WorldWideScience

Sample records for binary systems formed

  1. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  2. Binary eutectic clusters and glass formation in ideal glass-forming liquids

    International Nuclear Information System (INIS)

    Lu, Z. P.; Shen, J.; Xing, D. W.; Sun, J. F.; Liu, C. T.

    2006-01-01

    In this letter, a physical concept of binary eutectic clusters in 'ideal' glass-forming liquids is proposed based on the characteristics of most well-known bulk metallic glasses (BMGs). The authors approach also includes the treatment of binary eutectic clusters as basic units, which leads to the development of a simple but reliable method for designing BMGs more efficiently and effectively in these unique glass-forming liquids. As an example, bulk glass formers with superior glass-forming ability in the Zr-Ni-Cu-Al and Zr-Fe-Cu-Al systems were identified with the use of the strategy

  3. Evolution in close binary systems

    International Nuclear Information System (INIS)

    Yungel'son, L.R.; Masevich, A.G.

    1983-01-01

    Duality is the property most typical of stars. If one investigates how prevalent double stars are, making due allowance for selection effects, one finds that as many as 90 percent of all stars are paired. Contrary to tradition it is single stars that are out of the ordinary, and as will be shown presently even some of these may have been formed by coalescence of the members of binary systems. This review deals with the evolution of close binaries, defined as double-star systems whose evolution entails exchange of material between the two components

  4. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  5. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Reipurth, Bo; Mikkola, Seppo

    2015-01-01

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  6. Straight flavor of Binary Number in Decimal Number System

    OpenAIRE

    MD. Abdul Awal Ansary; Sushanta Acharjee

    2012-01-01

    Different number systems are available on the basis of their base numbers. For instance, decimal number system is of base 10, hexadecimal number system which base is 16 and, Binary number system which base is 2 etc. Some numbers systems are easy to understand by the human being and some are easy to understand by electronics machine for instance digital computers. Computers only can understand data and instructions that are stored in binary form, though we input the data and instruction in dec...

  7. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or PhD thesis.

  8. Construction of binary status information system using PC network

    International Nuclear Information System (INIS)

    Kurnianto, K.; Azriani, A.; Teddy, S.

    1998-01-01

    Binary status information system is a part of establishing reactor parameter with Pc that function as MPR-30 Process Computer. Binary Alarm system, consist of interface hardware and input binary module terminal, prepare the information that be displayed in text message and graphical form. Monitor software give facilities that binary status of RSG-GAS components can be monitored using computer network (LAN). This program consist of two part : reside in server computer and reside in user computer. Program in server acquire data from interface and than store it in data base (Access file). Than, user computer read this file and display it in Dynamic Process and Instrumentation Diagram. The number of user computer can be more then one because data base was designed for multi-user operation

  9. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    Science.gov (United States)

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  10. Glass forming ability: Miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Chemical, Materials and Biomolecular Engineering, 191 Auditorium Road, University of Connecticut, Storrs 06269, CT (United States)], E-mail: jbasu@engr.uconn.edu; Murty, B.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ranganathan, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2008-10-06

    Miedema's approach has been useful in determining the glass forming composition range for a particular alloy system. The concept of mixing enthalpy and mismatch entropy can be used in order to quantify Inoue's criteria of bulk metallic glass formation. In the present study, glass forming composition range has been determined for different binary and ternary (Zr, Ti, Hf)-(Cu, Ni) alloys based on the mixing enthalpy and mismatch entropy calculations. Though copper and nickel appear next to each other in the periodic table, the glass forming ability of the copper and nickel bearing alloys is different. Thermodynamic analysis reveals that the glass forming behaviour of Zr and Hf is similar, whereas it is different from that of Ti. The smaller atomic size of Ti and the difference in the heat of mixing of Ti, Zr, Hf with Cu and Ni leads to the observed changes in the glass forming behaviour. Enthalpy contour plots can be used to distinguish the glass forming compositions on the basis of the increasing negative enthalpy of the composition. This method reveals the high glass forming ability of binary Zr-Cu, Hf-Cu, Hf-Ni systems over a narrow composition range.

  11. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  12. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  13. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  14. Lattice animals in diffusion limited binary colloidal system

    Science.gov (United States)

    Shireen, Zakiya; Babu, Sujin B.

    2017-08-01

    In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.

  15. Calculation of glass forming ranges in Al-Ni-RE (Ce, La, Y) ternary alloys and their sub-binaries based on Miedema's model

    International Nuclear Information System (INIS)

    Sun, S.P.; Yi, D.Q.; Liu, H.Q.; Zang, B.; Jiang, Y.

    2010-01-01

    Research highlights: → A method based on semi-empirical Miedema's and Toop's model for predicting glass forming range of ternary alloy system has been systematically described. → The method is superior to conventional models by considering the effect of the thermodynamic asymmetric component when dealing with a ternary alloy system. → The glass forming ranges of Al-Ni-RE (Al-Ni-Ce, Al-Ni-Y and Al-Ni-La) systems and their sub-binaries have been successfully calculated. → The present calculations using the method are in well agreement with experiments. → This model is especially useful for predicting the glass forming range of ternary alloy system because the calculations do not require experimental data. - Abstract: A method based on the semi-empirical Miedema's and Toop's model for calculating the glass forming range of a ternary alloy system was systematically described. The method is superior to conventional models by considering the effect of the thermodynamic asymmetric component when dealing with a ternary alloy system. Using this method, the glass forming ranges of Al-Ni-RE (Ce, La, Y) systems and their sub-binaries were successfully predicted. The mixing enthalpy and mismatch entropy were calculated, and their effects on the glass forming abilities of Al-Ni-RE (Ce, La, Y) systems were also discussed. The glass forming abilities of Al-Ni-Ce, Al-Ni-La and Al-Ni-Y are found to be close. The calculated glass forming ranges agree with experiments well. Meanwhile, the enthalpy change from amorphous phase to solid solution in the glass forming ranges was calculated, and the results suggest that those alloys close to the Ni-RE sub-binary system have higher glass forming abilities.

  16. Constraining f(R) gravity in solar system, cosmology and binary pulsar systems

    Science.gov (United States)

    Liu, Tan; Zhang, Xing; Zhao, Wen

    2018-02-01

    The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  17. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  18. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    International Nuclear Information System (INIS)

    Kaltenegger, Lisa; Haghighipour, Nader

    2013-01-01

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886

  19. Constraining f(R gravity in solar system, cosmology and binary pulsar systems

    Directory of Open Access Journals (Sweden)

    Tan Liu

    2018-02-01

    Full Text Available The f(R gravity can be cast into the form of a scalar–tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f(R gravity, using a scalar–tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f(R gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f(R models (Hu–Sawicki model, Tsujikawa model and Starobinsky model and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  20. Formation of a contact binary star system

    International Nuclear Information System (INIS)

    Mullen, E.F.F.

    1974-01-01

    The process of forming a contact binary star system is investigated in the light of current knowledge of the W Ursae Majoris type eclipsing binaries and the current rotational braking theories for contracting stars. A preliminary stage of mass transfer is proposed and studied through the use of a computer program which calculates evolutionary model sequences. The detailed development of both stars is followed in these calculations, and findings regarding the internal structure of the star which is receiving the mass are presented. Relaxation of the mass-gaining star is also studied; for these stars of low mass and essentially zero age, the star eventually settles to a state very similar to a zero-age main sequence star of the new mass. A contact system was formed through these calculations; it exhibits the general properties of a W Ursae Majoris system. The initial masses selected for the calculation were 1.29 M/sub solar mass/ and 0.56 M/sub solar mass/. An initial mass transfer rate of about 10 -10 solar masses per year gradually increased to about 10 -8 solar masses per year. After about 2.5 x 10 7 years, the less massive star filled its Roche lobe and an initial contact system was obtained. The final masses were 1.01359 M/sub solar mass/ and 0.83641 M/sub solar mass/. The internal structure of the secondary component is considerably different from that of a main sequence star of the same mass

  1. Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation

    International Nuclear Information System (INIS)

    Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C

    2014-01-01

    The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)

  2. Carrying a Torch for Dust in Binary Star Systems

    OpenAIRE

    Cotton, Daniel V.; Marshall, Jonathan P.; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Bailey, Jeremy

    2016-01-01

    Young stars are frequently observed to host circumstellar disks, within which their attendant planetary systems are formed. Scattered light imaging of these proto-planetary disks reveals a rich variety of structures including spirals, gaps and clumps. Self-consistent modelling of both imaging and multi-wavelength photometry enables the best interpretation of the location and size distribution of disks' dust. Epsilon Sagittarii is an unusual star system. It is a binary system with a B9.5III pr...

  3. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); De Vito, M. A. [Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  4. An Exact Closed-Form Expression for the BER of Binary Modulations with Dual-Branch Selection over Generalized-K Fading

    KAUST Repository

    Ansari, Imran Shafique

    2012-07-31

    Error performance is one of the main performance measures and the derivation of its closed-form expression has proved to be quite involved for certain systems. In this paper, a unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing independent but not necessarily identically distributed generalized-K fading is derived in terms of the extended generalized bivariate Meijer G-function.

  5. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  6. HIGH-PRESSURE VAPOR-LIQUID EQUILIBRIUM DATA FOR BINARY AND TERNARY SYSTEMS FORMED BY SUPERCRITICAL CO2, LIMONENE AND LINALOOL

    Directory of Open Access Journals (Sweden)

    MELO S. A. B. VIEIRA DE

    1999-01-01

    Full Text Available The feasibility of deterpenating orange peel oil with supercritical CO2 depends on relevant vapor-liquid equilibrium data because the selectivity of this solvent for limonene and linalool (the two key components of the oil is of crucial importance. The vapor-liquid equilibrium data of the CO2-limonene binary system was measured at 50, 60 and 70oC and pressures up to 10 MPa, and of the CO2-linalool binary system at 50oC and pressures up to 85 bar. These results were compared with published data when available in the literature. The unpublished ternary phase equilibrium of CO2-limonene-linalool was studied at 50oC and up to 9 MPa. Selectivities obtained using these ternary data were compared with those calculated using binary data and indicate that a selective separation of limonene and linalool can be achieved.

  7. Origin of very-short orbital-period binary systems

    International Nuclear Information System (INIS)

    Miyaji, S.

    1983-01-01

    Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both X-ray close binaries and cataclysmic variables. Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of which belongs to any globular cluster, are too abundant to be explained by the capturing mechanism of a white dwarf. Therefore it seemed to be worthwhile to present an evolutionary scenario from an original binary system which can be applied for all VSOP binaries. (Auth.)

  8. Mass loss from interacting close binary systems

    Science.gov (United States)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  9. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  10. Method of statistical estimation of temperature minimums in binary systems

    International Nuclear Information System (INIS)

    Mireev, V.A.; Safonov, V.V.

    1985-01-01

    On the basis of statistical processing of literature data the technique for evaluation of temperature minima on liquidus curves in binary systems with common ion chloride systems being taken as an example, is developed. The systems are formed by 48 chlorides of 45 chemical elements including alkali, alkaline earth, rare earth and transition metals as well as Cd, In, Th. It is shown that calculation error in determining minimum melting points depends on topology of the phase diagram. The comparison of calculated and experimental data for several previously nonstudied systems is given

  11. Planetary Formation and Dynamics in Binary Systems

    Science.gov (United States)

    Xie, J. W.

    2013-01-01

    As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a

  12. The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture

    International Nuclear Information System (INIS)

    Berthier, L; Kob, W

    2007-01-01

    We use a standard Monte Carlo algorithm to study the slow dynamics of a binary Lennard-Jones glass-forming mixture at low temperature. We find that the Monte Carlo approach is by far the most efficient way to simulate a stochastic dynamics since the relaxation is about 10 times faster than in Brownian dynamics and about 30 times faster than in stochastic dynamics. Moreover, the average dynamical behaviour of the system is in quantitative agreement with that obtained using Newtonian dynamics, apart from at very short times where thermal vibrations are suppressed. We show, however, that dynamic fluctuations quantified by four-point dynamic susceptibilities do retain a dependence on the microscopic dynamics, as recently predicted theoretically

  13. A 3D dynamical model of the colliding winds in binary systems

    Science.gov (United States)

    Parkin, E. R.; Pittard, J. M.

    2008-08-01

    We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.

  14. What fraction of white dwarfs are members of binary systems?

    International Nuclear Information System (INIS)

    Holberg, J B

    2009-01-01

    White dwarfs were originally discovered as the subordinate faint companions of bright nearby stars (i.e. Sirius B and 40 Eri B). Several general categories of binary systems involving white dwarfs are recognized: Sirius-like systems, where the white dwarf may be difficult to detect, binary systems containing white dwarfs and low mass stars, where the white dwarf is often readily discerned; and double degenerate systems. Different modes of white dwarf discovery influence our perception of both the overall binary fraction and the nature of these systems; proper motion surveys emphasize resolved systems, while photometric surveys emphasize unresolved systems containing relatively hot white dwarfs. Recent studies of the local white dwarf population offer some hope of achieving realistic estimates of the relative number of binary systems containing white dwarfs. A sample of 132 white dwarfs within 20 pc indicates that an individual white dwarf has a probability of 32 ± 8% of occurring within a binary or multiple star system.

  15. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  16. Binary Star Fractions from the LAMOST DR4

    Science.gov (United States)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  17. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    Science.gov (United States)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  18. A Search for Exoplanets in Short-Period Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Ronald Kaitchuck

    2012-03-01

    Full Text Available This paper reports the progress of a search for exoplanets with S-type orbits in short-period binary star systems. The selected targets have stellar orbital periods of just a few days. These systems are eclipsing binaries so that exoplanet transits, if planets exist, will be highly likely. We report the results for seven binary star systems.

  19. Study of zirconium-addition binary systems

    International Nuclear Information System (INIS)

    Wozniakova, B.; Kuchar, L.

    1975-01-01

    The curves are given of the solid and the liquid of binary zirconium-addition systems. Most additions reduce the melting temperature of zirconium. The only known additions to increase the melting temperature are nitrogen, oxygen and hafnium. Also given are the transformation curves of the systems and the elements are given which reduce or raise the temperature of α-β transformation. From the Mendeleev table into which are plotted the curves of the solid and the liquid of binary systems it is possible to predict the properties of unknown binary systems. For the calculations of the curves of the solid and the liquid, 1860 degC was taken as the temperature of zirconium melting. For the calculations of transformation curves, 865 degC was taken as the temperature of α-β transformation. The equations are given of the curves of the solid and the liquid and of the transformation curves of some Zr-addition systems. Also given are the calculated equilibrium distribution coefficients and the equilibrium distribution coefficients of the transformation of additions in Zr and their limit values for temperatures approximating the melting point or the temperature of the transformation of pure Zr, and the values pertaining to eutectic and peritectic or eutectoid and peritectoid temperatures. (J.B.)

  20. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  1. Icosahedral binary clusters of glass-forming Lennard-Jones binary alloy

    International Nuclear Information System (INIS)

    Iwamatsu, Masao

    2007-01-01

    It is widely believed that the local icosahedral structure is related to the formation of bulk metallic glasses (BMGs). Specifically the existence of 13-atom icosahedral cluster in undercooled liquid is imagined to play a key role to initiate the glass formation as the seed of amorphous structure or to block the nucleation of regular crystal as the impurity. The existence of 13-atom icosahedral clusters in one-component liquids was predicted more than half a century ago by Frank from his total energy calculation for isolated clusters. In BMG alloys, however, the situation is less clear. In this report, we present the lowest-energy structures of 13-atom Lennard-Jones binary cluster calculated from the modified space-fixed genetic algorithm. We study, in particular, the artificial Lennard-Jones potential designed by Kob and Andersen [W. Kob, H.C. Andersen, Phys. Rev. E 51 (1995) 4626] that is known to form BMG. Curiously, the lowest-energy structures of 13-atom cluster are non-icosahedral for almost all compositions. Our result suggests that the existence of the icosahedral cluster is not a necessary condition but only a sufficient condition for glass formation

  2. Solid-state characterization of paracetamol metastable polymorphs formed in binary mixtures with hydroxypropylmethylcellulose

    International Nuclear Information System (INIS)

    Rossi, Alessandra; Savioli, Alessandra; Bini, Marcella; Capsoni, Doretta; Massarotti, Vincenzo; Bettini, Ruggero; Gazzaniga, Andrea; Sangalli, Maria Edvige; Giordano, Ferdinando

    2003-01-01

    Two metastable polymorphs of paracetamol (forms II and III) were prepared by appropriate thermal methods from binary mixtures containing 10% (w/w) of hydroxypropylmethylcellulose. By controlling the reheating step, it was possible to address the recrystallization of the drug either into form II or III. Moreover, it was observed that form III transforms either into form II or I depending on the preparation method. The physical characterization of the polymorphs was performed by means of micro-Fourier transform infrared spectroscopy (MFTIR) and powder X-ray diffractometry (PXRD), both temperature controlled

  3. Solid-state characterization of paracetamol metastable polymorphs formed in binary mixtures with hydroxypropylmethylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Alessandra; Savioli, Alessandra; Bini, Marcella; Capsoni, Doretta; Massarotti, Vincenzo; Bettini, Ruggero; Gazzaniga, Andrea; Sangalli, Maria Edvige; Giordano, Ferdinando

    2003-11-28

    Two metastable polymorphs of paracetamol (forms II and III) were prepared by appropriate thermal methods from binary mixtures containing 10% (w/w) of hydroxypropylmethylcellulose. By controlling the reheating step, it was possible to address the recrystallization of the drug either into form II or III. Moreover, it was observed that form III transforms either into form II or I depending on the preparation method. The physical characterization of the polymorphs was performed by means of micro-Fourier transform infrared spectroscopy (MFTIR) and powder X-ray diffractometry (PXRD), both temperature controlled.

  4. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, H. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Borkovits, T. [Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766 (Hungary); Rappaport, S. A. [Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ngo, H. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Boulevard, MC 150-21, Pasadena, CA 91125 (United States); Mawet, D. [California Institute of Technology, Astronomy Dept. MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Csizmadia, Sz. [German Aerospace Center (DLR), Institut für Planeten-forschung, Rutherfordstraße 2, D-12489 Berlin (Germany); Forgács-Dajka, E., E-mail: lehm@tls-tautenburg.de, E-mail: borko@electra.bajaobs.hu, E-mail: sar@mit.edu, E-mail: hngo@caltech.edu, E-mail: dmawet@astro.caltech.edu, E-mail: szilard.csizmadia@dlr.de, E-mail: e.forgacs-dajka@astro.elte.hu [Astronomical Department, Eötvös University, H-1118 Budapest, Pázmány Péter stny. 1/A (Hungary)

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.

  5. Hadronic model for the non-thermal radiation from the binary system AR Scorpii

    Science.gov (United States)

    Bednarek, W.

    2018-05-01

    AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.

  6. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  7. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    OpenAIRE

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this descript...

  8. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.

    Science.gov (United States)

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-11

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  9. Dynamical Formation and Merger of Binary Black Holes

    Science.gov (United States)

    Stone, Nicholas

    2017-01-01

    The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.

  10. Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems

    Science.gov (United States)

    Geist, Emily; Beaky, Matthew; Jamison, Kate

    2018-01-01

    In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.

  11. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  12. α-Cyclodextrin – Water binary system. New data on dehydration of α-cyclodextrin hexahydrate

    International Nuclear Information System (INIS)

    Manakov, Andrey Yu.; Rodionova, Tatyana V.; Aladko, Lyudmila S.; Villevald, Galina V.; Lipkowski, Janusz S.; Zelenina, Lyudmila N.; Chusova, Tamara P.; Karpova, Tamara D.

    2016-01-01

    Highlights: • The T, x– phase diagram of α-CD – water binary system was studied by DTA and DSC. • PXRD was used to follow structural transformation of α-CD hydrates. • α-CD·6.1H 2 O transforms into α-CD·5.3H 2 O at the temperature ∼355 K in isochoric conditions. • The solid solution on the base of α-CD·6H 2 O Form I is formed within the limits of α-CD·6.1H 2 O – α-CD·2.1H 2 O. - Abstract: Cyclodextrins (CDs) are torous-like macrocycles composed of glucopyranose units. Due to their shapes, they are capable to include a wide variety of organic and inorganic guest molecules with formation of inclusion complexes in solid and liquid state. CDs crystallize from aqueous solution as hydrates (water molecules are located in the cavities and fill intermolecular space). The process of inclusion complex formation is, in fact, a replacement reaction of water molecules by hydrophobic guest molecules. Given the important role of water in the formation of CDs inclusion complexes, and the fact that the main commercial forms of cyclodextrins are the hydrated ones, the study of temperature (T) – composition (x) phase diagram of cyclodextrin – water binary system is of scientific and practical interest. This article reports an experimental study of the T, x – phase diagram of α-cyclodextrin – water binary system under isochoric conditions by differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Powder X-ray diffraction was used to identify the structures of different α-CD hydrates and to follow their phase transformations. It was shown that dehydration processes in isochoric and isobaric (open air) conditions differ significantly. In the temperature range of approximately 351 K–359 K the α-CD hexahydrate of known Form I structure transforms into the α-CD·5.3H 2 O of unknown structural type. It is found that the solid solution on the base of the structure α-CD hexahydrate Form I is formed within the limits of

  13. Constraining the Statistics of Population III Binaries

    Science.gov (United States)

    Stacy, Athena; Bromm, Volker

    2012-01-01

    We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.

  14. A Binary System in the Hyades Cluster Hosting a Neptune-Sized Planet

    Science.gov (United States)

    Feinstein, Adina; Ciardi, David; Crossfield, Ian; Schlieder, Joshua; Petigura, Erik; David, Trevor J.; Bristow, Makennah; Patel, Rahul; Arnold, Lauren; Benneke, Björn; Christiansen, Jessie; Dressing, Courtney; Fulton, Benjamin; Howard, Andrew; Isaacson, Howard; Sinukoff, Evan; Thackeray, Beverly

    2018-01-01

    We report the discovery of a Neptune-size planet (Rp = 3.0Rearth) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. The planet is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set contraints on the formation and evolution of planetary systems.

  15. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Ivanova, N.; Heinke, C. O.; Woods, T. E.; Chaichenets, S.; Fregeau, J.; Lombardi, J. C.

    2010-01-01

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  16. Evolution of close binaries and the formation of pulsars

    International Nuclear Information System (INIS)

    Van Den Heuvel, E.P.J.

    1981-01-01

    The various ways in which compact objects (neutron stars and black holes) may be formed in interacting binary systems are examined. Attention is given to the final evolution of the primary star in a close binary system as a function of the time of Roche-lobe overflow relative to the onset of helium burning, and conditions on primary mass and orbital period leading to the appearance of a compact remnant are noted. Consideration of the fate of the stellar envelope in stars that directly evolve to core collapse indicates that binaries that evolve with conservation of total mass and orbital angular momentum will eventually become systems of two runaway pulsars. In cases of nonconservative evolution, the final state is expected to be a young runaway pulsar with a low- or moderate mass runaway star companion, or a low-mass population I X-ray binary with high space velocity. Compact objects may also be formed when a white dwarf of suitable chemical composition is driven over the Chandrasehkar limit by accretion, resulting in a low-mass X-ray binary

  17. Determination and modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by 1,8-dinitronaphthalene and 1,5-dinitronaphthalene and N-methyl-2-pyrrolidone

    International Nuclear Information System (INIS)

    Xie, Yong; Du, Cunbin; Cong, Yang; Wang, Jian; Han, Shuo; Zhao, Hongkun

    2016-01-01

    Highlights: • SLE formed by 1,5 and/or 1,8-dinitronaphthalene and NMP was determined. • The binary and ternary phase diagrams were constructed. • The phase diagrams were correlated and calculated using thermodynamic models. - Abstract: The solubility of 1,8-dinitronaphthalene and 1,5-dinitronaphthalene in N-methyl-2-pyrrolidone at (293.15–343.15) K and the mutual solubility of the ternary 1,5-dinitronaphthalene + 1,8-dinitronaphthalene + N-methyl-2-pyrrolidone mixture at (313.15, 328.15 and 343.15) K were determined experimentally using the isothermal saturation method under atmospheric pressure (101.2 kPa). The solubility of 1,8-dinitronaphthalene in N-methyl-2-pyrrolidone is larger than that of 1,5-dinitronaphthalene. Three isothermal ternary phase diagrams were built according to the measured mutual solubility data. In each ternary phase diagram, there were one co-saturated point, two boundary curves, and three crystalline regions. Two pure solids (pure 1,8-dinitronaphthalene and pure 1,5-dinitronaphthalene) were formed in the ternary system at a given temperature, which were identified by Schreinemaker’s method of wet residue and powder X-ray diffraction (PXRD) pattern. The crystallization region of 1,8-dinitronaphthalene was smaller than that of 1,5-dinitronaphthalene at each temperature. The modified Apelblat equation, λh equation, NRTL model and Wilson model were used to correlate the solubility of 1,8-dinitronaphthalene and 1,5-dinitronaphthalene in N-methyl-2-pyrrolidone; and the NRTL and Wilson models were employed to correlate and calculate the mutual solubility for the ternary 1,5-dinitronaphthalene + 1,8-dinitronaphthalene + N-methyl-2-pyrrolidone system. The largest value of root-mean-square deviation (RMSD) was 20.34 × 10 −4 for the binary systems; and 7.38 × 10 −3 for ternary system. The calculated results via these models are all acceptable for the binary and ternary solid-liquid phase equilibrium.

  18. Converting optical scanning holograms of real objects to binary Fourier holograms using an iterative direct binary search algorithm.

    Science.gov (United States)

    Leportier, Thibault; Park, Min Chul; Kim, You Seok; Kim, Taegeun

    2015-02-09

    In this paper, we present a three-dimensional holographic imaging system. The proposed approach records a complex hologram of a real object using optical scanning holography, converts the complex form to binary data, and then reconstructs the recorded hologram using a spatial light modulator (SLM). The conversion from the recorded hologram to a binary hologram is achieved using a direct binary search algorithm. We present experimental results that verify the efficacy of our approach. To the best of our knowledge, this is the first time that a hologram of a real object has been reconstructed using a binary SLM.

  19. Population of Nuclei Via 7Li-Induced Binary Reactions

    International Nuclear Information System (INIS)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.; Cromaz, Mario; Deleplanque, M.A.; Fall on, Paul; Lee, I-Yang; Macchiavelli, A.O.; McMahan, Margaret A.; Moretto, Luciano G.; Rodriguez-Vieitez, E.; Sinha, Shrabani; Stephens, Frank S.; Ward, David; Wiedeking, Mathis

    2005-01-01

    The authors have investigated the population of nuclei formed in binary reactions involving 7 Li beams on targets of 160 Gd and 184 W. The 7 Li + 184 W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si ΔE-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies

  20. THE QUASI-ROCHE LOBE OVERFLOW STATE IN THE EVOLUTION OF CLOSE BINARY SYSTEMS CONTAINING A RADIO PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G.; De Vito, M. A. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2015-01-01

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.

  1. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star

    Science.gov (United States)

    Ciolfi, Riccardo; Kastaun, Wolfgang; Giacomazzo, Bruno; Endrizzi, Andrea; Siegel, Daniel M.; Perna, Rosalba

    2017-03-01

    Merging binary neutron stars (BNSs) represent the ultimate targets for multimessenger astronomy, being among the most promising sources of gravitational waves (GWs), and, at the same time, likely accompanied by a variety of electromagnetic counterparts across the entire spectrum, possibly including short gamma-ray bursts (SGRBs) and kilonova/macronova transients. Numerical relativity simulations play a central role in the study of these events. In particular, given the importance of magnetic fields, various aspects of this investigation require general relativistic magnetohydrodynamics (GRMHD). So far, most GRMHD simulations focused the attention on BNS mergers leading to the formation of a hypermassive neutron star (NS), which, in turn, collapses within few tens of ms into a black hole surrounded by an accretion disk. However, recent observations suggest that a significant fraction of these systems could form a long-lived NS remnant, which will either collapse on much longer time scales or remain indefinitely stable. Despite the profound implications for the evolution and the emission properties of the system, a detailed investigation of this alternative evolution channel is still missing. Here, we follow this direction and present a first detailed GRMHD study of BNS mergers forming a long-lived NS. We consider magnetized binaries with different mass ratios and equations of state and analyze the structure of the NS remnants, the rotation profiles, the accretion disks, the evolution and amplification of magnetic fields, and the ejection of matter. Moreover, we discuss the connection with the central engine of SGRBs and provide order-of-magnitude estimates for the kilonova/macronova signal. Finally, we study the GW emission, with particular attention to the post-merger phase.

  2. GRAVITATIONAL WAVES FROM MASSIVE MAGNETARS FORMED IN BINARY NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Osso, Simone [Theoretical Astrophysics, University of Tübingen, auf der Morgenstelle 10 D-72076 (Germany); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Stella, Luigi, E-mail: simone.dallosso@uni-tuebingen.de [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio Catone, Roma (Italy)

    2015-01-01

    Binary neutron star (NS) mergers are among the most promising sources of gravitational waves (GWs), as well as candidate progenitors for short gamma-ray bursts (SGRBs). Depending on the total initial mass of the system and the NS equation of state (EOS), the post-merger phase can be characterized by a prompt collapse to a black hole or by the formation of a supramassive NS, or even a stable NS. In the latter cases of post-merger NS (PMNS) formation, magnetic field amplification during the merger will produce a magnetar and induce a mass quadrupole moment in the newly formed NS. If the timescale for orthogonalization of the magnetic symmetry axis with the spin axis is smaller than the spindown time, the NS will radiate its spin down energy primarily via GWs. Here we study this scenario for the various outcomes of NS formation: we generalize the set of equilibrium states for a twisted torus magnetic configuration to include solutions that, for the same external dipolar field, carry a larger magnetic energy reservoir; we hence compute the magnetic ellipticity for such configurations, and the corresponding strength of the expected GW signal as a function of the relative magnitude of the dipolar and toroidal field components. The relative number of GW detections from PMNSs and from binary NSs is a very strong function of the NS EOS, being higher (∼1%) for the stiffest EOSs and negligibly small for the softest ones. For intermediate-stiffness EOSs, such as the n = 4/7 polytrope recently used by Giacomazzo and Perna or the GM1 used by Lasky et al., the relative fraction is ∼0.3%; correspondingly, we estimate a GW detection rate from stable PMNSs of ∼0.1-1 yr{sup –1} with advanced detectors, and of ∼100-1000 yr{sup –1} with detectors of third generation such as the Einstein Telescope. Measurement of such GW signals would provide constraints on the NS EOS and, in connection with an SGRB, on the nature of the binary progenitors giving rise to these events.

  3. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    Science.gov (United States)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  4. Orbital motion in pre-main sequence binaries

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simon, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Patience, J., E-mail: schaefer@chara-array.org [Astrophysics Group, School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  5. Can black-hole MACHO binaries be detected by the Brazilian spherical antenna?

    International Nuclear Information System (INIS)

    Araujo, J C N de; Miranda, O D; Castro, C S; Paleo, B W; Aguiar, O D

    2004-01-01

    Different studies show that dark matter of non-baryonic origin might exist. There is experimental evidence that at least one form of dark matter has been detected through microlensing effects. This form of dark matter is named MACHOs (massive astrophysical compact halo objects). The MACHO collaboration estimated that the masses of these objects are to be in the range 0.15-0.95M o-dot , where the most probable mass is of 0.5M o-dot . Some authors argue that MACHOs could be black holes, and that they could form binary systems, BHMACHO binaries. As is well known, binary systems are sources of gravitational waves. The Brazilian spherical antenna will operate in the frequency band of 3.0-3.4 kHz, sensitive to binaries of a pair of 0.5M o-dot black holes just before coalescing. In the present work we study the detectability of these putative BHMACHO binaries by the Brazilian spherical antenna Mario Schenberg

  6. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  7. Presence of mixed modes in red giants in binary systems

    Directory of Open Access Journals (Sweden)

    Themeßl Nathalie

    2017-01-01

    Full Text Available The frequencies of oscillation modes in stars contain valueable information about the stellar properties. In red giants the frequency spectrum also contains mixed modes, with both pressure (p and gravity (g as restoring force, which are key to understanding the physical conditions in the stellar core. We observe a high fraction of red giants in binary systems, for which g-dominated mixed modes are not pronounced. This trend leads us to investigate whether this is specific for binary systems or a more general feature. We do so by comparing the fraction of stars with only p-dominated mixed modes in binaries and in a larger set of stars from the APOKASC sample. We find only p-dominated mixed modes in about 50% of red giants in detached eclipsing binaries compared to about 4% in the large sample. This could indicate that this phenomenon is tightly related to binarity and that the binary fraction in the APOKASC sample is about 8%.

  8. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  9. Binary and ternary VLE of the 2-(diethylamino)-ethanol (DEEA)/ 3-(methylamino)-propylamine (MAPA)/ water system

    DEFF Research Database (Denmark)

    Hartono, Ardi; Saleem, Fahad; Waseem Arshad, Muhammad

    2013-01-01

    A mixed 2-(diethylamino)-ethanol (DEEA) and 3-(methylamino)-propylamine (MAPA) system could be an attractive alternative solvent to improve the performance of CO2 capture for low partial pressure cases. This solvent has the advantages of forming two liquid phases upon CO2 loading, one rich in CO2......-T-x-y, activity coefficient, excess enthalpy and freezing point depression for both the binary and ternary systems. However, a small inconsistency was observed between water activity coefficients determined from ebulliometer and freezing point depression measurements.......A mixed 2-(diethylamino)-ethanol (DEEA) and 3-(methylamino)-propylamine (MAPA) system could be an attractive alternative solvent to improve the performance of CO2 capture for low partial pressure cases. This solvent has the advantages of forming two liquid phases upon CO2 loading, one rich in CO2...... understand this system in designing the separation unit requires substantial work on characterization of the solvent. One important aspect is to provide equilibrium data. In this work new ebulliometric VLE data for the binary DEEA/H2O and DEEA/MAPA systems and the ternary DEEA/MAPA/H2O system are reported...

  10. Some thoughts on interacting binary systems

    International Nuclear Information System (INIS)

    Ulrich, R.K.

    1980-01-01

    The author presents some thoughts on the theory and observation of interacting binary systems. The complex physical processes possible in these systems make our present understanding inconclusive. New types of observation (X-ray, EUV, radio) present new challenges to the theoretician. The author discusses those problems which seem to hold the most promise for future progress. (Auth.)

  11. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohitash, E-mail: dootrohit1976@gmail.com [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India); Kumar, Ravindra [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Dixit, Ambesh, E-mail: ambesh@iitj.ac.in [Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India)

    2016-05-06

    Thermal properties of Acetamide (AM) – Benzoic acid (BA) and Benzoic acid (BA) – Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  12. Evolutionary model of the subdwarf binary system LB3459

    International Nuclear Information System (INIS)

    Paczynski, B.; Dearborn, D.S.

    1980-01-01

    An evolutionary model is proposed for the eclipsing binary system LB 3459 (=CPD-60 0 389 = HDE 269696). The two stars are hot subdwarfs with degenerate helium cores, hydrogen burning shell sources and low mass hydrogen rich envelopes. The system probably evolved through two common envelope phases. After the first such phase it might look like the semi-detached binary AS Eri. Soon after the second common envelope phase the system might look like UU Sge, an eclipsing binary nucleus of a planetary nebula. The present mass of the optical (spectroscopic) primary is probably close to 0.24 solar mass, and the predicted radial velocity amplitude of the primary is about 150 km/s. The optical secondary should be hotter and bolometrically brighter, with a mass of 0.32 solar mass. The primary eclipse is an occultation. (author)

  13. ALMA observations of a misaligned binary protoplanetary disk system in Orion

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96816 (United States); Mann, Rita K.; Francesco, James Di; Johnstone, Doug; Matthews, Brenda [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Andrews, Sean M.; Ricci, Luca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hughes, A. Meredith [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Bally, John, E-mail: jpw@ifa.hawaii.edu [CASA, University of Colorado, CB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO{sup +} 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ∼9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ∼72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  14. Logistic chaotic maps for binary numbers generations

    International Nuclear Information System (INIS)

    Kanso, Ali; Smaoui, Nejib

    2009-01-01

    Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applications, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like properties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear complexity and very good statistical properties. The systems are put forward for security evaluation by the cryptographic committees.

