions of an international workshop

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Languille, A.

    2000-01-01

    Thirty-one participants representing 21 reactors, fuel developers, fuel fabricators, and fuel reprocessors in 11 countries discussed the requirements for qualification of U-Mo alloy fuel at a workshop held at Argonne National Laboratory on January 17-18, 2000. Consensus was reached that the qualification plans of the U.S. RERTR program and the French U-Mo fuel development program are valid. The items to be addressed during qualification are summarized in the paper. (author)

  19. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels

    International Nuclear Information System (INIS)

    Clarke, A.J.; Clarke, K.D.; McCabe, R.J.; Necker, C.T.; Papin, P.A.; Field, R.D.; Kelly, A.M.; Tucker, T.J.; Forsyth, R.T.; Dickerson, P.O.; Foley, J.C.; Swenson, H.; Aikin, R.M.; Dombrowski, D.E.

    2015-01-01

    Low-enriched uranium-10 wt.% molybdenum (LEU-10wt.%Mo) is of interest for the fabrication of monolithic fuels to replace highly-enriched uranium (HEU) dispersion fuels in high performance research and test reactors around the world. In this work, depleted uranium-10 wt.%Mo (DU-10wt.%Mo) is used to simulate the solidification and microstructural evolution of LEU-10wt.%Mo. Electron backscatter diffraction (EBSD) and complementary electron probe microanalysis (EPMA) reveal significant microsegregation present in the metastable γ-phase after solidification. Homogenization is performed at 800 and 1000 °C for times ranging from 1 to 32 h to explore the time–temperature combinations that will reduce the extent of microsegregation, as regions of higher and lower Mo content may influence local mechanical properties and provide preferred regions for γ-phase decomposition. We show for the first time that EBSD can be used to qualitatively assess microstructural evolution in DU-10wt.%Mo after homogenization treatments. Complementary EPMA is used to quantitatively confirm this finding. Homogenization at 1000 °C for 2–4 h may the regions that contain 8 wt.% Mo or lower, whereas homogenization at 1000 °C for longer than 8 h effectively saturates Mo chemical homogeneity, but results in substantial grain growth. The appropriate homogenization time will depend upon additional microstructural considerations, such as grain growth and intended subsequent processing. Higher carbon LEU-10wt.%Mo generally contains more inclusions within the grains and at grain boundaries after solidification. The effect of these inclusions on microstructural evolution (e.g. grain growth) during homogenization and as potential γ-phase decomposition nucleation sites is unclear, but likely requires additional study.

  20. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A.J., E-mail: aclarke@lanl.gov; Clarke, K.D.; McCabe, R.J.; Necker, C.T.; Papin, P.A.; Field, R.D.; Kelly, A.M.; Tucker, T.J.; Forsyth, R.T.; Dickerson, P.O.; Foley, J.C.; Swenson, H.; Aikin, R.M.; Dombrowski, D.E.

    2015-10-15

    Low-enriched uranium-10 wt.% molybdenum (LEU-10wt.%Mo) is of interest for the fabrication of monolithic fuels to replace highly-enriched uranium (HEU) dispersion fuels in high performance research and test reactors around the world. In this work, depleted uranium-10 wt.%Mo (DU-10wt.%Mo) is used to simulate the solidification and microstructural evolution of LEU-10wt.%Mo. Electron backscatter diffraction (EBSD) and complementary electron probe microanalysis (EPMA) reveal significant microsegregation present in the metastable γ-phase after solidification. Homogenization is performed at 800 and 1000 °C for times ranging from 1 to 32 h to explore the time–temperature combinations that will reduce the extent of microsegregation, as regions of higher and lower Mo content may influence local mechanical properties and provide preferred regions for γ-phase decomposition. We show for the first time that EBSD can be used to qualitatively assess microstructural evolution in DU-10wt.%Mo after homogenization treatments. Complementary EPMA is used to quantitatively confirm this finding. Homogenization at 1000 °C for 2–4 h may the regions that contain 8 wt.% Mo or lower, whereas homogenization at 1000 °C for longer than 8 h effectively saturates Mo chemical homogeneity, but results in substantial grain growth. The appropriate homogenization time will depend upon additional microstructural considerations, such as grain growth and intended subsequent processing. Higher carbon LEU-10wt.%Mo generally contains more inclusions within the grains and at grain boundaries after solidification. The effect of these inclusions on microstructural evolution (e.g. grain growth) during homogenization and as potential γ-phase decomposition nucleation sites is unclear, but likely requires additional study.

  1. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  2. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Markova, Tat’jana, E-mail: patriot-rf@mail.ru [Siberian State Industrial University. 42 Kirov St., Novokuznetsk, 654007 (Russian Federation); Klopotov, Vladimir, E-mail: vdklopotov@mail.ru [Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050 (Russian Federation); Vlasov, Viktor, E-mail: vik@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  3. Creep characteristics of a hypoeutectic Mg-Ca binary alloy with a near-fully lamellar microstructure

    International Nuclear Information System (INIS)

    Terada, Yoshihiro; Tsukahara, Masashi; Shibayama, Atsushi; Murata, Yoshinori; Morinaga, Masahiko

    2011-01-01

    Highlights: → We develop a hypoeutectic Mg-Ca cast alloy with a near-fully lamellar microstructure. → Dislocations are introduced within the lamellar microstructure during casting. → The dislocation segments in the α-Mg plates are located on the basal planes. → Creep of the alloy is ascribed to the easy glide of the introduced dislocations. -- The creep behavior of a hypoeutectic Mg-14.8 mass% Ca cast alloy with an α-Mg/C14-Mg 2 Ca near-fully lamellar microstructure was investigated at 473 K. Transmission electron microscopy shows that dislocations are introduced within the lamellar microstructure of the alloy during casting; the dislocation segments in the α-Mg plates are located on basal planes. The stress exponent of the creep rate is unity in the early stage of transient creep. Creep deformation of the alloy is ascribed to the easy glide of the introduced dislocations.

  4. Enbrittlement of the U-7,5 Nb-2,5 Zr uranium alloy in gaseous environments

    International Nuclear Information System (INIS)

    Lepoutre, D.

    1984-10-01

    Stress corrosion cracking in air, oxygen, hydrogen, water, carbon dioxide of an uranium alloy U 7.5 Nb 2.5 Zr is experimentally studied. The stress corrosion tests are performed with fatigue precracked Single Edge Notched specimens, and the Linear Elastic Fracture Mechanic concept is used to describe the stress state at the crack tip. The s.c.c. maps and the cracking kinetics are determined as a function of stress intensity factor, temperature and pressure. In oxygen, an embrittlement is observed in all the tests, for any temperature and pressure; cracking is transgranular and thermally activated. We propose a model which takes in account the concomitant buildup of an oxide film and niobium interfacial segregated zone. In hydrogen, an embrittlement is observed only at low pressure: hydriding occurs at high pressure. A brittle phase failure mechanism is proposed to explain the embrittling effect of hydrogen. Cracking in oxygen at low pressure is inhibited by water and carbon dioxide. Finally oxygen is the specie responsible for cracking in laboratory air [fr

  5. Some aspects of in-pile swelling of fissile materials, 1. part: non-alloyed α uranium

    International Nuclear Information System (INIS)

    Mikailoff, H.

    1964-01-01

    An examination has been carried out of non-alloyed uranium samples, having various structural states, cold-worked and recrystallized, as-cast and β-treated, and irradiated at temperatures of between 450 and 600 C and with burn-ups from 1300 to 5500 MW days/metric ton. These samples swelled because of precipitation of the fission gases the porosity thus produced has a morphology depending mainly on the type of deformation to which the metal has been subjected and which is due to in-pile growth. The most homogeneous distribution of pores, and thus that leading to the minimum swelling, is only observed in the material having a marked [010] texture in which the growth and perhaps the thermal cycling introduce little or no strain. For other materials the deformation /swelling association causes a more rapid destruction of the samples either by cracking when the deformation is due to twinning, or by pronounced swelling localized in the bands when deformation is due to slipping. Finally the fission-gas precipitation considerably facilitates, above 500 C, the germination and growth of the intergranular cracks which can then develop at low stresses. (author) [fr

  6. Uranium-zirconium based alloys part I: reference points for thermophysical properties

    International Nuclear Information System (INIS)

    Dias, Marcio Soares; Mattos, Joao Roberto L. de

    2015-01-01

    An integrated modelling process named Relative Variational Model (RVM) is in development by the fuel designers of the CDTN. The lack of measurements in the thermal and physical properties for new fuels, as well as the high dispersion of the existing measurements are challenges in the development of nuclear fuel concepts since that higher uncertainties of the material properties have as result the detrimental reduction on the safety margins . Based on the RVM, the integrated process has been applied to the derivation of reference points for the U-Zr based alloy. (author)

  7. Effects of O in a binary-phase TiAl-Ti3Al alloy: from site occupancy to interfacial energetics

    International Nuclear Information System (INIS)

    Wei Ye; Xu Huibin; Zhou Hongbo; Zhang Ying; Lu Guanghong

    2011-01-01

    We have investigated site occupancy and interfacial energetics of a TiAl-Ti 3 Al binary-phase system with O using a first-principles method. Oxygen is shown to energetically occupy the Ti-rich octahedral interstitial site, because O prefers to bond with Ti rather than Al. The occupancy tendency of O in TiAl alloy from high to low is α 2 -Ti 3 Al to the γ-α 2 interface and γ-TiAl. We demonstrate that O can largely affect the mechanical properties of the TiAl-Ti 3 Al system. Oxygen at the TiAl-Ti 3 Al interface reduces both the cleavage energy and the interface energy, and thus weakens the interface strength but strongly stabilizes the TiAl/Ti 3 Al interface with the O 2 molecule as a reference. Consequently, the mechanical property variation of TiAl alloy due to the presence of O not only depends on the number of TiAl/Ti 3 Al interfaces but also is related to the O concentration in the alloy.

