WorldWideScience

Sample records for binary system hd

  1. Abundance analysis of Am binaries and search for tidally driven abundance anomalies - III. HD 116657, HD 138213, HD 155375, HD 159560, HD 196544 and HD 204188

    OpenAIRE

    Stateva, I.; Iliev, I. Kh; Budaj, J.

    2012-01-01

    We continue here the systematic abundance analysis of a sample of Am binaries in order to search for possible abundance anomalies driven by tidal interaction in these binary systems. New CCD observations in two spectral regions (6400-6500, 6660-6760 AA) of HD116657, HD138213, HD155375, HD159560, HD196544 and HD204188 were obtained. Synthetic spectrum analysis was carried out and basic stellar properties, effective temperatures, gravities, projected rotational velocities, masses, ages and abun...

  2. The visually close binary system HD375; Is it a sub-giant binary?

    CERN Document Server

    Al-Wardat, M A; Leushion, V V; Taani, A A; Yusuf, N A; Al-Waqfi, K S; Masda, S

    2013-01-01

    Atmospheric modeling is used to build synthetic spectral energy distributions (SEDs) for the individual components of the speckle interferometric binary system HD375. These synthetic SEDs are combined together for the entire system and compared with its observational SED in an iterated procedure to achieve the best fit. Kurucz blanketed models with the measurements of magnitude differences were used to build these SED's. The input physical elements for building these best fitted synthetic SEDs represent adequately enough the elements of the system. These elements are: $T_{\\rm eff}^{a} =6100\\pm50$\\,K, $T_{\\rm eff}^{b} =5940\\pm50$\\,K, log $g_{a}=4.01\\pm0.10$, log $g_{b}=3.98\\pm0.10$, $R_a=1.93\\pm0.20 R_\\odot$, $R_b=1.83\\pm0.20 R_\\odot$ $M_{v}^{\\rm a}=3.26\\pm0.40$, $M_{v}^{\\rm b}=3.51\\pm0.50$, $L_a= 4.63\\pm0.80 L_\\odot$ and $ L_b= 3.74\\pm0.70 L_\\odot$ depending on new estimated parallax $\\pi=12.02 \\pm 0.60$ mas. A modified orbit of the system is built and compared with earlier orbits and the masses of the two co...

  3. The magnetic field of the double-lined spectroscopic binary system HD 5550

    CERN Document Server

    Alecian, E; Neiner, C; Folsom, C P; Leroy, B

    2016-01-01

    (Abridged) In the framework of the BinaMicS project, we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems, as a function of binarity properties. We report in this paper the characterisation of the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate-mass, using high-resolution spectropolarimetric Narval observations of HD 5550. We first fit the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light-ratio of the system. We then fit the least-square deconvolved $I$ profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the LSD $V$ profiles using the oblique rotator model to characterise the magnetic fields of both stars. We confirm the Ap nature of the primary, previously reported in the liter...

  4. Complex Analysis of the Stellar Binary HD25811; A Subgiant System

    CERN Document Server

    Al-Wardat, Mashhoor A; Al-thyabat, Ahmed

    2013-01-01

    The visually close binary system HD25811 is analyzed to estimate its physical and geometrical parameters in addition to its spectral type and luminosity class. The method depends on obtaining the best fit between the entire observational spectral energy distribution (SED) of the system and synthetic SEDs created by atmospheric modeling of the individual components, consistent with the system's modified orbital elements. The parameters of the individual components of the system are derived as: $T_{\\rm eff}^{\\rm a} =6850\\pm50$\\,K, $T_{\\rm eff}^{\\rm b} =7000\\pm50$\\,K, log $g_{\\rm a}=4.04\\pm0.10$, log $g_{\\rm b}=4.15\\pm0.10$, $R_{\\rm a}=1.96\\pm0.20$\\,R$_{\\odot}$, $R_{\\rm b}=1.69\\pm0.20$\\,R$_{\\odot}$, $M_{va}=1.97\\pm0.20$, $M_{vb}=2.19\\pm0.20$, $L_a= 7.59\\pm0.70 L_\\odot, L_b= 6.16\\pm0.70 L_\\odot$ with dynamical parallax $\\pi(\\textrm{mas})=5.095\\pm 0.095$. The analysis shows that the system consists of a $1.55M_{\\odot}$ F2 primary star and a less evolved $1.50M_{\\odot}$ F1 secondary subgiant star with ages around 2...

  5. The magnetic field of the double-lined spectroscopic binary system HD 5550

    Science.gov (United States)

    Alecian, E.; Tkachenko, A.; Neiner, C.; Folsom, C. P.; Leroy, B.

    2016-05-01

    Context. The origin of fossil fields in intermediate- and high-mass stars is poorly understood, as is the interplay between binarity and magnetism during stellar evolution. Thus we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems as a function of binarity properties. Aims: This paper specifically aims to characterise the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate mass. Methods: We gathered 25 high-resolution spectropolarimetric observations of HD 5550 using the instrument Narval. We first fitted the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light ratio of the system. We then applied the multi-line least-square deconvolution (LSD) technique to the intensity and circularly polarised spectra, which provided us with mean LSD I and V line profiles. We fitted the Stokes I line profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the V profiles using the oblique rotator model to characterise the magnetic fields of both stars. Results: We confirm the Ap nature of the primary, which has previously been reported, and find that the secondary displays spectral characteristics typical of an Am star. While a magnetic field is clearly detected in the lines of the primary, no magnetic field is detected in the secondary in any of our observations. If a dipolar field were present at the surface of the Am star, its polar strength must be below 40 G. The faint variability observed in the Stokes V profiles of the Ap star allowed us to propose a rotation period of 6.84-0.39+0.61 d, which is close to the orbital period (~6.82 d), suggesting that the star is synchronised with its orbit. By fitting the variability of the V profiles, we propose that the

  6. Abundance analysis of Am binaries and search for tidally driven abundance anomalies - III. HD116657, HD138213, HD155375, HD159560, HD196544 and HD204188

    CERN Document Server

    Stateva, I; Budaj, J

    2011-01-01

    We continue here the systematic abundance analysis of a sample of Am binaries in order to search for possible abundance anomalies driven by tidal interaction in these binary systems. New CCD observations in two spectral regions (6400-6500, 6660-6760 AA) of HD116657, HD138213, HD155375, HD159560, HD196544 and HD204188 were obtained. Synthetic spectrum analysis was carried out and basic stellar properties, effective temperatures, gravities, projected rotational velocities, masses, ages and abundances of several elements were determined. We conclude that all six stars are Am stars. These stars were put into the context of other Am binaries with 10 < Porb < 200 days and their abundance anomalies discussed in the context of possible tidal effects. There is clear anti-correlation of the Am peculiarities with v sin i. However, there seems to be also a correlation with the eccentricity and may be with the orbital period. The dependence on the temperature, age, mass, and microturbulence was studied as well. The ...

  7. Detailed Abundances of Planet-Hosting Wide Binaries. II. HD80606 + HD80607

    CERN Document Server

    Mack, Claude E; Schuler, Simon C; Hebb, Leslie; Pepper, Joshua A

    2016-01-01

    We present a detailed chemical abundance analysis of 15 elements in the planet-hosting wide binary system HD80606 + HD80607 using Keck/HIRES spectra. As in our previous analysis of the planet-hosting wide binary HD20782 + HD20781, we presume that these two G5 dwarf stars formed together and therefore had identical primordial abundances. In this binary, HD80606 hosts an eccentric ($e\\approx0.93$) giant planet at $\\sim$0.5 AU, but HD80607 has no detected planets. If close-in giant planets on eccentric orbits are efficient at scattering rocky planetary material into their host stars, then HD80606 should show evidence of having accreted rocky material while HD80607 should not. Here we show that the trends of abundance versus element condensation temperature for HD80606 and HD80607 are statistically indistinguishable, corroborating the recent result of Saffe et al. This could suggest that both stars accreted similar amounts of rocky material; indeed, our model for the chemical signature of rocky planet accretion i...

  8. Chandra Characterization of X-ray Emission in the Young F-Star Binary System HD 113766

    CERN Document Server

    Lisse, C M; Wolk, S J; Günther, H M; Chen, C H; Grady, C A

    2016-01-01

    Using Chandra we have obtained imaging X-ray spectroscopy of the 10 to 16 Myr old F-star binary HD 113766. We individually resolve the binary components for the first time in the X-ray and find a total 0.3 to 2.0 keV luminosity of 2.2e29 erg/sec, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only 10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or sub-stellar member of HD113766 with Lx > 6e25 erg s-1 within 2 arcmin of the binary pair. The ratio of the two stars Xray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. (2012). The emission is soft for both stars, kTApec = 0.30 to 0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks which we rule out. A possible 2.8 +/- 0.15 (2{\\sigma}) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and...

  9. X-ray emission from the double-binary OB-star system QZ Car (HD 93206)

    CERN Document Server

    Parkin, E R; Townsley, L K; Pittard, J M; Moffat, A F J; Naze, Y; Rauw, G; Oskinova, L M

    2011-01-01

    X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The orbit of systems A (O9.7 I+b2 v, PA = 21 d) and B (O8 III+o9 v, PB = 6 d) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three temperature thermal plasma model, characterised by cool, moderate, and hot plasma components at kT ~ 0.2, 0.7, and 2 keV, respectively, and a circumstellar absorption of ~ 0.2 x 10^22 cm-2. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of ~ 7 x 10^-13 erg s-1 cm-2, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. ...

  10. X-ray and optical observations of the unique binary system HD49798/RXJ0648.0-4418

    CERN Document Server

    Mereghetti, S; Tiengo, A; Pizzolato, F; Esposito, P; Woudt, P A; Israel, G L; Stella, L

    2011-01-01

    We report the results of XMM-Newton observations of HD49798/RXJ0648.0-4418, the only known X-ray binary consisting of a hot sub-dwarf and a white dwarf. The white dwarf rotates very rapidly (P=13.2 s) and has a dynamically measured mass of 1.28+/-0.05 M_sun. Its X-ray emission consists of a strongly pulsed, soft component, well fit by a blackbody with kT~40 eV, accounting for most of the luminosity, and a fainter hard power-law component (photon index ~1.6). A luminosity of ~10^{32} erg/s is produced by accretion onto the white dwarf of the helium-rich matter from the wind of the companion, which is one of the few hot sub-dwarfs showing evidence of mass-loss. A search for optical pulsations at the South African Astronomical Observatory 1.9-m telescope gave negative results. X-rays were detected also during the white dwarf eclipse. This emission, with luminosity 2x10^{30} erg/s, can be attributed to HD 49798 and represents the first detection of a hot sub-dwarf star in the X-ray band. HD49798/RXJ0648.0-4418 is...

  11. The magnetic field of the hot spectroscopic binary HD 5550

    Science.gov (United States)

    Neiner, C.; Alecian, E.

    2015-12-01

    HD 5550 is a spectroscopic binary composed of two A stars observed with Narval at TBL in the frame of the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) Large Program. One component of the system is found to be an Ap star with a surprisingly weak dipolar field of ˜65 G. The companion is an Am star for which no magnetic field is detected, with a detection threshold on the dipolar field of ˜40 G. The system is tidally locked, the primary component is synchronised with the orbit, but the system is probably not completely circularised yet. This work is only the second detailed study of magnetic fields in a hot short-period spectroscopic binary. More systems are currently being observed with both Narval at TBL and ESPaDOnS at CFHT within the BinaMIcS project, with the goal of understanding how magnetism can impact binary evolution and vice versa.

  12. The magnetic field of the hot spectroscopic binary HD5550

    CERN Document Server

    Neiner, C

    2015-01-01

    HD5550 is a spectroscopic binary composed of two A stars observed with Narval at TBL in the frame of the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) Large Program. One component of the system is found to be an Ap star with a surprisingly weak dipolar field of ~65 G. The companion is an Am star for which no magnetic field is detected, with a detection threshold on the dipolar field of ~40 G. The system is tidally locked, the primary component is synchronised with the orbit, but the system is probably not completely circularised yet. This work is only the second detailed study of magnetic fields in a hot short-period spectroscopic binary. More systems are currently being observed with both Narval at TBL and ESPaDOnS at CFHT within the BinaMIcS project, with the goal of understanding how magnetism can impact binary evolution and vice versa.

  13. Kepler Observations of the Asteroseismic Binary HD 176465

    CERN Document Server

    White, T R; Aguirre, V Silva; Ball, W H; Bedding, T R; Chaplin, W J; Christensen-Dalsgaard, J; Garcia, R A; Gizon, L; Stello, D; Aigrain, S; Antia, H M; Appourchaux, T; Bazot, M; Campante, T L; Creevey, O L; Davies, G R; Elsworth, Y P; Gaulme, P; Handberg, R; Hekker, S; Houdek, G; Howe, R; Huber, D; Karoff, C; Marques, J P; Mathur, S; McQuillan, A; Metcalfe, T S; Mosser, B; Nielsen, M B; Régulo, C; Salabert, D; Stahn, T

    2016-01-01

    Binary star systems are important for understanding stellar structure and evolution, and are especially useful when oscillations can be detected and analysed with asteroseismology. However, only four systems are known in which solar-like oscillations are detected in both components. Here, we analyse the fifth such system, HD 176465, which was observed by Kepler. We carefully analysed the system's power spectrum to measure individual mode frequencies, adapting our methods where necessary to accommodate the fact that both stars oscillate in a similar frequency range. We also modelled the two stars independently by fitting stellar models to the frequencies and complementary parameters. We are able to cleanly separate the oscillation modes in both systems. The stellar models produce compatible ages and initial compositions for the stars, as is expected from their common and contemporaneous origin. Combining the individual ages, the system is about 3.0$\\pm$0.5 Gyr old. The two components of HD 176465 are young phy...

  14. The chemically peculiar double-lined spectroscopic binary HD 90264

    Science.gov (United States)

    Quiroga, C.; Torres, A. F.; Cidale, L. S.

    2010-10-01

    Context. HD 90264 is a chemically peculiar (CP) double-lined spectroscopic binary system of the type He-weak. Double-lined binaries are unique sources of data for stellar masses, physical properties, and evolutionary aspects of stars. Therefore, the determination of orbital elements is of great importance to study how the physical characteristics of CP stars are affected by a companion. Aims: We carried out a detailed spectral and polarimetric study of the spectroscopic binary system HD 90264 to characterize its orbit, determine the stellar masses, and investigate the spectral variability and possible polarization of the binary components. Methods: We employed medium-resolution échelle spectra and polarimetric data obtained at the 2.15-m telescope at CASLEO Observatory, Argentina. We measured radial velocities and line equivalent widths with IRAF packages. The radial velocity curves of both binary components were obtained combining radial velocity data derived from the single line of Hg II λ3984 Åand the double lines of Mg II λ4481 Å. Polarimetric data were studied by means of the statistical method of Clarke & Stewart and the Welch test. Results: We found that both components of the binary system are chemically peculiar stars, deficient in helium, where the primary is a He variable and the secondary is a Hg-Mn star. We derived for the first time the orbital parameters of the binary system. We found that the system has a quasi-circular orbit (e ~ 0.04) with an orbital period of 15.727 days. Taking into account the circular orbit solution, we derived a mass ratio of q = MHe-w/MHg-Mn = 1.22. We also found a rotational period of around 15-16 days, suggesting a spin-orbit synchronization. Possible signs of intrinsic polarization have also been detected. Conclusions: HD 90264 is the first known binary system comprised of a He variable star as the primary component and a Hg-Mn star as the secondary one. Based on observations taken at Complejo Astronómico El

  15. HD 30187 B and HD 39927 B: Two suspected nearby hot subdwarfs in resolved binaries (based on observations made with the ESA Hipparcos satellite)

    DEFF Research Database (Denmark)

    Makarov, V.V.; Fabricius, C.

    1999-01-01

    Stars: Individual: HD 30187 B -- Stars: Individual: HD 39927 B - Stars: White dwarfs - Stars: Binaries: Visual......Stars: Individual: HD 30187 B -- Stars: Individual: HD 39927 B - Stars: White dwarfs - Stars: Binaries: Visual...

  16. The magnetic field of the hot spectroscopic binary HD5550

    OpenAIRE

    Neiner, C.; Alecian, E.; collaboration, the BinaMIcS

    2015-01-01

    HD5550 is a spectroscopic binary composed of two A stars observed with Narval at TBL in the frame of the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) Large Program. One component of the system is found to be an Ap star with a surprisingly weak dipolar field of ~65 G. The companion is an Am star for which no magnetic field is detected, with a detection threshold on the dipolar field of ~40 G. The system is tidally locked, the primary component is synchronised with ...

  17. Precise radial velocities of giant stars IX. HD 59686 Ab: a massive circumstellar planet orbiting a giant star in a ~13.6 au eccentric binary system

    CERN Document Server

    Ortiz, Mauricio; Trifonov, Trifon; Quirrenbach, Andreas; Mitchell, David; Nowak, Grzegorz; Buenzli, Esther; Zimmerman, Neil; Bonnefoy, Mickael; Skemer, Andy; Defrère, Denis; Lee, Man Hoi; Fischer, Debra; Hinz, Philip

    2016-01-01

    Context: For over 12 years, we have carried out a precise radial velocity survey of a sample of 373 G and K giant stars using the Hamilton \\'Echelle Spectrograph at Lick Observatory. There are, among others, a number of multiple planetary systems in our sample as well as several planetary candidates in stellar binaries. Aims: We aim at detecting and characterizing substellar+stellar companions to the giant star HD 59686 A (HR 2877, HIP 36616). Methods: We obtained high precision radial velocity (RV) measurements of the star HD 59686 A. By fitting a Keplerian model to the periodic changes in the RVs, we can assess the nature of companions in the system. In order to discriminate between RV variations due to non-radial pulsation or stellar spots we used infrared RVs taken with the CRIRES spectrograph at the Very Large Telescope. Additionally, to further characterize the system, we obtain high-resolution images with LMIRCam at the Large Binocular Telescope. Results: We report the likely discovery of a giant plane...

  18. Apsidal motion in the massive binary HD152218

    CERN Document Server

    Rauw, G; Noels, A; Mahy, L; Schmitt, J H M M; Godart, M; Dupret, M -A; Gosset, E

    2016-01-01

    Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a separating code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of 19.8 +/- 1.5 and 15.0 +/- 1.1 solar masses. Combining radial velocity measurements from over 60 years, we show that the system displays apsidal motion at a rate of (2.04^{+.23}_{-.24}) degree/year. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal moti...

  19. Very Low-Mass Stellar and Substellar Companions to Solar-like Stars From MARVELS VI: A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    CERN Document Server

    Ma, Bo; Wolszczan, Alex; Muterspaugh, Matthew W; Lee, Brian; Henry, Gregory W; Schneider, Donald P; Martin, Eduardo L; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; da Costa, Luiz Nicolaci; Jiang, Peng; Fiorenzano, A F Martinez; Hernandez, Jonay I Gonzalez; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C; Wan, Xiaoke; Wang, Ji; Wisniewski, John P; Zhao, Bo; Zucker, Shay

    2016-01-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. It is the first close binary system with more than one substellar circum-primary companion discovered to the best of our knowledge. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using ET at Kitt Peak National Observatory, HRS at HET, the "Classic" spectrograph at the Automatic Spectroscopic Telescope at Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period brown dwarf in this binary. HD 87646 is a close binary with a separation of $\\sim22$ AU between the two stars, estimated using the Hipparcos catalogue and our newly acquired AO image from PALAO on the 200-inch Hale Telescope at Palomar. The primary star in the binary, HD 87646...

  20. The Multiple System HD 27638

    CERN Document Server

    Torres, G

    2005-01-01

    We report spectroscopic observations of HD 27638B, the secondary in a visual binary in which the physically associated primary (separation approximately 19 arcsec) is a B9V star. The secondary shows strong Li 6708 absorption suggesting youth, and has attracted attention in the past as a candidate post-T Tauri star although this has subsequently been ruled out. It was previously known to be a double-lined spectroscopic binary (F8+G6) with a period of 17.6 days, and to show velocity residuals indicating a more distant massive third companion with a period of at least 8 years. Based on our radial velocity measurements covering more than two cycles of the outer orbit, along with other measurements, we derive an accurate triple orbital solution giving an outer period of 9.447 +/- 0.017 yr. The third object is more massive than either of the other two components of HD 27638B, but is not apparent in the spectra. We derive absolute visual magnitudes and effective temperatures for the three visible stars in HD 27638. ...

  1. The Wolf-Rayet eclipsing binary HD 5980 in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    The Wolf-Rayet star HD 5980, which is probably associated with the bright HII region NGC 346 of the Small Magellanic Cloud, was found to be an eclipsing binary by Hoffmann, Stift and Moffat (1978). Breysacher and Perrier (1980) determined the orbital period, P=19.26 +- 0.003d, of the system whose light curve reveals a strongly eccentric orbit (e=0.47 for i=800). The behaviour of the light curve outside the eclipses shows that one is dealing with a rather complex binary system. An analysis of the spectroscopic data is presented here. (Auth.)

  2. An updated gamma-ray analysis of the Be-BH binary HD~215227

    CERN Document Server

    Alexander, Michael J

    2015-01-01

    We report an updated analysis of the gamma-ray source AGL J2241+4454 that was detected as a brief two-day flare in 2010 by the AGILE satellite. The high-energy emission of AGL J2241+4454 has been attributed to the binary system HD 215227, which consists of a Be star being orbited by a black hole making it the first known Be-black hole binary system. We have analyzed the AGILE data and find a gamma-ray flux of $(1.8\\pm0.7)\\times10^{-6}$ ph cm$^{-2}$ s$^{-1}$, in agreement with the initial report. Additionally, we examined data from the Fermi LAT over several time intervals including the two day flare, the folded orbital phase, and the entire mission ($\\sim$6-years). We do not detect AGL J2241+4454 over any of these time periods with Fermi and find upper limits of $1.1\\times10^{-7}$ ph cm$^{-2}$ s$^{-1}$ and $5.2\\times10^{-10}$ ph cm$^{-2}$ s$^{-1}$ for the flare and the full mission, respectively. We conclude that the HD 215227 Be-black hole binary is not a true gamma-ray binary as previous speculated. While a...

  3. Velocity Curve Analysis of Spectroscopic Binary Stars AI Phe, GM Dra, HD 93917 and V502 Oph by Nonlinear Regression

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o - c). Using the measured radial velocity data of the four double lined spectroscopic binary systems,AI Phe,GM Dra,HD 93917 and V502 Oph,we derived both the orbital and combined spectroscopic elements of these systems.Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhés.

  4. HD 51844: An Am delta Scuti in a binary showing periastron brightening

    CERN Document Server

    Hareter, M; Weiss, W W; Hernández, A García; Borkovits, T; Lampens, P; Rainer, M; De Cat, P; Marcos-Arenal, P; Vos, J; Poretti, E; Baglin, A; Michel, E; Baudin, F; Catala, C

    2014-01-01

    Pulsating stars in binary systems are ideal laboratories to test stellar evolution and pulsation theory, since a direct, model-independent determination of component masses is possible. The high-precision CoRoT photometry allows a detailed view of the frequency content of pulsating stars, enabling detection of patterns in their distribution. The object HD 51844 is such a case showing periastron brightening instead of eclipses. We present a comprehensive study of the HD 51844 system, where we derive physical parameters of both components, the pulsation content and frequency patterns. Additionally, we obtain the orbital elements, including masses, and the chemical composition of the stars. Time series analysis using standard tools was mployed to extract the pulsation frequencies. Photospheric abundances of 21 chemical elements were derived by means of spectrum synthesis. We derived orbital elements both by fitting the observed radial velocities and the light curves, and we did asteroseismic modelling as well. W...

  5. An updated gamma-ray analysis of the Be-BH binary HD 215227

    Science.gov (United States)

    Alexander, Michael J.; McSwain, M. Virginia

    2015-05-01

    We report an updated analysis of the gamma-ray source AGL J2241+4454 that was detected as a brief two-day flare in 2010 by the AGILE satellite. The high-energy emission of AGL J2241+4454 has been attributed to the binary system HD 215227, which consists of a Be star being orbited by a black hole making it the first known Be-black hole binary system. We have analysed the AGILE data and find a gamma-ray flux of (1.8 ± 0.7) × 10-6 ph cm-2 s-1, in agreement with the initial report. Additionally, we examined data from the Fermi Large Area Telescope over several time intervals including the two-day flare, the folded orbital phase, and the entire mission (˜6 yr). We do not detect AGL J2241+4454 over any of these time periods with Fermi and find upper limits of 1.1 × 10-7 and 5.2 × 10-10 ph cm-2 s-1 for the flare and the full mission, respectively. We conclude that the HD 215227 Be-black hole binary is not a true gamma-ray binary as previously speculated. While analysing the Fermi data of the AGL J2241+4454 region, we discovered a previously unknown gamma-ray source with average flux of (13.56 ± 0.02) × 10-8 ph cm-2 s-1 that is highly variable on monthly time-scales. We associate this emission with the known quasar 87GB 215950.2+503417.

  6. New precision orbits of bright double-lined spectroscopic binaries. IX. HD 54371, HR 2692, and 16 ursa majoris

    Energy Technology Data Exchange (ETDEWEB)

    Fekel, Francis C.; Williamson, Michael H.; Muterspaugh, Matthew W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Boulevard, Box 9501, Nashville, TN 37209 (United States); Pourbaix, Dimitri [FNRS Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, B-1050 Bruxelles (Belgium); Willmarth, Daryl [Kitt Peak National Obsevatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States); Tomkin, Jocelyn, E-mail: fekel@evans.tsuniv.edu, E-mail: michael.h.williamson@gmail.com, E-mail: matthew1@coe.tsuniv.edu, E-mail: pourbaix@astro.ulb.ac.be, E-mail: dwillmarth@noao.edu [Astronomy Department and McDonald Observatory, University of Texas, Austin, TX 78712 (United States)

    2015-02-01

    With extensive sets of new radial velocities we have determined orbital elements for three previously known spectroscopic binaries, HD 54371, HR 2692, and 16 UMa. All three systems have had the lines of their secondaries detected for the first time. The orbital periods range from 16.24 to 113.23 days, and the three binaries have modestly or moderately eccentric orbits. The secondary to primary mass ratios range from 0.50 to 0.64. The orbital dimensions (a{sub 1} sin i and a{sub 2} sin i) and minimum masses (m{sub 1} sin{sup 3} i and m{sub 2} sin{sup 3} i) of the binary components all have accuracies of ⩽1%. With our spectroscopic results and the Hipparcos data, we also have determined astrometric orbits for two of the three systems, HR 2692 and 16 UMa. The primaries of HD 54371 and 16 UMa are solar-type stars, and their secondaries are likely K or M dwarfs. The primary of HR 2692 is a late-type subgiant and its secondary is a G or K dwarf. The primaries of both HR 2692 and 16 UMa may be pseudosynchronously rotating, while that of HD 54371 is rotating faster than its pseudosynchronous velocity.

  7. A model for the non-thermal emission of the very massive colliding-wind binary HD 93129A

    CERN Document Server

    del Palacio, Santiago; Romero, Gustavo E; Benaglia, Paula

    2016-01-01

    The binary stellar system HD 93129A is one of the most massive known binaries in our Galaxy. This system presents non-thermal emission in the radio band, which can be used to infer its physical conditions and predict its emission in the high-energy band. We intend to constrain some of the unknown parameters of HD 93129A through modelling the non-thermal emitter, and also to analyse the detectability of this source in hard X-rays and $\\gamma$-rays. We develop a broadband radiative model for the wind-collision region taking into account the evolution of the accelerated particles streaming along the shocked region, the emission by different radiative processes, and the attenuation of the emission propagating through the local matter and radiation fields. From the analysis of the radio emission, we find that the binary HD~93129A is more likely to have a low inclination and a high eccentricity. The minimum energy of the non-thermal electrons seems to be between $\\sim 20 - 100$MeV, depending on the intensity of the...

  8. HD183648: a Kepler eclipsing binary with anomalous ellipsoidal variations and a pulsating component

    Directory of Open Access Journals (Sweden)

    Derekas A.

    2015-01-01

    Full Text Available KIC 8560861 (HD 183648 is a marginally eccentric (e = 0.05 eclipsing binary with an orbital period of Porb = 31.973 d, exhibiting mmag amplitude pulsations on time scales of a few days. We present the results of the complex analysis of high and medium-resolution spectroscopic data and Kepler Q0 – Q16 long cadence photometry.

  9. Discovery of a magnetic field in the B pulsating system HD 1976

    OpenAIRE

    Neiner, C.; Tkachenko, A.; collaboration, the MiMeS

    2014-01-01

    The presence of a magnetic field can have a strong impact on the evolution of a binary star. However, only a dozen of magnetic OB binaries are known as of today and available to study this effect, including very few magnetic pulsating spectroscopic OB binaries. We aim at checking for the presence of a magnetic field in the B5IV hierarchical triple system HD 1976 with spectropolarimetric data obtained with Narval at the Bernard Lyot Telescope (TBL). We use orbital parameters of HD 1976 availab...

  10. The HD 5980 multiple system: Masses and evolutionary status

    Energy Technology Data Exchange (ETDEWEB)

    Koenigsberger, Gloria [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Ave. Universidad S/N, Cuernavaca, Morelos 62210 (Mexico); Morrell, Nidia [Las Campanas Observatory, The Carnegie Observatories, Colina El Pino s/n, Casillas 601, La Serena (Chile); Hillier, D. John [Department of Physics and Astronomy, and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), 3941 O' Hara Street, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Gamen, Roberto [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, and Instituto de Astrofísica de La Plata (CCT La Plata-CONICET), Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Schneider, Fabian R. N.; González-Jiménez, Nicolás; Langer, Norbert [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany); Barbá, Rodolfo, E-mail: gloria@astro.unam.mx, E-mail: nmorrell@lco.edu, E-mail: hillier@pitt.edu, E-mail: rgamen@fcaglp.unlp.edu.ar, E-mail: fschneid@astro.uni-bonn.de, E-mail: ngonzalez@astro.uni-bonn.de, E-mail: nlanger@astro.uni-bonn.de, E-mail: rbarba@dfuls.cl [Departamento de Física, Av. Juan Cisternas 1200 Norte, Universidad de la Serena, La Serena (Chile)

    2014-10-01

    New spectroscopic observations of the LBV/WR multiple system HD 5980 in the Small Magellanic Cloud are used to address the question of the masses and evolutionary status of the two very luminous stars in the 19.3 day eclipsing binary system. Two distinct components of the N V 4944 Å line are detected in emission and their radial velocity variations are used to derive masses of 61 and 66 M {sub ☉}, under the assumption that binary interaction effects on this atomic transition are negligible. We propose that this binary system is the product of quasi-chemically homogeneous evolution with little or no mass transfer. Thus, both of these binary stars may be candidates for gamma-ray burst progenitors or even pair instability supernovae. Analysis of the photospheric absorption lines belonging to the third-light object in the system confirm that it consists of an O-type star in a 96.56 day eccentric orbit (e = 0.82) around an unseen companion. The 5:1 period ratio and high eccentricities of the two binaries suggest that they may constitute a hierarchical quadruple system.

  11. LOCATING PLANETESIMAL BELTS IN THE MULTIPLE-PLANET SYSTEMS HD 128311, HD 202206, HD 82943, AND HR 8799

    International Nuclear Information System (INIS)

    In addition to the Sun, six other stars are known to harbor multiple planets and debris disks: HD 69830, HD 38529, HD 128311, HD 202206, HD 82943, and HR 8799. In this paper, we set constraints on the location of the dust-producing planetesimals around the latter four systems. We use a radiative transfer model to analyze the spectral energy distributions of the dust disks (including two new Spitzer IRS spectra presented in this paper), and a dynamical model to assess the long-term stability of the planetesimals' orbits. As members of a small group of stars that show evidence of harboring a multiple planets and planetesimals, their study can help us learn about the diversity of planetary systems.

  12. HD 51844: An Am δ Scuti in a binary showing periastron brightening

    Science.gov (United States)

    Hareter, M.; Paparó, M.; Weiss, W.; García Hernández, A.; Borkovits, T.; Lampens, P.; Rainer, M.; De Cat, P.; Marcos-Arenal, P.; Vos, J.; Poretti, E.; Baglin, A.; Michel, E.; Baudin, F.; Catala, C.

    2014-07-01

    Context. Pulsating stars in binary systems are ideal laboratories to test stellar evolution and pulsation theory, since a direct, model-independent determination of component masses is possible. The high-precision CoRoT photometry allows a detailed view of the frequency content of pulsating stars, enabling detection of patterns in their distribution. The object HD 51844 is such a case showing periastron brightening instead of eclipses. Aims: We present a comprehensive study of the HD 51844 system, where we derive physical parameters of both components, the pulsation content and frequency patterns. Additionally, we obtain the orbital elements, including masses, and the chemical composition of the stars. Methods: Time series analysis using standard tools was employed to extract the pulsation frequencies. Photospheric abundances of 21 chemical elements were derived by means of spectrum synthesis. We derived orbital elements both by fitting the observed radial velocities and the light curves, and we did asteroseismic modelling as well. Results: We found that HD 51844 is a double lined spectroscopic binary. The determined abundances are consistent with δ Delphini classification. We determined the orbital period (33.498 ± 0.002 d), the eccentricity (0.484 ± 0.020), the mass ratio (0.988 ± 0.02), and the masses to 2.0 ± 0.2 M⊙ for both components. Only one component showed pulsation. Two p modes (f22 and f36) and one g mode (forb) may be tidally excited. Among the 115 frequencies, we detected triplets due to the frequency modulation, frequency differences connected to the orbital period, and unexpected resonances (3:2, 3:5, and 3:4), which is a new discovery for a δ Sct star. The observed frequency differences among the dominant modes suggest a large separation of 2.0-2.2 d-1, which are consistent with models of mean density of 0.063 g cm-3, and with the binary solution and TAMS evolutionary phase for the pulsating component. The binary evolution is in an

  13. Spectroscopic Binaries near the North Galactic Pole Paper 24: HD 106104, 109281, 109463 and 110743

    Indian Academy of Sciences (India)

    R. F. Griffin

    2001-06-01

    The four stars treated in this paper have been under observation with photoelectric radial-velocity spectrometers for many years. They have proved to be binaries with periods of 30, 1828, 1514 and 822 days respectively; the orbits are of modest eccentricity apart from that of HD 110743 which is indistinguishable from a circle. The mass functions are small, and no companion has been observed for any of the stars. HD 110743, a K dwarf, is much the nearest of the four, and its orbit is of short enough period for the photocentric motion to have been recognized by Hipparcos. An eleventh-magnitude star rather more than 1' away from HD 106104 is shown to be a genuine physical companion, with practically identical radial velocity, proper motion and distance modulus, although the projected separation is about 13,000 AU.

  14. Formation of the resonant system HD 60532

    CERN Document Server

    Sandor, Zsolt

    2010-01-01

    Among multi-planet planetary systems there are a large fraction of resonant systems. Studying the dynamics and formation of these systems can provide valuable informations on processes taking place in protoplanetary disks where the planets are thought have been formed. The recently discovered resonant system HD 60532 is the only confirmed case, in which the central star hosts a pair of giant planets in 3:1 mean motion resonance. We intend to provide a physical scenario for the formation of HD 60532, which is consistent with the orbital solutions derived from the radial velocity measurements. Observations indicate that the system is in an antisymmetric configuration, while previous theoretical investigations indicate an asymmetric equilibrium state. The paper aims at answering this discrepancy as well. We performed two-dimensional hydrodynamical simulations of thin disks with an embedded pair of massive planets. Additionally, migration and resonant capture are studied by gravitational N-body simulations that a...

  15. A Physical Orbit for the High Proper Motion Binary HD 9939

    CERN Document Server

    Boden, A F; Torres, G; Boden, Andrew F.; Latham, David W.; Torres, Guillermo

    2006-01-01

    We report spectroscopic and interferometric observations of the high-proper motion double-lined binary system HD 9939, with an orbital period of approximately 25 days. By combining our radial-velocity and visibility measurements we estimate the system physical orbit and derive dynamical masses for the components of $M_A = 1.072 \\pm 0.014$ M$_{\\sun}$ and $M_B = 0.8383 \\pm 0.0081$ M$_{\\sun}$; fractional errors of 1.3% and 1.0%, respectively. We also determine a system distance of $42.23 \\pm 0.21$ pc, corresponding to an orbital parallax of $\\pi_{\\rm orb} = 23.68 \\pm 0.12$ mas. The system distance and the estimated brightness difference between the stars in $V$, $H$, and $K$ yield component absolute magnitudes in these bands. By spectroscopic analysis and spectral energy distribution modeling we also estimate the component effective temperatures and luminosities as $T_{\\rm eff}^A = 5050 \\pm 100$ K and $T_{\\rm eff}^B = 4950 \\pm 200$ K and $L_A$ = 2.451 $\\pm$ 0.041 $L_{\\sun}$ and $L_B$ = 0.424 $\\pm$ 0.023 $L_{\\sun...

  16. Pre-main-sequence binaries with tidally disrupted discs: the Br gamma in HD 104237

    CERN Document Server

    Garcia, P J V; Dougados, C; Bacciotti, F; Clausse, J -M; Massi, F; Mérand, A; Petrov, R; Weigelt, G

    2013-01-01

    Active pre-main-sequence binaries with separations of around ten stellar radii present a wealth of phenomena unobserved in common systems. The study of these objects is extended from Classical T Tauri stars to the Herbig Ae star HD 104237. Spectro-interferometry with the VLTI/AMBER is presented. It is found that the K-band continuum squared visibilities are compatible with a circumbinary disc with a radius of ~0.5 AU. However, a significant fraction (~50 per cent) of the flux is unresolved and not fully accounted by the stellar photospheres. The stars probably don't hold circumstellar discs, in addition to the circumbinary disk, due to the combined effects of inner magnetospheric truncation and outer tidal truncation. This unresolved flux likely arises in compact structures inside the tidally disrupted circumbinary disc. Most ($\\gtrsim 90$ per cent) of the Br gamma line emission is unresolved. The line-to-continuum spectro-astrometry shifts in time, along the direction of the Ly alpha jet known to be driven b...

  17. The B-Supergiant Components of the Double-Lined Binary HD1383

    CERN Document Server

    Boyajian, T S; Helsel, M E; Kaye, A B; McSwain, M V; Riddle, R L; Wingert, D W

    2006-01-01

    We present new results from a study of high quality, red spectra of the massive binary star system HD 1383 (B0.5 Ib + B0.5 Ib). We determined radial velocities and revised orbital elements (P = 20.28184 +/- 0.0002 d) and made Doppler tomographic reconstructions of the component spectra. A comparison of these with model spectra from non-LTE, line blanketed atmospheres indicates that both stars have almost identical masses (M_2/M_1 = 1.020 +/- 0.014), temperatures (T_eff = 28000 +/- 1000 K), gravities (log g = 3.25 +/- 0.25), and projected rotational velocities (V sin i < 30 km/s). We investigate a number of constraints on the radii and masses of the stars based upon the absence of eclipses, surface gravity, stellar wind terminal velocity, and probable location in the Perseus spiral arm of the Galaxy, and these indicate a range in probable radius and mass of R/R_sun = 14 - 20 and M/M_sun = 16 - 35, respectively. These values are consistent with model evolutionary masses for single stars of this temperature a...

  18. HD 85567: A Herbig B[e] star or an interacting B[e] binary

    CERN Document Server

    Wheelwright, H E; Garatti, A Caratti o; Lopez, R Garcia

    2013-01-01

    Context. HD 85567 is an enigmatic object exhibiting the B[e] phenomenon, i.e. an infrared excess and forbidden emission lines in the optical. The object's evolutionary status is uncertain and there are conflicting claims that it is either a young stellar object or an evolved, interacting binary. Aims. To elucidate the reason for the B[e] behaviour of HD 85567, we have observed it with the VLTI and AMBER. Methods. Our observations were conducted in the K-band with moderate spectral resolution (R~1500, i.e. 200 km/s). The spectrum of HD 85567 exhibits Br gamma and CO overtone bandhead emission. The interferometric data obtained consist of spectrally dispersed visibilities, closure phases and differential phases across these spectral features and the K-band continuum. Results. The closure phase observations do not reveal evidence of asymmetry. The apparent size of HD 85567 in the K-band was determined by fitting the visibilities with a ring model. The best fitting radius, 0.8 +/- 0.3 AU, is relatively small maki...

  19. HD 181068: A Red Giant in a Triply Eclipsing Compact Hierarchical Triple System

    DEFF Research Database (Denmark)

    Derekas, A.; Kiss, Lazlo L.; Borkovits, T.;

    2011-01-01

    Hierarchical triple systems comprise a close binary and a more distant component. They are important for testing theories of star formation and of stellar evolution in the presence of nearby companions. We obtained 218 days of Kepler photometry of HD 181068 (magnitude of 7.1), supplemented by gro...

  20. Spectroscopic and photometric analysis of the early-type spectroscopic binary HD 161853 in the centre of an H II region

    CERN Document Server

    Gamen, R; Barbá, R H; Arias, J I; Apellániz, J Maíz; Walborn, N R; Sota, A; Alfaro, E J

    2015-01-01

    We study the O-type star HD 161853, which has been noted as a probable double-lined spectroscopic binary system. We secured high-resolution spectra of HD 161853 during the past nine years. We separated the two components in the system and measured their respective radial velocities for the first time. We confirm that HD 161853 is an $\\sim$1 Ma old binary system consisting of an O8 V star ($M_{\\rm A,RV} \\geq 22$ M$_\\odot$) and a B1--3 V star ($M_{\\rm B,RV} \\geq 7.2$ M$_\\odot$) at about 1.3 kpc. From the radial velocity curve, we measure an orbital period $P$ = 2.66765$\\pm$0.00001 d and an eccentricity $e$ = 0.121$\\pm$0.007. Its $V$-band light curve is constant within 0.014 mag and does not display eclipses, from which we impose a maximum orbital inclination $i=54$ deg. HD 161853 is probably associated with an H II region and a poorly investigated very young open cluster. In addition, we detect a compact emission region at 50 arcsec to HD 161853 in 22$\\mu$m-WISE and 24$\\mu$m-Spitzer images, which may be identif...

  1. Discovery of a magnetic field in the B pulsating system HD 1976

    Science.gov (United States)

    Neiner, C.; Tkachenko, A.; MiMeS Collaboration

    2014-03-01

    Aims: A magnetic field can have a strong impact on the evolution of a binary star. However, only a dozen magnetic OB binaries are known as of today and are available to study this effect, including some very few magnetic pulsating spectroscopic OB binaries. We checked for the presence of a magnetic field in the B5IV hierarchical triple system HD 1976 with spectropolarimetric data obtained with Narval at the Bernard Lyot Telescope (TBL). Methods: We used orbital parameters of HD 1976 available in the literature to disentangle the Narval intensity spectra. We computed Stokes V profiles with the least squares deconvolution technique to search for magnetic signatures. We then derived an estimate of the longitudinal magnetic field strength for each observation and for various line lists. Results: Our disentangling of the intensity spectra shows that HD 1976 is a double-lined spectroscopic (SB2) binary, the lines of the secondary component are about twice as broad as those of the primary component. We did not identify the third component. Moreover, we find clear magnetic signatures in the spectropolarimetric measurements of HD 1976 that seem to be associated with the primary component. We conclude that HD 1976 is a magnetic slowly pulsating double-lined spectroscopic binary star with an undetected third component. It is the second such example known (the other is HD 25558). Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.

  2. Binary-induced magnetic activity? Time-series echelle spectroscopy and photometry of HD123351 = CZ CVn

    CERN Document Server

    Strassmeier, K G; Weber, M; Granzer, T; Bartus, J; Olah, K; Rice, J B

    2011-01-01

    We present a first and detailed study of the bright and active K0IV-III star HD 123351. The star is found to be a single-lined spectroscopic binary with a period of 147.8919+-0.0003 days and a large eccentricity of e=0.8086+-0.0001. The rms of the orbital solution is just 47 m/s, making it the most precise orbit ever obtained for an active binary system. The rotation period is constrained from long-term photometry to be 58.32+-0.01 days. It shows that HD 123351 is a very asynchronous rotator, rotating five times slower than the expected pseudo-synchronous value. Two spotted regions persisted throughout the 12 years of our observations. Four years of Halpha, CaII H&K and HeI D3 monitoring identifies the same main periodicity as the photometry but dynamic spectra also indicate that there is an intermittent dependence on the orbital period, in particular for Ca ii H&K in 2008. Line-profile inversions of a pair of Zeeman sensitive/insensitive iron lines yield an average surface magnetic-flux density of 54...

  3. HD 183648: a Kepler eclipsing binary with anomalous ellipsoidal variations and a pulsating component

    CERN Document Server

    Borkovits, T; Fuller, J; Szabo, Gy M; Pavlovski, K; Csak, B; Dozsa, A; Kovacs, J; Szabo, R; Hambleton, K M; Kinemuchi, K; Kolbas, V; Kurtz, D W; Maloney, F; Prsa, A; Southworth, J; Sztakovics, J; Biro, I B; Jankovics, I

    2014-01-01

    KIC 8560861 (HD 183648) is a marginally eccentric (e=0.05) eclipsing binary with an orbital period of P_orb=31.973d, exhibiting mmag amplitude pulsations on time scales of a few days. We present the results of the complex analysis of high and medium-resolution spectroscopic data and Kepler Q0 -- Q16 long cadence photometry. The iterative combination of spectral disentangling, atmospheric analysis, radial velocity and eclipse timing variation studies, separation of pulsational features of the light curve, and binary light curve analysis led to the accurate determination of the fundamental stellar parameters. We found that the binary is composed of two main sequence stars with an age of 0.9\\+-0.2 Gyr, having masses, radii and temperatures of M_1=1.93+-0.12 M_sun, R_1=3.30+-0.07 R_sun, T_eff1=7650+-100 K for the primary, and M_2=1.06+-0.08 M_sun, R_2=1.11+-0.03 R_sun, T_eff2=6450+-100 K for the secondary. After subtracting the binary model, we found three independent frequencies, two of which are separated by tw...

  4. Velocity Curve Analysis of the Spectroscopic Binary Stars PV Pup, HD 141929, EE Cet and V921 Her by Nonlinear Regression

    Indian Academy of Sciences (India)

    K. Karami; R. Mohebi

    2007-12-01

    We use the method introduced by Karami & Mohebi (2007), and Karami & Teimoorinia (2007) which enable us to derive the orbital parameters of the spectroscopic binary stars by the nonlinear least squares of observed . curve fitting (o–c). Using the measured experimental data for radial velocities of the four double-lined spectroscopic binary systems PV Pup, HD 141929, EE Cet and V921 Her, we find both the orbital and the combined spectroscopic elements of these systems. Our numerical results are in good agreement with those obtained using the method of Lehmann-Filhés.