  15. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  16. RS CVn binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    The author attempts to place in context the vast amount of data obtained in the last few years as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. He concentrates on the RS CVn systems and their long-period analogs, and restricts the scope by attempting to answer on the basis of the recent data and theory following questions: (1) Are the original defining characteristics still valid and still adequate? (2) What is the evidence for discrete active regions? (3) Have we derived any meaningful physical properties for the atmospheres of RS CVn systems? (4) What are the flare observations telling us about magnetic fields in the RS CVn systems? (5) Is there evidence for systematic trends in RS CVn systems with spectral type?

  17. All-optical conversion scheme from binary to its MTN form with the help of nonlinear material based tree-net architecture

    Science.gov (United States)

    Maiti, Anup Kumar; Nath Roy, Jitendra; Mukhopadhyay, Sourangshu

    2007-08-01

    In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.

  18. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.

    2013-01-01

    the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M ☉ and 0.034 M ☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known....... The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M ☉. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries....

  19. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  20. Gravitational redshift from a binary system

    Energy Technology Data Exchange (ETDEWEB)

    Steklain, Andre [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil)

    2011-07-01

    Full text: In this work we study the gravitational redshift of a binary system in general relativity. We employ a mixed metric obtained from the matching of a 1PN metric with two perturbed Schwarzschild metrics, based on previous works [Alvi, Phys. Rev. D, 61, 124013 (2000)]. This metric is well known, and has been considered for several applications [Steklain et al, Phys. Lett. A, 373, 188, (2009)]. We consider a massless observer in a timelike geodesic of this metric measuring the redshift of the system. The observer concentrates the redshift measurements in one of the massive bodies and is influenced by the mass of the second body. We find that there is a substantial contribution of the second mass in some cases. We compare with experimental data obtained for real binary systems of white dwarfs [Vennes et al, Astroph. J., L37 (1991)]. We also discuss these results for more massive systems, and make some predictions for very massive systems, like black holes, although it extrapolates the limit of the 1PN approximation used. Is well known that the major contribution of the observed redshift is from the universe expansion, but these results indicate that the influence of the gravitational redshift may be underestimated at some systems. (author)

  1. Estimation of the Ideal Binary Mask using Directional Systems

    DEFF Research Database (Denmark)

    Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    The ideal binary mask is often seen as a goal for time-frequency masking algorithms trying to increase speech intelligibility, but the required availability of the unmixed signals makes it difficult to calculate the ideal binary mask in any real-life applications. In this paper we derive the theory...... and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results....

  2. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  3. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  4. Two types of evolution of massive close binary systems

    International Nuclear Information System (INIS)

    De Loore, C.; De Greve, J.P.

    1976-01-01

    It is well known that the outcome of case B evolution of the primaries of massive close binary systems (M 1 >=9M(Sun)) depends on the initial primary mass. The most massive primaries finally ignite carbon, form iron cores and presumably end in a supernova explosion, whereas the lighter ones presumably end as white dwarfs, without carbon ignition. This paper derives an estimate of the mass boundary separating these two kinds of evolution. As an example of the first case, the evolution of a 20M(Sun)+14M(Sun) system was computed; after the mass exchange, the primary star (with M=5.43 M(Sun)) evolves through the helium-burning (Wolf-Rayet) stage towards a supernova explosion; finally the system evolves into an X-ray binary (BWRX-evolution). As a representative for the second case the evolution of a 10M(sun)+8M(Sun) system was examined. After the first stage of mass exchange, the primary (with a mass of 1.66M(Sun)) approaches the helium main sequence; during later phases of helium burning the radius increases again, and a second stage of mass transfer starts; after this the star (with a mass of 1.14M(Sun)) again evolves towards the left in the Hertzsprung-Russell diagram and ends as a white dwarf (BSWD-evolution). A system of 15M(Sun)+8M(Sun) is found to evolve very similar to the 20M(Sun)+14M(Sun) system. The mass Msub(u), separating the two types of evolution, must therefore be situated between 10 and 15 solar masses. An initial chemical composition X=0.70, Z=0.03 was used for all systems. (Auth.)

  5. PHOTOINITIATED POLYMERIZATION BY ARYLIODONIUM SALT/BENZOPHENONE / TERTIARY AMINE BINARY PHOTOSENSITIZATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    HE Junhui; WANG Erjian

    1990-01-01

    A novel binary photosensitization system composed of benzophenone (BP) /diphenyliodonium chloride ( DPIOC )/triethylamine (TEA), exhibiting a good photoresponse at near UV and visible light regions, was used as the initiator for photopolymerization of MMA. The radical photogeneration in the binary system consists mainly of two parallel reactions, i. e., BP/TEA photohydrogen-abstraction and DPIOC/TEA complex photodecomposition, but the latter is more active than the former. The results of comparative study indicate that the rate of polymerization induced by the binary system (BDT) is remarkably higher than those by the corresponding single systems The polymerization rates are proportional to[BP] 0. 16, [ DPIOC] 0.32, [ TEA ] 0.45 and [MMA ] . The mechanism is also discussed.

  6. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  7. Searching for Solar System Wide Binaries with Pan-STARRS-1

    Science.gov (United States)

    Holman, Matthew J.; Protopapas, P.; Tholen, D. J.

    2007-10-01

    Roughly 60% of the observing time of the Pan-STARRS-1 (PS1) telescope will be dedicated to a "3pi steradian" survey with an observing cadence that is designed for the detection of near-Earth asteroids and slow-moving solar system bodies. Over this course of its 3.5 year cience mission, this unprecedented survey will discover nearly every asteroid, Trojan, Centaur, long-period comet, short-period comet, and trans-neptunian object (TNO) brighter than magnitude R=23. This census will be used to address a large number of questions regarding the physical and dynamical properties of the various small body populations of the solar system. Roughly 1-2% of TNOs are wide binaries with companions at separations greater than 1 arcsec and brightness differences less than 2 magnitudes (Kern & Elliot 2006; Noll et al 2007). These can be readily detected by PS1; we will carry out such a search with PS1 data. To do so, we will modify the Pan-STARRS Moving Object Processing System (MOPS) such that it will associate the components of resolved or marginally resolved binaries, link such pairs of detections obtained at different epochs, and the estimate the relative orbit of the binary. We will also determine the efficiency with which such binaries are detected as a function of the binary's relative orbit and the relative magnitudes of the components. Based on an estimated 7000 TNOs that PS1 will discover, we anticipate finding 70-140 wide binaries. The PS1 data, 60 epochs over three years, is naturally suited to determining the orbits of these objects. Our search will accurately determine the binary fraction for a variety of subclasses of TNOs.

  8. Lidocaine/L-Menthol Binary System: Cocrystallization versus Solid-State Immiscibility

    OpenAIRE

    Corvis , Yohann; Négrier , Philippe; Lazerges , Mathieu; Massip , Stéphane; Léger , Jean-Michel; Espeau , Philippe

    2010-01-01

    International audience; We present the synthesis, structure determination, and thermodynamic properties of a never reported cocrystal prepared with lidocaine and L-menthol. The temperature-composition phase diagram of the lidocaine/L-menthol binary system was achieved using differential scanning calorimetry and X-ray diffraction experiments. The present study demonstrates that the only way to perform a phase equilibrium survey of the lidocaine/L-menthol system is to prepare the binary mixture...

  9. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  10. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    International Nuclear Information System (INIS)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Fabrycky, Daniel C.

    2014-01-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.

  11. The BANANA Project. IV. Two Aligned Stellar Rotation Axes in the Young Eccentric Binary System EP Crucis: Primordial Orientation and Tidal Alignment

    Science.gov (United States)

    Albrecht, Simon; Setiawan, Johny; Torres, Guillermo; Fabrycky, Daniel C.; Winn, Joshua N.

    2013-04-01

    With observations of the EP Cru system, we continue our series of measurements of spin-orbit angles in eclipsing binary star systems, the BANANA project (Binaries Are Not Always Neatly Aligned). We find a close alignment between the sky projections of the rotational and orbital angular momentum vectors for both stars (βp = -1.°8 ± 1.°6 and |βs| < 17°). We also derive precise absolute dimensions and stellar ages for this system. The EP Cru and DI Her systems provide an interesting comparison: they have similar stellar types and orbital properties, but DI Her is younger and has major spin-orbit misalignments, raising the question of whether EP Cru also had a large misalignment at an earlier phase of evolution. We show that tidal dissipation is an unlikely explanation for the good alignment observed today, because realignment happens on the same timescale as spin-orbit synchronization, and the stars in EP Cru are far from synchronization (they are spinning nine times too quickly). Therefore it seems that some binaries form with aligned axes, while other superficially similar binaries are formed with misaligned axes. Based on observations made with ESOs 2.2 m Telescopes at the La Silla Paranal Observatory under program ID 084.C-1008 (12.5%) and under MPIA guaranteed time (87.5%).

  12. Percolation of binary disk systems: Modeling and theory

    International Nuclear Information System (INIS)

    Meeks, Kelsey; Pantoya, Michelle L.

    2017-01-01

    The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and compared to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.

  13. The Curious Case of PDS 11: A Nearby, >10 Myr Old, Classical T Tauri Binary System

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Blesson; Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Colaba, Mumbai 400005 (India); Bhatt, B. C.; Sahu, D. K.; Muneer, S. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Maheswar, G., E-mail: blesson.mathew@tifr.res.in [Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263002 (India)

    2017-05-01

    We present results of our study of the PDS 11 binary system, which belongs to a rare class of isolated, high Galactic latitude T Tauri stars. Our spectroscopic analysis reveals that PDS 11 is an M2–M2 binary system with both components showing similar H α emission strengths. Both the components appear to be accreting and are classical T Tauri stars. The lithium doublet Li i  λ 6708, a signature of youth, is present in the spectrum of PDS 11A, but not in PDS 11B. From the application of lithium depletion boundary age-dating method and a comparison with the Li i  λ 6708 equivalent width distribution of moving groups, we estimated an age of 10–15 Myr for PDS 11A. Comparison with pre-main sequence evolutionary models indicates that PDS 11A is a 0.4 M {sub ⊙} T Tauri star at a distance of 114–131 pc. PDS 11 system does not appear to be associated with any known star-forming regions or moving groups. PDS 11 is a new addition, after TWA 30 and LDS 5606, to the interesting class of old, dusty, wide binary classical T Tauri systems in which both components are actively accreting.

  14. Supernova explosions in close binary systems. Pt. 2

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1975-01-01

    The effects of a spherically symmetric explosion on the runaway velocity of a close binary system with an initial circular orbit is considered. It is shown that the runaway velocity is completely determined by the final orbital parameters regardless of the initial condition. The galactic z distribution of the known massive X-ray binaries indicates that the runaway velocities of these systems are very probably smaller than approximately 100 km/s with the most likely values of approximately 25-50 km/s. Such runaway velocities can be obtained if the post-explosion eccentricities are less than approximately 0.25. This then has the concequence that the mass of the exploded star which produced the neutron stars in the massive X-ray binaries can in most cases not have been larger than approximately 7-8 M(S) with the most likely values of approximately 3-4 M(S) if the supergiants in these systems have mass (M 2 ) of approximately 20 M(S). For Cyg X-1, the upper mass limit of the exploded star is found to be approximately 16 M(S). For M 2 = 30 M(S) these upper limit becomes approximately 9-10 M(S) and 19 M(S) respectively. (orig.) [de

  15. A heuristic algorithm for computing the Poincar\\'e series of the invariants of binary forms

    OpenAIRE

    Djoković, Dragomir Ž.

    2006-01-01

    We propose a heuristic algorithm for fast computation of the Poincar\\'{e} series $P_n(t)$ of the invariants of binary forms of degree $n$, viewed as rational functions. The algorithm is based on certain polynomial identities which remain to be proved rigorously. By using it, we have computed the $P_n(t)$ for $n\\le30$.

  16. THE ELM SURVEY. II. TWELVE BINARY WHITE DWARF MERGER SYSTEMS

    International Nuclear Information System (INIS)

    Kilic, Mukremin; Brown, Warren R.; Kenyon, S. J.; Prieto, Carlos Allende; Agueeros, M. A.; Heinke, Craig

    2011-01-01

    We describe new radial velocity and X-ray observations of extremely low-mass white dwarfs (ELM WDs, ∼0.2 M sun ) in the Sloan Digital Sky Survey Data Release 4 and the MMT Hypervelocity Star survey. We identify four new short period binaries, including two merger systems. These observations bring the total number of short period binary systems identified in our survey to 20. No main-sequence or neutron star companions are visible in the available optical photometry, radio, and X-ray data. Thus, the companions are most likely WDs. Twelve of these systems will merge within a Hubble time due to gravitational wave radiation. We have now tripled the number of known merging WD systems. We discuss the characteristics of this merger sample and potential links to underluminous supernovae, extreme helium stars, AM CVn systems, and other merger products. We provide new observational tests of the WD mass-period distribution and cooling models for ELM WDs. We also find evidence for a new formation channel for single low-mass WDs through binary mergers of two lower mass objects.

  17. On the dynamics of non-stationary binary stellar systems

    International Nuclear Information System (INIS)

    Bekov, A. A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2005-01-01

    The motion of test body in the external gravitational field of the binary stellar system with slowly variable some physical parameters of radiating components is considered on the base of restricted non-stationary photo-gravitational three and two bodies problem. The family of polar and coplanar solutions are obtained. These solutions give the possibility of the dynamical and structure interpretation of the binary young evolving stars and galaxies. (author)

  18. ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carl L. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States); Zevin, Michael; Pankow, Chris; Kalogera, Vasilliki; Rasio, Frederic A. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2016-11-20

    The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin–orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 could be formed with significant spin–orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin–orbit anti -alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.

  19. Spiral shocks on a Roche lobe overflow in a semi-detached binary system

    International Nuclear Information System (INIS)

    Sawada, K.; Matsuda, T.; Hachisu, I.

    1986-01-01

    Two-dimensional hydrodynamic calculations of a Roche lobe overflow in a semi-detached binary system with a mass ratio of unity are carried out. The region of the computation covers both a mass-losing star filling its critical Roche lobe and a mass-accreting compact star. Gas ejected from the mass-losing star with specified energy flows through the L1 point to form an elephant trunk and an accretion ring. It is found that spiral-shaped shocks are formed on the accretion ring. It is suggested that the gas in the accretion ring loses angular momentum at the shocks and spirals in towards the compact star even without viscosity. (author)

  20. Binary Systems and the Initial Mass Function

    Science.gov (United States)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  1. Evolution of highly compact binary stellar systems in globular clusters

    International Nuclear Information System (INIS)

    Krolik, J.H.; Meiksin, A.; Joss, P.C.

    1984-01-01

    We have calculated the secular evolution of a highly compact binary stellar system, composed of a collapsed object and a low-mass secondary star, in the core of a globular cluster. The binary evolves under the combined influences of (i) gravitational radiation losses from the system, (ii) the evolution of the secondary star, (iii) the resultant gradual mass transfer, if any, from the secondary to the collapsed object, and (iv) occasional encounters with passing field stars. We calculate all these effects in detail, utilizing some simplifying approximations appropriate to low-mass secondaries. The times of encounters with field stars, and the initial parameter specifying those encounters, were chosen by use of a Monte Carlo technique; the subsequent gravitational interactions were calculated utilzing a three-body integrator, and the changes in the binary orbital parmeters were thereby determined. We carried out a total of 20 such evolutionary calculations for each of two cluster core densities (1 and 3 x 10 3 stars pc -3 ). Each calculation was continued until the binary was disrupted or until 2 x 10 10 yr had elapsed

  2. UNUSUALLY WIDE BINARIES: ARE THEY WIDE OR UNUSUAL?

    International Nuclear Information System (INIS)

    Kraus, Adam L.; Hillenbrand, Lynne A.

    2009-01-01

    We describe an astrometric and spectroscopic campaign to confirm the youth and association of a complete sample of candidate wide companions in Taurus and Upper Sco. Our survey found 15 new binary systems (three in Taurus and 12 in Upper Sco) with separations of 3''-30'' (500-5000 AU) among all of the known members with masses of 2.5-0.012 M sun . The total sample of 49 wide systems in these two regions conforms to only some expectations from field multiplicity surveys. Higher mass stars have a higher frequency of wide binary companions, and there is a marked paucity of wide binary systems near the substellar regime. However, the separation distribution appears to be log-flat, rather than declining as in the field, and the mass ratio distribution is more biased toward similar-mass companions than the initial mass function or the field G-dwarf distribution. The maximum separation also shows no evidence of a limit at ∼ sun . We attribute this result to the post-natal dynamical sculpting that occurs for most field systems; our binary systems will escape to the field intact, but most field stars are formed in denser clusters and undergo significant dynamical evolution. In summary, only wide binary systems with total masses ∼ sun appear to be 'unusually wide'.

  3. Equilibrium thermodynamics of the ternary membrane-forming system nylon, formic acid and water

    NARCIS (Netherlands)

    Bulte, A.M.W.; Bulte, A.M.W.; Naafs, E.M.; van Eeten, F.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.; Strathmann, H.

    1996-01-01

    The binary Flory-Huggins interaction parameters for the ternary membrane-forming system nylon, formic acid and water have been obtained from literature data, swelling values and melting point depression. Nylon 4,6 nylon 6 and a copolymer of nylon 4,6 and 6 were examined. The isothermal

  4. Near-Infrared Polarimetry of the GG Tauri A Binary System

    Science.gov (United States)

    Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; hide

    2014-01-01

    A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  5. The modification of equipotential surfaces in the binary systems due to the pressure of the radiation of its components

    International Nuclear Information System (INIS)

    Zorec, Juan; Niemela, Virpi

    1980-01-01

    The modification of the equipotential surfaces of a binary system is studied when the radiation pressure of both components must be taken into account. For suitable values of the radiation parameters, new forms of mass transfer or mass loss may arise [fr

  6. Transient Processes in a Binary System with a White Dwarf

    Directory of Open Access Journals (Sweden)

    D. A. Kononov

    2015-02-01

    Full Text Available Using the results of 3D gas dynamic numerical simulations we propose a mechanism that can explain the quiescent multihumped shape of light curves of WZ Sge short-period cataclysmic variable stars. Analysis of the obtained solutions shows that in the modeled system an accretion disk forms. In the outer regions of the disk four shock waves occur: two arms of the spiral tidal shock; “hot line”, a shock wave caused by the interaction of the circum-disk halo and the stream from the inner Lagrangian point; and the bow-shock forming due to the supersonic motion of the accretor and disk in the gas of the circum-binary envelope. In addition, in our solutions we observe a spiral precessional density wave in the disk. This wave propagates from inside the disk down to its outer regions and almost rests in the laboratory frame in one orbital period. As a results every next orbital period each shock wave passes through the outer part of the density wave. Supplying these shocks with extra-density the precessional density wave amplifies them, which leads to enhanced energy release at each shock and may be observed as a brightening (or hump in the light curve. Since the velocity of the retrograde precession is a little lower that the orbital velocity of the system, the same shock wave at every next orbital cycle interacts with the density wave later than at the previous cycle. This causes the observed shift of the humps over binary phases. The number of the shock waves, interacting with the density wave determines the largest number of humps that may be observed in one orbital period of a WZ Sge type star.

  7. Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae

    Science.gov (United States)

    Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.

    2018-05-01

    We investigate the long-term secular dynamics and Lidov-Kozai (LK) eccentricity oscillations of quadruple systems composed of two binaries at quadrupole and octupole orders in the perturbing Hamiltonian. We show that the fraction of systems reaching high eccentricities is enhanced relative to triple systems, over a broader range of parameter space. We show that this fraction grows with time, unlike triple systems evolved at quadrupole order. This is fundamentally because with their additional degrees of freedom, quadruple systems do not have a maximal set of commuting constants of the motion, even in secular theory at quadrupole order. We discuss these results in the context of star-star and white dwarf-white dwarf (WD) binaries, with emphasis on WD-WD mergers and collisions relevant to the Type Ia supernova problem. For star-star systems, we find that more than 30 per cent of systems reach high eccentricity within a Hubble time, potentially forming triple systems via stellar mergers or close binaries. For WD-WD systems, taking into account general relativistic and tidal precession and dissipation, we show that the merger rate is enhanced in quadruple systems relative to triple systems by a factor of 3.5-10, and that the long-term evolution of quadruple systems leads to a delay-time distribution ˜1/t for mergers and collisions. In gravitational wave-driven mergers of compact objects, we classify the mergers by their evolutionary patterns in phase space and identify a regime in about 8 per cent of orbital shrinking mergers, where eccentricity oscillations occur on the general relativistic precession time-scale, rather than the much longer LK time-scale. Finally, we generalize previous treatments of oscillations in the inner binary eccentricity (evection) to eccentric mutual orbits. We assess the merger rate in quadruple and triple systems and the implications for their viability as progenitors of stellar mergers and Type Ia supernovae.

  8. Unstable mass outflow from a binary system

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, K [Tokyo Univ., Mitaka (Japan). Tokyo Astronomical Observatory; Sugimoto, D

    1976-12-01

    A contact binary system which fills the outer Lagrangian lobe is unstable against the mass loss from the second Lagrangian point. The effect of the mass loss on the remaining system is studied for several typical cases. It is shown that the separation between the components at the periastron decreases with a high rate in most cases; therefore, the system continues to lose mass once gas begins to flow out from the second Lagrangian point.

  9. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  10. Regularities in electroconductivity and thermo-emf in systems of binary continuous solid solutions of metals

    International Nuclear Information System (INIS)

    Vedernikov, M.V.; Dvunitkin, V.G.; Zhumagulov, A.

    1978-01-01

    Given are new experimental data about specific electric resistance of 10 systems of binary continuous solid metal solutions at the temperatures of 293 and 4.2 K: Cr-V, Mo-Nb, Mo-V, Cr-Mo, Nb-V, Ti-Zr, Hf-Zr, Hf-Ti, Sc-Zr, Sc-Hf. For the first time a comparative analysis of all available data on the resistance dependence on the composition of systems of continuous solid solutions, which covers 21 systems, is carried out. The ''resistance-composition'' dependence for such alloy systems is found to be of two types. The dependence of the first type is characteristic of the systems, formed by two isoelectronic metals, the dependence of the second type - for the systems, formed by non-isoelectronic metals. Thermo-emf of each type of solid solutions differently depends on their compositions

  11. BINARIES DISCOVERED BY THE MUCHFUSS PROJECT: SDSS J08205+0008-AN ECLIPSING SUBDWARF B BINARY WITH A BROWN DWARF COMPANION

    International Nuclear Information System (INIS)

    Geier, S.; Schaffenroth, V.; Drechsel, H.; Heber, U.; Kupfer, T.; Tillich, A.; Oestensen, R. H.; Smolders, K.; Degroote, P.; Maxted, P. F. L.; Barlow, B. N.; Gaensicke, B. T.; Marsh, T. R.; Napiwotzki, R.

    2011-01-01

    Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here, we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object (≅0.068 M sun ) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelope, but also triggered its ejection and enabled the sdB star to form. The system provides evidence that brown dwarfs may indeed be able to significantly affect late stellar evolution.

  12. Gravitational waves from spinning eccentric binaries

    Science.gov (United States)

    Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás

    2012-12-01

    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.

  13. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    International Nuclear Information System (INIS)

    Lewis, K. M.; Ida, S.; Ochiai, H.; Nagasawa, M.

    2015-01-01

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data

  14. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase

    DEFF Research Database (Denmark)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a ...

  15. RS CV sub n binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    An attempt is made to place in context the vast amount of data obtained as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. Emphasis is on the RS CVn systems and their long period analogs. The following questions are considered: (1) are the original defining characteristics still valid and still adequate; (2) what is the evidence for discrete active regions; (3) have any meaningful physical properties for the atmospheres of RS CVn systems been derived; (4) what do the flare observations tell about magnetic fields in RS CVn systems; (5) is there evidence for systematic trends in RS CVn systems with spectral type

  16. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Parkin, E. R.; Sim, S. A.

    2013-01-01

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L X , remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L X /L bol ). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  17. A mysterious dust clump in a disk around an evolved binary star system.

    Science.gov (United States)

    Jura, M; Turner, J

    1998-09-10

    The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.

  18. Formation of the wide asynchronous binary asteroid population

    International Nuclear Information System (INIS)

    Jacobson, Seth A.; Scheeres, Daniel J.; McMahon, Jay

    2014-01-01

    We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semimajor axes relative to most near-Earth and main belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, from planetary flybys, and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (1) these systems are formed from rotational fission, (2) their satellites are tidally locked, (3) their orbits are expanded by the binary Yarkovsky-O'Keefe-Radzievskii-Paddack (BYORP) effect, (4) their satellites desynchronize as a result of the adiabatic invariance between the libration of the secondary and the mutual orbit, and (5) the secondary avoids resynchronization because of the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torque that acts on the system. After detailing the theory, we analyze each of the wide asynchronous binary members and candidates to assess their most likely formation mechanism. Finally, we suggest possible future observations to check and constrain our hypothesis.

  19. High-pressure viscosity measurements for the ethanol plus toluene binary system

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.; Watson, G.

    2005-01-01

    measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of 1%. A total of 209 experimental measurements have been obtained for this binary system, which reveals a non-monotonic behavior of the viscosity as a function of the composition, with a minimum. The viscosity behavior...... interacting system showing a negative deviation from ideality. The viscosity of this binary system is represented by the Grunberg-Nissan and the Katti-Chaudhri mixing laws with an overall uncertainty of 12% and 8%, respectively. The viscosity of methanol (23 point) has also been measured in order to verify...

  20. The Binary System Laboratory Activities Based on Students Mental Model

    Science.gov (United States)

    Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.

    2017-09-01

    Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.

  1. PLANETESIMAL ACCRETION IN BINARY SYSTEMS: ROLE OF THE COMPANION'S ORBITAL INCLINATION

    International Nuclear Information System (INIS)

    Xie Jiwei; Zhou Jilin

    2009-01-01

    Recent observations show that planets can reside in close binary systems with stellar separation of only ∼20 AU. However, planet formation in such close binary systems is a challenge to current theory. One of the major theoretical problems occurs in the intermediate stage-planetesimals accretion into planetary embryos-during which the companion's perturbations can stir up the relative velocities (utriV) of planetesimals and thus slow down or even cease their growth. Recent studies have shown that conditions could be even worse for accretion if the gas-disk evolution was included. However, all previous studies assumed a two-dimensional disk and a coplanar binary orbit. Extending previous studies by including a three-dimensional gas disk and an inclined binary orbit with small relative inclination of i B = 0. 0 1-5 0 , we numerically investigate the conditions for planetesimal accretion at 1-2 AU, an extension of the habitable zone (∼1-1.3 AU), around α Centauri A in this paper. Inclusion of the binary inclination leads to the following: (1) differential orbital phasing is realized in the three-dimensional space, and thus different-sized bodies are separated from each other, (2) total impact rate is lower, and impacts mainly occur between similar-sized bodies, (3) accretion is more favored, but the balance between accretion and erosion remains uncertain, and the 'possible accretion region' extends up to 2 AU when assuming an optimistic Q* (critical specific energy that leads to catastrophic fragmentation), and (4) impact velocities (utriV) are significantly reduced but still much larger than their escape velocities, which infers that planetesimals grow by means of type II runaway mode. As a conclusion, the inclusion of a small binary inclination is a promising mechanism that favors accretion, opening a possibility that planet formation in close binary systems can go through the difficult stage of planetesimals accretion into planetary embryos.

  2. Generation of two-dimensional binary mixtures in complex plasmas

    Science.gov (United States)

    Wieben, Frank; Block, Dietmar

    2016-10-01

    Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.

  3. (Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa

    International Nuclear Information System (INIS)

    Qian, Guo-fei; Liu, Wen; Wang, Li-tao; Wang, Dao-cai; Song, Hang

    2013-01-01

    Highlights: • We adopted a new extractive solvent “ethylene glycol” to separate the mixture. • We measured the VLE data of binary system n-propanol + ethylene glycol. • We reinforce the VLE data of binary system acetonitrile + ethylene glycol. • We predicted the VLE data for the ternary system successfully. -- Abstract: Experimental isobaric (Vapour + liquid) equilibrium (VLE) data at 101.3 kPa were determined for three binary systems, viz. {acetonitrile (1) + n-propanol (2)}, {acetonitrile (1) + ethylene glycol (3)} and {n-propanol (2) + ethylene glycol (3)} and for one ternary system {acetonitrile (1) + n-propanol (2) + ethylene glycol (3)}. The measurements were performed using an improved Rose equilibrium still. The VLE data of the binary systems passed thermodynamic consistency tests and were correlated by Wilson and NRTL models. Good results were achieved. The phase behaviour of the ternary system was predicted directly by the parameters of two models obtained from the experimental binary results. The results showed an excellent agreement with experimental values

  4. Mining frequent binary expressions

    NARCIS (Netherlands)

    Calders, T.; Paredaens, J.; Kambayashi, Y.; Mohania, M.K.; Tjoa, A.M.

    2000-01-01

    In data mining, searching for frequent patterns is a common basic operation. It forms the basis of many interesting decision support processes. In this paper we present a new type of patterns, binary expressions. Based on the properties of a specified binary test, such as reflexivity, transitivity

  5. A classification system for tableting behaviors of binary powder mixtures

    Directory of Open Access Journals (Sweden)

    Changquan Calvin Sun

    2016-08-01

    Full Text Available The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system (TCS of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture, three main types of tableting behavior are identified. Each type is further divided to arrive at a total of 15 sub-classes. The proposed classification system lays a framework for a better understanding of powder interactions during compaction. Potential applications and limitations of this classification system are discussed.

  6. Use of isoconcentrational phase diagrams for prediction of amorphization of binary systems

    International Nuclear Information System (INIS)

    Lazarev, A.I.; Belashchenko, D.K.

    1992-01-01

    Based on the application of isoconcentrational diagrams of phase equilibria of liquid with solid solutions of various crystal structures the thermodynamic method was considered for prediction of concentration ranges of amorphization in binary systems.To confirm the applicability of the thermodynamic criterion in practice caclulations of phase diagrams were accomplished for complex binary eutectic systems (Hf-Be, Zr-Be) with the known concentration ranges of amorphization

  7. ζ1 + ζ2 Reticuli binary system: a puzzling chromospheric activity pattern

    Science.gov (United States)

    Flores, M.; Saffe, C.; Buccino, A.; Jaque Arancibia, M.; González, J. F.; Nuñez, N. E.; Jofré, E.

    2018-05-01

    We perform, for the first time, a detailed long-term activity study of the binary system ζ Ret. We use all available HARPS spectra obtained between the years 2003 and 2016. We build a time series of the Mount Wilson S index for both stars, then we analyse these series by using Lomb-Scargle periodograms. The components ζ1 Ret and ζ2 Ret that belong to this binary system are physically very similar to each other and also similar to our Sun, which makes it a remarkable system. We detect in the solar-analogue star ζ2 Ret a long-term activity cycle with a period of ˜10 yr, similar to the solar one (˜11 yr). It is worthwhile to mention that this object satisfies previous criteria for a flat star and for a cycling star simultaneously. Another interesting feature of this binary system is a high ˜0.220 dex difference between the average log (R^' }_HK) activity levels of both stars. Our study clearly shows that ζ1 Ret is significantly more active than ζ2 Ret. In addition, ζ1 Ret shows an erratic variability in its stellar activity. In this work, we explore different scenarios trying to explain this rare behaviour in a pair of coeval stars, which could help to explain the difference in this and other binary systems. From these results, we also warn that for the development of activity-age calibrations (which commonly use binary systems and/or stellar clusters as calibrators) the whole history of activity available for the stars involved should be taken into account.

  8. Volumetric properties under pressure for the binary system ethanol plus toluene

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Lugo, Luis; García, Josefa

    2005-01-01

    . The VLE behavior of this binary system within the considered temperature range is represented satisfactory by the perturbed-chain statistical association fluid theory (PC-SAFT) equation of state with a single interaction parameter, although no cross association between ethanol and toluene is taken...... into account. The densities of this binary system (pure compounds and mixtures) are satisfactory predicted by PC-SAFT with an overall AAD of 0.8%, but the behavior of the excess molar volume is not described correctly....

  9. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-04-20

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  10. Ffuzz: Towards full system high coverage fuzz testing on binary executables.

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    Full Text Available Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool-Ffuzz-on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently.

  11. Ffuzz: Towards full system high coverage fuzz testing on binary executables.

    Science.gov (United States)

    Zhang, Bin; Ye, Jiaxi; Bi, Xing; Feng, Chao; Tang, Chaojing

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool-Ffuzz-on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently.

  12. Precessing Black Hole Binaries and Their Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    László Á. Gergely

    2018-02-01

    Full Text Available The first and second observational runs of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO have marked the first direct detections of gravitational waves, either from black hole binaries or, in one case, from coalescing neutron stars. These observations opened up the era of gravitational wave astronomy, but also of gravitational wave cosmology, in the form of an independent derivation of the Hubble constant. They were equally important to prove false a plethora of modified gravity theories predicting gravitational wave propagation speed different from that of light. For a continued and improved testing of general relativity, the precise description of compact binary dynamics, not only in the final coalescence phase but also earlier, when precessional effects dominate, are required. We report on the derivation of the full secular dynamics for compact binaries, valid over the precessional time-scale, in the form of an autonomous closed system of differential equations for the set of spin angles and periastron. The system can be applied for mapping the parameter space for the occurrence of the spin flip-flop effect and for more accurately analyzing the spin-flip effect, which could explain the formation of X-shaped radio galaxies.

  13. On the Roche constants for main-sequence binaries

    International Nuclear Information System (INIS)

    Giannuzzi, M.A.

    1979-01-01

    The ratios C 1 /C 2 of the constants defining the equipotential surfaces which describe the external forms of the components of a close binary system have been calculated on the basis of evolutionary models. Theoretical systems have been considered allowing for a wide range of input parameters (masses and separation) and taking into account the evolutionary effects on the radii of the stars during their Main-Sequence lifetime. The systems have not undergone any transfer of matter and are representative of detached binaries with Main-sequence components. The ratios of the constants are confined in limited intervals and, for the highest values of the mass-ratios, they are clustered around the unit. (Auth.)

  14. EVOLUTION OF THE BINARY FRACTION IN DENSE STELLAR SYSTEMS

    International Nuclear Information System (INIS)

    Fregeau, John M.; Ivanova, Natalia; Rasio, Frederic A.

    2009-01-01

    Using our recently improved Monte Carlo evolution code, we study the evolution of the binary fraction in globular clusters. In agreement with previous N-body simulations, we find generally that the hard binary fraction in the core tends to increase with time over a range of initial cluster central densities for initial binary fractions ∼<90%. The dominant processes driving the evolution of the core binary fraction are mass segregation of binaries into the cluster core and preferential destruction of binaries there. On a global scale, these effects and the preferential tidal stripping of single stars tend to roughly balance, leading to overall cluster binary fractions that are roughly constant with time. Our findings suggest that the current hard binary fraction near the half-mass radius is a good indicator of the hard primordial binary fraction. However, the relationship between the true binary fraction and the fraction of main-sequence stars in binaries (which is typically what observers measure) is nonlinear and rather complicated. We also consider the importance of soft binaries, which not only modify the evolution of the binary fraction, but can also drastically change the evolution of the cluster as a whole. Finally, we briefly describe the recent addition of single and binary stellar evolution to our cluster evolution code.

  15. Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al-Ni-Y system

    International Nuclear Information System (INIS)

    Oliveira, M.F. de; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.