  8. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  9. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    Science.gov (United States)

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  10. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    International Nuclear Information System (INIS)

    Mareci, Daniel; Bolat, Georgiana; Chelariu, Romeu; Sutiman, Daniel; Munteanu, Corneliu

    2013-01-01

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO 2 is lower than that of TiO 2 rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F − ) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F − could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions

  11. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Bolat, Georgiana, E-mail: georgiana20022@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Chelariu, Romeu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Iasi (Romania); Sutiman, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Munteanu, Corneliu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical, Iasi (Romania)

    2013-08-15

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO{sub 2} is lower than that of TiO{sub 2} rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F{sup −}) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F{sup −} could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions.

  12. Manhattan Project Technical Series The Chemistry of Uranium (I) Chapters 1-10

    International Nuclear Information System (INIS)

    Rabinowitch, E. I.; Katz, J. J.

    1946-01-01

    This constitutes Chapters 1 through 10. inclusive, of The Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Nuclear Properties of Uranium; Properties of the Uranium Atom; Uranium in Nature; Extraction of Uranium from Ores and Preparation of Uranium Metal; Physical Properties of Uranium Metal; Chemical Properties of Uranium Metal; Intermetallic Compounds and Alloy systems of Uranium; the Uranium-Hydrogen System; Uranium Borides, Carbides, and Silicides; Uranium Nitrides, Phosphides, Arsenides, and Antimonides.

  13. Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings

    Energy Technology Data Exchange (ETDEWEB)

    Detrois, Martin [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Jablonski, Paul D. [National Energy Technology Lab. (NETL), Albany, OR (United States);

    2017-10-23

    Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficial to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.

  14. Fabrication of powder from ductile uranium alloys for use as nuclear dispersion

    International Nuclear Information System (INIS)

    Durazzo, M.; Leal Neto, R.M.; Rocha, C.J.; Urano de Carvalho, E.; Riella, H.G.

    2014-01-01

    This work forms part of the studies presently ongoing at IPEN investigating the feasibility of powdering ductile U-10wt%Mo alloy by hydriding-milling-de-hydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following de-hydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H 3 . SEM analysis of HMD powder particles revealed equi-axial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested. (authors)

  15. Thermal simulation of quenching uranium-0.75% titanium alloy in water

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Llewellyn, G.H.; Childs, K.W.; Ludtka, G.M.; Aramayo, G.A.

    1985-01-01

    A computer model, The Quench Simulator, has been developed to simulate and predict in detail the behavior of U-0.75 Ti alloy when quenched at high temperature (about 850 0 C) in cold water. The code allows one to determine the time- and space-dependent distributions of temperature, residual stress, distortion, and microstructure that evolve during the quenching process. The nonlinear temperature- and microstructure-dependent properties, as well as the cooling rate-dependent heats of transformation, are incorporated into the model. The complex boiling heat transfer with its various regimes and other thermal boundary conditions are simulated. Experiments have been performed and incorporated into the model. Both sudden submersion and gradual controlled immersion can be applied. A parametric and sensitivity study has been performed demonstrating the importance of the thermal boundary conditions applied for achieving certain product characteristics. The thermal aspects of the model and its applications are discussed and demonstrated

  16. Studies of atomic diffusion in binary alloys by X-ray photon correlation spectroscopy with particular attention to B2 phases

    International Nuclear Information System (INIS)

    Stana, M.B.

    2015-01-01

    The way single atoms change places in a condensed system determines many of its properties. Insight into the mechanisms controlling such processes, therefore, yields a better understanding of matter which in turn allows for improving fabrication and tailoring of material properties. Intermetallic alloys have many attractive features for industrial applications, such as high specific strength, good corrosion and oxidation resistance and low raw material cost. Their application is, however, still strongly limited by properties such as high brittleness at low temperatures. Methods capable of studying diffusion on an atomistic level have been restricted to high temperatures close to the melting point of intermetallics until now. The new method of atomic- scale X-ray Photon Correlation Spectroscopy provides a means of studying these materials at technically relevant working temperatures. This thesis demonstrates the application of this new technique to binary intermetallic alloys. In the first part the theoretical concepts underlying atomic-scale X-ray Photon Correlation Spectroscopy such as correlation, rate equations, scattering and reciprocal space will be tho- roughly discussed. As computer simulation techniques play an important role in data evaluation, a chapter is dedicated to this topic. The experimental preconditions are then treated. The last chapters are devoted to the presentation of experimental results. It is shown that a new diffusion mechanism is required to explain atomic hops at relatively low temperature in a B2 Fe-Al alloy with a few percent of excess Fe, while in a B2 Ag-Mg alloy with excess Ag commonly known mechanisms can explain the observed diffusion behavior. (author) [de

  17. Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Xie Guoqiang; Li Song; Zhang Wei; Inoue, Akihisa

    2008-01-01

    The purpose of the current paper is to study the influence of Ti, V, Nb, Al, Sn and Pd additions on the glass-forming ability, formation of a supercooled liquid region and a devitrification process of some Ni-Zr glassy alloys as well as to compare the results with those obtained for similar Cu-based alloys studied earlier. The Ni-based glassy alloys were investigated by using X-ray diffraction, differential scanning and isothermal calorimetries. Although the studied Ni-based alloys showed high values of the reduced glass-transition temperature of about 0.6, their glass-forming ability is quite low. This fact may be explained by low stability of the supercooled liquid against crystallization and formation of the equilibrium intermetallic compounds with a high growth rate compared to those observed in similar Cu-based alloys studied earlier. Relatively low thermal conductivity of Ni-based alloys is also found to be another factor limiting their glass-forming ability

  18. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys.

    Science.gov (United States)

    da Silva, Luciano Monteiro; Claro, Ana Paula Rosifini Alves; Donato, Tatiani Ayako Goto; Arana-Chavez, Victor E; Moraes, João Carlos Silos; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto

    2011-05-01

    The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys. This article presents the effect of heat treatment and oxygen doping in some mechanical properties and the biocompatibility of three alloys of the Ti-Nb system, characterized by density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, in vitro cytotoxicity, and mechanical spectroscopy. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seetharaman, Sankaranarayanan, E-mail: seetharaman.s@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 (Singapore); Blawert, Carsten [Helmholtz-Zentrum Geesthacht, Magnesium Innovation Centre, Max-Planck-Straße 1, D-21502, Geesthacht (Germany); Ng, Baoshu Milton [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 (Singapore); Wong, Wai Leong Eugene [School of Mechanical and Systems Engineering, New Castle University International Singapore, 180 Ang Mo Kio Avenue 8, 569830 (Singapore); Goh, Chwee Sim [ITE Technology Development Centre, ITE College Central, 2 Ang Mo Kio Drive, 567720 (Singapore); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Magnesium Innovation Centre, Max-Planck-Straße 1, D-21502, Geesthacht (Germany); Gupta, Manoj, E-mail: mpegm@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 (Singapore)

    2015-11-05

    In this study, new erbium modified Mg–Al alloys were developed by integrating trace erbium (in the form of Al{sub 94.67}Er{sub 5.33} master alloy) into pure Mg using disintegrated melt deposition technique. The developed Er- modified Mg–Al alloys were investigated for their microstructural, mechanical and corrosion characteristics in comparison with their unmodified counterparts. Microstructural investigation revealed (i) improved purity, (ii) (marginal) grain refinement, (iii) more uniform second phase distribution and (iv) Al{sub 3}Er phase formation due to Er modification. Mechanical property measurements revealed an overall enhancement under indentation, tension and compression loads. A remarkable improvement in tensile ductility (without adverse effects on strength) by +19%, +29%, and +58% was obtained in Mg–3Al–0.1Er, Mg–6Al–0.3Er and Mg–9Al–0.5Er when compared to Mg–3Al, Mg–6Al and Mg–9Al respectively. While the Mg–6Al–0.3Er alloy exhibited best ductility, the Mg–9Al–0.5Er has the best strength under both tension and compression loads. Corrosion characteristics evaluated by hydrogen evolution, salt spray and electrochemical impedance experiments revealed improved corrosion resistance of Er modified Mg–Al alloys by the enhanced purity levels and the formation of Al–Er phases. - Highlights: • New erbium modified Mg–Al alloys successfully synthesized using DMD method. • Erbium modification promoted Al{sub 3}Er formation and improved the purity. • Remarkable improvement in tensile ductility obtained after erbium modification. • The developed erbium modified Mg–Al alloys exhibit improved corrosion resistance.

  20. Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg–Al alloys

    International Nuclear Information System (INIS)

    Seetharaman, Sankaranarayanan; Blawert, Carsten; Ng, Baoshu Milton; Wong, Wai Leong Eugene; Goh, Chwee Sim; Hort, Norbert; Gupta, Manoj

    2015-01-01

    In this study, new erbium modified Mg–Al alloys were developed by integrating trace erbium (in the form of Al 94.67 Er 5.33 master alloy) into pure Mg using disintegrated melt deposition technique. The developed Er- modified Mg–Al alloys were investigated for their microstructural, mechanical and corrosion characteristics in comparison with their unmodified counterparts. Microstructural investigation revealed (i) improved purity, (ii) (marginal) grain refinement, (iii) more uniform second phase distribution and (iv) Al 3 Er phase formation due to Er modification. Mechanical property measurements revealed an overall enhancement under indentation, tension and compression loads. A remarkable improvement in tensile ductility (without adverse effects on strength) by +19%, +29%, and +58% was obtained in Mg–3Al–0.1Er, Mg–6Al–0.3Er and Mg–9Al–0.5Er when compared to Mg–3Al, Mg–6Al and Mg–9Al respectively. While the Mg–6Al–0.3Er alloy exhibited best ductility, the Mg–9Al–0.5Er has the best strength under both tension and compression loads. Corrosion characteristics evaluated by hydrogen evolution, salt spray and electrochemical impedance experiments revealed improved corrosion resistance of Er modified Mg–Al alloys by the enhanced purity levels and the formation of Al–Er phases. - Highlights: • New erbium modified Mg–Al alloys successfully synthesized using DMD method. • Erbium modification promoted Al 3 Er formation and improved the purity. • Remarkable improvement in tensile ductility obtained after erbium modification. • The developed erbium modified Mg–Al alloys exhibit improved corrosion resistance

  1. A structural study of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure

    CERN Document Server

    Kozlenko, D P; Hull, S; Knorr, K; Savenko, B N; Shchennikov, V V; Voronin, V I

    2002-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by means of X-ray and neutron powder diffraction at pressure up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. The obtained structural parameters were used for the analysis of the geometrical relationship between the zinc blende and the cinnabar phases. The zinc blende-cinnabar phase transition is discussed in the framework of the Landau theory of phase transitions. It was found that the possible order parameter for the structural transformation is the spontaneous strain e sub 4. This assignment agrees with previously observed high pressure behaviour of the elastic constants of other mercury chalcogenides

  2. A Structural Study of the Pseudo-Binary Mercury Chalcogenide Alloy HgSe_{0.7}S_{0.3} at High Pressure

    CERN Document Server

    Kozlenko, D P; Ehm, L; Knorr, K; Hull, S; Shchennikov, V V; Voronin, V I

    2002-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe_{0.7}S_{0.3} has been studied by means of X-ray and neutron powder diffraction at pressure up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P{\\sim}1 GPa. The obtained structural parameters were used for the analysis of the geometrical relationship between the zinc blende and the cinnabar phases. The zinc blende-cinnabar phase transition is discussed in the framework of Landau theory of the phase transitions. It was found that the possible order parameter for the structural transformation is the spontaneous strain e_{4}. This assignment agrees with previously observed high pressure behaviour of the elastic constants of other mercury chalcogenides.