  5. HD 164492C: a rapidly-rotating, H$\\alpha$-bright, magnetic early B star associated with a 12.5d spectroscopic binary

    CERN Document Server

    Wade, G A; Sikora, J; Bernier, M -É; Rivinius, Th; Alecian, E; Petit, V; Grunhut, J H

    2016-01-01

    We employ high resolution spectroscopy and spectropolarimetry to derive the physical properties and magnetic characteristics of the multiple system HD 164492C, located in the young open cluster M20. The spectrum reveals evidence of 3 components: a broad-lined early B star (HD 164492C1), a narrow-lined early B star (HD 164492C2), and a late B star (HD 164492C3). Components C2 and C3 exhibit significant ($>100$ km/s) bulk radial velocity variations with a period of $12.5351(7)$ d that we attribute to eccentric binary motion around a common centre-of-mass. Component C1 exhibits no detectable radial velocity variations. Using constraints derived from modeling the orbit of the C2+C3 binary and from synthesis of the combined spectrum, we determine the approximate physical characteristics of the components. We conclude that a coherent evolutionary solution consistent with the published age of M20 implies a distance to the system of $0.9\\pm 0.2$ kpc, corresponding to the smallest published values. We confirm the dete...

  6. Unravelling the Nature of HD 81032 – A New RS CVn Binary

    Indian Academy of Sciences (India)

    J. C. Pandey; K. P. Singh; S. A. Drake; R. Sagar

    2005-12-01

    BVR photometric and quasi-simultaneous optical spectroscopic observations of the star HD 81032 have been carried out during the years 2000–2004. A photometric period of 18.802 ± 0.07d has been detected for this star. A large group of spots with a migration period of 7.43 ± 0.07 years is inferred from the first three years of the data. H and CaII H and K emissions from the star indicate high chromospheric activity. The available photometry in the BVRIJHK bands is consistent with the spectral type of K0IV previously found for this star.We have also examined the spectral energy distribution of HD 81032 for the presence of an infrared colour excess using the 2MASS JHK and IRAS photometry, but found no significant excess in any band above the normal values expected for a star with this spectral type. We have also analyzed the X-ray emission properties of this star using data obtained by the ROSAT X-ray observatory during its All-Sky Survey phase. An X-ray flare of about 12 hours duration was detected during the two days of X-ray coverage obtained for this star. Its X-ray spectrum, while only containing 345 counts, is inconsistent with a single-temperature component solar-abundance coronal plasma model, but implies either the presence of two or more plasma components, non-solar abundances, or a combination of both of these properties. All of the above properties of HD 81032 suggest that it is a newly identified, evolved RS CVn binary.

  7. Discovery of a magnetic field in the B pulsating system HD 1976

    CERN Document Server

    Neiner, C

    2014-01-01

    The presence of a magnetic field can have a strong impact on the evolution of a binary star. However, only a dozen of magnetic OB binaries are known as of today and available to study this effect, including very few magnetic pulsating spectroscopic OB binaries. We aim at checking for the presence of a magnetic field in the B5IV hierarchical triple system HD 1976 with spectropolarimetric data obtained with Narval at the Bernard Lyot Telescope (TBL). We use orbital parameters of HD 1976 available in the literature to disentangle the Narval intensity spectra. We compute Stokes V profiles with the Least Square Deconvolution (LSD) technique to search for magnetic signatures. We then derive an estimate of the longitudinal magnetic field strength for each observation and for various line lists. Our disentangling of the intensity spectra shows that HD 1976 is a double-lined spectroscopic (SB2) binary, with the lines of the secondary component about twice broader than the ones of the primary component. We do not ident...

  8. A model for the expanding C 3 envelope of the Wolf-Rayet spectroscopic binary HD 152270

    International Nuclear Information System (INIS)

    A model is presented to explain the behaviour of the broad depression feature on top of the C 3 lambda 5696 emission line of the Wolf-Rayet (WR) spectroscopic binary HD 152270. The centre of the feature varies with the period of the orbital motion around the systemic velocity, but its width, measured through the distance of bordering emission peaks on the top of the line, varies with half the orbital period. In our model the expanding C 3 envelope of the WR star is perturbed in the section adjacent to the hot 0-type companion, causing an emission-free region and in turn the depression on the line top. The motion of the envelope is calculated with the help of the Monte Carlo method, taking into account radiation pressure and gravity but neglecting gas pressure and viscous forces. Then, for various phases, the carbon line profiles - as seen from the observer - are calculated by integration (cf. Neutsch 1979). The model is able not only to explain the variability of the depression feature - including line profile calculations - but in addition gives the basic physical parameters of the binary components. (author)

  9. High-precision broad-band linear polarimetry of early-type binaries I. Discovery of variable, phase-locked polarization in HD 48099

    CERN Document Server

    Berdyugin, A; Sadegi, S; Tsygankov, S; Sakanoi, T; Kagitani, M; Yoneda, M; Okano, S; Poutanen, J

    2016-01-01

    We investigate the structure of the O-type binary system HD 48099 by measuring linear polarization that arises due to light scattering process. Linear polarization measurements of HD 48099 in the B, V and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained with the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and T60 (Haleakala, Hawaii, USA) remotely controlled telescopes during 31 observing nights. Polarimetry in the optical wavelengths has been complemented by observations in the X-rays with the SWIFT space observatory. Optical polarimetry revealed small intrinsic polarization in HD 48099 with 0.1% peak to peak variation over the orbital period of 3.08 days. The variability pattern is typical for binary systems, showing strong second harmonic of the orbital period. We apply our model code for the electron scattering in the circumstellar matter to put constraints on the system geometry. A good model fit is obtained for scattering of li...

  10. Resolving Close Encounters: Stability in the HD 5319 and HD 7924 Planetary Systems

    CERN Document Server

    Kane, Stephen R

    2016-01-01

    Radial velocity searches for exoplanets have detected many multi-planet systems around nearby bright stars. An advantage of this technique is that it generally samples the orbit outside of inferior/superior conjunction, potentially allowing the Keplerian elements of eccentricity and argument of periastron to be well characterized. The orbital architectures for some of these systems show signs of close planetary encounters that may render the systems unstable as described. We provide an in-depth analysis of two such systems: HD 5319 and HD 7924, for which the scenario of coplanar orbits results in rapid destabilization of the systems. The poorly constrained periastron arguments of the outer planets in these systems further emphasizes the need for detailed investigations. An exhaustive scan of parameters space via dynamical simulations reveals specific mutual inclinations between the two outer planets in each system that allow for stable configurations over long timescales. We compare these configurations with ...

  11. Planets in evolved binary systems

    CERN Document Server

    Perets, Hagai B

    2010-01-01

    Exoplanets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Second generation planetary systems should be typically found in white dwarf binary systems, and ma...

  12. Planet Migration and Binary Companions the case of HD 80606b

    CERN Document Server

    Murray, Y W N

    2003-01-01

    The exo-solar planet HD 80606b has a highly eccentric (e=0.93) and tight (a=0.47 AU) orbit. We study how it might arrive at such an orbit and how it has avoided being tidally circularized until now. The presence of a stellar companion to the host star suggests the possibility that the Kozai mechanism and tidal dissipation combined to draw the planet inward well after it formed: Kozai oscillations produce periods of extreme eccentricity in the planet orbit, and the tidal dissipation that occurs during these periods of small pericentre distances leads to gradual orbital decay. We call this migration mechanism the 'Kozai migration'. It requires that the initial planet orbit is highly inclined relative to the binary orbit. For a companion at 1000 AU and an initial planet orbit at 5 AU, the minimum relative inclination required is ~ 85. We discuss the efficiency of tidal dissipation inferred from the observations of exo-planets. Moreover, we investigate possible explanations for the velocity residual (after the mo...

  13. The Gemini NICI Planet-Finding Campaign: Discovery of a Multiple System Orbiting the Young A Star HD 1160

    CERN Document Server

    Nielsen, Eric L; Wahhaj, Zahed; Biller, Beth A; Hayward, Thomas L; Boss, Alan; Bowler, Brendan; Kraus, Adam; Shkolnik, Evgenya L; Tecza, Matthias; Chun, Mark; Clarke, Fraser; Close, Laird M; Ftaclas, Christ; Hartung, Markus; Males, Jared R; Reid, I Neill; Skemer, Andrew J; Alencar, Silvia H P; Burrows, Adam; Pino, Elisabethe de Gouveia Dal; Gregorio-Hetem, Jane; Kuchner, Marc; Thatte, Niranjan; Toomey, Douglas W

    2012-01-01

    We report the discovery by the Gemini NICI Planet-Finding Campaign of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 +/- 5 AU (HD 1160 B) and 533 +/- 25 AU (HD 1160 C). VLT images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50 (+50,-40) Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 +/- 0.5 star with an estimated mass of 0.22 (+0.03,-0.04) M_Sun, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33 (+12,-9) M_Jup. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass...

  14. Evolution of Close Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  15. Stability and Formation of the Resonant System HD 73526

    CERN Document Server

    Sándor, Z; Klagyivik, P

    2007-01-01

    Based on radial velocity measurements it has been found recently that the two giant planets detected around the star HD 73526 are in 2:1 resonance. However, as our numerical integration shows, the derived orbital data for this system result in chaotic behavior of the giant planets, which is uncommon among the resonant extrasolar planetary systems. We intend to present regular (non-chaotic) orbital solutions for the giant planets in the system HD 73526 and offer formation scenarios based on combining planetary migration and sudden perturbative effects such as planet-planet scattering or rapid dispersal of the protoplanetary disk. A comparison with the already studied resonant system HD 128311, exhibiting similar behavior, is also done. The new sets of orbital solutions have been derived by the Systemic Console (www.oklo.org). The stability of these solutions has been investigated by the Relative Lyapunov indicator, while the migration and scattering effects are studied by gravitational N-body simulations apply...

  16. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  17. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    International Nuclear Information System (INIS)

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886

  18. HD 181068: A Red Giant in a Triply-Eclipsing Compact Hierarchical Triple System

    CERN Document Server

    Derekas, A; Borkovits, T; Huber, D; Lehmann, H; Southworth, J; Bedding, T R; Balam, D; Hartmann, M; Hrudkova, M; Ireland, M J; Kovacs, J; Mezo, Gy; Moor, A; Niemczura, E; Sarty, G E; Szabo, Gy M; Szabo, R; Telting, J H; Tkachenko, A; Uytterhoeven, K; Benko, J M; Bryson, S T; Maestro, V; Simon, A E; Stello, D; Schaefer, G; Aerts, C; Brummelaar, T A ten; De Cat, P; McAlister, H A; Maceroni, C; Merand, A; Still, M; Sturmann, J; Sturmann, L; Turner, N; Tuthill, P G; Christensen-Dalsgaard, J; Gilliland, R L; Kjeldsen, H; Quintana, E V; Tenenbaum, P; Twicken, J D; 10.1126/science.1201762

    2012-01-01

    Hierarchical triple systems comprise a close binary and a more distant component. They are important for testing theories of star formation and of stellar evolution in the presence of nearby companions. We obtained 218 days of Kepler photometry of HD 181068 (magnitude of 7.1), supplemented by groundbased spectroscopy and interferometry, which show it to be a hierarchical triple with two types of mutual eclipses. The primary is a red giant that is in a 45-day orbit with a pair of red dwarfs in a close 0.9-day orbit. The red giant shows evidence for tidally-induced oscillations that are driven by the orbital motion of the close pair. HD 181068 is an ideal target for studies of dynamical evolution and testing tidal friction theories in hierarchical triple systems.

  19. An interferometric-spectroscopic orbit for the binary HD 195987 Testing models of stellar evolution for metal-poor stars

    CERN Document Server

    Torres, G; Latham, D W; Pan, M; Stefanik, R P; Torres, Guillermo; Boden, Andrew F.; Latham, David W.; Pan, Margaret; Stefanik, Robert P.

    2002-01-01

    We report spectroscopic and interferometric observations of the moderately metal-poor double-lined binary system HD 195987, with an orbital period of 57.3 days. By combining our radial-velocity and visibility measurements we determine the orbital elements and derive absolute masses for the components of M(A) = 0.844 +/- 0.018 Msun and M(B) = 0.6650 +/- 0.0079 Msun, with relative errors of 2% and 1%, respectively. We also determine the orbital parallax, pi(orb) = 46.08 +/- 0.27 mas, corresponding to a distance of 21.70 +/- 0.13 pc. The parallax and the measured brightness difference between the stars in V, H, and K yield the component absolute magnitudes in those bands. We also estimate the effective temperatures of the stars as Teff(A) = 5200 +/- 100 K and Teff(B) = 4200 +/- 200 K. Together with detailed chemical abundance analyses from the literature giving [Fe/H] approximately -0.5 (corrected for binarity) and [alpha/Fe] = +0.36, we use these physical properties to test current models of stellar evolution f...

  20. High-precision broad-band linear polarimetry of early-type binaries. I. Discovery of variable, phase-locked polarization in HD 48099

    Science.gov (United States)

    Berdyugin, A.; Piirola, V.; Sadegi, S.; Tsygankov, S.; Sakanoi, T.; Kagitani, M.; Yoneda, M.; Okano, S.; Poutanen, J.

    2016-06-01

    Aims: We investigate the structure of the O-type binary system HD 48099 by measuring linear polarization that arises due to light scattering process. High-precison polarimetry provides independent estimates of the orbital parameters and gives important information on the properties of the system. Methods: Linear polarization measurements of HD 48099 in the B, V and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained with the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and T60 (Haleakala, Hawaii, USA) remotely controlled telescopes during 31 observing nights. Polarimetry in the optical wavelengths has been complemented by observations in the X-rays with the Swift space observatory. Results: Optical polarimetry revealed small intrinsic polarization in HD 48099 with ~0.1% peak to peak variation over the orbital period of 3.08 d. The variability pattern is typical for binary systems, showing strong second harmonic of the orbital period. We apply our model code for the electron scattering in the circumstellar matter to put constraints on the system geometry. A good model fit is obtained for scattering of light on a cloud produced by the colliding stellar winds. The geometry of the cloud, with a broad distribution of scattering particles away from the orbital plane, helps in constraining the (low) orbital inclination. We derive from the polarization data the inclination i = 17° ± 2° and the longitude of the ascending node Ω = 82° ± 1° of the binary orbit. The available X-ray data provide additional evidence for the existence of the colliding stellar winds in the system. Another possible source of the polarized light could be scattering from the stellar photospheres. The models with circumstellar envelopes, or matter confined to the orbital plane, do not provide good constraints on the low inclination, better than i ≤ 27°, as is already suggested by the absence of eclipses. The

  1. About the extrasolar multi-planet system around HD160691

    CERN Document Server

    Gozdziewski, K; Migaszewski, C; Gozdziewski, Krzysztof; Maciejewski, Andrzej J.; Migaszewski, Cezary

    2006-01-01

    We re-analyze the precision radial velocity (RV) observations of HD160691 (mu Ara) by the Anglo-Australian Planet Search Team. The star is supposed to host two Jovian companions (HD160691b, HD160691c) in long-period orbits (about 630 days and 2500 days, respectively) and a hot-Neptune (HD160691d) in about 9 days orbit. We perform a global search for the best fits in the orbital parameters space with a hybrid code employing the genetic algorithm and simplex method. The stability of Keplerian fits is verified with the N-body model of the RV signal that takes into account the dynamical constraints (so called GAMP method). Our analysis reveals a signature of the fourth, yet unknown and unconfirmed, 0.5 Jupiter-mass planet in about 307 days orbit. In overview, the global architecture of the four-planet configuration recalls the Solar system. All companions of HD160691 move in close to circular orbits. The orbits of the two inner Jovian planets are close to the 2:1 mean motion resonance (MMR). The alternative three...

  2. Discs in misaligned binary systems

    CERN Document Server

    Rawiraswattana, Krisada; Goodwin, Simon P

    2016-01-01

    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-...

  3. Fundamental parameters of the close interacting binary HD170582 and its luminous accretion disc

    CERN Document Server

    Mennickent, R E; Cabezas, M; Cséki, A; G., J Rosales; Niemczura, E; Araya, I; Curé, M

    2015-01-01

    We present a spectroscopic and photometric study of the Double Period Variable HD170582. Based on the study of the ASAS V-band light curve we determine an improved orbital period of 16.87177 $\\pm$ 0.02084 days and a long period of 587 days. We disentangled the light curve into an orbital part, determining ephemerides and revealing orbital ellipsoidal variability with unequal maxima, and a long cycle, showing quasi-sinusoidal changes with amplitude $\\Delta V$= 0.1 mag. Assuming synchronous rotation for the cool stellar component and semi-detached configuration we find a cool evolved star of $M_{2}$ = 1.9 $\\pm$ 0.1 $M_{\\odot}$, $T_{2}$ = 8000 $\\pm$ 100 $K$ and $R_{2}$ = 15.6 $\\pm$ 0.2 $R_{\\odot}$, and an early B-type dwarf of $M_{1}$ = 9.0 $\\pm$ 0.2 $M_{\\odot}$. The B-type star is surrounded by a geometrically and optically thick accretion disc of radial extension 20.8 $\\pm$ 0.3 $R_{\\odot}$ contributing about 35% to the system luminosity at the $V$ band. Two extended regions located at opposite sides of the dis...

  4. Discs in misaligned binary systems

    Science.gov (United States)

    Rawiraswattana, Krisada; Hubber, David A.; Goodwin, Simon P.

    2016-08-01

    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-alignment processes, which tend to misalign the components. The alignment process dominates in systems with misalignment angle near 90°, while the anti-alignment process dominates in systems with the misalignment angle near 0° or 180°. This means that highly misaligned systems will become more aligned but slightly misaligned systems will become more misaligned.

  5. A binary engine fuelling HD87643' s complex circumstellar environment, using AMBER/VLTI

    CERN Document Server

    Millour, Florentin; Borges-Fernandes, Marcelo; Meilland, Anthony; Mars, Gilbert; Benoist, C; Thiébaut, E; Stee, Philippe; Hofmann, K -H; Baron, Fabien; Young, John R; Bendjoya, Philippe; Carciofi, A C; De Souza, Armando Domiciano; Driebe, Thomas; Jankov, Slobodan; Kervella, Pierre; Petrov, R G; Robbe-Dubois, Sylvie; Vakili, Farrokh; Waters, L B F M; Weigelt, Gerd

    2009-01-01

    Context. The star HD 87643, exhibiting the ?B[e] phenomenon?, has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended re?ection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands, Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presen...

  6. Searching for stable orbits in the HD 10180 planetary system

    Directory of Open Access Journals (Sweden)

    Laskar J.

    2011-02-01

    Full Text Available A planetary system with at least seven planets has been found around the star HD 10180. However, the traditional Keplerian and n-body fits to the data provide an orbital solution that becomes unstable very quickly, which may quest the reliability of the observations. Here we show that stable orbital configurations can be obtained if general relativity and long-term dissipation raised by tides on the innermost planet are taken into account.

  7. Application of a probabilistic neural network in analysis of the radial velocity curve of spectroscopic binary stars

    Institute of Scientific and Technical Information of China (English)

    Kamal Ghaderi; Kayoomars Karami; Ali Pirkhedri; Hamid Haj Seyyed Javadi; Touba Rostami

    2012-01-01

    Using measured radial velocity data of five double-lined spectroscopic binary systems,HD 89959,HD 143705,HD 146361,HD 165052 and HD 152248,we find corresponding orbital and spectroscopic elements via a Probabilistic Neural Network.Our numerical results are in good agreement with those obtained by others using more traditional methods.

  8. Discovery of a magnetic field in the rapidly rotating O-type secondary of the colliding-wind binary HD 47129 (Plaskett's star)

    Science.gov (United States)

    Grunhut, J. H.; Wade, G. A.; Leutenegger, M.; Petit, V.; Rauw, G.; Neiner, C.; Martins, F.; Cohen, D. H.; Gagné, M.; Ignace, R.; Mathis, S.; de Mink, S. E.; Moffat, A. F. J.; Owocki, S.; Shultz, M.; Sundqvist, J.; MiMeS Collaboration

    2013-01-01

    We report the detection of a strong, organized magnetic field in the secondary component of the massive O8III/I+O7.5V/III double-lined spectroscopic binary system HD 47129 (Plaskett's star) in the context of the Magnetism in Massive Stars survey. Eight independent Stokes V observations were acquired using the Echelle SpectroPolarimetric Device for the Observations of Stars (ESPaDOnS) spectropolarimeter at the Canada-France-Hawaii Telescope and the Narval spectropolarimeter at the Télescope Bernard Lyot. Using least-squares deconvolution we obtain definite detections of signal in Stokes V in three observations. No significant signal is detected in the diagnostic null (N) spectra. The Zeeman signatures are broad and track the radial velocity of the secondary component; we therefore conclude that the rapidly rotating secondary component is the magnetized star. Correcting the polarized spectra for the line and continuum of the (sharp-lined) primary, we measured the longitudinal magnetic field from each observation. The longitudinal field of the secondary is variable and exhibits extreme values of -810 ± 150 and +680 ± 190 G, implying a minimum surface dipole polar strength of 2850 ± 500 G. In contrast, we derive an upper limit (3σ) to the primary's surface magnetic field of 230 G. The combination of a strong magnetic field and rapid rotation leads us to conclude that the secondary hosts a centrifugal magnetosphere fed through a magnetically confined wind. We revisit the properties of the optical line profiles and X-ray emission - previously interpreted as a consequence of colliding stellar winds - in this context. We conclude that HD 47129 represents a heretofore unique stellar system - a close, massive binary with a rapidly rotating, magnetized component - that will be a rich target for further study.

  9. The Apsidal Alignment of the HD 82943 System

    CERN Document Server

    Jianghui, J; Lin, L; Guangyu, L; Nakai, H; Jianghui, Ji; Lin, Liu; Guangyu, Li

    2003-01-01

    We perform numerical simulations to explore the dynamical evolution of the HD 82943 planetary system. By simulating diverse planetary configurations, we find two mechanisms to maintain the stability of the system: the 2:1 mean motion resonance between the planets can act as the first mechanism for all stable orbits. The second mechanism is the apsidal alignment and we find that the difference of the apsidal longitudes $\\theta_{3}$ librates about $180^{\\circ}$ in the simulations. We also use the analytical model to explain the numerical results for the system.

  10. Detailed Abundances of Planet-Hosting Wide Binaries. I. Did Planet Formation Imprint Chemical Signatures in the Atmospheres of HD 20782/81?

    CERN Document Server

    Mack, Claude E; Stassun, Keivan G; Pepper, Joshua; Norris, John

    2014-01-01

    Using high-resolution echelle spectra obtained with Magellan/MIKE, we present a chemical abundance analysis of both stars in the planet-hosting wide binary system HD20782 + HD20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters $\\lesssim 0.2\\,$ AU. We investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperatures ($T_{C}\\approx 40-1660\\,$ K). The two stars are found to have a mean element-to-element abundance difference of $0.04\\pm0.07\\,$ dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements ($T_{C} > 900\\,$ K) exhibit a positive correlation between a...

  11. Tides in asynchronous binary systems

    OpenAIRE

    Toledano, Oswaldo; Moreno, Edmundo; Koenigsberger, Gloria; Detmers, R.; Langer, Norbert

    2006-01-01

    Stellar oscillations are excited in non-synchronously rotating stars in binary systems due to the tidal forces. Tangential components of the tides can drive a shear flow which behaves as a differentially forced rotating structure in a stratified outer medium. In this paper we show that our single-layer approximation for the calculation of the forced oscillations yields results that are consistent with the predictions for the synchronization timescales in circular orbits. In addition, calibrat...

  12. On the inclination and habitability of the HD 10180 system

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Gelino, Dawn M., E-mail: skane@sfsu.edu [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2014-09-10

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD 10180 system, which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100% of an eccentric orbit within the Habitable Zone.

  13. On the Inclination and Habitability of the HD 10180 System

    CERN Document Server

    Kane, Stephen R

    2014-01-01

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD~10180 system which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100\\% of an eccentric orbit within the Habitable Zone.

  14. A New Analysis of the Exoplanet Hosting System HD 6434

    CERN Document Server

    Hinkel, Natalie R; Pilyavsky, Genady; Boyajian, Tabetha S; James, David J; Naef, Dominique; Fischer, Debra A; Udry, Stephane

    2015-01-01

    The current goal of exoplanetary science is not only focused on detecting but characterizing planetary systems in hopes of understanding how they formed, evolved, and relate to the Solar System. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) combines both radial velocity (RV) and photometric data in order to achieve unprecedented ground-based precision in the fundamental properties of nearby, bright, exoplanet-hosting systems. Here we discuss HD 6434 and its planet, HD 6434b, which has a M_p*sin(i) = 0.44 M_J mass and orbits every 22.0170 days with an eccentricity of 0.146. We have combined previously published RV data with new measurements to derive a predicted transit duration of ~6 hrs, or 0.25 days, and a transit probability of 4%. Additionally, we have photometrically observed the planetary system using both the 0.9m and 1.0m telescopes at the Cerro Tololo Inter-American Observatory, covering 75.4% of the predicted transit window. We reduced the data using the automated TERMS Photometry P...

  15. Close Binary System GO Cyg

    CERN Document Server

    Ulas, B; Keskin, V; Kose, O; Yakut, K

    2011-01-01

    In this study, we present long term photometric variations of the close binary system \\astrobj{GO Cyg}. Modelling of the system shows that the primary is filling Roche lobe and the secondary of the system is almost filling its Roche lobe. The physical parameters of the system are $M_1 = 3.0\\pm0.2 M_{\\odot}$, $M_2 = 1.3 \\pm 0.1 M_{\\odot}$, $R_1 = 2.50\\pm 0.12 R_{\\odot}$, $R_2 = 1.75 \\pm 0.09 R_{\\odot}$, $L_1 = 64\\pm 9 L_{\\odot}$, $L_2 = 4.9 \\pm 0.7 L_{\\odot}$, and $a = 5.5 \\pm 0.3 R_{\\odot}$. Our results show that \\astrobj{GO Cyg} is the most massive system near contact binary (NCB). Analysis of times of the minima shows a sinusoidal variation with a period of $92.3\\pm0.5$ years due to a third body whose mass is less than 2.3$M_{\\odot}$. Finally a period variation rate of $-1.4\\times10^{-9}$ d/yr has been determined using all available light curves.

  16. Intense X-ray flares from active stellar systems - EV Lacertae and HD 8357

    Science.gov (United States)

    Ambruster, C.; Snyder, W. A.; Wood, K. S.

    1984-01-01

    The HEAO A-1 Sky Survey Experiment included X-ray data used to define light curves for the flare star EV Lac and for X-ray flares observed in the binary system HD 8357. The data were taken during flare events and were detailed enough to calculate the flare rates and flaring luminosities. The peak luminosities during flares were several times the luminosities in normal X-ray flares emitted by the objects. Peak luminosities reached 30-50 times the normal variations and were associated with an order of magnitude increase in energy output. EV Lac was sufficiently active to be recommended for inclusion in future X-ray monitoring programs.

  17. Conditions of Dynamical Stability for the HD 160691 Planetary System

    CERN Document Server

    Bois, E; Rambaux, N; Pilat-Lohinger, E; Bois, Eric; Kiseleva-Eggleton, Ludmila; Rambaux, Nicolas; Pilat-Lohinger, Elke

    2003-01-01

    This paper presents a global dynamics analysis in the 3-D orbital parameter space related to the HD 160691 planetary system whose orbital parameters of the outer planet are yet uncertain. We make into evidence a stabilizing mechanism that could be the key to its existence. We show that the orbital parameters may allow the existence of a rather wide stability zone in the semi-major axes parameter space. This stability zone is only possible as the result of a 2:1 mean motion resonance coupled with adequate relative positions of the planets on their orbits avoiding close approaches in the closeness of their periastron. The mechanism itself is preserved by librations of the mean motion resonance variables while the longitudes of periapse on average precess at the same rate. We conclude that in order to be dynamically stable, the HD 160691 planetary system has to satisfy the following conditions: (1) a 2:1 mean motion resonance combined with (2) an apsidal secular resonance in (3) a configuration where the two aps...

  18. The unstable fate of the planet orbiting the A-star in the HD 131399 triple stellar system

    CERN Document Server

    Veras, Dimitri; Gaensicke, Boris T

    2016-01-01

    Validated planet candidates need not lie on long-term stable orbits, and instability triggered by post-main-sequence stellar evolution can generate architectures which transport rocky material to white dwarfs, polluting them. The giant planet HD 131399Ab orbits its parent A star at a projected separation of about 50-100 au. The host star, HD 131399A, is part of a hierarchical triple with HD 131399BC being a close binary separated by a few hundred au from the A star. Here, we determine the fate of this system, and find that (i) stability along the main sequence is achieved only for a favourable choice of parameters within the errors, and (ii) even for this choice, in almost every instance the planet is ejected during the transition between the giant branch and white dwarf phases of HD 131399A. This result provides an example of both how the free-floating planet population may be enhanced by similar systems, and how instability can manifest in the polluted white dwarf progenitor population.

  19. Refined Properties of the HD 130322 Planetary System

    CERN Document Server

    Hinkel, Natalie R; Henry, Gregory W; Feng, Y Katherina; Boyajian, Tabetha; Wright, Jason; Fischer, Debra A; Howard, Andrew W

    2015-01-01

    Exoplanetary systems closest to the Sun, with the brightest host stars, provide the most favorable opportunities for characterization studies of the host star and their planet(s). The Transit Ephemeris Refinement and Monitoring Survey uses both new radial velocity measurements and photometry in order to greatly improve planetary orbit uncertainties and the fundamental properties of the star, in this case HD 130322. The only companion, HD 130322b, orbits in a relatively circular orbit, e = 0.029 every ~10.7 days. Radial velocity measurements from multiple sources, including 12 unpublished from the Keck I telescope, over the course of ~14 years have reduced the uncertainty in the transit midpoint to ~2 hours. The transit probability for the b-companion is 4.7%, where M_p sin i = 1.15 M_J and a = 0.0925 AU. In this paper, we compile photometric data from the T11 0.8m Automated Photoelectric Telescope at Fairborn Observatory taken over ~14 years, including the constrained transit window, which results in a dispos...

  20. A Six-Planet System Orbiting HD 219134

    CERN Document Server

    Vogt, Steven S; Meschiari, Stefano; Butler, R Paul; Henry, Gregory W; Wang, Songhu; Holden, Brad; Gapp, Cyril; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Laughlin, Gregory

    2015-01-01

    We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope, and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope (APF) at Lick Observatory. Our observations reveal six new planetary candidates, with orbital periods of P=3.1, 6.8, 22.8, 46.7, 94.2 and 2247 days, spanning masses of msini=3.8, 3.5, 8.9, 21.3, 10.8 and 108 M_earth respectively. Our analysis indicates that the outermost signal is unlikely to be an artifact induced by stellar activity. In addition, several years of precision photometry with the T10 0.8~m automatic photometric telescope (APT) at Fairborn Observatory demonstrated a lack of brightness variability to a limit of ~0.0002 mag, providing strong support for planetary-reflex motion as the source of the radial velocity variations. The HD 219134 system, with its bright (V=5.6) primary provides an excellent opportun...

  1. DISCRETE MASS EJECTIONS FROM THE Be/X-RAY BINARY A0535+26/HD 245770

    International Nuclear Information System (INIS)

    We present long-term optical spectroscopic observations on the Be/X-ray binary A0535+26 from 1992 to 2010. Combined with the public V-band photometric data, we find that each giant X-ray outburst occurred in a fading phase of the optical brightness. The anti-correlation between the optical brightness and the Hα intensity during our 2009 observations indicates a mass ejection event had taken place before the 2009 giant X-ray outburst, which might cause the formation of a low-density region in the inner part of the disk. The similar anti-correlation observed around 1996 September indicates the occurrence of the mass ejection, which might trigger the subsequent disk loss event in A0535+26.

  2. H/D Isotope Effects in Hydrogen Bonded Systems

    Directory of Open Access Journals (Sweden)

    Aleksander Filarowski

    2013-04-01

    Full Text Available An extremely strong H/D isotope effect observed in hydrogen bonded A-H…B systems is connected with a reach diversity of the potential shape for the proton/deuteron motion. It is connected with the anharmonicity of the proton/deuteron vibrations and of the tunneling effect, particularly in cases of short bridges with low barrier for protonic and deuteronic jumping. Six extreme shapes of the proton motion are presented starting from the state without possibility of the proton transfer up to the state with a full ionization. The manifestations of the H/D isotope effect are best reflected in the infra-red absorption spectra. A most characteristic is the run of the relationship between the isotopic ratio nH/nD and position of the absorption band shown by using the example of NHN hydrogen bonds. One can distinguish a critical range of correlation when the isotopic ratio reaches the value of ca. 1 and then increases up to unusual values higher than . The critical range of the isotope effect is also visible in NQR and NMR spectra. In the critical region one observes a stepwise change of the NQR frequency reaching 1.1 MHz. In the case of NMR, the maximal isotope effect is reflected on the curve presenting the dependence of Δd (1H,2H on d (1H. This effect corresponds to the range of maximum on the correlation curve between dH and ΔpKa that is observed in various systems. There is a lack in the literature of quantitative information about the influence of isotopic substitution on the dielectric properties of hydrogen bond except the isotope effect on the ferroelectric phase transition in some hydrogen bonded crystals.

  3. Magellan AO System z‧, Y S , and L‧ Observations of the Very Wide 650 AU HD 106906 Planetary System

    Science.gov (United States)

    Wu, Ya-Lin; Close, Laird M.; Bailey, Vanessa P.; Rodigas, Timothy J.; Males, Jared R.; Morzinski, Katie M.; Follette, Katherine B.; Hinz, Philip M.; Puglisi, Alfio; Briguglio, Runa; Xompero, Marco

    2016-05-01

    We analyze archival data from Bailey and co-workers from the Magellan adaptive optics system and present the first 0.9 μm detection (z‧ = 20.3 ± 0.4 mag; Δz‧ = 13.0 ± 0.4 mag) of the 11 M Jup circumbinary planet HD 106906AB b, as well as 1 and 3.8 μm detections of the debris disk around the binary. The disk has an east–west asymmetry in length and surface brightness, especially at 3.8 μm where the disk appears to be one-sided. The spectral energy distribution of b, when scaled to the K S -band photometry, is consistent with 1800 K atmospheric models without significant dust reddening, unlike some young, very red, low-mass companions such as CT Cha B and 1RXS 1609 B. Therefore, the suggested circumplanetary disk of Kalas and co-workers might not contain much material, or might be closer to face-on. Finally, we suggest that the widest (a ≳ 100 AU) low mass ratio (M p/M ⋆ ≡ q ≲ 0.01) companions may have formed inside protoplanetary disks but were later scattered by binary/planet interactions. Such a scattering event may have occurred for HD 106906AB b with its central binary star, but definitive proof at this time is elusive. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.

  4. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    黄润乾; 曾艺蓉

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M star and a 6 M star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  5. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M⊙ star and a 6 M⊙ star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  6. HD 144548: A young triply eclipsing system in the Upper Scorpius OB association

    Science.gov (United States)

    Alonso, R.; Deeg, H. J.; Hoyer, S.; Lodieu, N.; Palle, E.; Sanchis-Ojeda, R.

    2015-12-01

    The star HD 144548 (=HIP 78977; TYP 6212-1273-1) has been known as a detached eclipsing binary and a bona-fide member of the Upper Scorpius OB association. Continuous photometry from the K2 mission on Campaign Two has revealed the presence of additional eclipses due to the presence of a third star in the system. These are explained by a system composed of the two previously known members of the eclipsing system (Ba and Bb) with a period of 1.63 d, orbiting around an F7-F8V star with a period of 33.945 ± 0.002 d in an eccentric orbit (eA = 0.2652 ± 0.0003). The timing of the eclipses of Ba and Bb reveals the same 33.9 d periodicity, which we interpret as the combination of a light time effect combined with dynamical perturbations on the close system. Here we combine radial velocities and analytical approximations for the timing of the eclipses to derive masses and radii for the three components of the system. We obtain a mass of 1.44 ± 0.04 M⊙ and radius of 2.41 ± 0.03 R⊙ for the A component, and almost identical masses and radii of about 0.96 M⊙ and 1.33 R⊙ for each of the two components of the close binary. HD 144548 is the first triply eclipsing system for which radial velocities of all components could be measured. Partially based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei of the INAF, the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association, and the William Herschel Telescope (programme DDT58 - PI Lodieu) operated by the Isaac Newton Group on the island of La Palma at the Spanish Observatorio Roque de los Muchachos of the IAC. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate.Appendices are available in electronic form at http://www.aanda.org

  7. Discovery of a magnetic field in the rapidly-rotating O-type secondary of the colliding-wind binary HD 47129 (Plaskett's star)

    CERN Document Server

    Grunhut, J H; Leutenegger, M; Petit, V; Rauw, G; Neiner, C; Martins, F; Cohen, D H; Gagné, M; Ignace, R; Mathis, S; de Mink, S E; Moffat, A F J; Owocki, S; Shultz, M; Sundqvist, J

    2012-01-01

    We report the detection of a strong, organized magnetic field in the secondary component of the massive O8III/I+O7.5V/III double-lined spectroscopic binary system HD 47129 (Plaskett's star), in the context of the Magnetism in Massive Stars (MiMeS) survey. Eight independent Stokes $V$ observations were acquired using the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope and the Narval spectropolarimeter at the T\\'elescope Bernard Lyot. Using Least-Squares Deconvolution we obtain definite detections of signal in Stokes $V$ in 3 observations. No significant signal is detected in the diagnostic null ($N$) spectra. The Zeeman signatures are broad and track the radial velocity of the secondary component; we therefore conclude that the rapidly-rotating secondary component is the magnetized star. Correcting the polarized spectra for the line and continuum of the (sharp-lined) primary, we measured the longitudinal magnetic field from each observation. The longitudinal field of the secondary is variable...

  8. HD5980

    OpenAIRE

    Koenigsberger, C

    2015-01-01

    HD5980 is a multiple system containing at least 3 very massive and luminous stars. Located in the Small Magellanic Cloud, it is an ideal system for studying the massive star structure and evolutionary processes in low-metallicity environments. Intensely observed over the past few decades, HD5980 is a treasure trove of information on stellar wind structure, on wind-wind collisions and on the formation of wind-blown circumstellar structures. In addition, its characteristics suggest that the ecl...

  9. HD144548: A young triply eclipsing system in the Upper Scorpius OB association

    CERN Document Server

    Alonso, R; Hoyer, S; Lodieu, N; Palle, E; Sanchis-Ojeda, R

    2015-01-01

    The star HD144548 (=HIP~78977; TYP~6212-1273-1) has been known as a detached eclipsing binary and a bona-fide member of the Upper Scorpius OB association. Continuous photometry from the K2 mission on Campaign Two has revealed the presence of additional eclipses due to the presence of a third star in the system. These are explained by a system composed of the two previously known members of the eclipsing system (Ba and Bb) with a period of 1.63 d, orbiting around an F7-F8V star with a period of 33.945 +/- 0.002 d in an eccentric orbit (e_A = 0.2652 +/- 0.0003). The timing of the eclipses of Ba and Bb reveals the same 33.9 d periodicity, which we interpret as the combination of a light time effect combined with dynamical perturbations on the close system. Here we combine radial velocities and analytical approximations for the timing of the eclipses to derive masses and radii for the three components of the system. We obtain a mass of 1.44 +/- 0.04 M_sun and radius of 2.41 +/- 0.03 R_sun for the A component, and...

  10. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  11. THE UNUSUAL QUADRUPLE SYSTEM HD 91962 WITH A “PLANETARY” ARCHITECTURE

    Energy Technology Data Exchange (ETDEWEB)

    Tokovinin, Andrei [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mason, Brian D., E-mail: atokovinin@ctio.noao.edu, E-mail: dlatham@cfa.harvard.edu, E-mail: bdm@usno.navy.mil [U.S. Naval Observatory, 3450 Massachusetts Ave., Washington, DC (United States)

    2015-06-15

    The young nearby solar-type star HD 91962 is a rare quadruple system where three companions revolve around the main component with periods of 170.3 days, 8.85 years, and 205 years. The two outer orbits are nearly co-planar, and all orbits have small eccentricities. We refine the visual orbit of the outer pair and determine the combined spectro-interferometric orbit of the middle 8.8 year pair and the spectroscopic orbit of the inner binary. The middle and inner orbits are likely locked in a 1:19 resonance, and the ratio of the outer and middle periods is ∼23. The masses of all components are estimated (inside-out: 1.14, 0.32, 0.64, 0.64 solar mass).  The dynamical parallax is 27.4 ± 0.6 mas. We speculate that this multiple system originated from collapse of an isolated core and that the companions migrated in a dissipative disk. Other multiple systems with similar features (co-planarity, small eccentricity, and period ratio around 20) are known.

  12. Detailed abundances of planet-hosting wide binaries. I. Did planet formation imprint chemical signatures in the atmospheres of HD 20782/81?

    Energy Technology Data Exchange (ETDEWEB)

    Mack III, Claude E.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Schuler, Simon C. [University of Tampa, Tampa, FL 33606 (United States); Norris, John, E-mail: claude.e.mack@vanderbilt.edu [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia)

    2014-06-01

    Using high-resolution, high signal-to-noise echelle spectra obtained with Magellan/MIKE, we present a detailed chemical abundance analysis of both stars in the planet-hosting wide binary system HD 20782 + HD 20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters ≲0.2 AU. Here, we investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperature, T {sub C} ≈ 40-1660 K. The two stars are found to have a mean element-to-element abundance difference of 0.04 ± 0.07 dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements (T {sub C} >900 K) exhibit a positive correlation between abundance (relative to solar) and T {sub C}, with similar slopes of ≈1×10{sup –4} dex K{sup –1}. The measured positive correlations are not perfect; both stars exhibit a scatter of ≈5×10{sup –5} dex K{sup –1} about the mean trend, and certain elements (Na, Al, Sc) are similarly deviant in both stars. These findings are discussed in the context of models for giant planet migration that predict the accretion of H-depleted rocky material by the host star. We show that a simple simulation of a solar-type star accreting material with Earth-like composition predicts a positive—but imperfect—correlation between refractory elemental abundances and T {sub C}. Our measured slopes are consistent with what is predicted for the ingestion of 10-20 Earths by each star in the system. In addition, the specific element-by-element scatter might be used to distinguish between planetary accretion and Galactic chemical evolution scenarios.

  13. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  14. HD 35502: a hierarchical triple system with a magnetic B5IVpe primary

    CERN Document Server

    Sikora, James; Bohlender, David; Shultz, Matt; Adelman, Saul; Alecian, Evelyne; Hanes, David; Monin, Dmitry; Neiner, Coralie; MiMeS, the

    2016-01-01

    We present our analysis of HD~35502 based on high- and medium-resolution spectropolarimetric observations. Our results indicate that the magnetic B5IVsnp star is the primary component of a spectroscopic triple system and that it has an effective temperature of $18.4\\pm0.6\\,{\\rm kK}$, a mass of $5.7\\pm0.6\\,M_\\odot$, and a polar radius of $3.0^{+1.1}_{-0.5}\\,R_\\odot$. The two secondary components are found to be essentially identical A-type stars for which we derive effective temperatures ($8.9\\pm0.3\\,{\\rm kK}$), masses ($2.1\\pm0.2\\,M_\\odot$), and radii ($2.1\\pm0.4\\,R_\\odot$). We infer a hierarchical orbital configuration for the system in which the secondary components form a tight binary with an orbital period of $5.66866(6)\\,{\\rm d}$ that orbits the primary component with a period of over $40\\,{\\rm yrs}$. Least-Squares Deconvolution (LSD) profiles reveal Zeeman signatures in Stokes $V$ indicative of a longitudinal magnetic field produced by the B star ranging from approximately $-4$ to $0\\,{\\rm kG}$ with a m...

  15. A High Eccentricity Component in the Double Planet System Around HD 163607 and a Planet Around HD 164509

    CERN Document Server

    Giguere, Matthew J; Howard, Andrew W; Johnson, John A; Henry, Gregory W; Wright, Jason T; Marcy, Geoffrey W; Isaacson, Howard T; Hou, Fengji; Spronck, Julien

    2011-01-01

    We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 $\\pm$ 0.02 days, a semi-amplitude of 51.1 $\\pm$ 1.4 \\ms, an eccentricity of 0.73 $\\pm$ 0.02 and a derived minimum mass of \\msini = 0.77 $\\pm$ 0.02 \\mjup. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 $\\pm$ 2.0$^{\\circ}$; consequently, the planet's closest approach to its parent star is very near the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 $\\pm$ 0.02 years, an orbital eccentricity of 0.12 $\\pm$ 0.06 and a semi-amplitude of 40.4 $\\pm$ 1.3 \\ms. The minimum mass is \\msini = 2.29 $\\pm$ 0.16 \\mjup. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 $\\pm$ 3.8 days and an eccentricity of 0.26 $\\pm$ 0.14. The semi-amplitude of 14.2 $\\pm$ 2.7 \\ms\\ implies a mini...

  16. The SOPHIE search for northern extrasolar planets II. A multiple planet system around HD 9446

    OpenAIRE

    Hebrard, G.; Bonfils, X.; Segransan, D.; Moutou, C.; Delfosse, X.; Bouchy, F.; Boisse, I.; Arnold, L; Desort, M.; Diaz, R. F.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Lovis, C.

    2010-01-01

    We report the discovery of a planetary system around HD9446, performed from radial velocity measurements secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory during more than two years. At least two planets orbit this G5V, active star: HD9446b has a minimum mass of 0.7 M_Jup and a slightly eccentric orbit with a period of 30 days, whereas HD9446c has a minimum mass of 1.8 M_Jup and a circular orbit with a period of 193 days. As for most of the known m...

  17. The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 AU, Metal-Poor Binary "Twins" HD 133131A & B

    CERN Document Server

    Teske, Johanna K; Vogt, Steve S; Díaz, Matías; Butler, R Paul; Crane, Jeffrey D; Thompson, Ian B; Arriagada, Pamela

    2016-01-01

    We present a new precision radial velocity (RV) dataset that reveals multiple planets orbiting the stars in the $\\sim$360 AU, G2$+$G2 "twin" binary HD 133131AB. Our 6 years of high-resolution echelle observations from MIKE and 5 years from PFS on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum masses of 1.43$\\pm$0.03 and 0.63$\\pm$0.15 $\\mathcal{M}_{\\rm J}$ at 1.44$\\pm$0.005 and 4.79$\\pm$0.92 AU, respectively. Additional PFS observations of HD 133131B spanning 5 years indicate the presence of one eccentric planet of minimum mass 2.50$\\pm$0.05 $\\mathcal{M}_{\\rm J}$ at 6.40$\\pm$0.59 AU, making it one of the longest period planets detected with RV to date. These planets are the first to be reported primarily based on data taken with PFS on Magellan, demonstrating the instrument's precision and the advantage of long-baseline RV observations. We perform a differential analysis between the Sun and each star, and between the stars themselves, to derive stellar par...