    2008-01-01

    A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach, the parameter γ* = ΔH amor /(ΔH inter - ΔH amor ) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and ΔH amor and ΔH inter are the enthalpies for glass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The γ* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the γ* parameter is applied in the ternary Al-Ni-Y system. The calculated γ* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite some misfitting, the best glass formers are found quite close to the highest γ* values, leading to the conclusion that this thermodynamic approach can be extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys

  16. Wind accretion and formation of disk structures in symbiotic binary systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  17. A β-cyclodextrin based binary dopant for polyaniline: Structural, thermal, electrical, and sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanushree; Mishra, Satyendra [University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India); Shimpi, Navinchandra G., E-mail: navin_shimpi@rediffmail.com [Department of Chemistry, University of Mumbai, Kalina, Mumbai 400098, Maharashtra (India)

    2017-06-15

    Highlights: • A binary dopant based on β-cyclodextrin has been proposed for PANI. • The binary dopant provided long term stability to electrically conducting PANI. • The β-cyclodextrin based binary dopant rendered PANI sensitive towards CO at RT. - Abstract: The effect of hydrochloric acid/β-cyclodextrin (HCl/β-CD) binary dopant on the morphological, thermal, electrical, and sensing properties of PANI was investigated and compared with those of the conventionally doped PANI. The PANI samples were characterized using FTIR, UV–Vis, {sup 1}H NMR, and FESEM. Significant changes were observed in the structural, thermal, and electrical character of PANI doped with the HCl/β-CD binary dopant. A higher doping level was obtained for the PANI-binary dopant system, as observed from its {sup 1}H NMR spectra. Moreover, the binary dopant imparted long-term stability to the sensor in its conductive form. In addition, the PANI-binary dopant system exhibited a significantly high gas response towards carbon monoxide gas at room temperature.

  18. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Photometric Observation and Light Curve Analysis of Binary System ER-Orionis ... February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. ... Articles are also visible in Web of Science immediately.

  19. Modified analytic EAM potentials for the binary immiscible alloy systems

    International Nuclear Information System (INIS)

    Fang, F.; Shu, X.L.; Deng, H.Q.; Hu, W.Y.; Zhu, M.

    2003-01-01

    Modified analytic embedded atom method (MAEAM) type potentials have been constructed for seven binary immiscible alloy systems: Al-Pb, Ag-Ni, Fe-Cu, Ag-Cu, Cu-Ta, Cu-W and Cu-Co. The potentials are fitted to the lattice constant, cohesive energy, unrelaxed monovacancy formation energy and elastic constants for only pure metals which consist the immiscible alloy systems. In order to test the reliability of the constructed MAEAM potentials, formation enthalpies of disordered alloys for those seven binary immiscible alloy systems have been calculated. The calculated results are in general agreement with the experimental data available and those theoretical results calculated by other authors. As only very limited experimental information is available for alloy properties in immiscible alloy systems, the MAEAM is demonstrated to be a reasonable method to construct the interatomic potentials for immiscible alloy systems because only the properties of pure elements are needed in calculation

  20. Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/`Oumuamua

    Science.gov (United States)

    Jackson, Alan P.; Tamayo, Daniel; Hammond, Noah; Ali-Dib, Mohamad; Rein, Hanno

    2018-06-01

    In single-star systems like our own Solar system, comets dominate the mass budget of bodies ejected into interstellar space, since they form further away and are less tightly bound. However, 1I/`Oumuamua, the first interstellar object detected, appears asteroidal in its spectra and lack of detectable activity. We argue that the galactic budget of interstellar objects like 1I/`Oumuamua should be dominated by planetesimal material ejected during planet formation in circumbinary systems, rather than in single-star systems or widely separated binaries. We further show that in circumbinary systems, rocky bodies should be ejected in comparable numbers to icy ones. This suggests that a substantial fraction of interstellar objects discovered in future should display an active coma. We find that the rocky population, of which 1I/`Oumuamua seems to be a member, should be predominantly sourced from A-type and late B-star binaries.

  1. Compact Binary Progenitors of Short Gamma-Ray Bursts

    Science.gov (United States)

    Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide

    2013-01-01

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.

  2. A new non-thermal galactic radio source with a possible binary system

    International Nuclear Information System (INIS)

    Fuerst, E.; Reich, W.; Reich, P.; Sofue, Y.; Handa, T.

    1985-01-01

    A galactic object [G18.95-1.1], detected recently in a galactic plane survey, may belong to a new class of non-thermal radio sources that originate in accreting binary systems. The data on integrated flux density spectral index and the polarization, proves the non-thermal nature of the source. The morphology defies any classification as a supernova remnant. The authors suggest that the object is a binary system containing a compact component. (U.K.)

  3. Lithium insertion in the two crystallographic forms of the binary-phase Mo15Se19

    Science.gov (United States)

    Tarascon, J. M.; Murphy, D. W.

    1986-02-01

    Compounds which can undergo topotactic insertion of lithium are of potential technological importance in secondary lithium batteries. In this paper we present the chemical and electrochemical insertion of lithium into the binary-phase Mo15Se19, which can exist in two crystallographic forms, denoted AA and BB, when prepared from In3Mo15Se19 and In2Mo15Se19, respectively. We show that both forms can reversibly accommodate up to eight lithium atoms, yielding two new series of compounds of formula LixMo15Se19. This behavior is consistent with the electronic structure of the host material predicted from band-structure calculations. The room-temperature phase diagram of both LixMo15Se19 systems as a function of x has been established using electrochemical test cells (based on Mo15Se19 as the cathode), and in situ x-ray measurements as the cells discharge. Both LixMo15Se19 systems contain three single-phase domains as a function of x: two hexagonal phases and an orthorhombic phase. The nature of the transitions between these single phases and the variation of the lattice parameters within a single-phase domain are reported. While the mechanism of intercalation of lithium is similar for both Mo15Se19 forms, there is a drastic difference in Li intercalation behavior for the parent indium phases In2Mo15Se19 and In3Mo15Se19. We found that In2Mo15Se19 can reversibly incorporate 6.4 lithium atoms while In3Mo15Se19 does not react. This behavior is explained on the basis of structural considerations.

  4. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    Science.gov (United States)

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  5. A comparison of nuclear power systems for Brazil using plutonium and binary cycles

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Fernandes, J.E.

    1985-01-01

    Nuclear power systems based on plutonium cycle and binary cycle are compared taking into account natural uranium demand and reactor combination. The systems start with PWR type reactors (U5/U8) and change to systems composed exclusively of FBR type reactors or PWR-FBR symbiotic systems. Four loading modes are considered for the PWR and two for the FBR. The FBR is either a LMFBR loaded with PU/U or a LMFBR loaded the binary way. A linear and a non-linear capacity growth and two different criteria for the FBR introduction are considered. The results show that a 100 GWe permanent system can be established in 50 years in all cases, based on 300000 t of natural uranium and in case of delay in the FBR introduction and if a thermal-fast symbiotic system is chosen, a binary cycle could be more advantageous than a plutonium cycle. (F.E.) [pt

  6. The binary progenitors of short and long GRBs and their gravitational-wave emission

    Science.gov (United States)

    Rueda, J. A.; Ruffini, R.; Rodriguez, J. F.; Muccino, M.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Kovacevic, M.; Moradi, R.; Pisani, G. B.; Wang, Y.

    2018-01-01

    We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.

  7. High-pressure density measurements for the binary system ethanol plus heptane

    DEFF Research Database (Denmark)

    Watson, G.; Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.

    2006-01-01

    The density of the asymmetrical binary system composed of ethanol and heptane has been measured (630 points) for nine different compositions including the pure compounds at five temperatures in the range (293.15 to 333.15) K and 14 isobars up to 65 MPa with a vibrating-tube densimeter, The experi......The density of the asymmetrical binary system composed of ethanol and heptane has been measured (630 points) for nine different compositions including the pure compounds at five temperatures in the range (293.15 to 333.15) K and 14 isobars up to 65 MPa with a vibrating-tube densimeter...

  8. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  9. Models for the formation of binary and millisecond radio pulsars

    International Nuclear Information System (INIS)

    van den Heuvel, E.P.J.

    1984-01-01

    The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of: (i) decay of the surface dipole component of neutron star magnetic fields on a timescale of (2-5).10 6 yrs, in combination with: (ii) spin up of the rotation of the neutron star during a subsequent mass-transfer phase. The two observed classes of binary radio pulsars (very close and very wide systems, respectively) are expected to have been formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a fairly massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (approx. 0.3 Msub solar) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains why PSR 1953+29 has a millisecond rotation period and why PSR 0820+02 has not. Binary coalescence models for the formation of the 1.5 millisecond pulsar appear to be viable. The companion to the neutron star may have been a low-mass red dwarf, a neutron star, or a massive (> 0.7 Msub solar) white dwarf. In the red-dwarf case the progenitor system probably was a CV binary in which the white dwarf collapsed by accretion. 66 references, 6 figures, 1 table

  10. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.

  11. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.

    Science.gov (United States)

    Zhang, Rui; Schweizer, Kenneth S

    2018-04-05

    The Elastically Collective Nonlinear Langevin Equation theory for one-component viscous liquids and suspensions is generalized to treat coupled slow activated relaxation and diffusion in glass-forming binary sphere mixtures of any composition, size ratio, and interparticle interactions. A trajectory-level dynamical coupling parameter concept is introduced to construct two coupled dynamic free energy functions for the smaller penetrant and larger matrix particle. A two-step dynamical picture is proposed where the first-step process involves matrix-facilitated penetrant hopping quantified in a self-consistent manner based on a temporal coincidence condition. After penetrants dynamically equilibrate, the effectively one-component matrix particle dynamics is controlled by a new dynamic free energy (second-step process). Depending on the time scales associated with the first- and second-step processes, as well as the extent of matrix-correlated facilitation, distinct physical scenarios are predicted. The theory is implemented for purely hard-core interactions, and addresses the glass transition based on variable kinetic criteria, penetrant-matrix coupled activated relaxation, self-diffusion of both species, dynamic fragility, and shear elasticity. Testable predictions are made. Motivated by the analytic ultralocal limit idea derived for pure hard sphere fluids, we identify structure-thermodynamics-dynamics relationships. As a case study for molecule-polymer thermal mixtures, the chemically matched fully miscible polystyrene-toluene system is quantitatively studied based on a predictive mapping scheme. The resulting no-adjustable-parameter results for toluene diffusivity and the mixture glass transition temperature are in good agreement with experiment. The theory provides a foundation to treat diverse dynamical problems in glass-forming mixtures, including suspensions of colloids and nanoparticles, polymer-molecule liquids, and polymer nanocomposites.

  12. Binary and ternary solid-liquid phase equilibrium for the systems formed by succinic acid, urea and diethylene glycol: Determination and modelling

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Han, Shuo; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of succinic acid in diethylene glycol was determined. • Solubility of succinic acid + urea + diethylene glycol was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were correlated using NRTL model. - Abstract: In this work, the solid-liquid phase equilibrium for binary system of succinic acid + diethylene glycol at the temperatures ranging from (298.15 to 333.15) K and ternary system of (succinic acid + urea + diethylene glycol) at 298.15 K, 313.15 K and 333.15 K was built by using the isothermal saturation method under atmospheric pressure (101.2 kPa), and the solubilities were determined by a high-performance liquid chromatography. The solid-phases formed in the ternary system of ((succinic acid + urea + diethylene glycol)) were confirmed by Schreinemaker’s method of wet residue, which corresponded to urea, succinic acid, and adduct 2:1 urea-succinic acid (mole ratio). Three isothermal phase diagrams for the ternary system were constructed based on the measured mutual solubility. Each isothermal phase diagram included six crystallization fields, three invariant curves, two invariant points and two co-saturated points. The crystalline region of adduct 2:1 urea-succinic acid is larger than those of the other two solids. The solubility of succinic acid in diethylene glycol was correlated with the modified Apelblat equation, λh equation and NRTL model; and the mutual solubility of the ternary ((succinic acid + urea + diethylene glycol)) system was correlated and calculated by the NRTL model. The interaction parameters’ values of succinic acid-urea were acquired. The value of RMSD was 7.11 × 10 −3 for the ternary system. The calculation results had good agreement with the experiment values. Furthermore, the densities of equilibrium liquid phase were acquired. The phase diagrams and the thermodynamic model of the ternary system could provide the basis for design of

  13. The Effect of Novel Binary Accelerator System on Properties of Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Moez Kamoun

    2009-01-01

    Full Text Available The mechanical properties, curing characteristics, and swelling behaviour of vulcanized natural rubber with a novel binary accelerator system are investigated. Results indicate that the mechanical properties were improved. Crosslinking density of vulcanized natural rubber was measured by equilibrium swelling method. As a result, the new binary accelerator was found to be able to improve both cure rate and crosslinking density. Using the numerical analysis of test interaction between binary accelerator and operational modelling of vulcanization-factors experiments, it can be concluded that the interaction (Cystine, N-cyclohexyl-2-benzothiazyl sulfenamide was significant and the optimum value of binary accelerator was suggested, respectively, at levels 0 and +1.

  14. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  15. The critical binary star separation for a planetary system origin of white dwarf pollution

    Science.gov (United States)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  16. The influence of the radiation pressure force on possible critical surfaces in binary systems

    International Nuclear Information System (INIS)

    Vanbeveren, D.

    1978-01-01

    Using a spherically symmetric approximation for the radiation pressure force to compute a possible critical surface for binary systems, previous authors found that the surface opens up at the far side of the companion. It is shown that this effect may be unreal, and could be a consequence of the simple approximation for the radiation pressure force, Due to the influence of the radiation force, mass will be lost over the whole surface of the star. In that way much mass could leave the system in massive binary systems. On the basis of evolutionary models, including mass loss by stellar wind, the results were applied on the X-ray binaries 3U 1700 - 37 and HD 77581. (Auth.)

  17. Thermodynamic equilibrium of hydroxyacetic acid in pure and binary solvent systems

    International Nuclear Information System (INIS)

    Huang, Qiaoyin; Xie, Chuang; Li, Yang; Su, Nannan; Lou, Yajing; Hu, Xiaoxue; Wang, Yongli; Bao, Ying; Hou, Baohong

    2017-01-01

    Highlights: • Solubility of hydroxyacetic acid in mono-solvents and binary solvent mixtures was measured. • Modified Apelblat, NRTL and Wilson model were used to correlate the solubility data in pure solvents. • CNIBS/R-K and Jouyban-Acree model were used to correlate the solubility in binary solvent mixtures. • The mixing properties were calculated based on the NRTL model. - Abstract: The solubility of hydroxyacetic acid in five pure organic solvents and two binary solvent mixtures were experimentally measured from 273.15 K to 313.15 K at atmospheric pressure (p = 0.1 MPa) by using a dynamic method. The order of solubility in pure organic solvents is ethanol > isopropanol > n-butanol > acetonitrile > ethyl acetate within the investigated temperature range, except for temperature lower than 278 K where the solubility of HA in ethyl acetate is slightly larger than that in acetonitrile. Furthermore, the solubility data in pure solvents were correlated with the modified Apelblat model, NRTL model, and Wilson model and that in the binary solvents mixtures were fitted to the CNIBS/R-K model and Jouyban-Acree model. Finally, the mixing thermodynamic properties of hydroxyacetic acid in pure and binary solvent systems were calculated and discussed.

  18. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  19. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  20. Test of post-newtonian conservation laws in the binary system PSR 1913+16

    International Nuclear Information System (INIS)

    Will, C.M.

    1976-01-01

    Observations that set upper limits on secular changes in the pulsar period and orbital period in the binary system PSR 1913+16 may provide a test of post-Newtonian conservation laws. According to some metric theories of gravitation, the center of mass of a binary system may be accelerated in the direction of the periastron of the orbit because of a violation of post-Newtonian momentum conservation. In the binary system PSR 1913+16, this effect could produce secular changes in both pulsar and orbital periods (changing overall Doppler shift) as large as two parts in 10 6 per year. The size of the effect is proportional to the sine of the angle of periastron, to the difference in the masses of the components of the binary system, and to the combination of parametrized post-Newtonian parameters α 3 +zeta 2 -zeta/subw/. This combination is zero in any theory that predicts conserved total momentum for isolated systems (including general relativity and Brans-Dicke theory). Although solar-system experiments constrain α 3 and zeta/subw/ to be small, no decent direct limit has been placed on zeta 2 . Other possible sources of secular period changes in PSR 1913+16 are discussed and compared with this effect. It is also shown that a breakdown in the equality of active and passive gravitational masses (violation of ''Newton's third law'') leads only to periodic, unobservable orbital effects in a system like PSR 1913+16

  1. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  2. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  3. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  4. A massive binary black-hole system in OJ 287 and a test of general relativity.

    Science.gov (United States)

    Valtonen, M J; Lehto, H J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J-H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V-P; Nissinen, M; Liakos, A; Dogru, S

    2008-04-17

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened 20 days later.

  5. Black holes and neutron stars: evolution of binary systems

    International Nuclear Information System (INIS)

    Kraft, R.P.

    1975-01-01

    Evidence for the existence of neutron stars and black holes in binary systems has been reviewed, and the following summarizes the current situation: (1) No statistically significant case has been made for the proposition that black holes and/or neutron stars contribute to the population of unseen companions of ordinary spectroscopic binaries; (2) Plausible evolutionary scenarios can be advanced that place compact X-ray sources into context as descendants of several common types of mass-exchange binaries. The collapse object may be a black hole, a neutron star, or a white dwarf, depending mostly on the mass of the original primary; (3) The rotating neutron star model for the pulsating X-ray sources Her X-1 and Cen X-3 is the simplest interpretation of these objects, but the idea that the pulsations result from the non-radial oscillations of a white dwarf cannot be altogether dismissed. The latter is particularly attractive in the case of Her X-1 because the total mass of the system is small; (4) The black hole picture for Cyg X-1 represents the simplest model that can presently be put forward to explain the observations. This does not insure its correctness, however. The picture depends on a long chain of inferences, some of which are by no means unassailable. (Auth.)

  6. Lithium insertion in the two crystallographic forms of the binary-phase Mo15Se19

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Murphy, D.W.

    1986-01-01

    Compounds which can undergo topotactic insertion of lithium are of potential technological importance in secondary lithium batteries. In this paper we present the chemical and electrochemical insertion of lithium into the binary-phase Mo 15 Se 19 , which can exist in two crystallographic forms, denoted AA and BB, when prepared from In 3 Mo 15 Se 19 and In 2 Mo 15 Se 19 , respectively. We show that both forms can reversibly accommodate up to eight lithium atoms, yielding two new series of compounds of formula Li/sub x/Mo 15 Se 19 . This behavior is consistent with the electronic structure of the host material predicted from band-structure calculations. The room-temperature phase diagram of both Li/sub x/Mo 15 Se 19 systems as a function of x has been established using electrochemical test cells (based on Mo 15 Se 19 as the cathode), and in situ x-ray measurements as the cells discharge. Both Li/sub x/Mo 15 Se 19 systems contain three single-phase domains as a function of x: two hexagonal phases and an orthorhombic phase. The nature of the transitions between these single phases and the variation of the lattice parameters within a single-phase domain are reported. While the mechanism of intercalation of lithium is similar for both Mo 15 Se 19 forms, there is a drastic difference in Li intercalation behavior for the parent indium phases In''Mo 15 Se 19 and In 3 Mo 15 Se 19 . We found that In 2 Mo 15 Se 19 can reversibly incorporate 6.4 lithium atoms while In 3 Mo 15 Se 19 does not react. This behavior is explained on the basis of structural considerations

  7. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  8. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Holley-Bockelmann, Kelly [Vanderbilt University, Nashville, TN (United States); Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu [Institute of Space Technology (IST), Islamabad (Pakistan)

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  9. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    International Nuclear Information System (INIS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-01-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy

  10. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  11. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    Science.gov (United States)

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed

  12. Binary and ternary LLE data of the system (ethylbenzene + styrene + 1-ethyl-3-methylimidazolium thiocyanate) and binary VLE data of the system (styrene + 1-ethyl-3-methylimidazolium thiocyanate)

    International Nuclear Information System (INIS)

    Jongmans, Mark T.G.; Schuur, Boelo; Haan, André B. de

    2012-01-01

    Highlights: ► LLE data have been measured for the system {ethylbenzene + styrene + [EMIM][SCN]}. ► VLE was determined for the system {styrene + [EMIM][SCN]} at vacuum conditions. ► All experimental data were correlated well with the NRTL model. ► [EMIM][SCN] has a much larger selectivity than the benchmark solvent sulfolane. - Abstract: The distillation of close boiling mixtures may be improved by adding a proper affinity solvent, and thereby creating an extractive distillation process. An example of a close boiling mixture that may be separated by extractive distillation is the mixture ethylbenzene/styrene. The ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) is a promising solvent to separate ethylbenzene and styrene by extractive distillation. In this study, (vapour + liquid) equilibrium data have been measured for the binary system (styrene + [EMIM][SCN]) over the pressure range of (3 to 20) kPa and binary and ternary (liquid + liquid) equilibrium data of the system (ethylbenzene + styrene + [EMIM][SCN]) at temperatures (313.2, 333.2 and 353.2) K. Due to the low solubility of ethylbenzene in [EMIM][SCN], it was not possible to measure accurately VLE data of the binary system (ethylbenzene + [EMIM][SCN]) and of the ternary system (ethylbenzene + styrene + [EMIM][SCN]) using the ebulliometer. Because previous work showed that the LLE selectivity is a good measure for the selectivity in VLE, we determined the selectivity with LLE. The selectivity of [EMIM][SCN] to styrene in LLE measurements ranges from 2.1 at high styrene raffinate purity to 2.6 at high ethylbenzene raffinate purity. The NRTL model can properly describe the experimental results. The rRMSD in temperature, pressure and mole fraction for the binary VLE data are respectively (0.1, 0.12 and 0.13)%. The rRMSD is only 0.7% in mole fraction for the LLE data.

  13. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    Science.gov (United States)

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be gravitational waves. Copyright © 2015, American Association for the Advancement of Science.

  14. Merger rate of primordial black-hole binaries

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Kovetz, Ely D.; Kamionkowski, Marc

    2017-12-01

    Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain poorly constrained in the ˜20 - 100 M⊙ mass range. PBH binaries were recently suggested as the possible source of LIGO's first detections. In this paper, we thoroughly revisit existing estimates of the merger rate of PBH binaries. We compute the probability distribution of orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations. We then check whether the orbital parameters of PBH binaries formed in the early Universe can be significantly affected between formation and merger. Our analytic estimates indicate that the tidal field of halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do not do significant work on nor torque PBH binaries. We estimate the torque due to baryon accretion to be much weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of typical PBH binaries. We also revisit the PBH-binary merger rate resulting from gravitational capture in present-day halos, accounting for Poisson fluctuations. If binaries formed in the early Universe survive to the present time, as suggested by our analytic estimates, they dominate the total PBH merger rate. Moreover, this merger rate would be orders of magnitude larger than LIGO's current upper limits if PBHs make a significant fraction of the dark matter. As a consequence, LIGO would constrain ˜10 - 300 M⊙ PBHs to constitute no more than ˜1 % of the dark matter. To make this conclusion fully robust, though, numerical study of several complex astrophysical processes—such as the formation of the first PBH halos and how they may affect PBH binaries, as well as the accretion of gas onto an extremely eccentric binary—is needed.

  15. The binary progenitors of short and long GRBs and their gravitational-wave emission

    Directory of Open Access Journals (Sweden)

    Rueda J. A.

    2018-01-01

    Full Text Available We have sub-classified short and long-duration gamma-ray bursts (GRBs into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS or neutron star-black hole binaries (NS-BH. Long GRBs are produced via the induced gravitational collapse (IGC scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore and a NS companion. The COcore explodes as type Ic supernova (SN leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1 the role of the NS structure and the nuclear equation of state; 2 the occurrence rates obtained from X and gamma-rays observations; 3 the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.

  16. New CCD photometric investigation of the early-type overcontact binary BH Cen in the young star-forming Galactic cluster IC 2944

    Science.gov (United States)

    Zhao, Er-Gang; Qian, Sheng-Bang; Zejda, Miloslav; Zhang, Bin; Zhang, Jia

    2018-05-01

    BH Cen is a short-period early-type binary with a period of 0.792d in the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are analyzed by using the Wilson-Devinney code. It is detected that BH Cen is a high-mass-ratio overcontact binary with a fill-out factor of 46.4% and a mass ratio of 0.89. The derived orbital inclination i is 88.9 degrees, indicating that it is a totally eclipsing binary and the photometric parameters can be determined reliably. By adding new eclipse times, the orbital period changes in the binary are analyzed. It is confirmed that the period of BH Cen shows a long-term increase while it undergoes a cyclic oscillation with an amplitude of A 3 = 0.024 d and a period of P 3 = 50.3 yr. The high mass ratio, overcontact configuration and long-term continuous increase in the orbital period all suggest that BH Cen is in the evolutionary state after the shortest-period stage of Case A mass transfer. The continuous increase in period can be explained by mass transfer from the secondary component to the primary one at a rate of Ṁ 2 = 2.8 × 10‑6 M ⊙ per year. The cyclic change can be plausibly explained by the presence of a third body because both components in the BH Cen system are early-type stars. Its mass is determined to be no less than 2.2 M ⊙ at an orbital separation of about 32.5 AU. Since no third light was found during the photometric solution, it is possible that the third body may be a candidate for a compact object.

  17. Thermodynamic reassessment of the neodymium–gold binary system

    Energy Technology Data Exchange (ETDEWEB)

    Moustaine, D., E-mail: mostainedris@gmail.com; Mahdouk, K.

    2016-07-15

    Phase relationships in Nd–Au binary system have been thermodynamically assessed by means of the CALPHAD technique through Thermo–Calc software package based on the experiment information of phase equilibria and thermodynamic properties from the published literature data. The excess Gibbs energy functions of the solution phases including liquid, fcc-A1, bcc-A2, and dhcp were formulated with Redlich–Kister polynomial functions. The two–sublattice energy model was employed to describe the Nd{sub 14}Au{sub 51} phase which exhibits a homogeneity range. The intermetallic compounds Nd{sub 2}Au, NdAu, Nd{sub 3}Au{sub 4}, Nd{sub 17}Au{sub 36}, and NdAu{sub 6} were treated as stoichiometric phases. A set of self-consistent thermodynamic parameters formulating the Gibbs energy of various phases in the Nd–Au binary system were then obtained. A much better agreement was achieved between the calculated results and the reported experimental data. - Highlights: • The Nd–Au has been re-assessed using the latest experimental results. • The intermetallic compound Nd{sub 14}Au{sub 51} was treated by a two–sublattice model. • The errors of related modelling presented in previous articles have been modified. • A self–consistent thermodynamic description of the Nd–Au system was obtained.

  18. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  19. BINARY CANDIDATES IN THE JOVIAN TROJAN AND HILDA POPULATIONS FROM NEOWISE LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Sonnett, S.; Mainzer, A.; Masiero, J.; Bauer, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T., E-mail: Sarah.Sonnett@jpl.nasa.gov [Planetary Science Institute, Tucson, AZ (United States)

    2015-02-01

    Determining the binary fraction for a population of asteroids, particularly as a function of separation between the two components, helps describe the dynamical environment at the time the binaries formed, which in turn offers constraints on the dynamical evolution of the solar system. We searched the NEOWISE archival data set for close and contact binary Trojans and Hildas via their diagnostically large light curve amplitudes. We present 48 out of 554 Hilda and 34 out of 953 Trojan binary candidates in need of follow-up to confirm their large light curve amplitudes and subsequently constrain the binary orbit and component sizes. From these candidates, we calculate a preliminary estimate of the binary fraction without confirmation or debiasing of 14%-23% for Trojans larger than ∼12 km and 30%-51% for Hildas larger than ∼4 km. Once the binary candidates have been confirmed, it should be possible to infer the underlying, debiased binary fraction through estimation of survey biases.

  20. Binary and ternary vapor–liquid equilibrium data of the system ethylbenzene + styrene + 3-methyl-N-butylpyridinium tetracyanoborate at vacuum conditions and liquid–liquid equilibrium data of their binary systems

    NARCIS (Netherlands)

    Jongmans, M.T.G.; Hermens, E.; Schuur, B.; Haan, de A.B.

    2012-01-01

    In this study, binary LLE data at 313.2, 333.2, and 353.2 K, binary VLE data in the pressure range of 3–30 kPa and ternary VLE data at 5, 10, and 15 kPa have been determined for the system ethylbenzene + styrene + [3-mebupy][B(CN)4]. The IL [3-mebupy][B(CN)4] can increase the relative volatility of

  1. Binary and ternary vapor-liquid equilibrium data of the system ethylbenzene+styrene+3-methyl-N-butylpyridinium tetracyanoborate at vacuum conditions and liquid-liquid equilibrium data of their binary systems

    NARCIS (Netherlands)

    Jongmans, Mark; Hermens, E.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    In this study, binary LLE data at 313.2, 333.2, and 353.2 K, binary VLE data in the pressure range of 3–30 kPa and ternary VLE data at 5, 10, and 15 kPa have been determined for the system ethylbenzene + styrene + [3-mebupy][B(CN)4]. The IL [3-mebupy][B(CN)4] can increase the relative volatility of

  2. Polar Pattern Formation in Driven Filament Systems Require Non-Binary Particle Collisions.

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A; Frey, Erwin; Bausch, Andreas R

    2015-10-01

    Living matter has the extraordinary ability to behave in a concerted manner, which is exemplified throughout nature ranging from the self-organisation of the cytoskeleton to flocks of animals [1-4]. The microscopic dynamics of constituents have been linked to the system's meso- or macroscopic behaviour in silico via the Boltzmann equation for propelled particles [5-10]. Thereby, simplified binary collision rules between the constituents had to be assumed due to the lack of experimental data. We report here experimentally determined binary collision statistics by studying the recently introduced molecular system, the high density actomyosin motility assay [11-13]. We demonstrate that the alignment effect of the binary collision statistics is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, which indicates that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. The presented findings demonstrate that the unique properties of biological active matter systems require a description that goes well beyond a gas-like picture developed in the framework of kinetic theories.

  3. Polar pattern formation in driven filament systems requires non-binary particle collisions

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A.; Frey, Erwin; Bausch, Andreas R.

    2015-10-01

    From the self-organization of the cytoskeleton to the synchronous motion of bird flocks, living matter has the extraordinary ability to behave in a concerted manner. The Boltzmann equation for self-propelled particles is frequently used in silico to link a system’s meso- or macroscopic behaviour to the microscopic dynamics of its constituents. But so far such studies have relied on an assumption of simplified binary collisions owing to a lack of experimental data suggesting otherwise. We report here experimentally determined binary-collision statistics by studying a recently introduced molecular system, the high-density actomyosin motility assay. We demonstrate that the alignment induced by binary collisions is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, indicating that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. Our findings demonstrate that the unique properties of biological active-matter systems require a description that goes well beyond that developed in the framework of kinetic theories.

  4. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  5. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    Science.gov (United States)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  6. Contact Binaries on Their Way Towards Merging

    Science.gov (United States)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  7. RADIAL VELOCITY STUDIES OF CLOSE BINARY STARS. XIV

    International Nuclear Information System (INIS)

    Pribulla, Theodor; Rucinski, Slavek M.; DeBond, Heide; De Ridder, Archie; Karmo, Toomas; Thomson, J. R.; Croll, Bryce; Ogloza, Waldemar; Pilecki, Bogumil; Siwak, Michal

    2009-01-01

    Radial velocity (RV) measurements and sine curve fits to the orbital RV variations are presented for 10 close binary systems: TZ Boo, VW Boo, EL Boo, VZ CVn, GK Cep, RW Com, V2610 Oph, V1387 Ori, AU Ser, and FT UMa. Our spectroscopy revealed two quadruple systems, TZ Boo and V2610 Oph, while three stars showing small photometric amplitudes, EL Boo, V1387 Ori, and FT UMa, were found to be triple systems. GK Cep is a close binary with a faint third component. While most of the studied eclipsing systems are contact binaries, VZ CVn and GK Cep are detached or semidetached double-lined binaries, and EL Boo, V1387 Ori, and FT UMa are close binaries of uncertain binary type. The large fraction of triple and quadruple systems found in this sample supports the hypothesis of formation of close binaries in multiple stellar systems; it also demonstrates that low photometric amplitude binaries are a fertile ground for further discoveries of multiple systems.

  8. Chemical abundances of primary stars in the Sirius-like binary systems

    Science.gov (United States)

    Kong, X. M.; Zhao, G.; Zhao, J. K.; Shi, J. R.; Kumar, Y. Bharat; Wang, L.; Zhang, J. B.; Wang, Y.; Zhou, Y. T.

    2018-05-01

    Study of primary stars lying in Sirius-like systems with various masses of white dwarf (WD) companions and orbital separations is one of the key aspects to understand the origin and nature of barium (Ba) stars. In this paper, based on high-resolution and high-S/N spectra, we present systematic analysis of photospheric abundances for 18 FGK primary stars of Sirius-like systems including six giants and 12 dwarfs. Atmospheric parameters, stellar masses, and abundances of 24 elements (C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, and Nd) are determined homogeneously. The abundance patterns in these sample stars show that most of the elements in our sample follow the behaviour of field stars with similar metallicity. As expected, s-process elements in four known Ba giants show overabundance. A weak correlation was found between anomalies of s-process elemental abundance and orbital separation, suggesting that the orbital separation of the binaries could not be the main constraint to differentiate strong Ba stars from mild Ba stars. Our study shows that the large mass (>0.51 M⊙) of a WD companion in a binary system is not a sufficient condition to form a Ba star, even if the separation between the two components is small. Although not sufficient, it seems to be a necessary condition since Ba stars with lower mass WDs in the observed sample were not found. Our results support that [s/Fe] and [hs/ls] ratios of Ba stars are anti-correlated with the metallicity. However, the different levels of s-process overabundance among Ba stars may not be dominated mainly by the metallicity.

  9. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  10. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    International Nuclear Information System (INIS)

    Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.; Sweet, Sarah; Gelino, Christopher R.; Kirkpatrick, J. Davy

    2016-01-01

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10 42 erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs

  11. Energy transfer in contact binary systems

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1980-01-01

    A simple model for the transfer of energy by steady circulation within the envelope of a contact binary system is presented. The model describes the fully compressible, two-dimensional flow of a perfect gas within a rectangular region in a uniform gravitational field. The region is heated non-uniformly from below. Coriolis forces are neglected but the interaction of the circulation with convection is discussed briefly. Numerical solutions of the linearized equations of the problem are discussed in detail, and the results of some non-linear calculations are also presented. The influence of alternative boundary conditions is examined. (author)

  12. Topology of black hole binary-single interactions

    Science.gov (United States)

    Samsing, Johan; Ilan, Teva

    2018-05-01

    We present a study on how the outcomes of binary-single interactions involving three black holes (BHs) distribute as a function of the initial conditions; a distribution we refer to as the topology. Using a N-body code that includes BH finite sizes and gravitational wave (GW) emission in the equation of motion (EOM), we perform more than a million binary-single interactions to explore the topology of both the Newtonian limit and the limit at which general relativistic (GR) effects start to become important. From these interactions, we are able to describe exactly under which conditions BH collisions and eccentric GW capture mergers form, as well as how GR in general modifies the Newtonian topology. This study is performed on both large- and microtopological scales. We further describe how the inclusion of GW emission in the EOM naturally leads to scenarios where the binary-single system undergoes two successive GW mergers.

  13. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  14. Searching for Binary Systems Among Nearby Dwarfs Based on Pulkovo Observations and SDSS Data

    Science.gov (United States)

    Khovrichev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petyur, V. V.; Shumilov, A. A.; Os'kina, K. I.; Maksimova, L. A.