  3. A structural study of the pseudo-binary mercury chalcogenide alloy HgSe0.7S0.3 at high pressure

    International Nuclear Information System (INIS)

    Kozlenko, D.P.; Savenko, B.N.; Ehm, L.; Knorr, K.; Hull, S.; Shchennikov, V.V.; Voronin, V.I.

    2002-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe 0.7 S 0.3 has been studied by means of X-ray and neutron powder diffraction at pressure up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P∼1 GPa. The obtained structural parameters were used for the analysis of the geometrical relationship between the zinc blende and the cinnabar phases. The zinc blende-cinnabar phase transition is discussed in the framework of the Landau theory of phase transitions. It was found that the possible order parameter for the structural transformation is the spontaneous strain e 4 . This assignment agrees with previously observed high pressure behaviour of the elastic constants of other mercury chalcogenides

  4. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial

    International Nuclear Information System (INIS)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Nie, Hemin; Willumeit, Regine; Pyczak, Florian

    2015-01-01

    Highlights: • The sintering of the MIM Ti–Nb alloy consists of three steps. • The Nb particles act as diffusion barriers during sintering. • The TiC x only precipitate in the cooling step during sintering. • The TiC x hardly influence the sintering process of MIM Ti–Nb alloy. • The MIM Ti–Nb alloy exhibits high strength, low Young’s modulus but poor ductility. - Abstract: Sintering behavior, microstructure and mechanical properties of a Ti–16Nb alloy processed by metal injection molding (MIM) technology using elemental powders were investigated in this work by optical microscopy, X-ray diffraction (XRD), dilatometer, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). It was found that from 700 °C to 1500 °C the homogenization and densification process of MIM Ti–16Nb alloy consisted of three steps, i.e., Ti-diffusion-controlled step, Ti–Nb-diffusion step and matrix-diffusion step. Titanium carbide formation was observed in the samples sintered at 1300 °C and 1500 °C, but not in the ones sintered at 900 °C and 1100 °C. The MIM Ti–16Nb specimens sintered at 1500 °C exhibited a good combination of high tensile strength and low Young’s modulus. However, the titanium carbide particles led to poor ductility

  5. Extrusion of the uranium-0.75 weight percent titanium alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lundberg, M.R.; Boland, J.F.

    1975-01-01

    Procedures are described for extruding the U--0.75 wt percent Ti alloy in the high alpha region (600 to 640 0 C) , and in the upper gamma region (900 to 1000 0 C). The casting of sound extrusion billets has importance in the production of sound extrusions, and procedures are given for casting sound billets up to 1,100 kilograms . Also important in producing sound extrusions is the use of glass lubricants. Reduction ratios of greater than 50 to 1 were achieved on reasonably sized billets. Extrusion constants of 48,000 pounds per square inch (psi) [296 megapascals (MPa)] for alpha phase (630 0 C) and 8,000 psi (56 MPa) for gamma phase (950 0 C) were achieved. Gamma-phase extrusion has preference over alpha-phase extrusion in that larger billets can be used and temperature control is not as critical. However alpha-phase extrusion offers better surface finish, less die wear, and fewer oxidation problems. Billets up to 14 inches in diameter have been successfully gamma-extruded and plans exist for extruding billets up to 20 inches (508 millimetres) in diameter. (U.S.)

  6. Orientational relationships between phases in the γ→α transformations for uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Brun, G.

    1966-04-01

    A crystallographic study has been made of the γ → α + γ transformation in the alloy containing 3 per cent by weight of molybdenum using electronic micro-diffraction; it has been possible to establish the orientational relationships governing the germination of the α phase in the γ phase. One finds: (111)γ // (100) α, (112-bar)γ // (010) α, (11-bar 0)γ // (001)α. By choosing a monoclinic lattice containing the same number of atoms as the orthorhombic lattice for defining the γ mother phase, the change in structure has been explained by adding a homogeneous (112-bar)γ [111]γ shearing deformation to a heterogeneous deformation brought about by slipping of the atoms which are not situated at the nodes of this lattice. The identity of the orientation relationships γ/α and γ/α''b and the loss of coherence γ /α as a function of temperature or of time lead to the conclusion that, in the range studied, the γ → α transformation begins with a martensitic process and continues by germination and growth. (author) [fr

  7. Determination of trace impurities in uranium-transition metal alloy fuels by ICP-MS using extended common analyte internal standardization (ECAIS) technique

    International Nuclear Information System (INIS)

    Saha, Abhijit; Deb, S.B.; Nagar, B.K.; Saxena, M.K.

    2015-01-01

    An analytical methodology was developed for the determination of eight trace impurities viz, Al, B, Cd, Co, Cu, Mg, Mn and Ni in three different uranium-transition metal alloy fuels (U-Me; Me = Ti, Zr and Mo) employing inductively coupled plasma mass spectrometry (ICP-MS). The well known common analyte internal standardization (CAIS) chemometric technique was modified and then employed to minimize and account for the matrix effect on analyte intensity. Standard addition of analytes to the pure synthetic U-Me sample solutions and subsequently their ≥ 94% recovery by the ICP-MS measurement validates the proposed methodology. One real sample of each of these alloys was analyzed by the developed analytical methodology and the %RSD observed was in the range of 5-8%. The method detection limits were found to be within 4-10 μg L -1 . (author)

  8. Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg-Ca binary alloy

    Directory of Open Access Journals (Sweden)

    Shervin Eslami Harandi

    2013-02-01

    Full Text Available Effect of calcium addition on microstructure, hardness value and corrosion behavior of five different Mg-xCa binary alloys (x = 0.7, 1, 2, 3, 4 wt. (% was investigated. Notable refinement in microstructure of the alloy occurred with increasing calcium content. In addition, more uniform distribution of Mg2Ca phase was observed in a-Mg matrix resulted in an increase in hardness value. The in-vitro corrosion examination using Kokubo simulated body fluid showed that the addition of calcium shifted the fluid pH value to a higher level similar to those found in pure commercial Mg. The high pH value amplified the formation and growth of bone-like apatite. Higher percentage of Ca resulted in needle-shaped growth of the apatite. Electrochemical measurements in the same solution revealed that increasing Ca content led to higher corrosion rates due to the formation of more cathodic Mg2Ca precipitate in the microstructure. The results therefore suggested that Mg-0.7Ca with the minimum amount of Mg2Ca is a good candidate for bio-implant applications.

  9. Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg-Ca binary alloy

    Directory of Open Access Journals (Sweden)

    Shervin Eslami Harandi

    2012-01-01

    Full Text Available Effect of calcium addition on microstructure, hardness value and corrosion behavior of five different Mg-xCa binary alloys (x = 0.7, 1, 2, 3, 4 wt. (% was investigated. Notable refinement in microstructure of the alloy occurred with increasing calcium content. In addition, more uniform distribution of Mg2Ca phase was observed in a-Mg matrix resulted in an increase in hardness value. The in-vitro corrosion examination using Kokubo simulated body fluid showed that the addition of calcium shifted the fluid pH value to a higher level similar to those found in pure commercial Mg. The high pH value amplified the formation and growth of bone-like apatite. Higher percentage of Ca resulted in needle-shaped growth of the apatite. Electrochemical measurements in the same solution revealed that increasing Ca content led to higher corrosion rates due to the formation of more cathodic Mg2Ca precipitate in the microstructure. The results therefore suggested that Mg-0.7Ca with the minimum amount of Mg2Ca is a good candidate for bio-implant applications.

  10. Evaluation of corrosion resistance of implant-use Ti-Zr binary alloys with a range of compositions.

    Science.gov (United States)

    Akimoto, Teisuke; Ueno, Takeshi; Tsutsumi, Yusuke; Doi, Hisashi; Hanawa, Takao; Wakabayashi, Noriyuki

    2018-01-01

    Although titanium-zirconium (Ti-Zr) alloy has been adopted for clinical applications, the ideal proportion of Zr in the alloy has not been identified. In this study, we investigated the biocompatibility of Ti-Zr alloy by evaluating its corrosion resistance to better understand whether there is an optimal range or value of Zr proportion in the alloy. We prepared pure Ti, Ti-30Zr, Ti-50Zr, Ti-70Zr, and pure Zr (mol% of Zr) samples and subjected them to anodic polarization and immersion tests in a lactic acid + sodium chloride (NaCl) solution and artificial saliva. We observed pitting corrosion in the Ti-70Zr and Zr after exposure to both solutions. After the immersion test, we found that pure Ti exhibited the greatest degree of dissolution in the lactic acid + NaCl solution, with the addition of Zr dramatically reducing Ti ion dissolution, with the reduction ultimately exceeding 90% in the case of the Ti-30Zr. Hence, although the localized corrosion resistance under severe conditions was compromised when the Zr content was more than 70%, metal ion release reduced owing to Zr addition and the corresponding formation of a stable passive layer. The results suggest that Ti-30Zr or a Zr proportion of less than 50% would offer an ideal level of corrosion resistance for clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 73-79, 2018. © 2016 Wiley Periodicals, Inc.