  18. Stability of multiplanet systems in binaries

    CERN Document Server

    Marzari, F

    2016-01-01

    When exploring the stability of multiplanet systems in binaries, two parameters are normally exploited: the critical semimajor axis ac computed by Holman and Wiegert (1999) within which planets are stable against the binary perturbations, and the Hill stability limit Delta determining the minimum separation beyond which two planets will avoid mutual close encounters. Our aim is to test whether these two parameters can be safely applied in multiplanet systems in binaries or if their predictions fail for particular binary orbital configurations. We have used the frequency map analysis (FMA) to measure the diffusion of orbits in the phase space as an indicator of chaotic behaviour. First we revisited the reliability of the empirical formula computing ac in the case of single planets in binaries and we find that, in some cases, it underestimates by 10-20% the real outer limit of stability. For two planet systems, the value of Delta is close to that computed for planets around single stars, but the level of chaoti...

  19. HD 35502: a hierarchical triple system with a magnetic B5IVpe primary

    Science.gov (United States)

    Sikora, J.; Wade, G. A.; Bohlender, D. A.; Shultz, M.; Adelman, S. J.; Alecian, E.; Hanes, D.; Monin, D.; Neiner, C.; MiMeS Collaboration; BinaMIcS Collaboration

    2016-08-01

    We present our analysis of HD 35502 based on high- and medium-resolution spectropolarimetric observations. Our results indicate that the magnetic B5IVsnp star is the primary component of a spectroscopic triple system and that it has an effective temperature of 18.4 ± 0.6 kK, a mass of 5.7 ± 0.6 M⊙, and a polar radius of 3.0^{+1.1}_{-0.5} R_{odot }. The two secondary components are found to be essentially identical A-type stars for which we derive effective temperatures (8.9 ± 0.3 kK), masses (2.1 ± 0.2 M⊙), and radii (2.1 ± 0.4 R⊙). We infer a hierarchical orbital configuration for the system in which the secondary components form a tight binary with an orbital period of 5.668 66(6) d that orbits the primary component with a period of over 40 yr. Least-Squares Deconvolution profiles reveal Zeeman signatures in Stokes V indicative of a longitudinal magnetic field produced by the B star ranging from approximately -4 to 0 kG with a median uncertainty of 0.4 kG. These measurements, along with the line variability produced by strong emission in Hα, are used to derive a rotational period of 0.853 807(3) d. We find that the measured v sin i = 75 ± 5 km s-1 of the B star then implies an inclination angle of the star's rotation axis to the line of sight of 24^{+6}_{-10}{}^circ. Assuming the Oblique Rotator Model, we derive the magnetic field strength of the B star's dipolar component (14^{+9}_{-3} kG) and its obliquity (63± 13deg). Furthermore, we demonstrate that the calculated Alfvén radius (41^{+17}_{-6}R_ast) and Kepler radius (2.1^{+0.4}_{-0.7}R_ast) place HD 35502's central B star well within the regime of centrifugal magnetosphere-hosting stars.

  20. HD 35502: a hierarchical triple system with a magnetic B5IVpe primary

    Science.gov (United States)

    Sikora, J.; Wade, G. A.; Bohlender, D. A.; Shultz, M.; Adelman, S. J.; Alecian, E.; Hanes, D.; Monin, D.; Neiner, C.; MiMeS Collaboration; BinaMIcS Collaboration

    2016-08-01

    We present our analysis of HD 35502 based on high- and medium-resolution spectropolarimetric observations. Our results indicate that the magnetic B5IVsnp star is the primary component of a spectroscopic triple system and that it has an effective temperature of 18.4 ± 0.6 kK, a mass of 5.7 ± 0.6 M⊙, and a polar radius of 3.0^{+1.1}_{-0.5} R_{⊙}. The two secondary components are found to be essentially identical A-type stars for which we derive effective temperatures (8.9 ± 0.3 kK), masses (2.1 ± 0.2 M⊙), and radii (2.1 ± 0.4 R⊙). We infer a hierarchical orbital configuration for the system in which the secondary components form a tight binary with an orbital period of 5.668 66(6) d that orbits the primary component with a period of over 40 yr. Least-Squares Deconvolution profiles reveal Zeeman signatures in Stokes V indicative of a longitudinal magnetic field produced by the B star ranging from approximately -4 to 0 kG with a median uncertainty of 0.4 kG. These measurements, along with the line variability produced by strong emission in Hα, are used to derive a rotational period of 0.853 807(3) d. We find that the measured v sin i = 75 ± 5 km s-1 of the B star then implies an inclination angle of the star's rotation axis to the line of sight of 24^{+6}_{-10}°. Assuming the Oblique Rotator Model, we derive the magnetic field strength of the B star's dipolar component (14^{+9}_{-3} kG) and its obliquity (63± 13°). Furthermore, we demonstrate that the calculated Alfvén radius (41^{+17}_{-6}R_ast) and Kepler radius (2.1^{+0.4}_{-0.7}R_ast) place HD 35502's central B star well within the regime of centrifugal magnetosphere-hosting stars.

  1. Planetary nebula progenitors that swallow binary systems

    CERN Document Server

    Soker, Noam

    2015-01-01

    I propose that some irregular `messy' planetary nebulae owe their morphologies to triple-stellar evolution where tight binary systems are tidally and frictionally destroyed inside the envelope of asymptotic giant branch (AGB) stars. The tight binary system might breakup with one star leaving the system. In an alternative evolution, one of the stars of the brook-up tight binary system falls toward the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and `messy' planetary nebula as a descendant. The evolution of the triple-stellar system before destruction can be in a full common envelope evolution (CEE) or in a grazing envelope evolution (GEE). Both before and after destruction the system might lunch pairs of opposite jets. One pronounced sig...

  2. A Model for Contact Binary Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understanding that the energy exchange is due to the release of potential, kinetic and thermal energies of the exchanged mass. b) A special form of mass and angular momentum loss occurring in contact binaries is losses via the outer Lagrangian point. c) The effects of spin, orbital rotation and tidal action on the stellar structure as well as the effect of meridian circulation on the mixing of the chemical elements are considered. d) The model is valid not only for low-mass contact binaries but also for high-mass contact binaries. For illustration, we used the model to trace the evolution of a massive binary system consisting of one 12M⊙ and one 5M⊙ star. The result shows that the start and end of the contact stage fall within the semi-detached phase during which the primary continually transfers mass to the secondary. The time span of the contact stage is short and the mass transfer rate is very large. Therefore, the contact stage can be regarded as a special part of the semi-detached phase with a large mass transfer rate. Both mass loss through the outer Lagrangian point and oscillation between contact and semi-contact states can occur during the contact phase, and the effective temperatures of the primary and the secondary are almost equal.

  3. Gravitational wave background from binary systems

    International Nuclear Information System (INIS)

    Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter Ω(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, Ω(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for Ω(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.

  4. VLSI binary multiplier using residue number systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsi, F.; Di Cola, A.

    1982-01-01

    The idea of performing multiplication of n-bit binary numbers using a hardware based on residue number systems is considered. This paper develops the design of a VLSI chip deriving area and time upper bounds of a n-bit multiplier. To perform multiplication using residue arithmetic, numbers are converted from binary to residue representation and, after residue multiplication, the result is reconverted to the original notation. It is shown that the proposed design requires an area a=o(n/sup 2/ log n) and an execution time t=o(log/sup 2/n). 7 references.

  5. Gravitational wave background from binary systems

    CERN Document Server

    Rosado, Pablo A

    2011-01-01

    Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter $\\Omega(f)$, commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, $\\Omega(f)$ is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the ...

  6. Nonlinear Tides in Close Binary Systems

    CERN Document Server

    Weinberg, Nevin N; Quataert, Eliot; Burkart, Josh

    2011-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct effects: three-mode nonlinear interactions and nonlinear excitation of modes by the time-varying gravitational potential of the companion. This paper presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism is applicable to binaries containing stars, planets, or compact objects, we focus on solar type stars with stellar or planetary companions. Our primary results include: (1) The linear tidal solution often used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited gravity waves are unstable to parametric resonance for companion masses M' > 10-100 M_Earth at orbital periods P = 1-10 days. The nearly static equilibrium tide is, however, parametrically s...

  7. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  8. The Evolution of Relativistic Binary Progenitor Systems

    CERN Document Server

    Francischelli, G J; Brown, G E

    2001-01-01

    Relativistic binary pulsars, such as B1534+12 and B1913+16 are characterized by having close orbits with a binary separation of ~ 3 R_\\sun. The progenitor of such a system is a neutron star, helium star binary. The helium star, with a strong stellar wind, is able to spin up its compact companion via accretion. The neutron star's magnetic field is then lowered to observed values of about 10^{10} Gauss. As the pulsar lifetime is inversely proportional to its magnetic field, the possibility of observing such a system is, thus, enhanced by this type of evolution. We will show that a nascent (Crab-like) pulsar in such a system can, through accretion-braking torques (i.e. the "propeller effect") and wind-induced spin-up rates, reach equilibrium periods that are close to observed values. Such processes occur within the relatively short helium star lifetimes. Additionally, we find that the final outcome of such evolutionary scenarios depends strongly on initial parameters, particularly the initial binary separation a...

  9. First Observation of Planet-Induced X-ray Emission: The System HD 179949

    OpenAIRE

    Saar, S. H.; Cuntz, M.; Kashyap, V. L.; Hall, J. C.

    2007-01-01

    We present the first observation of planet-induced stellar X-ray activity, identified for the HD 179949 system, using Chandra / ACIS-S. The HD 179949 system consists of a close-in giant planet orbiting an F9V star. Previous ground-based observations already showed enhancements in Ca II K in phase with the planetary orbit. We find an ~30% increase in the X-ray flux over quiescent levels coincident with the phase of the Ca II enhancements. There is also a trend for the emission to be hotter at ...

  10. Dynamics and Habitability in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Pilat-Lohinger, Elke

    2014-01-01

    Determining planetary habitability is a complex matter, as the interplay between a planet's physical and atmospheric properties with stellar insolation has to be studied in a self consistent manner. Standardized atmospheric models for Earth-like planets exist and are commonly accepted as a reference for estimates of Habitable Zones. In order to define Habitable Zone boundaries, circular orbital configurations around main sequence stars are generally assumed. In gravitationally interacting multibody systems, such as double stars, however, planetary orbits are forcibly becoming non circular with time. Especially in binary star systems even relatively small changes in a planet's orbit can have a large impact on habitability. Hence, we argue that a minimum model for calculating Habitable Zones in binary star systems has to include dynamical interactions.

  11. Magellan AO System $z'$, $Y_S$, and $L'$ Observations of the Very Wide 650 AU HD 106906 Planetary System

    CERN Document Server

    Wu, Ya-Lin; Bailey, Vanessa P; Rodigas, Timothy J; Males, Jared R; Morzinski, Katie M; Follette, Katherine B; Hinz, Philip M; Puglisi, Alfio; Briguglio, Runa; Xompero, Marco

    2016-01-01

    We analyze archival data from Bailey and co-workers from the $Magellan$ adaptive optics system and present the first 0.9 $\\mu$m detection ($z' = 20.3\\pm0.4$ mag; $\\Delta z'=13.0\\pm0.4$ mag) of the 11 $M_\\mathrm{Jup}$ circumbinary planet HD 106906AB b, as well as the 1 and 3.8 $\\mu$m detections of the debris disk around the binary. The disk has an east-west asymmetry in length and surface brightness, especially at 3.8 $\\mu$m where the disk appears to be one-sided. The spectral energy distribution of b, when scaled to the $K_S$-band photometry, is consistent with 1800 K atmospheric models without significant dust reddening, unlike some young, very red, low-mass companions such as CT Cha B and 1RXS 1609 B. Therefore, the suggested circumplanetary disk of Kalas and co-workers might not contain much material, or might be closer to face-on. Finally, we suggest that the widest ($a\\gtrsim100$ AU) low mass ratio ($M_\\mathrm{p}/M_\\mathrm{\\star} \\equiv q\\lesssim0.01$) companions may have formed inside protoplanetary dis...

  12. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  13. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  14. HD5980

    Science.gov (United States)

    Koenigsberger, C.

    HD5980 is a multiple system containing at least 3 very massive and luminous stars. Located in the Small Magellanic Cloud, it is an ideal system for studying the massive star structure and evolutionary processes in low-metallicity environments. Intensely observed over the past few decades, HD5980 is a treasure trove of information on stellar wind structure, on wind-wind collisions and on the formation of wind-blown circumstellar structures. In addition, its characteristics suggest that the eclipsing WR+LBV stars of the system are the product of quasihomogeneous chemical evolution, thus making them candidate pair production supernovae or GRB progenitors. This paper summarizes some of the outstanding results derived from half a century of observations and recent theoretical studies.

  15. Complex Binary Number System Algorithms and Circuits

    CERN Document Server

    Jamil, Tariq

    2013-01-01

    This book is a compilation of the entire research work on the topic of Complex Binary Number System (CBNS) carried out by the author as the principal investigator and members of his research groups at various universities during the years 1992-2012. Pursuant to these efforts spanning several years, the realization of CBNS as a viable alternative to represent complex numbers in an 'all-in-one' binary number format has become possible and efforts are underway to build computer hardware based on this unique number system. It is hoped that this work will be of interest to anyone involved in computer arithmetic and digital logic design and kindle renewed enthusiasm among the engineers working in the areas of digital signal and image processing for developing newer and efficient algorithms and techniques incorporating CBNS.

  16. Coalescence of Magnetized Binary Neutron Star Systems

    Science.gov (United States)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Neilsen, David; Palenzuela, Carlos; Ponce, Marcelo

    2015-01-01

    We present simulations of the merger of binary neutron star systems calculated with full general relativity and incorporating the global magnetic field structure for the stars evolved with resistive magnetohydrodynamics. Our simulation tools have recently been improved to incorporate the effects of neutrino cooling and have been generalized to allow for tabular equations of state to describe the degenerate matter. Of particular interest are possible electromagnetic counterparts to the gravitational radiation that emerges from these systems. We focus on magnetospheric interactions that ultimately tap into the gravitational potential energy of the binary to power a Poynting flux and deposition of energy through Joule heating and magnetic reconnection. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  17. 75 FR 25120 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2010-05-07

    ... HD System to include pressurized water reactor fuel assemblies with control components, reduce the... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR- RELATED GREATER THAN CLASS C...; #0; #0;#0;Federal Register / Vol. 75, No. 88 / Friday, May 7, 2010 / Proposed Rules#0;#0; ]...

  18. Properties of planets in binary systems. The role of binary separation

    OpenAIRE

    Desidera, S.; Barbieri, M.

    2006-01-01

    The statistical properties of planets in binaries were investigated. Any difference to planets orbiting single stars can shed light on the formation and evolution of planetary systems. As planets were found around components of binaries with very different separation and mass ratio, it is particularly important to study the characteristics of planets as a function of the effective gravitational influence of the companion. A compilation of planets in binary systems was made; a search for compa...

  19. Stellivore extraterrestrials? Binary stars as living systems

    Science.gov (United States)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data.

  20. Brown Dwarf Binaries from Disintegrating Triple Systems

    CERN Document Server

    Reipurth, Bo

    2015-01-01

    We have carried out 200,000 N-body simulations of three identical stellar embryos with masses from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. To illustrate the simulations we introduce the 'triple diagnostic diagram', which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations. The separation distribution function is in good correspondence with...

  1. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    CERN Document Server

    Bluhm, P; Vanzi, L; Soto, M G; Vos, J; Wittenmyer, R A; Olivares, F; Drass, H; Mennickent, R E; Vuckovic, M; Rojo, P; Melo, C H F

    2016-01-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions.The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between $\\sim$ 97-1600 days and eccentricities of between $\\sim$ 0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a diffe...

  2. A Compact Supermassive Binary Black Hole System

    CERN Document Server

    Rodríguez, C; Zavala, R T; Peck, A B; Pollack, L K; Romani, R W

    2006-01-01

    We report on the discovery of a supermassive binary black hole system in the radio galaxy 0402+379, with a projected separation between the two black holes of just 7.3 pc. This is the closest black hole pair yet found by more than two orders of magnitude. These results are based upon recent multi-frequency observations using the Very Long Baseline Array (VLBA) which reveal two compact, variable, flat-spectrum, active nuclei within the elliptical host galaxy of 0402+379. Multi-epoch observations from the VLBA also provide constraints on the total mass and dynamics of the system. Low spectral resolution spectroscopy using the Hobby-Eberly Telescope indicates two velocity systems with a combined mass of the two black holes of ~1.5 x 10^8 solar masses. The two nuclei appear stationary while the jets emanating from the weaker of the two nuclei appear to move out and terminate in bright hot spots. The discovery of this system has implications for the number of close binary black holes that might be sources of gravi...

  3. RS CV sub n binary systems

    Science.gov (United States)

    Linsky, J. L.

    1984-01-01

    An attempt is made to place in context the vast amount of data obtained as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. Emphasis is on the RS CVn systems and their long period analogs. The following questions are considered: (1) are the original defining characteristics still valid and still adequate? (2) what is the evidence for discrete active regions? (3) have any meaningful physical properties for the atmospheres of RS CVn systems been derived? (4) what do the flare observations tell about magnetic fields in RS CVn systems? (5) is there evidence for systematic trends in RS CVn systems with spectral type?

  4. Resonances Required: Dynamical Analysis of the 24 Sex and HD 200964 Planetary Systems

    Science.gov (United States)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.

    2012-12-01

    We perform several suites of highly detailed dynamical simulations to investigate the architectures of the 24 Sextantis and HD 200964 planetary systems. The best-fit orbital solution for the two planets in the 24 Sex system places them on orbits with periods that lie very close to 2:1 commensurability, while that for the HD 200964 system places the two planets therein in orbits whose periods lie close to a 4:3 commensurability. In both cases, the proposed best-fit orbits are mutually crossing—a scenario that is only dynamically feasible if the planets are protected from close encounters by the effects of mutual mean-motion resonance (MMR). Our simulations reveal that the best-fit orbits for both systems lie within narrow islands of dynamical stability, and are surrounded by much larger regions of extreme instability. As such, we show that the planets are only feasible if they are currently trapped in mutual MMR—the 2:1 resonance in the case of 24 Sex b and c, and the 4:3 resonance in the case of HD 200964 b and c. In both cases, the region of stability is strongest and most pronounced when the planetary orbits are mutually coplanar. As the inclination of planet c with respect to planet b is increased, the stability of both systems rapidly collapses.

  5. OJ 287 binary black hole system

    CERN Document Server

    Valtonen, Mauri

    2011-01-01

    The light curve of the quasar OJ 287 extends from 1891 up today without major gaps. Here we summarize the results of the 2005 - 2010 observing campaign. The main results are the following: (1) The 2005 October optical outburst came at the expected time, thus confirming the general relativistic precession in the binary black hole system. This result disproved the model of a single black hole system with accretion disk oscillations, as well as several toy models of binaries without relativistic precession. In the latter models the main outburst would have been a year later. (2) The nature of the radiation of the 2005 October outburst was expected to be bremsstrahlung from hot gas at the temperature of $3\\times 10^{5}$ $^{\\circ}$K. This was confirmed by combined ground based and ultraviolet observations using the XMM-Newton X-ray telescope. (3) A secondary outburst of the same nature was expected at 2007 September 13. Within the accuracy of observations (about 6 hours), it started at the correct time. Thus the p...

  6. Stellar Companions to the Exoplanet Host Stars HD 2638 and HD 164509

    CERN Document Server

    Wittrock, Justin M; Horch, Elliott P; Hirsch, Lea; Howell, Steve B; Ciardi, David R; Everett, Mark E; Teske, Johanna K

    2016-01-01

    An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the presence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 nm and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD 2638 and HD 164509. The stellar companion to HD 2638 has been previously detected, but the companion to HD 164509 is a newly discovered companion. The angular separation for HD 2638 is $0.512 \\pm 0.002\\arcsec$ and for HD 164509 is $0.697 \\pm 0.002\\arcsec$. This corresponds to a projected separation of $25.6 \\pm 1.9$ AU and $36.5 \\pm 1.9$ AU, respectively. By employing stellar isochrone models, we e...

  7. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼3[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  8. Nonlinear Tides in Close Binary Systems

    Science.gov (United States)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three

  9. Spectral modelling of massive binary systems

    CERN Document Server

    Palate, Matthieu; Koenigsberger, Gloria; Moreno, Edmundo

    2013-01-01

    Aims: We simulate the spectra of massive binaries at different phases of the orbital cycle, accounting for the gravitational influence of the companion star on the shape and physical properties of the stellar surface. Methods: We used the Roche potential modified to account for radiation pressure to compute the stellar surface of close circular systems and we used the TIDES code for surface computation of eccentric systems. In both cases, we accounted for gravity darkening and mutual heating generated by irradiation to compute the surface temperature. We then interpolated NLTE plane-parallel atmosphere model spectra in a grid to obtain the local spectrum at each surface point. We finally summed all contributions, accounting for the Doppler shift, limb-darkening, and visibility to obtain the total synthetic spectrum. We computed different orbital phases and sets of physical and orbital parameters. Results: Our models predict line strength variations through the orbital cycle, but fail to completely reproduce t...

  10. HD188112: Supernova Ia progenitor?

    CERN Document Server

    Latour, M; Heber, U; Schaffenroth, V

    2015-01-01

    HD188112 is an extremely low mass white dwarf in a close binary system. According to a previous study, the mass of HD188112 is $\\sim$0.24 Msun and a lower limit of 0.73 Msun could be put for the mass of its unseen companion, a compact degenarate object. We used HST STIS spectra to measure the rotational broadening of UV metallic lines in HD188112, in order to put tighter constraints on the mass of its companion. By assuming that the system in is synchronous rotation, we derive a companion mass between 1.05 and 1.25 Msun. We also measure abundances for magnesium, silicon, and iron, respectively log $N$(X)/$N$(H) = $-$6.40, $-$7.25, and $-$5.81. The radial velocities measured from the UV spectra are found to be in very good agreement with the prediction based on the orbital parameters derived in the previous study made a decade ago.

  11. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    CERN Document Server

    Forgan, Duncan H

    2016-01-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycle...

  12. Asteroid Systems: Binaries, Triples, and Pairs

    CERN Document Server

    Margot, Jean-Luc; Taylor, Patrick; Carry, Benoît; Jacobson, Seth

    2015-01-01

    In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main belt binaries have been identified. The current observational evidence confirms that small (20 km) binaries with small satellites are most likely created during large collisions.

  13. Magnetic Interaction in Ultra-compact Binary Systems

    CERN Document Server

    Wu, Kinwah

    2009-01-01

    This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.

  14. Magnetic interaction in ultra-compact binary systems

    Institute of Scientific and Technical Information of China (English)

    Kinwah WU

    2009-01-01

    This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.

  15. Merging Compact Binaries in Hierarchical Triple Systems: Resonant Excitation of Binary Eccentricity

    CERN Document Server

    Liu, Bin; Yuan, Ye-Fei

    2015-01-01

    The merging of compact binaries play an important role in astrophysical context. The gravitational waves takes the angular momentum off the merging binary, which makes the orbit of the inner binary shrink. In this work, we study the secular dynamics of merging binary with a small perturber in hierarchical triple systems. From our numerical calculations, we find that the triple system goes through a resonant state between the apsidal precession rates of two orbits during the orbital decay, and the eccentricity of the inner orbit is excited, as well as the corresponding gravita- tional wave frequency. Our numerical results could be understood under the linear approximation of small orbital eccentricities and coplanar configuration. Especially, the resonant condition and the excited eccentricity can be estimated analytically.

  16. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  17. New Pleiades Eclipsing Binaries and a Hyades Transiting System Identified by K2

    CERN Document Server

    David, Trevor J; Hillenbrand, Lynne A; Stassun, Keivan G; Stauffer, John; Rebull, Luisa M; Cody, Ann Marie; Isaacson, Howard; Howard, Andrew W; Aigrain, Suzanne

    2016-01-01

    We present the discovery in Kepler's $K2$ mission observations and our follow-up radial velocity observations from Keck/HIRES for four eclipsing binary (EB) star systems in the young benchmark Pleiades cluster. Based on our modeling results, we announce two new low mass ($M_{tot} < 0.6 M_\\odot$) EBs among Pleiades members (HCG 76 and MHO 9) and we report on two previously known Pleiades binaries that are also found to be EB systems (HII 2407 and HD 23642). We measured the masses of the binary HCG 76 to $\\lesssim$2.5% precision, and the radii to $\\lesssim$4.5% precision, which together with the precise effective temperatures yield an independent Pleiades distance of 132$\\pm$5 pc. We discuss another EB towards the Pleiades that is a possible but unlikely Pleiades cluster member (AK II 465). The two new confirmed Pleiades systems extend the mass range of Pleiades EB components to 0.2-2 $M_\\odot$. Our initial measurements of the fundamental stellar parameters for the Pleiades EBs are discussed in the context o...

  18. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, Nevin N. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Arras, Phil [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Quataert, Eliot; Burkart, Josh, E-mail: nevin@mit.edu [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States)

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' {approx}> 10-100 M{sub Circled-Plus} at orbital periods P Almost-Equal-To 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P {approx}< 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N Almost-Equal-To 10{sup 3}[P/10 days] for a solar-type star) and drives them as a single

  19. XZ And a semidetached asynchronous binary system

    Science.gov (United States)

    Manzoori, Davood

    2016-05-01

    In this work the light curves (LCs) solutions along with the radial velocity curve of the semidetached binary systemXZ And are presented using the PHOEBE program(ver 0.31a). Absolute parameters of the stellar components were then determined, enabling us to discuss structure and evolutionary status of the system. The analysis indicates that the primary is a non-synchronous (i.e., F1 = 3.50 ± 0.01) Main Sequence (MS) star and the secondary is a bit more evolved, and fills its Roche critical surface. In addition, times of minima data (" O - C curve") were analyzed. Apart from an almost parabolic variation in the general trend of O - C data, which was attributed to a mass transfer from the secondary with the rate ˙2 = (9.52 ± 0.41) × 10-10 M ⊙ yr-1; two cyclic variations with mean periods of 34.8 ± 2.4 and 23.3 ± 3.0 yr, modulating the orbital period, were found, which were attributed to a third body orbiting around the system, and magnetic activity cycle effect, respectively.

  20. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    Science.gov (United States)

    Forgan, Duncan

    2016-08-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycles (of order 1000 years) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter timescale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15,000 year timescales. This produces climate oscillations of similar strength to the variation on the orbital timescale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100,000 years in duration, which are further modulated by neighbouring planets.

  1. Progenitor models of Wolf-Rayet+O binary systems

    NARCIS (Netherlands)

    Petrovic, J.; Langer, N.

    2007-01-01

    Since close WR+O binaries are the result of a strong interaction of both stars in massive close binary systems, they can be used to constrain the highly uncertain mass and angular momentum budget during the major mass- transfer phase. We explore the progenitor evolution of the three best suited WR+O

  2. An extreme planetary system around HD219828. One long-period super Jupiter to a hot-neptune host star

    CERN Document Server

    Santos, N C; Faria, J P; Rey, J; Correia, A C M; Laskar, J; Udry, S; Adibekyan, V; Bouchy, F; Delgado-Mena, E; Melo, C; Dumusque, X; Hébrard, G; Lovis, C; Mayor, M; Montalto, M; Mortier, A; Pepe, F; Figueira, P; Sahlmann, J; Ségransan, D; Sousa, S G

    2016-01-01

    With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. We present a full investigation of the HD219828 system, a bright metal-rich star for which a hot neptune has previously been detected. We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD219828. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses. We announce the discovery of a long period (P=13.1years) massive (msini=15.1MJup) companion (HD219828c) in a very eccentric orbit (e=0.81). The same data confirms the existence of a hot-neptune, HD219828b, with a minimum mass of 21 MEarth and a period of 3.83days. The dynamical analysis shows that the system is stable. The HD219828 system is extreme and unique in several aspects. First, among all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like H...

  3. MOST discovers a multimode delta Scuti star in a triple system: HD 61199

    CERN Document Server

    Hareter, M; Lehmann, H; Tsymbal, V; Hüber, D; Lenz, P; Weiss, W W; Matthews, J M; Rucinski, S; Rowe, J F; Kuschnig, R; Günther, D B; Moffat, A F J; Sasselov, D; Walker, G A H; Scholtz, A

    2008-01-01

    A field star, HD 61199 (V ~ 8), simultaneously observed with Procyon by the MOST (Microvariability & Oscillations of STars) satellite in continuous runs of 34, 17, and 34 days in 2004, 2005, and 2007, was found to pulsate in 11 frequencies in the delta Scuti range with amplitudes from 1.7 down to 0.09 mmag. The photometry also showed variations with a period of about four days. To investigate the nature of the longer period, 45 days of time-resolved spectroscopy was obtained at the Thueringer Landessternwarte Tautenburg in 2004. The radial velocity measurements indicate that HD 61199 is a triple system. A delta Scuti pulsator with a rich eigenspectrum in a multiple system is promising for asteroseismology. Our objectives were to identify which of the stars in the system is the delta Scuti variable and to obtain the orbital elements of the system and the fundamental parameters of the individual components, which are constrained by the pulsation frequencies of the delta Scuti star. Classical Fourier techniq...

  4. Resonances Required: Dynamical Analysis of the 24 Sex and HD 200964 Planetary Systems

    CERN Document Server

    Wittenmyer, Robert A; Tinney, C G

    2012-01-01

    We perform several suites of highly detailed dynamical simulations to investigate the architectures of the 24 Sextantis and HD 200964 planetary systems. The best fit orbital solution for the two planets in the 24 Sex system places them on orbits with periods that lie very close to 2:1 commensurability, while that for the HD 200964 system places the two planets therein in orbits whose periods lie close to a 4:3 commensurability. In both cases, the proposed best-fit orbits are mutually crossing - a scenario that is only dynamically feasible if the planets are protected from close encounters by the effects of mutual mean motion resonance. Our simulations reveal that the best fit orbits for both systems lie within narrow islands of dynamical stability, and are surrounded by much larger regions of extreme instability. As such, we show that the planets are only feasible if they are currently trapped in mutual mean-motion resonance - the 2:1 resonance in the case of 24 Sex b and c, and the 4:3 resonance in the case ...

  5. Searching for Pulsars in Close Binary Systems

    CERN Document Server

    Jouteux, S; Stappers, B W; Jonker, P; Van der Klis, M

    2001-01-01

    We present a detailed mathematical analysis of the Fourier response of binary pulsar signals whose frequencies are modulated by circular orbital motion. The fluctuation power spectrum of such signals is found to be \

  6. Light and Life: Exotic Photosynthesis in Binary Star Systems

    CERN Document Server

    O'Malley-James, J T; Cockell, C S; Greaves, J S

    2011-01-01

    The potential for hosting photosynthetic life on Earth-like planets within binary/multiple stellar systems was evaluated by modelling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in: (i) close-binary systems; (ii) wide-binary systems and (iii) three-star systems were investigated and a range of stable radiation environments found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic forms of photosynthetic life, such as infrared photosynthesisers and organisms specialised for specific spectral niches.

  7. Circumstellar multi-planetary systems in binary stars: secular resonances and a semi-analytical approach to determine the location

    CERN Document Server

    Pilat-Lohinger, Elke; Funk, Barbara

    2016-01-01

    Binary stars are of special interest for studies of planetary motion and habitability as most of the stars in the solar neighborhood are part of such stellar systems. Since a secondary star causes gravitational perturbations the planetary motion is restricted to certain regions of the phase space depending on the binary configuration. In case a binary system hosts a giant planet it is obvious that additional perturbations will occur. These perturbations will be studied in detail in this investigation where we take into account various binary-planet configurations. We show how the dynamics of another test-planet is influenced by mean motion and secular resonances. Therefore, it is important to know the locations of these resonances. First, we study the binary system HD41004AB to visualize the perturbations on the dynamics of test-planets caused by the secondary star and the detected giant planet. Then we perform a frequency analysis of the orbits to identify of the secular resonance. And finally, we develop a ...

  8. A new L-dwarf member of the moderately metal-poor triple system HD 221356

    CERN Document Server

    Gauza, B; Rebolo, R; Ramírez, K Peña; Osorio, M R Zapatero; Pérez-Garrido, A; Lodieu, N; Pinfield, D J; McMahon, R G; González-Solares, E; Emerson, J P; Boudreault, S; Banerji, M

    2012-01-01

    We report on the discovery of a fourth component in the HD 221356 star system, previously known to be formed by an F8V, slightly metal-poor primary ([Fe/H]=-0.26), and a distant M8V+L3V pair. In our ongoing common proper motion search based on VISTA Hemisphere Survey (VHS) and 2MASS catalogues, we have detected a faint (J=13.76+/-0.04 mag) co-moving companion of the F8 star located at angular separation of 12.13+/-0.18 arcsec (position angle of 221.8+/-1.7), corresponding to a projected distance of ~312 AU at 26 pc. Near-infrared spectroscopy of the new companion, covering the 1.5-2.4 micron wavelength range with a resolving power of R~600, indicates an L1+/-1 spectral type. Using evolutionary models the mass of the new companion is estimated at ~0.08 solar masses, which places the object close to the stellar-substellar borderline. This multiple system provides an interesting example of objects with masses slightly above and below the hydrogen burning mass limit. The low mass companions of HD 221356 have slig...

  9. A detailed analysis of the HD 73526 2:1 resonant planetary system

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Salter, G. S.; Bailey, J.; Wright, D. [School of Physics, University of New South Wales, Sydney 2052 (Australia); Tan, Xianyu; Lee, Man Hoi [Department of Earth Sciences, The University of Hong Kong, Pokfulam Road (Hong Kong); Butler, R. P.; Arriagada, P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Carter, B. D. [Faculty of Sciences, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Jones, H. R. A. [University of Hertfordshire, Centre for Astrophysics Research, Science and Technology Research Institute, College Lane, AL10 9AB, Hatfield (United Kingdom); O' Toole, S. J. [Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670 (Australia); Crane, J. D.; Schectman, S. A.; Thompson, I. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Minniti, D.; Diaz, M., E-mail: rob@phys.unsw.edu.au [Institute of Astrophysics, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)

    2014-01-10

    We present six years of new radial velocity data from the Anglo-Australian and Magellan Telescopes on the HD 73526 2:1 resonant planetary system. We investigate both Keplerian and dynamical (interacting) fits to these data, yielding four possible configurations for the system. The new data now show that both resonance angles are librating, with amplitudes of 40° and 60°, respectively. We then perform long-term dynamical stability tests to differentiate these solutions, which only differ significantly in the masses of the planets. We show that while there is no clearly preferred system inclination, the dynamical fit with i = 90° provides the best combination of goodness-of-fit and long-term dynamical stability.

  10. KOI-3278: a self-lensing binary star system.

    Science.gov (United States)

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution. PMID:24744369

  11. Concentration dependent wetting by aniline-ethanol binary system

    Directory of Open Access Journals (Sweden)

    Vinjanampaty Madhurima

    2014-07-01

    Full Text Available Wetting of five substrates namely glass, indium tin oxide, aluminum oxide, hylam and teflon by aniline-ethanol binary system over the entire concentration range is studied using contact angle measurements. Rapid wetting of the substrates, especially hylam in the aniline rich region is understood in terms of the surface energies of the substrates and the intermolecular interactions between the two moieties. FTIR, dielectric and conformational analysis are used to study the molecular interactions in the binary system

  12. Excess Molar Volume of Binary Systems Containing Mesitylene

    OpenAIRE

    Morávková, L. (Lenka); Sedláková, Z.

    2013-01-01

    This paper presents a review of density measurements for binary systems containing 1,3,5-trimethylbenzene (mesitylene) with a variety of organic compounds at atmospheric pressure. Literature data of the binary systems were divided into nine basic groups by the type of contained organic compound with mesitylene. The excess molar volumes calculated from the experimental density values have been compared with literature data. Densities were measured by a few experimental methods, namely using a ...

  13. Iterative Solution for Systems of Nonlinear Two Binary Operator Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhi-hong; LIWen-feng

    2004-01-01

    Using the cone and partial ordering theory and mixed monotone operator theory, the existence and uniqueness of solutions for some classes of systems of nonlinear two binary operator equations in a Banach space with a partial ordering are discussed. And the error estimates that the iterative sequences converge to solutions are also given. Some relevant results of solvability of two binary operator equations and systems of operator equations are imnroved and generalized.

  14. Performance of binary FSK data transmission systems

    Science.gov (United States)

    Batson, B. H.

    1973-01-01

    Matched-filter detection of binary signals is discussed in terms of the probability of bit error. The equations for the probability of error are derived for coherent phase shift keying, and coherent frequency shift keying (FSK). Suboptimum detection of FSK signals is also discussed for discriminators.

  15. Constraints on the Formation of the Planet Around HD188753A

    CERN Document Server

    Jang-Condell, H

    2005-01-01

    The recent discovery of a Jupiter-mass planet in the close binary star system HD188753 poses a problem for planet formation theory. A circumstellar disk around the planet's parent star would be truncated at 1.3 AU, leaving little material available for planet formation. In this paper, we attempt to model a disk around HD188753, exploring a range of parameters constrained by observations of protoplanetary disks. We find that the in situ formation of the planet around HD188753 is extremely unlikely, and that the planet must have formed before the capture of the close stellar companion.

  16. Relating binary-star planetary systems to central configurations

    CERN Document Server

    Veras, Dimitri

    2016-01-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than ten degrees, and (v) the deviation increases as the substellar masse...

  17. The Evolutionary Outcomes of Expansive Binary Asteroid Systems

    Science.gov (United States)

    McMahon, Jay W.

    2016-10-01

    Singly synchronous binary asteroid systems have several evolutionary end-states, which depend heavily on the BYORP effect. In the case of expansive BYORP, the binary system could evolve to become a wide asynchronous binary system (Jacobson, et al 2014), or the system could expand far enough to become disrupted to form a heliocentric pair (Vokrouhlicky et al 2008). Cuk et al (2011) found that upon expanding the secondary will quickly become asynchronous, and will end up re-establishing synchronous rotation with the opposite attitude, causing the binary orbit to subsequently contract. The distinction between these outcomes depends on whether the secondary asteroid stays synchronized, which keeps the BYORP effect active and the orbit expanding. As the orbit expands, the secondary libratation will expand, and the libration will also causes large variations in the binary orbit due to the elongation of the secondary. If the eccentricity and libration are bound to small enough values the system can expand significantly. This work discusses the stability of the libration and orbital motion as a binary expands from a wide variety of simulation runs with various parameters. We investigate how the strength of tides and BYORP change the stability of the librational motion; an important factor is the speed of BYORP expansion as slower expansion allows tides to have a more stabilizing effect. We also investigate the effect of heliocentric orbit semimajor axis and eccentricity. We find that resonances between the coupled orbit-libration frequencies and the heliocentric orbit cause instability in the binary orbit eccentricity which produces a strong preference for wide binary production, especially amongst retrograde binary systems. This instability also becomes stronger with large heliocentric eccentricities. Prograde binaries are more stable and can possible grow to become asteroid pairs. We find that even in the presence of tides, reestablishment of synchronous spin into a

  18. Construction of binary status information system using PC network

    International Nuclear Information System (INIS)

    Binary status information system is a part of establishing reactor parameter with Pc that function as MPR-30 Process Computer. Binary Alarm system, consist of interface hardware and input binary module terminal, prepare the information that be displayed in text message and graphical form. Monitor software give facilities that binary status of RSG-GAS components can be monitored using computer network (LAN). This program consist of two part : reside in server computer and reside in user computer. Program in server acquire data from interface and than store it in data base (Access file). Than, user computer read this file and display it in Dynamic Process and Instrumentation Diagram. The number of user computer can be more then one because data base was designed for multi-user operation

  19. Spectral modelling of the Alpha Virginis (Spica) binary system

    CERN Document Server

    Palate, M; Rauw, G; Harrington, D; Moreno, E

    2013-01-01

    Context: The technique of matching synthetic spectra computed with theoretical stellar atmosphere models to the observations is widely used in deriving fundamental parameters of massive stars. When applied to binaries, however, these models generally neglect the interaction effects present in these systems Aims: The aim of this paper is to explore the uncertainties in binary stellar parameters that are derived from single-star models Methods: Synthetic spectra that include the tidal perturbations and irradiation effects are computed for the binary system alpha Virginis (Spica) using our recently-developed CoMBiSpeC model. The synthetic spectra are compared to S/N~2000 observations and optimum values of Teff and log(g) are derived. Results: The binary interactions have only a small effect on the strength of the photospheric absorption lines in Spica (<2% for the primary and <4% for the secondary). These differences are comparable to the uncertainties inherent to the process of matching synthetic spectra ...

  20. High energy gamma-rays from massive binary systems

    CERN Document Server

    Bednarek, W

    2008-01-01

    During last years a few massive binary systems have been detected in the TeV gamma-rays. This gamma-ray emission is clearly modulated with the orbital periods of these binaries suggesting its origin inside the binary system. In this paper we summarize the anisotropic IC e-p pair cascade model as likely explanation of these observations. We consider scenarios in which particles are accelerated to relativistic energies, either due to the presence of an energetic pulsar inside the binary, or as a result of accretion process onto the compact object during which the jet is launched from the inner part of the accretion disk, or in collisions of stellar winds from the massive companions.

  1. Thermodynamic analysis of the Ga-Pb binary system

    Directory of Open Access Journals (Sweden)

    Manasijević Dragan

    2003-01-01

    Full Text Available Thermodynamic properties of binary Ga-Pb alloys were investigated experimentally and analytically. Quantitative differential thermal analysis was used for determination of integral mixing enthalpies for the gallium-reach alloys, at the constant temperature inside the liquid two-phase region. Calculation of gallium activities in the temperature range of 800-1000 K was done using Chou’s calculation model developed for binary systems with miscibility gap existence.

  2. A classification system for tableting behaviors of binary powder mixtures

    OpenAIRE

    Changquan Calvin Sun

    2016-01-01

    The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system (TCS) of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture, three main types of tableting behavior are identified. Eac...

  3. A quintuple star system containing two eclipsing binaries

    Science.gov (United States)

    Rappaport, S.; Lehmann, H.; Kalomeni, B.; Borkovits, T.; Latham, D.; Bieryla, A.; Ngo, H.; Mawet, D.; Howell, S.; Horch, E.; Jacobs, T. L.; LaCourse, D.; Sódor, Á.; Vanderburg, A.; Pavlovski, K.

    2016-10-01

    We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11 arcsec on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclipsing binaries which are resolved within that image at 0.09 arcsec, while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The `A' binary is circular with a 5.1-d period, while the `B' binary is eccentric with a 13.1-d period. The γ velocities of the A and B binaries are different by ˜10 km s-1. That, coupled with their resolved projected separation of 0.09 arcsec, indicates that the orbital period and separation of the `C' binary (consisting of A orbiting B) are ≃65 yr and ≃25 au, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e. 212651213) has an RV and proper motion that differ from that of 212651234 by only ˜1.4 km s-1 and ˜3 mas yr-1. This set of similar space velocities in three dimensions strongly implies that these two objects are also physically bound, making this at least a quintuple star system.

  4. A Quintuple Star System Containing Two Eclipsing Binaries

    CERN Document Server

    Rappaport, S; Kalomeni, B; Borkovits, T; Latham, D; Bieryla, A; Ngo, H; Mawet, D; Howell, S; Horch, E; Jacobs, T L; LaCourse, D; Sodor, A; Vanderburg, A; Pavlovski, K

    2016-01-01

    We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11" on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclipsing binaries which are resolved within that image at 0.09", while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The 'A' binary is circular with a 5.1-day period, while the 'B' binary is eccentric with a 13.1-day period. The gamma velocities of the A and B binaries are different by ~10 km/s. That, coupled with their resolved projected separation of 0.09", indicates that the orbital period and separation of the 'C' binary (consisting of A orbiting B) are ~65 years and ~25 AU, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e., 21...

  5. KIC 7177553: a quadruple system of two close binaries

    CERN Document Server

    Lehmann, H; Rappaport, S A; Ngo, H; Mawet, D; Csizmadia, Sz; Forgacs-Dajka, E

    2016-01-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations in this object with an amplitude of about 100 sec, and an outer period of 529 days. The implied mass of the third body is that of a superJupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the radial velocity measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.4 arcsec (about 167 AU), and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries, and very similar Gamma velocities, strongly suggest that KIC 7177553 is o...

  6. Relating binary-star planetary systems to central configurations

    Science.gov (United States)

    Veras, Dimitri

    2016-11-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than 10°, and (v) the deviation increases as the substellar masses increase. This study may help restrict future stability analyses to architectures which resemble exoplanetary systems, and might hint at where observers may discover dust, asteroids and/or planets in binary-star systems.

  7. Stochastic Background of Gravitational Waves Generated by Compact Binary Systems

    CERN Document Server

    Evangelista, E F D

    2015-01-01

    Binary Systems are the most studied sources of gravitational waves. The mechanisms of emission and the behavior of the orbital parameters are well known and can be written in analytic form in several cases. Besides, the strongest indication of the existence of gravitational waves has arisen from the observation of binary systems. On the other hand, when the detection of gravitational radiation becomes a reality, one of the observed pattern of the signals will be probably of stochastic background nature, which are characterized by a superposition of signals emitted by many sources around the universe. Our aim here is to develop an alternative method of calculating such backgrounds emitted by cosmological compact binary systems during their periodic or quasiperiodic phases. We use an analogy with a problem of Statistical Mechanics in order to perform this sum as well as taking into account the temporal variation of the orbital parameters of the systems. Such a kind of background is of particular importance sinc...

  8. VLBI imaging of the RS CVn binary star system HR 5110

    CERN Document Server

    Ransom, R R; Bietenholz, M F; Ratner, M I; Lebach, D E; Shapiro, I I; Lestrade, J F

    2003-01-01

    We present VLBI images of the RS CVn binary star HR 5110 (=BH CVn; HD 118216), obtained from observations made at 8.4 GHz on 1994 May 29/30 in support of the NASA/Stanford Gravity Probe B project. Our images show an emission region with a core-halo morphology. The core was 0.39 +/- 0.09 mas (FWHM) in size, or 66% +/- 20% of the 0.6 +/- 0.1 mas diameter of the chromospherically active K subgiant star in the binary system. The halo was 1.95 +/- 0.22 mas (FWHM) in size, or 1.8 +/- 0.2 times the 1.1 +/- 0.1 mas separation of the centers of the K and F stars. The core increased significantly in brightness over the course of the observations and seems to have been the site of flare activity that generated an increase in the total flux density of ~200% in 12 hours. The fractional circular polarization simultaneously decreased from ~10% to 2.5%.

  9. Understanding the evolution of close binary systems with radio pulsars

    CERN Document Server

    Benvenuto, O G; Horvath, J E

    2014-01-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, evolving either to helium white dwarf (HeWD) or ultra short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in-between as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such {\\it quasi - Roche Lobe Overflow} states, r...

  10. Nonparametric statistical structuring of knowledge systems using binary feature matches

    DEFF Research Database (Denmark)

    Mørup, Morten; Glückstad, Fumiko Kano; Herlau, Tue;

    2014-01-01

    Structuring knowledge systems with binary features is often based on imposing a similarity measure and clustering objects according to this similarity. Unfortunately, such analyses can be heavily influenced by the choice of similarity measure. Furthermore, it is unclear at which level clusters have...... statistical support and how this approach generalizes to the structuring and alignment of knowledge systems. We propose a non-parametric Bayesian generative model for structuring binary feature data that does not depend on a specific choice of similarity measure. We jointly model all combinations of binary...... matches and structure the data into groups at the level in which they have statistical support. The model naturally extends to structuring and aligning an arbitrary number of systems. We analyze three datasets on educational concepts and their features and demonstrate how the proposed model can both...