    2018-02-01

    Our goal is to find previously unknown binary systems among low-mass dwarfs in the solar neighborhood and to test the search technique. The basic ideas are to reveal the images of stars with significant ellipticities and/or asymmetries compared to the background stars on CCD frames and to subsequently determine the spatial parameters of the binary system and the magnitude difference between its components. For its realization we have developed a method based on an image shapelet decomposition. All of the comparatively faint stars with large proper motions ( V >13 m , μ > 300 mas yr-1) for which the "duplicate source" flag in the Gaia DR1 catalogue is equal to one have been included in the list of objects for our study. As a result, we have selected 702 stars. To verify our results, we have performed additional observations of 65 stars from this list with the Pulkovo 1-m "Saturn" telescope (2016-2017). We have revealed a total of 138 binary candidates (nine of them from the "Saturn" telescope and SDSS data). Six program stars are known binaries. The images of the primaries of the comparatively wide pairs WDS 14519+5147, WDS 11371+6022, and WDS 15404+2500 are shown to be resolved into components; therefore, we can talk about the detection of triple systems. The angular separation ρ, position angle, and component magnitude difference Δ m have been estimated for almost all of the revealed binary systems. For most stars 1.5'' < ρ < 2.5'', while Δ m <1.5m.

  15. Measurement of VLE data for binary lipids systems

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    components and also for their mixtures. To contribute in this area, experimental data were obtained using the Differential Scanning Calorimetry (DSC) technique for isobaric vapor-liquid equilibrium (VLE) of two binary mixtures at two different pressures (1.2 and 2.5 KPa): system 1 [monoacylglycerol....... The relevance of enlarging experimental databank of lipids systems data in order to improve the performance of predictive thermodynamic models was confirmed in this work by analyzing the calculated values of original UNIFAC model. A new group for original UNIFAC model is created aiming to improve...

  16. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  17. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  18. Wind-driven angular momentum loss in binary systems. I - Ballistic case

    Science.gov (United States)

    Brookshaw, Leigh; Tavani, Marco

    1993-01-01

    We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.

  19. A Multi-wavelength Study of the Close M-dwarf Eclipsing Binary System BX Tri

    Science.gov (United States)

    Perdelwitz, V.; Czesla, S.; Robrade, J.; Schmitt, J. H. M. M.

    2015-01-01

    We present the first detailed X-ray study of the close dMe binary system BX Tri, whose optical variation has been continously monitored in the frame of the DWARF project (Pribulla et al.(2012)). We observed BX Tri with XMM-Newton for two full orbital periods and confirm that the system is an ultra-active M-dwarf binary showing frequent flares and an X-ray luminosity close to the saturation limit. The strong magnetic activity could have influenced the angular momentum evolution of the system via magnetic braking.

  20. Black holes in massive close binaries - observational data and evolutionary status

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Cherepashchuk, A.M.; Moskovskii Gosudarstvennyi Universitet, Moscow, USSR)

    1985-01-01

    The available information on the mass of four candidate black holes in X-ray binary systems is summarized; these systems are compared with neutron star binaries with regard to the mass of their components. In mass, the relativistic objects form two distinct groups, neutron stars with masses equal to about 1-2 solar masses and black hole candidates with masses equal to about 10-60 solar masses (there seem to be no intermediate cases), but there is no correlation with the mass of the optical star. Mass exchange between the optical component of a close binary and its neutron star companion would be unlikely to produce a black hole more massive than 5-7 solar masses. Instead, the black holes having masses greater than about 10 solar masses might result from core collapse in stars of initial mass equating 20-100 solar masses through either a rise in the presupernova core mass or weakness of the magnetic field. The (10-30)-fold disparity in the incidence of black holes coupled with OB stars and with radio pulsars could indicate that black holes tend to form in pairs. 36 references

  1. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    International Nuclear Information System (INIS)

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-01-01

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a δ-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the

  2. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    Abstract. Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves ...

  3. Rotation, activity, and lithium abundance in cool binary stars

    Science.gov (United States)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  4. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M ☉ BINARIES

    International Nuclear Information System (INIS)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2013-01-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M ☉ —are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ☉ . Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ☉ binaries have systematically shorter periods than do 1 M ☉ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple

  5. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    Science.gov (United States)

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  6. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  7. Formation of S-type planets in close binaries: scattering induced tidal capture of circumbinary planets

    Science.gov (United States)

    Gong, Yan-Xiang; Ji, Jianghui

    2018-05-01

    Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.

  8. Overloaded CDMA Systems with Displaced Binary Signatures

    Directory of Open Access Journals (Sweden)

    Vanhaverbeke Frederik

    2004-01-01

    Full Text Available We extend three types of overloaded CDMA systems, by displacing in time the binary signature sequences of these systems: (1 random spreading (PN, (2 multiple-OCDMA (MO, and (3 PN/OCDMA (PN/O. For each of these systems, we determine the time shifts that minimize the overall multiuser interference power. The achievable channel load with coded and uncoded data is evaluated for the conventional (without displacement and improved (with displacement systems, as well as for systems based on quasi-Welch-bound-equality (QWBE sequences, by means of several types of turbo detectors. For each system, the best performing turbo detector is selected in order to compare the performance of these systems. It is found that the improved systems substantially outperform their original counterparts. With uncoded data, (improved PN/O yields the highest acceptable channel load. For coded data, MO allows for the highest acceptable channel load over all considered systems, both for the conventional and the improved systems. In the latter case, channel loads of about 280% are achievable with a low degradation as compared to a single user system.

  9. On good ETOL forms

    DEFF Research Database (Denmark)

    Skyum, Sven

    1978-01-01

    This paper continues the study of ETOL forms and good EOL forms done by Maurer, Salomaa and Wood. It is proven that binary very complete ETOL forms exist, good synchronized ETOL forms exist and that no propagating or synchronized ETOL form can be very complete.......This paper continues the study of ETOL forms and good EOL forms done by Maurer, Salomaa and Wood. It is proven that binary very complete ETOL forms exist, good synchronized ETOL forms exist and that no propagating or synchronized ETOL form can be very complete....

  10. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a 2/7 . Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.

  11. The Jeans Condition and Collapsing Molecular Cloud Cores: Filaments or Binaries?

    International Nuclear Information System (INIS)

    Boss, Alan P.; Fisher, Robert T.; Klein, Richard I.; McKee, Christopher F.

    2000-01-01

    The 1997 and 1998 studies by Truelove and colleagues introduced the Jeans condition as a necessary condition for avoiding artificial fragmentation during protostellar collapse calculations. They found that when the Jeans condition was properly satisfied with their adaptive mesh refinement (AMR) code, an isothermal cloud with an initial Gaussian density profile collapsed to form a thin filament rather than the binary or quadruple protostar systems found in previous calculations. Using a completely different self-gravitational hydrodynamics code introduced by Boss and Myhill in 1992 (B and M), we present here calculations that reproduce the filamentary solution first obtained by Truelove et al. in 1997. The filamentary solution only emerged with very high spatial resolution with the B and M code, with effectively 12,500 radial grid points (R12500). Reproducing the filamentary collapse solution appears to be an excellent means for testing the reliability of self-gravitational hydrodynamics codes, whether grid-based or particle-based. We then show that in the more physically realistic case of an identical initial cloud with nonisothermal heating (calculated in the Eddington approximation with code B and M), thermal retardation of the collapse permits the Gaussian cloud to fragment into a binary protostar system at the same maximum density where the isothermal collapse yields a thin filament. However, the binary clumps soon thereafter evolve into a central clump surrounded by spiral arms containing two more clumps. A roughly similar evolution is obtained using the AMR code with a barotropic equation of state--formation of a transient binary, followed by decay of the binary to form a central object surrounded by spiral arms, though in this case the spiral arms do not form clumps. When the same barotropic equation of state is used with the B and M code, the agreement with the initial phases of the AMR calculation is quite good, showing that these two codes yield mutually

  12. Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mittra, J. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Murty, B.S. [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Pabi, S.K. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur 721 302 (India); Kulkarni, U.D.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer A methodology was proposed to predict amorphous forming compositions (AFCs). Black-Right-Pointing-Pointer Chemical contribution to enthalpy of mixing {proportional_to} enthalpy of amorphous for AFCs. Black-Right-Pointing-Pointer Accuracy in the prediction of AFC-range was noticed in Al-Ni-Ti system. Black-Right-Pointing-Pointer Mechanical alloying (MA) results of Al-Ni-Ti followed the predicted AFC-range. Black-Right-Pointing-Pointer Earlier MA results of Al-Ni-Ti also conformed to the predicted AFC-range. - Abstract: From the earlier works on the prediction of amorphous forming composition range (AFCR) using Miedema based model and also, on mechanical alloying experiments it has been observed that all amorphous forming compositions of a given alloy system falls within a linear band when the chemical contribution to enthalpy of the solid solution ({Delta}H{sup ss}) is plotted against the enthalpy of mixing in the amorphous phase ({Delta}H{sup amor}). On the basis of this observation, a methodology has been proposed in this article to identify the AFCR of a ternary system that is likely to be more precise than what can be obtained using {Delta}H{sup amor} - {Delta}H{sup ss} < 0 criterion. MA experiments on various compositions of Al-Ni-Ti system, producing amorphous, crystalline, and mixture of amorphous plus crystalline phases have been carried out and the phases have been characterized using X-ray diffraction and transmission electron microscopy techniques. Data from the present MA experiments and, also, from the literature have been used to validate the proposed approach. Also, the proximity of compositions, producing a mixture of amorphous and crystalline phases to the boundary of AFCR in the Al-Ni-Ti ternary has been found useful to validate the effectiveness of the prediction.

  13. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-01-01

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  14. Be{sub 2}C formation in beryllium-carbon binary system by vacuum heating

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, Kan; Watanabe, Kuniaki [Toyama Univ. (Japan). Hydrogen Isotope Research Center

    1998-01-01

    The surface chemical states of beryllium and carbon binary systems at elevated temperature were investigated by means of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The XPS measurements revealed that the mixed subsurface layers containing Be and C readily yield Be{sub 2}C layers by vacuum heating and ion bombardment. The SIMS measurements showed that hydrogen isotope atoms are trapped by three distinct sites; namely Be, C, and O-sites on the sample surface. The SIMS measurements also showed that carbon atoms lose its ability to bind with hydrogen isotope atoms on forming Be{sub 2}C. It would be a key to control hydrogen inventory when Be and C are used together as PFM. (author)

  15. Disjoint sum forms in reliability theory

    Directory of Open Access Journals (Sweden)

    B. Anrig

    2014-01-01

    Full Text Available The structure function f of a binary monotone system is assumed to be known and given in a disjunctive normal form, i.e. as the logical union of products of the indicator variables of the states of its subsystems. Based on this representation of f, an improved Abraham algorithm is proposed for generating the disjoint sum form of f. This form is the base for subsequent numerical reliability calculations. The approach is generalized to multivalued systems. Examples are discussed.

  16. Mimicking directed binary networks for exploring systemic sensitivity: Is NCAA FBS a fragile competition system?

    Directory of Open Access Journals (Sweden)

    Fushing Hsieh

    2016-07-01

    Full Text Available Can a popular real-world competition system indeed be fragile? To address this question, we represent such a system by a directed binary network. Upon observed network data, typically in a form of win-and-loss matrix, our computational developments begin with collectively extracting network's information flows. And then we compute and discover network's macrostate. This computable macrostate is further shown to contain deterministic structures embedded with randomness mechanisms. Such coupled deterministic and stochastic components becomes the basis for generating the microstate ensemble. Specifically a network mimicking algorithm is proposed to generate a microstate ensemble by subject to the statistical mechanics principle: All generated microscopic states have to conform to its macrostate of the target system. We demonstrate that such a microstate ensemble is an effective platform for exploring systemic sensitivity. Throughout our computational developments, we employ the NCAA Football Bowl Subdivision (FBS as an illustrating example system. Upon this system, its macrostate is discovered by having a nonlinear global ranking hierarchy as its deterministic component, while its constrained randomness component is embraced within the nearly completely recovered conference schedule . Based on the computed microstate ensemble, we are able to conclude that the NCAA FBS is overall a fragile competition system because it retains highly heterogeneous degrees of sensitivity with its ranking hierarchy.

  17. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    Science.gov (United States)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. Thermodynamic properties of some gallium-based binary alloys

    International Nuclear Information System (INIS)

    Awe, O.E.; Odusote, Y.A.; Akinlade, O.; Hussain, L.A.

    2008-01-01

    We have studied the concentration dependence of the free energy of mixing, concentration-concentration fluctuations in the long-wavelength limit, the chemical short-range order parameter, the enthalpy and entropy of mixing of Ga-Zn, Ga-Mg and Al-Ga binary alloys at different temperatures using a quasi-chemical approximation for compound forming binary alloys and that for simple regular alloys. From the study of the thermodynamic quantities, we observed that thermodynamic properties of Ga-Zn and Al-Ga exhibit positive deviations from Raoultian behaviour, while Ga-Mg exhibits negative deviation. Hence, this study reveals that both Ga-Zn and Al-Ga are segregating systems, while chemical order exists in Ga-Mg alloy in the whole concentration range. Furthermore, our investigation indicate that Al-Ga binary alloy have a tendency to exhibit ideal mixture behaviour in the concentration range 0≤c Al ≤0.30 and 0.7≤c Al ≤1

  19. PERIODIC SIGNALS IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Guo, Xinyi; Stefano, Rosanne Di; Esin, Ann; Taylor, Jeffrey

    2015-01-01

    Gravitational microlensing events are powerful tools for the study of stellar populations. In particular, they can be used to discover and study a variety of binary systems. A large number of binary lenses have already been found through microlensing surveys and a few of these systems show strong evidence of orbital motion on the timescale of the lensing event. We expect that more binary lenses of this kind will be detected in the future. For binaries whose orbital period is comparable to the event duration, the orbital motion can cause the lensing signal to deviate drastically from that of a static binary lens. The most striking property of such light curves is the presence of quasi-periodic features, which are produced as the source traverses the same regions in the rotating lens plane. These repeating features contain information about the orbital period of the lens. If this period can be extracted, then much can be learned about the lensing system even without performing time-consuming, detailed light-curve modeling. However, the relative transverse motion between the source and the lens significantly complicates the problem of period extraction. To resolve this difficulty, we present a modification of the standard Lomb–Scargle periodogram analysis. We test our method for four representative binary lens systems and demonstrate its efficiency in correctly extracting binary orbital periods

  20. Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems

    International Nuclear Information System (INIS)

    Mathews, G.J.; Evans, C.R.; Wilson, J.R.

    1986-09-01

    We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs

  1. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  2. Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo; Matrozis, Elvijs, E-mail: zwliu@ynao.ac.cn [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2017-09-10

    A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.

  3. Minimum period and the gap in periods of Cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.; Sienkiewicz, R.

    1983-01-01

    The 81 minute cutoff to the orbital periods of hydrogen-rich cataclysmic binaries is consistent with evolution of those systems being dominated by angular momentum losses due to gravitational radiation. Unfortunately, many uncertainties, mainly poorly known atmospheric opacities below 2000 K, make is physically impossible to verify the quadrupole formula for gravitational radiation by using the observed cutoff at 81 minutes. The upper boundary of the gap in orbital periods observed at about 3 hours is almost certainly due to enhanced angular momentum losses from cataclysmic binaries which have longer periods. The physical mechanism of those losses is not identified, but a possible importance of stellar winds is pointed out. The lower boundary of the gap may be explained with the oldest cataclysmic binaries, whose periods evolved past the minimum at 81 minutes and reached the value of 2 hours within about 12 x 10 9 years after the binary had formed. Those binaries should have secondary components of only 0.02 solar masses, and their periods could be used to estimate ages of the oldest cataclysmic stars, and presumably the age of Galaxy. An alternative explanation for the gap requires that binaries should be detached while crossing the gap. A possible mechanism for this phenomenon is discussed. It requires the secondary components to be about 0.2 solar masses in the binaries just below the gap

  4. Binary star statistics: the mass ratio distribution for very wide systems

    International Nuclear Information System (INIS)

    Trimble, V.

    1987-01-01

    The distribution of mass ratios for a sample of common proper motion (CPM) binaries is determined and compared with that of 798 visual binaries (VB's) studied earlier, in hopes of answering the question: Can the member stars of these systems have been drawn at random from the normal initial mass function for single stars? The observed distributions peak strongly toward q = 1.0 for both kinds of systems, but less strongly for the CPM's than for the VB's. Due allowance having been made for assorted observational selection effects, it seems quite probable that the CPM's represent the observed part of a population drawn at random from the normal IMF, while the VB's are much more difficult to interpret that way and could, perhaps, result from a formation mechanism that somewhat favors sytems with roughly equal components. (author)

  5. Geometric relationships for homogenization in single-phase binary alloy systems

    Science.gov (United States)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1978-01-01

    A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship.

  6. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  7. Optical eclipses and precessional effects in the X-ray binary system HD 77581=4U 0900-40

    International Nuclear Information System (INIS)

    Khruzina, T.S.; Cherepashchuk, A.M.

    1982-01-01

    The longperiod (P=93.3sup(d)) variability of the amplitude and shape of the optical light curves of the X-ray binary HD 77581 has been discovered from the analysis of all published photometric data. The 93.3-day period is presumably the period of the forced precession of the rotational axis of the optical star. It is shown that the system HD 77581 appears to be an eclipsing binary in the optical range with the amplitude of the ellipsoidal variability approximately 0sup(m).04 and the depth of the eclipse reaching approximately 0sup(m).04. The eclipses are caused by the gaseous streams and the accreting structure, the orientation of which in the binary system is varying with the precession period of the optical star. The estimates of the parameters of the system are obtained. It is shown that the parameter of the Roche Lobe filling for the optical star is μ < 1. The mass of the neutron star is Msub(x)=(1.6+-0.3) Msub(Sun), where Msub(Sun) is the solar mass. The forced precession of the optical star is connected with the non-perpendicularity of its rotational axis to the orbit plane of the binary system. This non-perpendicularity may be a result of supernova explosion in a close binary system

  8. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  9. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  10. PopCORN: Hunting down the differences between binary population synthesis codes

    Science.gov (United States)

    Toonen, S.; Claeys, J. S. W.; Mennekens, N.; Ruiter, A. J.

    2014-02-01

    Context. Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of various types of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying (sometimes poorly understood) physical processes involved. Several BPS codes exist that have been developed with different philosophies and aims. Although BPS has been very successful for studies of many populations of binary stars, in the particular case of the study of the progenitors of supernovae Type Ia, the predicted rates and ZAMS progenitors vary substantially between different BPS codes. Aims: To understand the predictive power of BPS codes, we study the similarities and differences in the predictions of four different BPS codes for low- and intermediate-mass binaries. We investigate the differences in the characteristics of the predicted populations, and whether they are caused by different assumptions made in the BPS codes or by numerical effects, e.g. a lack of accuracy in BPS codes. Methods: We compare a large number of evolutionary sequences for binary stars, starting with the same initial conditions following the evolution until the first (and when applicable, the second) white dwarf (WD) is formed. To simplify the complex problem of comparing BPS codes that are based on many (often different) assumptions, we equalise the assumptions as much as possible to examine the inherent differences of the four BPS codes. Results: We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and their birthrates. Regarding the double WD population, there is a good agreement on which evolutionary channels exist to create double WDs and a rough

  11. P-TYPE PLANET–PLANET SCATTERING: KEPLER CLOSE BINARY CONFIGURATIONS

    International Nuclear Information System (INIS)

    Gong, Yan-Xiang

    2017-01-01

    A hydrodynamical simulation shows that a circumbinary planet will migrate inward to the edge of the disk cavity. If multiple planets form in a circumbinary disk, successive migration will lead to planet–planet scattering (PPS). PPS of Kepler -like circumbinary planets is discussed in this paper. The aim of this paper is to answer how PPS affects the formation of these planets. We find that a close binary has a significant influence on the scattering process. If PPS occurs near the unstable boundary of a binary, about 10% of the systems can be completely destroyed after PPS. In more than 90% of the systems, there is only one planet left. Unlike the eccentricity distribution produced by PPS in a single star system, the surviving planets generally have low eccentricities if PPS take place near the location of the currently found circumbinary planets. In addition, the ejected planets are generally the innermost of two initial planets. The above results depend on the initial positions of the two planets. If the initial positions of the planets are moved away from the binary, the evolution tends toward statistics similar to those around single stars. In this process, the competition between the planet–planet force and the planet-binary force makes the eccentricity distribution of surviving planets diverse. These new features of P-type PPS will deepen our understanding of the formation of these circumbinary planets.

  12. (Liquid + liquid) equilibrium for binary systems of N-formylmorpholine with alkanes

    International Nuclear Information System (INIS)

    Wang Zhengrong; Xia Shuqian; Ma Peisheng; Liu Tao; Han Kewei

    2012-01-01

    Highlights: ► The LLE data of four binary systems containing N-formylmorpholine were measured. ► Both NRTL and UNIQUAC models can fit the experimental data well. ► The new group interaction parameters of UNIFAC (Do) were regressed from the LLE data. ► The estimated result shows that the group interaction parameters and methods are reliable. - Abstract: (Liquid + liquid) equilibrium (LLE) data were determined for four binary systems containing N-formylmorpholine (NFM) and alkanes (3-methylpentane, heptane, nonane, and 2,2,4-trimethylpentane) over the temperature range from around 300 K to near 420 K using a set of newly designed equilibrium equipment. The compositions of both light and heavy phases were analyzed by gas chromatography. The mutual solubility increased as the temperature increased for all these systems. The binary (liquid + liquid) equilibrium data were correlated by the NRTL and UNIQUAC equations with temperature-dependent parameters. Both models correlate the experimental results well. Furthermore, the UNIFAC (Do) group contribution model was used to correlate and estimate the LLE data for NFM containing systems. Two methods of group division for NFM were used. NFM is treated as a single group: NFM group (method I) or divided into two groups: CHO and C 4 H 8 NO (method II), respectively. The group interaction parameters for CH 2 –NFM, or CH 2 –CHO and CH 2 –C 4 H 8 NO were fitted from the experimental LLE data. The UNIFAC (Do) model correlates the experimental data well. In addition, in order to develop UNIFAC (Do) group contribution model to estimate the LLE data of (NFM + cycloalkane) systems, some literature LLE data were used. The group interaction parameters for c-CH 2 –NFM, c-CH 2 –CHO and c-CH 2 –C 4 H 8 NO were correlated. Then these group interaction parameters were used to estimate the phase equilibrium data of binary systems in the literature by the UNIFAC (Do) model. The results showed that the estimated values are in

  13. On the use of higher order wave forms in the search for gravitational waves emitted by compact binary coalescences

    Science.gov (United States)

    McKechan, David J. A.

    2010-11-01

    This thesis concerns the use, in gravitational wave data analysis, of higher order wave form models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter estimation. In Chapter 5, a new method of windowing time-domain waveforms that offers benefit to gravitational wave searches is presented. The final chapter covers the development of a game designed as an outreach project to raise public awareness and understanding of the search for gravitational waves.

  14. Comparative instrumental evaluation of efficacy and safety between a binary and a ternary system in chemexfoliation.

    Science.gov (United States)

    Cameli, Norma; Mariano, Maria; Ardigò, Marco; Corato, Cristina; De Paoli, Gianfranco; Berardesca, Enzo

    2017-09-20

    To instrumentally evaluate the efficacy and the safety of a new ternary system chemo exfoliating formulation (water-dimethyl isosorbide-acid) vs traditional binary systems (water and acid) where the acid is maintained in both the systems at the same concentration. Different peelings (binary system pyruvic acid and trichloroacetic acid-TCA, and ternary system pyruvic acid and TCA) were tested on the volar forearm of 20 volunteers of both sexes between 28 and 50 years old. The outcomes were evaluated at the baseline, 10 minutes, 24 hours, and 1 week after the peeling by means of noninvasive skin diagnosis techniques. In vivo reflectance confocal microscopy was used for stratum corneum evaluation, transepidermal waterloss, and Corneometry for skin barrier and hydration, Laser Doppler velocimetry in association with colorimetry for irritation and erythema analysis. The instrumental data obtained showed that the efficacy and safety of the new ternary system peel compounds were significantly higher compared with the binary system formulations tested. The new formulation peels improved chemexfoliation and reduced complications such as irritation, redness, and postinflammatory pigmentation compared to the traditional aqueous solutions. The study showed that ternary system chemexfoliation, using a controlled delivery technology, was able to provide the same clinical effects in term of stratum corneum reduction with a significantly reduced barrier alteration, water loss, and irritation/erythema compared to traditional binary system peels. © 2017 Wiley Periodicals, Inc.

  15. DISCOVERY OF A BINARY SYSTEM IN IRAM 04191+1522

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou, E-mail: xuepeng.chen@yale.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-03-10

    We present high angular resolution observations of the Class 0 protostar IRAM 04191+1522 using the Submillimeter Array (SMA). The SMA 1.3 mm continuum images reveal within IRAM 04191+1522 two distinct sources with an angular separation of 7.''8 {+-} 0.''2. The two continuum sources are located in the southeast-northwest direction, with total gas masses of {approx}0.011 M{sub Sun} and {approx}0.005 M{sub Sun }, respectively. The southeastern source, associated with an infrared source seen in the Spitzer images, is the well-known Class 0 protostar with a bolometric luminosity of {approx}0.08 L{sub Sun }. The newly discovered northwestern continuum source is not visible in the Spitzer images at wavelengths from 3.6 to 70 {mu}m and has an extremely low bolometric luminosity (<0.03 L{sub Sun }). Complementary IRAM N{sub 2}H{sup +} (1-0) data that probe the dense gas in the common envelope suggest that the two sources were formed through the rotational fragmentation of an elongated dense core. Furthermore, comparisons between IRAM 04191+1522 and other protostars suggest that most cores with binary systems formed therein have ratios of rotational energy to gravitational energy {beta}{sub rot} > 1%. This is consistent with theoretical simulations and indicates that the level of rotational energy in a dense core plays an important role in the fragmentation process.

  16. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  17. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  18. Physical Properties and Evolution of the Eclipsing Binary System XZ Canis Minoris

    Science.gov (United States)

    Poochaum, R.; Komonjinda, S.; Soonthornthum, B.; Rattanasoon, S.

    2010-07-01

    This research aims to study the eclipse binary system so that its physical properties and evolution can be determined and used as an example to teach high school astronomy. The study of an eclipsing binary system XZ Canis Minoris (XZ CMi) was done at Sirindhorn Observatory, Chiang Mai University using a 0.5-meter reflecting telescope with CCD photometric system (2184×1417 pixel) in B V and R bands of UVB System. The data obtained were used to construct the light curve for each wavelength band and to compute the times of its light minima. New elements were derived using observations with linear to all available minima. As a result, linear ephemeris is HDJmin I = .578 808 948+/-0.000 000 121+2450 515.321 26+/-0.001 07 E, and the new orbital period of XZ CMi is 0.578 808 948+/-0.000 000 121 day. The values obtained were used with the previously published times of minima to get O-C curve of XZ CMi. The result revealed that the orbital period of XZ CMi is continuously decreased at a rate of 0.007 31+/-0.000 57 sec/year. This result indicates that the binary stars are moving closer continuously. From the O-C residuals, there is significant change to indicate the existence of the third body or magnetic activity cycle on the star. However, further analysis of the physical properties of XZ CMi is required.

  19. Microscopic dynamics of binary mixtures and quasi-colloidal systems

    International Nuclear Information System (INIS)

    Smorenburg, H.E.

    1996-01-01

    In the study on the title subject two questions are addressed. One is whether the microscopic dynamics of binary mixtures and quasi-colloidal systems can be understood theoretically with kinetic theories for equivalent hard sphere mixtures. The other question that arises is whether the similarity in the dynamics of dense simple fluids and concentrated colloidal suspensions also holds for binary mixtures and quasi-colloidal systems. To answer these questions, we have investigated a number of binary gas mixtures and quasi-colloidal system with different diameter ratios and concentrations. We obtain the experimental dynamic structure factors S expt (κ,ω) of the samples from inelastic neutron scattering. We compare S expt (κ,ω) with the dynamic structure S HS (κ,ω) of an equivalent hard sphere fluid, that we calculate with the Enskog theory. In chapter 2, 3 and 4 we study dense He-Ar gas mixtures (diameter ratio R=1.4, and mass ratio M=10) at low and high Ar concentrations. Experiment and kinetic theory are in good agreement. In chapter 5 we study dilute quasi-colloidal suspensions of fullerene C60 molecules dissolved in liquid CS2. The diameter ratio R=2.2 is larger than in previous experiments while the mass ratio M=9.5 is more or less the same. We obtain the self diffusion coefficient D S of one C60 molecule in CS2 and find D s ≤D SE ≤D E , with D E obtained from kinetic theory and D SE from the Stokes-Einstein description. It appears that both descriptions are relevant but not so accurate. In chapter 6 we study three dense mixtures of neopentane in 40 Ar (diameter ratio R=1.7, mass ratio M=2) at low and high neopentane concentrations. At low concentration, we find a diffusion coefficient of neopentane in Ar, which is in good agreement with kinetic theory and in moderate agreement with the Stokes-Einstein description. At high concentration the collective translational dynamics of neopentane shows a similar behaviour as in dense colloids and simple fluids

  20. Binary pairs of supermassive black holes - Formation in merging galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Valtaoja, L.; Valtonen, M.J.; Byrd, G.G. (Turku Univ. (Finland); Alabama Univ., Tuscaloosa (USA))

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs.

  1. A Catalog of Spectroscopically Selected Close Binary Systems from the Sloan Digital Sky Survey Data Release Four

    National Research Council Canada - National Science Library

    Silvestri, Nicole M; Eisenstein, Daniel J; McGehee, Peregrine; Smith, J. A; Harris, Hugh C; Kleinman, Scot J; Krzesinski, Jurek; Neilsen, Jr., Eric H; Schneider, Donald P

    2006-01-01

    .... We have estimated the distances for each of the white dwarf main-sequence star binaries and used white dwarf evolutionary grids to establish the age of each binary system from the white dwarf cooling times...

  2. Binary Toxin Subunits of Lysinibacillus sphaericus Are Monomeric and Form Heterodimers after In Vitro Activation.

    Directory of Open Access Journals (Sweden)

    Wahyu Surya

    Full Text Available The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. An activation step shortens both subunits BinA and BinB before their interaction with membranes and internalization in midgut cells, but the precise role of this activation step is unknown. Herein, we show conclusively using three orthogonal biophysical techniques that protoxin subunits form only monomers in aqueous solution. However, in vitro activated toxins readily form heterodimers. This oligomeric state did not change after incubation of these heterodimers with detergent. These results are consistent with the evidence that maximal toxicity in mosquito larvae is achieved when the two subunits, BinA and BinB, are in a 1:1 molar ratio, and directly link proteolytic activation to heterodimerization. Formation of a heterodimer must thus be necessary for subsequent steps, e.g., interaction with membranes, or with a suitable receptor in susceptible mosquito species. Lastly, despite existing similarities between BinB C-terminal domain with domains 3 and 4 of pore-forming aerolysin, no aerolysin-like SDS-resistant heptameric oligomers were observed when the activated Bin subunits were incubated in the presence of detergents or lipidic membranes.

  3. Mass loss from OB supergiants in x-ray binary systems

    International Nuclear Information System (INIS)

    Alme, M.L.; Wilson, J.R.

    1975-01-01

    A study of the atmospheres of OB supergiants in x-ray binary systems indicates that when the stellar surface is close enough to the saddle in the gravitational potential to provide a mass transfer rate adequate to power a compact x-ray source, large-amplitude variations in the rate of mass flow occur. 9 references

  4. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  5. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  6. All-optical conversion scheme: Binary to quaternary and quaternary to binary number

    Science.gov (United States)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2009-04-01

    To achieve the inherent parallelism in optics a suitable number system and efficient encoding/decoding scheme for handling the data are very much essential. Binary number is accepted as the best representing number system in almost all types of existing electronic computers. But, binary number (0 and 1) is insufficient in respect to the demand of the coming generation. Multi-valued logic (with radix >2) can be viewed as an alternative approach to solve many problems in transmission, storage and processing of large amount of information in digital signal processing. Here, in this paper all-optical scheme for the conversion of binary to quaternary number and vice versa have been proposed and described. Simulation has also been done. In this all-optical scheme the numbers are represented by different discrete polarized state of light.

  7. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    Science.gov (United States)

    Prsa, Andrej

    Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary

  8. Thermodynamic assessment of the Ag-Te binary system

    Energy Technology Data Exchange (ETDEWEB)

    Gierlotka, Wojciech, E-mail: gilu@uci.agh.edu.p [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow (Poland)

    2009-10-19

    Pure silver and its alloys are very important materials for various technological applications. Tellurium is one of the unwanted admixture in silver and is removed during metallurgical processes; however Ag-Te alloy is necessary for production of rewritable digital versatile discs. The knowledge of phase diagram of Ag-Te is essential for applications and refining process. The critical assessment of binary system Ag-Te has been done using literature information. Good agreement between experimental data reported in literature and calculated values has been found.

  9. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  10. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

    Science.gov (United States)

    Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.

    2017-09-01

    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.

  11. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

    International Nuclear Information System (INIS)

    Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.

    2017-01-01

    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.

  12. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, G. [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Drago, A.; Pagliara, G. [Dipartimento di Fisica e Scienze della Terra dell’Università di Ferrara and INFN Sezione di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Popov, S. B., E-mail: gwiktoro@astrouw.edu.pl [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow (Russian Federation)

    2017-09-10

    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.

  13. Automated calculation of complete Pxy and Txy diagrams for binary systems

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht

    2007-01-01

    phase equilibrium calculations in binary systems, in: Proceedings of the CD-ROM EQUIFASE 2006, Morelia, Michoacan, Mexico, October 21-25, 2006; www.gpec.plapiqui.edu.ar]. In this work we present the methods and computational strategy for the automated calculation of complete Pxy and Txy diagrams...

  14. Automated Generation of Phase Diagrams for Binary Systems with Azeotropic Behavior

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht; Zabaloy, Marcelo S.

    2008-01-01

    In this work, we propose a computational strategy and methods for the automated calculation of complete loci of homogeneous azeotropy of binary mixtures and the related Pxy and Txy diagrams for models of the equation-of-state (EOS) type. The strategy consists of first finding the system...

  15. Density measurements under pressure for the binary system (ethanol plus methylcyclohexane)

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Lugo, L.; Fernandez, J.

    2005-01-01

    and influence of temperature, pressure and composition on the excess molar volume, the isothermal compressibility, and the isobaric thermal expansion, revealing that a volume expansion occurs for this binary system. The results have been interpreted as due to changes in the intermolecular distances or free-volume...

  16. Creation of an anti-imaging system using binary optics

    Science.gov (United States)

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H. P.; Gan, Fuxi; Zhuang, Songlin

    2016-01-01

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068

  17. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    International Nuclear Information System (INIS)

    Kalomeni, B.; Rappaport, S.; Molnar, M.; Nelson, L.; Quintin, J.; Yakut, K.

    2016-01-01

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M ⊙ ), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P orb – M don ) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb ( M wd ) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb – M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  18. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    Science.gov (United States)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  19. On the dynamics of non-stationary binary stellar system with non-isotropic mass flow

    International Nuclear Information System (INIS)

    Bekov, A.A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2006-01-01

    The motion of test body in the external gravitational field of the binary stellar systems with slowly variable some physical parameters of radiating components is considered on the base of restricted nonstationary photo-gravitational three and two bodies problem with non-isotropic mass flow. The family of polar and coplanar solutions are obtained. The solutions give the possibility of the dynamical and structure interpretation of binary young evolving stars and galaxies. (author)

  20. Observational studies of X-ray binary systems

    International Nuclear Information System (INIS)

    Klis, M. van der.

    1983-01-01

    The subject of Chapter 1 is theoretical. The other chapters, Ch. 2 to 6, contain original observational data and efforts towards their interpretation. Of these, Ch. 3, 4 and 5 deal with massive X-ray binaries, Ch. 6 with low-mass systems and Ch. 2 with Cygnus X-3, which we have not yet been able to assign to any of these two classes. The X-ray observations described were made with the COS-B satellite. Work based on UV and optical observations is described in Ch. 5. The UV observations were made with the IUE satellite, the optical observations at several ground-based observatories. (Auth.)