  11. Predicting yield-stress anomalies in L12 alloys: Ni3Ge-Fe3Ge pseudo-binaries

    International Nuclear Information System (INIS)

    Liu, J.B.; Johnson, D.D.; Smirnov, A.V.

    2005-01-01

    The L1 2 -based pseudo-binary (Ni 1-c Fe c ) 3 Ge is an ideal system to study yield-strength anomaly and its origin as it has a solid-solution phase vs. c and Ni 3 Ge exhibits an anomaly while Fe 3 Ge does not. Using two ab initio electronic-structure techniques, we calculate the planar-fault energies on the γ-surface, i.e., antiphase boundaries (APB) and stacking faults, both complex and superlattice intrinsic (SISF), for (Ni 1-c Fe c ) 3 Ge as a function of c. Generally, we use the fault energies combined with elasticity theory to predict occurrence/loss of the yield-strength anomaly and show that the loss of anomaly occurs due to APB(1 1 1)-to-SISF(1 1 1) instability. Assessing the stability of APB(1 1 1) on the γ-surface within linear elasticity theory, we predict the transition from anomalous to normal temperature dependence of yield strength for c ∼≥ 0.35 (or 26 at.% Fe), as is observed, after which type-II, rather than type-I, dissociation is energetically favorable. Hence, first-principles calculations can predict reliably the existence/loss of anomalous yield-strength. Finally, we show that (0 0 1) and (1 1 1) APB energies of the binaries and pseudo-binaries agree quantitatively with measured values when chemical antisite disorder, intrinsic to the samples characterized, is included, whereas they are too large by a factor of two in perfect L1 2 . We investigate three types of disorder: thermal and off-stoichiometric antisites, as well as chemical disorder vs. Fe-content in pseudo-binaries

  12. Interaction between uranium oxide alloyed with Al2O3·SiO2 and pyrocarbon coating during irradiation of micro fuel elements

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Khromov, Y.F.; Svistunov, D.E.; Chuiko, E.E.

    1989-01-01

    The thermodynamics of the interaction between uranium oxide and carbon was previously studied in the presence of Al 2 O 3 ·SiO 2 , SiC, and UC 1.86 ; in this case, the quantity of the reacting substances does not have any effect on the attainment of the equilibrium state. Based on the obtained results, it is interesting to study the characteristic features of the interaction between the alloyed UO x cores (kernels) with the PyC-coating under the conditions involving irradiation of the micro fuel elements with thermal neutrons and the formation of solid fission products. The data concerning the characteristics of a micro fuel element (the weight of the core, its composition, etc.) are useful for carrying out a quantitative evaluation of the additives required for fixing the alkali-earth fission products by obtaining stable compounds of aluminosilicates with Ba, Sr, Rb, and Cs at different levels of depletion (burnup) of the oxide fuel. An analysis of the interaction processes in such a complex system as the irradiated alloyed uranium oxide fuel located in a micro fuel element is carried out by comparing the chemical potential of oxygen (RT ln P O 2 ) for the competing constituents of the system

  13. Polycrystalline oxides formation during transient oxidation of (001) Cu-Ni binary alloys studied by in situ TEM and XRD

    International Nuclear Information System (INIS)

    Yang, J.C.; Li, Z.Q.; Sun, L.; Zhou, G.W.; Eastman, J.A.; Fong, D.D.; Fuoss, P.H.; Baldo, P.M.; Rehn, L.E.; Thompson, L.J.

    2009-01-01

    The nucleation and growth of Cu 2 O and NiO islands due to oxidation of Cu x Ni 1-x (001) films were monitored, at various temperatures, by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM) and in situ synchrotron X-ray diffraction (XRD). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands formed with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. In situ XRD experiments revealed that NiO formed first epitaxially, then other orientations appeared, and finally polycrystalline Cu 2 O developed as the oxidation pressure was increased. The segregation of Ni and Cu towards or away, respectively, from the alloy surface during oxidation could disrupt the surface and cause polycrystalline oxide formation.

  14. Compositional trends and magnetic excitations in binary and ternary Fe–Pd–X magnetic shape memory alloys

    International Nuclear Information System (INIS)

    Gruner, Markus Ernst; Hamann, Sven; Brunken, Hayo; Ludwig, Alfred; Entel, Peter

    2013-01-01

    Highlights: ► We discuss compositional trends in Fe–Pd–Cu and Fe–Pd–Mn magnetic shape memory alloys. ► We combine density functional theory and combinatorial thin film experiments. ► Magnetic excitations contribute decisively to the structural transformation behavior. -- Abstract: High throughput thin film experiments and first-principles calculations are combined in order to get insight into the relation between finite temperature transformation behavior and structural ground state properties of ternary Fe–Pd–X alloys. In particular, we consider the binding surface, i.e., the energy of the disordered alloy calculated along the Bain path between bcc and fcc which we model by a 108 atom supercell. We compare stoichiometric Fe 75 Pd 25 with ternary systems, where 4.6% of the Fe atoms were substituted by Cu and Mn, respectively. The computational trends are related to combinatorial experiments on thin film libraries for the systems Fe–Pd–Mn and Fe–Pd–Cu which reveal a systematic evolution of the martensitic start temperature with composition within the relevant concentration range for magnetic shape memory (MSM) applications. Our calculations include atomic relaxations, which were shown to be relevant for a correct description of the structural properties. Furthermore, we find that magnetic excitations can substantially alter the binding surface. The comparison of experimental and theoretical trends indicates that, both, compositional changes and magnetic excitations contribute significantly to the structural stability which may thus be tailored by specifically adding antiferromagnetic components

  15. Effects of low doses of 14-MeV neutrons on the tensile properties of three binary copper alloys

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Pintler, J.S.

    1986-12-01

    Miniature tensile specimens of high purity copper and copper alloyed respectively with five atom percent of Al, Mn, and Ni were irradiated with D-T fusion neutrons in the RTNS-II to fluences up to 1.3 x 10 18 n/cm 2 at 90 0 C. To compare fission and fusion neutron effects, some specimens were also irradiated at the same temperature to similar damage levels in the Omega West Reactor (OWR). Tensile tests were performed at room temperature, and the radiation-induced changes in tensile properties were examined as functions of displacements per atom (dpa). The irradiation-induced strengthening of Cu5%Mn is greater than that of Cu5%Al and Cu5%Ni, which behave about the same. However, all the alloys sustain less irradiation-induced strengthening by 14 MeV neutrons than pure copper, which is in contrast to the reported results of earlier work using hardness measurements. The effects of fission and fusion neutrons on the yield stress of Cu5%Al and Cu5%Ni correlate well on the basis of dpa, but the data for Cu5%Mn suggest that dpa may not be a good correlation parameter for this alloy in this fluence and temperature range

  16. Isotope effects in the diffusion of hydrogen and deuterium in ferromagnetic binary alloys of the Cu3Au type

    International Nuclear Information System (INIS)

    Hirscher, M.; Maier, C.U.; Schwendemann, B.; Kronmueller, H.

    1989-01-01

    The diffusion behaviour of hydrogen and deuterium at low temperatures was investigated in ordered and disordered alloys of Ni 3 Fe, Ni 3 Mn, and Fe 3 Pt by means of magnetic after-effect (MAE) measurements. After hydrogen charging all specimens show characteristic MAE relaxation spectra, which can be described taking into account the different octahedral positions of the hydrogen atoms in the Cu 3 Au structure. The observed isotope effect can qualitatively be explained by a thermally activated tunnelling process of the hydrogen isotopes. (orig.)

  17. Thermal cycling behaviour and thermal stability of uranium-molybdenum alloys of low molybdenum content; Comportement au cyclage thermique et stabilite thermique des alliaces uranium-molybdene de faibles teneurs en molybdene

    Energy Technology Data Exchange (ETDEWEB)

    Decours, J; Fabrique, B; Peault, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    We have studied the behaviour during thermal cycling of as-cast U-Mo alloys whose molybdenum content varies from 0.5 to 3 per cent; results are given concerning grain stability during extended heat treatments and the effect of treatments combining protracted heating with thermal cycling. The thermal cycling treatments were carried out at 550, 575, 600 and 625 deg C for 1000 cycles; the protracted heating experiments were done at 550, 575, 600 and 625 deg C for 2000 hours (4000 hrs at 625 deg C). The 0.5 per cent alloy resists much better to the thermal cycling than does the non-alloyed uranium. This resistance is, however, much lower than that of alloys containing over l per cent, even at 550 deg C it improves after a heat treatment for grain-refining. Alloys of over 1.1 per cent have a very good resistance to a cycling treatment even at 625 deg C, and this behaviour improves with increasing concentrations up to 3 per cent. An increase in the temperature up to the {gamma}-phase has few disadvantages provided that it is followed by rapid cooling (50 to 100 deg C/min). The {alpha} grain is fine, the {gamma}-phase is of the modular form, and the behaviour during a thermal cycling treatment is satisfactory. If this cooling is slow (15 deg /hr) the {alpha}-grain is coarse and cycling treatment behaviour is identical to that of the 0.5 per cent alloy. The protracted heat treatments showed that the {alpha}-grain exhibits satisfactory stability after 2000 hours at 575, 600 and 625 deg C, and after 4000 hours at 625 deg C. A heat cycling treatment carried out after these tests affects only very little the behaviour of these alloys during cycling. (authors) [French] Nous avons etudie le comportement au cyclage thermique des alliages U-Mo, brut de coulee, dont la teneur varie de 0,5 a 3 pour cent de molybdene, les resultats de stabilite du grain au cours de traitements thermiques de longue duree, ainsi que ceux des traitements combines de longue duree et de cyclage. Les

  18. A study of phase transformations processes in 0,5 to 4% mo uranium-molybdenum alloys; Etude des processus des transformations dans les alliages uranium-molybdene de teneur 0,5 a 4% en poids de molybdene