  11. Understanding Gravitational Waves from Inspiral Binary Systems and its Detection

    CERN Document Server

    Antelis, Javier M

    2016-01-01

    The discovery of the events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure this waves using the interferometer-based detector called LIGO. Subsequently, the work proposes a comprehensive data analysis methodology based on the matched filter algorithm which aims to detect GW signals emitted by inspiral binary systems of astrophysical sources. The method is validated with freely available LIGO data which contain injected GW signals. Results of experiments performed to assess detection carried out show that the method was able to recover the 85% of the injected GW.

  12. Orbital Architectures of Planet-Hosting Binary Systems

    Science.gov (United States)

    Dupuy, Trent J.; Kratter, Kaitlin M.

    2016-01-01

    We present the first results from our Keck AO astrometric monitoring of Kepler Prime Mission planet-hosting binary systems. Observational biases in exoplanet discovery have long left the frequency, properties, and provenance of planets in most binary systems largely unconstrained. Recent results from our ongoing survey of a volume-limited sample of Kepler planet hosts indicate that binary companions at solar-system scales of 20-100 AU suppress the occurrence of planetary systems at a rate of 30-100%. However, some planetary systems do survive in binaries, and determining these systems' orbital architectures is key to understanding why. As a demonstration of this new approach to testing ideas of planet formation, we present a detailed analysis of the triple star system Kepler-444 (HIP 94931) that hosts five Ganymede- to Mars-sized planets. By combining our high-precision astrometry with radial velocities from HIRES we discover a highly eccentric stellar orbit that would have made this a seemingly hostile site for planet formation. This either points to an extremely robust and efficient planet formation mechanism or a rare case of favorable initial conditions. Such broader implications will be addressed by determining orbital architectures for our larger statistical sample of Kepler planet-hosting systems that have stellar companions on solar system scales.

  13. Orbital Dynamics of Exoplanetary Systems Kepler-62, HD 200964 and Kepler-11

    CERN Document Server

    Mia, Rajib

    2016-01-01

    The presence of mean-motion resonances (MMR) in exoplanetary systems is a new exciting field of celestial mechanics which motivate us to consider the present work to study the dynamical behaviour of exoplanetary systems by time evolution of the orbital elements of the planets. Mainly we study the influence of planetary perturbations on semi-major axis and eccentricity. We identify $(r+1):r$ mean-motion resonance terms in the expression of disturbing function and obtain the perturbations from the truncated disturbing function. Using the expansion of the disturbing function of three body problem and an analytical approach, we solve the equations of motion. The solution which is obtained analytically is compared with that of obtained by numerical method to validate our analytical result. In the present work we consider three exoplanetary systems namely Kepler-62, HD 200964 and Kepler-11. We have plotted the evolution of the resonant angles and found that they librate around constant value. In view of this, our o...

  14. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  15. An extreme planetary system around HD 219828. One long-period super Jupiter to a hot-Neptune host star

    Science.gov (United States)

    Santos, N. C.; Santerne, A.; Faria, J. P.; Rey, J.; Correia, A. C. M.; Laskar, J.; Udry, S.; Adibekyan, V.; Bouchy, F.; Delgado-Mena, E.; Melo, C.; Dumusque, X.; Hébrard, G.; Lovis, C.; Mayor, M.; Montalto, M.; Mortier, A.; Pepe, F.; Figueira, P.; Sahlmann, J.; Ségransan, D.; Sousa, S. G.

    2016-07-01

    Context. With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. This wide diversity provides fundamental clues to the processes of planet formation and evolution. Aims: We present a full investigation of the HD 219828 system, a bright metal-rich star for which a hot Neptune has previously been detected. Methods: We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD 219828. The spectra were used to characterise the star and its chemical abundances, as well as to check for spurious, activity induced signals. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses. Results: We announce the discovery of a long period (P = 13.1 yr) massive (m sini = 15.1 MJup) companion (HD 219828 c) in a very eccentric orbit (e = 0.81). The same data confirms the existence of a hot Neptune, HD 219828 b, with a minimum mass of 21 M⊕ and a period of 3.83 days. The dynamical analysis shows that the system is stable, and that the equilibrium eccentricity of planet b is close to zero. Conclusions: The HD 219828 system is extreme and unique in several aspects. First, ammong all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like HD 219828, with a hot Neptune and a long-period massive companion are more frequent than similar systems with a hot Jupiter instead. This suggests that the formation of hot Neptunes follows a different path than the formation of their hot jovian counterparts. The high mass, long period, and eccentricity of HD 219828 c also make it a good target for Gaia astrometry as well as a potential target for atmospheric characterisation, using direct imaging or high-resolution spectroscopy. Astrometric observations will allow us to derive its real mass and orbital configuration. If a transit of HD 219828 b is detected

  16. Three-dimensional orbit and physical parameters of HD 6840

    International Nuclear Information System (INIS)

    HD 6840 is a double-lined visual binary with an orbital period of ∼7.5 years. By fitting the speckle interferometric measurements made by the 6 m BTA telescope and 3.5 m WIYN telescope, Balega et al. gave a preliminary astrometric orbital solution of the system in 2006. Recently, Griffin derived a precise spectroscopic orbital solution from radial velocities observed with OPH and Cambridge Coravel. However, due to the low precision of the determined orbital inclination, the derived component masses are not satisfying. By adding the newly collected astrometric data in the Fourth Catalog of Interferometric Measurements of Binary Stars, we give a three-dimensional orbit solution with high precision and derive the preliminary physical parameters of HD 6840 via a simultaneous fit including both astrometric and radial velocity measurements. (paper)

  17. THE LICK-CARNEGIE SURVEY: A NEW TWO-PLANET SYSTEM AROUND THE STAR HD 207832

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Butler, R. Paul [Department of Terrestrial Magnetism, Carnegie Institute of Washington, Washington, DC 20015 (United States); Rivera, Eugenio J.; Vogt, Steven S. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209 (United States)

    2012-09-01

    Keck/HIRES precision radial velocities of HD 207832 indicate the presence of two Jovian-type planetary companions in Keplerian orbits around this G star. The planets have minimum masses of Msin i = 0.56 M{sub Jup} and 0.73 M{sub Jup}, with orbital periods of {approx}162 and {approx}1156 days, and eccentricities of 0.13 and 0.27, respectively. Stroemgren b and y photometry reveals a clear stellar rotation signature of the host star with a period of 17.8 days, well separated from the period of the radial velocity variations, reinforcing their Keplerian origin. The values of the semimajor axes of the planets suggest that these objects have migrated from the region of giant planet formation to closer orbits. In order to examine the possibility of the existence of additional (small) planets in the system, we studied the orbital stability of hypothetical terrestrial-sized objects in the region between the two planets and interior to the orbit of the inner body. Results indicated that stable orbits exist only in a small region interior to planet b. However, the current observational data offer no evidence for the existence of additional objects in this system.

  18. THE LICK-CARNEGIE SURVEY: A NEW TWO-PLANET SYSTEM AROUND THE STAR HD 207832

    International Nuclear Information System (INIS)

    Keck/HIRES precision radial velocities of HD 207832 indicate the presence of two Jovian-type planetary companions in Keplerian orbits around this G star. The planets have minimum masses of Msin i = 0.56 MJup and 0.73 MJup, with orbital periods of ∼162 and ∼1156 days, and eccentricities of 0.13 and 0.27, respectively. Strömgren b and y photometry reveals a clear stellar rotation signature of the host star with a period of 17.8 days, well separated from the period of the radial velocity variations, reinforcing their Keplerian origin. The values of the semimajor axes of the planets suggest that these objects have migrated from the region of giant planet formation to closer orbits. In order to examine the possibility of the existence of additional (small) planets in the system, we studied the orbital stability of hypothetical terrestrial-sized objects in the region between the two planets and interior to the orbit of the inner body. Results indicated that stable orbits exist only in a small region interior to planet b. However, the current observational data offer no evidence for the existence of additional objects in this system.

  19. How to reach the orbital configuration of the inner three planets in HD 40307 Planet System ?

    CERN Document Server

    Yuan-Yuan, Chen; Yue-Hua, Ma

    2014-01-01

    The formation of the present configuration of three hot super-Earths in the planet system HD 40307 is a challenge to dynamical astronomers. With the two successive period ratios both near and slightly larger than 2, the system may have evolved from pairwise 2:1 mean motion resonances (MMRs). In this paper, we investigate the evolutions of the period ratios of the three planets after the primordial gas disk was depleted. Three routines are found to probably result in the current configuration under tidal dissipation with the center star, they are: (i) through apsidal alignment only; (ii) out of pairwise 2:1 MMRs, then through apsidal alignment; (iii) out of the 4:2:1 Laplace Resonance (LR) , then through apsidal alignment. All the three scenarios require the initial eccentricities of planets $\\sim0.15$, which implies a planetary scattering history during and after the gas disk was depleted. All the three routines will go through the apsidal alignment phase, and enter a state with near-zero eccentricities final...

  20. X-ray binary systems - Ariel V SSI observations

    International Nuclear Information System (INIS)

    The basis of our current theoretical understanding of galactic x-ray sources is reviewed. Models are outlined involving close binary systems containing a compact object accreting mass which has been lost from the nondegenerate star by a variety of mechanisms. The present status of galactic x-ray astronomy is discussed, with emphasis on the links between established observational categories and the characteristics of the proposed models. Observational results, consisting primarily of extended x-ray light curves derived from analysis of Ariel V SSI data are presented for two main classes of galactic x-ray source: (i) high-mass x-ray binaries containing an early-type giant or supergiant star; (ii) low-mass x-ray binaries in which the nondegenerate star is a late-type dwarf. For the high-mass binaries emphasis is placed on the determination and improvement of the orbital parameters; for the low-mass binaries, where a less complete picture is available, the discussion centres on the type of system involved, taking into account the optical observations of the source. Finally, the properties of two further categories - the sources in the galactic bulge and those associated with dwarf novae - are discussed as examples of rather different types of galactic x-ray emitter. In the case of the galactic bulge sources current observations have not led so far to a clear picture of the nature of the systems involved, indeed their binary membership is not established. X-ray emission from dwarf novae and related objects is a relatively recent discovery and represents the opening up of a new field of galactic x-ray astronomy. (author)

  1. SEARCHING FOR TROJAN ASTEROIDS IN THE HD 209458 SYSTEM: SPACE-BASED MOST PHOTOMETRY AND DYNAMICAL MODELING

    International Nuclear Information System (INIS)

    We have searched Microvariability and Oscillations of Stars (MOST) satellite photometry obtained in 2004, 2005, and 2007 of the solar-type star HD 209458 for Trojan asteroid swarms dynamically coupled with the system's transiting 'hot Jupiter' HD 209458b. Observations of the presence and nature of asteroids around other stars would provide unique constraints on migration models of exoplanetary systems. Our results set an upper limit on the optical depth of Trojans in the HD 209458 system that can be used to guide current and future searches of similar systems by upcoming missions. Using cross-correlation methods with artificial signals implanted in the data, we find that our detection limit corresponds to a relative Trojan transit depth of 1 x10-4, equivalent to ∼1 lunar mass of asteroids, assuming power-law Trojan size distributions similar to Jupiter's Trojans in our solar system. We confirm with dynamical interpretations that some asteroids could have migrated inward with the planet to its current orbit at 0.045 AU, and that the Yarkovsky effect is ineffective at eliminating objects of >1 m in size. However, using numerical models of collisional evolution we find that, due to high relative speeds in this confined Trojan environment, collisions destroy the vast majority of the asteroids in -7.

  2. The new Wolf-Rayet binary system WR62a

    Science.gov (United States)

    Collado, A.; Gamen, R.; Barbá, R. H.

    2013-04-01

    Context. A significant number of the Wolf-Rayet stars seem to be binary or multiple systems, but the nature of many of them is still unknown. Dedicated monitoring of WR stars favours the discovery of new systems. Aims: We explore the possibility that WR62a is a binary system. Methods: We analysed the spectra of WR62a, obtained between 2002 and 2010, to look for radial-velocity and spectral variations that would suggest there is a binary component. We searched for periodicities in the measured radial velocities and determined orbital solutions. A period search was also performed on the "All-Sky Automated Survey" photometry. Results: We find that WR62a is a double-lined spectroscopic binary with a WN5 primary star and an O 5.5-6 type secondary component in orbit with a period of 9.1447 d. The minimum masses range between 21 and 23 M⊙ for the WN star and between 39 and 42 M⊙ for the O-type star, thus indicating that the WN star is less massive than the O-type component. We detect a phase shift in the radial-velocity curve of the He ii λ4686 emission line relative to the other emission line curves. The equivalent width of this emission line shows a minimum value when the WN star passes in front of the system. The analysis of the ASAS photometry confirms the spectroscopic periodicity, presenting a minimum at the same phase.

  3. Estimation of the Ideal Binary Mask using Directional Systems

    DEFF Research Database (Denmark)

    Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind;

    2008-01-01

    and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results....

  4. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  5. Rotational mixing in massive binaries: detached short-period systems

    CERN Document Server

    de Mink, S E; Langer, N; Pols, O R; Brott, I; Yoon, S -Ch

    2009-01-01

    Models of rotating single stars can successfully account for a wide variety of observed stellar phenomena, such as the surface enhancements of N and He. However, recent observations have questioned the idea that rotational mixing is the main process responsible for the surface enhancements, emphasizing the need for a strong and conclusive test. We investigate the consequences of rotational mixing for massive main-sequence stars in short-period binaries. In these systems the tides spin up the stars to rapid rotation. We use a state-of-the-art stellar evolution code including the effect of rotational mixing, tides, and magnetic fields. We discuss the surface abundances expected in massive close binaries (M1~20 solar masses) and we propose using such systems to test the concept of rotational mixing. As these short-period binaries often show eclipses, their parameters can be determined with high accuracy, allowing for a direct comparison with binary evolution models. In more massive close systems (M1~50 solar mas...

  6. The new Wolf-Rayet binary system WR62a

    CERN Document Server

    Collado, A; Barbá, R H

    2013-01-01

    Context. A significant number of the Wolf-Rayet stars seem to be binary or multiple systems, but the nature of many of them is still unknown. Dedicated monitoring of WR stars favours the discovery of new systems. Aims. We explore the possibility that WR62a is a binary system. Methods. We analysed the spectra of WR62a, obtained between 2002 and 2010, to look for radial-velocity and spectral variations that would suggest there is a binary component. We searched for periodicities in the measured radial velocities and determined orbital solutions. A period search was also performed on the "All-Sky Automated Survey" photometry. Results. We find that WR62a is a double-lined spectroscopic binary with a WN5 primary star and an O 5.5-6 type secondary component in orbit with a period of 9.1447 d. The minimum masses range between 21 and 23 Mo for the WN star and between 39 and 42 Mo for the O-type star, thus indicating that the WN star is less massive than the O-type component. We detect a phase shift in the radial-velo...

  7. Physical parameters of components in close binary systems: V

    CERN Document Server

    Zola, S; Zakrzewski, B; Kjurkchieva, D P; Marchev, D V; Baran, A; Rucinski, S M; Ogloza, W; Siwak, M; Koziel, D; Drozdz, M; Pokrzywka, B

    2009-01-01

    The paper presents combined spectroscopic and photometric orbital solutions for ten close binary systems: CN And, V776 Cas, FU Dra, UV Lyn, BB Peg, V592 Per, OU Ser, EQ Tau, HN UMa and HT Vir. The photometric data consist of new multicolor light curves, while the spectroscopy has been recently obtained within the radial velocity program at the David Dunlap Observatory (DDO). Absolute parameters of the components for these binary systems are derived. Our results confirm that CN And is not a contact system. Its configuration is semi-detached with the secondary component filling its Roche lobe. The configuration of nine other systems is contact. Three systems (V776 Cas, V592 Per and OU Ser) have high (44-77%) and six (FU Dra, UV Lyn, BB Peg, EQ Tau, HN UMa and HT Vir) low or intermediate (8-32%) fill-out factors. The absolute physical parameters are derived.

  8. The CORALIE survey for southern extrasolar planets XIV. HD 142022 b: a long-period planetary companion in a wide binary

    OpenAIRE

    Eggenberger, A.; Mayor, M.; Naef, D.; Pepe, F.; Queloz, D.; Santos, N.C.; Udry, S.; Lovis, C.

    2005-01-01

    We report precise Doppler measurements of HD 142022 obtained during the past six years with the CORALIE echelle spectrograph at La Silla Observatory together with a few additional observations made recently with the HARPS echelle spectrograph. Our radial velocities reveal evidence of a planetary companion with an orbital period P = 1928 +53-39 days, an eccentricity e = 0.53 +0.23-0.18, and a velocity semiamplitude K = 92 +102-29 m/s. The inferred companion minimum mass is M2sini = 5.1 +2.6-1....

  9. A thermodynamic assessment of the iron-lead binary system

    Energy Technology Data Exchange (ETDEWEB)

    Vaajamo, I., E-mail: Iina.Vaajamo@aalto.fi [Aalto University School of Chemical Technology, Metallurgical Thermodynamics and Modelling Research Group PL 16200, FI-00076 Aalto (Finland); Taskinen, P., E-mail: Pekka.Taskinen@aalto.fi [Aalto University School of Chemical Technology, Metallurgical Thermodynamics and Modelling Research Group PL 16200, FI-00076 Aalto (Finland)

    2011-09-20

    Highlights: {center_dot} Isothermal equilibration experiments of the Fe-Pb binary were conducted in a special quartz ampoule and analyzed with ICP and EPMA. {center_dot} The method enables to obtain two experimental points from each end of the phase diagram in one experiment. {center_dot} New experimental data of the Pb solubility to Fe(s) below the monotectic temperature was obtained. {center_dot} This study consists of the widest critical compilation of the literature data done of the Fe-Pb binary system done so far, corrected also some errors in previous assessments. {center_dot} More accurate thermodynamic description of the Fe-Pb binary and its phases were obtained. - Abstract: The thermodynamic properties and phase equilibria of the Fe-Pb binary system were assessed using the CALPHAD (CALculation of PHAse Diagrams) method based upon available literature data and results of isothermal equilibration experiments reported in this paper. The phase diagram and excess Gibbs energy values of the solution phases, namely the molten alloy and the {gamma}-fcc and {alpha}- and {delta}-bcc solid solutions were expressed using Redlich-Kister polynomials. The experimental data were fitted by a least squares method using the MTDATA software. Agreement between experimental and calculated values is good. In particular the description of the solubility of lead in iron below the monotectic temperature has been improved.

  10. Planetary Dynamics and Habitable Planet Formation In Binary Star Systems

    CERN Document Server

    Haghighipour, Nader; Pilat-Lohinger, Elke

    2009-01-01

    Whether binaries can harbor potentially habitable planets depends on several factors including the physical properties and the orbital characteristics of the binary system. While the former determines the location of the habitable zone (HZ), the latter affects the dynamics of the material from which terrestrial planets are formed (i.e., planetesimals and planetary embryos), and drives the final architecture of the planets assembly. In order for a habitable planet to form in a binary star system, these two factors have to work in harmony. That is, the orbital dynamics of the two stars and their interactions with the planet-forming material have to allow terrestrial planet formation in the habitable zone, and ensure that the orbit of a potentially habitable planet will be stable for long times. We have organized this chapter with the same order in mind. We begin by presenting a general discussion on the motion of planets in binary stars and their stability. We then discuss the stability of terrestrial planets, ...

  11. Is the X-ray pulsating companion of HD 49798 a possible type Ia supernova progenitor?

    CERN Document Server

    Liu, Dong-Dong; Wu, Cheng-Yuan; Wang, Bo

    2015-01-01

    HD 49798 (a hydrogen depleted subdwarf O6 star) with its massive white dwarf (WD) companion has been suggested to be a progenitor candidate of type Ia supernovae (SNe Ia). However, it is still uncertain whether the companion of HD 49798 is a carbon-oxygen (CO) WD or an oxygen-neon (ONe) WD. A CO WD will explode as an SN Ia when its mass grows approach to Chandrasekhar mass, while the outcome of an accreting ONe WD is likely to be a neutron star. We followed a series of Monte Carlo binary population synthesis approach to simulate the formation of ONe WD + He star systems. We found that there is almost no orbital period as large as HD 49798 with its WD companion in these ONe WD + He star systems based on our simulations, which means that the companion of HD 49798 might not be an ONe WD. We suggest that the companion of HD 49798 is most likely a CO WD, which can be expected to increase its mass to the Chandrasekhar mass limit by accreting He-rich material from HD 49798. Thus, HD 49798 with its companion may prod...

  12. Contribution \\`{a} l'etude des binaires des types F, G, K, M IX. HD 191588, nouvelle binaire spectroscopique \\`{a} raies simples de type RS Cvn, systeme triple

    CERN Document Server

    Griffin, R R F; Carquillat, J M; Griffin, Roger R.F.; Ginestet, Nicole; Carquillat, Jean-Michel

    2003-01-01

    An accident of misidentification has brought to light the interesting system HD 191588, a new RS CVn-type spectroscopic binary. A radial-velocity study of the primary star, the only seen component, carried out at the Observatoire de Haute-Provence with the Coravel instrument and subsequently at the Cambridge Observatories with a similar one, reveals two orbital motions: a short-period orbit (60 days) and a long-period one (about 4.5 years), so this star is a triple system. The following orbital elements are obtained: (1) for the long-period orbit P = 1667+/-17 days, T = 50901 +/-67 MJD, Gamma = +2.09 +/-0.07 km/s, K = 2.51 +/-0.13 km/s, e = 0.18 +/-0.04, omega = 228deg +/- 14 deg, a1 sin i = 56.7 +/- 3.0 Gm, f(m) = 0.0026 +/-0.0004 M_sun, and (2) for the short-period orbit P = 60.0269 +/-0.0016 days, T = 50482.6 +/-3.3 MJD, gamma is var., K = 24.03 +/- 0.09 km/s, e = 0.012 +/-0.004, omega = 233 deg +/-19deg, a1 sin i = 19.83 +/-0.07 Gm, f(m) = 0.0865 +/-0.0009 M_sun. From near-infrared observations we refine ...

  13. On the ultraviolet anomalies of the WASP-12 and HD 189733 systems: Trojan satellites as a plasma source

    Science.gov (United States)

    Kislyakova, K. G.; Pilat-Lohinger, E.; Funk, B.; Lammer, H.; Fossati, L.; Eggl, S.; Schwarz, R.; Boudjada, M. Y.; Erkaev, N. V.

    2016-09-01

    We suggest an additional possible plasma source to explain part of the phenomena observed for the transiting hot Jupiters WASP-12b and HD 189733b in their ultraviolet (UV) light curves. In the proposed scenario, material outgasses from the molten surface of Trojan satellites on tadpole orbits near the Lagrange points L4 and L5. We show that the temperature at the orbital location of WASP-12b is high enough to melt the surface of rocky bodies and to form shallow lava oceans on them. In case of WASP-12b, this leads to the release of elements such as Mg and Ca, which are expected to surround the system. The predicted Mg and Ca outgassing rates from two Io-sized WASP-12b Trojans are ≈2.2 × 1027 s-1 and ≈2.2 × 1026 s-1, respectively. Trojan outgassing can lead to the apparent lack of emission in Mg II h&k and Ca II H&K line cores of WASP-12. For HD 189733b, the mechanism is only marginally possible due to the lower temperature. This may be one of the reasons that could not explain the early ingress of HD 189733b observed in the far-UV C II doublet due to absence of carbon within elements outgassed by molten lava. We investigate the long-term stability region of WASP-12b and HD 189733b in case of planar and inclined motion of these satellites and show that unlike the classical exomoons orbiting the planet, Io-sized Trojans can be stable for the whole systems lifetime.

  14. Spectropolarimetric observations of the transiting planetary system of the K dwarf HD 189733

    CERN Document Server

    Moutou, C; Savalle, R; Hussain, G; Alecian, E; Bouchy, F; Catala, C; Cameron, A Collier; Udry, S; Vidal-Madjar, A

    2007-01-01

    With a Jupiter-mass planet orbiting at a distance of only 0.031 AU, the active K2 dwarf HD 189733 is a potential candidate in which to study the magnetospheric interactions of a cool star with its recently-discovered close-orbiting giant planet. We decided to explore the strength and topology of the large-scale magnetosphere of HD 189733, as a future benchmark for quantitative studies for models of the star/planet magnetic interactions. To this end, we used ESPaDOnS, the new generation spectropolarimeter at the Canada-France-Hawaii 3.6m telescope, to look for Zeeman circular polarisation signatures in the line profiles of HD 189733 in 2006 June and August. Zeeman signatures in the line profiles of HD 189733 are clearly detected in all spectra, demonstrating that a field is indeed present at the surface of the star. The Zeeman signatures are not modulated with the planet's orbital period but apparently vary with the stellar rotation cycle. The reconstructed large-scale magnetic field, whose strength reaches a ...

  15. Effect of the Salmonella Pathogenicity Island 2 Type III Secretion System on Salmonella Survival in Activated Chicken Macrophage-Like HD11 Cells

    OpenAIRE

    Wisner, Amanda L. S.; Potter, Andrew A.; Köster, Wolfgang

    2011-01-01

    In order to better identify the role of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS) in chickens, we used the well-known gentamicin protection assay with activated HD11 cells. HD11 cells are a macrophage-like chicken cell line that can be stimulated with phorbol 12-myristate 13-acetate (PMA) to exhibit more macrophage-like morphology and greater production of reactive oxygen species (ROS). Activated HD11 cells were infected with a wild-type Salmonella enteric...

  16. The California Planet Survey IV: A Planet Orbiting the Giant Star HD 145934 and Updates to Seven Systems with Long-Period Planets

    OpenAIRE

    Feng, Y. Katherina; Wright, Jason T.; Nelson, Benjamin; Wang, Sharon X.; Ford, Eric B.; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.

    2015-01-01

    We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on...

  17. Binary Systems as Resonance Detectors for Gravitational Waves

    CERN Document Server

    Hui, Lam; Yang, I-Sheng

    2012-01-01

    Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk -- with the variance of orbital elements growing with time. The lack of such a random walk in binaries that have been monitored with high precision over long time-scales can thus be used to place an upper bound on the gravitational-wave background. Using periastron time data from the Hulse-Taylor binary pulsar spanning ~30 years, we obtain a bound of h_c < 7.9 x 10^-14 at ~10^-4 Hz, where h_c is the strain amplitude per logarithmic frequency interval. Our constraint complements those from pulsar timing arrays, which probe much lower frequencies, and ground-based gravitational-wave observations, which probe much higher frequencies. Interesting sources in our frequency band, which overlaps the lower sensitive frequencies of proposed space-based observatories, include white-...

  18. Thermodynamic assessment of the dysprosium–gold binary system

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, Samira, E-mail: samira.otmani@edu.uiz.ac.ma; Mahdouk, Kamal

    2015-11-05

    Phase relationships in Dy–Au binary system has been thermodynamically assessed by using the CALPHAD technique. Liquid and the solution phases, fcc-A1, bcc-A2 and hcp-A3, were treated as a substitutional solution model. The binary intermetallic compounds are treated as stoichiometric phases. All the thermodynamic parameters of various phases have been optimized and the calculated results are confronted with experimental data. - Highlights: • Rare earth elements are increasingly used in advanced materials. • To our knowledge, this system was not previously optimized. • A consistent set of thermodynamic parameters was optimized. • This work is the start point for the study of ternary systems with RE.

  19. TAPAS - Tracking Advanced Planetary Systems with HARPS-N. II. Super Li-rich giant HD 107028

    CERN Document Server

    Adamow, M; Villaver, E; Wolszczan, A; Kowalik, K; Nowak, G; Adamczyk, M; Deka-Szymankiewicz, B

    2015-01-01

    Lithium rich giant stars are rare objects. For some of them, Li enrichment exceeds abundance of this element found in solar system meteorites, suggesting that these stars have gone through a Li enhancement process. We identified a Li rich giant HD 107028 with A(Li) > 3.3 in a sample of evolved stars observed within the PennState Torun Planet Search. In this work we study different enhancement scenarios and we try to identify the one responsible for Li enrichment for HD 107028. We collected high resolution spectra with three different instruments, covering different spectral ranges. We determine stellar parameters and abundances of selected elements with both equivalent width measurements and analysis, and spectral synthesis. We also collected multi epoch high precision radial velocities in an attempt to detect a companion. Collected data show that HD 107028 is a star at the base of Red Giant Branch. Except for high Li abundance, we have not identified any other anomalies in its chemical composition, and there...

  20. Deep, Low Mass Ratio Overcontact Binary Systems. XIV. A Statistical Analysis of 46 Sample Binaries

    Science.gov (United States)

    Yang, Yuan-Gui; Qian, Sheng-Bang

    2015-09-01

    A sample of 46 deep, low mass ratio (DLMR) overcontact binaries (i.e., q≤slant 0.25 and f≥slant 50%) is statistically analyzed in this paper. It is found that five relations possibly exist among some physical parameters. The primary components are little-evolved main sequence stars that lie between the zero-age main sequence line and the terminal-age main sequence (TAMS) line. Meanwhile, the secondary components may be evolved stars above the TAMS line. The super-luminosities and large radii may result from energy transfer, which causes their volumes to expand. The equations of M-L and M-R for the components are also determined. The relation of P-Mtotal implies that mass may escape from the central system when the orbital period decreases. The minimum mass ratio may preliminarily be {q}{min}=0.044(+/- 0.007) from the relations of q-f and q-Jspin/Jorb. With mass and angular momentum loss, the orbital period decreases, which finally causes this kind of DLMR overcontact binary to merge into a rapid-rotating single star.

  1. Excess Molar Volume of Binary Systems Containing Mesitylene

    Directory of Open Access Journals (Sweden)

    Morávková, L.

    2013-05-01

    Full Text Available This paper presents a review of density measurements for binary systems containing 1,3,5-trimethylbenzene (mesitylene with a variety of organic compounds at atmospheric pressure. Literature data of the binary systems were divided into nine basic groups by the type of contained organic compound with mesitylene. The excess molar volumes calculated from the experimental density values have been compared with literature data. Densities were measured by a few experimental methods, namely using a pycnometer, a dilatometer or a commercial apparatus. The overview of the experimental data and shape of the excess molar volume curve versus mole fraction is presented in this paper. The excess molar volumes were correlated by Redlich–Kister equation. The standard deviations for fitting of excess molar volume versus mole fraction are compared. Found literature data cover a huge temperature range from (288.15 to 343.15 K.

  2. Heats of Mixing in Binary Systems of Molten Salts

    International Nuclear Information System (INIS)

    The heat of mixing is an important thermodynamic property in binary mixtures. As a result of the recent development of high-temperature calorimetry we have been able to determine directly the heat of mixing in binary systems of molten salts. In this work we present the results of thermochemical measurements carried out in our laboratories for the systems (Rb-K)Cl; (Rb-Na)Cl; (Ag-Na)Cl; (Na-K)Br and(Br-Cl)Na for different concentrations and temperatures. In our view, the most significant components of the heat of mixing are the ionic contribution and the polarization energy of the ions. Consequently, use could be made of a relation of the form: ΔHM = Qi - Qp. The heat of mixing can then have either positive or negative values depending on the sign and the preponderance of the Qi and Qp energies. (author)

  3. Be discs in binary systems I. Coplanar orbits

    CERN Document Server

    Panoglou, Despina; Vieira, Rodrigo G; Cyr, Isabelle H; Jones, Carol E; Okazaki, Atsuo T; Rivinius, Thomas

    2016-01-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio, eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar systems. We simulate such binaries with the use of a smoothed particle hydrodynamics code. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. In circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc is smaller in size, more elongated and more massive for low viscosity parameter, small orbital separation and/or high mass ratio. Highly eccentric orbits are more complex, with the disc structure and total mass strongly dependent on the orbital phas...

  4. Ordered Structures of a Binary Mixture with Mobile Particles System

    Institute of Scientific and Technical Information of China (English)

    诸跃进; 马余强

    2003-01-01

    We study the ordered structures of a binary mixture through the introduction of mobile particles under periodically oscillating driving fields, and find that the particle motion can break up the isotropy of the system, so that the continuous structure along the oscillation forcing direction is observed for properly chosen oscillating field.Furthermore, the dependences of the morphology and domain size on the mixture-particle coupling interaction,the diffusion coefficient, and the quench depth are examined in details.

  5. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  6. A model of the subdwarf binary system LB 3459

    International Nuclear Information System (INIS)

    A model is presented for a short period eclipsing binary LB 3459 (=CPD-60deg389=HDE 269696). The primary of 0,36 Msub(sun) and effective temperature of 64000 K burns hydrogen in a shell source surrounding a degenerate helium core. The secondary of 0,054 Msub(sun) is nearly degenerate, and probably hydrogen rich star. The hemisphere facing the primary is heated to 20000 K. The system had the initial orbital period of about 3 months, and evolved through a common envelope phase. When the orbital period was reduced to the present value of 6 hours the common envelope was lost some 5.105 years ago. At that time the system might look like UU Sge, an eclipsing binary nucleus of a planetary nebula. In another 5.105 years the primary will become a hot degenerate dwarf and the system will look like an eclipsing binary PG 1413+01. In about 5.1010 years the orbital period will decrease to 38 minutes as a result of gravitational radiation. At that time the degenerate, hydrogen rich secondary will overflow its Roche lobe and LB 3459 will become a cataclysmic variable. (author)

  7. Detection of a white dwarf in a visual binary system

    Science.gov (United States)

    Boehm-Vitense, Erika

    1980-01-01

    The F6 giant HD 160365 was detected to have a white dwarf companion about 8 arcsec south of the star. The UV energy distribution observed with International Ultraviolet Explorer (IUE) shows that the white dwarf has an effective temperature of 23,000 +/- 2,000 K. If log g = 8 the Ly(alpha) profile indicates an effective temperature around 24,500 K. Using the theoretical models, one finds a visual magnitude of m(sub v) is approximately 16.5. For T(sub eff) = 24,500 K one expects for a white dwarf a luminosity of log L/solar luminosity is approximately -1.3 and M(sub V) is approximately 10.67. This gives a distance modulus for the system of m(sub v) - M(sub V) = 5.83 and an absolute magnitude M(sub v) = 0.3 for the giant.

  8. Seismic analysis of HD 43587Aa, a solar-like oscillator in a multiple system

    Science.gov (United States)

    Boumier, P.; Benomar, O.; Baudin, F.; Verner, G.; Appourchaux, T.; Lebreton, Y.; Gaulme, P.; Chaplin, W.; García, R. A.; Hekker, S.; Regulo, C.; Salabert, D.; Stahn, T.; Elsworth, Y.; Gizon, L.; Hall, M.; Mathur, S.; Michel, E.; Morel, T.; Mosser, B.; Poretti, E.; Rainer, M.; Roxburgh, I.; do Nascimento, J.-D., Jr.; Samadi, R.; Auvergne, M.; Chaintreuil, S.; Baglin, A.; Catala, C.

    2014-04-01

    Context. The object HD 43587Aa is a G0V star observed during the 145-day LRa03 run of the COnvection, ROtation and planetary Transits space mission (CoRoT), for which complementary High Accuracy Radial velocity Planet Searcher (HARPS) spectra with S/N > 300 were also obtained. Its visual magnitude is 5.71, and its effective temperature is close to 5950 K. It has a known companion in a highly eccentric orbit and is also coupled with two more distant companions. Aims: We undertake a preliminary investigation of the internal structure of HD 43587Aa. Methods: We carried out a seismic analysis of the star, using maximum likelihood estimators and Markov chain Monte Carlo methods. Results: We established the first table of the eigenmode frequencies, widths, and heights for HD 43587Aa. The star appears to have a mass and a radius slightly larger than the Sun, and is slightly older (5.6 Gyr). Two scenarios are suggested for the geometry of the star: either its inclination angle is very low, or the rotation velocity of the star is very low. Conclusions: A more detailed study of the rotation and of the magnetic and chromospheric activity for this star is needed, and will be the subject of a further study. New high resolution spectrometric observations should be performed for at least several months in duration.

  9. Seismic analysis of HD43587Aa, a solar-like oscillator in a multiple system

    CERN Document Server

    Boumier, P; Baudin, F; Verner, G; Appourchaux, T; Lebreton, Y; Gaulme, P; Chaplin, W; Garcia, R A; Hekker, S; Regulo, C; Salabert, D; Stahn, T; Elsworth, Y; Gizon, L; Hall, M; Mathur, S; Michel, E; Morel, T; Mosser, B; Poretti, E; Rainer, M; Roxburgh, I; Nascimento, J -D do; Samadi, R; Auvergne, M; Chaintreuil, S; Baglin, A; Catala, C

    2014-01-01

    Context. The object HD 43587Aa is a G0V star observed during the 145-day LRa03 run of the COnvection, ROtation and planetary Transits space mission (CoRoT), for which complementary High Accuracy Radial velocity Planet Searcher (HARPS) spectra with S/N>300 were also obtained. Its visual magnitude is 5.71, and its effective temperature is close to 5950 K. It has a known companion in a highly eccentric orbit and is also coupled with two more distant companions. Aims. We undertake a preliminary investigation of the internal structure of HD 43587Aa. Methods. We carried out a seismic analysis of the star, using maximum likelihood estimators and Markov Chain Monte Carlo methods. Results. We established the first table of the eigenmode frequencies, widths, and heights for HD 43587Aa. The star appears to have a mass and a radius slightly larger than the Sun, and is slightly older (5.6 Gyr). Two scenarios are suggested for the geometry of the star: either its inclination angle is very low, or the rotation velocity of t...

  10. Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems

    Science.gov (United States)

    Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek

    2016-07-01

    We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.

  11. Self Regulated Shocks in Massive Star Binary Systems

    CERN Document Server

    Parkin, E R

    2013-01-01

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, LX remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind-driving, we term this scenario as self regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the m...

  12. 51 Eri and GJ 3305: A 10-15 Myr old binary star system at 30 parsecs

    CERN Document Server

    Feigelson, E D; Stark, M; Townsley, L; Garmire, G P; State, P; State, Penn

    2005-01-01

    Following the suggestion of Zuckerman et al. (2001, ApJ, 562, L87), we consider the evidence that 51 Eri (spectral type F0) and GJ 3305 (M0), historically classified as unrelated main sequence stars in the solar neighborhood, are instead a wide physical binary system and members of the young beta Pic moving group (BPMG). The BPMG is the nearest (d < 50 pc) of several groups of young stars with ages around 10 Myr that are kinematically convergent with the Oph-Sco-Cen Association (OSCA), the nearest OB star association. Combining SAAO optical photometry, Hobby-Eberly Telescope high-resolution spectroscopy, Chandra X-ray data, and UCAC2 catalog kinematics, we confirm with high confidence that the system is indeed extremely young. GJ 3305 itself exhibits very strong magnetic activity but has rapidly depleted most of its lithium. The 51 Eri/GJ 3305 system is the westernmost known member of the OSCA, lying 110 pc from the main subgroups. The system is similar to the BPMG wide binary HD 172555/CD -64d1208 and the...

  13. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. C.; Melosh, H. J. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Thebault, P. [LESIA, Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Henning, W. G. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Gaidos, E. [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Elkins-Tanton, L. T. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Bridges, J. C. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Morlok, A., E-mail: johns477@purdue.edu [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  14. Measurement of VLE data for binary lipids systems

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent;

    components and also for their mixtures. To contribute in this area, experimental data were obtained using the Differential Scanning Calorimetry (DSC) technique for isobaric vapor-liquid equilibrium (VLE) of two binary mixtures at two different pressures (1.2 and 2.5 KPa): system 1 [monoacylglycerol...... is revealed for both systems at the two different pressures, with azeotrope behavior observed and confirmed but the relative volatility analysis. Available thermodynamic consistency tests for TPx data were applied before performing parameter regressions for Wilson NRTL, UNIQUAC and original UNIFAC models...

  15. Carrying a Torch for Dust in Binary Star Systems

    CERN Document Server

    Cotton, Daniel V; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Bailey, Jeremy

    2016-01-01

    Young stars are frequently observed to host circumstellar disks, within which their attendant planetary systems are formed. Scattered light imaging of these proto-planetary disks reveals a rich variety of structures including spirals, gaps and clumps. Self-consistent modelling of both imaging and multi-wavelength photometry enables the best interpretation of the location and size distribution of disks' dust. Epsilon Sagittarii is an unusual star system. It is a binary system with a B9.5III primary that is also believed to host a debris disk in an unstable configuration. Recent polarimetric measurements of the system with the High Precision Polarimetric Instrument (HIPPI) revealed an unexpectedly high fractional linear polarisation, one greater than the fractional infrared excess of the system. Here we develop a spectral energy distribution model for the system and use this as a basis for radiative transfer modelling of its polarisation with the RADMC-3D software package. The measured polarisation can be repro...

  16. The Formation and Evolution of Planetary Systems (FEPS): Discovery of an Unusual Debris System Associated with HD 12039

    CERN Document Server

    Hines, D C; Bouwman, J; Hillenbrand, L A; Carpenter, J M; Meyer, M R; Kim, J S; Silverstone, M D; Rodmann, J; Wolf, S; Mamajek, E E; Brooke, T Y; Padgett, D L; Henning, T; Moro-Martin, A; Stobie, E B; Gordon, K D; Morrison, J E; Muzerolle, J; Su, K Y L

    2006-01-01

    We report the discovery of a debris system associated with the $\\sim 30$ Myr old G3/5V star HD 12039 using {\\it Spitzer Space Telescope} observations from 3.6 -- 160$\\mu$m. An observed infrared excess (L$_{\\rm IR}$/L$_{\\ast} = 1\\times10^{-4}$) above the expected photosphere for $\\lambda \\gtrsim 14\\mu$m is fit by thermally emitting material with a color temperature of T$\\sim 110$ K, warmer than the majority of debris disks identified to date around Sun-like stars. The object is not detected at 70$\\mu$m with a 3$\\sigma$ upper limit 6 times the expected photospheric flux. The spectrum of the infrared excess can be explained by warm, optically thin material comprised of blackbody-like grains of size $\\gtrsim 7 \\mu$m that reside in a belt orbiting the star at 4--6 AU. An alternate model dominated by smaller grains, near the blow-out size $a\\sim 0.5\\mu$m, located at 30-40AU is also possible, but requires the dust to have been produced recently since such small grains will be expelled from the system by radiation pr...

  17. Microwave spectroscopy of the seeded binary and ternary clusters CO-(pH{sub 2}){sub 2}, CO-pH{sub 2}-He, CO-HD, and CO-(oD{sub 2}){sub N=1,2}

    Energy Technology Data Exchange (ETDEWEB)

    Raston, Paul L., E-mail: paul.raston@adelaide.edu.au [Department of Chemistry, University of Adelaide, SA 5005 (Australia); Jäger, Wolfgang [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)

    2015-04-14

    We report the Fourier transform microwave spectra of the a-type J = 1-0 transitions of the binary and ternary CO-(pH{sub 2}){sub 2}, CO-pH{sub 2}-He, CO-HD, and CO-(oD{sub 2}){sub N=1,2} clusters. In addition to the normal isotopologue of CO for all clusters, we observed the transitions of the minor isotopologues, {sup 13}C{sup 16}O, {sup 12}C{sup 18}O, and {sup 13}C{sup 18}O, for CO-(pH{sub 2}){sub 2} and CO-pH{sub 2}-He. All transitions lie within 335 MHz of the experimentally or theoretically predicted values. In comparison to previously reported infrared spectra [Moroni et al., J. Chem. Phys. 122, 094314 (2005)], we are able to tentatively determine the vibrational shift for CO-pH{sub 2}-He, in addition to its b-type J = 1-0 transition frequency. The a-type frequency of CO-pH{sub 2}-He is similar to that of CO-He{sub 2} [Surin et al., Phys. Rev. Lett. 101, 233401 (2008)], suggesting that the pH{sub 2} molecule has a strong localizing effect on the He density. Perturbation theory analysis of CO-oD{sub 2} reveals that it is approximately T-shaped, with an anisotropy of the intermolecular potential amounting to ∼9 cm{sup −1}.

  18. New systemic radial velocities of suspected RR Lyrae binary stars

    Science.gov (United States)

    Guggenberger, E.; Barnes, T. G.; Kolenberg, K.

    2016-05-01

    Among the tens of thousands of known RR Lyrae stars there are only a handful that show indications of possible binarity. The question why this is the case is still unsolved, and has recently sparked several studies dedicated to the search for additional RR Lyraes in binary systems. Such systems are particularly valuable because they might allow to constrain the stellar mass. Most of the recent studies, however, are based on photometry by finding a light time effect in the timings of maximum light. This approach is a very promising and successful one, but it has a major drawback: by itself, it cannot serve as a definite proof of binarity, because other phenomena such as the Blazhko effect or intrinsic period changes could lead to similar results. Spectroscopic radial velocity measurements, on the other hand, can serve as definite proof of binarity. We have therefore started a project to study spectroscopically RR Lyrae stars that are suspected to be binaries. We have obtained radial velocity (RV) curves with the 2.1m telescope at McDonald observatory. From these we derive systemic RVs which we will compare to previous measurements in order to find changes induced by orbital motions. We also construct templates of the RV curves that can facilitate future studies. We also observed the most promising RR Lyrae binary candidate, TU UMa, as no recent spectroscopic measurements were available. We present a densely covered pulsational RV curve, which will be used to test the predictions of the orbit models that are based on the O - C variations.

  19. Secular resonances in circumstellar systems in binary stars

    Science.gov (United States)

    Bazso, A.; Pilat-Lohinger, E.; Eggl, S.; Funk, B.; Bancelin, D.

    2016-02-01

    Planet formation around single stars is already a complicated matter, but extrasolar planets are also present in binary and multiple star systems. We investigate circumstellar planets in binary star systems with stellar separations below 100 astronomical units. For a selection of 11 systems with at least one detected giant planet we determine the location and extension of the habitable zone (HZ), subject to the incident stellar flux from both stars. We work out the stability of additional hypothetical terrestrial planets in or close to the HZ in these systems. To study the secular dynamics we apply a semi-analytical method. This method employs a first-order perturbation theory to determine the secular frequencies of objects moving under the gravitational influence of two much more massive perturbers. The other part uses a single numerical integration of the equations of motion and a frequency analysis of the obtained time-series to determine the apsidal precession frequencies of the massive bodies. By combining these two parts we are able to find the location of the most important secular resonances and the regions of chaotic motion. We demonstrate that terrestrial planets interior to the giant planet’s orbit may suffer from a linear secular resonance that could prevent the existence of habitable planets. Contrary to this, close-in giant planets are less of a problem, but one has to take into account the general relativistic precession of the pericenter that can also lead to resonances.