  1. Roto-translation motion of the stars in close binary systems

    International Nuclear Information System (INIS)

    Medvedeva, A A

    2013-01-01

    This article has to show that the model of p-h which is used to determine the change of the semi major axis of the relative orbit stars is incorrect and leads to large errors in the determination of semi-major axis. The new model, suitable for the elliptical orbits of the stars. To determine relative motion of stars in a close binary system in this paper uses a numerical integration of the equations of motion with the reactive forces, including the rotational component of attraction between the stars and the stream flows into the substance. The calculations of elliptical orbits of close binary stars show that the effect of the reactive force on the evolution of the orbits of stars may be different. The results can be refined by introducing other disturbing factors and making new assumptions based on observations

  2. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    International Nuclear Information System (INIS)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara; Georgakarakos, Nikolaos

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  3. S-type and P-type habitability in stellar binary systems: A comprehensive approach. I. Method and applications

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M., E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059 (United States)

    2014-01-01

    A comprehensive approach is provided for the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in the case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) the consideration of a joint constraint, including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ), needs to be met; (2) the treatment of conservative, general, and extended zones of habitability for the various systems as defined for the solar system and beyond; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for the kind of system in which S-type and P-type habitability is realized; (4) applications of the attained theoretical approach to standard (theoretical) main-sequence stars. In principle, five different cases of habitability are identified, which are S-type and P-type habitability provided by the full extent of the RHZs; habitability, where the RHZs are truncated by the additional constraint of planetary orbital stability (referred to as ST- and PT-type, respectively); and cases of no habitability at all. Regarding the treatment of planetary orbital stability, we utilize the formulae of Holman and Wiegert as also used in previous studies. In this work, we focus on binary systems in circular orbits. Future applications will also consider binary systems in elliptical orbits and provide thorough comparisons to other methods and results given in the literature.

  4. eLISA eccentricity measurements as tracers of binary black hole formation

    OpenAIRE

    Nishizawa, Atsushi; Berti, Emanuele; Klein, Antoine; Sesana, Alberto

    2016-01-01

    Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO/Virgo band within ten years, allowing for multi-band gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities $e_0\\sim 10^{-3}$-$10^{-1}$ at the frequencies $f_0=10^{-2}$ Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate ...

  5. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    International Nuclear Information System (INIS)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader

    2013-01-01

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the α Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of α Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the α Centauri system.

  6. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke [University of Vienna, Institute for Astrophysics, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at [Institute for Astronomy and NASA Astrobiology Institute, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  7. Close-binary central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.

    1987-01-01

    Recent observations of PN central stars identified as binary systems are reviewed. The theoretical significance of binary central stars is discussed, and the characteristics of UU Sge, V 477 Lyr, MT Ser, LSS 2018, VW Pyx, and the central star of HFG 1 are briefly summarized. All of these binaries are shown to have periods less than 1 day, and it is estimated that about 10 percent of all binary central stars are close binaries. 27 references

  8. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  9. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny; Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric; Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil; Monnier, John D.; Crepp, Justin; Parry, Ian; Beichman, Charles; Soummer, Rémi

    2012-01-01

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 μm interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A V = 8-12, with an effective temperature of ∼4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  10. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Laurent [Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Monnier, John D. [Department of Astronomy, University of Michigan, 941 Dennison Building, 500 Church Street, Ann Arbor, MI 48109-1090 (United States); Crepp, Justin [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Parry, Ian [University of Cambridge, Institute of Astronomy, Madingley Road, Cambridge, CB3, OHA (United Kingdom); Beichman, Charles [NASA Exoplanet Science Institute, 770 South Wilson Avenue, Pasadena, CA 91225 (United States); Soummer, Remi [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-09-20

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 {mu}m interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A{sub V} = 8-12, with an effective temperature of {approx}4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  11. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. B.; Luo, C. Q. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Fu, J. N. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with a value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.

  12. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG...... + water + benzene, MEG + water + toluene, and TEG + water + toluene. The binary systems are correlated with the Cubic-Plus-Association (CPA) equation of state while the ternary systems are predicted from interaction parameters obtained from the binary systems. Very satisfactory liquid-liquid equilibrium...... correlations are obtained for the binary systems using temperature-independent interaction parameters, while adequate predictions are achieved for multicomponent water + glycol + aromatic hydrocarbons systems when accounting for the solvation between the aromatic hydrocarbons and glycols or water....

  13. Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt

    Science.gov (United States)

    Thirouin, Audrey; Noll, Keith S.; Ortiz Moreno, Jose Luis; Morales , Nicolas

    2014-11-01

    An exhaustive study about short-term variability as well as derived properties from lightcurves allowed us to draw some conclusions for the Trans-Neptunian belt binary population. Based on Maxwellian fit distributions of the spin rate, we suggested that the binary population rotates slower than the non-binary one. This slowing-down can be attributed to tidal effects between the satellite and the primary, as expected. We showed that no system in this work is tidally locked, but the primary despinning process may have already affected the primary rate (as well as the satellite rotational rate). We used the Gladman et al. (1996) formula to compute the time required to tidally lock the systems, but this formula is based on several assumptions and approximations that do not always hold. The computed times are reasonable in most cases and confirm that none of the systems is tidally locked, assuming that the satellite densities are low and have a high rigidity or have a higher dissipation than usually assumed. The rotational properties of small bodies provide information about important physical properties, such as shape, density, and cohesion (Pravec & Harris 2000; Holsapple 2001, 2004; Thirouin et al. 2010, 2012). For binaries it is also possible to derive several physical parameters of the system components, such as diameters of the primary/secondary and albedo under some assumptions. We compare our results as well as our technique for deriving this information from the lightcurve with other methods, such as: i) thermal or thermophysical modeling, ii) from the mutual orbit of the binary component, iii) from direct imaging or iv) from stellar occultation by Trans-Neptunian Objects (TNOs). Finally, by studying the specific angular momentum of the sample, we proposed possible formation models for several binary TNOs. In several cases, we obtained hints of the formation mechanism from the angular momentum, but for other cases we do not have enough information about the

  14. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  15. Phase composition and saturated liquid properties in binary and ternary systems containing carbon dioxide, n-decane, and n-tetradecane

    International Nuclear Information System (INIS)

    Kariznovi, Mohammad; Nourozieh, Hossein; Abedi, Jalal

    2013-01-01

    Highlights: ► Binary and ternary systems of (carbon dioxide + n-decane + n-tetradecane) at 323.2 K. ► Isothermal phase properties measurements over wide range of pressure (1 to 6) MPa. ► Experimental measurements, density, viscosity, and composition, using a designed PVT apparatus. ► The experimental data were correlated using two equations of state. ► The interaction parameters and the volume shift values from the experimental data on the binary pairs. - Abstract: Experimental phase equilibrium data have been measured for the binary and ternary systems containing (carbon dioxide, n-decane, and n-tetradecane) at 323.2 K over the pressure range (1 to 6) MPa using a designed PVT apparatus. The measurements presented in this paper were undertaken to determine liquid phase composition and liquid saturated properties (density and viscosity) when a liquid hydrocarbon (n-decane, n-tetradecane, and their mixtures) was saturated with carbon dioxide. The generated data for compositions and densities were correlated with the Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state (EOS). The adjustment of binary interaction parameters and volume translation technique has been employed to correlate the experimental compositions and densities. The adjusted binary parameters from the data of binary pairs (carbon dioxide + n-decane) and (carbon dioxide + n-tetradecane) were used to correlate the generated ternary data. The calculated ternary compositions were found to be in good agreement with the experimental data using the binary parameters from the data of binary pairs for both EOSs. The results for the density of saturated liquid phase indicated that the volume translation should be applied to all components in the binary and ternary systems to describe accurately the saturated liquid densities for mixtures.

  16. The fate of close encounters between binary stars and binary supermassive black holes

    Science.gov (United States)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  17. Low-temperature behaviour of the Kob-Andersen binary mixture

    International Nuclear Information System (INIS)

    Ashwin S S; Sastry, Srikanth

    2003-01-01

    The dynamical behaviours of glass-forming liquids have been analysed extensively via computer simulations of model liquids, among which the Kob-Andersen binary Lennard-Jones mixture has been a widely studied system. Typically, studies of this model have been restricted to temperatures above the mode coupling temperature. Preliminary results concerning the dynamics of the Kob-Andersen binary mixture are presented at temperatures that extend below the mode coupling temperature, along with properties of the local energy minima sampled. These results show that a crossover in the dynamics occurs alongside changes in the properties of the inherent structures sampled. Furthermore, a crossover is observed from non-Arrhenius behaviour of the diffusivity above the mode coupling temperature to Arrhenius behaviour at lower temperatures

  18. Motion of the moonlet in the binary system 243 Ida

    Science.gov (United States)

    Lan, L.; Ni, Y.; Jiang, Y.; Li, J.

    2018-02-01

    The motion of the moonlet Dactyl in the binary system 243 Ida is investigated in this paper. First, periodic orbits in the vicinity of the primary are calculated, including the orbits around the equilibrium points and large-scale orbits. The Floquet multipliers' topological cases of periodic orbits are calculated to study the orbits' stabilities. During the continuation of the retrograde near-circular orbits near the equatorial plane, two period-doubling bifurcations and one Neimark-Sacker bifurcation occur one by one, leading to two stable regions and two unstable regions. Bifurcations occur at the boundaries of these regions. Periodic orbits in the stable regions are all stable, but in the unstable regions are all unstable. Moreover, many quasi-periodic orbits exist near the equatorial plane. Long-term integration indicates that a particle in a quasi-periodic orbit runs in a space like a tire. Quasi-periodic orbits in different regions have different styles of motion indicated by the Poincare sections. There is the possibility that moonlet Dactyl is in a quasi-periodic orbit near the stable region I, which is enlightening for the stability of the binary system.

  19. Effect of binary stars on the dynamical evolution of stellar clusters. II. Analytic evolutionary models

    International Nuclear Information System (INIS)

    Hills, J.G.

    1975-01-01

    We use analytic models to compute the evolution of the core of a stellar system due simultaneously to stellar evaporation which causes the system (core) to contract and to its binaries which cause it to expand by progressively decreasing its binding energy. The evolution of the system is determined by two parameters: the initial number of stars in the system N 0 , and the fraction f/subb/ of its stars which are binaries. For a fixed f/subb/, stellar evaporation initially dominates the dynamical evolution if N 0 is sufficiently large due to the fact that the rate of evaporation is determined chiefly by long-range encounters which increase in importance as the number of stars in the system increases. If stellar evaporation initially dominates, the system first contracts, but as N/subc/, the number of remaining stars in the system, decreases by evaporation, the system reaches a minimum radius and a maximum density and then it expands monotonically as N/subc/ decreases further. Open clusters expand monotonically from the beginning if they have anything approaching average Population I binary frequencies. Globular clusters are highly deficient in binaries in order to have formed and retained the high-density stellar cores observed in most of them. We estimate that for these system f/subb/ < or = 0.15

  20. A binary plasmid system for shuffling combinatorial antibody libraries.

    OpenAIRE

    Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A

    1992-01-01

    We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind a...

  1. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Zeyghami, Mehdi

    2015-01-01

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  2. THE ROLE OF ZAKAH AND BINARY ECONOMICS IN POVERTY REDUCTION

    Directory of Open Access Journals (Sweden)

    Muniaty Aisyah

    2015-09-01

    Full Text Available Poverty reduction remains the most important challenge for every countries. Zakah, as an Islamic faith-based institution, is a strategic tool for combating poverty.  This study aims to identify the role of zakah and compare its principles with an overview of the characteristics and practices within binary economics which also provides a systemic solution for poverty. The study shows that zakah has an essential role to  the economic growth and poverty reduction in Muslim community, as well as, binary economics which also offers a way of enhanching everyone’s economic well-being and fundamentally different from all forms of conventional economics.DOI: 10.15408/ess.v4i1.1964

  3. Thermal behaviour of pure and binary Fe(NO3)3.9H2O and (NH4)6Mo7O24.4H2O systems

    International Nuclear Information System (INIS)

    Shaheen, W.M.

    2007-01-01

    Thermal behaviour of pure ferric nitrate, ammonium molybdate and their mixtures in different ratios were investigated by means of thermal analysis (TG, DTG and DTA) techniques. Relative thermal analysis (RTA) graphical treatment of derivatographic curves of the components in the pure and binary system has been carried out as well. A series of Fe 2 O 3 -MoO 3 systems were prepared from pure and binary salts by heating at 350, 550, 750 and 1000 deg. C. The X-ray diffraction (XRD) analysis was used to characterize the phases produced from thermal treatment of investigated solids. The results revealed that pure ferric nitrate decomposed to Fe 2 O 3 at 250, while pure ammonium molybdate decomposed into MoO 3 and 340 deg. C and then melted at 790 deg. C. For the binary components, crystalline ferric or molybdenum oxides were detected beside ferric molybdate Fe 2 (MoO 4 ) 3 phase starting from 350 deg. C. Fe 2 (MoO 4 ) 3 phase was formed as a result of solid-solid interactions between the produced oxides. The thermal stability of the formed compound was significantly affected by the composition of the mixture and treatment temperature. The presence of two-component solids in the binary systems affected the thermal decomposition of their individual salt and affected their physical and chemical behaviour. The catalytic activity of the obtained pure and mixed oxides was measured using the decomposition of hydrogen peroxide reaction as a model reaction at 20-50 deg. C. It was found that the mixed oxide solids had catalytic activity higher than single oxides thermally treated at 350 and 550 deg. C. This is attributed to the increase in the concentration of active sites via creation of new ion pairs in case of binary systems. The rise in calcination temperature up to 750 and 1000 deg. C brought about drastic decrease in the activity of all solids because of changing catalyst composition and/or sintering process. The activation energies of H 2 O 2 decomposition were determined

  4. Phase equilibria of binary, ternary and quaternary systems for polymerization/depolymerization of polycarbonate

    NARCIS (Netherlands)

    Margon, V.; Agarwal, U.S.; Peters, C.J.; Wit, de G.; Bailly, C.M.E.; Kasteren, van J.M.N.; Lemstra, P.J.

    2005-01-01

    Vapor–liquid phase equilibrium is studied for the systems composed of phenol, diphenyl carbonate (DPC), bisphenol A (BPA) and CO2. Bubble point pressures and vapor-phase compositions are measured at various temperatures (343.15–473.15 K) for several compositions of the following systems: two binary

  5. Bubble points of the binary mixtures formed by ethylbenzene with some chloroaliphatics and substituted benzenes at p = 94.7 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Vittal Prasad, T.E. [Properties Group, Chemical Engineering Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007 (India); Srinivas, M.Y. [Swami Ramananda Tirtha Institute of Science and Technology, Nalgonda 508 001 (India); Prasad, D.H.L. [Properties Group, Chemical Engineering Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)]. E-mail: dasika@iict.res.in

    2006-10-15

    Bubble points at a pressure of 94.7 kPa, over the entire composition range are measured for the binary mixtures formed by ethylbenzene with: 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, trichloroethylene, tetrachloroethylene, chlorobenzene, and nitrobenzene making use of a Swietoslawski type ebulliometer. The liquid phase composition versus temperature measurements are found to be well represented by the Wilson model.

  6. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Kalomeni, B.; Rappaport, S.; Molnar, M. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Nelson, L. [Department of Physics, Bishop’s University, 2600 College St., Sherbrooke, Quebec, QC J1M 1Z7 (Canada); Quintin, J. [Department of Physics, McGill University, Montréal, QC H3A 2T8 (Canada); Yakut, K., E-mail: kalomeni@mit.edu, E-mail: sar@mit.edu, E-mail: momchil.molnar@gmail.com, E-mail: belinda.kalomeni@ege.edu.tr, E-mail: kadri.yakut@ege.edu.tr, E-mail: lnelson@ubishops.ca, E-mail: jquintin@physics.mcgill.ca [Department of Astronomy and Space Sciences, Ege University, 35100, İzmir (Turkey)

    2016-12-10

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  7. Tidal formation of Hot Jupiters in binary star systems

    Science.gov (United States)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  8. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  9. Critical evaluation and thermodynamic optimization of the U-Pb and U-Sb binary systems

    International Nuclear Information System (INIS)

    Wang, Jian; Jin, Liling; Chen, Chuchu; Rao, Weifeng; Wang, Cuiping; Liu, Xingjun

    2016-01-01

    A complete literature review, critical evaluation and thermodynamic optimization of the phase diagrams and thermodynamic properties of U-Pb and U-Sb binary systems are presented. The CALculation of PHAse Diagrams (CALPHAD) method was used for the thermodynamic optimization, the results of which can reproduce all available reliable experimental phase equilibria and thermodynamic data. The modified quasi-chemical model in the pair approximation (MQMPA) was used for modeling the liquid solution. The Gibbs energies of all terminal solid solutions and intermetallic compounds were described by the compound energy formalism (CEF) model. All reliable experimental data of the U-Pb and U-Sb systems have been reproduced. A self-consistent thermodynamic database has been constructed for these binary systems; this database can be used in liquid-metal fuel reactor (LMFR) research.

  10. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  11. SuperWASP J015100.23-100524.2: A SPOTTED SHALLOW-CONTACT BINARY BELOW THE PERIOD LIMIT

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S. B.; Zhang, B.; He, J. J.; Liu, L.; Zhu, L. Y.; Zhao, E. G.; Zhou, X.; Thawicharat, S. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Soonthornthum, B.; Rattanasoon, S.; Aukkaravittayapun, S., E-mail: qsb@ynao.ac.cn [National Astronomical Research Institute of Thailand, 191 Siriphanich Bldg., Huay Kaew Road, Chiang Mai 50200 (Thailand)

    2015-10-15

    SuperWASP J015100.23-100524.2 (hereafter J015100) is an eclipsing binary with an orbital period of 0.d2145 that is below the short-period limit of contact binary stars. Complete light curves of J015100 in B, V, R, and I bands are presented and are analyzed with the Wilson–Devinney method. It has been discovered that J015100 is a shallow-contact binary (f = 14.6(±2.7)%) with a mass ratio of 3.128. It is a W-type contact binary where the less massive component is about 130 K hotter than the more massive one. The asymmetries of light curves are explained as one dark spot on the more massive component. The detection of J015100 as a contact binary below the period limit suggests that contact binaries below this limit are not rapidly destroyed. This shallow-contact system may be formed from a detached short-period binary similar to DV Psc (Sp. = K4/K5; P = 0.d30855) via orbital shrinkage due to angular momentum loss through magnetic stellar wind.

  12. LB 3459, an O-type subdwarf eclipsing binary system

    International Nuclear Information System (INIS)

    Kilkenny, D.; Penfold, J.E.; Hilditch, R.W.

    1979-01-01

    Four-colour photometry of the short-period eclipsing binary system LB 3459 confirms features seen in earlier less-detailed data. An analysis of all the observational data suggests the system to be an O-type subdwarf plus a hot white dwarf rather than two sdO stars. A value of 0.03 is obtained for the linear limb-darkening coefficient of the primary and estimates of the absolute magnitudes of the two components give a distance of 70 +- 25 pc for the system. The primary and secondary may have radii as small as 0.04 solar radius and 0.02 solar radius respectively, indicating a component separation of only 0.25 solar radius. Several unsolved problems connected with the nature and evolution of the LB 3459 system are noted. (author)

  13. Thermodynamic assessment of the Pr-Zn binary system

    International Nuclear Information System (INIS)

    Huang, X.M.; Liu, L.B.; Zhang, L.G.; Jia, B.R.; Jin, Z.P.; Zheng, F.

    2008-01-01

    On the basis of available experimental data of phase diagram and thermodynamic properties, the Pr-Zn binary system has been optimized using the CALPHAD approach. The phases, including liquid and bcc A 2(βPr) were treated as substitutional solutions, while the intermetallic compounds, including PrZn, PrZn 2 , PrZn 3 , Pr 3 Zn 11 , Pr 13 Zn 58 , Pr 3 Zn 22 , Pr 2 Zn 17 and PrZn 11 were modeled as stoichiometric compounds. As the result of optimization, a set of self-consistent thermodynamic parameters has been obtained, which can be used to reproduce the reported experimental data

  14. Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations

    Science.gov (United States)

    Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa

    2017-05-01

    We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.

  15. Tidal and magnetic interactions in close binary stars

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1983-03-01

    The thesis investigates the nature of non-synchronous motions in members of close binary stars under the influence of gravitational and magnetic fields existing in these systems, and the evolution of such motions in different classes of binaries. Largely convective stars are considered and a solution is found for the fluid flow associated with the non-synchronous rotation of such a secondary in a close binary system, taking tidal and rotational forces into account. The tidal velocity field is calculated for a low mass white dwarf secondary star in a twin - degenerate binary. It is found that the synchronisation times can be comparable to the lifetime of the binary so that some asynchronism may remain present. (U.K.)

  16. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, Evgeni; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa, 3200003 (Israel)

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.

  17. Estimation of the minimum Prandtl number for binary gas mixtures formed with light helium and certain heavier gases: Application to thermoacoustic refrigerators

    International Nuclear Information System (INIS)

    Campo, Antonio; Papari, Mohammad M.; Abu-Nada, Eiyad

    2011-01-01

    This paper addresses a detailed procedure for the accurate estimation of low Prandtl numbers of selected binary gas mixtures. In this context, helium (He) is the light primary gas and the heavier secondary gases are nitrogen (N 2 ), oxygen (O 2 ), xenon (Xe), carbon dioxide (CO 2 ), methane (CH 4 ), tetrafluoromethane or carbon tetrafluoride (CF 4 ) and sulfur hexafluoride (SF 6 ). The three thermophysical properties forming the Prandtl number of binary gas mixtures Pr mix are heat capacity at constant pressure C p,mix (thermodynamic property), viscosity η mix (transport property) and thermal conductivity λ mix (transport property), which in general depend on temperature T and molar gas composition w. The precise formulas for the calculation of the trio C p,mix , η mix , and λ mix are gathered from various dependable sources. When the set of computed Pr mix values for the seven binary gas mixtures He + N 2 , He + O 2 , He + Xe, He + CO 2 , He + CH 4 , He + CF 4 , He + SF 6 at atmospheric conditions T = 300 K, p = 1 atm is plotted against the molar gas composition w on the w-domain [0,1], the family of Pr mix (w) curves exhibited distinctive concave shapes. In the curves format, all Pr mix (w) curves initiate with Pr ∼ 0.7 at w = 0 (associated with light primary He). Forthwith, each Pr mix (w) curve descends to a unique minimum and thereafter ascend back to Pr ∼ 0.7 at the terminal point w = 1 (connected to heavier secondary gases). Overall, it was found that among the seven binary gas mixtures tested, the He + Xe gas mixture delivered the absolute minimum Prandtl number Pr mix,min = 0.12 at the optimal molar gas composition w opt = 0.975. - Highlights: →Accurate estimation of low Prandtl numbers for some helium-based binary gas mixtures. →The thermophysical properties of the gases are calculated with precise formulas. →The absolute minimum Prandtl number is delivered by the He + Xe binary gas mixture. →Application to experimental thermoacoustic

  18. Dynamic Binary Modification Tools, Techniques and Applications

    CERN Document Server

    Hazelwood, Kim

    2011-01-01

    Dynamic binary modification tools form a software layer between a running application and the underlying operating system, providing the powerful opportunity to inspect and potentially modify every user-level guest application instruction that executes. Toolkits built upon this technology have enabled computer architects to build powerful simulators and emulators for design-space exploration, compiler writers to analyze and debug the code generated by their compilers, software developers to fully explore the features, bottlenecks, and performance of their software, and even end-users to extend

  19. Evolution of binaries with compact objects in globular clusters

    OpenAIRE

    Ivanova, Natalia

    2017-01-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries...

  20. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr

    Science.gov (United States)

    Karovska, Margarita

    2016-09-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.

  1. Selection of conformational states in self-assembled surface structures formed from an oligo(naphthylene-ethynylene) 3-bit binary switch

    DEFF Research Database (Denmark)

    Ning, Yanxiao; Cramer, Jacob Roland; Nuermaimaiti, Ajiguli

    2015-01-01

    ). The conformations result from binary positions of n = 3 naphtalene units on a linear oligo(naphthylene-ethynylene) backbone. On Au(111), inter-molecular interactions involving carboxyl and bulky tert-butyl-phenyl functional groups induce the molecules to form two ordered phases with brick-wall and lamella structure...... conformational states. Together these observations imply selection and adaptation of conformational states upon molecular self-assembly. From DFT modeling and statistical analysis of the molecular conformations, the observed selection of conformational states is attributed to steric interaction between...

  2. Thermal degradation features of peppermint oil in a binary system with Β- cyclodextrin

    Directory of Open Access Journals (Sweden)

    I. A. Omelchenko

    2016-04-01

    Full Text Available Aim. One of the most promising ways of changing physical and chemical properties of the active pharmaceutical ingredient is an encapsulation on a molecular level with the use of cyclodextrins. This makes it possible to create products with the desired activity and controlled distribution in the body. Methods and results. We have studied the thermal decomposition of peppermint oil in binary systems with β-cyclodextrin. It has been found that the thermal degradation of mechanical mixture and inclusion complex of the «host-guest» with the composition of 1:1 passes through different mechanisms. Conclusions. It is shown that the given data of thermal stability are useful for the identification of an inclusion complex «β-CD – peppermint oil» and assessing its complexation, and for the development of technology of medicinal forms of supramolecular complex of β-cyclodextrin and peppermint oil

  3. Comments on the evolution and origin of cataclysmic binaries

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1980-01-01

    Aspects of the observational data on cataclysmic binaries are discussed and possible correlations between type of behaviour and binary period are noted. A gap between 2 and 3 hr in binary periods is judged to be real. A simple numerical procedure for evolving Roche-lobe-filling stars is described, and applied to white dwarf-red dwarf binaries for various mass loss and angular momentum loss mechanisms, and initial conditions. The results, in which the short-time-scale behaviour of the systems is ignored, are classified into four modes of evolution: normal, nuclear evolution dominated, angular momentum loss dominated and hydrodynamical. The clustering below 2 hr is interpreted in terms of evolution following the hydrodynamical mode, and it is suggested that both stars in such systems are of low mass. This may be the commonest type of cataclysmic binary. A possible explanation for the apparent clustering of classical novae to periods of 3 to 5 hr is given, and evolutionary schemes for cataclysmic binaries outlined. It is suggested that the short-period systems (approximately < 2 hr) arise mainly from late case B mass transfer in the original binary and the longer period systems mainly from case C. (author)

  4. EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

    DEFF Research Database (Denmark)

    Borkovits, T.; Albrecht, S.; Rappaport, S.

    2018-01-01

    We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (‘EB’) with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (‘RV’) sp...

  5. Learning to assign binary weights to binary descriptor

    Science.gov (United States)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  6. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  7. Statistical Analysis of Compression Methods for Storing Binary Image for Low-Memory Systems

    Directory of Open Access Journals (Sweden)

    Roman Slaby

    2013-01-01

    Full Text Available The paper is focused on the statistical comparison of the selected compression methods which are used for compression of the binary images. The aim is to asses, which of presented compression method for low-memory system requires less number of bytes of memory. For assessment of the success rates of the input image to binary image the correlation functions are used. Correlation function is one of the methods of OCR algorithm used for the digitization of printed symbols. Using of compression methods is necessary for systems based on low-power micro-controllers. The data stream saving is very important for such systems with limited memory as well as the time required for decoding the compressed data. The success rate of the selected compression algorithms is evaluated using the basic characteristics of the exploratory analysis. The searched samples represent the amount of bytes needed to compress the test images, representing alphanumeric characters.

  8. Reliability analysis of multi-trigger binary systems subject to competing failures

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2013-01-01

    This paper suggests two combinatorial algorithms for the reliability analysis of multi-trigger binary systems subject to competing failure propagation and failure isolation effects. Propagated failure with global effect (PFGE) is referred to as a failure that not only causes outage to the component from which the failure originates, but also propagates through all other system components causing the entire system failure. However, the propagation effect from the PFGE can be isolated in systems with functional dependence (FDEP) behavior. This paper studies two distinct consequences of PFGE resulting from a competition in the time domain between the failure isolation and failure propagation effects. As compared to existing works on competing failures that are limited to systems with a single FDEP group, this paper considers more complicated cases where the systems have multiple dependent FDEP groups. Analysis of such systems is more challenging because both the occurrence order between the trigger failure event and PFGE from the dependent components and the occurrence order among the multiple trigger failure events have to be considered. Two combinatorial and analytical algorithms are proposed. Both of them have no limitation on the type of time-to-failure distributions for the system components. Their correctness is verified using a Markov-based method. An example of memory systems is analyzed to demonstrate and compare the applications and advantages of the two proposed algorithms. - Highlights: ► Reliability of binary systems with multiple dependent functional dependence groups is analyzed. ► Competing failure propagation and failure isolation effect is considered. ► The proposed algorithms are combinatorial and applicable to any arbitrary type of time-to-failure distributions for system components.

  9. Coalescence of Black Hole-Neutron Star Binaries

    Directory of Open Access Journals (Sweden)

    Masaru Shibata

    2011-08-01

    Full Text Available We review the current status of general relativistic studies for the coalescence of black hole-neutron star (BH-NS binaries. First, procedures for a solution of BH-NS binaries in quasi-equilibrium circular orbits and the numerical results, such as quasi-equilibrium sequence and mass-shedding limit, of the high-precision computation, are summarized. Then, the current status of numerical-relativity simulations for the merger of BH-NS binaries is described. We summarize our understanding for the merger and/or tidal disruption processes, the criterion for tidal disruption, the properties of the remnant formed after the tidal disruption, gravitational waveform, and gravitational-wave spectrum.

  10. Influence of stellar duplicity on the form of planetary nebulae

    International Nuclear Information System (INIS)

    Kolesnik, I.G.; Pilyugin, L.S.

    1986-01-01

    Formation of planetary nebulae's spatial structures is considered. Simple expression for angular distribution of density in planetary nebulae is obtained. Bipolar structures are formed effectively in binary systems in which the velocity of the expanding shell around the main star is smaller than the orbital velocity of the satellite. Masses of satellites lie in the range 0.1-0.4Msub(sun). Theoretical isophotal contour map for the model of the planetary nebula NGC 3587 is consistent with observational data. It is shown that central stars of planetary nebulae are usually binary systems

  11. A close-pair binary in a distant triple supermassive black hole system.

    Science.gov (United States)

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  12. Simulating the binary variates for the components of a socio - economical system

    Directory of Open Access Journals (Sweden)

    Stefan V. Stefanescu

    2013-01-01

    Full Text Available Often in practice the components Wj of a sociological or an economical system W take discrete 0-1 values. We talk about how to generate arbitrary observations from a binary 0-1 system B when is known the multidimensional distribution of the discrete random vector B. We also simulated a simplified structure of B given by the marginal distributions together with the matrix of the correlation coefficients. Different properties of the systems W are presented too.

  13. Close Binaries in the 21st Century: New Opportunities and Challenges

    CERN Document Server

    Giménez, Àlvaro; Niarchos, Panagiotis; Rucinski, Slavek

    2006-01-01

    An International Conference entitled "Close Binaries in the 21st Century: New Opportunities and Challenges", was held in Syros island, Greece, from 27 to 30 June, 2005. There are many binary star systems whose components are so close together, that they interact in various ways. Stars in such systems do not pass through all stages of their evolution independently of each other; in fact their evolutionary path is significantly affected by their companions. Processes of interaction include gravitational effects, mutual irradiation, mass exchange, mass loss from the system, phenomena of extended atmospheres, semi-transparent atmospheric clouds, variable thickness disks and gas streams. The zoo of Close Binary Systems includes: Close Eclipsing Binaries (Detached, Semi-detached, Contact), High and Low-Mass X-ray Binaries, Cataclysmic Variables, RS CVn systems, Pulsar Binaries and Symbiotic Stars. The study of these binaries triggered the development of new branches of astrophysics dealing with the structure and ev...

  14. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-01-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.

  15. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2017-09-20

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M {sub ⊙} and a 0.52 M {sub ⊙} WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.

  16. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    Energy Technology Data Exchange (ETDEWEB)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav, E-mail: ryan.j.oelkers@vanderbilt.edu [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN 37235 (United States)

    2017-06-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10{sup 3} au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10{sup 3} and 10{sup 5.5} au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  17. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    International Nuclear Information System (INIS)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav

    2017-01-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10 3 au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10 3 and 10 5.5 au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  18. Isothermal vapour–liquid equilibrium of binary systems containing polyoxyethylene dodecanoate and alcohols

    International Nuclear Information System (INIS)

    Khoiroh, Ianatul; Lee, Ming-Jer

    2013-01-01

    Highlights: ► An autoclave apparatus was used to measure binary vapor-liquid equilibrium data. ► The studied systems are polyoxyethylene dodecanoate with 2-butanol, tert-butanol, and 1-pentanol. ► The saturated pressure data were fitted accurately to the Antoine equation. ► The UNIQUAC, the NRTL, and the Flory–Huggins models correlated well the phase equilibrium data. ► The solvent activities have been calculated. - Abstract: Isothermal vapour–liquid equilibrium (VLE) data have been measured with a static method for three binary systems of polyoxyethylene dodecanoate {(POEDDA) + butan-2-ol} at T = (333.4 to 424.5) K, (POEDDA + tert-butanol) at (321.1 to 401.5) K, and (POEDDA + pentan-1-ol) at (340.2 to 419.4) K. Four feed compositions were studied over the concentration range of 0.099 to 0.432 of POEDDA mole fractions. The experimental results were fitted to the Antoine equation to regress the Antoine constants. These VLE data were further treated by using the Barker method to obtain the best fit of binary interaction parameters from the UNIQUAC, the NRTL, and the Flory–Huggins models. The results showed good agreement between the experimental and calculated values. The Flory–Huggins model yielded the best result with an overall average absolute relative deviation (AARD) of 2.1%. The solvent activities were also calculated and showed agree well with the calculated values from those three activity coefficient models.

  19. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    Science.gov (United States)

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  20. COSMIC probes into compact binary formation and evolution

    Science.gov (United States)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  1. Nonconformally flat initial data for binary compact objects

    International Nuclear Information System (INIS)

    Uryu, Koji; Limousin, Francois; Gourgoulhon, Eric; Friedman, John L.; Shibata, Masaru

    2009-01-01

    A new method is described for constructing initial data for a binary neutron-star system in quasiequilibrium circular orbit. Two formulations for nonconformally flat data, waveless and near-zone helically symmetric, are introduced; in each formulation, the Einstein-Euler system, written in 3+1 form on an asymptotically flat spacelike hypersurface, is exactly solved for all metric components, including the spatially nonconformally flat potentials, and for irrotational flow. A numerical method applicable to both formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are shown for solution sequences of irrotational binary neutron-stars with matter approximated by parametrized equations of state that use a few segments of polytropic equations of state. The binding energy and total angular momentum of solution sequences computed within the conformally flat--Isenberg-Wilson-Mathews--formulation are closer to those of the third post-Newtonian (3PN) two point particles up to the closest orbits, for the more compact stars, whereas sequences resulting from the waveless/near-zone helically symmetric formulations deviate from the 3PN curve even more for the sequences with larger compactness. We think it likely that this correction reflects an overestimation in the Isenberg-Wilson-Mathews formulation as well as in the 3PN formula, by ∼1 cycle in the gravitational-wave phase during the last several orbits. The work suggests that imposing spatial conformal flatness results in an underestimate of the quadrupole deformation of the components of binary neutron-star systems in the last few orbits prior to merger.

  2. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  3. Modeling AGN outbursts from supermassive black hole binaries

    Directory of Open Access Journals (Sweden)

    Tanaka T.

    2012-12-01

    Full Text Available When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN. The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humanly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.

  4. Light curve of the CX Cep eclipsing binary system and characteristics of a Wolf-Rayet star

    International Nuclear Information System (INIS)

    Lipunova, N.A.; Cherepashchuk, A.M.