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    Isothermal and continuous cooling transformations process have been established on uranium-molybdenum alloys containing 0,5 to 4 w% Mo. Transformations process of the {beta} and {gamma} solid solutions are described. These processes depend upon molybdenum concentration. Out of the {beta} solid solution phase appears an eutectoid decomposition of {beta} to ({alpha} + {gamma}) or the formation of a martensitic phase {alpha}''. The {gamma} solid solution shows a decomposition of {gamma} to ({alpha} + {gamma}) or ({alpha} + {gamma}'), or a formation of martensitic phases a' or a'{sub b}. The U-Mo equilibrium diagram is discussed, particularly in low concentrations zones. Limits between domains ({alpha} + {gamma}) and ({beta} + {gamma}), ({beta} + {gamma}) and {gamma}, ({beta} + {gamma}) and {beta}, have been determined. (author) [French] Les processus des transformations isothermes, et au cours de refroidissements continus ont ete etablis sur les alliages uranium-molybdene de 0,5 a 4 % en poids de Mo. Ceci a permis de mettre en evidence les processus des transformations de solutions solides {beta} et {gamma}, differents suivant la teneur en molybdene de l'alliage. Dans le premier cas il y a decomposition eutectoide de {beta} en ({alpha} + {gamma}) ou formations d'une phase martensitique {alpha}''. Dans le second cas il y a decomposition de {gamma} soit en ({alpha} + {gamma}) soit en ({alpha} + {gamma}') suivant la temperature, ou bien formation des phases martensitiques {alpha}' ou {alpha}'{sub b}. Le diagramme d'equilibre, uranium-molybdene est sujet a de nombreuses controverses, en particulier dans la zone des faibles concentrations. Les limites entre les domaines ({alpha} + {gamma}) et ({beta} + {gamma}), ({beta} + {gamma}) et {gamma}, ({beta} + {gamma}) et {beta}, ont ete determinees. (auteur)

  19. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement

    Science.gov (United States)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar

    2017-11-01

    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  20. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  1. Development of a program in LABVIEW platform to controlling and monitoring a Sievert-type system for comminution of metallic uranium and its alloys

    International Nuclear Information System (INIS)

    Dutra, Aimore R.R.; Ferraz, Wilmar B.; Ferreira, Ricardo A.N.

    2011-01-01

    A comminution process by hydriding-dehydriding method was developed at CDTN-Centro de Desenvolvimento da Tecnologia Nuclear with the purpose of obtaining plate type nuclear fuel. This fuel requires the use of metallic uranium and its alloys in form of powders. This comminution process was performed based on a Sievert system. Initially this system was controlled and monitored by a computer program developed in Turbo Pascal language. In order to improve the control of the comminution process, a new program was developed in LabVIEW platform. This paper presents a description of this new program and the main aspects of the operation of the system. The more accurate monitoring and controlling of the various stages of the comminution process as well as greater flexibility in the choice of input data, real-time graphics, generation of reports and a reduction of time passivation were achieved. (author)

  2. Development of a program in LABVIEW platform to controlling and monitoring Sievert-type system for comminution of metallic uranium and its alloys

    International Nuclear Information System (INIS)

    Dutra, Aimore R.R.; Ferraz, Wilmar B.; Ferreira, Ricardo A.N.

    2011-01-01

    A comminution process by hydriding-de hydriding method was developed at CDTN-Centro de Desenvolvimento da Tecnologia Nuclear with the purpose of obtaining plate type nuclear fuel. This fuel requires the use of metallic uranium and its alloys in form of powders. This comminution process was performed based on a Sievert system. Initially this system was controlled and monitored by a computer program developed in Turbo Pascal language. In order to improve the control of the comminution process, a new program was developed in LabVIEW platform. This paper presents a description of this new program and the main aspects of the operation of the system. The more accurate monitoring and controlling of the various stages of the comminution process as well as greater flexibility in the choice of input data, real-time graphics, generation of reports and a reduction of time passivation were achieved. (author)

  3. Interaction of Al2O3xSiO2 alloyed uranium oxide with pyrocarbon coating of fuel particles under irradiation

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Khromov, Yu.F.; Svistunov, D.E.; Chujko, E.E.

    1989-01-01

    Method of comparative data analysis for P O2 and P CO was used to consider interaction in fuel particle between pyrocarbon coating and fuel sample, alloyed with alumosilicate addition. Equations of interaction reactions for the case of hermetic and depressurized fuel particle are presented. Calculations of required xAl 2 O 3 XySiO 2 content, depending on oxide fuel burnup, were conducted. It was suggested to use silicon carbide for limitation of the upper level of CO pressure in fuel particle. Estimation of thermal stability of alumosilicates under conditions of uranium oxide burnup equals 1100 and 1500 deg C for Al/Si ratio in addition 1/1 and 4/1 respectively

  4. Development of a program in LABVIEW platform to controlling and monitoring a Sievert-type system for comminution of metallic uranium and its alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Aimore R.R.; Ferraz, Wilmar B.; Ferreira, Ricardo A.N., E-mail: ferrazw@cdtn.b, E-mail: ranf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    A comminution process by hydriding-dehydriding method was developed at CDTN-Centro de Desenvolvimento da Tecnologia Nuclear with the purpose of obtaining plate type nuclear fuel. This fuel requires the use of metallic uranium and its alloys in form of powders. This comminution process was performed based on a Sievert system. Initially this system was controlled and monitored by a computer program developed in Turbo Pascal language. In order to improve the control of the comminution process, a new program was developed in LabVIEW platform. This paper presents a description of this new program and the main aspects of the operation of the system. The more accurate monitoring and controlling of the various stages of the comminution process as well as greater flexibility in the choice of input data, real-time graphics, generation of reports and a reduction of time passivation were achieved. (author)

  5. Development of a program in LABVIEW platform to controlling and monitoring Sievert-type system for comminution of metallic uranium and its alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Aimore R.R.; Ferraz, Wilmar B.; Ferreira, Ricardo A.N., E-mail: ferrazw@cdtn.b, E-mail: ranf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    A comminution process by hydriding-de hydriding method was developed at CDTN-Centro de Desenvolvimento da Tecnologia Nuclear with the purpose of obtaining plate type nuclear fuel. This fuel requires the use of metallic uranium and its alloys in form of powders. This comminution process was performed based on a Sievert system. Initially this system was controlled and monitored by a computer program developed in Turbo Pascal language. In order to improve the control of the comminution process, a new program was developed in LabVIEW platform. This paper presents a description of this new program and the main aspects of the operation of the system. The more accurate monitoring and controlling of the various stages of the comminution process as well as greater flexibility in the choice of input data, real-time graphics, generation of reports and a reduction of time passivation were achieved. (author)

  6. Radiation damage of uranium; Radijaciono ostecenje urana

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, Dj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method.

  7. Development of metal uranium fuel and testing of construction materials (I-VI); Part I

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-11-01

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors

  8. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO{sub 3} on binary Mg-1.0Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, Y.Q. [Zhejiang DunAn Light Alloy Technology CO,.LTD, Zhuji 311835 (China); Hunan University of Science and Technology, Xiangtan 411201 (China); Zhang, S.F.; Qu, B. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Guo, S.B. [Hunan University of Science and Technology, Xiangtan 411201 (China); Xiang, J.H., E-mail: xiangjunhuai@163.com [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2015-01-15

    Highlights: • Compared to the Mg phase, the area of Mg{sub 2}Ca phase is much smaller. • The coatings are preferentially developed on the area adjacent to Mg{sub 2}Ca phase. • During MAO process, some sodium phytate molecules are hydrolyzed. • Anodic coatings are developed from uneven to uniform. - Abstract: Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO{sub 3} electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO{sub 3}. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg{sub 2}Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg{sub 2}Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg{sub 2}Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO{sub 3} has minor influence on the calcium content of the obtained MAO coatings.

  9. Moessbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    International Nuclear Information System (INIS)

    Kuzmann, E.; Stichleutner, S.; Homonnay, Z.; Vertes, A.; Doyle, O.; Chisholm, C.U.; El-Sharif, M.

    2005-01-01

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60 deg. C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Moessbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings

  10. Moessbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E; Stichleutner, S; Homonnay, Z; Vertes, A [Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Doyle, O; Chisholm, C U; El-Sharif, M [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom)

    2005-04-26

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60 deg. C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Moessbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of {beta}-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.

  11. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    Science.gov (United States)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  12. Evaluation of the electrochemical behavior of U2.5Zr7.5Nb and U3Zr9Nb uranium alloys in relation to the pH and the solution aeration

    International Nuclear Information System (INIS)

    Mansur, Fabio Abud; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa; Figueiredo, Celia de Araujo

    2011-01-01

    The Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing, in cooperation with the Centro Tecnologico da Marinha (CTMSP), the advanced nuclear plate type fuel for the second core of the land-based reactor prototype of the Laboratorio de Geracao Nucleo-Eletrica (LABGENE). Recent investigations have shown that the fuel made of uranium-based niobium and zirconium alloys reaches the best performance relative to other fuels, e.g. UO 2 . Niobium and Zirconium also increase the corrosion resistance and the mechanical strength of the uranium alloys. By means of electrochemical techniques the corrosion behavior of alloys U 2 . 5 Zr 7.5 Nb and U 3 Zr 9 Nb, developed at CDTN and heat treated in the temperature range of 200 deg C to 600 deg C, was assessed. The effect of the parameters pH and solution aeration was studied as well as the influence of zirconium and niobium alloying elements in the corrosion of uranium. The techniques used were open circuit potential, electrochemical impedance and potentiodynamic anodic polarization at room temperature. The tests were performed in a three-electrode electrochemical cell with Ag/AgCl (3M KCl) as the reference electrode and a platinum plate as the auxiliary electrode. The potentiodynamic polarization curves of uranium and its alloys in acidic solutions showed regions with anodic currents limited by a passive film. The presence of niobium and zirconium contributed for the formation of this film. The impedance data showed the presence of two semicircles in the Bode diagram, indicating the occurrence of two distinct electrochemical processes. The data were fitted to an equivalent circuit model in order to obtain parameters of the electrochemical processes and evaluate the effect of the studied variables. (author)

  13. Studies of plutonium-iron and uranium-plutonium-iron alloys; Etudes d'alliages plutonium-fer et d'alliages uranium-plutonium-fer

    Energy Technology Data Exchange (ETDEWEB)

    Avivi, Ehud [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-01-15

    We study the plutonium-iron system, by means of dilatometry, X rays and metallography, especially in the domain between PuFe{sub 2} and Fe. We determine the solubilities of Fe in PuFe{sub 2} and of Pu in Fe. We show the presence of an hexagonal PuFe{sub 2} phase and we propose a modification in the Pu-Fe phase diagram. Some low iron concentration U-Pu-Fe alloys have also been investigated. We characterise the different phases. We confirm that adding some iron lowers the quantity of the zeta U-Pu phase. We emphasize some characteristics of the alloys having the global concentration (U, Pu){sub 6} Fe. (authors) [French] On etudie par dilatometrie, rayons X et micrographie le systeme plutonium-fer, principalement dans la region comprise entre PuFe{sub 2} et Fe, On determine les solubilites du fer dans PuFe{sub 2}, et de Pu dans Fe. On met en evidence une phase PuFe{sub 2} hexagonale et on propose une modification du diagramme d'equilibre Pu-Fe. Certains alliages U-Pu-Fe a faibles concentrations en fer sont egalement etudies. On caracterise les phases en presence. On confirme que l'addition de fer diminue rapidement la quantite de phase U-Pu zeta. Enfin on revele certaines caracteristiques des alliages de composition globale (U, Pu){sub 6} Fe. (auteurs)

  14. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    Science.gov (United States)

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  15. Progress in developing very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Hayes, S.L.; Wiencek, T.C.; Strain, R.V.