  20. The low mass ratio contact binary system V728 Herculis

    CERN Document Server

    Erkan, Naci

    2015-01-01

    We present the orbital period study and the photometric analys of the contact binary system V728 Her. Our orbital period analysis shows that the period of the system increases (dP/dt=1.92x10^-7dyr^-1) and the mass transfer rate from the less massive component to more massive one is 2.51x10^-8M_suny^-1. In addition, an advanced sinusoidal variation in period can be attributed to the light-time effect by a tertiary component or the Applegate mechanism triggered by the secondary component. The simultaneous multicolor BVR light and radial velocity curves solution indicates that the physical parameters of the system are M1=1.8M_sun, M2=0.28M_sun, R1=1.87R_sun, R2=0.82R_sun, L1=5.9L_sun, and L2=1.2L_sun. We discuss the evolutionary status and conclude that V728 Her is a deep (f=81%), low mass ratio (q=0.16) contact binary system.

  1. Observational studies of X-ray binary systems

    International Nuclear Information System (INIS)

    The subject of Chapter 1 is theoretical. The other chapters, Ch. 2 to 6, contain original observational data and efforts towards their interpretation. Of these, Ch. 3, 4 and 5 deal with massive X-ray binaries, Ch. 6 with low-mass systems and Ch. 2 with Cygnus X-3, which we have not yet been able to assign to any of these two classes. The X-ray observations described were made with the COS-B satellite. Work based on UV and optical observations is described in Ch. 5. The UV observations were made with the IUE satellite, the optical observations at several ground-based observatories. (Auth.)

  2. Properties of the components in young binary systems

    Science.gov (United States)

    Woitas, Jens

    1999-10-01

    Using near-infrared speckle-interferometry we have obtained resolved JHK-photometry for the components of 58 young binary systems. By placing the components into a color-color diagram we identify some unusual red objects that are candidates for infrared companions or substellar objects. We place a subsample that consists of the components of 14 weak-lined TTS systems (where no significant circumstellar excess emission is expected) into a color-magnitude diagram and show that in all these systems the components are coeval within the uncertainties. Particularly this is the case for the triple system HBC 358. Using the J-magnitude as an indicator for the stellar luminosity, the optical spectral type of the system and the previously justified assumption that all components are coeval we can place the components into the HRD and derive their masses by comparison with theoretical pre-main sequence evolutionary tracks. The results are the following: The distribution of mass ratios is neither clustered towards M2 / M1 = 1 nor is it a function of the primary's mass or the components' projected separation. Comparison of these results with predictions of theoretical multiple star formation models suggests that most of the systems have formed by fragmentation during protostellar collapse, and that the components' masses are principally determined by fragmentation and not by the following accretion processes. Furthermore the infrared source HV Tau C is discussed using new observational data. We show that this source is no Herbig-Haro object, but an active T Tauri star. So the HV Tau-system does not impose a problem on current models of T Tauri stars and their environment. From relative positions of the components at different epochs we derive their relative velocities and show that in most close systems orbital motion can be proved. The analysis of this orbital motion leads to an empirical mass estimate for T Tauri-stars which is larger than the masses one would expect from the

  3. HD 80606: searching for the chemical signature of planet formation

    Science.gov (United States)

    Saffe, C.; Flores, M.; Buccino, A.

    2015-10-01

    Context. Binary systems with similar components are ideal laboratories that allow several physical processes to be tested, such as the possible chemical pattern imprinted by the planet formation process. Aims: We explore the probable chemical signature of planet formation in the remarkable binary system HD 80606-HD 80607. The star HD 80606 hosts a giant planet with ~4 MJup detected by both transit and radial velocity techniques, which is one of the most eccentric planets detected to date. We study condensation temperature Tc trends of volatile and refractory element abundances to determine whether there is a depletion of refractories, which could be related to the terrestrial planet formation. Methods: We carried out a high-precision abundance determination in both components of the binary system via a line-by-line, strictly differential approach. First, we used the Sun as a reference and then we used HD 80606. The stellar parameters Teff, log g, [Fe/H] and vturb were determined by imposing differential ionization and excitation equilibrium of Fe I and Fe II lines, with an updated version of the program FUNDPAR, together with plane-parallel local thermodynamic equilibrium (LTE) ATLAS9 model atmospheres and the MOOG code. Then, we derived detailed abundances of 24 different species with equivalent widths and spectral synthesis with the program MOOG. The chemical patterns were compared with the solar-twins Tc trends of Meléndez et al. (2009, AJ, 704, L66) and with a sample of solar-analogue stars with [Fe/H] ~ +0.2 dex from Neves et al. (2009, A&A, 497, 563). The Tc trends were also compared mutually between both stars of the binary system. Results: From the study of Tc trends, we concluded that the stars HD 80606 and HD 80607 do not seem to be depleted in refractory elements, which is different for the case of the Sun. Then, following the interpretation of Meléndez et al. (2009), the terrestrial planet formation would have been less efficient in the components of

  4. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. II. Super Li-rich giant HD 107028

    Science.gov (United States)

    Adamów, M.; Niedzielski, A.; Villaver, E.; Wolszczan, A.; Kowalik, K.; Nowak, G.; Adamczyk, M.; Deka-Szymankiewicz, B.

    2015-09-01

    Context. Lithium-rich giant stars are rare objects. For some of them, Li enrichment exceeds the abundance of this element found in solar system meteorites, suggesting that these stars have gone through a Li enhancement process. Aims: We identified a Li-rich giant HD 107028 with A(Li) > 3.3 in a sample of evolved stars observed within the PennState Toruń Planet Search. In this work we study different enhancement scenarios and we try to identify the one responsible for Li enrichment in HD 107028. Methods: We collected high-resolution spectra with three different instruments, covering different spectral ranges. We determined stellar parameters and abundances of selected elements with both equivalent width measurements and analysis, and spectral synthesis. We also collected multi-epoch high-precision radial velocities in an attempt to detect a companion. Results: Collected data show that HD 107028 is a star at the base of the red giant branch (RGB). Except for high Li abundance, we have not identified any other anomalies in its chemical composition, and there is no indication of a low-mass or stellar companion. We exclude Li production at the luminosity function bump on the RGB as the effective temperature and luminosity suggest that the evolutionary state is much earlier than the RGB bump. We also cannot confirm the Li enhancement by contamination as we do not observe any anomalies that are associated with this scenario. Conclusions: After evaluating various scenarios of Li enhancement we conclude that the Li-overabundance of HD 107028 originates from main-sequence evolution, and may be caused by diffusion processes. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on

  5. The Alpha Centauri Binary System: Atmospheric Parameters and Element Abundances

    CERN Document Server

    de Mello, G F Porto; Keller, G R

    2008-01-01

    The Alpha Centauri binary system, owing to its binarity, proximity and brightness, is a fundamental calibrating object for the theory of stellar structure and evolution. This role, however, is hindered by a considerable disagreement in the published analyses of its atmospheric parameters and abundances. We report a detailed spectroscopic analysis of both components of the Alpha Centauri binary system, differentially with respect to the Sun, based on high quality spectra (R = 35 000, S/N > 1000). The atmospheric parameters of the system are found to be Teff = 5820 K, [Fe/H] = +0.24, log g = 4.34 and xi = 1.46 km/s, for Alpha Cen A, and Teff = 5240 K, [Fe/H] = +0.25, log g = 4.44 and xi = 1.28 km/s for Alpha Cen B. The parameters were derived from the simultaneous excitation & ionization equilibria of the equivalent widths of Fe I and Fe II lines, by fitting theoretical profiles to the Halpha line and from photometric calibrations, good agreement being reached between the criteria for both stars. We derived...

  6. Thermodynamic assessment of the Bi-Mg binary system

    Institute of Scientific and Technical Information of China (English)

    Chunju NIU; Changrong LI; Zhenmin DU; Cuiping GUO; Yongjuan JING

    2012-01-01

    The Bi-Mg binary system had been assessed by adopting the ionic melt and the modified quasi-chemical models to describe the liquid phase with short range ordering behavior.In general considerations of the development of the thermodynamic database of the multi-component Mg-based alloys and the consistency of the thermodynamic models of the related phases,the Gibbs energy descriptions of all the phases in the Bi-Mg binary system were reasonably re-modeled and critically re-assessed in the present work.Especially for the liquid phase,the associate model was used with the constituent species Bi,Mg and Bi2Mg3.The Mg-rich terminal phase hcp_A3 was modeled as a substitutional solution following Redlich-Kister equation and the Bi-rich terminal phase Rhombohedral_A7 was treated as a pure Bi substance since the extremely small solubility of Mg in Bi. The low and high temperature nonstoichiometric compounds β-Bi2Mg3 and α-Bi2Mg3 were described by the sublattice models (Bi,Va)2Mg3 and (Bi)1 (Bi,Va)aMg6 respectively based on their structure features.A set of self-consistent thermodynamic parameters of the Bi-Mg system was obtained and the experimental thermodynamic and phase equilibrium data were well reproduced by the optimized thermodynamic data.

  7. Thermodynamic reassessment of Ni-Pr binary system

    Energy Technology Data Exchange (ETDEWEB)

    Rahou, Z., E-mail: rahou.zakarea@gmail.com; Mahdouk, K.; Moustain, D.; Otmani, S.; Kardellass, S.; Iddaoudi, A.; Selhaoui, N.

    2015-01-25

    Highlights: • The Ni-Pr has been re-assessed using the latest experimental results. • The enthalpies of formation of NiPr and Ni{sub 5}Pr measured by Kleppa were considered her for the first time. • The errors of related modeling presented in previous articles have been modified. • A self-consistent thermodynamic description of the Sm–Ni system was obtained. - Abstract: Based on the available experimental data of phase equilibria and thermodynamic properties from the literature, the Ni-Pr binary system has been thermodynamically assessed using the CALPHAD method. The solution phases, Liquid, FCC{sub A}1, DHCP and BCC{sub A}2 were modeled as substitutional solution phases, for which the excess Gibbs energies were formulated with Redlich–Kister polynomials. All intermetallic phases were described as stoichiometric compounds. Subsequently, a set of self-consistent thermodynamic parameters describing various phases in this binary system has been obtained. The calculated results reproduce well the corresponding experimental data.

  8. On stress relaxation timescales for dense binary particulate systems

    Science.gov (United States)

    Mao, Shaolin

    2015-06-01

    We study contact stress relaxation timescales, especially the temporal correlation involved in dense binary particulate systems, which offers insight into the intriguing relationship between the contact stresses and the contact time of particle interactions under non-equilibrium state. The contact time (also referred to as contact age) of a pair of particles is defined by the duration between current time and the instant when the contact was formed. The interspecies inter-particles contact stresses are derived from Liouville's theorem. We apply particle dynamics methods (e.g. molecular dynamics, discrete element method) to simulate 3D dense binary particulate systems with periodic boundary conditions. External perturbation is exerted on the system to balance the dissipation of energy due to the viscoelastic collisions. The contact stresses, Reynolds stresses, and the probability density function of the contact time of particles are predicted at different volume fraction of particles. The obtained stress-strain rate data are used to examine the constitutive relation of macroscopic materials. The study targets the impact of the short-term and the long-term contact/collision on the contact stress relaxation. The simulation results reveal distinct effects of the short-term and the long-term contact/collision on the contact stresses, which have been treated by only an averaged expression of particle interactions in discrete element methods before.

  9. Research on application of HD video conference system%高清视频会议系统的应用研究

    Institute of Scientific and Technical Information of China (English)

    段云丰

    2014-01-01

    According to the functions and characteristics of HD video conference system,the application of HD video con-ference system in power generation company is discussed. The construction and operation of HD video conferencing system are investigated. The further development trend is pointed out in this paper.%结合高清视频会议系统的功能与特点,探讨了高清视频会议系统在调峰调频发电公司的应用,对高清视频会议系统的建设和运行进行了分析研究,并指出进一步发展趋势。

  10. On the ultraviolet anomalies of the WASP-12 and HD 189733 systems: Trojan satellites as a plasma source

    CERN Document Server

    Kislyakova, K G; Funk, B; Lammer, H; Fossati, L; Eggl, S; Schwarz, R; Boudjada, M Y; Erkaev, N V

    2016-01-01

    We suggest an additional possible plasma source to explain part of the phenomena observed for the transiting hot Jupiters WASP-12b and HD 189733b in their ultraviolet (UV) light curves. In the proposed scenario, material outgasses from the molten surface of Trojan satellites on tadpole orbits near the Lagrange points L$_4$ and L$_5$. We show that the temperature at the orbital location of WASP-12b is high enough to melt the surface of rocky bodies and to form shallow lava oceans on them. In case of WASP-12b, this leads to the release of elements such as Mg and Ca, which are expected to surround the system. The predicted Mg and Ca outgassing rates from two Io-sized WASP-12b Trojans are $\\approx 2.2 \\times 10^{27}$ s$^{-1}$ and $\\approx 2.2 \\times 10^{26}$ s$^{-1}$, respectively. Trojan outgassing can lead to the apparent lack of emission in Mg{\\sc ii}\\,h\\&k and Ca{\\sc ii}\\,H\\&K line cores of WASP-12. For HD 189733b, the mechanism is only marginally possible due to the lower temperature. This may be one...

  11. Thermodynamic optimization of Co–Ge binary system

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.S.; Liu, S.G. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Tao, X.M. [College of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004 (China); Xiao, F.H.; Huang, L.H.; Yang, F.; He, Y.; Chen, Q. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Liu, H.S., E-mail: hsliu@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Jin, Z.P. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2013-11-20

    Graphical abstract: - Highlights: • The Co–Ge binary system was reassessed and optimized. • The first-principle approach was employed to calculate formation enthalpies of two compounds. • A self-consistent set of thermodynamic parameters was obtained. • The experimental data were well reproduced in the present optimization. - Abstract: Phase diagram of Co–Ge binary system was thermodynamically assessed by using CALPHAD approach in this study. The excess Gibbs energy of the solution phases, liquid, α(Co) and ε(Co), were modeled with Redlich–Kister polynomial. Magnetic contribution to the Gibbs energy was also taken into account for α(Co) and ε(Co). Considering its crystal structure and solubility range, the intermetallic compound βCo{sub 5}Ge{sub 3}, with B8{sub 2}-structure, was particularly described with a three-sublattice model, (Co,Va){sub 1}:(Co){sub 4}:(Co,Ge){sub 3}. And the compound CoGe was described with two-sublattice model according to its crystal structure. Other intermetallic compounds were described as stoichiometric phases because of their narrow homogeneity ranges or unknown crystal structure. In order to obtain a reasonable description of several Co–Ge compounds, first-principle calculations were performed before optimization to determine their formation enthalpies. Finally, a set of thermodynamic parameters was finally obtained so that most data of phase boundaries and thermodynamic properties of various phases were reproduced in present optimization.

  12. Absolute properties of the binary system BB Pegasi

    CERN Document Server

    Kalomeni, B; Keskin, V; Degirmenci, O L; Ulas, B; Kose, O

    2007-01-01

    We present a ground based photometry of the low-temperature contact binary BB Peg. We collected all times of mid-eclipses available in literature and combined them with those obtained in this study. Analyses of the data indicate a period increase of 3.0(1) x 10^{-8} days/yr. This period increase of BB Peg can be interpreted in terms of the mass transfer 2.4 x 10^{-8} Ms yr^{-1} from the less massive to the more massive component. The physical parameters have been determined as Mc = 1.42 Ms, Mh = 0.53 Ms, Rc = 1.29 Rs, Rh = 0.83 Rs, Lc = 1.86 Ls, and Lh = 0.94 Ls through simultaneous solution of light and of the radial velocity curves. The orbital parameters of the third body, that orbits the contact system in an eccentric orbit, were obtained from the period variation analysis. The system is compared to the similar binaries in the Hertzsprung-Russell and Mass-Radius diagram.

  13. New systemic radial velocities of suspected RR Lyrae binary stars

    CERN Document Server

    Guggenberger, Elisabeth; Kolenberg, Katrien

    2015-01-01

    Among the tens of thousands of known RR Lyrae stars there are only a handful that show indications of possible binarity. The question why this is the case is still unsolved, and has recently sparked several studies dedicated to the search for additional RR Lyraes in binary systems. Such systems are particularly valuable because they might allow to constrain the stellar mass. Most of the recent studies, however, are based on photometry by finding a light time effect in the timings of maximum light. This approach is a very promising and successful one, but it has a major drawback: by itself, it cannot serve as a definite proof of binarity, because other phenomena such as the Blazhko effect or intrinsic period changes could lead to similar results. Spectroscopic radial velocity measurements, on the other hand, can serve as definite proof of binarity. We have therefore started a project to study spectroscopically RR Lyrae stars that are suspected to be binaries. We have obtained radial velocity (RV) curves with t...

  14. Wobbling and precessing jets from warped disks in binary systems

    CERN Document Server

    Sheikhnezami, Somayeh

    2015-01-01

    We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion-ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star-disk-jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 600 rotations of the inner disk confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due to a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet inclination outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indication for precession effects, we have also run an exemplary parameter setup...

  15. Modulated Gamma-ray emission from compact millisecond pulsar binary systems

    CERN Document Server

    Bednarek, W

    2013-01-01

    A significant amount of the millisecond pulsars has been discovered within binary systems. In several such binary systems the masses of the companion stars have been derived allowing to distinguish two classes of objects, called the Black Widow and the Redback binaries. Pulsars in these binary systems are expected to produce winds which, colliding with stellar winds, create conditions for acceleration of electrons. These electrons should interact with the anisotropic radiation from the companion stars producing gamma-ray emission modulated with the orbital period of the binary system. We consider the interaction of a millisecond pulsar (MSP) wind with a very inhomogeneous stellar wind from the companion star within binary systems of the Black Widow and Redback types. It is expected that the pulsar wind should mix efficiently with the inhomogeneous stellar wind. Electrons accelerated in such mixed, turbulent winds can interact with the magnetic field and also strong radiation from the companion star producing ...

  16. NEWLY DISCOVERED PLANETS ORBITING HD 5319, HD 11506, HD 75784 AND HD 10442 FROM THE N2K CONSORTIUM

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, Matthew J.; Fischer, Debra A.; Brewer, John M. [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Payne, Matthew J.; Johnson, John Asher [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Isaacson, Howard T. [Department of Astronomy, University of California, Berkeley, Berkeley, California 94720 (United States)

    2015-01-20

    Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 M {sub Jup}) orbiting stars monitored as part of the Next 2000 target stars (N2K) Doppler Survey program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. The remaining discoveries reside in previously unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days.

  17. Newly-Discovered Planets Orbiting HD~5319, HD~11506, HD~75784 and HD~10442 from the N2K Consortium

    CERN Document Server

    Giguere, Matthew J; Payne, Matthew J; Brewer, John M; Johnson, John Asher; Howard, Andrew W; Isaacson, Howard T

    2014-01-01

    Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly-discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 MJup) orbiting stars monitored as part of the N2K program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. The remaining discoveries reside in previously-unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly-discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer pla...

  18. THE McDONALD OBSERVATORY PLANET SEARCH: NEW LONG-PERIOD GIANT PLANETS AND TWO INTERACTING JUPITERS IN THE HD 155358 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline [Department of Astronomy and McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Wittenmyer, Robert A.; Horner, J. [Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney NSW 2052 (Australia); Simon, Attila E., E-mail: paul@astro.as.utexas.edu [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary)

    2012-04-10

    We present high-precision radial velocity (RV) observations of four solar-type (F7-G5) stars-HD 79498, HD 155358, HD 197037, and HD 220773-taken as part of the McDonald Observatory Planet Search Program. For each of these stars, we see evidence of Keplerian motion caused by the presence of one or more gas giant planets in long-period orbits. We derive orbital parameters for each system and note the properties (composition, activity, etc.) of the host stars. While we have previously announced the two-gas-giant HD 155358 system, we now report a shorter period for planet c. This new period is consistent with the planets being trapped in mutual 2:1 mean-motion resonance. We therefore perform an in-depth stability analysis, placing additional constraints on the orbital parameters of the planets. These results demonstrate the excellent long-term RV stability of the spectrometers on both the Harlan J. Smith 2.7 m telescope and the Hobby-Eberly telescope.

  19. Thermal expansion of solid solutions in apatite binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Alexander V.; Bulanov, Evgeny N., E-mail: bulanoven@gmail.com; Korokin, Vitaly Zh.

    2015-01-15

    Graphical abstract: Thermal dependencies of volume thermal expansion parameter for with thermal expansion diagrams for Pb{sub 5}(PO{sub 4}){sub 3}F{sub x}Cl{sub 1−x}. - Highlights: • Solid solutions in three apatitic binary systems were investigated via HT-XRD. • Thermal expansion coefficients of solid solutions in the systems were calculated. • Features of the thermal deformation of the apatites were described. • Termoroentgenography is a sensitive method for the investigation of isomorphism. - Abstract: High-temperature insitu X-ray diffraction was used to investigate isomorphism and the thermal expansion of apatite-structured compounds in three binary systems in the entire temperature range of the existence of its hexagonal modifications. Most of the studied compounds are highly expandable (α{sub l} > 8 × 10{sup 6} (K{sup −1})). In Pb{sub 5}(PO{sub 4}){sub 3}F–Pb{sub 5}(PO{sub 4}){sub 3}Cl system, volume thermal expansion coefficient is independence from the composition at 573 K. In Pb{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(VO{sub 4}){sub 3}Cl, the compound with equimolar ratio of substituted atoms has constant volume thermal expansion coefficient in temperature range 298–973 K. Ca{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(PO{sub 4}){sub 3}Cl system is characterized by the most thermal sensitive composition, in which there is an equal ratio of isomorphic substituted atoms.

  20. Evolution of an Accretion Disk in Binary Black Hole Systems

    CERN Document Server

    Kimura, Shigeo S; Toma, Kenji

    2016-01-01

    We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...

  1. Be discs in binary systems - I. Coplanar orbits

    Science.gov (United States)

    Panoglou, Despina; Carciofi, Alex C.; Vieira, Rodrigo G.; Cyr, Isabelle H.; Jones, Carol E.; Okazaki, Atsuo T.; Rivinius, Thomas

    2016-09-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio and eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar binaries. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. We find two limiting cases with respect to the effects of eccentricity: in circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc structure appears smaller in size, more elongated and more massive for small viscosity parameter, small orbital separation and/or high mass ratio. In highly eccentric orbits, the effects are more complex, with the disc structure strongly dependent on the orbital phase. We also studied the effects of binarity in the disc continuum emission. Since the infrared and radio SED are sensitive to the disc size and density slope, the truncation and matter accumulation result in considerable modifications in the emergent spectrum. We conclude that binarity can serve as an explanation for the variability exhibited in observations of Be stars, and that our model can be used to detect invisible companions.

  2. Solar-type cycles in close binary systems

    International Nuclear Information System (INIS)

    Solar-type cycles in late-type secondary components of cataclysmic variables can produce cyclical variations of the quiescent luminosity, the time intervals between consecutive outbursts of dwarf-nova systems, and the orbital period. Analysis of the long-term light curves of several types of close binary systems suggests cyclical variations of the mass-transfer rate which can be ascribed to fractional changes of the radii of the late-type secondaries by Delta R/R in the range 0.00006-0.0003, as expected for a typical solar cycle. The probability density function of the periods of the cycles discovered in both CVs and single main-sequence stars are peaked around 6 yr. The periods of the cycles do not seem to be affected by the rotation regime of the star. A possible correlation between these cycles and the recurrence times of recurrent novae is suggested. 85 refs

  3. Glass transition and mixing thermodynamics of a binary eutectic system.

    Science.gov (United States)

    Tu, Wenkang; Chen, Zeming; Gao, Yanqin; Li, Zijing; Zhang, Yaqi; Liu, Riping; Tian, Yongjun; Wang, Li-Min

    2014-02-28

    A quantitative evaluation of the contribution of mixing thermodynamics to glass transition is performed for a binary eutectic benzil and m-nitroaniline system. The microcalorimetric measurements of the enthalpy of mixing give small and positive values, typically ~200 J mol(-1) for the equimolar mixture. The composition dependence of the glass transition temperature, T(g), is found to show a large and negative deviation from the ideal mixing rule. The Gordon-Taylor and Couchman-Karasz models are subsequently applied to interpret the T(g) behavior, however, only a small fraction of the deviation is explained. The analyses of the experimental results manifest quantitatively the importance of the mixing thermodynamics in the glass transition in miscible systems.

  4. Separated Fringe Packet Observations with the CHARA Array II: $\\omega$ Andromeda, HD 178911, and {\\xi} Cephei

    CERN Document Server

    Farrington, Christopher D; Mason, Brian D; Hartkopf, William I; Mourard, Denis; Moravveji, Ehsan; McAlister, Harold A; Turner, Nils H; Sturmann, Laszlo; Sturmann, Judit

    2014-01-01

    When observed with optical long-baseline interferometers (OLBI), components of a binary star which are sufficiently separated produce their own interferometric fringe packets; these are referred to as Separated Fringe Packet (SFP) binaries. These SFP binaries can overlap in angular separation with the regime of systems resolvable by speckle interferometry at single, large-aperture telescopes and can provide additional measurements for preliminary orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the undersampled regime between the bounds of spectroscopic surveys and speckle interferometry. In this process, a visibility calibration star is not needed, and the separated fringe packets can provide an accurate vector separation. In this paper, we apply the SFP approach to {\\omega} Andromeda, HD 178911, and {\\xi} Cephei with the CLIMB three-beam combiner at the CHARA Array. For these systems we determine component masses and parallax of 0.963${\\pm...

  5. Effect of the Salmonella pathogenicity island 2 type III secretion system on Salmonella survival in activated chicken macrophage-like HD11 cells.

    Directory of Open Access Journals (Sweden)

    Amanda L S Wisner

    Full Text Available In order to better identify the role of the Salmonella pathogenicity island 2 (SPI-2 type III secretion system (T3SS in chickens, we used the well-known gentamicin protection assay with activated HD11 cells. HD11 cells are a macrophage-like chicken cell line that can be stimulated with phorbol 12-myristate 13-acetate (PMA to exhibit more macrophage-like morphology and greater production of reactive oxygen species (ROS. Activated HD11 cells were infected with a wild-type Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium strain, a SPI-2 mutant S. Typhimurium strain, a wild-type Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis strain, a SPI-2 mutant S. Enteritidis strain, or a non-pathogenic Escherichia coli (E. coli strain. SPI-2 mutant strains were found to survive as well as their parent strain at all time points post-uptake (PU by the HD11 cells, up to 24 h PU, while the E. coli strain was no longer recoverable by 3 h PU. We can conclude from these observations that the SPI-2 T3SS of S. Typhimurium and S. Enteritidis is not important for survival of Salmonella in the activated macrophage-like HD11 cell line, and that Salmonella must employ other mechanisms for survival in this environment, as E. coli is effectively eliminated.

  6. Orbital evolution of mass-transferring eccentric binary systems. I. Phase-dependent evolution

    OpenAIRE

    Dosopoulou, Fani; Kalogera, Vicky

    2016-01-01

    Observations reveal that mass-transferring binary systems may have non-zero orbital eccentricities. The time-evolution of the orbital semi-major axis and eccentricity of mass-transferring eccentric binary systems is an important part of binary evolution theory and has been widely studied. However, various different approaches and assumptions on the subject have made the literature difficult to comprehend and comparisons between different orbital element time-evolution equations not easy to ma...

  7. The disruption of multiplanet systems through resonance with a binary orbit.

    Science.gov (United States)

    Touma, Jihad R; Sridhar, S

    2015-08-27

    Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries. PMID:26310763

  8. Thermodynamic assessment of the Mo-Re binary system

    International Nuclear Information System (INIS)

    The existing Mo-Re phase diagrams are reviewed and a thermodynamic calculation of the Mo-Re binary system is undertaken. The Gibbs energies are estimated for liquid, bcc (Mo), hcp (Re), σ and χ phases. The liquid, bcc (Mo) and hcp (Re) phases are described by a regular solution model, whereas the σ and χ phases are described respectively by three-sublattice models. For the σ phase, two thermodynamic models are used for calculations and the results are compared. The models take into account the crystallographic structure and similarity between the σ and χ phases. The calculated results remove the ambiguity of the existing phase diagram data and are compared with the experimental data in the literature

  9. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    Science.gov (United States)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  10. Thermodynamic assessment of the Ni-Sb binary system

    Institute of Scientific and Technical Information of China (English)

    CAO Zhanmin; TAKADU Yoshikazu; OHNUMA Ikuo; KAINUMA Ryosuke; ZHU Hongmin; ISHIDA Kiyohito

    2008-01-01

    The Ni-Sb binary alloy system was thermodynamically assessed using CALPHAD approach in this article.Excess Gibbs energies of solution phases,liquid and fcc phases,were formulated using the Redlich-Kister expression.The intermediate phases were modeled by the sublattice model with (Ni,Va)0.5(Ni,Sb)0.25(Ni)0.25 for Ni3Sb_HT phase and (Ni,Va)0.3333(Sb)0.3333(Ni,Va)0.3333 for NiSb phase.The other phases including Ni3Sb,Ni7Sb3,and NiSb2 were treated as stoichiometric compound owing to their narrow composition ranges.Based on the reported thermodynamic properties and phase diagram data,the thermodynamic parameters of these phases were optimized,and the obtained values can reproduce the available experimental data well.

  11. Thermodynamic modeling of the Ba - Mg binary system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xin; Li, Changrong; Du, Zhenmin; Guo, Cuiping; Chen, Sicheng [Univ. of Science and Technology, Beijing (China). School of Materials Science and Engineering

    2013-04-15

    On the basis of the thermochemical and phase equilibrium experimental data, the phase diagram of the Ba - Mg binary system has been assessed by means of the calculation of phase diagrams technique. The liquid phase is of unlimited solubility and modeled as a solution phase using the Redlich-Kister equation. The intermetallic compounds, Mg{sub 17}Ba{sub 2}, Mg{sub 23}Ba{sub 6} and Mg{sub 2}Ba, with no solubility ranges are treated as strict stoichiometric compounds with the formula Mg{sub m} Ba{sub n}. Two terminal phases, BccBa and HcpMg, are kept as solution phases, since the solubilities of the two phases are of considerable importance. After optimization, a set of self-consistent thermodynamic parameters has been obtained. The calculated values agree well with the available experimental data.

  12. Viscosity mixing rules for binary systems containing one ionic liquid.

    Science.gov (United States)

    Tariq, Mohammed; Altamash, Tausif; Salavera, Daniel; Coronas, Alberto; Rebelo, Luis P N; Canongia Lopes, Jose N

    2013-06-24

    In this work the applicability of four of the most commonly used viscosity mixing rules to [ionic liquid (IL)+molecular solvent (MS)] systems is assessed. More than one hundred (IL+MS) binary mixtures were selected from the literature to test the viscosity mixing rules proposed by 1) Hind (Hi), 2) Grunberg and Nissan (G-N), 3) Herric (He) and 4) Katti and Chaudhri (K-C). The analyses were performed by estimating the average (absolute or relative) deviations, AADs and ARDs, between the available experimental data and the predicted ideal mixture viscosity values obtained by means of each rule. The interaction terms corresponding to the adjustable parameters inherent to each rule were also calculated and their trends discussed. PMID:23650138

  13. The origin of the excess transit absorption in the HD 189733 system: planet or star?

    CERN Document Server

    Barnes, J R; Staab, D; Anglada-Escudé, G

    2016-01-01

    We have detected excess absorption in the emission cores of Ca II H & K during transits of HD 189733b for the first time. Using observations of three transits we investigate the origin of the absorption, which is also seen in H{\\alpha} and the Na I D lines. Applying differential spectrophotometry methods to the Ca II H and Ca II K lines combined, using respective passband widths of {\\Delta}{\\lambda} = 0.4 & 0.6 $\\AA$ yields excess absorption of t$_d$ = 0.0074 $\\pm$ 0.0044 (1.7{\\sigma}; Transit 1) and 0.0214 +/- 0.0022 (9.8{\\sigma}; Transit 2). Similarly, we detect excess H{\\alpha} absorption in a passband of width {\\Delta}{\\lambda} = 0.7 $\\AA$, with t$_d$ = 0.0084 $\\pm$ 0.0016 (5.2{\\sigma}) and 0.0121 $\\pm$ 0.0012 (9.9{\\sigma}). For both lines, Transit 2 is thus significantly deeper. Combining all three transits for the Na I D lines yields excess absorption of t$_d$ = 0.0041 $\\pm$ 0.0006 (6.5{\\sigma}). By considering the time series observations of each line, we find that the excess apparent absorptio...

  14. The nature of the late B-type stars HD 67044 and HD 42035

    CERN Document Server

    Monier, R; Royer, F

    2016-01-01

    While monitoring a sample of apparently slowly rotating superficially normal bright late B and early A stars in the northern hemisphere, we have discovered that HD 67044 and HD 42035, hitherto classified as normal late B-type stars, are actually respectively a new chemically peculiar star and a new spectroscopic binary containing a very slow rotator HD 42035 S with ultra-sharp lines (vsini = 3.7 km/s) and a fast rotator HD 42035 B with broad lines. The lines of Ti, Cr, Mn, Sr, Y, Zr and Ba are conspicuous features in the high resolution SOPHIE spectrum of HD 67044. The HgII line at 3983.93 A is also present as a weak feature. The composite spectrum of HD 42035 is characterised by very sharp lines formed in HD 42035 S superimposed onto the shallow and broad lines of HD 42035 B. These very sharp lines are mostly due to light elements from C to Ni, the only heavy species definitely present are Sr and Ba. Selected lines of 21 chemical elements from He up to Hg have been synthesized using model atmospheres compute...

  15. The origin of the excess transit absorption in the HD 189733 system: planet or star?

    Science.gov (United States)

    Barnes, J. R.; Haswell, C. A.; Staab, D.; Anglada-Escudé, G.

    2016-10-01

    We have detected excess absorption in the emission cores of Ca II H&K during transits of HD 189733b for the first time. Using observations of three transits, we investigate the origin of the absorption, which is also seen in Hα and the Na I D lines. Applying differential spectrophotometry methods to the Ca II H and Ca II K lines combined, using respective passband widths of Δλ = 0.4 and 0.6 Å yields excess absorption of td = 0.0074 ± 0.0044 (1.7σ; Transit 1) and 0.0214 ± 0.0022 (9.8σ; Transit 2). Similarly, we detect excess Hα absorption in a passband of width Δλ = 0.7 Å, with td = 0.0084 ± 0.0016 (5.2σ) and 0.0121 ± 0.0012 (9.9σ). For both lines, Transit 2 is thus significantly deeper. Combining all three transits for the Na I D lines yields excess absorption of td = 0.0041 ± 0.0006 (6.5σ). By considering the time series observations of each line, we find that the excess apparent absorption is best recovered in the stellar reference frame. These findings lead us to postulate that the main contribution to the excess transit absorption in the differential light curves arises because the normalizing continuum bands form in the photosphere, whereas the line cores contain a chromospheric component. We cannot rule out that part of the excess absorption signature arises from the planetary atmosphere, but we present evidence which casts doubt on recent claims to have detected wind motions in the planet's atmosphere in these data.

  16. THE ROTATION PERIOD OF HD-77581 (VELA X-1)

    NARCIS (Netherlands)

    ZUIDERWIJK, EJ

    1995-01-01

    The rotation period of HD 77581, supergiant primary in the X-ray binary Vela X-1, is determined from an analysis of selected absorption line profiles. The rotation rate determined from He I line profiles is 0.67 +/- 0.04 times that of the binary angular velocity, corresponding to a rotation velocity

  17. Modeling Mergers of Known Galactic Systems of Binary Neutron Stars

    CERN Document Server

    Feo, Alessandra; Maione, Francesco; Löffler, Frank

    2016-01-01

    We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between $0.75$ and $0.99$. Specifically, these systems are J1756-2251, J0737-3039A, J1906+0746, B1534+12, J0453+1559 and B1913+16. We follow the dynamics of the merger from the late stage of the inspiral process up to $\\sim$ 20 ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems ($q=0.75$, J0453+1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein Toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and fr...

  18. The third post-Newtonian gravitational waveforms for compact binary systems in general orbits: instantaneous terms

    CERN Document Server

    Mishra, Chandra Kant; Iyer, Bala R

    2015-01-01

    We compute the instantaneous contributions to the spherical harmonic modes of gravitational waveforms from compact binary systems in general orbits up to the third post-Newtonian order. We further extend these results for compact binaries in quasi-elliptical orbits using the 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric orbits. Using the multipolar post-Minkowskian formalism, starting from the different mass and current type multipole moments, we compute the spin weighted spherical harmonic decomposition of the instantaneous part of the gravitational waveform. These are terms which are functions of the retarded time and do not depend on the history of the binary evolution. Together with the hereditary part, which depends on the binary's dynamical history, these waveforms form the basis for construction of accurate templates for the detection of gravitational wave signals from binaries moving in quasi-elliptical orbits.

  19. On the Physical Processes in Contact Binary Systems

    Institute of Scientific and Technical Information of China (English)

    Run-Qian Huang; Han-Feng Song; Shao-Lan Bi

    2007-01-01

    Three important physical processes occurring in contact binary systems are studied.The first one is the effect of spin, orbital rotation and tide on the structure of the components,which includes also the effect of meridian circulation on the mixing of the chemical elements in the components. The second one is the mass and energy exchange between the components.To describe the energy exchange, a new approach is introduced based on the understanding that the exchange is due to the release of the potential, kinetic and thermal energy of the exchanged mass. The third is the loss of mass and angular momentum through the outer Lagrangian point. The rate of mass loss and the angular momentum carried away by the lost mass are discussed. To show the effects of these processes, we follow the evolution of a binary system consisting of a 12M⊙ and a 5M⊙ star with mass exchange between the components and mass loss via the outer Lagrangian point, both with and without considering the effects of rotation and tide. The result shows that the effect of rotation and tide advances the start of the semi-detached and the contact phases, and delays the end of the hydrogen-burning phase of the primary. Furthermore, it can change not only the occurrence of mass and angular momentum loss via the outer Lagrangian point, but also the contact or semi-contact status of the system. Thus, this effect can result in the special phenomenon of short-term variations occurring over a slow increase of the orbital period. The occurrence of mass and angular momentum loss via the outer Lagrangian point can affect the orbital period of the system significantly, but this process can be influenced, even suppressed out by the effect of rotation and tide. The mass and energy exchange occurs in the common envelope. The net result of the mass exchange process is a mass transfer from the primary to the secondary during the whole contact phase.

  20. The Effect of Novel Binary Accelerator System on Properties of Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Moez Kamoun

    2009-01-01

    Full Text Available The mechanical properties, curing characteristics, and swelling behaviour of vulcanized natural rubber with a novel binary accelerator system are investigated. Results indicate that the mechanical properties were improved. Crosslinking density of vulcanized natural rubber was measured by equilibrium swelling method. As a result, the new binary accelerator was found to be able to improve both cure rate and crosslinking density. Using the numerical analysis of test interaction between binary accelerator and operational modelling of vulcanization-factors experiments, it can be concluded that the interaction (Cystine, N-cyclohexyl-2-benzothiazyl sulfenamide was significant and the optimum value of binary accelerator was suggested, respectively, at levels 0 and +1.

  1. An Accretion Disc Model For Eclipsing Binary System: AV Del

    CERN Document Server

    Ghoreyshi, Sayyed Mohammad Reza; Salehi, Fatemeh

    2008-01-01

    We investigate the light and radial-velocity curves of the eclipsing binary AV Del. Using the most new version of Wilson & Van Hamme (2003) code, the absolute elements, fundamental orbital and physical parameters of the system are determined. Then, using the new SHELLSPEC code, we study and present an accretion disc model for the system. We found AV Del is a semi-detached system which has an accretion disc around the primary star. By combining the radial-velocity and light curve analysis, we derive accurate absolute masses for the components of M1=1.449 Msun and M2 =0.687 Msun and radii of R1=2.61 Rsun and R2=4.21 Rsun as well as effective temperatures of T1=6000 K and T2= 4281 K for the primary and the secondary, respectively. Also, we derived a temperature of T=5700 K for the disc. Finally, our results are compared with those of previous authors.

  2. Binary polypeptide system for permanent and oriented protein immobilization

    Directory of Open Access Journals (Sweden)

    Bailes Julian

    2010-05-01

    Full Text Available Abstract Background Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag. Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case leading to the requirement for chemical coupling. Results Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. This irreversible protein attachment system (IPAS uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. Conclusions IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

  3. Creation of an anti-imaging system using binary optics.

    Science.gov (United States)

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H P; Gan, Fuxi; Zhuang, Songlin

    2016-01-01

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068

  4. A spectroscopic and proper motion search of SDSS: Red subdwarfs in binary systems

    CERN Document Server

    Zhang, Z H; Burningham, B; Jones, H R A; Galvez-Ortiz, M C; Catalan, S; Smart, R L; Lepine, S; Clarke, J R A; Pavlenko, Ya V; Murray, D N; Kuznetsov, M K; Day-Jones, A C; Gomes, J; Marocco, F; Sipocz, B

    2013-01-01

    Red subdwarfs in binary systems are crucial for both model calibration and spectral classification. We search for red subdwarfs in binary systems from a sample of high proper motion objects with SDSS spectroscopy. We present here discoveries from this search, as well as highlighting several additional objects of interest. We find thirty red subdwarfs in wide binary systems including: two with spectral type of esdM5.5, six companions to white dwarfs and three carbon enhanced red subdwarfs with normal red subdwarf companions. Fifteen red subdwarfs in our sample are partially resolved close binary systems. With this binary sample, we estimate the low limit of the red subdwarf binary fraction of ~ 10%. We find that the binary fraction goes down with decreasing masses and metallicities of red subdwarfs. A spectroscopic esdK7 subdwarf + white dwarf binary candidate is also reported. Thirty new M subdwarfs have spectral type of >M6 in our sample. We also derive relationships between spectral types and absolute magni...

  5. Escape dynamics in a binary system of interacting galaxies

    CERN Document Server

    Zotos, Euaggelos E

    2016-01-01

    The escape dynamics in an analytical gravitational model which describes the motion of stars in a binary system of interacting dwarf spheroidal galaxies is investigated in detail. We conduct a numerical analysis distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. In order to distinguish safely and with certainty between ordered and chaotic motion, we apply the Smaller ALingment Index (SALI) method. It is of particular interest to locate the escape basins through the openings around the collinear Lagrangian points $L_1$ and $L_2$ and relate them with the corresponding spatial distribution of the escape times of the orbits. Our exploration takes place both in the configuration $(x,y)$ and in the phase $(x,\\dot{x})$ space in order to elucidate the escape process as well as the overall orbital properties of the galactic system. Our numerical analysis reveals the strong dependence of the properties of the con...

  6. Marginally low mass ratio close binary system V1191 Cyg

    CERN Document Server

    Ulas, B; Keskin, V; Kose, O; Yakut, K

    2011-01-01

    In this study, we present photometric and spectroscopic variations of the extremely small mass ratio ($q\\simeq 0.1$) late-type contact binary system \\astrobj{V1191 Cyg}. The parameters for the hot and cooler companions have been determined as $M_\\textrm{h}$ = 0.13 (1) $M_{\\odot}$, $M_\\textrm{c}$ = 1.29 (8) $M_{\\odot}$, $R_\\textrm{h}$ = 0.52 (15) $R_{\\odot}$, $R_\\textrm{c}$ = 1.31 (18) $R_{\\odot}$, $L_\\textrm{h}$ = 0.46 (25) $L_{\\odot}$, $L_\\textrm{c}$ = 2.71 (80) $L_{\\odot}$, the separation of the components is $a$= 2.20(8) $R_{\\odot}$ and the distance of the system is estimated as 278(31) pc. Analyses of the times of minima indicates a period increase of $\\frac{dP}{dt}=1.3(1)\\times 10^{-6}$ days/yr that reveals a very high mass transfer rate of $\\frac{dM}{dt}=2.0(4)\\times 10^{-7}$$M_{\\odot}$/yr from the less massive component to the more massive one. New observations show that the depths of the minima of the light curve have been interchanged.

  7. WZ CYGNI: A MARGINAL CONTACT BINARY IN A TRIPLE SYSTEM?

    International Nuclear Information System (INIS)

    We present new multiband CCD photometry for WZ Cyg made on 22 nights in two observing seasons of 2007 and 2008. Our light-curve synthesis indicates that the system is in poor thermal contact with a fill-out factor of 4.8% and a temperature difference of 1447 K. Including our 40 timing measurements, a total of 371 times of minimum light spanning more than 112 yr were used for a period study. Detailed analysis of the O-C diagram showed that the orbital period has varied by a combination of an upward parabola and a sinusoid. The upward parabola means continuous period increase and indicates that some stellar masses are thermally transferred to the more massive primary star at a rate of about 5.80 x 10-8 Msun yr-1. The sinusoidal variation with a period of 47.9 yr and a semi-amplitude of 0.008 days can most likely be interpreted as the light-travel-time effect due to the existence of a low-mass M-type tertiary companion with a projected mass of M3sin i3 = 0.26 Msun. We examined the evolutionary status of WZ Cyg from the absolute dimensions of the eclipsing pair. It belongs to the marginal contact binary systems before the broken contact phase, consisting of a massive primary star with spectral type F4 and a secondary star with type K1.

  8. The dynamical importance of binary systems in young massive star clusters

    CERN Document Server

    de Grijs, Richard; Geller, Aaron M

    2015-01-01

    Characterization of the binary fractions in star clusters is of fundamental importance for many fields in astrophysics. Observations indicate that the majority of stars are found in binary systems, while most stars with masses greater than $0.5 M_\\odot$ are formed in star clusters. In addition, since binaries are on average more massive than single stars, in resolved star clusters these systems are thought to be good tracers of (dynamical) mass segregation. Over time, dynamical evolution through two-body relaxation will cause the most massive objects to migrate to the cluster center, while the relatively lower-mass objects remain in or migrate to orbits at greater radii. This process will globally dominate a cluster's stellar distribution. However, close encounters involving binary systems may disrupt `soft' binaries. This process will occur more frequently in a cluster's central, dense region than in its periphery, which may mask the effects of mass segregation. Using high resolution Hubble Space Telescope o...

  9. Design Points of HD Simulation Remote Video Conferencing System%高清仿真远程视频会议系统的设计要点

    Institute of Scientific and Technical Information of China (English)

    任亚武; 赵雨农; 王青

    2014-01-01

    本文以RPX极致远真系统为基础,详细阐述了高清仿真远程视频会议系统的技术特点、设备组成以及系统设计要点。%Based on the RPX extreme far real system, the essay elaborates the technical characteristics, equipment constitutes and system design of HD simulation remote video conferencing system.