    1982-01-01

    The photoelectric B, V, R observations of the eclipsing Wolf-Rayet binary CX Cep (WN 5 + 08V, V approximately equal to 12sup(m),1, p approximately equal to 2sup(d),127) have been carried out. The physical characteristics of the WN 5 star, the core radius r 0 =(4.5+-2.5) Rsub(S) (Rsub(S) is the Sun radius) and the brightness temperature of the core Tsub(b)>50 000 K, are determined from the analysis of the light curve lambdasub(eff) approximately equal to 6 000 A. These characteristics are close to those of the WN 5 star in the eclipsing Wolf-Rayet binary V 444 Cyg. The results of the interpretation of the light curves of two eclipsing Wolf-Rayet binaries (V 444 Cyg and CX Cep) confirm the conclusions of the modern theory of evolution of massive close binary systems [ru

  5. Difference between Cr and Ni K-edge XANES spectra of rust layers formed on Fe-based binary alloys exposed to Cl-rich environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    The rust layer formed on weathering steel possesses a strong protective ability against corrosives in an atmospheres. This ability is related to the structure of the rust layer. The difference in the protective ability of a rust layer. The difference in the protective ability of a rust layer in a Cl-rich environment between conventional weathering steel containing Cr and advanced weathering steel containing Ni is believed to be caused by the differences in local structural and chemical properties between alloying elements. Cr and Ni, in the rust layer. In order to examine the effect of these alloying elements on the structure of the rust layer formed on steel in a Cl-rich environment, we have performed Cr and Ni K-edge X-ray absorption near-edge structure (XANES) measurements for the rust layer of Fe-Cr and Fe-Ni binary alloys exposed to a Cl-rich atmosphere using synchrotron radiation. The results of the Cr K-edge XANES measurements for the rust layer of Fe-Cr binary alloys show that the atomic geometry around Cr depends on the concentration of Cr. Therefore, it is expected that the local structure around Cr in the rust layer is unstable. On the other hand, from the results of the Ni K-edge XANES measurements for the rust layer of Fe-Ni binary alloys. Ni is considered to be positioned at a specific site in the crystal structure of a constituent of the rust layer, such as akaganeite or magnetite. As a consequence, Ni negligibly interacts with Cl - ions in the rust layer. (author)

  6. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials

    International Nuclear Information System (INIS)

    Li, Min; Kao, Hongtao; Wu, Zhishen; Tan, Jinmiao

    2011-01-01

    This study prepared a series of binary phase change materials by mixing decanoic acid, dodecanoic acid, hexadecanoic acid and octadecanoic acid each other. The phase-transition temperature of binary fatty acid and its corresponding mixing proportion are calculated with phase diagram thermodynamic method. The results are verified by the experimental result of the heat absorption curve and the Differential Scanning Calorimetry (DSC) analysis curve. The results show that the calculation method of phase diagram thermodynamic calculation can be taken as a basis for mixing proportion of binary fatty acid phase change materials. In addition, the decanoic-dodecanoic acid/diatomite composite phase change material (PCM) are prepared and its microstructure, thermal property and thermal reliability are characterized. The result shows that the decanoic-dodecanoic acid is uniformly adsorbed into diatomite and the form-stable PCM are formed. The phase-transition temperature and the latent heat of the decanoic-dodecanoic acid/diatomite composite PCMs is 16.74 o C and 66.8114 J/g, respectively.

  7. Binary Biometric Representation through Pairwise Adaptive Phase Quantization

    NARCIS (Netherlands)

    Chen, C.; Veldhuis, Raymond N.J.

    Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations

  8. Binary star formation: gravitational fragmentation followed by capture

    Science.gov (United States)

    Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.

    1995-11-01

    We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does

  9. A ROSAT Survey of Contact Binary Stars

    Science.gov (United States)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  10. Absolute Dimensions of Contact Binary Stars in Baade Window

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1999-12-01

    Full Text Available The light curves of the representative 6 contact binary stars observed by OGLE Project of searching for dark matter in our Galaxy have been analyzed by the method of the Wilson and Devinney Differential Correction to find photometric solutions. The orbital inclinations of these binaries are in the range of 52 deg - 69 deg which is lower than that of the solar neighborhood binaries. The Roche lobe filling factor of these binaries are distributed in large range of 0.12 - 0.90. Since absence of spectroscopic observations for these binaries we have found masses of the 6 binary systems based on the intersection between Kepler locus and locus derived from Vandenberg isochrones in the mass - luminosity plane. Then absolute dimensions and distances have been found by combining the masses and the photometric solutions. The distances of the 6 binary systems are distributed in the range of 1 kpc - 6 kpc. This distance range is the limiting range where the contact binaries which have period shorter than a day are visible. Most contact binaries discovered in the Baade window do not belong to the Galactic bulge.

  11. Unmasking the hidden NGTS-3Ab: a hot Jupiter in an unresolved binary system

    Science.gov (United States)

    Günther, Maximilian N.; Queloz, Didier; Gillen, Edward; Delrez, Laetitia; Bouchy, François; McCormac, James; Smalley, Barry; Almleaky, Yaseen; Armstrong, David J.; Bayliss, Daniel; Burdanov, Artem; Burleigh, Matthew; Cabrera, Juan; Casewell, Sarah L.; Cooke, Benjamin F.; Csizmadia, Szilárd; Ducrot, Elsa; Eigmüller, Philipp; Erikson, Anders; Gänsicke, Boris T.; Gibson, Neale P.; Gillon, Michaël; Goad, Michael R.; Jehin, Emmanuël; Jenkins, James S.; Louden, Tom; Moyano, Maximiliano; Murray, Catriona; Pollacco, Don; Poppenhaeger, Katja; Rauer, Heike; Raynard, Liam; Smith, Alexis M. S.; Sohy, Sandrine; Thompson, Samantha J.; Udry, Stéphane; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-05-01

    We present the discovery of NGTS-3Ab, a hot Jupiter found transiting the primary star of an unresolved binary system. We develop a joint analysis of multi-colour photometry, centroids, radial velocity (RV) cross-correlation function (CCF) profiles and their bisector inverse slopes (BIS) to disentangle this three-body system. Data from the Next Generation Transit Survey (NGTS), SPECULOOS and HARPS are analysed and modelled with our new BLENDFITTER software. We find that the binary consists of NGTS-3A (G6V-dwarf) and NGTS-3B (K1V-dwarf) at 5") and are prone to contamination by blended objects. With TESS on the horizon, it is pivotal for the candidate vetting to incorporate all available follow-up information from multi-colour photometry and RV CCF profiles.

  12. H I OBSERVATIONS OF THE SUPERMASSIVE BINARY BLACK HOLE SYSTEM IN 0402+379

    International Nuclear Information System (INIS)

    Rodriguez, C.; Taylor, G. B.; Pihlstroem, Y. M.; Zavala, R. T.; Peck, A. B.

    2009-01-01

    We have recently discovered a supermassive binary black hole system with a projected separation between the two black holes of 7.3 pc in the radio galaxy 0402+379 (Rodriguez et al. 2006). This is the most compact supermassive binary black hole pair yet imaged by more than two orders of magnitude. We present Global VLBI observations at 1.3464 GHz of this radio galaxy, taken to improve the quality of the H I data. Two absorption lines are found toward the southern jet of the source, one redshifted by 370 ± 10 km s -1 and the other blueshifted by 700 ± 10 km s -1 with respect to the systemic velocity of the source, which, along with the results obtained for the opacity distribution over the source, suggests the presence of two mass clumps rotating around the central region of the source. We propose a model consisting of a geometrically thick disk, of which we only see a couple of clumps, that reproduces the velocities measured from the H I absorption profiles. These clumps rotate in circular Keplerian orbits around an axis that crosses one of the supermassive black holes of the binary system in 0402+379. We find an upper limit for the inclination angle of the twin jets of the source to the line of sight of θ = 66 deg., which, according to the proposed model, implies a lower limit on the central mass of ∼7 x 10 8 M sun and a lower limit for the scale height of the thick disk of ∼12 pc.

  13. Dynamical Analysis of the Circumprimary Planet in the Eccentric Binary System HD 59686

    Science.gov (United States)

    Trifonov, Trifon; Lee, Man Hoi; Reffert, Sabine; Quirrenbach, Andreas

    2018-04-01

    We present a detailed orbital and stability analysis of the HD 59686 binary-star planet system. HD 59686 is a single-lined, moderately close (a B = 13.6 au) eccentric (e B = 0.73) binary, where the primary is an evolved K giant with mass M = 1.9 M ⊙ and the secondary is a star with a minimum mass of m B = 0.53 M ⊙. Additionally, on the basis of precise radial velocity (RV) data, a Jovian planet with a minimum mass of m p = 7 M Jup, orbiting the primary on a nearly circular S-type orbit with e p = 0.05 and a p = 1.09 au, has recently been announced. We investigate large sets of orbital fits consistent with HD 59686's RV data by applying bootstrap and systematic grid search techniques coupled with self-consistent dynamical fitting. We perform long-term dynamical integrations of these fits to constrain the permitted orbital configurations. We find that if the binary and the planet in this system have prograde and aligned coplanar orbits, there are narrow regions of stable orbital solutions locked in a secular apsidal alignment with the angle between the periapses, Δω, librating about 0°. We also test a large number of mutually inclined dynamical models in an attempt to constrain the three-dimensional orbital architecture. We find that for nearly coplanar and retrograde orbits with mutual inclination 145° ≲ Δi ≤ 180°, the system is fully stable for a large range of orbital solutions.

  14. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  15. Discovery of a Red Giant with Solar-like Oscillations in an Eclipsing Binary System from Kepler Space-based Photometry

    DEFF Research Database (Denmark)

    Hekker, S.; Debosscher, J.; Huber, D.

    2010-01-01

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler...

  16. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  17. Dielectric properties of binary solutions a data handbook

    CERN Document Server

    Akhadov, Y Y

    1980-01-01

    Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv

  18. The TbBr3–LiBr binary system: Experimental thermodynamic investigation and assessment of phase diagram

    International Nuclear Information System (INIS)

    Rycerz, L.; Gong, W.; Gaune-Escard, M.

    2013-01-01

    Highlights: ► DSC measurements for the (LiBr + TbBr 3 ) system. ► congruently Li3TbBr 6 and incongruently melting Li5TbBr 8 compounds. ► Thermodynamic description of the liquid phase in the (LiBr + TbBr 3 ) system. ► Assessment with a two-sublattice ionic solution model. - Abstract: DSC was used to study the phase equilibrium in the TbBr 3 –LiBr binary system. The results obtained provided a basis for constructing the phase diagram of this system. It exhibits two compounds: Li 5 TbBr 8 , which decomposes in the solid state at 611 K, and Li 3 TbBr 6 , which melts congruently at 785 K with the related enthalpy 59.1 kJ·mol −1 . The binary LiBr–TbBr 3 system was then optimized using the available experimental information on phase diagram and thermodynamic properties. A two-sub-lattice ionic solution model (Li + ) P :(Br − , TbBr 6 −3 , TbBr 3 ) Q was adopted to describe the liquid phase. The present assessment of the binary LiBr–TbBr 3 system was in good agreement with the corresponding experimental data and confirmed their consistency.

  19. Different types of configurations of equipotential surfaces of binary systems with very luminous components

    Energy Technology Data Exchange (ETDEWEB)

    Zorec, J [Centre National de la Recherche Scientifique, 75 - Paris (France). Inst. d' Astrophysique; Niemela, V [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    1980-02-04

    If the luminosities and the masses of the components of a binary system are known, it is possible to determine from the diagrams presented here, the type of configuration of equipotential surfaces that correspond to it.

  20. Asymmetric supernova explosions and the origin of binary pulsars

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1978-01-01

    The author investigates the effect of asymmetric supernova explosions on the orbital parameters of binary systems with a compact component. Such explosions are related to the origin of binary pulsars. The degree of asymmetry of the explosion is represented by the kick velocity gained by the exploding star due to the asymmetric mass ejection. The required kick velocity to produce the observed parameters of the binary pulsar PSR 1913 + 16 should be larger than approximately 80 km s -1 if the mass of the exploding star is larger than approximately 4 solar masses. The mean survival probability of the binary system ( ) is examined for various degrees of asymmetry in the explosion. The rare occurrence of a binary pulsar does not neccessarily imply that such a probability is low since not all pulsars have originated in a binary system. Assuming the birth rate of pulsars by Taylor and Manchester (1977), it is derived that would be as high as 0.25. Such values of can be obtained if the mass of the exploding stars is, in general, not large (< approximately 10 solar masses). (Auth.)

  1. Formation and Evolution of Neutron Star Binaries: Masses of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2012-02-01

    Full Text Available Neutron star (NS is one of the most interesting astrophysical compact objects for hardronic physics. It is believed that the central density of NS can reach several times the normal nuclear matter density (ρ0. Hence, the inner part of NS is the ultimate testing place for the physics of dense matter. Recently, the mass of NS in a NS-white dwarf (WD binary PSR J1614-2230 has been estimated to be 1.97 ± 0.04M๏ [1]. Since this estimate is based on the observed Shapiro delay, it can give the lower limit of the maximum NS mass and rules out many soft equations of state. On the other hand, all the well-measured NS masses in NS-NS binaries are smaller than 1.5M๏. In this work, by introducing the supercritical accretion during the binary evolution, we propose a possibility of forming higher mass NS in NS-WD binaries. In this scenario, the lifetimes of NS and WD progenitors are significantly different, and NS in NS-WD binary can accrete > 0.5M๏ after NS formation during the giant phase of the progenitor of WD. On the other hand, for the binary system with NS and heavier (> 8M๏ giants, the first-born NS will accrete more from the companion and can collapse into black hole. The only way to avoid the supercritical accretion is that the initial masses of progenitors of NS binary should be very close so that they evolve almost at the same time and don’t have time to accrete after NS formation.

  2. The influence of massive black hole binaries on the morphology of merger remnants

    Science.gov (United States)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.

    2018-06-01

    Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.

  3. Different types of configurations of equipotential surfaces of binary systems with very luminous components

    International Nuclear Information System (INIS)

    Zorec, Juan

    1980-01-01

    If the luminosities and the masses of the components of a binary system are known, it is possible to determine from the diagrams presented here, the type of configuration of equipotential surfaces that correspond to it [fr

  4. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    International Nuclear Information System (INIS)

    Kashyap, Rahul; Fisher, Robert; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2015-01-01

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia

  5. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Rahul; Fisher, Robert [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); García-Berro, Enrique; Aznar-Siguán, Gabriela [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades, 5, E-08860 Castelldefels (Spain); Ji, Suoqing [Department of Physics, Broida Hall, University of California Santa Barbara, Santa Barbara, CA 93106–9530 (United States); Lorén-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-02-10

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  6. General approach to the testing of binary solubility systems for thermodynamic consistency. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Hamm, L.L.; Van Brunt, V.

    1982-08-01

    A comparison of implicit Runge-Kutta and orthogonal collocation methods is made for the numerical solution to the ordinary differential equation which describes the high-pressure vapor-liquid equilibria of a binary system. The systems of interest are limited to binary solubility systems where one of the components is supercritical and exists as a noncondensable gas in the pure state. Of the two methods - implicit Runge-Kuta and orthogonal collocation - this paper attempts to present some preliminary but not necessarily conclusive results that the implicit Runge-Kutta method is superior for the solution to the ordinary differential equation utilized in the thermodynamic consistency testing of binary solubility systems. Due to the extreme nonlinearity of thermodynamic properties in the region near the critical locus, an extended cubic spline fitting technique is devised for correlating the P-x data. The least-squares criterion is employed in smoothing the experimental data. Even though the derivation is presented specifically for the correlation of P-x data, the technique could easily be applied to any thermodynamic data by changing the endpoint requirements. The volumetric behavior of the systems must be given or predicted in order to perform thermodynamic consistency tests. A general procedure is developed for predicting the volumetric behavior required and some indication as to the expected limit of accuracy is given

  7. Mass transfer dynamics in double degenerate binary systems

    International Nuclear Information System (INIS)

    Dan, M; Rosswog, S; Brueggen, M

    2009-01-01

    We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.

  8. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  9. X-RAY EMISSION FROM THE DOUBLE-BINARY OB-STAR SYSTEM QZ CAR (HD 93206)

    International Nuclear Information System (INIS)

    Parkin, E. R.; Naze, Y.; Rauw, G.; Broos, P. S.; Townsley, L. K.; Pittard, J. M.; Moffat, A. F. J.; Oskinova, L. M.; Waldron, W. L.

    2011-01-01

    X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The respective orbits of systems A (O9.7 I+b2 v, P A = 21 days) and B (O8 III+o9 v, P B = 6 days) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three-temperature thermal plasma model, characterized by cool, moderate, and hot plasma components at kT ≅ 0.2, 0.7, and 2 keV, respectively, and a circumstellar absorption of ≅0.2 x 10 22 cm -2 . Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of ≅7 x 10 -13 erg s -1 cm -2 , do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. Yet, despite this, system B is expected to produce an observed X-ray flux well in excess of the observations. If one considers the wind of the O8 III star to be disrupted by mass transfer, the model and observations are in far better agreement, which lends support to the previous suggestion of mass transfer in the O8 III + o9 v binary. We conclude that the X-ray emission from QZ Car can be reasonably well accounted for by a combination of contributions mainly from the single stars and the mutual wind-wind collision between systems A and B.

  10. Thermodynamic modeling of saturated liquid compositions and densities for asymmetric binary systems composed of carbon dioxide, alkanes and alkanols

    International Nuclear Information System (INIS)

    Bayestehparvin, Bita; Nourozieh, Hossein; Kariznovi, Mohammad; Abedi, Jalal

    2015-01-01

    Highlights: • Phase behavior of the binary systems containing largely different components. • Equation of state modeling of binary polar and non-polar systems by utilizing different mixing rules. • Three different mixing rules (one-parameter, two-parameters and Wong–Sandler) coupled with Peng–Robinson equation of state. • Two-parameter mixing rule shows promoting results compared to one-parameter mixing rule. • Wong–Sandler mixing rule is unable to predict saturated liquid densities with sufficient accuracy. - Abstract: The present study mainly focuses on the phase behavior modeling of asymmetric binary mixtures. Capability of different mixing rules and volume shift in the prediction of solubility and saturated liquid density has been investigated. Different binary systems of (alkane + alkanol), (alkane + alkane), (carbon dioxide + alkanol), and (carbon dioxide + alkane) are considered. The composition and the density of saturated liquid phase at equilibrium condition are the properties of interest. Considering composition and saturated liquid density of different binary systems, three main objectives are investigated. First, three different mixing rules (one-parameter, two parameters and Wong–Sandler) coupled with Peng–Robinson equation of state were used to predict the equilibrium properties. The Wong–Sandler mixing rule was utilized with the non-random two-liquid (NRTL) model. Binary interaction coefficients and NRTL model parameters were optimized using the Levenberg–Marquardt algorithm. Second, to improve the density prediction, the volume translation technique was applied. Finally, Two different approaches were considered to tune the equation of state; regression of experimental equilibrium compositions and densities separately and spontaneously. The modeling results show that there is no superior mixing rule which can predict the equilibrium properties for different systems. Two-parameter and Wong–Sandler mixing rule show promoting

  11. Asteroseismic Investigations of the Binary System HD 176465

    Science.gov (United States)

    Gai, Ning; Basu, Sarbani; Tang, Yanke

    2018-04-01

    HD 176465 is a binary system for which both components are solar-like pulsators and oscillation frequencies were observed by the Kepler mission. In this paper, we have modeled the asteroseismic and spectroscopic data of the stars, and have determined their convection-zone helium abundances using the signatures left by the He II ionization zone on the mode frequencies. As expected, we find that the components of the binary are of the same age within uncertainties (3.087 ± 0.580 Gyr and 3.569 ± 0.912 Gyr); they also have the same initial helium abundance (Y init = 0.253 ± 0.006 and 0.254 ± 0.008). Their current metallicity ([Fe/H] = ‑0.275 ± 0.04 and ‑0.285 ± 0.04) is also the same within errors. Fits to the signature of the He II acoustic glitch yield current helium abundances of Y A = 0.224 ± 0.006 and Y B = 0.233 ± 0.008 for the two components. Analyzing the complete ensemble of models generated for this investigation, we find that both the amplitude and acoustic depth of the glitch signature arising from the second helium ionization zone and the base of the convection zone (CZ) are functions of mass. We show that the acoustic depths of these glitches are positively correlated with each other. The analysis can help us to detect the internal structure and constrain the chemical compositions.

  12. IUE observations of the eclipsing binary Epsilon Aurigae

    International Nuclear Information System (INIS)

    Hack, M.; Selvelli, P.L.

    1978-01-01

    It is stated that the eclipsing binary Epsilon Aur is a most peculiar binary system and it has not been explained satisfactorily. Observations of this system using the International Ultraviolet Explorer (IUE) collected at the Villafranca Satellite Tracking Station of the European Space Agency are here reported. (author)

  13. A New Orbit for the Eclipsing Binary V577 Oph

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, Elizabeth J. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Barnes, Thomas G. III; Montemayor, Thomas J. [The University of Texas at Austin, McDonald Observatory, 1 University Station, C1402, Austin, TX 78712-0259 (United States); Skillen, Ian, E-mail: ejjeffer@calpoly.edu, E-mail: tgb@astro.as.utexas.edu, E-mail: tm@astro.as.utexas.edu, E-mail: wji@ing.iac.es [Isaac Newton Group, Apartado de Correos 321, E-38700 Santa Cruz de La Palma, Canary Islands (Spain)

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  14. A New Orbit for the Eclipsing Binary V577 Oph

    Science.gov (United States)

    Jeffery, Elizabeth J.; Barnes, Thomas G., III; Skillen, Ian; Montemayor, Thomas J.

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by -2 km s-1 is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov & Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  15. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  16. Hexadecyltrimethylammonium bromide (CTA-Br) and 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF4) in aqueous solution: An ephemeral binary system.

    Science.gov (United States)

    Comelles, Francesc; Ribosa, Isabel; Gonzalez, Juan José; Garcia, M Teresa

    2017-03-15

    Mixtures of the cationic surfactant hexadecyltrimethylammonium bromide (CTA-Br) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF 4 ) in aqueous solutions are expected to behave as typical binary cationic surfactant system taking into account the surface activity displayed by the ionic liquid, instead of considering the IL as a water cosolvent. Surface tension and conductivity measurements have been conducted as a function of the total concentration of the mixtures at different surfactant mole fraction (α CTA-Br ) to investigate the surface active properties. Turbidity immediately appearing when the compounds are mixed in water suggests the spontaneous formation of the low soluble compound hexadecyltrimethylammonium tetrafluoroborate (CTA-BF 4 ), together with the salt formed by the respective counterions bmim + and Br - in solution. For α CTA-Br ≠0.5, furthermore of the mentioned compounds, the spare bmim-BF 4 (for α CTA-Br Br (for α CTA-Br >0.5), are also present in the aqueous solution. Systems containing excess of bmim-BF 4 show a low critical aggregate concentration (cac), but an unexpected high surface tension at cac (γ cac ≈53-56mN/m), as pure CTA-BF 4 . For systems containing excess of CTA-Br, cac increases but γ cac decreases up to 36mN/m. Mixtures of pure CTA-BF 4 and bmim-BF 4 or CTA-Br behave as typical binary surfactant systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Density, viscosity, isothermal (vapour + liquid) equilibrium, excess molar volume, viscosity deviation, and their correlations for chloroform + methyl isobutyl ketone binary system

    International Nuclear Information System (INIS)

    Clara, Rene A.; Gomez Marigliano, Ana C.; Solimo, Horacio N.

    2007-01-01

    Density and viscosity measurements for pure chloroform and methyl isobutyl ketone at T = (283.15, 293.15, 303.15, and 313.15) K as well as for the binary system {x 1 chloroform + (1 - x 1 ) methyl isobutyl ketone} at the same temperatures were made over the whole concentration range. The experimental results were fitted to empirical equations, which permit the calculation of these properties over the whole concentration and temperature ranges studied. Data of the binary mixture were further used to calculate the excess molar volume and viscosity deviation. The (vapour + liquid) equilibrium (VLE) at T = 303.15 K for this binary system was also measured in order to calculate the activity coefficients and the excess molar Gibbs energy. This binary system shows no azeotrope and negative deviations from ideal behaviour. The excess or deviation properties were fitted to the Redlich-Kister polynomial relation to obtain their coefficients and standard deviations

  18. Massive Binary Black Holes in the Cosmic Landscape

    Science.gov (United States)

    Colpi, Monica; Dotti, Massimo

    2011-02-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view

  19. Volumetric properties of ternary (IL + 2-propanol or 1-butanol or 2-butanol + ethyl acetate) systems and binary (IL + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate) systems

    International Nuclear Information System (INIS)

    Bahadur, Indra; Deenadayalu, Nirmala; Tywabi, Zikhona; Sen, Sabyasachi; Hofman, Tadeusz

    2012-01-01

    Highlights: ► Experimental densities were determined at T = (298.15, 303.15, and 313.15) K. ► IL: methyl trioctylammonium bis(trifluoromethylsulfonyl)imide was used. ► Virial Based Mixing Rule correlation of the binary excess molar volume data. ► Binary excess molar volume was both negative and positive. ► Ternary excess molar volume data was correlated with the Cibulka equation. - Abstract: The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA] + [Tf 2 N] − ) was used for three of the five binary systems studied. The binary systems were ([MOA] + [Tf 2 N] − + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures. The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.

  20. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  1. ADDITIONAL MASSIVE BINARIES IN THE CYGNUS OB2 ASSOCIATION

    International Nuclear Information System (INIS)

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Ewing, Ian; Lundquist, Michael; Alexander, Michael; Vargas-Alvarez, Carlos; Choi, Heather; Bagley Kiminki, Megan M.; Henderson, C. B.

    2012-01-01

    We report the discovery and orbital solutions for two new OB binaries in the Cygnus OB2 Association, MT311 (B2V + B3V) and MT605 (B0.5V + B2.5:V). We also identify the system MT429 as a probable triple system consisting of a tight eclipsing 2.97 day B3V+B6V pair and a B0V at a projected separation of 138 AU. We further provide the first spectroscopic orbital solutions to the eclipsing, double-lined, O-star binary MT696 (O9.5V + B1:V), the double-lined, early B binary MT720 (B0-1V + B1-2V), and the double-lined, O-star binary MT771 (O7V + O9V). These systems exhibit orbital periods between 1.5 days and 12.3 days, with the majority having P <6 days. The two new binary discoveries and six spectroscopic solutions bring the total number of known massive binaries in the central region of the Cygnus OB2 Association to 20, with all but two having full orbital solutions.

  2. ADDITIONAL MASSIVE BINARIES IN THE CYGNUS OB2 ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Ewing, Ian; Lundquist, Michael; Alexander, Michael; Vargas-Alvarez, Carlos; Choi, Heather [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82070 (United States); Bagley Kiminki, Megan M. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Henderson, C. B. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2012-03-01

    We report the discovery and orbital solutions for two new OB binaries in the Cygnus OB2 Association, MT311 (B2V + B3V) and MT605 (B0.5V + B2.5:V). We also identify the system MT429 as a probable triple system consisting of a tight eclipsing 2.97 day B3V+B6V pair and a B0V at a projected separation of 138 AU. We further provide the first spectroscopic orbital solutions to the eclipsing, double-lined, O-star binary MT696 (O9.5V + B1:V), the double-lined, early B binary MT720 (B0-1V + B1-2V), and the double-lined, O-star binary MT771 (O7V + O9V). These systems exhibit orbital periods between 1.5 days and 12.3 days, with the majority having P <6 days. The two new binary discoveries and six spectroscopic solutions bring the total number of known massive binaries in the central region of the Cygnus OB2 Association to 20, with all but two having full orbital solutions.

  3. SDSS J001641-000925: THE FIRST STABLE RED DWARF CONTACT BINARY WITH A CLOSE-IN STELLAR COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.-B.; Jiang, L.-Q.; Zhu, L.-Y.; Zhao, E. G.; He, J.-J.; Liao, W.-P.; Wang, J.-J.; Liu, L.; Zhou, X.; Liu, N. P. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernández Lajús, E. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); Soonthornthum, B.; Rattanasoon, S.; Aukkaravittayapun, S., E-mail: qsb@ynao.ac.cn [National Astronomical Research Insititude of Thailand, 191 Siriphanich Bldg., Huay Kaew Road, Chiang Mai 50200 (Thailand)

    2015-01-10

    SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P-dot ∼8 s yr{sup −1}. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (O–C) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M {sub 3}sin i' ∼ 0.14 M {sub ☉}. The orbital separation between the third body and the central binary is about 2.8 AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.

  4. A New Formula for the BER of Binary Modulations with Dual-Branch Selection over Generalized-K

    KAUST Repository

    Ansari, Imran Shafique

    2012-09-08

    Error performance is one of the main performance measures and the derivation of its closed-form expression has proved to be quite involved for certain communication systems operating over composite fading channels. In this letter, a unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing independent but not necessarily identically distributed generalized-K fading is derived in terms of the extended generalized bivariate Meijer G-function.

  5. Oscillating red giants in eclipsing binary systems: empirical reference value for asteroseismic scaling relation

    Science.gov (United States)

    Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.

    2018-05-01

    The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.

  6. Perceptual biases for rhythm: The Mismatch Negativity latency indexes the privileged status of binary vs non-binary interval ratios.

    Science.gov (United States)

    Pablos Martin, X; Deltenre, P; Hoonhorst, I; Markessis, E; Rossion, B; Colin, C

    2007-12-01

    Rhythm perception appears to be non-linear as human subjects are better at discriminating, categorizing and reproducing rhythms containing binary vs non-binary (e.a. 1:2 vs 1:3) as well as metrical vs non-metrical (e.a. 1:2 vs 1:2.5) interval ratios. This study examined the representation of binary and non-binary interval ratios within the sensory memory, thus yielding a truly sensory, pre-motor, attention-independent neural representation of rhythmical intervals. Five interval ratios, one binary, flanked by four non-binary ones, were compared on the basis of the MMN they evoked when contrasted against a common standard interval. For all five intervals, the larger the contrast was, the larger the MMN amplitude was. The binary interval evoked a significantly much shorter (by at least 23 ms) MMN latency than the other intervals, whereas no latency difference was observed between the four non-binary intervals. These results show that the privileged perceptual status of binary rhythmical intervals is already present in the sensory representations found in echoic memory at an early, automatic, pre-perceptual and pre-motor level. MMN latency can be used to study rhythm perception at a truly sensory level, without any contribution from the motor system.

  7. Isobaric (vapor + liquid) equilibria for the ternary system of (ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa

    International Nuclear Information System (INIS)

    Lai, Hung-Sheng; Lin, Yi-Feng; Tu, Chein-Hsiun

    2014-01-01

    Highlights: • We report VLE data at 101.3 kPa for mixtures of ethanol, water, and 1,3-propanediol. • The VLE data were correlated by the Wilson, NRTL, and UNIQUAC models. • The ternary VLE data were predicted from binary VLE data using the three models. • The VLE effect of 1,3-propanediol on the azeotropic ethanol + water mixture was studied. • The azeotropic point of ethanol + water disappears at 30 wt% of 1,3-propanediol. -- Abstract: Isobaric (vapor + liquid) equilibrium (VLE) at P = 101.3 kPa have been measured for the ternary system of (ethanol + water + 1,3-propanediol) and for the corresponding binary systems of (ethanol + water), (ethanol + 1,3-propanediol), and (water + 1,3-propnaediol) using a Hunsmann-type equilibrium still with circulation of both vapor and liquid phases. The ternary mixtures were prepared by mixing ethanol and pure water with three concentrations (10, 30, and 50) wt% of 1,3-propanediol in the overall liquid mixtures in order to study the effect of 1,3-propanediol on the VLE of (ethanol + water). The equilibrium compositions of mixtures were analyzed by gas–liquid chromatography. The relative volatilities of ethanol with respect to water were also determined. The results of the investigation indicate the disappearance of the binary azeotrope between ethanol and water when the concentration of 1,3-propanediol is up to 30 wt%. The liquid activity coefficients were calculated using the modified Raoult’s law. The thermodynamic consistency of the VLE data was performed for the three binary systems using Van Ness direct test. The new binary and ternary VLE data were successfully correlated using the Wilson, NRTL, and UNIQUAC models, for which the binary interaction parameters are reported

  8. A DEEPLY ECLIPSING DETACHED DOUBLE HELIUM WHITE DWARF BINARY

    International Nuclear Information System (INIS)

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.; Drake, A. J.; Koester, D.

    2011-01-01

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the Hα absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M 1 = 0.283 ± 0.064 M sun and M 2 = 0.274 ± 0.034 M sun , making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.

  9. Formation and Evolution of Contact Binaries

    Directory of Open Access Journals (Sweden)

    Peter P. Eggleton

    2012-06-01

    Full Text Available describe a series of processes, including hierarchical fragmentation, gravitational scattering, Kozai cycles within triple systems, tidal friction and magnetic braking, that I believe are responsible for producing the modest but significant fraction of stars that are observed as contact binaries. I also discuss further processes, namely heat transport, mass transport, nuclear evolution, thermal relaxation oscillations, and further magnetic braking with tidal friction, that influence the evolution during contact. The endpoint, for contact, is that the two components merge into a single star, as recently was observed in the remarkable system V1309 Sco. The single star probably throws off some mass and rotates rapidly at first, and then slows by magnetic braking to become a rather inconspicuous but normal dwarf or subgiant. If however the contact binary was part of a triple system originally–as I suggested above was rather likely–then the result could be a widish binary with apparently non-coeval components. There are several such known.

  10. The BANANA Survey: Spin-Orbit Alignment in Binary Stars

    Science.gov (United States)

    Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.

    2012-04-01

    Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.

  11. Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections

    Science.gov (United States)

    Antonini, Fabio; Rasio, Frederic A.

    2016-11-01

    Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.

  12. Binary nucleation kinetics. III. Transient behavior and time lags

    International Nuclear Information System (INIS)

    Wyslouzil, B.E.; Wilemski, G.

    1996-01-01

    Transient binary nucleation is more complex than unary because of the bidimensionality of the cluster formation kinetics. To investigate this problem qualitatively and quantitatively, we numerically solved the birth-death equations for vapor-to-liquid phase transitions. Our previous work showed that the customary saddle point and growth path approximations are almost always valid in steady state gas phase nucleation and only fail if the nucleated solution phase is significantly nonideal. Now, we demonstrate that in its early transient stages, binary nucleation rarely, if ever, occurs via the saddle point. This affects not only the number of particles forming but their composition and may be important for nucleation in glasses and other condensed mixtures for which time scales are very long. Before reaching the state of saddle point nucleation, most binary systems pass through a temporary stage in which the region of maximum flux extends over a ridge on the free energy surface. When ridge crossing nucleation is the steady state solution, it thus arises quite naturally as an arrested intermediate state that normally occurs in the development of saddle point nucleation. While the time dependent and steady state distributions of the fluxes and concentrations for each binary system are strongly influenced by the gas composition and species impingement rates, the ratio of nonequilibrium to equilibrium concentrations has a quasiuniversal behavior that is determined primarily by the thermodynamic properties of the liquid mixture. To test our quantitive results of the transient behavior, we directly calculated the time lag for the saddle point flux and compared it with the available analytical predictions. Although the analytical results overestimate the time lag by factors of 1.2-5, they should be adequate for purposes of planning experiments. We also found that the behavior of the saddle point time lag can indicate when steady state ridge crossing nucleation will occur

  13. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  14. Noble gas, binary mixtures for commercial gas-cooled reactor systems

    International Nuclear Information System (INIS)

    El-Genk, M. S.; Tournier, J. M.

    2007-01-01

    Commercial gas cooled reactors employ helium as a coolant and working fluid for the Closed Brayton Cycle (CBC) turbo-machines. Helium has the highest thermal conductivity and lowest dynamic viscosity of all noble gases. This paper compares the relative performance of pure helium to binary mixtures of helium and other noble gases of higher molecular weights. The comparison is for the same molecular flow rate, and same operating temperatures and geometry. Results show that although helium is a good working fluid because of its high heat transfer coefficient and significantly lower pumping requirement, a binary gas mixture of He-Xe with M = 15 gm/mole has a heat transfer coefficient that is ∼7% higher than that of helium and requires only 25% of the number stages of the turbo-machines. The binary mixture, however, requires 3.5 times the pumping requirement with helium. The second best working fluid is He-Kr binary mixture with M = 10 gm/mole. It has 4% higher heat transfer coefficient than He and requires 30% of the number of stages in the turbo-machines, but requires twice the pumping power

  15. 3D Modeling of Accretion Disks and Circumbinary Envelopes in Close Binaries

    Science.gov (United States)

    Bisikalo, D.