    1999-01-01

    Preliminary results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-Mo alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm 3 . Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 deg. C) are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 deg. C in 8-g U/cm 3 fuel. (author)

  16. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  17. Physical metallurgy of titanium alloys

    International Nuclear Information System (INIS)

    Collings, E.W.

    1988-01-01

    Researches in electric, magnetic, thermophysical properties of titanium alloys in the wide range of temperatures (from helium upto elevated one), as well as stability of phases in alloys of different types are generalized. Fundamental description of physical properties of binary model alloys is given. Acoustic emission, shape memory and Bauschinger effects, pseudoelasticity, aging and other aspects of physical metallurgy of titanium alloys are considered

  18. Irradiation performance of uranium-molybdenum alloy dispersion fuels; Desempenho sob irradiacao de elementos combustiveis do tipo U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Cirila Tacconi de

    2005-07-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm{sup 3} were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm{sup 3} showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  19. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  20. Mixed hyperfine interaction - a tool to investigate the short range order and the strange magnetic behaviour of amorphous Fe-based binary alloys

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.

    1989-01-01

    The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)

  1. The effect of cooling rate from the γ-phase on the strain-rate sensitivity of a uranium 2 sup(w)/o molybdenum alloy

    International Nuclear Information System (INIS)

    Boyd, G.A.C.; Harding, J.

    1983-01-01

    Tensile tests have been performed at strain rates from 10 -4 to about 2000/s and temperatures from -150 deg C to +250 deg C on a uranium 2 w/o molybdenum alloy which had been aged for 2 hours at 500 deg C after a fast gas cool from the γ-phase at a controlled rate of 40 deg C/minute. The results are compared with those for standard as-extruded material which had received the same aging treatment. Stress-strain curves are presented and the effect of strain rate and temperature on the flow stress, the ultimate tensile stress and the elongation to fracture is determined. A thorough structural characterisation of the specimen materials, using X-ray analysis and scanning and transmission electron microscopy, allows the different mechanical responses to be related to the corresponding microstructural state of the material. Flow stress data at different temperatures and strain rates are analysed in terms of the theory of thermally-activated flow and estimates made of the various activation parameters. (author)

  2. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  3. Some aspects of in-pile swelling of fissile materials, 1. part: non-alloyed {alpha} uranium; Quelques aspects du gonflement en pile des materiaux fissiles. 1. partie: uranium {alpha} non allie

    Energy Technology Data Exchange (ETDEWEB)

    Mikailoff, H [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    An examination has been carried out of non-alloyed uranium samples, having various structural states, cold-worked and recrystallized, as-cast and {beta}-treated, and irradiated at temperatures of between 450 and 600 C and with burn-ups from 1300 to 5500 MW days/metric ton. These samples swelled because of precipitation of the fission gases the porosity thus produced has a morphology depending mainly on the type of deformation to which the metal has been subjected and which is due to in-pile growth. The most homogeneous distribution of pores, and thus that leading to the minimum swelling, is only observed in the material having a marked [010] texture in which the growth and perhaps the thermal cycling introduce little or no strain. For other materials the deformation /swelling association causes a more rapid destruction of the samples either by cracking when the deformation is due to twinning, or by pronounced swelling localized in the bands when deformation is due to slipping. Finally the fission-gas precipitation considerably facilitates, above 500 C, the germination and growth of the intergranular cracks which can then develop at low stresses. (author) [French] On a examine des echantillons d'uranium non allie, de divers etats structuraux, marteles et recristallises, bruts de coulee et traites {beta}, irradies a des temperatures comprises entre 450 et 600 C, et a des taux de combustion allant de 1300 a 5500 MWj/t. Ces echantillons ont gonfle par suite de la precipitation de gaz de fission: la porosite ainsi fournie a une morphologie qui depend principalement des modes de deformation subie par le metal et due a la croissance en pile. La repartition la plus homogene des pores, donc celle qui donnera le gonflement minimum, est observee seulement dans le materiau a forte texture [010] dans lequel la croissance et eventuellement le cyclage thermique introduisent peu ou pas de contraintes. Dans les autres materiaux l'association deformation/gonflement rend plus rapide

  4. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  5. Development of metal uranium fuel and testing of construction materials (I-VI); Part I; Razvoj metalnog goriva i ispitivanje konstrukcionih materijala (I-VI deo); I deo

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors.

  6. Uranium hexafluoride purification

    International Nuclear Information System (INIS)

    Araujo, Eneas F. de

    1986-01-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF 6 -HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF 6 -HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  7. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  8. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rest, J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: jrest@anl.gov; Hofman, G.L.; Kim, Yeon Soo [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than {approx}7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  9. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Science.gov (United States)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  10. Study of physical, chemical and electronic properties of binaries and ternaries uranium compounds in the U-Si-B and U-Pt-Si systems

    International Nuclear Information System (INIS)

    Brisset, Nicolas

    2016-01-01

    Two main research axes were defined for this Ph-D work: (i) studying the effect of light elements (B, C) on the stability of U-Si compounds, and (ii) identifying and physically characterizing new phases in the U-Pt-Si system. Minor additions of carbon and boron in U-Si samples revealed that the formation of U 5 Si 4 would be correlated to the presence of these light elements, questioning its existence in the U-Si system. To evaluate the boron potential as a stimulant for non-metallic light elements of the second period (C, N, O), the isothermal section of the ternary phase diagram U-Si-B has been drawn at 927 C, disclosing solid equilibrium mainly between the UB and U-Si binary axes and the existence of the novel compound U 20 Si 16 B 3 , isostructural to the carbon equivalent one. These results suggest a specific behavior for a given light element on the U-Si phase relations. The isothermal section at 900 C of the U-Pt-Si ternary system was experimentally determined, leading to the discovery of 14 new phases, among which U 3 Pt 4 Si 6 , U 3 Pt 6 Si 4 and U 3 Pt 7 Si crystallized in their own structural type. As a prerequisite for this study, the phase relations in the U-Pt binary phase diagram were re-examined for the composition range 30 at.% and 70 at.% Pt, leading to a new assessment of the phase diagram which comprises the new U 3 Pt 4 compound. The temperature of the transformations has been measured by DTA. By coupling our experimental results to the literature data, a modeling of the phase diagram by the Calphad method was performed. Physical characterizations of the new U 3 Pt 4 compound revealed a moderate heavy fermion behavior, with ferromagnetic ordering below Tc = 7(1) K. As a side project, a study of the U 3 TGe 5 family with the anti-Hf 5 CuSn 3 structural type lead to the discovery of nine new compounds for T = V, Cr, Mn, Zr, Nb, Mo, Hf, Ta and W in addition to the previously reported U 3 TiGe 5 . Their magnetic and electronic properties were

  11. Electroanalytical measurements of binary-analyte mixtures in molten LiCl-KCl eutectic: Uranium(III)- and Magnesium(II)-Chloride

    Energy Technology Data Exchange (ETDEWEB)

    Rappleye, Devin, E-mail: rappleye1@llnl.gov; Newton, Matthew L.; Zhang, Chao; Simpson, Michael F.

    2017-04-01

    The electrochemical behavior of MgCl{sub 2} in molten LiCl-KCl eutectic was investigated to evaluate its suitability as a surrogate for PuCl{sub 3} in studies related to the eletrorefining of used nuclear fuel. The reduction of Mg{sup 2+} was found to be electrochemically reversible up to 300 mV s{sup −1} at 773 K. The diffusion coefficient for Mg{sup 2+} was calculated to be 1.74 and 2.17 × 10{sup −5} cm{sup 2} s{sup −1} with and without U{sup 3+} present, respectively, at 773 K using cyclic voltammetry (CV). Upon comparison to literature data, the diffusion coefficient of Mg{sup 2+} differs by only 8.8% (with U{sup 3+} present) from that of Pu{sup 3+} and the difference in peak potentials was only 79 mV. Binary-analyte mixtures of UCl{sub 3} and MgCl{sub 2} in eutectic LiCl-KCl were further investigated using CV, normal pulse voltammetry (NPV), chronoamperometry (CA) and open-circuit potential (OCP) measurements for the purpose of comparing each technique's accuracy in measuring U{sup 3+} and Mg{sup 2+} concentrations. Of all the techniques tested, NPV resulted in the lowest error which was, on average, 11.4% and 9.81% for U{sup 3+} and Mg{sup 2+}, respectively.

  12. The pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure: a mechanism for the zinc blende to cinnabar reconstructive phase transition

    CERN Document Server

    Kozlenko, D P; Ehm, L; Hull, S; Savenko, B N; Shchennikov, V V; Voronin, V I

    2003-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by x-ray and neutron powder diffraction at pressures up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. A phenomenological model of this reconstructive phase transition based on a displacement mechanism is proposed. Analysis of the geometrical relationship between the zinc blende and the cinnabar phases has shown that the possible order parameter for the zinc blende-cinnabar structural transformation is the spontaneous strain e sub 4. This assignment agrees with the previously observed high pressure behaviour of the elastic constants of some mercury chalcogenides.