  10. MILLIONS OF MULTIPLES: DETECTING AND CHARACTERIZING CLOSE-SEPARATION BINARY SYSTEMS IN SYNOPTIC SKY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Terziev, Emil; Law, Nicholas M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Arcavi, Iair [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Baranec, Christoph; Bui, Khanh; Dekany, Richard G.; Kulkarni, S. R.; Riddle, Reed; Tendulkar, Shriharsh P. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bloom, Joshua S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Burse, Mahesh P.; Chorida, Pravin; Das, H. K.; Punnadi, Sujit; Ramaprakash, A. N. [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Nugent, Peter [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Ofek, Eran O. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark, E-mail: emil.terziev@utoronto.ca [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-06-01

    The direct detection of binary systems in wide-field surveys is limited by the size of the stars' point-spread functions (PSFs). A search for elongated objects can find closer companions, but is limited by the precision to which the PSF shape can be calibrated for individual stars. Based on a technique from weak-lensing analysis, we have developed the BinaryFinder algorithm to search for close binaries by using precision measurements of PSF ellipticity across wide-field survey images. We show that the algorithm is capable of reliably detecting binary systems down to Almost-Equal-To 1/5 of the seeing limit, and can directly measure the systems' position angles, separations, and contrast ratios. To verify the algorithm's performance we evaluated 100,000 objects in Palomar Transient Factory (PTF) wide-field-survey data for signs of binarity, and then used the Robo-AO robotic laser adaptive optics system to verify the parameters of 44 high-confidence targets. We show that BinaryFinder correctly predicts the presence of close companions with a <11% false-positive rate, measures the detected binaries' position angles within 1 Degree-Sign to 4 Degree-Sign (depending on signal-to-noise ratio and separation), and separations within 25%, and weakly constrains their contrast ratios. When applied to the full PTF data set, we estimate that BinaryFinder will discover and characterize {approx}450,000 physically associated binary systems with separations <2 arcsec and magnitudes brighter than m{sub R} = 18. New wide-field synoptic surveys with high sensitivity and sub-arcsecond angular resolution, such as LSST, will allow BinaryFinder to reliably detect millions of very faint binary systems with separations as small as 0.1 arcsec.

  11. Resolving the HD 100546 Protoplanetary System with the Gemini Planet Imager: Evidence for Multiple Forming, Accreting Planets

    CERN Document Server

    Currie, Thayne; Brittain, Sean; Grady, Carol; Burrows, Adam; Muto, Takayuki; Kenyon, Scott J; Kuchner, Marc J

    2015-01-01

    We report Gemini Planet Imager H band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 $Myr$-old early-type star recently confirmed to host a thermal infrared bright (super)jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal-infrared (IR) bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission originates an unresolved, point source. HD 100546 b likely has extremely red infrared colors compared to field brown dwarfs, qualitatively similar to young cloudy superjovian planets, however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point source-like peak at $r_{proj}$ $\\sim$ 13 AU, located just interior to or at inner disk wall consistent with being a 10--20 $M_{J}$ candidate second protoplanet-- "HD 100546 c" -- and lying within a weakly polarize...

  12. The photometric investigation of the newly discovered W UMa type binary system GSC 03122-02426

    Science.gov (United States)

    Zhou, X.; Qian, S.-B.; He, J.-J.; Zhang, J.; Zhang, B.

    2016-10-01

    The B V Rc Ic bands light curves of the newly discovered binary system GSC 03122-02426 are obtained and analyzed using the Wilson-Devinney (W-D) code. The solutions suggest that the mass ratio of the binary system is q = 2.70 and the less massive component is 422 K hotter than the more massive one. We conclude that GSC 03122-02426 is a W-subtype shallow contact (with a contact degree of f = 15.3 %) binary system. It may be a newly formed contact binary system which is just under geometrical contact and will evolve to be a thermal contact binary system. The high orbital inclination (i = 81 .6∘) implies that GSC 03122-02426 is a total eclipsing binary system and the photometric parameters obtained by us are quite reliable. We also estimate the absolute physical parameters of the two components in GSC 03122-02426, which will provide fundamental information for the research of contact binary systems. The formation and evolutionary scenario of GSC 03122-02426 is discussed.

  13. The photometric investigation of the newly discovered W UMa type binary system GSC 03122-02426

    CERN Document Server

    Zhou, X; He, J -J; Zhang, J; Zhang, B

    2016-01-01

    The $B$ $V$ $R_c$ $I_c$ bands light curves of the newly discovered binary system \\astrobj{GSC 03122-02426} are obtained and analyzed using the Wilson-Devinney (W-D) code. The solutions suggest that the mass ratio of the binary system is $q = 2.70$ and the less massive component is $422K$ hotter than the more massive one. We conclude that \\astrobj{GSC 03122-02426} is a W-subtype shallow contact (with a contact degree of $f = 15.3\\,\\%$) binary system. It may be a newly formed contact binary system which is just under geometrical contact and will evolve to be a thermal contact binary system. The high orbital inclination ($i = 81.6^{\\circ}$) implies that \\astrobj{GSC 03122-02426} is a total eclipsing binary system and the photometric parameters obtained by us are quite reliable. We also estimate the absolute physical parameters of the two components in \\astrobj{GSC 03122-02426}, which will provide fundamental information for the research of contact binary systems. The formation and evolutionary scenario of \\astro...

  14. A comparative study on invasion, survival, modulation of oxidative burst, and nitric oxide responses of macrophages (HD11), and systemic infection in chickens by prevalent poultry Salmonella serovars.

    Science.gov (United States)

    He, Haiqi; Genovese, Kenneth J; Swaggerty, Christina L; Nisbet, David J; Kogut, Michael H

    2012-12-01

    Poultry is a major reservoir for foodborne Salmonella serovars. Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg are the most prevalent serovars in U.S. poultry. Information concerning the interactions between different Salmonella species and host cells in poultry is lacking. In the present study, the above mentioned Salmonella serovars were examined for invasion, intracellular survival, and their ability to modulate oxidative burst and nitric oxide (NO) responses in chicken macrophage HD11 cells. All Salmonella serovars demonstrated similar capacity to invade HD11 cells. At 24 h post-infection, a 36-43% reduction of intracellular bacteria, in log(10)(CFU), was observed for Salmonella Typhimurium, Salmonella Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg, whereas a significantly lower reduction (16%) was observed for Salmonella Enteritidis, indicating its higher resistance to the killing by HD11 cells. Production of NO was completely diminished in HD11 cells infected with Salmonella Typhimurium and Salmonella Enteritidis, but remained intact when infected with Salmonella Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg. Phorbol myristate acetate-stimulated oxidative burst in HD11 cells was greatly impaired after infection by each of the five serovars. When newly hatched chickens were challenged orally, a high rate (86-98%) of systemic infection (Salmonella positive in liver/spleen) was observed in birds challenged with Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Heidelberg, and Salmonella Kentucky, while only 14% of the birds were Salmonella Senftenberg positive. However, there was no direct correlation between systemic infection and in vitro differential intracellular survival and modulation of NO response among the tested serovars.

  15. Revisit on "Ruling out chaos in compact binary systems"

    CERN Document Server

    Wu, Xin; 10.1103/PhysRevD.76.124004

    2010-01-01

    Full general relativity requires that chaos indicators should be invariant in various spacetime coordinate systems for a given relativistic dynamical problem. On the basis of this point, we calculate the invariant Lyapunov exponents (LEs) for one of the spinning compact binaries in the conservative second post-Newtonian (2PN) Lagrangian formulation without the dissipative effects of gravitational radiation, using the two-nearby-orbits method with projection operations and with coordinate time as an independent variable. It is found that the actual source leading to zero LEs in one paper [J. D. Schnittman and F. A. Rasio, Phys. Rev. Lett. 87, 121101 (2001)] but to positive LEs in the other [N. J. Cornish and J. Levin, Phys. Rev. Lett. 89, 179001 (2002)] does not mainly depend on rescaling, but is due to two slightly different treatments of the LEs. It takes much more CPU time to obtain the stabilizing limit values as reliable values of LEs for the former than to get the slopes (equal to LEs) of the fit lines f...

  16. Magnetised winds in single and binary star systems

    Science.gov (United States)

    Johnstone, Colin

    2016-07-01

    Stellar winds are fundamentally important for the stellar magnetic activity evolution and for the immediate environment surrounding their host stars. Ionised winds travel at hundreds of km/s, impacting planets and clearing out large regions around the stars called astropheres. Winds influence planets in many ways: for example, by compressing the magnetosphere and picking up atmospheric particles, they can cause significant erosion of a planetary atmosphere. By removing angular momentum, winds cause the rotation rates of stars to decrease as they age. This causes the star's magnetic dynamo to decay, leading to a significant decay in the star's levels of X-ray and extreme ultraviolet emission. Despite their importance, little is currently known about the winds of other Sun-like stars. Their small mass fluxes have meant that no direct detections have so far been possible. What is currently known has either been learned indirectly or through analogies with the solar wind. In this talk, I will review what is known about the properties and evolution of the winds of other Sun-like stars. I will also review wind dynamics in binary star systems, where the winds from both stars impact each other, leading to shocks and compression regions.

  17. KELT-2Ab: A HOT JUPITER TRANSITING THE BRIGHT (V = 8.77) PRIMARY STAR OF A BINARY SYSTEM

    International Nuclear Information System (INIS)

    We report the discovery of KELT-2Ab, a hot Jupiter transiting the bright (V = 8.77) primary star of the HD 42176 binary system. The host is a slightly evolved late F-star likely in the very short-lived 'blue-hook' stage of evolution, with Teff = 6148 ± 48 K, log g = 4.030+0.015–0.026 and [Fe/H] = 0.034 ± 0.78. The inferred stellar mass is M* = 1.314+0.063–0.060 M☉ and the star has a relatively large radius of R* = 1.836+0.066–0.046 R☉. The planet is a typical hot Jupiter with period 4.1137913 ± 0.00001 days and a mass of MP = 1.524 ± 0.088 MJ and radius of RP = 1.290+0.064–0.050 RJ. This is mildly inflated as compared to models of irradiated giant planets at the ∼4 Gyr age of the system. KELT-2A is the third brightest star with a transiting planet identified by ground-based transit surveys, and the ninth brightest star overall with a transiting planet. KELT-2Ab's mass and radius are unique among the subset of planets with V –1.

  18. KELT-2Ab: A Hot Jupiter Transiting the Bright (V=8.77) Primary Star of a Binary System

    CERN Document Server

    Beatty, Thomas G; Siverd, Robert J; Eastman, Jason D; Bieryla, Allyson; Latham, David W; Buchhave, Lars A; Jensen, Eric L N; Manner, Mark; Stassun, Keivan G; Gaudi, B Scott; Berlind, Perry; Calkins, Michael L; Collins, Karen; DePoy, Darren L; Esquerdo, Gilbert A; Fulton, Benjamin J; Fűrész, Gábor; Geary, John C; Gould, Andrew; Hebb, Leslie; Kielkopf, John F; Marshall, Jennifer L; Pogge, Richard; Stanek, K Z; Stefanik, Robert P; Street, Rachel; Szentgyorgyi, Andrew H; Trueblood, Mark; Trueblood, Patricia; Stutz, Amelia M

    2012-01-01

    We report the discovery of KELT-2Ab, a hot Jupiter transiting the bright (V=8.77) primary star of the HD 42176 binary system. The host is a slightly evolved late F-star likely in the very short-lived "blue-hook" stage of evolution, with $\\teff=6151\\pm50{\\rm K}$, $\\log{g_*}=4.030_{-0.028}^{+0.013}$ and $\\feh=-0.018\\pm0.069$. The inferred stellar mass is $M_*=1.308_{-0.025}^{+0.028}$\\msun\\ and the star has a relatively large radius of $R_*=1.828_{-0.034}^{+0.070}$\\rsun. The planet is a typical hot Jupiter with period $4.113791\\pm0.00001$ days and a mass of $M_P=1.522\\pm0.078$\\mj\\ and radius of $R_P=1.286_{-0.047}^{+0.065}$\\rj. This is mildly inflated as compared to models of irradiated giant planets at the $\\sim$4 Gyr age of the system. KELT-2A is the third brightest star with a transiting planet identified by ground-based transit surveys, and the ninth brightest star overall with a transiting planet. KELT-2Ab's mass and radius are unique among the subset of planets with $V<9$ host stars, and therefore incre...

  19. The two-dimensional alternative binary L-J system: liquid-gas phase diagram

    Institute of Scientific and Technical Information of China (English)

    张陟; 陈立溁

    2003-01-01

    A two-dimensional (2D) binary system without considering the Lennard-Jones (L-J) potential has been studied by using the Collins model. In this paper, we introduce the L-J potential into the 2D binary system and consider the existence of the holes that are called the "molecular fraction". The liquid-gas phase diagram of the 2D alternative binary L-J system is obtained. The results are quite analogous to the behaviour of 3D substances.

  20. Binary Asteroid Systems: Tidal End States and Estimates of Material Properties

    CERN Document Server

    Taylor, Patrick A

    2011-01-01

    The locations of the fully despun, double synchronous end states of tidal evolution are derived for spherical components. With the exception of nearly equal-mass binaries, binary asteroid systems are in the midst of lengthy tidal evolutions, far from their fully synchronous tidal end states. Calculations of material strength indicate that binaries in the main belt with 100-km-scale primary components are consistent with being made of monolithic or fractured rock as expected for binaries likely formed from sub-catastrophic impacts in the early solar system. To tidally evolve in their dynamical lifetime, near-Earth binaries with km-scale primaries or smaller must be much weaker mechanically than their main-belt counterparts even if formed in the main belt prior to injection into the near-Earth region. Small main-belt binaries with primary components less than 10 km in diameter, depending on their ages, could either be as strong as large main-belt binaries or as weak as near-Earth binaries because the inherent u...

  1. EL CVn-type binaries - Discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems

    CERN Document Server

    Maxted, P F L; Heber, U; Geier, S; Wheatley, P J; Marsh, T R; Breedt, E; Sebastian, D; Faillace, G; Owen, C; Pulley, D; Smith, D; Kolb, U; Haswell, C A; Southworth, J; Anderson, D R; Smalley, B; Cameron, A Collier; Hebb, L; Simpson, E K; West, R G; Bochinski, J; Busuttil, R; Hadigal, S

    2013-01-01

    The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP0247-25B). The remnant is in a rarely-observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low-mass white dwarf composed almost entirely of helium, i.e., it is a pre-He-WD. We have used the WASP photometric database to find 17 eclipsing binary stars with orbital periods P=0.7 to 2.2 days with similar lightcurves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic lightcurves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for 6 of these systems to confirm that the comp...

  2. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase.

    Science.gov (United States)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana; Gritsenko, Natalia; Rask, Lene; Mainbakh, Yuli; Zilberstein, Yael; Yagil, Ezra; Kolot, Mikhail

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a cytotoxic gene. In the present study we developed a new cancer specific binary expression system activated by the Integrase (Int) of the lambdoid phage HK022. We demonstrate the validity of this system by the specific expression of a luciferase (luc) reporter in human embryonic kidney 293T (HEK293T) cells and in a lung cancer mouse model. Due to the absence viral vectors and of cytotoxicity the Int based binary system offers advantages over previously described counterparts and may therefore be developed into a safer cancer cell killing system. PMID:27117628

  3. Analytic calculation of formation enthalpies directly from interatomic potentials for binary and ternary refractory metal systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An analytic method is proposed to calculate the formation enthalpy directly from empirical n-body potential and applied to the binary and ternary systems consisting of the refractory metals Mo, Nb, Ta and W. It turns out that the calculated enthalpies are in overall agreement with experimental observations and some other theoretical calculations. Interestingly, it shows that the formation enthalpies of the ternary systems are significantly affected by those of the constituent binary systems.

  4. Near-Infrared Polarimetry of the GG Tauri A Binary System

    CERN Document Server

    Itoh, Yoichi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D; Carson, Joseph C; Egner, Sebastian; Feldt, Markus; Grady, Carol A; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S; Henning, Thomas; Hodapp, Klaus W; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Mayama, Satoshi; Currie, Thayne; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2015-01-01

    A high angular resolution near-infrared polarized-intensity image of the GG Tau A binary system was obtained with the Subaru Telescope. The image shows the circumbinary disk scattering the light from the central binary. The azimuthal profile of the polarized intensity of the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein function and the Rayleigh function, indicating small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits anti-clockwise, while material in the disk orbit clockwise. We propose a shadow of material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 years are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  5. Separated Fringe Packet Observations with the CHARA Array. II. ω Andromeda, HD 178911, and ξ Cephei.

    Science.gov (United States)

    Farrington, C. D.; ten Brummelaar, T. A.; Mason, B. D.; Hartkopf, W. I.; Mourard, D.; Moravveji, E.; McAlister, H. A.; Turner, N. H.; Sturmann, L.; Sturmann, J.

    2014-09-01

    When observed with optical long-baseline interferometers, components of a binary star that are sufficiently separated produce their own interferometric fringe packets; these are referred to as separated fringe packet (SFP) binaries. These SFP binaries can overlap in angular separation with the regime of systems resolvable by speckle interferometry at single, large-aperture telescopes and can provide additional measurements for preliminary orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the undersampled regime between the bounds of spectroscopic surveys and speckle interferometry. In this process, a visibility calibration star is not needed, and the SFPs can provide an accurate vector separation. In this paper, we apply the SFP approach to ω Andromeda, HD 178911, and ξ Cephei with the CLIMB three-beam combiner at the CHARA Array. For these systems we determine component masses and parallax of 0.963 ± 0.049 M ⊙ and 0.860 ± 0.051 M ⊙ and 39.54 ± 1.85 mas for ω Andromeda, for HD 178911 of 0.802 ± 0.055 M ⊙ and 0.622 ± 0.053 M ⊙ with 28.26 ± 1.70 mas, and masses of 1.045 ± 0.031 M ⊙ and 0.408 ± 0.066 M ⊙ and 38.10 ± 2.81 mas for ξ Cephei.

  6. Detection of a white dwarf companion to the Hyades stars HD 27483

    Science.gov (United States)

    Boehm-Vitense, Erika

    1993-01-01

    We observed with IUE a white dwarf (WD) companion to the Hyades F6 V binary stars HD 27483. This system is known to be a close binary of two nearly equal stars with an orbital period of 3.05 days. Our IUE observations revealed the presence of a third star, a white dwarf with an effective temperature of 23,000 +/- 1000 K and a mass of approximately 0.6 solar mass. Its presence in the Hyades cluster with a known age permits me to derive the mass of its progenitor, which must have been about 2.3 solar masses. The presence of the white dwarf in a binary system opens the possibility that some of the envelope material, which was expelled by the WD progenitor, may have been collected by the F6 stars. We may thus be able to study abundance anomalies of the WD progenitor with known mass on the surface of the F6 companions.

  7. Evolution of Intermediate and Low Mass Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Eggleton, P P

    2005-10-25

    There are a number of binaries, fairly wide and with one or even two evolved giant components, that do not agree very well with conventional stellar evolution: the secondaries are substantially larger (oversized) than they should be because their masses are quite low compared with the primaries. I discuss the possibility that these binaries are former triples, in which a merger has occurred fairly recently in a short-period binary sub-component. Some mergers are expected, and may follow a phase of contact evolution. I suggest that in contact there is substantial transfer of luminosity between the components due to differential rotation, of the character observed by helioseismology in the Sun's surface convection zone.

  8. A study of the stability regions in the planetary system HD 74156 - Can it host earthlike planets in habitable zones?

    CERN Document Server

    Dvorak, R F; Funk, B; Freistetter, F

    2003-01-01

    Using numerical methods we thoroughly investigate the dynamical stability in the region between the two planets found in HD 74156. The two planets with minimum masses 1.56 M_JUP (HD 74156b) and 7.5 M_JUP (HD 74156c), semimajor axes 0.276 AU and 3.47 AU move on quite eccentric orbits (e=0.649 and 0.395). There is a region between 0.7 and 1.4 AU which may host additional planets which we checked via numerical integrations using different dynamical models. Besides the orbital evolution of several thousands of massless regarded planets in a three-dimensional restricted 4-body problem (host star, two planets + massless bodies) we also have undertaken test computation for the orbital evolution for fictive planets with masses of 0.1, 0.3 and 1 M_JUP in the region between HD74156b and HD74156c. For direct numerical integrations up to 10^7 years we used the Lie-integrator, a method with adaptive stepsize; additionally we used the Fast Lyapunov Indicators as tool for detecting chaotic motion in this region. We emphasiz...

  9. Chandra resolves the T Tauri binary system RW Aur

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2014-06-20

    RW Aur is a multiple T Tauri system consisting of an early-K type primary (A) and a K5 companion (B) at a separation of 1.''4. RW Aur A drives a bipolar optical jet that is well characterized optically. We present results of a sensitive Chandra observation whose primary objective was to search for evidence of soft extended X-ray emission along the jet, as has been seen for a few other nearby T Tauri stars. The binary is clearly resolved by Chandra and both stars are detected as X-ray sources. The X-ray spectra of both stars reveal evidence for cool and hot plasma. Surprisingly, the X-ray luminosity of the less-massive secondary is at least twice that of the primary and is variable. The disparity is attributed to the primary whose X-ray luminosity is at the low end of the range for classical T Tauri stars of similar mass based on established correlations. Deconvolved soft-band images show evidence for slight outward elongation of the source structure of RW Aur A along the blueshifted jet axis inside the central arcsecond. In addition, a faint X-ray emission peak is present on the redshifted axis at an offset of 1.''2 ± 0.''2 from the star. Deprojected jet speeds determined from previous optical studies are too low to explain this faint emission peak as shock-heated jet plasma. Thus, unless flow speeds in the redshifted jet have been underestimated, other mechanisms such as magnetic jet heating may be involved.

  10. Black holes in binary stellar systems and galactic nuclei

    Science.gov (United States)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  11. Review of candidates of binary systems with an RR Lyrae component

    CERN Document Server

    Skarka, Marek; Zejda, Miloslav; Mikulášek, Zdeněk

    2016-01-01

    We present an overview and current status of research on RR Lyrae stars in binary systems. In present days the number of binary candidates has steeply increased and suggested that multiple stellar systems with an RR Lyrae component is much higher than previously thought. We discuss the probability of their detection using various observing methods, compare recent results regarding selection effects, period distribution, proposed orbital parameters and the Blazhko effect.

  12. Gamma-rays from nebulae around binary systems containing energetic rotation powered pulsars

    OpenAIRE

    Bednarek, W.; Sitarek, J.

    2013-01-01

    We consider nebulae which are created around binary systems containing rotation powered pulsars and companion stars with strong stellar winds. It is proposed that the stellar and pulsar winds have to mix at some distance from the binary system, defined by the orbital period of the companion stars and the velocity of the stellar wind. The mixed pulsar-stellar wind expands with a specific velocity determined by the pulsar power and the mass loss rate of the companion star. Relativistic particle...

  13. The 2D Alternative Binary L-J System: Solid-Liquid Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi; CHEN Li-Rong

    2002-01-01

    The Lennard-Jones potential is introduced into the Collins model and is generalized to the two-dimensionalalternative binary system. The Gibbs free energy of the binary system is calculated. According to the thermodynamicconditions of solid-liquid equilibrium, the "cigar-type" phase diagram and the phase diagram with a minimum areobtained. The results are quite analogous to the behavior of three-dimensional substances.

  14. RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Thayne [National Astronomical Observatory of Japan, Subaru Telescope (Japan); Cloutier, Ryan [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Brittain, Sean [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Grady, Carol; Kuchner, Marc J. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Burrows, Adam [Department of Astrophysics Sciences, Princeton University, Princeton, NJ (United States); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, Tokyo (Japan); Kenyon, Scott J. [Smithsonian Astrophysical Observatory, Cambridge, MA (United States)

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to young cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at r{sub proj} ∼ 14 AU, located just interior to or at the inner disk wall consistent with being a <10–20 M{sub J} candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.

  15. An M-dwarf star in the transition disk of Herbig HD142527; Physical parameters and orbital elements

    CERN Document Server

    Lacour, S; Cheetham, A; Greenbaum, A; Pearce, T; Marino, S; Tuthill, P; Pueyo, L; Mamajek, E E; Girard, J H; Sivaramakrishnan, A; Bonnefoy, M; Baraffe, I; Chauvin, G; Olofsson, J; Juhasz, A; Benisty, M; Pott, J -U; Sicilia-Aguilar, A; Henning, T; Cardwell, A; Goodsell, S; Graham, J R; Hibon, P; Ingraham, P; Konopacky, Q; Macintosh, B; Oppenheimer, R; Perrin, M; Rantakyrö, F; Sadakuni, N; Thomas, S

    2015-01-01

    HD 142527A is one of the most studied Herbig Ae/Be stars with a transitional disk, as it has the largest imaged gap in any protoplanetary disk: the gas is cleared from 30 to 90 AU. The HD 142527 system is also unique in that it has a stellar companion with a small mass compared to the mass of the primary star. This factor of $\\approx20$ in mass ratio between the two objects makes this binary system different from any other YSO. The HD142527 system could therefore provides a valuable testbed for understanding the impact of a lower mass companion on disk structure. This low-mass stellar object may be responsible for both the gap and the dust trapping observed by ALMA at longer distances. We have observed this system with the NACO and GPI instruments using the aperture masking technique. Aperture masking is ideal for providing high dynamic range even at very small angular separations. We present here the SEDS for HD 142527A and B from the $R$ band up to the $M$ band as well as the orbital motion of HD 142527B ov...

  16. The eccentric short-period orbit of the supergiant fast X-ray transient HD 74194 (=LM Vel)

    CERN Document Server

    Gamen, R; Walborn, N R; Morrell, N I; Arias, J I; Apellániz, J Maíz; Sota, A; Alfaro, E J

    2015-01-01

    Aims. We present the first orbital solution for the O-type supergiant star HD 74194, which is the optical counterpart of the supergiant fast X-ray transient IGR J08408-4503. Methods. We measured the radial velocities in the optical spectrum of HD 74194, and we determined the orbital solution for the first time. We also analysed the complex H{\\alpha} profile. Results. HD 74194 is a binary system composed of an O-type supergiant and a compact object in a short-period ($P=9.5436\\pm0.0002$ d) and high-eccentricity ($e=0.63\\pm0.03$) orbit. The equivalent width of the H{\\alpha} line is not modulated entirely with the orbital period, but seems to vary in a superorbital period ($P=285\\pm10$ d) nearly 30 times longer than the orbital one.

  17. Measurement system analysis for binary inspection: Continuous versus dichotomous measurands

    NARCIS (Netherlands)

    J. de Mast; T.P. Erdmann; W.N. van Wieringen

    2011-01-01

    We review methods for assessing the reliability of binary measurements, such as accept/reject inspection in industry. Our framework introduces two factors that are highly relevant in deciding which method to use: (1) whether a reference value (gold standard) can be obtained and (2) whether the under

  18. Migration into a Companion's Trap: Disruption of Multiplanet Systems in Binaries

    CERN Document Server

    Touma, Jihad R

    2015-01-01

    Most exoplanetary systems in binary stars are of S--type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Gravitational forcing of a single planet by a sufficiently inclined binary orbit can induce large amplitude oscillations of the planet's eccentricity and inclination through the Kozai-Lidov (KL) instability. KL cycling was invoked to explain: the large eccentricities of planetary orbits; the family of close--in hot Jupiters; and the retrograde planetary orbits in eccentric binary systems. However, several kinds of perturbations can quench the KL instability, by inducing fast periapse precessions which stabilize circular orbits of all inclinations: these could be a Jupiter--mass planet, a massive remnant disc or general relativistic precession. Indeed, mutual gravitational perturbations in multiplanet S--type systems can be strong enough to lend a certain dynamical rigidity to their orbital planes. Here we present a new and faster process that is driven by t...

  19. Observations of VHE gamma-ray binaries with the MAGIC Telescopes

    CERN Document Server

    López-Oramas, A; Cortina, J; Hadasch, D; Herrero, A; Marcote, B; Munar-Adrover, P; Moldón, J; Paredes, J M; Ribas, I; Ribó, M; Torres, D; Casares, J; Rea, N

    2013-01-01

    Several binary systems, composed of a star and a compact object, have been detected in the GeV-TeV range. Several systems have been observed but only a handful of sources have shown emission at those energies. Here, we present the observations conducted by MAGIC of different {\\gamma}-ray binary systems. On one hand, we show the latest studies on the binary system LS I +61 303, which displays variability on different timescales. With the latest MAGIC observations, we will try to shed light on our understanding of this source, by presenting super-orbital and multi-wavelength studies. On the other hand, we show the observational results on the binary system HD 215227. This source has been proposed as a new {\\gamma}-ray binary for being spatially coincident with the gamma-ray source AGL J2241+4454 detected by AGILE at E >100 GeV.

  20. Pro Tools HD

    CERN Document Server

    Camou, Edouard

    2013-01-01

    An easy-to-follow guide for using Pro Tools HD 11 effectively.This book is ideal for anyone who already uses ProTools and wants to learn more, or is new to Pro Tools HD and wants to use it effectively in their own audio workstations.

  1. Design of an FPGA-based HD-Video measurement system

    OpenAIRE

    Löfgren, Henrik

    2008-01-01

    In order to perform the production testing of the video quality of manufactured set-top-boxes for digital television, an FPGA-based measurement system is designed. Background on sampling and video signals are given, as well as the requirements given by Motorola. From this, a design is proposed and implemented. The demonstrator works as planned and shows good performance in regards to signal to noise ratio and differential gain. The implemented digital communication protocols, such as USB and ...

  2. Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-06-01

    Full Text Available A simple linear equation was developed and applied to a hypothetical binary equilibrium diagram to evaluate the eutectic composition of the binary alloy system. Solution of the equations revealed that the eutectic composition of the case study Pb – Sn, Bi – Cd and Al – Si alloys are 39.89% Pb, 60.11% Sn, 58.01% Bi, 41.99% Cd and 90.94% Al, 9.06% Si respectively. These values are very close to experimental values. The percent deviation of analytical values from experimental values ranged between 2.87 and 5% for the three binary systems considered, except for Si – Al alloy in which the percent deviation for the silicon element was 22%.It is concluded that equation of straight line could be used to predict the eutectic composition of simple binary alloys within tolerable experimental deviation range of 2.5%.

  3. The Alpha Centauri binary system. Atmospheric parameters and element abundances

    Science.gov (United States)

    Porto de Mello, G. F.; Lyra, W.; Keller, G. R.

    2008-09-01

    Context: The α Centauri binary system, owing to its duplicity, proximity and brightness, and its components' likeness to the Sun, is a fundamental calibrating object for the theory of stellar structure and evolution and the determination of stellar atmospheric parameters. This role, however, is hindered by a considerable disagreement in the published analyses of its atmospheric parameters and abundances. Aims: We report a new spectroscopic analysis of both components of the α Centauri system, compare published analyses of the system, and attempt to quantify the discrepancies still extant in the determinations of the atmospheric parameters and abundances of these stars. Methods: The analysis is differential with respect to the Sun, based on spectra with R = 35 000 and signal-to-noise ratio ≥1000, and employed spectroscopic and photometric methods to obtain as many independent T_eff determinations as possible. We also check the atmospheric parameters for consistency against the results of the dynamical analysis and the positions of the components in a theoretical HR diagram. Results: The spectroscopic atmospheric parameters of the system are found to be T_eff = (5847 ± 27) K, [Fe/H] = +0.24 ± 0.03, log g = 4.34 ± 0.12, and ξt = 1.46 ± 0.03 km s-1, for α Cen A, and T_eff = (5316 ± 28) K, [Fe/H] = +0.25 ± 0.04, log g = 4.44 ± 0.15, and ξt = 1.28 ± 0.15 km s^-1 for α Cen B. The parameters were derived from the simultaneous excitation & ionization equilibria of Fe I and Fe II lines. T_effs were also obtained by fitting theoretical profiles to the Hα line and from photometric calibrations. Conclusions: We reached good agreement between the three criteria for α Cen A. For α Cen B the spectroscopic T_eff is ~140 K higher than the other two determinations. We discuss possible origins of this inconsistency, concluding that the presence of non-local thermodynamic equilibrium effects is a probable candidate, but we note that there is as yet no consensus on

  4. The Impact of Stellar Multiplicity on Planetary Systems, I.: The Ruinous Influence of Close Binary Companions

    CERN Document Server

    Kraus, Adam L; Huber, Daniel; Mann, Andrew W; Dupuy, Trent J

    2016-01-01

    The dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of 382 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry (NRM) on the Keck-II telescope. Among the full sample of 506 candidate binary companions to KOIs, we super-resolve some binary systems to projected separations of 0.4; we instead only found 23 companions (a 4.6 sigma deficit), many of which must be wider pairs that are only close in projection. When the binary population is parametrized with a semimajor axis cutoff a_cut and a suppression factor inside that cutoff S_bin, we find with correlated uncertainties that inside a_cut = 47 +59/-23 AU, the planet occurrence rate in...

  5. STELLAR ACTIVITY AND EXCLUSION OF THE OUTER PLANET IN THE HD 99492 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R.; Thirumalachari, Badrinath; Hinkel, Natalie R. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States); Jensen, Eric L. N. [Dept of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081 (United States); Boyajian, Tabetha S.; Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Isaacson, Howard T. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Wright, Jason T., E-mail: skane@sfsu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2016-03-20

    A historical problem for indirect exoplanet detection has been contending with the intrinsic variability of the host star. If the variability is periodic, it can easily mimic various exoplanet signatures, such as radial velocity (RV) variations that originate with the stellar surface rather than the presence of a planet. Here we present an update for the HD 99492 planetary system, using new RV and photometric measurements from the Transit Ephemeris Refinement and Monitoring Survey. Our extended time series and subsequent analyses of the Ca ii H and K emission lines show that the host star has an activity cycle of ∼13 years. The activity cycle correlates with the purported orbital period of the outer planet, the signature of which is thus likely due to the host star activity. We further include a revised Keplerian orbital solution for the remaining planet, along with a new transit ephemeris. Our transit-search observations were inconclusive.

  6. Solid/liquid interfacial free energies in binary systems

    Science.gov (United States)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  7. Design and Realization of Three Uplink HD Video Conferencing System Based on MCU%MCU级联的省—市—县三级高清视频会议系统设计

    Institute of Scientific and Technical Information of China (English)

    张常亮; 马渝勇; 刘一谦; 谭红宾

    2012-01-01

    Combined with practical experience, in this paper, the design and realization of HD video conferencing system in Sichuan province are introduced. How the MCU cascade is used to construct HD video conferencing system is then illustrated. Besides, the key technologies of HD video conferencing system arc studied. Among these technologies, the HD signal interface and MCU cascade method are mainly expounded.%结合实际经验,介绍了四川气象高清视频会议系统的设计和实现过程.重点阐述了如何使用MCU级联构建省—市—县三级高清视频会议系统,并对高清视频会议系统关键技术进行了研究和分析,详细介绍了高清信号接口和MCU级联的具体方法.

  8. Impact flux of asteroids and water transport to the habitable zone in binary star systems

    CERN Document Server

    Bancelin, D; Eggl, S; Dvorak, R

    2015-01-01

    By now, observations of exoplanets have found more than 50 binary star systems hosting 71 planets. We expect these numbers to increase as more than 70% of the main sequence stars in the solar neighborhood are members of binary or multiple systems. The planetary motion in such systems depends strongly on both the parameters of the stellar system (stellar separation and eccentricity) and the architecture of the planetary system (number of planets and their orbital behaviour). In case a terrestrial planet moves in the so-called habitable zone (HZ) of its host star, the habitability of this planet depends on many parameters. A crucial factor is certainly the amount of water. We investigate in this work the transport of water from beyond the snow-line to the HZ in a binary star system and compare it to a single star system.

  9. Pulsational frequencies of the eclipsing delta-Scuti star HD 172189

    CERN Document Server

    Costa, J E S; Peña, J; Creevey, O; Li, Z P; Chevreton, M; Belmonte, J A; Alvarez, M; Machado, L Fox; Parrao, L; Hernendez, F Perez; Fernández, A; Fremy, J R; Pau, S; Alonso, R

    2007-01-01

    The eclipsing delta-Scuti star HD 172189 is a probable member of the open cluster IC 4756 and a promising candidate target for the CoRoT mission. The detection of pulsation modes is the first step in the asteroseismological study of the star. Further, the calculation of the orbital parameters of the binary system allows us to make a dynamical determination of the mass of the star, which works as an important constraint to test and calibrate the asteroseismological models. From a detailed frequency analysis of 210 hours of photometric data of HD 172189 obtained from the STEPHI XIII campaign we have identified six pulsation frequencies with a confidence level of 99% and a seventh with a 65% confidence level in the range between 100-300 uHz. In addiction, three eclipses were observed during the campaign, allowing us to improve the determination of the orbital period of the system.

  10. Evidence for the Direct Detection of the Thermal Spectrum of the Non-Transiting Hot Gas Giant HD 88133 b

    Science.gov (United States)

    Piskorz, Danielle; Crockett, Nathan R.; Lockwood, Alexandra; Benneke, Björn; Blake, Geoffrey A.; Barman, Travis S.; Bender, Chad F.; Bryan, Marta; Carr, John S.; Fischer, Debra; Howard, Andrew; Isaacson, Howard T.; Johnson, John A.

    2016-10-01

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant's atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth's atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L band observations and three epochs of Keck NIRSPEC K band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch cross correlation of the full data set with two atmospheric models, we report the direct detection of the emission spectrum of the non-transiting exoplanet HD 88133 b and measure a radial projection of its Keplerian orbital velocity, its true mass, its orbital inclination, and dominant atmospheric species. This, combined with eleven years of radial velocity measurements of the system, provides the most up-to-date ephemeris for HD 88133.

  11. The Planet in the HR 7162 Binary System Discovered by PHASES Astrometry

    Science.gov (United States)

    Muterspaugh, Matthew W.; Lane, B. F.; Konacki, M.; Burke, B. F.; Colavita, M. M.; Shao, M.; Hartkopf, W. I.; Boss, A. P.; O'Connell, J.; Fekel, F. C.; Wiktorowicz, S. J.

    2011-01-01

    The now-completed Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) used phase-referenced long-baseline interferometry to monitor 51 binary systems with 35 micro-arcsecond measurement precision, resulting in the high-confidence detection of a planet in the HR 7162 system. The 1.5 Jupiter mass planet is in a 2 AU orbit around one of the stars, whereas the binary itself has a separation of only 19 AU. Despite the close stellar companion, this configuration is expected to be stable, based on dynamic simulations. In the context of our solar system, this is analogous to a Jovian planet just outside of Mars' orbit, with a second star at the distance of Uranus. If this configuration were present during the period of planet formation, the complex gravitational environment created by the stars would seem to disrupt planet formation mechanisms that require long times to complete (thousands of years or more). While it is possible the arrangement resulted from the planet being formed in another environment (a single star or wider binary) after which the system reached its current state via dynamic interactions (star-planet exchange with a binary, or the binary orbit shrinking by interacting with a passing star), the frequency of such interactions is very low. Because the PHASES search only had the sensitivity to rule out Jovian mass companions in 11 of our 51 systems, yet one such system was found, the result indicates either extreme luck or that there is a high frequency of 20 AU binaries hosting planets. The latter interpretation is supported by previous detections of planets in 5-6 additional 20 AU binaries in other surveys (though with less control over the statistics for determining frequency of occurrence). Thus, there is observational support suggesting that a mechanism for rapid Jovian planet formation occurs in nature.

  12. Secular Dynamics of S-type Planetary Orbits in Binary Star Systems: Applicability Domains of First- and Second-Order Theories

    CERN Document Server

    Andrade-Ines, Eduardo; Michtchenko, Tatiana; Robutel, Philippe

    2015-01-01

    We analyse the secular dynamics of planets on S-type coplanar orbits in tight binary systems, based on first- and second-order analytical models, and compare their predictions with full N-body simulations. The perturbation parameter adopted for the development of these models depends on the masses of the stars and on the semimajor axis ratio between the planet and the binary. We show that each model has both advantages and limitations. While the first-order analytical model is algebraically simple and easy to implement, it is only applicable in regions of the parameter space where the perturbations are sufficiently small. The second-order model, although more complex, has a larger range of validity and must be taken into account for dynamical studies of some real exoplanetary systems such as $\\gamma$-Cephei and HD 41004A. However, in some extreme cases, neither of these analytical models yields quantitatively correct results, requiring either higher-order theories or direct numerical simulations. Finally, we ...

  13. Thermodynamic assessment of Au-La and Au-Er binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong, H.Q., E-mail: hongqun.dong@aalto.fi [Department of Electronics, Aalto University School of Science and Technology, FIN-02601 Espoo (Finland); Tao, X.M. [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Liu, H.S. [Scientific Center of Phase Diagrams and Materials Design, Central South University, Changsha, Hunan 410083 (China); Laurila, T.; Paulastro-Kroeckel, M. [Department of Electronics, Aalto University School of Science and Technology, FIN-02601 Espoo (Finland)

    2011-03-31

    Research highlights: > It's the first time that Au-La and Au-Er binary systems were thermodynamically assessed since 1985. > Besides, in the present work, the ab initio approach has been employed to calculate the formation enthalpies of the IMCs involved in Au-Er and Au-La binary systems, and then, by combining with all of the available experimental information, these two-system were thermodynamically optimized via CALPHAD method. Therefore, a more reliable thermodynamic description has been obtained for these systems. - Abstract: Phase relationships in Au-La and Au-Er binary systems have been thermodynamically assessed by using the CALPHAD technique. The existing thermodynamic descriptions of the systems were improved by incorporating the ab initio calculated enthalpies of formation of the intermetallic compounds, except for the Au{sub 51}La{sub 14} and Au{sub 10}Er{sub 7} phases. All the binary intermetallic compounds were treated as stoichiometric phases, while the solution phases, including liquid, fcc, bcc, and dhcp, were treated as substitutional solution phases and the excess Gibbs energies were formulated with Redlich-Kister polynomial function. As a result, two self-consist thermodynamic data sets for describing the Au-La and Au-Er binary systems were obtained.

  14. Metallicity dependence of Type Ib/c and IIb supernova progenitors in binary systems

    Science.gov (United States)

    Yoon, Sung-CHul

    2015-08-01

    Type Ib/c supernovae (SNe Ib/c) are characterized by the lack of prominent hydrogen lines in the spectra, implying that their progenitors have lost most of their hydrogen envelopes by the time of the iron core collapse. Binary interactions provide an important evolutionary chanel for SNe Ib/c, and recent observations indicate that the inferred ejecta masses of SNe Ibc are more consistent with the prediction of the binary scenario than that of the single star scenario that invokes mass loss as the key evolutionary factor for SNe Ib/c progenitors. So far, theoretical predictions on the detailed properties of SNe Ib/c progenitors in binary systems have been made mostly with models using solar metallicity. However, unlike the single star scenario, where SNe Ib/c are expected only for sufficiently high metallicity, hydrogen-deficent SN progenitors can be produced via binary interactions at any metallicity. In this talk, I will discuss theoretical predictions on the metallicity dependence of the SNe Ib/c progenitor structure, based on evolutionary models of massive binary stars. Sepefically, I will address how the ejecta masses of SNe Ib and Ic and the ratio of SN Ib/c to SN IIb as well as SN Ib to SN Ic would systematically change as a function of metallicity, and which new types of SNe are expected in binary systems at low metallicity.

  15. Binary Systems with a Black Hole Component as Sources of Gravitational Waves

    CERN Document Server

    Koçak, D

    2016-01-01

    Discovery of gravitational waves by LIGO team (Abbott et al. 2016) bring a new era for observation of black hole systems. These new observations will improve our knowledge on black holes and gravitational physics. In this study, we present angular momentum loss mechanism through gravitational radiation for selected X-ray binary systems. The angular momentum loss in X-ray binary systems with a black hole companion due to gravitational radiation and mass loss time-scales are estimated for each selected system. In addition, their gravitational wave amplitudes are also estimated and their detectability with gravitational wave detectors has been discussed.

  16. Interfacial Interactions and Nanostructure Changes in DPPG/HD Monolayer at the Air/Water Interface

    Directory of Open Access Journals (Sweden)

    Huaze Zhu

    2015-01-01

    Full Text Available Lung surfactant (LS plays a crucial role in regulating surface tension during normal respiration cycles by decreasing the work associated with lung expansion and therefore decreases the metabolic energy consumed. Monolayer surfactant films composed of a mixture of phospholipids and spreading additives are of optional utility for applications in lung surfactant-based therapies. A simple, minimal model of such a lung surfactant system, composed of 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-(1-gylcerol] (DPPG and hexadecanol (HD, was prepared, and the surface pressure-area (π-A isotherms and nanostructure characteristics of the binary mixture were investigated at the air/water interface using a combination of Langmuir-Blodgett (LB and atomic force microscopy (AFM techniques. Based on the regular solution theory, the miscibility and stability of the two components in the monolayer were analyzed in terms of compression modulus (Cs-1 , excess Gibbs free energy (ΔGexcπ , activity coefficients (γ, and interaction parameter (ξ. The results of this paper provide valuable insight into basic thermodynamics and nanostructure of mixed DPPG/HD monolayers; it is helpful to understand the thermodynamic behavior of HD as spreading additive in LS monolayer with a view toward characterizing potential improvements to LS performance brought about by addition of HD to lung phospholipids.

  17. Relationship between the density of supercritical CO2 +ethanol binary system and its critical properties

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Jingchang; (张敬畅); ZHANG; Jianjun; (张建军); CAO; Weiliang; (曹维良)

    2003-01-01

    The dependent relation between temperature and pressure of supercritical CO2 + ethanol binary system under the pressure range from 5 to 10 MPa with the variety of densities and mole fractions of ethanol that range from 0 to 2% was investigated by the static visual method in a constant volume. The critical temperature and pressure were experimentally determined simultaneously. The PTρ figures at different ethanol contents were described based on the determined pressure and temperature data, from which pressure of supercritical CO2 + ethanol binary system was found to increase linearly with the increasing temperature. P-T lines show certain convergent feature in a specific concentration of ethanol and the convergent points shift to the region of higher temperature and pressure with the increasing ethanol compositions. Furthermore, the effect of density and ethanol concentration on the critical point of CO2 + ethanol binary system was discussed in details. Critical points increase linearly with the increasing mole fraction of ethanol in specific density and critical points change at different densities. The critical compressibility factors Zc of supercritical CO2 + ethanol binary systems at different compositions of ethanol were calculated and Zc-ρ figure was obtained accordingly. It was found from Zc-ρ figure that critical compressibility factors of supercritical CO2 unitary or binary systems decline linearly with the increasing density, by which the critical point can be predicted precisely.

  18. Rotationally-Driven Fragmentation for the Formation of the Binary Protostellar System L1551 IRS 5

    CERN Document Server

    Lim, Jeremy; Hanawa, Tomoyuki; Takakuwa, Shigehisa; Matsumoto, Tomoaki; Saigo, Kazuya

    2016-01-01

    Either bulk rotation or local turbulence is widely invoked to drive fragmentation in collapsing cores so as to produce multiple star systems. Even when the two mechanisms predict different manners in which the stellar spins and orbits are aligned, subsequent internal or external interactions can drive multiple systems towards or away from alignment thus masking their formation process. Here, we demonstrate that the geometrical and dynamical relationship between the binary system and its surrounding bulk envelope provide the crucial distinction between fragmentation models. We find that the circumstellar disks of the binary protostellar system L1551 IRS 5 are closely parallel not just with each other but also with their surrounding flattened envelope. Measurements of the relative proper motion of the binary components spanning nearly 30 yr indicate an orbital motion in the same sense as the envelope rotation. Eliminating orbital solutions whereby the circumstellar disks would be tidally truncated to sizes smal...