    2010-12-01

    A number of observations prove the complex flow structure in close binary stars. The gas dynamic structure of the flow is governed by the stream of matter from the inner Lagrange point, the accretion disk, the circum-disk halo, and the circumbinary envelope. Observations reflect the current state of a binary system and for their interpretation one should consider the gas dynamics of flow patterns. Three-dimensional numerical gasdynamical modeling is used to study the gaseous flow structure and dynamics in close binaries. It is shown that the periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near the Lagrange point L3. All these factors lead to periodic ejections of matter from the accretion disk and circum-disk halo into the outer layers of the circumbinary envelope. The results of simulations are used to estimate the physical parameters of the circumbinary envelope, including 3D matter distribution in it, and the matter-flow configuration and dynamics. The envelope becomes optically thick for systems with high mass-exchange rates, M⊙=10-8 Msun/year, and has a significant influence on the binary's observed features. The uneven phase distributions of the matter and density variations due to periodic injections of matter into the envelope are important for interpretations of observations of CBSs.

  16. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada); Davison, Cassy L. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Malo, Lison [Canada-France-Hawaii Telescope, 65–1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Reylé, Céline, E-mail: baron@astro.umontreal.ca [Institut Utinam, CNRS UMR6213, Université de Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France)

    2015-03-20

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3.

  17. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    International Nuclear Information System (INIS)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel; Davison, Cassy L.; Malo, Lison; Reylé, Céline

    2015-01-01

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3

  18. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Patricelli, B.; Razzano, M.; Fidecaro, F. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Cella, G. [INFN—Sezione di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Pian, E.; Stamerra, A. [Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa (Italy); Branchesi, M., E-mail: barbara.patricelli@pi.infn.it, E-mail: massimiliano.razzano@unipi.it, E-mail: giancarlo.cella@pi.infn.it, E-mail: francesco.fidecaro@unipi.it, E-mail: elena.pian@sns.it, E-mail: marica.branchesi@uniurb.it, E-mail: stamerra@oato.inaf.it [Universit\\a di Urbino, Via Aurelio Saffi, 2, 61029 Urbino (Italy)

    2016-11-01

    The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016–2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ∼ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.

  19. Phase equilibrium properties of binary and ternary systems containing di-isopropyl ether + 1-butanol + benzene at 313.15 K

    International Nuclear Information System (INIS)

    Villamanan, Rosa M.; Martin, M. Carmen; Chamorro, Cesar R.; Villamanan, Miguel A.; Segovia, Jose J.

    2006-01-01

    (Vapour + liquid) equilibria data of (di-isopropyl ether + 1-butanol + benzene) (di-isopropyl ether + 1-butanol) and (1-butanol + benzene) have been measured at T = 313.15 K using an isothermal total pressure cell. Data reduction by Barker's method provides correlations for the excess molar Gibbs energy using the Margules equation for the binary systems and the Wohl expansion for the ternary. The Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems reported here

  20. A Application of WD Model to EB Type Contact Binary System

    Directory of Open Access Journals (Sweden)

    Su-Yeon Oh

    2000-12-01

    Full Text Available The EB type contact binaries show large temperature difference ( T 1,000K between two components. Thus we have modified the mode 3 of the WD program to adjust albedos, limb darkening coefficients and gravity darkening exponents for both components of such binaries, while the values for those parameters should be same for both components in the original WD program. Both of the modified and the original versions have been applied to the EB type contact binaries such as DO Cas, GO Cyg, and FS Lup. The computed light curves with modified version fit better to the observations.

  1. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  2. Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    Science.gov (United States)

    Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.

    2017-08-01

    Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.

  3. Algorithms for searching Fast radio bursts and pulsars in tight binary systems.

    Science.gov (United States)

    Zackay, Barak

    2017-01-01

    Fast radio bursts (FRB's) are an exciting, recently discovered, astrophysical transients which their origins are unknown.Currently, these bursts are believed to be coming from cosmological distances, allowing us to probe the electron content on cosmological length scales. Even though their precise localization is crucial for the determination of their origin, radio interferometers were not extensively employed in searching for them due to computational limitations.I will briefly present the Fast Dispersion Measure Transform (FDMT) algorithm,that allows to reduce the operation count in blind incoherent dedispersion by 2-3 orders of magnitude.In addition, FDMT enables to probe the unexplored domain of sub-microsecond astrophysical pulses.Pulsars in tight binary systems are among the most important astrophysical objects as they provide us our best tests of general relativity in the strong field regime.I will provide a preview to a novel algorithm that enables the detection of pulsars in short binary systems using observation times longer than an orbital period.Current pulsar search programs limit their searches for integration times shorter than a few percents of the orbital period.Until now, searching for pulsars in binary systems using observation times longer than an orbital period was considered impossible as one has to blindly enumerate all options for the Keplerian parameters, the pulsar rotation period, and the unknown DM.Using the current state of the art pulsar search techniques and all computers on the earth, such an enumeration would take longer than a Hubble time. I will demonstrate that using the new algorithm, it is possible to conduct such an enumeration on a laptop using real data of the double pulsar PSR J0737-3039.Among the other applications of this algorithm are:1) Searching for all pulsars on all sky positions in gamma ray observations of the Fermi LAT satellite.2) Blind searching for continuous gravitational wave sources emitted by pulsars with

  4. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  5. A New Equilibrium State for Singly Synchronous Binary Asteroids

    Science.gov (United States)

    Golubov, Oleksiy; Unukovych, Vladyslav; Scheeres, Daniel J.

    2018-04-01

    The evolution of rotation states of small asteroids is governed by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, nonetheless some asteroids can stop their YORP evolution by attaining a stable equilibrium. The same is true for binary asteroids subjected to the binary YORP (BYORP) effect. Here we discuss a new type of equilibrium that combines these two, which is possible in a singly synchronous binary system. This equilibrium occurs when the normal YORP, the tangential YORP, and the BYORP compensate each other, and tidal torques distribute the angular momentum between the components of the system and dissipate energy. If unperturbed, such a system would remain singly synchronous in perpetuity with constant spin and orbit rates, as the tidal torques dissipate the incoming energy from impinging sunlight at the same rate. The probability of the existence of this kind of equilibrium in a binary system is found to be on the order of a few percent.

  6. Activity coefficients and excess Gibbs' free energy of some binary mixtures formed by p-cresol at 95.23 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, T.E. Vittal [Properties Group, Chemical Engineering Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007 (India); Venkanna, N. [Swamy Ramanandateertha Institute of Science and Technology, Hyderabad 508 004 (India); Kumar, Y. Naveen [Swamy Ramanandateertha Institute of Science and Technology, Hyderabad 508 004 (India); Ashok, K. [Swamy Ramanandateertha Institute of Science and Technology, Hyderabad 508 004 (India); Sirisha, N.M. [Swamy Ramanandateertha Institute of Science and Technology, Hyderabad 508 004 (India); Prasad, D.H.L. [Properties Group, Chemical Engineering Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)]. E-mail: dasika@iict.res.in

    2007-07-15

    Bubble point temperatures at 95.23 kPa, over the entire composition range are measured for the binary mixtures formed by p-cresol with 1,2-dichloroethane, 1,1,2,2-tetrachloroethane trichloroethylene, tetrachloroethylene, and o- , m- , and p-xylenes, making use of a Swietoslawski-type ebulliometer. Liquid phase mole fraction (x {sub 1}) versus bubble point temperature (T) measurements are found to be well represented by the Wilson model. The optimum Wilson parameters are used to calculate the vapor phase composition, activity coefficients, and excess Gibbs free energy. The results are discussed.

  7. Fitting Formulae and Constraints for the Existence of S-type and P-type Habitable Zones in Binary Systems

    International Nuclear Information System (INIS)

    Wang Zhaopeng; Cuntz, Manfred

    2017-01-01

    We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.

  8. Fitting Formulae and Constraints for the Existence of S-type and P-type Habitable Zones in Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhaopeng; Cuntz, Manfred, E-mail: zhaopeng.wang@mavs.uta.edu, E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2017-10-01

    We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.

  9. EFFICIENT MERGER OF BINARY SUPERMASSIVE BLACK HOLES IN MERGING GALAXIES

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Just, Andreas; Merritt, David

    2011-01-01

    In spherical galaxies, binary supermassive black holes (SMBHs) have difficulty reaching sub-parsec separations due to depletion of stars on orbits that intersect the massive binary-the 'final parsec problem'. Galaxies that form via major mergers are substantially non-spherical, and it has been argued that the centrophilic orbits in triaxial galaxies might provide stars to the massive binary at a high enough rate to avoid stalling. Here we test that idea by carrying out fully self-consistent merger simulations of galaxies containing central SMBHs. We find hardening rates of the massive binaries that are indeed much higher than in spherical models and essentially independent of the number of particles used in the simulations. Binary eccentricities remain high throughout the simulations. Our results constitute a fully stellar-dynamical solution to the final parsec problem and imply a potentially high rate of events for low-frequency gravitational wave detectors like LISA.

  10. PROSPECTS FOR DETECTING ASTEROSEISMIC BINARIES IN KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Miglio, A.; Chaplin, W. J.; Elsworth, Y.; Handberg, R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Farmer, R.; Kolb, U. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Girardi, L. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR8617, Université Paris XI, Bâtiment 121, F-91405 Orsay Cedex (France)

    2014-03-20

    Asteroseismology may in principle be used to detect unresolved stellar binary systems comprised of solar-type stars and/or red giants. This novel method relies on the detection of the presence of two solar-like oscillation spectra in the frequency spectrum of a single light curve. Here, we make predictions of the numbers of systems that may be detectable in data already collected by the NASA Kepler Mission. Our predictions, which are based upon TRILEGAL and BiSEPS simulations of the Kepler field of view, indicate that as many as 200 or more ''asteroseismic binaries'' may be detectable in this manner. Most of these binaries should be comprised of two He-core-burning red giants. Owing largely to the limited numbers of targets with the requisite short-cadence Kepler data, we expect only a small number of detected binaries containing solar-type stars. The predicted yield of detections is sensitive to the assumed initial mass ratio distribution (IMRD) of the binary components and therefore represents a sensitive calibration of the much debated IMRD near mass ratio unity.

  11. Serial binary interval ratios improve rhythm reproduction

    Directory of Open Access Journals (Sweden)

    Xiang eWu

    2013-08-01

    Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  12. Serial binary interval ratios improve rhythm reproduction.

    Science.gov (United States)

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  13. Accuracy of binary black hole waveform models for aligned-spin binaries

    Science.gov (United States)

    Kumar, Prayush; Chu, Tony; Fong, Heather; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-05-01

    Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave detectors. Reliable gravitational waveform models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of 84 high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries (mass-ratio 1 ≤q ≤3 ), and samples independently both black hole spins up to a dimensionless spin magnitude of 0.9 for equal-mass binaries and 0.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass ≳50 M⊙ ). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio ρ , except that SEOBNRv2's efficiency drops slightly for both black hole spins aligned at large magnitude. For parameter estimation, modeling inaccuracies of the SEOBNRv2 model are found to be smaller than systematic uncertainties for moderately strong GW events up to roughly ρ ≲15 . PhenomD's modeling errors are found to be smaller than SEOBNRv2's, and are generally irrelevant for ρ ≲20 . Both models' accuracy deteriorates with increased mass ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all four waveform models during parameter estimation for several recovered binary parameters: chirp mass, mass ratio, and effective spin.

  14. White dwarf-main sequence binaries from LAMOST: the DR5 catalogue

    Science.gov (United States)

    Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.

    2018-03-01

    We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically-selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.

  15. Giants of eclipse the ζ [Zeta] Aurigae stars and other binary systems

    CERN Document Server

    Griffin, Elizabeth

    2015-01-01

    The zeta Aurigae stars are the rare but illustrious sub-group of binary stars that undergo the dramatic phenomenon of "chromospheric eclipse". This book provides detailed descriptions of the ten known systems, illustrates them richly with examples of new spectra, and places them in the context of stellar structure and evolution. Comprised of a large cool giant plus a small hot dwarf, these key eclipsing binaries reveal fascinating changes in their spectra very close to total eclipse, when the hot star shines through differing heights of the "chromosphere", or outer atmosphere, of the giant star. The phenomenon provides astrophysics with the means of analyzing the outer atmosphere of a giant star and how that material is shed into space. The physics of these critical events can be explained qualitatively, but it is more challenging to extract hard facts from the observations, and tough to model the chromosphere in any detail. The book offers current thinking on mechanisms for heating a star's chromosphere an...

  16. Correlation and prediction of mixing thermodynamic properties of ester-containing systems: Ester + alkane and ester + ester binary systems and the ternary dodecane + ethyl pentanoate + ethyl ethanoate

    International Nuclear Information System (INIS)

    Pérez, Noelia; Fernández, Luís; Ortega, Juan; Toledo, Francisco J.; Wisniak, Jaime

    2012-01-01

    Highlights: ► Excess enthalpies and volumes were measured for ester–ester–alkane. ► Mixing behaviour for ester–ester, ester–alkane and ester–ester–alkane are analyzed. ► Correlations with a new polynomial model reproduce well the mixing properties. ► UNIFAC predictions for h E result acceptable excluding the ester–ester mixtures. - Abstract: Excess thermodynamic properties V m E and H m E , have been measured for the ternary mixture dodecane + ethyl pentanoate + ethyl ethanoate and for the corresponding binaries dodecane + ethyl pentanoate, dodecane + ethyl ethanoate, ethyl pentanoate + ethyl ethanoate at 298.15 K. All mixtures show endothermic and expansive effects. Experimental results are correlated with a suitable equation whose final form for the excess ternary quantity M E contains the particular contributions of the three binaries (i–j) and a last term corresponding to the ternary, all of them obtained considering fourth-order interactions. The fit goodness for all mixtures is good and comparable to others equations taken from the literature. In this work the dissolution model for the binaries and ternary is analyzed with a special attention to ester–ester binaries whose behaviour is discussed. The application of the UNIFAC group contribution model to estimate the H m E yields acceptable results for the binaries (with the exception of ester–ester) and for the ternary mixture.

  17. Kajian Pendekatan Binary Log dalam Change Data Capture

    Directory of Open Access Journals (Sweden)

    Muhammad Febrian Rachmadhan Amri

    2017-08-01

    Full Text Available The online business era causes the form of transactions to occur so quickly that the information stored in the data warehouse becomes invalid. Companies are required to have a strong system, which is a system that is real time in order to be able to perform data loading into the media repository that resides on different hosts in the near-real time. Data Warehouse is used as a media repository of data that has the nature of subject-oriented, integrated, time-variant, and is fixed. Data Warehouse can be built into real time management with the advantages possessed and utilize Change Data Capture. Change Data Capture (CDC is a technique that can be used as problem solution to build real time data warehousing (RTDW. The binary log approach in change data capture is made to record any data manipulation activity that occurs at the OLTP level and is managed back before being stored into the Data Warehouse (loading process. This can improve the quality of data management so that the creation of the right information, because the information available is always updated. Testing shows that Binary Log approach in Change Data Capture (BinlogCDC is able to generate real time data management, valid current information, dynamic communication between systems, and data management without losing any information from data manipulation.

  18. Thermodynamic and analytical studies of drugs binary systems of paracetamol mixed with pseudoephedrine.HCl, dextropropoxyphene.HCl and tramadol.HCl

    International Nuclear Information System (INIS)

    Boumrah, Yacine; Bouzahia, Imane; Bouanani, Sabrina; Khimeche, Kamel; Dahmani, Abdallah

    2016-01-01

    Highlights: • Solid–liquid equilibria of binary drug mixtures were investigated by DSC. • The study revealed a simple eutectic behavior of the investigated drug binary systems. • DSC results have been exploited for quantification purpose. • DSC quantification results were in good agreement with those obtained by HPTLC. - Abstract: In this paper, we report a DSC investigation of solid–liquid equilibria in three binary mixtures of paracetamol, namely with pseudoephedrine, dextropropoxyphene and tramadol, resulting in a temperature-composition phase diagrams with eutectic equilibrium. Eutectic mole fractions, temperatures and enthalpies were determined and reported for each system. The study reports also a direct exploitation of the DSC results for the quantification purpose, which were in good agreement with those obtained by a standard analytical method namely high performance thin layer chromatography (HPTLC), used in this work for comparison purpose.

  19. Thermodynamic and analytical studies of drugs binary systems of paracetamol mixed with pseudoephedrine.HCl, dextropropoxyphene.HCl and tramadol.HCl

    Energy Technology Data Exchange (ETDEWEB)

    Boumrah, Yacine [Laboratoire de thermodynamique et modélisation moléculaire, Faculté de chimie, USTHB, BP 32 El-Alia, 16111, Bab-Ezzouar, Alger (Algeria); Institut National de Criminalistique et de Criminologie (INCC-GN), Bouchaoui, Alger (Algeria); Bouzahia, Imane; Bouanani, Sabrina [Institut National de Criminalistique et de Criminologie (INCC-GN), Bouchaoui, Alger (Algeria); Khimeche, Kamel [Ecole Militaire Polytechnique EMP, BP 17 Bordj-El-Bahri, Alger (Algeria); Dahmani, Abdallah, E-mail: adahmani@yahoo.fr [Laboratoire de thermodynamique et modélisation moléculaire, Faculté de chimie, USTHB, BP 32 El-Alia, 16111, Bab-Ezzouar, Alger (Algeria)

    2016-06-20

    Highlights: • Solid–liquid equilibria of binary drug mixtures were investigated by DSC. • The study revealed a simple eutectic behavior of the investigated drug binary systems. • DSC results have been exploited for quantification purpose. • DSC quantification results were in good agreement with those obtained by HPTLC. - Abstract: In this paper, we report a DSC investigation of solid–liquid equilibria in three binary mixtures of paracetamol, namely with pseudoephedrine, dextropropoxyphene and tramadol, resulting in a temperature-composition phase diagrams with eutectic equilibrium. Eutectic mole fractions, temperatures and enthalpies were determined and reported for each system. The study reports also a direct exploitation of the DSC results for the quantification purpose, which were in good agreement with those obtained by a standard analytical method namely high performance thin layer chromatography (HPTLC), used in this work for comparison purpose.

  20. Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates.

    Science.gov (United States)

    Chaudhuri, M; Semenov, I; Nosenko, V; Thomas, H M

    2016-05-01

    A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.

  1. Isothermal (vapour + liquid) equilibrium data for binary systems of (n-hexane + CO2 or CHF3)

    International Nuclear Information System (INIS)

    Williams-Wynn, Mark D.; Naidoo, Paramespri; Ramjugernath, Deresh

    2016-01-01

    Highlights: • (Static-analytic + static-synthetic) phase equilibrium measurements. • Binary VLE data for (CO 2 + n-hexane) and (trifluoromethane + n-hexane). • Thermodynamic models were fitted to the experimental data. • Liquid–liquid immiscibility occurred with (trifluoromethane + n-hexane) system. - Abstract: The (vapour + liquid) equilibrium (VLE) was measured for the (carbon dioxide + n-hexane) binary system at temperatures between T = (303.1 and 323.1) K. In addition, VLE and (vapour + liquid + liquid) equilibria (VLLE) were determined for the (trifluoromethane + n-hexane) binary system at temperatures between T = (272.9 and 313.3) K and pressures in the range of P = (1.0 to 5.7) MPa. Measurements were undertaken in a static-analytic apparatus, with verification of experimental values undertaken using a static-synthetic equilibrium cell to measure bubble point pressures at several compositions. The phase equilibrium results were modelled with the Peng–Robinson equation of state with the Mathias–Copeman alpha function, coupled with the Wong–Sandler mixing rules. Regression of the data was performed with the NRTL and the UNIQUAC activity coefficient models with the Wong–Sandler mixing rules, and the performance of the models was compared. Critical loci for both systems were estimated, using the calculation procedures of Ungerer et al. and Heidemann and Khalil. For the (trifluoromethane + n-hexane) system, liquid–liquid immiscibility was experienced at the lowest temperature measured (T = 272.9 K). At higher temperatures, no immiscibility was visible during the measurements; however, the models continued to predict a miscibility gap.

  2. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  3. Volumetric behaviour of the (2,2,4-trimethylpentane + methylbenzene + butan-1-ol) ternary system and its binary sub-systems within the temperature range (298.15–328.15) K

    International Nuclear Information System (INIS)

    Morávková, Lenka; Troncoso, Jacobo; Machanová, Karolina; Sedláková, Zuzana

    2013-01-01

    Highlights: • Density measurements. • Excess molar volume at atmospheric pressure. • Redlich–Kister equation. • ERAS model. • Comparison of our data with literature data. -- Abstract: Densities and speeds of sound of the (2,2,4-trimethylpentane + methylbenzene + butan-1-ol) ternary system as well as all its binary sub-systems were measured at four temperatures, namely 298.15 K, 308.15 K, 318.15 K, and 328.15 K at atmospheric pressure by a vibrating-tube densimeter DSA 5000. The binary (isooctane + toluene) system was studied previously. Excess quantities (molar volume, adiabatic compressibility, and isobaric thermal expansivity) of the mixtures studied were calculated from the experimental densities and speed of sounds. The excess molar volume data were correlated using the Redlich–Kister equation. Both the positive and S-shaped excess molar volume curves were found for the systems studied. The excess molar volumes versus concentration of binary systems differed in the shape and temperature dependence. The experimental binary data were compared with literature data. The experimental excess molar volumes were analyzed by means of the Extended Real Associated Solution (ERAS) model. The experimental data and the ERAS model can help to estimate real behaviour of the systems studied

  4. Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping.

    Science.gov (United States)

    Xu, Cheng; Gao, Guanjun; Chen, Sai; Zhang, Jie; Luo, Ming; Hu, Rong; Yang, Qi

    2016-11-14

    We compare the performance of sub-symbol-rate sampling for polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) signals in super-Nyquist wavelength division multiplexing (WDM) system by using quadrature duo-binary (QDB) and quadrature four-level poly-binary (4PB) shaping together with maximum likelihood sequence estimation (MLSE). PDM-16QAM is adopted in the simulation to be compared with PDM-QPSK. The numerical simulations show that, for a software defined communication system, the level number of quadrature poly-binary modulation should be adjusted to achieve the optimal performance according to channel spacing, required OSNR and sampling rate restrictions of optics. In the experiment, we demonstrate 3-channel 12-Gbaud PDM-QPSK transmission with 10-GHz channel spacing and only 8.4-GSa/s ADC sampling rate at lowest. By using QDB or 4PB shaping with 3tap-MLSE, the sampling rate can be reduced to the signal baud rate (1 samples per symbol) without penalty.

  5. LUT REVEALS AN ALGOL-TYPE ECLIPSING BINARY WITH THREE ADDITIONAL STELLAR COMPANIONS IN A MULTIPLE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.-Y.; Zhou, X.; Qian, S.-B.; Li, L.-J.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Hu, J.-Y., E-mail: zhuly@ynao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China)

    2016-04-15

    A complete light curve of the neglected eclipsing binary Algol V548 Cygni in the UV band was obtained with the Lunar-based Ultraviolet Telescope in 2014 May. Photometric solutions are obtained using the Wilson–Devinney method. It is found that solutions with and without third light are quite different. The mass ratio without third light is determined to be q = 0.307, while that derived with third light is q = 0.606. It is shown that V548 Cygni is a semi-detached binary where the secondary component is filling the critical Roche lobe. An analysis of all available eclipse times suggests that there are three cyclic variations in the O–C diagram that are interpreted by the light travel-time effect via the presence of three additional stellar companions. This is in agreement with the presence of a large quantity of third light in the system. The masses of these companions are estimated as m sin i′ ∼ 1.09, 0.20, and 0.52 M{sub ⊙}. They are orbiting the central binary with orbital periods of about 5.5, 23.3, and 69.9 years, i.e., in 1:4:12 resonance orbit. Their orbital separations are about 4.5, 13.2, and 26.4 au, respectively. Our photometric solutions suggest that they contribute about 32.4% to the total light of the multiple system. No obvious long-term changes in the orbital period were found, indicating that the contributions of the mass transfer and the mass loss due to magnetic braking to the period variations are comparable. The detection of three possible additional stellar components orbiting a typical Algol in a multiple system make V548 Cygni a very interesting binary to study in the future.

  6. IN-SYNC VI. Identification and Radial Velocity Extraction for 100+ Double-Lined Spectroscopic Binaries in the APOGEE/IN-SYNC Fields

    Science.gov (United States)

    Fernandez, M. A.; Covey, Kevin R.; De Lee, Nathan; Chojnowski, S. Drew; Nidever, David; Ballantyne, Richard; Cottaar, Michiel; Da Rio, Nicola; Foster, Jonathan B.; Majewski, Steven R.; Meyer, Michael R.; Reyna, A. M.; Roberts, G. W.; Skinner, Jacob; Stassun, Keivan; Tan, Jonathan C.; Troup, Nicholas; Zasowski, Gail

    2017-08-01

    We present radial velocity measurements for 70 high confidence, and 34 potential binary systems in fields containing the Perseus Molecular Cloud, Pleiades, NGC 2264, and the Orion A star-forming region. Eighteen of these systems have been previously identified as binaries in the literature. Candidate double-lined spectroscopic binaries (SB2s) are identified by analyzing the cross-correlation functions (CCFs) computed during the reduction of each APOGEE spectrum. We identify sources whose CCFs are well fit as the sum of two Lorentzians as likely binaries, and provide an initial characterization of the system based on the radial velocities indicated by that dual fit. For systems observed over several epochs, we present mass ratios and systemic velocities; for two systems with observations on eight or more epochs, and which meet our criteria for robust orbital coverage, we derive initial orbital parameters. The distribution of mass ratios for multi-epoch sources in our sample peaks at q = 1, but with a significant tail toward lower q values. Tables reporting radial velocities, systemic velocities, and mass ratios are provided online. We discuss future improvements to the radial velocity extraction method we employ, as well as limitations imposed by the number of epochs currently available in the APOGEE database. The Appendix contains brief notes from the literature on each system in the sample, and more extensive notes for select sources of interest.

  7. Dynamical evolution of a fictitious population of binary Neptune Trojans

    Science.gov (United States)

    Brunini, Adrián

    2018-03-01

    We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.

  8. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  9. Non-binary or genderqueer genders

    OpenAIRE

    Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy

    2016-01-01

    Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are genderqueer' or non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging ...

  10. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  11. ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems.

    Science.gov (United States)

    González-Domínguez, Jorge; Expósito, Roberto R

    2018-01-01

    Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/.

  12. Growth Mechanism of Gold Nanorods in Binary Surfactant System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Mi; Seo, Sun-Hwa; Joe, Ara; Shim, Kyu-Dong; Jang, Eue-Soon [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2016-06-15

    In order to reveal the growth mechanism of gold nanorods (GNRs) in a binary surfactant system, we synthesized various GNRs by changing the concentration of the surfactants, AgNO{sub 3}, and HBr in the growth solution. We found that the benzyldime thylhexadecylammoniumchloride surfactant had weak interaction with the gold ions, but it could reduce the membrane fluidity. In addition, we could dramatically decrease the cetyltrimethylammonium bromide concentration required for GNR growth by adding an HBr solution. Notably, Ag{sup +} ions were necessary to break the symmetry of the seed crystals for GNR growth, but increasing the concentration of Ag{sup +} and Br{sup -} ions caused a decrease in the template size.

  13. A solution for the binary system V1373 Orionis

    Science.gov (United States)

    Hauck, Norbert

    2016-02-01

    Binary system V1373 Ori (HD 36107) has been investigated in the photometric passbands VIc and by spectroscopy (radial velocities). Modelling of the data delivered a single and consistent solution for a detached configuration consisting of a large K-type giant primary component having a radius of 39.40 ± 0.43 Rsun and a mass of 1.132 ± 0.043 Msun, and an invisible dwarf secondary component having a mass of 0.661 ± 0.025 Msun. The red giant fits into a stellar model for a moderately sub-solar metallicity of Z = 0.008. [English and German online-version available under www.bav-astro.eu/rb/rb2016-2/4.html].

  14. Collapse of white dwarfs in low mass binary systems

    International Nuclear Information System (INIS)

    Isern, J.; Canal, R.; Garcia-Berro, E.; Hernanz, M.; Labay, J.

    1987-01-01

    Low-mass binary X-ray sources and cataclysmic variables are composed of a compact star plus a non-degenerate star with a mass of the order of 1 M sun . In the first case, the degenerate star is a neutron star. In the second case, the star is a white dwarf. The similarities of both systems are so high that it is worthwhile to look for the possibility of obtaining a neutron star from the collapse of a white dwarf that accretes matter. The present work shows that massive, initially cold white dwarfs can collapse non-explosively if they accrete mass at a rate greater than 1.0E-7 M sun per year. (Author)

  15. A binary plasmid system for shuffling combinatorial antibody libraries.

    Science.gov (United States)

    Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A

    1992-11-01

    We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis.

  16. Higher-order relativistic periastron advances and binary pulsars

    International Nuclear Information System (INIS)

    Damour, T.; Schafer, G.

    1988-01-01

    The contributions to the periastron advance of a system of two condensed bodies coming from relativistic dynamical effects of order higher than the usual first post-Newtonian (1PN) equations of motion are investigated. The structure of the solution of the orbital second post-Newtonian (2PN) equations of motion is given in a simple parametrized form. The contributions to the secular pariastron advance, and the period, of orbital 2PN effects are then explicitly worked out by using the Hamilton-Jacobi method. The spin-orbit contribution to the secular precession of the orbit in space is rederived in a streamlined way by making full use of Hamiltonian methods. These results are then applied to the theoretical interpretation of the observational data of pulsars in close eccentric binary systems. It is shown that the higher-order relativistic contributions are already of theoretical and astophysical significance for interpreting the high-precision measurement of the secular periastron advance of PSR 1913+16 achived by Taylor and coworkers. The case of extremely fast spinning (millisecond) binary pulsars is also discussed, and shown to offer an easier ground for getting new tests of general relativity, and/or, a direct measurement of the moment of inertia of a neutron star

  17. Different photoluminescent properties of binary and ternary europium chelates doped in PMMA

    International Nuclear Information System (INIS)

    Liu Hongguo; Park, Seongtae; Jang, Kiwan; Zhang Wansong; Seo, Hyo-Jin; Lee, Yong-Ill

    2003-01-01

    Two kinds of europium-β-diketone chelates, binary Eu(DBM) 3 and ternary Eu(DBM) 3 phen were doped in poly(methyl methacrylate) (PMMA). These chelates show very different photoluminescent (PL) behaviors: the hypersensitive 5 D 0 → 7 F 2 emission bands of Eu(DBM) 3 phen change slightly with the molar ratios, while those of Eu(DBM) 3 change obviously and regularly with the molar ratios. The results of the luminescent lifetimes of 5 D 0 levels show that the binary chelate exists as two kinds of species in the doped systems, and the lifetimes and contents of each species change with the molar ratios, while the ternary chelate exists as one kind of species in the doped systems. X-ray diffraction (XRD) patterns of the binary chelate doped systems give some diffraction peaks that are different from those of pure chelate and change with the molar ratios, indicating new kinds of crystal structures formed, and consequently, the first coordination sphere of Eu 3+ ion changes; while those of the ternary chelate doped systems just show amorphous diffraction halos of the host, indicating that the ternary chelate exist in an amorphous state and disperse well in the host. The FTIR spectra of PMMA also change gradually with increasing the molar ratios of the doped two kinds of chelates, and the XRD patterns show that the amorphous halos of PMMA in the doped systems are different from those of pure PMMA and change with the molar ratios, too, suggesting the interaction between the guest and the host

  18. Astrophysical Implications of the Binary Black Hole Merger GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  19. Astrophysical Implications of the Binary Black-hole Merger GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  20. Prediction of (liquid + liquid) equilibrium for binary and ternary systems containing ionic liquids with the bis[(trifluoromethyl)sulfonyl]imide anion using the ASOG method

    International Nuclear Information System (INIS)

    Robles, Pedro A.; Cisternas, Luis A.

    2015-01-01

    Highlights: • ASOG model was used to predict LLE data for ionic liquid systems. • Twenty five binary and seven ternary systems that include the NTf 2 anion were used. • New group interaction parameters were determined. • The results are satisfactory, with rms deviations of about 3%. - Abstract: Ionic liquids are neoteric, environmentally friendly solvents (as they do not produce emissions) composed of large organic cations and relatively small inorganic anions. They have favorable physical properties, such as negligible volatility and a wide range of liquid existence. (Liquid + liquid) equilibrium (LLE) data for systems including ionic liquids, although essential for the design, optimization and operation of separation processes, remain scarce. However, some recent studies have presented ternary LLE data involving several ionic liquids and organic compounds such as alkanes, alkenes, alkanols, ethers and aromatics, as well as water. In this work, the ASOG model for the activity coefficient is used to predict LLE data for 25 binary and 07 ternary systems at 101.3 kPa and several temperatures; all the systems are formed by ionic liquids including the bis[(trifluoromethyl)sulfonyl]imide (NTf 2 ) anion plus alkanes, alkenes, cycloalkanes, alkanols, water, thiophene and aromatics. New group interaction parameters were determined using a modified Simplex method, minimizing a composition-based objective function of experimental data obtained from the literature. The results are satisfactory, with rms deviations of approximately 3%

  1. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    Science.gov (United States)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  2. The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures

    Science.gov (United States)

    Schnittman, Jeremy

    2010-01-01

    We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.

  3. Optical studies of massive X-ray binaries

    International Nuclear Information System (INIS)

    Zuiderwijk, E.J.

    1979-01-01

    Photometric and spectroscopic studies of several optical counterparts of massive X-ray binaries are presented. Subjects of study were the binary systems:HD77581/4U0900-40 (Vela X-1), HD153919/4U1700-37, Wray 977/4U1223-62 and Sk160/4U0115-74 (=SMC X-1). (Auth.)

  4. Constraining stellar physics from red-giant stars in binaries – stellar rotation, mixing processes and stellar activity

    Directory of Open Access Journals (Sweden)

    Beck P. G.

    2017-01-01

    Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC 9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.

  5. MONTE CARLO POPULATION SYNTHESIS OF POST-COMMON-ENVELOPE WHITE DWARF BINARIES AND TYPE Ia SUPERNOVA RATE

    Energy Technology Data Exchange (ETDEWEB)

    Ablimit, Iminhaji [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2016-07-20

    Binary population synthesis (BPS) studies provide a comprehensive way to understand the evolution of binaries and their end products. Close white dwarf (WD) binaries have crucial characteristics for examining the influence of unresolved physical parameters on binary evolution. In this paper, we perform Monte Carlo BPS simulations, investigating the population of WD/main-sequence (WD/MS) binaries and double WD binaries using a publicly available binary star evolution code under 37 different assumptions for key physical processes and binary initial conditions. We considered different combinations of the binding energy parameter ( λ {sub g}: considering gravitational energy only; λ {sub b}: considering both gravitational energy and internal energy; and λ {sub e}: considering gravitational energy, internal energy, and entropy of the envelope, with values derived from the MESA code), CE efficiency, critical mass ratio, initial primary mass function, and metallicity. We find that a larger number of post-CE WD/MS binaries in tight orbits are formed when the binding energy parameters are set by λ {sub e} than in those cases where other prescriptions are adopted. We also determine the effects of the other input parameters on the orbital periods and mass distributions of post-CE WD/MS binaries. As they contain at least one CO WD, double WD systems that evolved from WD/MS binaries may explode as type Ia supernovae (SNe Ia) via merging. In this work, we also investigate the frequency of two WD mergers and compare it to the SNe Ia rate. The calculated Galactic SNe Ia rate with λ = λ {sub e} is comparable to the observed SNe Ia rate, ∼8.2 × 10{sup 5} yr{sup 1} – ∼4 × 10{sup 3} yr{sup 1} depending on the other BPS parameters, if a DD system does not require a mass ratio higher than ∼0.8 to become an SNe Ia. On the other hand, a violent merger scenario, which requires the combined mass of two CO WDs ≥ 1.6 M {sub ⊙} and a mass ratio >0.8, results in a much lower

  6. Evolving ONe WD+He star systems to intermediate-mass binary pulsars

    Science.gov (United States)

    Liu, D.; Wang, B.; Chen, W.; Zuo, Z.; Han, Z.