  13. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  14. Towards construction of quasi-binary UAI3-USi3 phase diagram

    International Nuclear Information System (INIS)

    Rafailov, Gennady; Uziel, Asaf; White, Avner; Meshi, Louisa; Dahan, Itzhak

    2014-01-01

    Ternary U-Al-Si system has been extensively investigated due to the high potential of Uranium alloyed with Silicon as low-enriched fuel. Another interest in the U-Al-Si ternary system originates from the use of Aluminum alloy, where Silicon is a major alloying element, as U-fuel cladding. In this system, UAl3 and USi3 phases are of special importance. Since UAl3 and USi3 are isostructural and follow the Hume-Rothery rules closely, it would be expected that their quasi-binary phase diagram will be isomorphous. However, previous studies have shown that this system does not display complete liquid and solid solubility. Moreover, conflicting results were reported regarding the phases found . In current work, several compositions were cast and then heat-treated in order to reach equilibrium for subsequent characterization of Si-rich part of the USi3-UAl3 quasi-binary phase diagram. The as-cast and heat-treated alloys were characterized by scanning and transmission electron microscopy and X-ray diffraction (XRD) methods. Quantitative results were obtained from Rietveld analysis performed on XRD data. The results show that the ordered U(Si,Al)3 phase, identified in an earlier study of the Al-rich region is present also in the Si-rich region (studied in present research). Furthermore, ordered phase exhibited substantial stability over quite large range of compositions and temperature. Our results unambiguously point out that this quasi-binary system contains an order-disorder transformation and not a miscibility gap at low temperatures in the studied range of compositions

  15. General characteristics of eutectic alloy solidification mechanisms

    International Nuclear Information System (INIS)

    Lemaignan, Clement.

    1977-01-01

    The eutectic alloy sodification was studied in binary systems: solidification of non facetted - non facetted eutectic alloy (theoretical aspects, variation of the lamellar spacing, crystallographic relation between the various phases); solidification of facetted - non facetted eutectic alloy; coupled growth out of eutectic alloy; eutectic nucleation [fr

  16. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution.

    Science.gov (United States)

    Mareci, D; Bolat, G; Izquierdo, J; Crimu, C; Munteanu, C; Antoniac, I; Souto, R M

    2016-03-01

    Biodegradable magnesium-calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg-0.63Ca and Mg-0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synthesis and electrochemical properties of binary MgTi and ternary MgTiX (X=Ni, Si) hydrogen storage alloys

    NARCIS (Netherlands)

    Gobichettipalayam Manivasagam, T.; Iliksu, M.; Danilov, D.L.; Notten, P.H.L.

    2017-01-01

    Mg-based hydrogen storage alloys are promising candidate for many hydrogen storage applications because of the high gravimetric hydrogen storage capacity and favourable (de)hydrogenation kinetics. In the present study we have investigated the synthesis and electrochemical hydrogen storage properties

  18. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  19. Trojan Binaries

    Science.gov (United States)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  20. Investigation and modeling of Al3(Sc, Zr) precipitation strengthening in the presence of enhanced supersaturation and within Al-Cu binary alloys

    Science.gov (United States)

    Deane, Kyle

    Diffuse Al-Sc and Al-Zr alloys have been demonstrated in literature to be relatively coarsening resistant at higher temperatures when compared with commonly used precipitation strengthening alloys (e.g. 2000 series, 6000 series). However, because of a limited strengthening due to the low solubility of scandium and zirconium in aluminum, and owing to the scarcity and therefore sizeable price tag attached to scandium, little research has been done in the way of optimizing these alloys for commercial applications. With this in mind, this dissertation describes research which aims to tackle several important areas of Al-Sc-Zr research that have been yet unresolved. In Chapter 4, rapid solidification was utilized to enhance the achievable supersaturation of the alloy in an effort to increase the achievable precipitate strengthening. In Chapter 5, Additive Friction Stir processing (AFS), a novel method of mechanically combining materials without melting, was employed in an attempt to pass the benefits of supersaturation from melt spun ribbon into a more structurally useful bulk material. In Chapter 6, a Matlab program written to predict precipitate nucleation, growth, and coarsening with a modified Kampmann and Wagner Numerical (KWN) model, was used to predict heat treatment regimens for more efficient strengthening. Those predictions were then tested experimentally to test the validity of the results. And lastly, in Chapter 7, the effect of zirconium on Al-Cu secondary precipitates was studied in an attempt to increase their thermal stability, as much higher phase fractions of Al-Cu precipitates are achievable than Al-Zr precipitates.

  1. Valence-electron configuration of Fe, Cr, and Ni in binary and ternary alloys from Kβ -to- Kα x-ray intensity ratios

    Science.gov (United States)

    Han, I.; Demir, L.

    2009-11-01

    Kβ -to- Kα x-ray intensity ratios of Fe, Cr, and Ni have been measured in pure metals and in alloys of FexNi1-x ( x=0.8 , 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2), NixCr1-x ( x=0.8 , 0.6, 0.5, 0.4, and 0.2), FexCr1-x ( x=0.9 , 0.7, and 0.5), and FexCryNi1-(x+y) ( x=0.7-y=0.1 , x=0.5-y=0.2 , x=0.4-y=0.3 , x=0.3-y=0.3 , x=0.2-y=0.2 , and x=0.1-y=0.2 ) following excitation by 22.69 keV x rays from a 10 mCi C109d radioactive point source. The valence-electron configurations of these metals were determined by corporation of measured Kβ -to- Kα x-ray intensity ratios with the results of multiconfiguration Dirac-Fock calculation for various valence-electron configurations. Valence-electron configurations of 3d transition metals in alloys indicate significant differences with respect to the pure metals. Our analysis indicates that these differences arise from delocalization and/or charge transfer phenomena in alloys. Namely, the observed change of the valence-electron configurations of metals in alloys can be explained with the transfer of 3d electrons from one element to the other element and/or the rearrangement of electrons between 3d and 4s,4p states of individual metal atoms.

  2. Determination of uranium traces in nuclear cans of nuclear reactors

    International Nuclear Information System (INIS)

    Acosta L, E.; Benavides M, A.M.; Sanchez P, L.

    1996-01-01

    To quantify the uranium content as impurity can be found in zirconium alloys and zircaloy, utilized to construct the sheaths containing fuels of the reactors of nuclear plants. The determination by fluorescence spectroscopy was employed as quality control measurement, at once the corrosion resistance, diminish with the increase of the uranium content in the alloys. (Author)

  3. Studies on yttrium oxide coatings for corrosion protection against molten uranium

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Bhandari, Subhankar; Pragatheeswaran; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Kumar, Jay; Kutty, T.R.G.

    2012-01-01

    Yttrium oxide is resistant to corrosion by molten uranium and its alloys. Yttrium oxide is recommended as a protective oxide layer on graphite and metal components used for melting and processing uranium and its alloys. This paper presents studies on the efficacy of plasma sprayed yttrium oxide coatings for barrier applications against molten uranium

  4. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    Science.gov (United States)

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  5. ELECTROCHEMICAL STUDIES OF URANIUM METAL CORROSION MECHANISM AND KINETICS IN WATER

    International Nuclear Information System (INIS)

    Boudanova, Natalya; Maslennikov, Alexander; Peretroukhine, Vladimir F.; Delegard, Calvin H.

    2006-01-01

    During long-term underwater storage of low burn-up uranium metal fuel, a corrosion product sludge forms containing uranium metal grains, uranium dioxide, uranates and, in some cases, uranium peroxide. Literature data on the corrosion of non-irradiated uranium metal and its alloys do not allow unequivocal prediction of the paragenesis of irradiated uranium in water. The goal of the present work conducted under the program 'CORROSION OF IRRADIATED URANIUM ALLOYS FUEL IN WATER' is to study the corrosion of uranium and uranium alloys and the paragenesis of the corrosion products during long-term underwater storage of uranium alloy fuel irradiated at the Hanford Site. The elucidation of the physico-chemical nature of the corrosion of irradiated uranium alloys in comparison with non-irradiated uranium metal and its alloys is one of the most important aspects of this work. Electrochemical methods are being used to study uranium metal corrosion mechanism and kinetics. The present part of work aims to examine and revise, where appropriate, the understanding of uranium metal corrosion mechanism and kinetics in water

  6. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  7. In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Joguet, D. [Laboratoire d' Etudes et de Recherches sur les Matériaux, les Procédés et les Surfaces LERMPS, Université de Technologie de Belfort Montbéliard, Sevenans, 90010 Belfort (France); Robin, G. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Peltier, L. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Ecole Nationale Supérieure d' Arts et Métiers, F-57078 Metz (France); Laheurte, P. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France)

    2016-05-01

    Ti–Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti–Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti–26Nb ingot. - Highlights: • Biomimetic implants can be provided from additive manufacturing with Ti–Nb. • We made parts in a Ti–Nb alloy elaborated in situ from a mixture of elemental powders. • Process parameters have a significant impact on homogeneity and compactness. • Non-columnar elongated beta-grains are stacked with an orientation {001}<100 >. • Low Young's modulus is achieved by this texture.

  8. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  9. Uranium alloy forming process research

    International Nuclear Information System (INIS)

    Chow, T.S.; Biesiada, T.A.; Sunwoo, A.; Long, J.; Anklam, T.; Kang, S.W.

    1997-01-01

    The study of modern U-6Nb processes is motivated by the needs to reduce fabrication costs and to improve efficiency in material usage. We have studied two potential options: physical vapor deposition (PVD) for manufacturing near-net-shape U-6Nb, and kinetic-energy metallization (KEM) as a supplemental process for refurbishing recycled parts. In FY 1996, we completed two series of PVD runs and heat treatment analyses, the characterization of the microstructure and mechanical properties, a comparison of the results to data for wrought-processed material, and experimental demonstration of the KEM feasibility process with a wide range of variables (particle materials and sizes, gases and gas pressures, and substrate materials), and computer modeling calculations

  10. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    Science.gov (United States)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  11. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.