  19. Solid—Liquid Equilibria of Several Binary and Ternary Systems Containing Meleic Anhydride

    Institute of Scientific and Technical Information of China (English)

    MAPeisheng; CHENMingming; 等

    2002-01-01

    Solid-liquid equilibria(SLE) of three binary systems and seven ternary systems containing maleic anhydride(MA) are measured by visual method. The experimental data are compared with the calculated ones with modified universal quasichemical functional group activity coefficient(UNIFAC) method in which the interaction parameters between groups come from two sources,dortmund data bank (DDB), if there′s any,and correlations based on our former presented experimental SLE data of twenty binary systems.New groups of MA,ACCOO group,COO group,>C=O group and cy-CH2 group are defined and the SLE data of maleic anhydride in isopropyl acetate in literature are cited in order to assess the new interaction parameters,correlated with Wilson equation and the λh equation.The modified UNIFAC method with these new regressed interaction parameters is also used to predict other three binary systems containing maleic anhydride.

  20. Morphological Evolution of Disc Galaxies in Binary Systems

    CERN Document Server

    Chan, R

    2013-01-01

    We present the results of several numerical simulations of disc binary galaxies. It was performed detailed numerical N-body simulations of the dynamical interaction of two disc galaxies. The disc galaxies are embedded in spherical halos of dark matter and present central bulges. The dynamical evolution of the binary galaxy is analyzed in order to study the morphological evolution of the stellar distribution of the discs. The satellite galaxy is held on fixed, coplanar or polar discs, of eccentric ($e=0.1$, $e=0.4$ or $e=0.7$) orbits. Both galaxies have the same mass and size similar to the Milk Way. We have shown that the merge of two disc galaxy, depending on the initial conditions, can result in a disc or a lenticular galaxy, instead of an elliptical one. Besides, we have demonstrated that the time of merging increases linearly with the initial apocentric distance of the galaxies and decreases with the orbit's eccentricity. We also have shown that the tidal forces and the fusion of the discs can excite tran...

  1. Observational Investigations on Contact Binaries in Multiple-star Systems and Star Clusters

    Science.gov (United States)

    Liu, L.

    2013-01-01

    The W UMa-type contact binaries are strongly interacting systems whose components both fill their critical Roche lobes and share a convective common envelope. The models of contact binaries are bottlenecked due to too many uncertain parameters. In the 1960s and 1970s, the common convective envelope model was accepted after several fierce controversies. And then, the thermal relaxation oscillation (TRO) model, the discontinuity model, and the angular momentum loss (AML) model appeared. However, in the past forty years, there lacked remarkable advance. The coexistence of many unknown parameters blocks the theoretical development of contact binaries. A study on the contact binaries in multiple star systems and star clusters, which could provide lots of information for their formation and evolution, may be a potential growing point for understanding these objects. More and more evidence shows that many of contact binaries are located in multiple star systems and star clusters. In this thesis, we observed and analyzed contact binaries in the forementioned systems. The observational and theoretical studies for contact binary are also summarized briefly. The results obtained are as follows: (1) Three contact binaries V1128 Tau, GZ And, VW Boo which possess visual companions show periodic oscillations. The period ranges from 16.7 years to 46.5 years. These oscillations probably come from the orbital movement of a close third body. (2) Four contact binaries GSC 02393-00680, V396 Mon, FU Dra, SS Ari which do not have visual companions also present periodic oscillations. Whether they are real members of multiple star systems needs further investigations. These oscillations probably result from the orbital movement of a close M-type companion. (3) The periods of three contact binaries EQ Cep, ER Cep and V371 Cep in the old open cluster NGC 188 show a long-term increase. There is a cyclic period oscillation in ER Cep, with a period of 5.4 years. We find that the total mass of

  2. Isobaric Vapor—Liquid Equilibrium for Methyldichlorosilane+Methylvinyldichlorosilane+Toluene and Constituent Binary Systems

    Institute of Scientific and Technical Information of China (English)

    邱祖民; 孙Wei; 余淑娴; 余祖兵

    2003-01-01

    Vapor-liquid euilibrium (VLE) for a ternary system of Methyldichlorosilane+methylvinyldichlorosilane+toluene and constituent binary systems were measured at 101.3kPa using a new type of magnetical pump-ebulliometer,The equilibrium conpositions of the vapor phase of binary systems were calculated indirectly from the total pressure-temperature-liquid composition(pTx).The experimental data were correlated with the Wilson and NRTL(non-random two liquid )equations.The parameters of the Wilson moldel were employed to predict the ternary VLE data .The calculated boiling points were in good agreement with the experimental ones.

  3. Study on Phase Equilibrium Properties for CO2+Cosolvent Binary Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this study, the constant volume, visual method is used to measure thc critical point of CO2toluene, CO2+cyclohexane, CO2+n-butyraldehyde, CO2+i-butyraldchyde, CO2+methanol and CO2+alcohol binary systems. The relationship between critical point and the concentration of the entrainer for different substances has been discussed, and the comparison of the phase behavior of single component system and that of binary systems have been carried out.

  4. Apsidal motions of 90 eccentric binary systems in the Small Magellanic Cloud

    Science.gov (United States)

    Hong, Kyeongsoo; Lee, Jae Woo; Kim, Seung-Lee; Koo, Jae-Rim; Lee, Chung-UK

    2016-07-01

    We examined light curves of 1138 stars brighter than 18.0 mag in the I band and less than a mean magnitude error of 0.1 mag in the V band from the Optical Gravitational Lensing Experiment (OGLE)-III eclipsing binary catalogue, and found 90 new binary systems exhibiting apsidal motion. In this study, the samples of apsidal motion stars in the Small Magellanic Cloud (SMC) were increased by a factor of about 3.0 than previously known. In order to determine the period of the apsidal motion for the binaries, we analysed in detail both the light curves and eclipse timings using the MACHO (MAssive Compact Halo Objects) and OGLE photometric data base. For the eclipse timing diagrams of the systems, new times of minimum light were derived from the full light curve combined at intervals of one year from the survey data. The new 90 binaries have apsidal motion periods in the range of 12-897 yr. An additional short-term oscillation was detected in four systems (OGLE-SMC-ECL-1634, 1947, 3035, and 4946), which most likely arises from the existence of a third body orbiting each eclipsing binary. Since the systems presented here are based on homogeneous data and have been analysed in the same way, they are suitable for further statistical analysis.

  5. Apsidal motions of 90 eccentric binary systems in the Small Magellanic Cloud

    CERN Document Server

    Hong, K; Kim, S -L; Koo, J -R; Lee, C -U

    2016-01-01

    We examined light curves of 1138 stars brighter than 18.0 mag in the $I$ band and less than a mean magnitude error of 0.1 mag in the $V$ band from the OGLE-III eclipsing binary catalogue, and found 90 new binary systems exhibiting apsidal motion. In this study, the samples of apsidal motion stars in the SMC were increased by a factor of about 3 than previously known. In order to determine the period of the apsidal motion for the binaries, we analysed in detail both the light curves and eclipse timings using the MACHO and OGLE photometric database. For the eclipse timing diagrams of the systems, new times of minimum light were derived from the full light curve combined at intervals of one year from the survey data. The new 90 binaries have apsidal motion periods in the range of 12$-$897 years. An additional short-term oscillation was detected in four systems (OGLE-SMC-ECL-1634, 1947, 3035, and 4946), which most likely arises from the existence of a third body orbiting each eclipsing binary. Since the systems p...

  6. Black holes in stellar-mass binary systems: expiating original spin?

    Science.gov (United States)

    King, Andrew; Nixon, Chris

    2016-10-01

    We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs), there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions, we expect misalignment of the spin and orbital planes by ˜1 rad for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries. A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers mass on a thermal or nuclear time-scale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of ≳ 10 systems. Recent observational work shows that eclipses are either absent or extremely rare in ULXs, supporting the picture that most ULXs are stellar-mass binaries with companion stars more massive than the accretor.

  7. Millions of Multiples: Detecting and Characterizing Close-Separation Binary Systems in Synoptic Sky Surveys

    CERN Document Server

    Terziev, Emil; Arcavi, Iair; Baranec, Christoph; Bloom, Joshua S; Bui, Khanh; Burse, Mahesh P; Chorida, Pravin; Das, H K; Dekany, Richard G; Kraus, Adam L; Kulkarni, S R; Nugent, Peter; Ofek, Eran O; Punnadi, Sujit; Ramaprakash, A N; Riddle, Reed; Tendulkar, Shriharsh P

    2012-01-01

    The direct detection of binary systems in wide-field surveys is limited by the size of the stars' point-spread-functions (PSFs). A search for elongated objects can find closer companions, but is limited by the precision to which the PSF shape can be calibrated for individual stars. We have developed the BinaryFinder algorithm to search for close binaries by using precision measurements of PSF ellipticity across wide-field survey images. We show that the algorithm is capable of reliably detecting binary systems down to approximately 1/5 of the seeing limit, and can directly measure the systems' position angles, separations and contrast ratios. To verify the algorithm's performance we evaluated 100,000 objects in Palomar Transient Factory (PTF) wide-field-survey data for signs of binarity, and then used the Robo-AO robotic laser adaptive optics system to verify the parameters of 44 high-confidence targets. We show that BinaryFinder correctly predicts the presence of close companions with a <5% false-positive...

  8. Asteroseismic analysis of the CoRoT target HD 169392

    CERN Document Server

    Mathur, S; Catala, C; Benomar, O; Davies, G R; Garcia, R A; Salabert, D; Ballot, J; Mosser, B; Regulo, C; Chaplin, W J; Elsworth, Y; Handberg, R; Hekker, S; Mantegazza, L; Michel, E; Poretti, E; Rainer, M; Roxburgh, I W; Samadi, R; Steslicki, M; Uytterhoeven, K; Verner, G A; Auvergne, M; Baglin, A; Forteza, S Barcelo; Baudin, F; Cortes, T Roca

    2013-01-01

    The satellite CoRoT (Convection, Rotation, and planetary Transits) has provided high-quality data for almost six years. We show here the asteroseismic analysis and modeling of HD169392A, which belongs to a binary system weakly gravitationally bound as the distance between the two components is of 4250 AU. The main component, HD169392A, is a G0IV star with a magnitude of 7.50 while the second component is a G0V-G2IV star with a magnitude of 8.98. This analysis focuses on the main component, as the secondary one is too faint to measure any seismic parameters. A complete modeling has been possible thanks to the complementary spectroscopic observations from HARPS, providing Teff=5985+/-60K, log g=3.96+/-0.07, and [Fe/H]=- 0.04+/-0.10.

  9. Study of HD 169392A observed by CoRoT and HARPS

    CERN Document Server

    Mathur, S; Catala, C; Benomar, O; Davies, G R; Garcia, R A; Salabert, D; Ballot, J; Mosser, B; Regulo, C; Chaplin, W J; Elsworth, Y; Handberg, R; Hekker, S; Mantegazza, L; Michel, E; Poretti, E; Rainer, M; Roxburgh, I W; Samadi, R; Steslicki, M; Uytterhoeven, K; Verner, G A; Auvergne, M; Baglin, A; Forteza, S Barcelo; Baudin, F; Cortes, T Roca

    2012-01-01

    The numerous results obtained with asteroseismology thanks to space missions such as CoRoT and Kepler are providing a new insight on stellar evolution. After five years of observations, CoRoT is going on providing high-quality data. We present here the analysis of the double star HD169392 complemented by ground-based spectroscopic observations. This work aims at characterizing the fundamental parameters of the two stars, their chemical composition, the acoustic-mode global parameters including their individual frequencies, and their dynamics. We have analysed HARPS observations of the two stars to retrieve their chemical compositions. Several methods have been used and compared to measure the global properties of acoustic modes and their individual frequencies from the photometric data of CoRoT. The new spectroscopic observations and archival astrometric values suggest that HD169392 is a wide binary system weakly bounded. We have obtained the spectroscopic parameters for both components, suggesting the origin...

  10. ROTATIONAL VELOCITIES OF INDIVIDUAL COMPONENTS IN VERY LOW MASS BINARIES

    International Nuclear Information System (INIS)

    We present rotational velocities for individual components of 11 very low mass (VLM) binaries with spectral types between M7 and L7.5. These results are based on observations taken with the near-infrared spectrograph, NIRSPEC, and the Keck II laser guide star adaptive optics system. We find that the observed sources tend to be rapid rotators (v sin i > 10 km s–1), consistent with previous seeing-limited measurements of VLM objects. The two sources with the largest v sin i, LP 349–25B and HD 130948C, are rotating at ∼30% of their break-up speed, and are among the most rapidly rotating VLM objects known. Furthermore, five binary systems, all with orbital semimajor axes ∼<3.5 AU, have component v sin i values that differ by greater than 3σ. To bring the binary components with discrepant rotational velocities into agreement would require the rotational axes to be inclined with respect to each other, and that at least one component is inclined with respect to the orbital plane. Alternatively, each component could be rotating at a different rate, even though they have similar spectral types. Both differing rotational velocities and inclinations have implications for binary star formation and evolution. We also investigate possible dynamical evolution in the triple system HD 130948A–BC. The close binary brown dwarfs B and C have significantly different v sin i values. We demonstrate that components B and C could have been torqued into misalignment by the primary star, A, via orbital precession. Such a scenario can also be applied to another triple system in our sample, GJ 569A–Bab. Interactions such as these may play an important role in the dynamical evolution of VLM binaries. Finally, we note that two of the binaries with large differences in component v sin i, LP 349–25AB and 2MASS 0746+20AB, are also known radio sources.

  11. The polarisation of HD 189733

    CERN Document Server

    Bott, Kimberly; Kedziora-Chudczer, Lucyna; Cotton, Daniel V; Lucas, P W; Marshall, Jonathan P; Hough, J H

    2016-01-01

    We present linear polarization observations of the exoplanet system HD 189733 made with the HIgh Precision Polarimetric Instrument (HIPPI) on the Anglo-Australian Telescope (AAT). The observations have higher precision than any previously reported for this object. They do not show the large amplitude polarization variations reported by Berdyugina et al. 2008 and Berdyugina et al. 2011. Our results are consistent with polarization data presented by Wiktorowicz et al. 2015. A formal least squares fit of a Rayleigh-Lambert model yields a polarization amplitude of 29.4 +/- 15.6 parts-per-million. We observe a background constant level of polarization of ~ 55-70 ppm, which is a little higher than expected for interstellar polarization at the distance of HD 189733.

  12. Liquid crystalline behaviour of mixtures of structurally dissimilar mesogens in binary systems

    Indian Academy of Sciences (India)

    Jayrang S Dave; Meera R Menon; Pratik R Patel

    2002-06-01

    We have studied four binary systems comprising four ester components, viz. 4-nitrophenyl-4'--alkoxybenzoates (where -alkoxy is nbutoxy, C4, -hexyloxy, C6, -octyloxy, C8 and -decyloxy, C10) and one azo component, 4--decyloxy phenylazo-4'-isoamyloxy benzene. A variety of mesomorphic properties are observed in these mixtures. The properties of these systems are discussed on the basis of phase diagrams.

  13. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    Science.gov (United States)

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  14. The formation of the black hole in the X-ray binary system V404 Cyg

    NARCIS (Netherlands)

    J.C.A. Miller-Jones; P.G. Jonker; G. Nelemans; S. Portegies Zwart; V. Dhawan; W. Brisken; E. Gallo; M.P. Rupen

    2009-01-01

    Using new and archival radio data, we have measured the proper motion of the black hole X-ray binary V404 Cyg to be 9.2 +/- 0.3 mas yr(-1). Combined with the systemic radial velocity from the literature, we derive the full three-dimensional heliocentric space velocity of the system, which we use to

  15. Recognition of binary x-ray systems utilizing the doppler effect

    Science.gov (United States)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  16. The VLT-FLAMES Tarantula Survey. II. R139 revealed as a massive binary system

    NARCIS (Netherlands)

    Taylor, W.D.; Evans, C.J.; Brott, I.; de Koter, A.; Vink, J.S.

    2011-01-01

    We report the discovery that R139 in 30 Doradus is a massive spectroscopic binary system.Multi-epoch optical spectroscopy of R139 was obtained as part of the VLT-FLAMES Tarantula Survey, revealing a double-lined system. The two components are of similar spectral types; the primary exhibits strong C

  17. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  18. The evolution of naked helium stars with a neutron-star companion in close binary systems

    OpenAIRE

    Dewi, J D M; Pols, O. R; Savonije, G.J.; Heuvel, E.P.J. van den

    2002-01-01

    The evolution of helium stars with masses of 1.5 - 6.7 M_sun in binary systems with a 1.4 M_sun neutron-star companion is presented. Such systems are assumed to be the remnants of Be/X-ray binaries with B-star masses in the range of 8 - 20 M_sun which underwent a case B or case C mass transfer and survived the common-envelope and spiral-in process. The orbital period is chosen such that the helium star fills its Roche lobe before the ignition of carbon in the centre. We distinguish case BA (i...

  19. Estimation of limiting solubility of low soluble components under eutectic transformations in the binary metallic systems

    International Nuclear Information System (INIS)

    The calculation approach for estimation of limiting solubility of low soluble components under eutectic transformations in the binary metallic systems is developed. Introduced approach inserts in the next stages of research: definition of the limiting distribution coefficients of elements k0limB which have trace solubility in foundation (absence of liquidus curve in the angle of state diagram); calculation of the equilibrium distribution coefficients k0B under temperature and composition of eutectic transformation; definition of limiting concentrations of solubility in the solid phase xSBE under eutectic transformations of the binary systems A-B

  20. Automated Generation of Phase Diagrams for Binary Systems with Azeotropic Behavior

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht; Zabaloy, Marcelo S.

    2008-01-01

    In this work, we propose a computational strategy and methods for the automated calculation of complete loci of homogeneous azeotropy of binary mixtures and the related Pxy and Txy diagrams for models of the equation-of-state (EOS) type. The strategy consists of first finding the system's azeotro......In this work, we propose a computational strategy and methods for the automated calculation of complete loci of homogeneous azeotropy of binary mixtures and the related Pxy and Txy diagrams for models of the equation-of-state (EOS) type. The strategy consists of first finding the system...

  1. Orbital Evolution of Mass-transferring Eccentric Binary Systems. I. Phase-dependent Evolution

    Science.gov (United States)

    Dosopoulou, Fani; Kalogera, Vicky

    2016-07-01

    Observations reveal that mass-transferring binary systems may have non-zero orbital eccentricities. The time evolution of the orbital semimajor axis and eccentricity of mass-transferring eccentric binary systems is an important part of binary evolution theory and has been widely studied. However, various different approaches to and assumptions on the subject have made the literature difficult to comprehend and comparisons between different orbital element time evolution equations not easy to make. Consequently, no self-consistent treatment of this phase has ever been included in binary population synthesis codes. In this paper, we present a general formalism to derive the time evolution equations of the binary orbital elements, treating mass loss and mass transfer as perturbations of the general two-body problem. We present the self-consistent form of the perturbing acceleration and phase-dependent time evolution equations for the orbital elements under different mass loss/transfer processes. First, we study the cases of isotropic and anisotropic wind mass loss. Then, we proceed with non-isotropic ejection and accretion in a conservative as well as a non-conservative manner for both point masses and extended bodies. We compare the derived equations with similar work in the literature and explain the existing discrepancies.

  2. Orbital evolution of mass-transferring eccentric binary systems. I. Phase-dependent evolution

    CERN Document Server

    Dosopoulou, Fani

    2016-01-01

    Observations reveal that a large amount of close binary systems have a finite eccentricity. The time-evolution of the orbital semi-major axis and eccentricity of mass-transferring eccentric binary systems is an important part of binary evolution theory and has been widely studied. However, various different approaches and assumptions on the subject have made the literature difficult to comprehend and comparisons between different orbital element time-evolution equations not easy to make. Consequently, no self-consistent treatment of this phase has been ever included in binary population synthesis codes. In this paper, we present a general formalism to derive the time-evolution equations of the binary orbital elements, treating mass-loss and mass-transfer as perturbations to the general two-body problem. We present the self-consistent form of the perturbing acceleration and the phase-dependent time-evolution equations for the orbital elements under different mass-loss/transfer processes. First, we study the ca...

  3. Hydrodynamic moving-mesh simulations of the common envelope phase in binary stellar systems

    CERN Document Server

    Ohlmann, Sebastian T; Pakmor, Ruediger; Springel, Volker

    2015-01-01

    The common envelope (CE) phase is an important stage in binary stellar evolution. It is needed to explain many close binary stellar systems, such as cataclysmic variables, Type Ia supernova progenitors, or X-ray binaries. To form the resulting close binary, the initial orbit has to shrink, thereby transferring energy to the primary giant's envelope that is hence ejected. The details of this interaction, however, are still not understood. Here, we present new hydrodynamic simulations of the dynamical spiral-in forming a CE system. We apply the moving-mesh code AREPO to follow the interaction of a $1M_\\odot$ compact star with a $2M_\\odot$ red giant possessing a $0.4M_\\odot$ core. The nearly Lagrangian scheme combines advantages of smoothed particle hydrodynamics and traditional grid-based hydrodynamic codes and allows us to capture also small flow features at high spatial resolution. Our simulations reproduce the initial transfer of energy and angular momentum from the binary core to the envelope by spiral shoc...

  4. A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves

    CERN Document Server

    Farr, Benjamin; Farr, Will M; O'Shaughnessy, Richard

    2014-01-01

    Ground-based gravitational wave detectors are sensitive to a narrow range of frequencies, effectively taking a snapshot of merging compact-object binary dynamics just before merger. We demonstrate that by adopting analysis parameters that naturally characterize this 'picture', the physical parameters of the system can be extracted more efficiently from the gravitational wave data, and interpreted more easily. We assess the performance of MCMC parameter estimation in this physically intuitive coordinate system, defined by (a) a frame anchored on the binary's spins and orbital angular momentum and (b) a time at which the detectors are most sensitive to the binary's gravitational wave emission. Using anticipated noise curves for the advanced-generation LIGO and Virgo gravitational wave detectors, we find that this careful choice of reference frame and reference time significantly improves parameter estimation efficiency for BNS, NS-BH, and BBH signals.

  5. The Be/X-ray binary system V 0332+53: A Short Review

    CERN Document Server

    Caballero-Garcia, M D; Arabaci, M Ozbey; Hudec, R

    2015-01-01

    Be/X-ray binary systems provide an excellent opportunity to study the physics around neutron stars through the study of the behaviour of matter around them. Intermediate and low-luminosity type outbursts are interesting because they provide relatively clean environments around neutron stars. In these conditions the physics of the magnetosphere around the neutron star can be better studied without being very disturbed by other phenomena regarding the transfer of matter between the two components of the Be/X-ray binary system. A recent study presents the optical longterm evolution of the Be/X-ray binary V 0332+53 plus the X-ray emission mainly during the intermediate-luminosity outburst on 2008. In this paper we comment on the context of these observations and on the properties that can be derived through the analysis of them.

  6. KIC 10080943: An eccentric binary system containing two pressure and gravity mode hybrid pulsators

    CERN Document Server

    Schmid, V S; Aerts, C; Degroote, P; Bloemen, S; Murphy, S J; Van Reeth, T; Papics, P I; Bedding, T R; Keen, M A; Prsa, A; Menu, J; Debosscher, J; Hrudkova, M; De Smedt, K; Lombaert, R; Nemeth, P

    2015-01-01

    Gamma Doradus and delta Scuti pulsators cover the transition region between low mass and massive main-sequence stars, and are as such critical for testing stellar models. When they reside in binary systems, we can combine two independent methods to derive critical information, such as precise fundamental parameters to aid asteroseismic modelling. In the Kepler light curve of KIC10080943, clear signatures of gravity and pressure mode pulsations have been found. Ground-based spectroscopy revealed this target to be a double-lined binary system. We present the analysis of four years of Kepler photometry and high-resolution spectroscopy to derive observational constraints, which will serve to evaluate theoretical predictions of the stellar structure and evolution for intermediate-mass stars. We used the method of spectral disentangling to determine atmospheric parameters for both components and derive the orbital elements. With phoebe we modelled the ellipsoidal variation and reflection signal of the binary in the...

  7. Bounds for the Sum Capacity of Binary CDMA Systems in Presence of Near-Far Effect

    CERN Document Server

    Pad, P; Mansouri, S M; Kabir, P; Marvasti, F

    2010-01-01

    In this paper we are going to estimate the sum capacity of a binary CDMA system in presence of the near-far effect. We model the near-far effect as a random variable that is multiplied by the users binary data before entering the noisy channel. We will find a lower bound and a conjectured upper bound for the sum capacity in this situation. All the derivations are in the asymptotic case. Simulations show that especially the lower bound is very tight for typical values Eb/N0 and near-far effect. Also, we exploit our idea in conjunction with the Tanaka's formula [6] which also estimates the sum capacity of binary CDMA systems with perfect power control.

  8. Direct detection of the tertiary component in the massive multiple HD 150136 with VLTI

    Science.gov (United States)

    Sanchez-Bermudez, J.; Schödel, R.; Alberdi, A.; Barbá, R. H.; Hummel, C. A.; Maíz Apellániz, J.; Pott, J.-U.

    2013-06-01

    Context. Massive stars are of fundamental importance for almost all aspects of astrophysics, but there still exist large gaps in our understanding of their properties and formation because they are rare and therefore distant. It has been found that most O-stars are multiples. It may well be that almost all massive stars are born as triples or higher multiples, but their large distances require milliarcsecond angular resolution for a direct detection of the companions. Aims: HD 150136 is the nearest system to Earth with >100 M⊙ and provides a unique opportunity to study an extremely massive system. Recently, evidence for the existence of a third component in HD 150136, in addition to the tight spectroscopic binary that forms the main component, was found in spectroscopic observations. Our aim was to image and obtain astrometric and photometric measurements of this component using long-baseline optical interferometry to further constrain the nature of this component. Methods: We observed HD 150136 with the near-infrared instrument AMBER attached to the ESO VLT Interferometer, which provides an angular resolution of 2 mas. The recovered closure phases are robust to systematic errors and provide unique information on the source asymmetry. Therefore, they are of crucial relevance for both image reconstruction and model fitting of the source structure. Results: The third component in HD 150136 is clearly detected in the high-quality data from AMBER. It is located at a projected angular distance of 7.3 mas, or about 13 AU at the line-of-sight distance of HD 150136, at a position angle of 209 degrees east of north, and has a flux ratio of 0.25 with respect to the inner binary. Our findings agree with previous results and have permitted us to improve the orbital solutions of the tertiary around the inner system. Conclusions: We resolved the third component of HD 150136 in J, H and K filters. The luminosity and color of the tertiary agrees with the predictions and shows

  9. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  10. 高清播出系统的设计思路%On the Idea of HD Broadcast Sys-tem Design

    Institute of Scientific and Technical Information of China (English)

    颜斌

    2016-01-01

    Combined with many years' experience of practical work, this paper systematically elaborates the design principles and elements that should be noticed of HD hard disk broadcast system. Meanwhile, it details the components and working method of HD hard disk broadcast system from the components of the hardware system and the software architecture, aiming to provide some practical reference for the interconnection between broadcast network and other production networks.%本文结合了笔者多年实际工作经验,系统阐述了高清硬盘播出系统的设计原则和注意要素.同时从硬件系统组成和软件架构两方面详细描述了高清硬盘播出系统的组成及工作方式,在播出网络与其他生产网络的互联互通方面也提供了实用的参考.

  11. The Earth-Moon system as a typical binary in the Solar System

    CERN Document Server

    Ipatov, S I

    2016-01-01

    Solid embryos of the Earth and the Moon, as well as trans-Neptunian binaries, could form as a result of contraction of the rarefied condensation which was parental for a binary. The angular momentum of the condensation needed for formation of a satellite system could be mainly acquired at the collision of two rarefied condensations at which the parental condensation formed. The minimum value of the mass of the parental condensation for the Earth-Moon system could be about 0.02 of the Earth mass. Besides the main collision, which was followed by formation of the condensation that was a parent for the embryos of the Earth and the Moon, there could be another main collision of the parental condensation with another condensation. The second main collision (or a series of similar collisions) could change the tilt of the Earth. Depending on eccentricities of the planetesimals that collided with the embryos, the Moon could acquire 0.04-0.3 of its mass at the stage of accumulation of solid bodies while the mass of th...

  12. Wind-wind collision in the Carinae binary system II: Constrains to the binary orbital parameters from radio emission near periastron passage

    OpenAIRE

    Abraham, Z.; Falceta-Goncalves, D.; Dominici, T. P.; A. Caproni; Jatenco-Pereira, V.

    2005-01-01

    In this paper we use the 7 mm and 1.3 mm light curves obtained during the 2003.5 low excitation phase of the eta Carinae system to constrain the possible parameters of the binary orbit. To do that we assumed that the mm wave emission is produced in a dense disk surrounding the binary system; during the low excitation phase, which occurs close to periastron, the number of ionizing photons decreases, producing the dip in the radio emission. On the other hand, due to the large eccentricity, the ...

  13. Near-periodical spin period evolution in the binary system LMC X-4

    CERN Document Server

    Molkov, S; Falanga, M; Tsygankov, S; Bozzo, E

    2016-01-01

    In this paper we investigated the long-term evolution of the pulse-period in the high-mass X-ray binary LMC X-4 by taking advantage of more than 43~yrs of measurements in the X-ray domain. Our analysis revealed for the first time that the source is displaying near-periodical variations of its spin period on a time scale of roughly 6.8~yrs, making LMC X-4 one of the known binary systems showing remarkable long term spin torque reversals. We discuss different scenarios to interpret the origin of these torque reversals.

  14. Measuring the spin of black holes in binary systems using gravitational waves

    CERN Document Server

    Vitale, Salvatore; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-01-01

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions, and the opportunity of measuring spins directly through GW observations. In this letter we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientation, and signal-to-noise ratio. We find that spin magnitudes and tilt angles can be estimated to accuracy of a few percent for neutron star--black hole systems and $\\sim$ 5-30% for black hole binaries. In contrast, the difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum, and that a sudden change of behavior occurs when a system is observed from ...

  15. Density measurements under pressure for the binary system 1-propanol plus toluene

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Andersen, Simon Ivar

    2005-01-01

    The density of the binary system composed of 1-propanol and toluene has been measured under pressure using a vibrating-tube densimeter. The measurements have been performed for four different compositions as well as the pure compounds at four temperatures in the range of (303.15 to 333.15) K and ...

  16. High-pressure density measurements for the binary system ethanol plus heptane

    DEFF Research Database (Denmark)

    Watson, G.; Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.;

    2006-01-01

    The density of the asymmetrical binary system composed of ethanol and heptane has been measured (630 points) for nine different compositions including the pure compounds at five temperatures in the range (293.15 to 333.15) K and 14 isobars up to 65 MPa with a vibrating-tube densimeter, The experi...

  17. High-pressure viscosity measurements for the ethanol plus toluene binary system

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.; Watson, G.;

    2005-01-01

    The viscosity of the ethanol + toluene binary system has been measured with a falling-body viscometer for seven compositions as well as for the pure ethanol in the temperature range from 293.15 to 353.15 K and up to 100 MPa with an experimental uncertainty of 2%. At 0.1 MPa the viscosity has been...

  18. Black holes in stellar-mass binary systems: expiating original spin?

    CERN Document Server

    King, Andrew

    2016-01-01

    We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs) there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions we expect misalignment of the spin and orbital planes by ~1 radian for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries (HMXBs). A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers on a thermal timescale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of > ~10 systems. Recent observational wo...

  19. Experimental investigation and thermodynamic assessment of the Mn–In binary system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.Y. [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Wang, J., E-mail: wangjiang158@163.com [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Zhu, C.F.; Cheng, G.; Tang, C.Y. [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Rao, G.H., E-mail: rgh@guet.edu.cn [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Zhou, H.Y. [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2015-05-10

    Highlights: • Three invariant reactions and liquidus were determined by thermal analysis. • The Mn–In binary system was assessed using CALPHAD method. • A set of self-consistent thermodynamic parameters was obtained. • The calculation results agree well with phase equilibria and thermodynamic data. - Abstract: In the present work, sixteen Mn–In alloys were investigated experimentally by means of thermal analysis and X-ray diffraction techniques. The temperatures of the invariant reactions and liquidus in the Mn–In binary system were determined. Based on the experimental results obtained in the present work and the critical review of the available experimental data from the published literature, the Mn–In binary system was assessed thermodynamically using the CALPHAD method. The solution phases including liquid, α-Mn, β-Mn, γ-Mn, δ-Mn and tetragonal-A6(In), are modeled by the substitutional solution model and their excess Gibbs energies are expressed with the Redlich–Kister polynomial. The intermetallic compound, InMn{sub 3}, is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters obtained finally to describe the Gibbs energies of various phases in the Mn–In binary system can be used to reproduce well the phase equilibria and thermodynamic data.

  20. A simple estimate of gravitational wave memory in binary black hole systems

    CERN Document Server

    Garfinkle, David

    2016-01-01

    A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. This estimate might be helpful in finding better numerical relativity memory waveforms.

  1. A simple estimate of gravitational wave memory in binary black hole systems

    Science.gov (United States)

    Garfinkle, David

    2016-09-01

    A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. Estimates of this sort might be helpful as a consistency check for numerical relativity memory waveforms.

  2. Density measurements under pressure for the binary system (ethanol plus methylcyclohexane)

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Lugo, L.; Fernandez, J.

    2005-01-01

    The density of the asymmetrical binary system composed of ethanol and methylcyclohexane has been measured under pressure using a vibrating tube densimeter. The measurements have been performed for eight different compositions as well as the pure compounds at eight temperatures in the range 283.15...

  3. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  4. A massive binary black-hole system in OJ 287 and a test of general relativity.

    Science.gov (United States)

    Valtonen, M J; Lehto, H J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J-H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V-P; Nissinen, M; Liakos, A; Dogru, S

    2008-04-17

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened 20 days later. PMID:18421348

  5. Non-thermal emission from high-energy binaries through interferometric radio observations

    CERN Document Server

    Marcote, B

    2016-01-01

    High-mass binary systems involve extreme environments that produce non-thermal emission from radio to gamma rays. Only three types of these systems are known to emit persistent gamma-ray emission: colliding-wind binaries, high-mass X-ray binaries and gamma-ray binaries. This thesis is focused on the radio emission of high-mass binary systems through interferometric observations, and we have explored several of these sources with low- and high-frequency radio observations, and very high-resolution VLBI ones. We have studied two gamma-ray binaries, LS 5039 and LS I +61 303, at low frequencies. We have obtained their light-curves and spectra, and we have determined the physical properties of their radio emitting regions. We have also studied the gamma-ray binary HESS J0632+057 through VLBI observations. A new colliding wind binary, HD 93129A, has been discovered through VLBI and optical observations. Finally, we have conducted radio observations of two sources that were candidates to be gamma-ray binaries.

  6. The HARPS search southern extra-solar planets. VII. A very hot jupiter orbiti HD 212301

    DEFF Research Database (Denmark)

    Lo Curto, G.; Mayor, M.; Clausen, J.V.;

    2006-01-01

    Stars: individual : HD212301 - stars : planetary systems - techniques : radial velocities - techniques: spectroscopic - instrumentation : spectrographs......Stars: individual : HD212301 - stars : planetary systems - techniques : radial velocities - techniques: spectroscopic - instrumentation : spectrographs...

  7. Phase equilibria calculation of LaI3-MI (M=Na, K, Cs) binary systems

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; SHAO Guoquan; LI Shaobo; SUN Yimin; QIAO Zhiyu

    2009-01-01

    The Gibbs energies of liquid phases in the LaI3-MI (M=Na, K, Cs) systems were described by the modified quasi-chemical model. From the measured phase equilibrium data of these binary systems, a set of thermodynamic functions were optimized by using the CAL-PHAD technique. The enthalpy of mixing and the interaction parameter of the liquid phase were predicted from known data for the LaI3-MI systems.

  8. Thermodynamic analysis of the change of solid solubility in a binary system processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)], E-mail: ceaguilar@uach.cl; Martinez, V. [TEKMETALL, Metallurgical Solutions S.L., Po de Manuel Lardizabal No17, 20018 Donostia-Gipuzkoa (Spain); Navea, L.; Pavez, O.; Santander, M. [Departamento de Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

    2009-03-05

    Using a non-equilibrium process, it is possible to extend the solid solubility range in metallic systems. Therefore, the main objective of this work was to apply a thermodynamic model to predict the change in the solubility limit of systems with positive enthalpy mixing (Cu-Cr and Fe-Cu) processed by mechanical alloying. It was found that increasing the density of crystalline defects alters the solubility limit in these binary systems.

  9. The impact of viscosity on the morphology of gaseous flows in semidetached binary systems

    CERN Document Server

    Bisikalo, D V; Kuznetsov, O A; Chechetkin, V M

    2000-01-01

    Results of 3D gas dynamical simulation of mass transfer in binaries are presented for systems with various values of viscosity. Analysis of obtained solutions shows that in the systems with low value of viscosity the flow structure is qualitatively similar to one for systems with high viscosity. Presented calculations confirm that there is no shock interaction between the stream from L1 and the forming accretion disk (`hot spot') at any value of viscosity.

  10. A Solar-type Stellar Companion to a Deep Contact Binary in a Quadruple System

    Science.gov (United States)

    Zhou, X.; Qian, S.-B.; Zhang, J.; Jiang, L.-Q.; Zhang, B.; Kreiner, J.

    2016-02-01

    The four-color (B, V, Rc, Ic) light curves of V776 Cas are presented and analyzed using the Wilson-Devinney method. It is discovered that V776 Cas is an early F-type (F2V) overcontact binary with a very high contact degree (f = 64.6%) and an extremely low-mass ratio (q = 0.130), which indicate that it is at the final evolutionary stage of cool short-period binaries. The mass of the primary and secondary stars are calculated to be M1 = 1.55(±0.04) M⊙, M2 = 0.20(±0.01) M⊙. V776 Cas is supposed to be formed from an initially detached binary system via the loss of angular momentum due to the magnetic wind. The initial masses of the present primary and secondary components are calculated to be M1i = 0.86(±0.10) M⊙ and M2i = 2.13(±0.04) M⊙. The observed-calculated curve exhibits a cyclic period variation, which is due to the light-travel time effect caused by the presence of a third component with a period of 23.7 years. The mass of the third component is estimated to be M3 = 1.04(±0.03) M⊙ and the orbital inclination of the third component is calculated to be i‧ = 33.°1. The distance of the binary system to the mass center of the triple system is calculated to be {a}12\\prime = 3.45 AU. The presence of the close-in tertiary component may play an important role in the formation and evolution of this binary system by drawing angular momentum from the central system.

  11. Gamma-rays from nebulae around binary systems containing energetic rotation powered pulsars

    CERN Document Server

    Bednarek, W

    2013-01-01

    We consider nebulae which are created around binary systems containing rotation powered pulsars and companion stars with strong stellar winds. It is proposed that the stellar and pulsar winds have to mix at some distance from the binary system, defined by the orbital period of the companion stars and the velocity of the stellar wind. The mixed pulsar-stellar wind expands with a specific velocity determined by the pulsar power and the mass loss rate of the companion star. Relativistic particles, either from the inner pulsar magnetosphere and/or accelerated at the shocks between stellar and pulsar winds, are expected to be captured and isotropized in the reference frame of the mixed wind. Therefore, they can efficiently comptonize stellar radiation producing GeV-TeV $\\gamma$-rays in the inverse Compton process. We calculate the $\\gamma$-ray spectra expected in such scenario for the two example binary systems: J1816+4510 which is the redback type millisecond binary and LS 5039 which is supposed to contain energe...

  12. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    Science.gov (United States)

    Prsa, Andrej

    Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary

  13. HDMI接口在H.264高清视频编码系统中的应用%Application HDMI in H.264 HD Video Encoding System

    Institute of Scientific and Technical Information of China (English)

    苏财贵; 叶宇煌; 苏凯雄

    2012-01-01

    The work principle of High-Definition Multimedia Interface and the standard of High-bandwidth Digital Content Protection is introduced. Then the structure and working characteristics of HDMI receiver chip are analyzed in detail. Based on H. 264 HD video real-time encoding system,a design of HDMI circuit is proposed, which includes hardware circuit and controlling software. The design support to receive and convert the uncompressed HD video, and output formats to meet the needs of the encoder chip.%简要介绍了HDMI接口工作原理和HDCP规范,详细分析了HDMI接收芯片的功能结构和工作特性,并给出了HDMI接口电路在H.264高清视频实时编码系统中的设计方法,设计的内容包括硬件电路和控制软件.该设计能够对未经压缩的高清视频信号进行采集和转换,输出符合编码芯片要求的视频格式.

  14. Monitoring system for phreatic eruptions and thermal behavior on Poás volcano hyperacidic lake, with permanent IR and HD cameras

    Science.gov (United States)

    Ramirez, C. J.; Mora-Amador, R. A., Sr.; Alpizar Segura, Y.; González, G.

    2015-12-01

    Monitoring volcanoes have been on the past decades an expanding matter, one of the rising techniques that involve new technology is the digital video surveillance, and the automated software that come within, now is possible if you have the budget and some facilities on site, to set up a real-time network of high definition video cameras, some of them even with special features like infrared, thermal, ultraviolet, etc. That can make easier or harder the analysis of volcanic phenomena like lava eruptions, phreatic eruption, plume speed, lava flows, close/open vents, just to mention some of the many application of these cameras. We present the methodology of the installation at Poás volcano of a real-time system for processing and storing HD and thermal images and video, also the process to install and acquired the HD and IR cameras, towers, solar panels and radios to transmit the data on a volcano located at the tropics, plus what volcanic areas are our goal and why. On the other hand we show the hardware and software we consider necessary to carry on our project. Finally we show some early data examples of upwelling areas on the Poás volcano hyperacidic lake and the relation with lake phreatic eruptions, also some data of increasing temperature on an old dome wall and the suddenly wall explosions, and the use of IR video for measuring plume speed and contour for use on combination with DOAS or FTIR measurements.

  15. Design of a Content Addressable Memory-based Parallel Processor implementing (−1+j-based Binary Number System

    Directory of Open Access Journals (Sweden)

    Tariq Jamil

    2014-11-01

    Full Text Available Contrary to the traditional base 2 binary number system, used in today’s computers, in which a complex number is represented by two separate binary entities, one for the real part and one for the imaginary part, Complex Binary Number System (CBNS, a binary number system with base (−1+j, is used to represent a given complex number in single binary string format. In this paper, CBNS is reviewed and arithmetic algorithms for this number system are presented. The design of a CBNS-based parallel processor utilizing content-addressable memory for implementation of associative dataflow concept has been described and software-related issues have also been explained.

  16. Adsorption of Geosmin and MIB on Activated Carbon Fibers-Single and Binary Solute System

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Rangesh; Sorial, George A., E-mail: george.sorial@uc.ed [University of Cincinnati, Department of Civil and Environmental Engineering (United States)

    2009-08-15

    The adsorption of two taste- and odor-causing compounds, namely MIB (2-methyl isoborneol-C{sub 11}H{sub 20}O) and geosmin (C{sub 12}H{sub 22}O) on activated carbon was investigated in this study. The impact of adsorbent pore size distribution on adsorption of MIB and geosmin was evaluated through single solute and multicomponent adsorption of these compounds on three types of activated carbon fibers (ACFs) and one granular activated carbon (GAC). The ACFs (ACC-15, ACC-20, and ACC-25) with different degrees of activation had narrow pore size distributions and specific critical pore diameters whereas the GAC (F-400) had a wider pore size distribution and lesser microporosity. The effect of the presence of natural organic matter (NOM) on MIB and geosmin adsorption was also studied for both the single solute and binary systems. The Myers equation was used to evaluate the single solute isotherms as it converges to Henry's law at low coverage and also serves as an input for predicting multicomponent adsorption. The single solute adsorption isotherms fit the Myers equation well and pore size distribution significantly influenced adsorption on the ACFs and GAC. The ideal adsorbed solute theory (IAST), which is a well-established thermodynamic model for multicomponent adsorption, was used to predict the binary adsorption of MIB and geosmin. The IAST predicted well the binary adsorption on the ACFs and GAC. Binary adsorption isotherms were also conducted in the presence of oxygen (oxic) and absence of oxygen (anoxic). There were no significant differences in the binary isotherm between the oxic and anoxic conditions, indicating that adsorption was purely through physical adsorption and no oligomerization was taking place. Binary adsorptions for the four adsorbents were also conducted in the presence of humic acid to determine the effect of NOM and to compare with IAST predictions. The presence of NOM interestingly resulted in deviation from IAST behavior in case of two

  17. A narrow, edge-on disk resolved around HD 106906 with SPHERE

    CERN Document Server

    Lagrange, A -M; Gratton, R; Maire, A -L; Milli, J; Olofsson, J; Vigan, A; Bailey, V; Mesa, D; Chauvin, G; Boccaletti, A; Galicher, R; Girard, J M; Bonnefoy, M; Samland, M; Menard, F; Henning, T; Kenworthy, M; Thalmann, C; Beust, H; Beuzit, J -L; Brandner, W; Buenzli, E; Cheetham, A; Janson, M; Coroller, H le; Lannier, J; Mouillet, D; Peretti, S; Perrot, C; Salter, G; Sissa, E; Wahhaj, Z; Abe, L; Desidera, S; Feldt, M; Madec, F; Perret, D; Petit, C; Rabou, P; Soenke, C; Weber, L

    2015-01-01

    HD~106906AB is so far the only young binary system around which a planet has been imaged and a debris disk evidenced thanks to a strong IR excess. As such, it represents a unique opportunity to study the dynamics of young planetary systems. We aim at further investigating the close (tens of au scales) environment of the HD~106906AB system. We used the extreme AO fed, high contrast imager SPHERE recently installed on the VLT to observe HD~106906. Both the IRDIS imager and the Integral Field Spectrometer were used. We discovered a very inclined, ring-like disk at a distance of 65~au from the star. The disk shows a strong brightness asymmetry with respect to its semi-major axis. It shows a smooth outer edge, compatible with ejection of small grains by the stellar radiation pressure. We show furthermore that the planet's projected position is significantly above the disk's PA. Given the determined disk inclination, it is not excluded though that the planet could still orbit within the disk plane if at a large sep...

  18. A SECOND GIANT PLANET IN 3:2 MEAN-MOTION RESONANCE IN THE HD 204313 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline [Department of Astronomy and McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Horner, J.; Wittenmyer, Robert A. [Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Simon, Attila E., E-mail: paul@astro.as.utexas.edu [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary)

    2012-07-20

    We present eight years of high-precision radial velocity (RV) data for HD 204313 from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is known to have a giant planet (Msin i = 3.5 M{sub J} ) on a {approx}1900 day orbit, and a Neptune-mass planet at 0.2 AU. Using our own data in combination with the published CORALIE RVs of Segransan et al., we discover an outer Jovian (Msin i = 1.6 M{sub J} ) planet with P {approx} 2800 days. Our orbital fit suggests that the planets are in a 3:2 mean motion resonance, which would potentially affect their stability. We perform a detailed stability analysis and verify that the planets must be in resonance.