    2018-06-01

    It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 M_{⊙} WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which have short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on this work.

  7. The Discovery of the Most Accelerated Binary Pulsar

    OpenAIRE

    Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.

    2018-01-01

    Pulsars in relativistic binary systems have emerged as fantastic natural laboratories for testing theories of gravity, the most prominent example being the double pulsar, PSR J0737$-$3039. The HTRU-South Low Latitude pulsar survey represents one of the most sensitive blind pulsar surveys taken of the southern Galactic plane to date, and its primary aim has been the discovery of new relativistic binary pulsars. Here we present our binary pulsar searching strategy and report on the survey's fla...

  8. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Gianninas, A.; Allende Prieto, Carlos

    2013-01-01

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P ≤ 1 day) binaries. Our sample includes four objects with remarkable log g ≅ 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times 0.9 M ☉ companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  9. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  10. An empirical relationship for homogenization in single-phase binary alloy systems

    Science.gov (United States)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1979-01-01

    A semiempirical formula is developed for describing the extent of interaction between constituents in single-phase binary alloy systems with planar, cylindrical, or spherical interfaces. The formula contains two parameters that are functions of mean concentration and interface geometry of the couple. The empirical solution is simple, easy to use, and does not involve sequential calculations, thereby allowing quick estimation of the extent of interactions without lengthy calculations. Results obtained with this formula are in good agreement with those from a finite-difference analysis.

  11. Advances in metal forming expert system for metal forming

    CERN Document Server

    Hingole, Rahulkumar Shivajirao

    2015-01-01

    This comprehensive book offers a clear account of the theory and applications of advanced metal forming. It provides a detailed discussion of specific forming processes, such as deep drawing, rolling, bending extrusion and stamping. The author highlights recent developments of metal forming technologies and explains sound, new and powerful expert system techniques for solving advanced engineering problems in metal forming. In addition, the basics of expert systems, their importance and applications to metal forming processes, computer-aided analysis of metalworking processes, formability analysis, mathematical modeling and case studies of individual processes are presented.

  12. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    Science.gov (United States)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  13. Stellar winds in binary X-ray systems

    Science.gov (United States)

    Macgregor, K. B.; Vitello, P. A. J.

    1982-01-01

    It is thought that accretion from a strong stellar wind by a compact object may be responsible for the X-ray emission from binary systems containing a massive early-type primary. To investigate the effect of X-ray heating and ionization on the mass transfer process in systems of this type, an idealized model is constructed for the flow of a radiation-driven wind in the presence of an X-ray source of specified luminosity, L sub x. It is noted that for low values of L sub x, X-ray photoionization gives rise to additional ions having spectral lines with wavelengths situated near the peak of the primary continuum flux distribution. As a consequence, the radiation force acting on the gas increases in relation to its value in the absence of X-rays, and the wind is accelerated to higher velocities. As L sub x is increased, the degree of ionization of the wind increases, and the magnitude of the radiation force is diminished in comparison with the case in which L sub x = 0. This reduction leads at first to a decrease in the wind velocity and ultimately (for L sub x sufficiently large) to the termination of radiatively driven mass loss.

  14. THE REFLECTION EFFECT IN INTERACTING BINARIES OR IN PLANET-STAR SYSTEMS

    International Nuclear Information System (INIS)

    Budaj, J.

    2011-01-01

    There are many similarities between interacting binary stars and stars with a close-in giant extrasolar planet. The reflection effect is a well-known example. Although the generally accepted treatment of this effect in interacting binaries is successful in fitting light curves of eclipsing binaries, it is not very suitable for studying cold objects irradiated by hot objects or extrasolar planets. The aim of this paper is to develop a model of the reflection effect which could be easily incorporated into the present codes for modeling of interacting binaries so that these can be used to study the aforementioned objects. Our model of the reflection effect takes into account the reflection (scattering), heating, and heat redistribution over the surface of the irradiated object. The shape of the object is described by the non-spherical Roche potential expected for close objects. Limb and gravity darkening are included in the calculations of the light output from the system. The model also accounts for the orbital revolution and rotation of the exoplanet with appropriate Doppler shifts for the scattered and thermal radiation. Subsequently, light curves and/or spectra of several exoplanets have been modeled and the effects of the heat redistribution, limb darkening/brightening, (non-)gray albedo, and non-spherical shape have been studied. Recent observations of planet-to-star flux ratio of HD189733b, WASP12b, and WASP-19b at various phases were reproduced with very good accuracy. It was found that HD189733b has a low Bond albedo and intense heat redistribution, while WASP-19b has a low Bond albedo and low heat redistribution. The exact Roche geometries and temperature distributions over the surface of all 78 transiting extrasolar planets have been determined. Departures from the spherical shape may vary considerably but departures of about 1% in the radius are common within the sample. In some cases, these departures can reach 8%, 12%, or 14%, for WASP-33b, WASP-19b, and

  15. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    Science.gov (United States)

    Almog, Assaf; Garlaschelli, Diego

    2014-09-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.

  16. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    International Nuclear Information System (INIS)

    Almog, Assaf; Garlaschelli, Diego

    2014-01-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information. (paper)

  17. Binary black hole in a double magnetic monopole field

    Science.gov (United States)

    Rodriguez, Maria J.

    2018-01-01

    Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.

  18. Binary black hole in a double magnetic monopole field

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Maria J. [Utah State University, Department of Physics, Logan, UT (United States); Max Planck Institute for Gravitational Physics, Potsdam (Germany)

    2018-01-15

    Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows. (orig.)

  19. Hiding a Covert Digital Image by Assembling the RSA Encryption Method and the Binary Encoding Method

    OpenAIRE

    Kuang Tsan Lin; Sheng Lih Yeh

    2014-01-01

    The Rivest-Shamir-Adleman (RSA) encryption method and the binary encoding method are assembled to form a hybrid hiding method to hide a covert digital image into a dot-matrix holographic image. First, the RSA encryption method is used to transform the covert image to form a RSA encryption data string. Then, all the elements of the RSA encryption data string are transferred into binary data. Finally, the binary data are encoded into the dot-matrix holographic image. The pixels of the dot-matri...

  20. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    Science.gov (United States)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-09-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ˜34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.

  1. Optical three-step binary-logic-gate-based MSD arithmetic

    Science.gov (United States)

    Fyath, R. S.; Alsaffar, A. A. W.; Alam, M. S.

    2003-11-01

    A three-step modified signed-digit (MSD) adder is proposed which can be optically implmented using binary logic gates. The proposed scheme depends on encoding each MSD digits into a pair of binary digits using a two-state and multi-position based encoding scheme. The design algorithm depends on constructing the addition truth table of binary-coded MSD numbers and then using Karnaugh map to achieve output minimization. The functions associated with the optical binary logic gates are achieved by simply programming the decoding masks of an optical shadow-casting logic system.

  2. Characterization Of Improved Binary Phase-Only Filters In A Real-Time Coherent Optical Correlation System

    Science.gov (United States)

    Flannery, D.; Keller, P.; Cartwright, S.; Loomis, J.

    1987-06-01

    Attractive correlation system performance potential is possible using magneto-optic spatial light modulators (SLM) to implement binary phase-only reference filters at high rates, provided the correlation performance of such reduced-information-content filters is adequate for the application. In the case studied here, the desired filter impulse response is a rectangular shape, which cannot be achieved with the usual binary phase-only filter formulation. The correlation application problem is described and techniques for synthesizing improved filter impulse response are considered. A compromise solution involves the cascading of a fixed amplitude-only weighting mask with the binary phase-only SLM. Based on simulations presented, this approach provides improved impulse responses and good correlation performance, while retaining the critical feature of real-time variations of the size, shape, and orientation of the rectangle by electronic programming of the phase pattern in the SLM. Simulations indicate that, for at least one very challenging input scene clutter situation, these filters provide higher correlation signal-to-noise than does "ideal" correlation, i.e. using a perfect rectangle filter response.

  3. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  4. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  5. Infrared observations and mass loss of the binary system V861 Sco

    International Nuclear Information System (INIS)

    Tanzi, E.G.; Maraschi, L.; Tarenghi, M.; Treves, A.

    1981-01-01

    V 861 Sco (HD 152667) is a well known single line binary. The proposed association with a variable X-ray source has triggered renewed interest in the system. Here the authors report on a series of photometric observations in the infrared (from 1.25 to 4.8 μ) taken at various orbital phases which improve and extend previous measurements by Tanzi et al. The results give evidence of a phase modulated infrared excess which can be interpreted in terms of a non isotropic mass flow in the system or, alternately, of a contribution from a colder secondary component. (Auth.)

  6. Jet Precession Driven by a Supermassive Black Hole Binary System in the BL Lac Object PG 1553+113

    Science.gov (United States)

    Caproni, Anderson; Abraham, Zulema; Motter, Juliana Cristina; Monteiro, Hektor

    2017-12-01

    The recent discovery of a roughly simultaneous periodic variability in the light curves of the BL Lac object PG 1553+113 at several electromagnetic bands represents the first case of such odd behavior reported in the literature. Motivated by this, we analyzed 15 GHz interferometric maps of the parsec-scale radio jet of PG 1553+113 to verify the presence of a possible counterpart of this periodic variability. We used the Cross-entropy statistical technique to obtain the structural parameters of the Gaussian components present in the radio maps of this source. We kinematically identified seven jet components formed coincidentally with flare-like features seen in the γ-ray light curve. From the derived jet component positions in the sky plane and their kinematics (ejection epochs, proper motions, and sky position angles), we modeled their temporal changes in terms of a relativistic jet that is steadily precessing in time. Our results indicate a precession period in the observer’s reference frame of 2.24 ± 0.03 years, compatible with the periodicity detected in the light curves of PG 1553+113. However, the maxima of the jet Doppler boosting factor are systematically delayed relative to the peaks of the main γ-ray flares. We propose two scenarios that could explain this delay, both based on the existence of a supermassive black hole binary system in PG 1553+113. We estimated the characteristics of this putative binary system that also would be responsible for driving the inferred jet precession.

  7. Photometric Study of Fourteen Low-mass Binaries

    International Nuclear Information System (INIS)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J.; Hoňková, K.

    2017-01-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  8. Photometric Study of Fourteen Low-mass Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J. [Astronomical Institute, Charles University, Faculty of Mathematics and Physics, CZ-180 00, Praha 8, V Holešovičkách 2 (Czech Republic); Hoňková, K., E-mail: korda@sirrah.troja.mff.cuni.cz [Variable Star and Exoplanet Section of Czech Astronomical Society, Vsetínská 941/78, CZ-757 01, Valašské Meziříčí (Czech Republic)

    2017-07-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  9. Circumstellar disks around binary stars in Taurus

    International Nuclear Information System (INIS)

    Akeson, R. L.; Jensen, E. L. N.

    2014-01-01

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10 –4 M ☉ . We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F mm ∝M ∗ 1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  10. Extracting the orbital axis from gravitational waves of precessing binary systems

    Science.gov (United States)

    Kawaguchi, Kyohei; Kyutoku, Koutarou; Nakano, Hiroyuki; Shibata, Masaru

    2018-01-01

    We present a new method for extracting the instantaneous orbital axis only from gravitational wave strains of precessing binary systems observed from a particular observer direction. This method enables us to reconstruct the coprecessing frame waveforms only from observed strains for the ideal case with the high signal-to-noise ratio. Specifically, we do not presuppose any theoretical model of the precession dynamics and coprecessing waveforms in our method. We test and measure the accuracy of our method using the numerical relativity simulation data of precessing binary black holes taken from the SXS Catalog. We show that the direction of the orbital axis is extracted within ≈0.07 rad error from gravitational waves emitted during the inspiral phase. The coprecessing waveforms are also reconstructed with high accuracy; the mismatch (assuming white noise) between them and the original coprecessing waveforms is typically a few times 10-3 including the merger-ringdown phase, and can be improved by an order of magnitude focusing only on the inspiral waveform. In this method, the coprecessing frame waveforms are not only the purely technical tools for understanding the complex nature of precessing waveforms but also direct observables.

  11. First principles, thermal stability and thermodynamic assessment of the binary Ni-W system

    Energy Technology Data Exchange (ETDEWEB)

    Isomaeki, Iikka; Haemaelaeinen, Marko; Gasik, Michael [Aalto Univ., Espoo (Finland). School of Chemical Engineering; Braga, Maria H. [Porto Univ. (Portugal). CEMUC, Physics Engineering Dept.

    2017-12-15

    The Ni-W binary system was assessed using critically evaluated experimental data with assistance from first principles analysis and the CALPHAD method. The solution phases (liquid, fcc-A1 and bcc-A2) were modeled using the substitutional regular solution model. The recently discovered Ni{sub 8}W metastable phase was evaluated as Fe{sub 16}C{sub 2}- like martensite with three sublattices, and shown to be possibly stable according to first principles calculations. Ni{sub 8}W was also modeled as an interstitial compound, but the model is not good because the solubility of tungsten in nickel is very low, especially at low temperatures. There is no experimental evidence for such low solubility. The other binary compounds Ni{sub 4}W and Ni{sub 3}W were assessed as stoichiometric ones. Compared independent experimental and first principles data agree well with the calculated phase diagram using updated thermodynamic parameters.

  12. Binary spectral minutiae representation with multi-sample fusion for fingerprint recognition

    NARCIS (Netherlands)

    Xu, H.; Veldhuis, Raymond N.J.

    Biometric fusion is the approach to improve the biometric system performance by combining multiple sources of biometric information. The binary spectral minutiae representation is a method to represent a fingerprint minutiae set as a fixed-length binary string. This binary representation has the

  13. TWO NEW LONG-PERIOD HOT SUBDWARF BINARIES WITH DWARF COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Brad N.; Wade, Richard A. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Liss, Sandra E. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Green, Elizabeth M., E-mail: bbarlow@psu.edu [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-07-01

    Hot subdwarf stars with F-K main sequence binary companions have been known for decades, but the first orbital periods for such systems were published just recently. Current observations suggest that most have long periods, on the order of years, and that some are or once were hierarchical triple systems. As part of a survey with the Hobby-Eberly Telescope, we have been monitoring the radial velocities of several composite-spectra binaries since 2005 in order to determine their periods, velocities, and eccentricities. Here we present observations and orbital solutions for two of these systems, PG 1449+653 and PG 1701+359. Similar to the other sdB+F/G/K binaries with solved orbits, their periods are long, 909 and 734 days, respectively, and pose a challenge to current binary population synthesis models of hot subdwarf stars. Intrigued by their relatively large systemic velocities, we also present a kinematical analysis of both targets and find that neither is likely a member of the Galactic thin disk.

  14. TWO NEW LONG-PERIOD HOT SUBDWARF BINARIES WITH DWARF COMPANIONS

    International Nuclear Information System (INIS)

    Barlow, Brad N.; Wade, Richard A.; Liss, Sandra E.; Green, Elizabeth M.

    2013-01-01

    Hot subdwarf stars with F-K main sequence binary companions have been known for decades, but the first orbital periods for such systems were published just recently. Current observations suggest that most have long periods, on the order of years, and that some are or once were hierarchical triple systems. As part of a survey with the Hobby-Eberly Telescope, we have been monitoring the radial velocities of several composite-spectra binaries since 2005 in order to determine their periods, velocities, and eccentricities. Here we present observations and orbital solutions for two of these systems, PG 1449+653 and PG 1701+359. Similar to the other sdB+F/G/K binaries with solved orbits, their periods are long, 909 and 734 days, respectively, and pose a challenge to current binary population synthesis models of hot subdwarf stars. Intrigued by their relatively large systemic velocities, we also present a kinematical analysis of both targets and find that neither is likely a member of the Galactic thin disk.

  15. Trojan Binaries

    Science.gov (United States)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  16. High-precision broad-band linear polarimetry of early-type binaries. II. Variable, phase-locked polarization in triple Algol-type system λ Tauri

    Science.gov (United States)

    Berdyugin, A.; Piirola, V.; Sakanoi, T.; Kagitani, M.; Yoneda, M.

    2018-03-01

    Aim. To study the binary geometry of the classic Algol-type triple system λ Tau, we have searched for polarization variations over the orbital cycle of the inner semi-detached binary, arising from light scattering in the circumstellar material formed from ongoing mass transfer. Phase-locked polarization curves provide an independent estimate for the inclination i, orientation Ω, and the direction of the rotation for the inner orbit. Methods: Linear polarization measurements of λ Tau in the B, V , and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained on the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and Tohoku 60 cm (Haleakala, Hawaii, USA) remotely controlled telescopes over 69 observing nights. Analytic and numerical modelling codes are used to interpret the data. Results: Optical polarimetry revealed small intrinsic polarization in λ Tau with 0.05% peak-to-peak variation over the orbital period of 3.95 d. The variability pattern is typical for binary systems showing strong second harmonic of the orbital period. We apply a standard analytical method and our own light scattering models to derive parameters of the inner binary orbit from the fit to the observed variability of the normalized Stokes parameters. From the analytical method, the average for three passband values of orbit inclination i = 76° + 1°/-2° and orientation Ω = 15°(195°) ± 2° are obtained. Scattering models give similar inclination values i = 72-76° and orbit orientation ranging from Ω = 16°(196°) to Ω = 19°(199°), depending on the geometry of the scattering cloud. The rotation of the inner system, as seen on the plane of the sky, is clockwise. We have found that with the scattering model the best fit is obtained for the scattering cloud located between the primary and the secondary, near the inner Lagrangian point or along the Roche lobe surface of the secondary facing the primary. The inclination i

  17. Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: Experiments and model

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Schillinger, W.

    2013-01-01

    The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.

  18. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    Science.gov (United States)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  19. Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, Fabio [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208 (United States); Toonen, Silvia [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE, Amsterdam (Netherlands); Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States)

    2017-06-01

    We consider the formation of binary black hole (BH) mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a BH binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov–Kozai cycles) with stellar evolution. After a BH triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triples with weaker hierarchies for which the secular perturbation theory breaks down. Most BH mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a BH merger rate in the range (0.3–1.3) Gpc{sup −3} yr{sup −1}, or up to ≈2.5 Gpc{sup −3} yr{sup −1} if the BH orbital planes have initially random orientation. Finally, we show that BH mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ≈10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.

  20. Comparative study of binary and ternary complexes of some rare earths

    International Nuclear Information System (INIS)

    Makhijani, S.D.; Sangal, S.P.

    1978-01-01

    Modified form of Irving and Rossotti's pH titration technique has been used to evaluate and compare the stability constants of the binary and ternary complexes of Sc(III), Y(III), La(III), Pr(III), Nd(III) and Sm(III) at 30 0 at an ionic strength of 0.2M NaClO 4 . For the study of ternary complexes, nitrilotriacetic acid has been used as a primary ligand and polyhydroxy phenols i.e. pyrocatechol (PYC), pyrogallol (PYG) and gallic acid (GA) as secondary ligands. The stability constants of the binary complexes were found to be more than those of the corresponding ternary complexes which can reasonably be explained on the basis of electrostatic force between primary complex (metal in the case of binary complex) and secondary ligand, and space available to accommodate the secondary ligand. The stability decreases with the increase in ionic radii, i.e. Sc(III)>Y(III)>Sm(III)>Nd(III)>Pr(III)>La(III). In terms of secondary ligand, it follows the order PYC>GA>PYG. Rare earths form only 1:1 binary complex, and 1:1:1 mixed ligand complex in all the cases. (author)

  1. Searching for Signatures of Supermassive Black Hole Binaries

    Science.gov (United States)

    Ayers, Megan; Gezari, Suvi; Liu, Tingting

    2018-01-01

    Theoretical studies suggest that supermassive black hole binaries (SMBHBs) are an inevitable consequence of major galaxy mergers. Additionally, as SMBHBs coalesce they are expected to be sources of tremendous gravitational wave emission. Interest in these sources motivates the search for detection of the first definitive SMBHB and observational signatures to methodize the search. We present spectral energy distributions (SEDs) for a sample of candidate SMBHBs selected from quasars demonstrating optical periodic variability from the Pan-STARRS1 Medium Deep Survey. The SEDs were constructed using existing archival data spanning from radio to X-ray emission. For each candidate SMBHB, we also present models of the theoretical spectrum emitted from the circumbinary and minidisks of the SMBHB system using the predictions of Roedig et al. (2014) and inferred parameters of the candidates (combined mass, mass ratio, binary separation, accretion rate). We compare the observational SED for each source to its respective binary model as well as to the expected mean SED of a normal non-binary system quasar to look for supporting evidence of a SMBHB system. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  2. Delineation of phase fields at the Te-rich end of the Ru Te binary system

    Science.gov (United States)

    Ali (Basu), M.; Bharadwaj, S. R.; Das, D.

    2005-04-01

    The tellurium rich side of the ruthenium-tellurium binary system was studied by differential thermal analysis. To avoid reported problems of Te loss by evaporation and reactive interference of Te to the thermocouples of the thermal analyzer, the present study made use of specially designed sealed quartz capsules as DTA containers. The thermal analyses were carried out over the compositional range of 0.66 ⩽ xTe ⩽ 1.00 with the help of SETARAM TG/DTA and other indigenously built thermal analyzers available in this laboratory. The thermal data generated for fifteen different compositions were interpreted for the nature of phase transitions occurring at their characteristic temperatures. The Ru-Te binary system was found to have a eutectic transformation at 444 °C at a composition of xTe = 0.918 and a monotectic transformation at 447 °C at a composition of xTe = 0.700. Up to 6 at.% Ru is soluble in Te at about 440 °C.

  3. Delineation of phase fields at the Te-rich end of the Ru-Te binary system

    International Nuclear Information System (INIS)

    Ali, M.; Bharadwaj, S.R.; Das, D.

    2005-01-01

    The tellurium rich side of the ruthenium-tellurium binary system was studied by differential thermal analysis. To avoid reported problems of Te loss by evaporation and reactive interference of Te to the thermocouples of the thermal analyzer, the present study made use of specially designed sealed quartz capsules as DTA containers. The thermal analyses were carried out over the compositional range of 0.66 x Te 1.00 with the help of SETARAM TG/DTA and other indigenously built thermal analyzers available in this laboratory. The thermal data generated for fifteen different compositions were interpreted for the nature of phase transitions occurring at their characteristic temperatures. The Ru-Te binary system was found to have a eutectic transformation at 444 deg. C at a composition of x Te = 0.918 and a monotectic transformation at 447 deg. C at a composition of x Te = 0.700. Up to 6 at.% Ru is soluble in Te at about 440 deg. C

  4. Fluctuation limit theorems for age-dependent critical binary branching systems

    Directory of Open Access Journals (Sweden)

    Murillo-Salas Antonio

    2011-03-01

    Full Text Available We consider an age-dependent branching particle system in ℝd, where the particles are subject to α-stable migration (0 < α ≤ 2, critical binary branching, and general (non-arithmetic lifetimes distribution. The population starts off from a Poisson random field in ℝd with Lebesgue intensity. We prove functional central limit theorems and strong laws of large numbers under two rescalings: high particle density, and a space-time rescaling that preserves the migration distribution. Properties of the limit processes such as Markov property, almost sure continuity of paths and generalized Langevin equation, are also investigated.

  5. Short-Period Binary Stars: Observations, Analyses, and Results

    CERN Document Server

    Milone, Eugene F; Hobill, David W

    2008-01-01

    Short-period binaries run the gamut from widely separated stars to black-hole pairs; in between are systems that include neutron stars and white dwarfs, and partially evolved systems such as tidally distorted and over-contact systems. These objects represent stages of evolution of binary stars, and their degrees of separation provide critical clues to how their evolutionary paths differ from that of single stars. The widest and least distorted systems provide astronomers with the essential precise data needed to study all stars: mass and radius. The interactions of binary star components, on the other hand, provide a natural laboratory to observe how the matter in these stars behaves under different and often varying physical conditions. Thus, cataclysmic variables with and without overpoweringly strong magnetic fields, and stars with densities from that found in the Sun to the degenerate matter of white dwarfs and the ultra-compact states of neutron stars and black holes are all discussed. The extensive inde...

  6. Solid/liquid interfacial free energies in binary systems

    Science.gov (United States)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  7. Cataloging the Praesepe Cluster: Identifying Interlopers and Binary Systems

    Science.gov (United States)

    Lucey, Madeline R.; Gosnell, Natalie M.; Mann, Andrew; Douglas, Stephanie

    2018-01-01

    We present radial velocity measurements from an ongoing survey of the Praesepe open cluster using the WIYN 3.5m Telescope. Our target stars include 229 early-K to mid-M dwarfs with proper motion memberships that have been observed by the repurposed Kepler mission, K2. With this survey, we will provide a well-constrained membership list of the cluster. By removing interloping stars and determining the cluster binary frequency we can avoid systematic errors in our analysis of the K2 findings and more accurately determine exoplanet properties in the Praesepe cluster. Obtaining accurate exoplanet parameters in open clusters allows us to study the temporal dimension of exoplanet parameter space. We find Praesepe to have a mean radial velocity of 34.09 km/s and a velocity dispersion of 1.13 km/s, which is consistent with previous studies. We derive radial velocity membership probabilities for stars with ≥3 radial velocity measurements and compare against published membership probabilities. We also identify radial velocity variables and potential double-lined spectroscopic binaries. We plan to obtain more observations to determine the radial velocity membership of all the stars in our sample, as well as follow up on radial velocity variables to determine binary orbital solutions.

  8. Homogeneous nucleation ahead of the solid-liquid interface during rapid solidification of binary alloys

    International Nuclear Information System (INIS)

    Smith, P.M.; Elmer, J.W.

    1996-01-01

    In recent rapid solidification experiments on Al-5%Be alloys, a Liquid Phase Nucleation (LPN) model was developed to explain the formation of periodic arrays of randomly-oriented Be-rich particles in an Al-rich matrix. In the LPN model, Be droplets were assumed to nucleate in the liquid ahead of the solid-liquid interface, but no justification for this was given. Here the authors present a model which considers the geometric constraints (imposed by proximity to the interface) on the number of solute atoms available to form a nucleus. Calculations based on this model predict that nucleation of second-phase particles can be most likely a short distance ahead of the interface in immiscible binary systems such as Al-Be. As part of the nucleation calculations, a semi-empirical method of calculating solid-liquid surface tensions in binary systems was developed, and is presented in the Appendix

  9. Observational properties of models of semidetached close binaries. Pt. 2

    International Nuclear Information System (INIS)

    Giannone, P.; Giannuzzi, M.A.; Pucillo, M.

    1975-01-01

    Binaries of Cases A and B with intermediate and small masses have been studied. Synthetic light curves are shown to be affected mainly by the assumption concerning the shape of the components. The comparison between synthetic light curves and observed data can give further information on the reliability of the hypotheses assumed in the computations of binary star evolution. The calculated properties lead to useful indications about the evolutionary stages of observed binaries. The detection of systems evolving according to Case A appears to be favoured in comparison with that of systems of Case B. Systems with undersize subgiants result comparatively difficult to observe. (orig./BJ) [de

  10. EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)

    2015-08-10

    We consider the formation of satellites around the Pluto–Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Damping and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto–Charon binary. With simple models and numerical experiments, we show how the Pluto–Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.

  11. Measurement and prediction of dabigatran etexilate mesylate Form II solubility in mono-solvents and mixed solvents

    International Nuclear Information System (INIS)

    Xiao, Yan; Wang, Jingkang; Wang, Ting; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun; Bao, Ying; Fang, Wen; Yin, Qiuxiang

    2016-01-01

    Highlights: • Solubility of DEM Form II in mono-solvents and binary solvent mixtures was measured. • Regressed UNIFAC model was used to predict the solubility in solvent mixtures. • The experimental solubility data were correlated by different models. - Abstract: UV spectrometer method was used to measure the solubility data of dabigatran etexilate mesylate (DEM) Form II in five mono-solvents (methanol, ethanol, ethane-1,2-diol, DMF, DMAC) and binary solvent mixtures of methanol and ethanol in the temperature range from 287.37 K to 323.39 K. The experimental solubility data in mono-solvents were correlated with modified Apelblat equation, van’t Hoff equation and λh equation. GSM model and Modified Jouyban-Acree model were employed to correlate the solubility data in mixed solvent systems. And Regressed UNIFAC model was used to predict the solubility of DEM Form II in the binary solvent mixtures. Results showed that the predicted data were consistent with the experimental data.

  12. The Very Short Period M Dwarf Binary SDSS J001641-000925

    Science.gov (United States)

    Davenport, James R. A.; Becker, Andrew C.; West, Andrew A.; Bochanski, John J.; Hawley, Suzanne L.; Holtzman, Jon; Gunning, Heather C.; Hilton, Eric J.; Munshi, Ferah A.; Albright, Meagan

    2013-02-01

    We present follow-up observations and analysis of the recently discovered short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital period of 0.19856 days, this system has one of the shortest known periods for an M dwarf binary system. Medium-resolution spectroscopy and multi-band photometry for the system are presented. Markov Chain Monte Carlo modeling of the light curves and radial velocities yields estimated masses for the stars of M 1 = 0.54 ± 0.07 M ⊙ and M 2 = 0.34 ± 0.04 M ⊙, and radii of R 1 = 0.68 ± 0.03 R ⊙ and R 2 = 0.58 ± 0.03 R ⊙, respectively. This solution places both components above the critical Roche overfill limit, providing strong evidence that SDSS J001641-000925 is the first verified M-dwarf contact binary system. Within the follow-up spectroscopy we find signatures of non-solid body rotation velocities, which we interpret as evidence for mass transfer or loss within the system. In addition, our photometry samples the system over nine years, and we find strong evidence for period decay at the rate of \\dot{P}\\sim 8 s yr-1. Both of these signatures raise the intriguing possibility that the system is in over-contact, and actively losing angular momentum, likely through mass loss. This places SDSS J001641-000925 as not just the first M-dwarf over-contact binary, but one of the few systems of any spectral type known to be actively undergoing coalescence. Further study of SDSS J001641-000925 is ongoing to verify the nature of the system, which may prove to be a unique astrophysical laboratory. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Support for the design and construction of the Magellan Echellette Spectrograph was received from the Observatories of the Carnegie Institution of Washington, the

  13. Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis

    DEFF Research Database (Denmark)

    Chieng, Norman; Trnka, Hjalte; Boetker, Johan

    2013-01-01

    The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were...... freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD......-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile...

  14. Single-spin precessing gravitational waveform in closed form

    Science.gov (United States)

    Lundgren, Andrew; O'Shaughnessy, R.

    2014-02-01

    In coming years, gravitational-wave detectors should find black hole-neutron star (BH-NS) binaries, potentially coincident with astronomical phenomena like short gamma ray bursts. These binaries are expected to precess. Gravitational-wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations of the Fisher matrix for use in template bank generation and coincidence metrics, and jump proposals to improve the efficiency of Markov chain Monte Carlo sampling. We have verified that for generic BH-NS binaries, our model agrees with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here (and provided in full online) allow higher accuracy and error estimates.

  15. Binary black holes on a budget: simulations using workstations

    International Nuclear Information System (INIS)

    Marronetti, Pedro; Tichy, Wolfgang; Bruegmann, Bernd; Gonzalez, Jose; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich

    2007-01-01

    Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we show how the multi-layered refinement level code BAM can be used on dual processor workstations to simulate certain binary black hole systems. BAM, based on the moving punctures method, provides grid structures composed of boxes of increasing resolution near the centre of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particularly useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries with equal mass black holes with spins parallel to the binary axis and intrinsic magnitude of S/m 2 = 0.75. Our results compare favourably to those of previous simulations of this particular system. We show that the moving punctures method produces stable simulations at maximum spatial resolutions up to M/160 and for durations of up to the equivalent of 20 orbital periods

  16. Application of the Double-Tangent Construction of Coexisting Phases to Any Type of Phase Equilibrium for Binary Systems Modeled with the Gamma-Phi Approach

    Science.gov (United States)

    Jaubert, Jean-Noël; Privat, Romain

    2014-01-01

    The double-tangent construction of coexisting phases is an elegant approach to visualize all the multiphase binary systems that satisfy the equality of chemical potentials and to select the stable state. In this paper, we show how to perform the double-tangent construction of coexisting phases for binary systems modeled with the gamma-phi…

  17. On the orbit calculation of visual binaries with a very short arc: application to the PMS binary system, FW Tau AB

    Science.gov (United States)

    Docobo, J. A.; Tamazian, V. S.; Campo, P. P.

    2018-05-01

    In the vast majority of cases when available astrometric measurements of a visual binary cover a very short orbital arc, it is practically impossible to calculate a good quality orbit. It is especially important for systems with pre-main-sequence components where standard mass-spectrum calibrations cannot be applied nor can a dynamical parallax be calculated. We have shown that the analytical method of Docobo allows us to put certain constraints on the most likely orbital solutions, using an available realistic estimate of the global mass of the system. As an example, we studied the interesting PMS binary, FW Tau AB, located in the Taurus-Auriga as well as investigated a range of its possible orbital solutions combined with an assumed distance between 120 and 160 pc. To maintain the total mass of FW Tau AB in a realistic range between 0.2 and 0.6M_{⊙}, minimal orbital periods should begin at 105, 150, 335, and 2300 yr for distances of 120, 130, 140, and 150 pc, respectively (no plausible orbits were found assuming a distance of 160 pc). An original criterion to establish the upper limit of the orbital period is applied. When the position angle in some astrometric measurements was flipped by 180°, orbits with periods close to 45 yr are also plausible. Three example orbits with periods of 44.6, 180, and 310 yr are presented.

  18. Statistical Analysis of a Comprehensive List of Visual Binaries

    Directory of Open Access Journals (Sweden)

    Kovaleva D.

    2015-12-01

    Full Text Available Visual binary stars are the most abundant class of observed binaries. The most comprehensive list of data on visual binaries compiled recently by cross-matching the largest catalogues of visual binaries allowed a statistical investigation of observational parameters of these systems. The dataset was cleaned by correcting uncertainties and misclassifications, and supplemented with available parallax data. The refined dataset is free from technical biases and contains 3676 presumably physical visual pairs of luminosity class V with known angular separations, magnitudes of the components, spectral types, and parallaxes. We also compiled a restricted sample of 998 pairs free from observational biases due to the probability of binary discovery. Certain distributions of observational and physical parameters of stars of our dataset are discussed.

  19. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  20. r-Process Nucleosynthesis in the Early Universe Through Fast Mergers of Compact Binaries in Triple Systems

    Science.gov (United States)

    Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman

    2018-05-01

    Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.

  1. On the incidence of close binary stars in globular clusters and the nature of the cluster X-ray sources

    International Nuclear Information System (INIS)

    Trimble, V.

    1977-01-01

    Recent calculations suggest that the globular clusters could not have formed with more than 20 per cent of the normal Population I fraction of their stars in binary systems. The fact that the clusters have more than their fair share of novae and U Geminorum stars (three each out of approximately 200 of each known, while the clusters contain only about 10 -4 of the mass and 10 -3 of the luminosity of the galaxy) therefore becomes surprising. The hypothesis of binary capture within cluster cores suggested to account for the clusters' high X-ray luminosity provides a few extra systems, but neither it nor any of the similar encounter or capture mechanisms suggested can account for the novae and U Gen stars, which remain puzzling. The number of Algol-type and W UMa eclipsing binaries predicted by these hypotheses do not conflict with data presently available, but careful searches for them would constitute a critical test of the theories. (author)

  2. Evolution of the symbiotic binary system AG Dranconis