    Science.gov (United States)

    Fischer, M; Joguet, D; Robin, G; Peltier, L; Laheurte, P

    2016-05-01

    Ti-Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti-Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti-26 Nbingot. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel-Metal Hydride batteries

    Science.gov (United States)

    Monnier, J.; Chen, H.; Joiret, S.; Bourgon, J.; Latroche, M.

    2014-11-01

    To improve the performances of Nickel-Metal Hydride batteries, an important step is the understanding of the corrosion processes that take place in the electrode material. In particular, the present study focuses for the first time on the model (La, Mg)2Ni7 system. The calendar corrosion in 8.7 M KOH medium was investigated from 6 h to 16 weeks immersion. By a unique combination of structural and elemental characterisations, the corrosion products are evidenced in those systems. In particular, we demonstrate that Ni and Mg combine in a pseudo-binary hydroxide Mg1-xNix(OH)2 whereas La corrodes into nanoporous La(OH)3 needles with inner hollow nanochannels.

  13. Structure and phase composition of Al-Ce-Cu system alloys in range of quasi-binary Al-Al8CeCu4 section

    International Nuclear Information System (INIS)

    Belov, N.A.; Khvan, A.V.

    2007-01-01

    The phase diagram of the Al-Cu-Ce system in the quasibinary section area of Al-Al 8 CeCu 4 has been investigated by metallographic, thermal, micro-X-ray spectral and X-ray structural analyses. The parameters of the eutectic reaction L→(Al)+CeCu 4 Al 8 : T=610 Deg C were found out; the composition was 14% Cu and 7% Ce. This eutectics is of a disperse structure and the ternary compound contained is capable of fragmentation and spheroidizing in the heating process (starting from 540 Deg C). It was demonstrated that the area of optimal (Al)+CeCu 4 Al 8 eutectics-based alloy compositions was within the narrow limits. That is related to the fact that at a comparatively little variation of the Cu:Ce=2 ratio solidus sharply decreases and, as a result, the crystallization interval considerably extends [ru

  14. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  15. Evaluation of the electrochemical behavior of U{sub 2.5}Zr{sub 7.5}Nb and U{sub 3}Zr{sub 9}Nb uranium alloys in relation to the pH and the solution aeration

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Fabio Abud; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa; Figueiredo, Celia de Araujo, E-mail: ferraz@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing, in cooperation with the Centro Tecnologico da Marinha (CTMSP), the advanced nuclear plate type fuel for the second core of the land-based reactor prototype of the Laboratorio de Geracao Nucleo-Eletrica (LABGENE). Recent investigations have shown that the fuel made of uranium-based niobium and zirconium alloys reaches the best performance relative to other fuels, e.g. UO{sub 2}. Niobium and Zirconium also increase the corrosion resistance and the mechanical strength of the uranium alloys. By means of electrochemical techniques the corrosion behavior of alloys U{sub 2}.{sub 5}Zr{sub 7.5}Nb and U{sub 3}Zr{sub 9}Nb, developed at CDTN and heat treated in the temperature range of 200 deg C to 600 deg C, was assessed. The effect of the parameters pH and solution aeration was studied as well as the influence of zirconium and niobium alloying elements in the corrosion of uranium. The techniques used were open circuit potential, electrochemical impedance and potentiodynamic anodic polarization at room temperature. The tests were performed in a three-electrode electrochemical cell with Ag/AgCl (3M KCl) as the reference electrode and a platinum plate as the auxiliary electrode. The potentiodynamic polarization curves of uranium and its alloys in acidic solutions showed regions with anodic currents limited by a passive film. The presence of niobium and zirconium contributed for the formation of this film. The impedance data showed the presence of two semicircles in the Bode diagram, indicating the occurrence of two distinct electrochemical processes. The data were fitted to an equivalent circuit model in order to obtain parameters of the electrochemical processes and evaluate the effect of the studied variables. (author)

  16. Microscopic local bonding and optically-induced switching for Ge{sub 2}Sb{sub 2}Te{sub 5} alloys: A tale of four pseudo-binary and three binary tie-lines in Ge-Sb-Te phase field

    Energy Technology Data Exchange (ETDEWEB)

    Lucovsky, G.; Baker, D.A.; Washington, J.P.; Paesler, M.A. [Department of Physics, North Carolina State University, Raleigh, NC (United States)

    2009-05-15

    Ge{sub 2}Sb{sub 2}Te{sub 5} (GST-225) has emerged as an active medium for applications in reversible, ReWritable (RW) optical memory discs. Many studies have focused on the properties of this alloy, relative to the other GST compositions on tie-lines in the Ge-Sb-Te ternary phase field; (i) Sb{sub 2}Te to GeTe{sub 2}: (ii) Sb{sub 2}Te{sub 3}: to GeTe; (iii) GeSb to Te: and (iv) the truncated tie-line from GST-124 to Sb. This article focuses instead on the binary atomic join-lines, Te-Ge, Ge-Sb and Sb-Te, that comprise the perimeter of the Ge-Sb-Te ternary diagram. Three eutectic compositions, one on each perimeter segment: (i) Ge{sub 12}Sb{sub 88}; (ii) Te{sub 25}Sb{sub 75}; and (iii) Ge{sub 17}Te{sub 83} have been identified. Focussing on the significance of these eutectic compositions, and (i) building on previous publications from our group, and (ii) relying on two recently published articles, a new model for the RW properties of GST-22T has been proposed. Finally comparisons are made between GST and AIST RW films. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Influence of the alloying elements vanadium, chromium and carbon on the electrochemical behavior of uranium in media with a pH 13 or a pH acid

    International Nuclear Information System (INIS)

    Pommier, Gerard; Jouve, Gerard; Lacombe, Paul.

    1976-06-01

    The electrochemical properties of uranium alloys with low vanadium and chromium contents were studied in aqueous medium for different pH values of the solution (pH between 0 and 5 in H 2 SO 4 medium and pH=13 in NaOH medium). In acid medium, the study of the behavior of the two types of alloys carried out by the potentiokinetic method is described. The specific role of chromium concerning the anodic process is demonstrated and the influence of vanadium in specimens of same nominal vanadium contents but different carbon contents is revealed by the modification of the reduction overvoltage of water. In basic medium, the electrochemical study was supported by an optical method of determining the relative growth kinetics of the films in situ and continuously. At lower values of potential, the growth of an oxide film of UO 2 with linear growth kinetics is demonstrated; at higher values of potential a system of two layers is observed and its evolution is followed kinematically. The film initially formed is constituted of an oxide UO 3 2H 2 O, and its growth is linear, then a film of UO 2 develops underneath. A structural evolution of the superficial film is then observed, an evolution which leads to its cracking after breakdown. These phenomena were followed by electron microscopy using a technic of two stage replicas [fr

  18. Structural and electronic properties of binary amorphous aluminum alloys with transition metals and rare earth metals; Strukturelle und elektronische Eigenschaften binaerer amorpher Aluminiumlegierungen mit Uebergangsmetallen und Metallen der Seltenen Erden

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Martin

    2012-02-03

    The influence of the d-states of the transition metals on the structure formation in amorphous alloys has so far only been inadequately understood. The present work aims to elaborate additional contributions to the understanding of binary amorphous aluminum alloys with transition metals. Special emphasis was placed on alloys with a subgroup of the transition metals, the rare earth metals. Within the scope of the present work, layers of Al-Ce in the region of 15at% Ce-80at% Ce were produced by sequential flash evaporation at 4.2K in the high vacuum, and characterized electronically by electrical resistance and Hall effect measurements as well as structurally by transmission electron diffraction. In addition, studies of plasma resonance were carried out by means of electron energy loss spectroscopy. In the range of 25at% Ce-60at% Ce, homogeneous amorphous samples were obtained. Especially the structural investigations were made difficult by oxidation of the material. The influence of the Ce-4f electrons manifests itself mainly in the low-temperature and magnetoresistance, both of which are dominated by the Kondo effect. The Hall effect in Al-Ce is dominated by anomalous components over the entire temperature range (2K-320K), which are attributed to skew-scattering effects, also due to Ce-4f electrons. Down to 2K there was no macroscopic magnetic order. In the region 2K-20K, the existence of clusters of ordered magnetic moments is concluded. For T> 20K, paramagnetic behavior occurs. With regard to the structural and electronic properties, a-Al-Ce can be classified as a group with a-Al- (Sc, Y, La). In the sense of plasma resonance, a-Al-Ce is excellently arranged in a system known from other Al transition metal alloys. Furthermore, by increasing the results of binary amorphous Al transition metal alloys from the literature, it has been found that the structure formation in these systems is closely linked to a known but still unexplained structure-forming effect that

  19. Mössbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    Science.gov (United States)

    Kuzmann, E.; Stichleutner, S.; Doyle, O.; Chisholm, C. U.; El-Sharif, M.; Homonnay, Z.; Vértes, A.

    2005-04-01

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60°C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Mössbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.

  20. Uranium determination in different compositions

    International Nuclear Information System (INIS)

    Bulyanitsa, L.S.; Ivanova, K.S.; Ryzhinskij, M.V.; Alekseeva, N.A.; Solntseva, L.F.; Shereshevskaya, I.I.

    1978-01-01

    For clarifying the suitability of two different methods of analysis for determining uranium without its previous purification, the analysis of uranium carbides (UC, UC 2 , UC - ZrC) and alloys (U - Al, U - Zr - Nb, U- Ti) has been carried out. Dissolution of the compositions examined was carried out either after previous calcining (UC, UC 2 ) or fusion with KHSO 4 (UC - ZrC), or in phosphoric acid (alloys). The first method, a variant of potentiometric titration, has been modified for small amounts of uranium. Titration was carried out on a semiautomatic titrating unit. The uranium amount per titration is about 4 to 5 mg. The second method of analysis is the coulombmetric titration at a constant current intensity. The quantity of uranium per titration was equal to 1 - 3 mg. The statistical processing of the results obtained was carried out by a dispersion analysis that allowed to reveal the influence of separate factors, such as method of analysis, type of composition, the non-uniformity of a sample, the enumerated factors influencing the dispersion of the analysis results. It has been shown that the both methods are equally suitable for analysis of the uranium compounds examined