  19. Applicability of four parameter formalisms in interpreting thermodynamic properties of binary systems

    Indian Academy of Sciences (India)

    S Acharya; J P Hajra

    2011-04-01

    The four parameter functions are generally considered to be adequate for representation of the thermodynamic properties for the strongly interacting binary systems. The present study involves a critical comparison in terms of applicability of the three well known four-parameter formalisms for the representation of the thermodynamic properties of binary systems. The study indicates that the derived values of the infinite dilution parameters based on the formalisms compare favourably with the computed data available in the literature. The standard deviations in terms of the partial and integral excess functions of all the models lie well within the experimental scatter of the computed data and coincide exactly with each other. The formalisms are useful in representation of the thermodynamic properties of most of the binary systems except for the Mg–Bi and Mg–In systems. In such systems, it appears that the additional compositional terms may be necessary for the formalisms for adequate description of behaviour of the systems. Since the derived values of the thermodynamic properties of all the formalisms match favourably over the entire compositional range for the systems as studied in the present research, any one of them may be used for adequate representation of the properties of the systems.

  20. Testing Asteroseismology with red giants in eclipsing binary and multiple-star systems

    CERN Document Server

    Gaulme, Patrick

    2013-01-01

    Red-giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, they would provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. Gaulme et al. (2013) reported the discovery of 13 bona fide candidates (12 previously unknown) to be eclipsing binaries, one to be an non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. When ground-based support in terms of atmospheric abundance and radial velocities are completed, these red giants in eclipsing binary systems have the potential to become some of the m...

  1. Estimation of vapor composition and vapor pressure of alcohols and hydrocarbons binary systems

    International Nuclear Information System (INIS)

    The objective of this study were to apply the coordination state theory to assosiated systems, especially to estimate vapor pressure and vapor composition of alcohols and hydrcarbons binary systems. To achieve these objectives, a computer programme in Q. basic language was used to compute vapor composition and vapor pressure of may alcohols and hydrcarbons binary systems. The systems studied were methane- methanol, methane- n-propanol, n-pentane - n-propanol, ethanol- cyclohexane, ethanol- isooctane, n-pentane - ethanol, methanol - benzene, n-propanol- benzene, ethane- ethanol and ethane- n-propanol. The calculated VLE values were compared with experimental data using standard deviation. The values calculated agree, in general, with the experimental ones. Variations were observed among certain cases where phase seperation may occur.(Author)

  2. Ray trajectories, binomial of a new type, and the binary system

    CERN Document Server

    Yurkin, Alexander V

    2013-01-01

    The paper describes a new algorithm of construction of the nonlinear arithmetic triangle on the basis of numerical simulation and the binary system. It demonstrates that the numbers that fill the nonlinear arithmetic triangle may be binomial coefficients of a new type. An analogy has been drawn with the binomial coefficients calculated with the use of the Pascal triangle. The paper provides a geometrical interpretation of binomials of different types in considering the branching systems of rays.

  3. Experimental study and thermodynamic assessment of the erbium-hydrogen binary system

    International Nuclear Information System (INIS)

    The erbium-hydrogen (Er-H) binary system has been investigated experimentally.New solubility limits and extensions of the homogeneity domains have been measured, using several experimental techniques,and high purity materials. A thermodynamic assessment of the system using the Calphad method has been performed.The calculated phase diagram shows a fair agreement with the experimental data. Both experimental and calculated phase diagrams obtained differ significantly from the one available in the literature. (authors)

  4. BVRI Photometry of nz Gem, HD 73017, HD 77247, RT Vir and 104 Her

    Science.gov (United States)

    Adelman, Saul J.; Harrell, William L.

    We examined single channel differential BVRI photometry of the cool stars NZ Gem, HD 73017, HD 77247, RT Vir and 104 Her obtained by the first author with the Four College Automated Photoelectric Telescope with of order 100 observations taken over two or more years. Four of these stars are Small-Amplitude Red Variables (SARVs). The primary period of NZ Gem (M3 II-IIIs) is about 33.70 days. HD 77247, the shortest period barium star with spectral type K0, has a photometric period of about 82 days which is close to its binary period of 80.53 days. Its check star HD 73017, a non-variable in B, V and R, is variable in I due most likely to a previously unknown cooler companion. RT Vir (M8 III) is found to be a multiperiodic star whose observations are consistent with the 155 day primary period of Lebzelter & Hinkle (2002). 104 Her (M3 III) is also multiperiodic with a primary period of 21.48 days.

  5. Digital system detects binary code patterns containing errors

    Science.gov (United States)

    Muller, R. M.; Tharpe, H. M., Jr.

    1966-01-01

    System of square loop magnetic cores associated with code input registers to react to input code patterns by reference to a group of control cores in such a manner that errors are canceled and patterns containing errors are accepted for amplification and processing. This technique improves reception capabilities in PCM telemetry systems.

  6. Solid state amorphisation in binary systems prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G., E-mail: gemagonz@ivic.v [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Sagarzazu, A. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Bonyuet, D. [Instituto de Investigacion en Biomedicina y Ciencias Aplicadas, Universidad de Oriente, Cumana (Venezuela, Bolivarian Republic of); D' Angelo, L. [UNEXPO, Universidad Experimental Politecnica Luis Caballero Mejias, Dpto. Ing. Mecanica (Venezuela, Bolivarian Republic of); Villalba, R. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of)

    2009-08-26

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  7. Binary Laser Direct Writing System and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new laser direct writing system is introduced and the potential application of the diffractive optical elements (DOE's) fabricated by applying laser direct writing system are presented. The fabrication techniques by applying the laser direct writing are developed. Experimental results have been obtained by applying laser direct writing machine with line width of 5μm and 10μm.

  8. HD 98800: An Opportunity to Measure True Masses for Low-Mass PMS Stars

    Science.gov (United States)

    Soderblom, David

    1999-07-01

    HD 98800 became interesting when IRAS found it to have a large infrared excess, indicating a substantial dust disk. But ``HD 98800'' is, in fact, a quadruple system consisting of four K and M stars, and its Hipparcos parallax has now shown that this is a pre-main sequence system. The four stars are in two visible objects, each of which is a spectroscopic binary with a period of about one year. In particular, the Ba-Bb pair is an SB2 with an estimated semi-major axis of about 20 milliarcsec. In TRANS mode, FGS1R can cleanly resolve the Ba-Bb pair and can determine the relative orbit and luminosities for the two components. POS mode observations lead to an absolute orbit and a more precise parallax than is currently available. In this program we propose to follow the HD 98800 Ba-Bb pair over the course of a full orbit during Cycle 8. The combination of FGS1R-TRANS and FGS1R-POS observations will provide gravitational masses for two low-mass PMS stars. In addition, the co nstraints of coevality and knowled ge of the astrophysical properties of the components {temperatures, luminosities, composition} make these observations a crucial test of our models of pre-main sequence evolution. These may be the first true masses determined for low-mass PMS objects, and so can provide a fundamental test of PMS evolutionary tracks.

  9. Direct Detection of the Tertiary Component in the Massive Multiple HD 150 136 with VLTI

    CERN Document Server

    Sanchez-Bermudez, J; Alberdi, A; Barbá, R H; Hummel, C A; Apellaníz, J Maíz; Pott, J -U

    2013-01-01

    Massive stars are of fundamental importance for almost all aspects of astrophysics, but there still exist large gaps in our understanding of their properties and formation because they are rare and therefore distant. It has been found that most O-stars are multiples. HD 150 136 is the nearest system to Earth with >100 M_sol, and provides a unique opportunity to study an extremely massive system. Recently, evidence for the existence of a third component in HD 150 136, in addition to the tight spectroscopic binary that forms the main component, was found in spectroscopic observations. Our aim was to image and obtain astrometric and photometric measurements of this component using long baseline optical interferometry to further constrain the nature of this component. We observed HD150136 with the near-infrared instrument AMBER attached to the ESO VLT Interferometer. The recovered closure phases are robust to systematic errors and provide unique information on the source asymmetry. Therefore, they are of crucial ...

  10. Reconfiguration of distribution system using a binary programming model

    Directory of Open Access Journals (Sweden)

    Md Mashud Hyder

    2016-03-01

    Full Text Available Distribution system reconfiguration aims to choose a switching combination of branches of the system that optimize certain performance criteria of power supply while maintaining some specified constraints. The ability to automatically reconfigure the network quickly and reliably is a key requirement of self-healing networks which is an important part of the future Smart Grid system. We present a unified mathematical framework, which allows us to consider different objectives of distribution system reconfiguration problems in a flexible manner, and investigate its performance. The resulting optimization problem is in quadratic form which can be solved efficiently by using a quadratic mixed integer programming (QMIP solver. The proposed method has been applied for reconfiguring different standard test distribution systems.

  11. An Extremely Fast Halo Hot Subdwarf Star in a Wide Binary System

    Science.gov (United States)

    Németh, Péter; Ziegerer, Eva; Irrgang, Andreas; Geier, Stephan; Fürst, Felix; Kupfer, Thomas; Heber, Ulrich

    2016-04-01

    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 (V = 17.92 mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: {T}{{eff}}=30\\600+/- 500 K, {log}g=5.57+/- 0.06 cm s‑2, and He abundance {log}(n{{He}}/n{{H}})=-3.0+/- 0.2. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of [{{Fe}}/{{H}}]=-1.3. The non-detection of radial velocity variations suggest the orbital period to be a few hundred days, in agreement with similar binaries observed in the disk. Using the SDSS-III flux calibrated spectrum we measured the distance to the system d=5.5+/- 0.5 {{kpc}}, which is consistent with ultraviolet, optical, and infrared photometric constraints derived from binary spectral energy distributions. Our kinematic study shows that the Galactic rest-frame velocity of the system is so high that an unbound orbit cannot be ruled out. On the other hand, a bound orbit requires a massive dark matter halo. We conclude that the binary either formed in the halo or was accreted from the tidal debris of a dwarf galaxy by the Milky Way.

  12. High-energy radiation from the massive binary system Eta Carinae

    Science.gov (United States)

    Bednarek, W.; Pabich, J.

    2011-06-01

    Context. The most massive binary system Eta Carinae has been recently established as a gamma-ray source by the AGILE and Fermi-LAT detectors. The high energy spectrum of this gamma-ray source is very intriguing. It shows two clear components and a lack of any evidence of variability with the orbital period of the binary system. Aims: We consider different scenarios for the acceleration of particles (both electrons and hadrons) and the production of the high energy radiation in the model of stellar wind collisions within the binary system Eta Carinae with the aim to explain the gamma-ray observations and predict the behaviour of the source at very high gamma-ray energies. Methods: The gamma-ray spectra calculated in terms of the specific models are compared with the observations of Eta Carinae, and the neutrino spectra produced in hadronic models are confronted with the atmospheric neutrino background and the sensitivity of 1 km2 neutrino telescope. Results: We show that spectral features can be explained in terms of the stellar wind collision model between the winds of the companion stars in which the acceleration of particles occurs on both sides of the double shock structure. The shocks from the Eta Carinae star and the companion star can accelerate particles to different energies depending on the different conditions determined by the parameters of the stars. The lack of strong GeV gamma-ray variability with the period of the binary system can be also understood in terms of such a model. Conclusions: We predict that the gamma-ray emission features at energies above ~100 GeV will show significant variability (or its lack) depending on the acceleration and interaction scenario of particles accelerated within the binary system. For the hadronic models we predict the expected range of neutrino fluxes from the binary system Eta Carinae. This can be tested through observations with the large-scale neutrino telescopes, which will support or disprove the specific

  13. Discovery of Triple Star Systems through Dynamical Eclipse Timing Variations with Kepler Eclipsing Binaries

    Science.gov (United States)

    Conroy, Kyle E.

    2016-05-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. We summarize the overall distribution of mutual orbital inclination angles, which together now provide strong confirmation of the basic predictions of dynamical evolution through Kozai Cycles and Tidal Friction.

  14. Gravitational radiation by point particle eccentric binary systems in the linearised characteristic formulation of general relativity

    CERN Document Server

    M., C E Cedeño

    2016-01-01

    We study a binary system composed of point particles of unequal masses in eccentric orbits in the linear regime of the characteristic formulation of general relativity, generalising a previous study found in the literature in which a system of equal masses in circular orbits is considered. We also show that the boundary conditions on the time-like world tubes generated by the orbits of the particles can be extended beyond circular orbits. Concerning the power lost by the emission of gravitational waves, it is directly obtained from the Bondi's News function. It is worth stressing that our results are completely consistent, because we obtain the same result for the power derived by Peters and Mathews, in a different approach, in their seminal paper of 1963. In addition, the present study constitutes a powerful tool to construct extraction schemes in the characteristic formalism to obtain the gravitational radiation produced by binary systems during the inspiralling phase.

  15. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth. PMID:26113154

  16. Eclipsing time variations in close binary systems: Planetary hypothesis vs. Applegate mechanism

    CERN Document Server

    Völschow, M; Perdelwitz, V; Banerjee, R

    2015-01-01

    The observed eclipsing time variations in post-common-envelope binaries (PCEBs) can be interpreted as potential evidence for massive Jupiter-like planets, or as a result of magnetic activity, leading to quasi-periodic changes in the quadrupole moment of the secondary star. The latter is commonly referred to as the Applegate mechanism. Following Brinkworth et al. (2006), we employ here an improved version of Applegate's model including the angular momentum exchange between a finite shell and the core of the star. The framework is employed to derive the general conditions under which the Applegate mechanism can work, and is subsequently applied to a sample of 16 close binary systems with potential planets, including 11 PCEBs. Further, we present a detailed derivation and study of analytical models which allow for an straightforward extension to other systems. Using our full numerical framework, we show that the Applegate mechanism can clearly explain the observed eclipsing time variations in 4 of the systems, w...

  17. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.

  18. On angular momentum transfer in binary systems. [stellar orbital period change

    Science.gov (United States)

    Wilson, R. E.; Stothers, R.

    1975-01-01

    The maximum limit for the conversion of orbital angular momentum into rotational angular momentum of the mass-gaining component in a close binary system is derived. It is shown that this conversion process does not seriously affect the rate of orbital period change and can be neglected in computing the mass transfer rate. Integration of this limit over the entire accretion process results in a value for the maximum accumulated rotational angular momentum that is 3 to 4 times larger than that implied by the observed underluminosity of stars in such systems as Mu(1) Sco, V Pup, SX Aur, and V356 Sgr. It is suggested that shell stars and emission-line stars in binary systems may be produced when the core angular momentum is transferred into an envelope having a rotational angular momentum close to the maximum limit.-

  19. Critical evaluation and thermodynamic optimization of the U-Pb and U-Sb binary systems

    Science.gov (United States)

    Wang, Jian; Jin, Liling; Chen, Chuchu; Rao, Weifeng; Wang, Cuiping; Liu, Xingjun

    2016-11-01

    A complete literature review, critical evaluation and thermodynamic optimization of the phase diagrams and thermodynamic properties of U-Pb and U-Sb binary systems are presented. The CALculation of PHAse Diagrams (CALPHAD) method was used for the thermodynamic optimization, the results of which can reproduce all available reliable experimental phase equilibria and thermodynamic data. The modified quasi-chemical model in the pair approximation (MQMPA) was used for modeling the liquid solution. The Gibbs energies of all terminal solid solutions and intermetallic compounds were described by the compound energy formalism (CEF) model. All reliable experimental data of the U-Pb and U-Sb systems have been reproduced. A self-consistent thermodynamic database has been constructed for these binary systems; this database can be used in liquid-metal fuel reactor (LMFR) research.

  20. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  1. Eccentricity evolution in hierarchical triple systems with eccentric outer binaries

    OpenAIRE

    Georgakarakos, Nikolaos

    2014-01-01

    We develop a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular, while the outer one is eccentric. We consider coplanar systems with well separated components and comparable masses. The derivation of short period terms is based on an expansion of the rate of change of the Runge-Lenz vector. Then, the short period terms are combined with secular terms, obtained by means of canonical perturbation theory. The validity of ...

  2. Polarized proton and deuteron solid HD targets

    International Nuclear Information System (INIS)

    A decade has now elapsed since HD was proposed as a polarized proton and deuteron target with exceptionally desirable properties. These include a very high free proton proportion, independently polarizable proton and deuteron systems, and a ''frozen-spin'' mode of operation which allows separation of the functions of production and utilization of the highly polarized target. A discussion is given of what can be expected of the polarized HD system right now, without further research. The basic features of solid HD pertinent to its use as a ''frozen-spin'' target are outlined, then a summary is given of the particular experimental results which support the contention that the target will perform successfully, and finally, some feasible operating modes and the expected performances from them are presented

  3. Preparation and Evaluation of Cyclodextrin Based Binary Systems for Taste Masking

    Directory of Open Access Journals (Sweden)

    S. T. Birhade

    2010-07-01

    Full Text Available The present study was aimed to investigate the potential of cyclodextrin complexation as an approach for taste masking. For this purpose, Rizatriptan benzoate (RZBT was selected as model drug which is having bitter taste. Taste improvement of drug by β-Cyclodextrin was done by simple complexation approach using physical and kneading mixture methods with various ratios. Taste perception study was carried out in-vitro by spectrophotometrically and in-vivo by gustatory sensation to evaluate the taste masking ability of binary complexation. The optimized taste masking ratio 1:10 of kneading mixture was selected based on bitterness score and characterized by fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC and X-ray diffractometry (XRD to identify the physicochemical interaction between drug and carrier and its effect on dissolution. In-vitro drug release studies for physical mixture and kneaded system were performed in pH 1.2 and 6.8 buffers. The FTIR, DSC and XRD studies indicated inclusion complexation in physical mixture and kneaded system. Both the binary systems showed effective taste masking and at the same time showed no limiting effect on the drug release. Whereas in comparison; kneading system showed better results. The results conclusively demonstrated effective taste masking by β-Cyclodextrin in both binary systems, which can be utilized as a novel alternative approach for effective taste masking.

  4. General approach to the testing of binary solubility systems for thermodynamic consistency. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    A comparison of implicit Runge-Kutta and orthogonal collocation methods is made for the numerical solution to the ordinary differential equation which describes the high-pressure vapor-liquid equilibria of a binary system. The systems of interest are limited to binary solubility systems where one of the components is supercritical and exists as a noncondensable gas in the pure state. Of the two methods - implicit Runge-Kuta and orthogonal collocation - this paper attempts to present some preliminary but not necessarily conclusive results that the implicit Runge-Kutta method is superior for the solution to the ordinary differential equation utilized in the thermodynamic consistency testing of binary solubility systems. Due to the extreme nonlinearity of thermodynamic properties in the region near the critical locus, an extended cubic spline fitting technique is devised for correlating the P-x data. The least-squares criterion is employed in smoothing the experimental data. Even though the derivation is presented specifically for the correlation of P-x data, the technique could easily be applied to any thermodynamic data by changing the endpoint requirements. The volumetric behavior of the systems must be given or predicted in order to perform thermodynamic consistency tests. A general procedure is developed for predicting the volumetric behavior required and some indication as to the expected limit of accuracy is given

  5. Interspecies stress in momentum equations for dense binary particulate systems.

    Science.gov (United States)

    Zhang, D Z; Ma, X; Rauenzahn, R M

    2006-07-28

    For two-species particulate systems, ensemble averaged continuity and momentum equations for each species are derived based on the Liouville equation of the system. The ensemble average used is species specific. It is found that the interaction between species results in not only the interspecies force but also a stress in the momentum equations. In the limit that particles of one of the species can be considered as a continuum, the existence of the interspecies stress enables us to reduce the derived equations to the familiar form for dispersed two-phase flows.

  6. Binary classification of real sequences by discrete-time systems

    Science.gov (United States)

    Kaliski, M. E.; Johnson, T. L.

    1979-01-01

    This paper considers a novel approach to coding or classifying sequences of real numbers through the use of (generally nonlinear) finite-dimensional discrete-time systems. This approach involves a finite-dimensional discrete-time system (which we call a real acceptor) in cascade with a threshold type device (which we call a discriminator). The proposed classification scheme and the exact nature of the classification problem are described, along with two examples illustrating its applicability. Suggested approaches for further research are given.

  7. Eccentricity evolution in hierarchical triple systems with eccentric outer binaries

    CERN Document Server

    Georgakarakos, Nikolaos

    2014-01-01

    We develop a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular, while the outer one is eccentric. We consider coplanar systems with well separated components and comparable masses. The derivation of short period terms is based on an expansion of the rate of change of the Runge-Lenz vector. Then, the short period terms are combined with secular terms, obtained by means of canonical perturbation theory. The validity of the theoretical equations is tested by numerical integrations of the full equations of motion.

  8. Planetary Systems Around Spectroscopic Binary Stars: The Very Dusty, Old, Sun-like BD+20 307

    Science.gov (United States)

    Zuckerman, Ben M.; Fekel, F. C.; Williamson, M. H.; Henry, G. W.; Muno, M. P.; Melis, C.; Marois, C.

    2009-01-01

    Field star BD+20 307 is the dustiest known main sequence star, based on the fraction of its bolometric luminosity, 4%, emitted at infrared wavelengths (Song et al. 2005; Rhee et al. 2008). The temperature of the particles that carry this large IR luminosity is comparable to that of the Sun's zodiacal dust, and their existence is likely a consequence of a fairly recent collision of large objects such as planets or planetary embryos. BD+20 307 is now known to be a 3.4 day spectroscopic binary composed of two nearly equal solar-mass stars (Weinberger 2008; Zuckerman et al. 2008). Consideration of various age indicators implies that that star is likely to be at least one Gyr old, perhaps many Gyr old. Probably the dust around this close binary star has nothing to do with planet formation and everything to do with some major catastrophic event that recently took place near 1 AU in a mature planetary system. Destabilizing planetary orbits in an old system with a single star at its center appears to be possible, e.g., Mercury (Batygin & Laughlin 2008 and references therein). Destabilization may be easier to achieve in a close binary star system and easier yet in a triple star system. Tokovinin et al. (2006) conclude that, for a spectroscopic binary star with an orbital period of 3.4 days, the probability is 70% that a third star is present. Thus, we have searched for such a tertiary star in the BD+20 307 system using accurate radial velocities measured at Fairborn and Lick observatories and with adaptive optics imaging at Keck observatory. As of the writing of this abstract, no third star is detected. Limits on mass and semimajor axis of any tertiary star will be discussed. This research was supported by a grant from the Chandra X-ray Observatory.

  9. Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures

    International Nuclear Information System (INIS)

    Highlights: • Surface tension of binary mixtures of alcohol/DMSO determined. • Surface mole fraction and surface thermodynamic parameters were calculated. • The surface tension data of binary mixtures were correlated with FLW, LWW and MS models. -- Abstract: Surface tensions of binary mixtures of DMSO (dimethyl sulphoxide) with a series of long chain aliphatic alcohols (1-propanol, 1-butanol, and 1-hexanol) were measured as a function of composition using the ring detachment method in the temperature range between (288.15 and 328.15) K. The surface tension results are used to describe quantitatively the nature, properties, and compositions of surface layers in binary liquid mixtures. The temperature influence on the behaviour of surface tensions and surface properties of binary mixtures has often been used to obtain information about solute structural effects on DMSO. The surface tension of the above mentioned binary systems were correlated with empirical and thermodynamic based models. The average relative error obtained from the comparison of experimental and calculated surface tension values for 15 binary systems with three models is less than 1%. In addition to finding more information about the surface structure of binary mixtures, surface mole fraction was calculated using an extended Langmuir model (EL). The temperature dependence of σ at fixed composition of solutions was used to estimate surface enthalpy, Hs, and surface entropy, Ss. The results provide information on the molecular interactions between the unlike molecules that exist at the surface and the bulk

  10. Trajectory exploration within asynchronous binary asteroid systems using refined Lagrangian coherent structures

    Science.gov (United States)

    Shang, Haibin; Wu, Xiaoyu; Cui, Pingyuan

    2016-09-01

    Ground observations have found that asynchronous systems constitute most of the population of the near-Earth binary asteroids. This paper concerns the trajectory of a particle in the asynchronous system which is systematically described using periodic ellipsoidal and spherical body models. Due to the non-autonomous characteristics of the asynchronous system, Lagrangian coherent structures (LCS) are employed to identify the various dynamical behaviors. To enhance the accuracy of LCS, a robust LCS finding algorithm is developed incorporating hierarchical grid refinement, one-dimensional search and variational theory verification. In this way, the intricate dynamical transport boundaries are detected efficiently. These boundaries indicate that a total of 15 types of trajectories exist near asynchronous binary asteroids. According to their Kepler energy variations, these trajectories can be grouped into four basic categories, i.e., transitory, escape, impact and flyby trajectories. Furthermore, the influence of the ellipsoid's spin period on the dynamical behavior is discussed in the context of the change of dynamical regions. We found that the transitory and impact motions occur easily in the synchronous-like binary systems, in which the rotation period of the ellipsoid is nearly equal to that of the mutual orbit. Meanwhile, the results confirm a positive correlation between the spinning rate of the ellipsoid and the probability of the escape and flyby trajectories. The LCS also reveal a marked increase in trajectory diversity after a larger initial energy is selected.

  11. The parameters of binary black hole system in PKS 1510-089

    Institute of Scientific and Technical Information of China (English)

    Li Juan; Fan Jun-Hui; Yuan Yu-Hai

    2007-01-01

    Observations of PKS 1510-089 indicate the existence of a deep flux minimum with a timescale of ~35 min and an interval of about 336±14 d. A binary black hole system is proposed to be at the nucleus of this object. The secondary black hole orbits around the primary black hole.The minimum is caused by the periodic eclipse of the primary black hole by the secondary black hole.Based on the observations of PKS 1510-089,we estimate the parameters of the binary black hole system.The masses for the primary and secondary black holes are 1.37×109M⊙(M⊙ is the solar mass) and 1.37×107M⊙,and the major axis for this pair being about 0.1 parsec(pc).

  12. Error correcting codes for binary unitary channels on multipartite quantum systems

    CERN Document Server

    Choi, M D; Kribs, D W; Zyczkowski, K; Choi, Man-Duen; Holbrook, John A.; Kribs, David W.; Zyczkowski, Karol

    2006-01-01

    We conduct an analysis of ideal error correcting codes for randomized unitary channels determined by two unitary error operators -- what we call ``binary unitary channels'' -- on multipartite quantum systems. In a wide variety of cases we give a complete description of the code structure for such channels. Specifically, we find a practical geometric technique to determine the existence of codes of arbitrary dimension, and then derive an explicit construction of codes of a given dimension when they exist. For instance, given any binary unitary noise model on an n-qubit system, we design codes that support n-2 qubits. We accomplish this by verifying a conjecture for higher rank numerical ranges of normal operators in many cases.

  13. Markov-Binary Visibility Graph: a new method for analyzing Complex Systems

    CERN Document Server

    Sadra, Yaser; Ahadpour, Sodief

    2011-01-01

    In this work, we introduce a new and simple transformation from time series to complex networks based on markov-binary visibility graph(MBVG). Due to the simple structure of this transformation in comparison with other transformations be obtained more precise results. Moreover, several topological aspects of the constructed graph, such as degree distribution, clustering coefficient, and mean visibility length have been thoroughly investigated. Numerical simulations confirm the reliability of markov-binary visibility graph for time series analysis. This algorithm have the capability of distinguishing between uncorrelated and correlated systems. Finaly, we illustrate this algorithm analyzing the human heartbeat dynamics. The results indicate that the human heartbeat (RR-interval) time series of normally, Congestive Heart Failure (CHF) and Atrial Fibrillation (AF) subjects are uncorrelated, chaotic and correlated stochastic systems, respectively.

  14. DSC study of phase transitions of cephalin pseudo-binary systems in excess water

    Institute of Scientific and Technical Information of China (English)

    王邦宁; 谈夫

    1999-01-01

    The gel-liquid crystal phase transitions of the pseudo-binary systems of cephalins DMPE and DHPE in excess water were studied by differential scanning calorimetry. The phase diagram of the pseudo-binary systems has been given. The experiments showed that the partial phase separation in gel phase might occur at least at the mole fractions of DHPE below 0.1. The analysis by the model of ideal solution showed that both the cephalins were non-ideally miscible both in the gel phases and in the liquid crystal phases. The analysis by the model of regular solution showed that all the non-ideality parameters in the gel phases were larger than those in the liquid crystal phases at the same temperature. All the non-ideality parameters were not constant, but rather dependent on temperature.

  15. Determination and Prediction of Binary Solubility for Aromatic-Tetraethylene Glycol (with Water) Systems

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The binary solubilities of tetraethylene glycol (TTEG) with benzene, toluene or p-xylene, were measured by the turbidity point method. In TTEG the content of water ranged from 0 to 5% and the test temperature ranged from 20℃ to 120℃. Increasing the temperature resulted in greater solubility of the aromatics in TTEG, while increasing the content of water caused the aromatic solubility to decrease. The benzene solubillity in TTEG was the greatest followed by toluene and xylene at the same water content and temperature. The mutual solubility was predicted by correlating the paramaters of a new group for the UNIFAC model for the aromatics extraction system. The modified UNIFAC group contribution model was used to predict the binary solubility of TTEG and aromatics. The average deviation between the experimental result and prediction is 4.06%. Therefore, the UNIFAC model can be used to describe the solubility phenomena for TTEG-aromatics systems.

  16. Thermal Diffusion in binary Surfactant Systems and Microemulsions

    OpenAIRE

    Arlt, B.

    2012-01-01

    In dieser Arbeit haben wir das Thermodiffusionsverhalten von mizellaren Systemen und Mikroemulsionen untersucht. Beide Systeme werden als Modellsysteme genutzt um zwei Fragestellungen zu beantworten. Die erste Fragestellung bezieht sich auf den Einfluss der Mizellenbildung nahe der kritischen Mizellenkonzentration (cmc) auf das Thermodiffusionsverhalten. Dazu untersuchen wir das Thermodiffusionsverhalten des nichtionischen Tensides n-Octyl beta-D-Glucopyranoside (C8G1) in Wasser, welches e...

  17. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  18. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries. PMID:25014800

  19. Heat Transfer of Single and Binary Systems inPool Boiling

    OpenAIRE

    Abbas J. Sultan; Balasim A. Abid

    2010-01-01

    The present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.The experimental set up for the present investigat...

  20. Evaluated phase diagrams of binary metal-tellurium systems of the D-block transition elements

    International Nuclear Information System (INIS)

    The binary phase diagrams of metal-tellurium systems for twenty seven d-block transition elements have been critically evaluated. Complete phase diagrams are presented for the elements, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, palladium, silver, lanthanum, platinum and gold, whereas, for scandium, titanium, vanadium, yttrium, zirconium, niobium, technitium, ruthenium, rhodium, hafnium, tantalum, tungsten , rhenium, osmium and iridium, the phase diagrams are incomplete and tentative. (author). 20 refs., 27 tabs., 27 figs

  1. Thermal degradation features of peppermint oil in a binary system with Β- cyclodextrin

    OpenAIRE

    Omelchenko, I. A.; Yarnykh, T. G.; Yanchuk, I. B.; Bоrschevskiy, G. I.

    2016-01-01

    Aim. One of the most promising ways of changing physical and chemical properties of the active pharmaceutical ingredient is an encapsulation on a molecular level with the use of cyclodextrins. This makes it possible to create products with the desired activity and controlled distribution in the body.Methods and results. We have studied the thermal decomposition of peppermint oil in binary systems with β-cyclodextrin. It has been found that the thermal degradation of mechanical mixture and inc...

  2. HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer

    CERN Document Server

    Ohta, T; Didelez, J -P; Fujiwara, M; Fukuda, K; Kohri, H; Kunimatsu, T; Morisaki, C; Ono, S; Rouille, G; Tanaka, M; Ueda, K; Uraki, M; Utsuro, M; Wang, S Y; Yosoi, M

    2011-01-01

    A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

  3. Structure and Spectrum of Binary Classic Systems Confined in a Parabolic Trap

    Institute of Scientific and Technical Information of China (English)

    YANG Wen; ZENG Zhi

    2009-01-01

    @@ The static and dynamic properties of the two-dimensional classic system of two-species interacting charged par-ticles in a parabolic trap are studied. The ground state energy and configuration for different kinds of binary systems are obtained by Monte Carlo simulation and Newton optimization. The spectrum and normal modes vectors can be gained by diagonalizing the dynamical matrix of the system. It is found that the total particle number, particle number and mass-to-charge ratio of each species are decisive factors for the system structure and spectrum. The three intrinsic normal modes of single species Coulomb clusters are inherent, concluded from our numerical simulations and analytical results.

  4. Windtalking Computers: Frequency Normalization, Binary Coding Systems and Encryption

    CERN Document Server

    Zirkind, Givon

    2009-01-01

    The goal of this paper is to discuss the application of known techniques, knowledge and technology in a novel way, to encrypt computer and non-computer data. To-date most computers use base 2 and most encryption systems use ciphering and/or an encryption algorithm, to convert data into a secret message. The method of having the computer "speak another secret language" as used in human military secret communications has never been imitated. The author presents the theory and several possible implementations of a method for computers for secret communications analogous to human beings using a secret language or; speaking multiple languages. The kind of encryption scheme proposed significantly increases the complexity of and the effort needed for, decryption. As every methodology has its drawbacks, so too, the data of the proposed system has its drawbacks. It is not as compressed as base 2 would be. However, this is manageable and acceptable, if the goal is very strong encryption: At least two methods and their ...

  5. Thermodynamic assessment of the Pd–Y binary system

    Directory of Open Access Journals (Sweden)

    Kardellass S.

    2013-09-01

    Full Text Available The Pd–Y system was critically assessed using the CALPHAD technique. The solution phases (liquid, b.c.c., f.c.c. and h.c.p. were modeled using the Redlich–Kister equation. The intermetallic compounds Pd3Y and PdY, which have homogeneity ranges, were treated as the formula (Pd,Y0.75(Pd,Y0.25 and (Pd,Y0.5(Pd,Y0.5 by a two-sublattice model with a mutual substitution of Pd and Y on both sublattices. The optimization was carried out in two steps. In the first treatment, Pd3Y and PdY are assumed to be stoichiometric compounds; in the second treatment they are treated by a sublattice model. The parameters obtained from the first treatment were used as starting values for the second treatment. The calculated phase diagram and the thermodynamic properties of the system are in satisfactory agreement with the experimental data.

  6. Colliding Winds in Low-Mass Binary Star Systems: wind interactions and implications for habitable planets

    CERN Document Server

    Johnstone, C P; Pilat-Lohinger, E; Bisikalo, D; Güdel, M; Eggl, S

    2015-01-01

    Context. In binary star systems, the winds from the two components impact each other, leading to strong shocks and regions of enhanced density and temperature. Potentially habitable circumbinary planets must continually be exposed to these interactions regions. Aims. We study, for the first time, the interactions between winds from low-mass stars in a binary system, to show the wind conditions seen by potentially habitable circumbinary planets. Methods. We use the advanced 3D numerical hydrodynamic code Nurgush to model the wind interactions of two identical winds from two solar mass stars with circular orbits and a binary separation of 0.5 AU. As input into this model, we use a 1D hydrodynamic simulation of the solar wind, run using the Versatile Advection Code. We derive the locations of stable and habitable orbits in this system to explore what wind conditions potentially habitable planets will be exposed to during their orbits. Results. Our wind interaction simulations result in the formation of two stron...

  7. Polar pattern formation in driven filament systems requires non-binary particle collisions

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A.; Frey, Erwin; Bausch, Andreas R.

    2015-10-01

    From the self-organization of the cytoskeleton to the synchronous motion of bird flocks, living matter has the extraordinary ability to behave in a concerted manner. The Boltzmann equation for self-propelled particles is frequently used in silico to link a system’s meso- or macroscopic behaviour to the microscopic dynamics of its constituents. But so far such studies have relied on an assumption of simplified binary collisions owing to a lack of experimental data suggesting otherwise. We report here experimentally determined binary-collision statistics by studying a recently introduced molecular system, the high-density actomyosin motility assay. We demonstrate that the alignment induced by binary collisions is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, indicating that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. Our findings demonstrate that the unique properties of biological active-matter systems require a description that goes well beyond that developed in the framework of kinetic theories.

  8. Observations of TeV binary systems with the H.E.S.S. telescope

    CERN Document Server

    Bordas, Pol; de Naurois, Mathieu; Ohm, Stefan; Wilhelmi, Emma de Oña; Sushch, Iurii; Volpe, Francesca; Zabalza, Víctor

    2013-01-01

    Recent observations of binary systems obtained with the H.E.S.S. telescopes are providing crucial information on the physics of relativistic outflows and the engines powering them. We report here on new H.E.S.S. results on HESS J0632+057, PSR B1259-63/LS 2883, Eta Carinae and the recently discovered source HESS J1018-589. Despite the high-quality data obtained in the last years through both ground and space-based gamma-ray detectors, many questions on the mechanisms that permit binary systems to emit at gamma-rays remain open. In particular, it is becoming apparent that emission at high and very-high energies is uncorrelated in some gamma-ray binary systems, with bright GeV flares not observed at TeV energies (e.g. PSR B1259-63), and sources periodically detected at VHEs which are lacking its HE counterpart (e.g. HESS J0632+057). Our results mainly confirm the predictions derived previously for the studied sources, but unexpected results are also found in a few cases, which are discussed in the context of con...

  9. Eclipse timing variations to detect possible Trojan planets in binary systems

    CERN Document Server

    Schwarz, R; Funk, B; Zechner, R

    2016-01-01

    This paper is devoted to study the circumstances favourable to detect Trojan planets in close binary-star-systems by the help of eclipse timing variations (ETVs). To determine the probability of the detection of such variations with ground based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions like Plato, Tess and Cheops), we investigated the dynamics of binary star systems with a planet in tadpole motion. We did numerical simulations by using the full three-body problem as dynamical model. The stability and the ETVs are investigated by computing stability/ETV maps for different masses of the secondary star and the Trojan planet. In addition we changed the eccentricity of the possible Trojan planet. By the help of the libration amplitude $\\sigma$ we could show whether or not all stable objects are moving in tadpole orbits. We can conclude that many amplitudes of ETVs are large enough to detect Earth-like Trojan planets in binary star systems. As an application, ...

  10. A 3D dynamical model of the colliding winds in binary systems

    CERN Document Server

    Parkin, E R

    2008-01-01

    We present a 3D dynamical model of the orbital induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high resolution images of the so-called ``pinwheel nebulae''. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and Gamma-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar m...

  11. Accretion, Ablation and Propeller Evolution in Close Millisecond Pulsar Binary Systems

    CERN Document Server

    Kiel, P D

    2013-01-01

    A model for the formation and evolution of binary millisecond radio pulsars in systems with low mass companions (< 0.1 Msun) is investigated using a binary population synthesis technique. Taking into account the non conservative evolution of the system due to mass loss from an accretion disk as a result of propeller action and from the companion via ablation by the pulsar, the transition from the accretion powered to rotation powered phase is investigated. It is shown that the operation of the propeller and ablation mechanisms can be responsible for the formation and evolution of black widow millisecond pulsar systems from the low mass X-ray binary phase at an orbital period of ~0.1 day. For a range of population synthesis input parameters, the results reveal that a population of black widow millisecond pulsars characterized by orbital periods as long as ~0.4 days and companion masses as low as ~0.005 Msun can be produced. The orbital periods and minimum companion mass of this radio millisecond pulsar popu...

  12. Stability and Fourier-series periodic solution in the binary stellar systems

    CERN Document Server

    Mia, Rajib

    2016-01-01

    In this paper, we use the restricted three body problem in the binary stellar systems, taking photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. We have computed semi-analytical expressions for the locations of the collinear points with the help of the perturbation technique. The stability of the triangular points is studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16. To investigate the stability of the triangular points, we have obtained the expressions for critical mass which depends on the radiation of both primaries. Fourier-series method is applied to obtain periodic orbits of the infinitesimal mass around triangular points in binary stellar systems. We have obtained Fourier expansions of the periodic orbits around triangular points upto third order terms. A comparison is made between periodic orbits obtained by Fourier-series method and with Runge-Kutta integrat...

  13. Distillation of hydrogen isotopes for polarized HD target

    CERN Document Server

    Ohta, T; Didelez, J -P; Fujiwara, M; Fukuda, K; Kohri, H; Kunimatsu, T; Morisaki, C; Ono, S; Rouill', G; Tanaka, M; Ueda, K; Uraki, M; Utsuro, M; Wang, S Y; Yosoi, M

    2011-01-01

    We have developed a cryogenic distillation system to purify Hydrogen-Deuteride (HD) gas for a polarized HD target in LEPS experiments at SPring-8. A small amount of ortho-H$_2$ ($\\sim$0.01%) in the HD gas plays an important role in efficiently polarizing the HD target. Since there are 1$\\sim$5% impurities of H$_2$ and D$_2$ in commercially available HD gases, it is inevitable that the HD gas is purified up to $\\sim$99.99%. The distillation system has a cryogenic pot (17$\\sim$21 K) containing many small stainless steel cells called Heli-pack. Commercial HD gas with an amount of 5.2 mol is fed into the pot. We carried out three distillation runs by changing temperatures (17.5 K and 20.5 K) and gas extraction speeds (1.3 ml/min and 5.2 ml/min). The extracted gas was analyzed by using a gas analyzer system combining a quadrupole mass spectrometer with a gas chromatograph. The HD gas of 1 mol with a purity better than 99.99% has been successfully obtained. The effective NTS (Number of Theoretical Stages), which is...

  14. AL Cassiopeiae: An F-type Contact Binary System with a Cool Stellar Companion

    Science.gov (United States)

    Qian, S.-B.; Zhou, X.; Zola, S.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Leung, K.-C.

    2014-11-01

    According to the general catalog of variable stars, AL Cas was classified as an EW-type eclipsing binary with a spectral type of B and an orbital period of P = 0.5005555 days. The first photometric light curves of the close binary in the B, V, R, and I bands are presented. New low-resolution spectra indicate that its spectral type is about F7 rather than B-type. A photometric analysis with the Wilson-Devinney method suggests that it is a contact binary (f = 39.3%) with a mass ratio of 0.61. Using 17 newly determined eclipse times together with those collected from the literature, we found that the observed-calculated (O - C) curve of AL Cas shows a cyclic change with a period of 86.6 yr and an amplitude of 0.0181 days. The periodic variation was analyzed for the light-travel time effect via the presence of a third body. The mass of the third body was determined to be M 3sin i' = 0.29(± 0.05) M ⊙ when a total mass of 2.14 M ⊙ for AL Cas is adopted. It is expected that the cool companion star may have played an important role in the origin and evolution of the system by removing angular momentum from the central binary system during early dynamical interaction and/or late dynamical evolution. This causes the original detached system to have a low angular momentum and a short initial orbital period. Then it can evolve into the present contact configuration via a case A mass transfer.

  15. AL Cassiopeiae: An F-type contact binary system with a cool stellar companion

    International Nuclear Information System (INIS)

    According to the general catalog of variable stars, AL Cas was classified as an EW-type eclipsing binary with a spectral type of B and an orbital period of P = 0.5005555 days. The first photometric light curves of the close binary in the B, V, R, and I bands are presented. New low-resolution spectra indicate that its spectral type is about F7 rather than B-type. A photometric analysis with the Wilson-Devinney method suggests that it is a contact binary (f = 39.3%) with a mass ratio of 0.61. Using 17 newly determined eclipse times together with those collected from the literature, we found that the observed–calculated (O – C) curve of AL Cas shows a cyclic change with a period of 86.6 yr and an amplitude of 0.0181 days. The periodic variation was analyzed for the light-travel time effect via the presence of a third body. The mass of the third body was determined to be M 3sin i' = 0.29(± 0.05) M ☉ when a total mass of 2.14 M ☉ for AL Cas is adopted. It is expected that the cool companion star may have played an important role in the origin and evolution of the system by removing angular momentum from the central binary system during early dynamical interaction and/or late dynamical evolution. This causes the original detached system to have a low angular momentum and a short initial orbital period. Then it can evolve into the present contact configuration via a case A mass transfer.

  16. Constructing optimized binary masks for reservoir computing with delay systems.

    Science.gov (United States)

    Appeltant, Lennert; Van der Sande, Guy; Danckaert, Jan; Fischer, Ingo

    2014-01-01

    Reservoir computing is a novel bio-inspired computing method, capable of solving complex tasks in a computationally efficient way. It has recently been successfully implemented using delayed feedback systems, allowing to reduce the hardware complexity of brain-inspired computers drastically. In this approach, the pre-processing procedure relies on the definition of a temporal mask which serves as a scaled time-mutiplexing of the input. Originally, random masks had been chosen, motivated by the random connectivity in reservoirs. This random generation can sometimes fail. Moreover, for hardware implementations random generation is not ideal due to its complexity and the requirement for trial and error. We outline a procedure to reliably construct an optimal mask pattern in terms of multipurpose performance, derived from the concept of maximum length sequences. Not only does this ensure the creation of the shortest possible mask that leads to maximum variability in the reservoir states for the given reservoir, it also allows for an interpretation of the statistical significance of the provided training samples for the task at hand.

  17. Heterogeneity and subjectivity in binary-state opinion formation systems

    International Nuclear Information System (INIS)

    In society, there is heterogeneous interaction and randomness in human decision making. In order to unfold the roles and the competition of the two factors mentioned above in opinion formation, we propose a toy model, which follows a majority rule with a Fermi function, on scale-free networks with degree exponent γ. The heterogeneous interaction is related to the connectivity of a person with the interactive parameter β, and the randomness of human decision making is quantified by the interaction noise T. We find that a system with heterogeneity of network topology and interaction shows robustness perturbed by the interaction noise T according to the theoretical analysis and numerical simulation. Then, when T → 0, the homogeneous interaction (β ≃ 0) has a powerful implication for the emergence of a consensus state. Furthermore, the emergence of the two extreme values shows the competition of the heterogeneity of interaction and the subjectivity of human decision making in opinion formation. Our present work provides some perspective on and tools for understanding the diversity of opinion in our society. (paper)

  18. WZ Cygni: a Marginal Contact Binary in a Triple System?

    CERN Document Server

    Lee, Jae Woo; Lee, Chung-Uk; Kim, Ho-Il; Park, Jang-Ho; Hinse, Tobias Cornelius

    2011-01-01

    We present new multiband CCD photometry for WZ Cyg made on 22 nights in two observing seasons of 2007 and 2008. Our light-curve synthesis indicates that the system is in poor thermal contact with a fill-out factor of 4.8% and a temperature difference of 1447 K. Including our 40 timing measurements, a total of 371 times of minimum light spanning more than 112 yr were used for a period study. Detailed analysis of the $O$--$C$ diagram showed that the orbital period has varied by a combination with an upward parabola and a sinusoid. The upward parabola means the continuous period increase and indicates that some stellar masses are thermally transferred from the less to the more massive primary star at a rate of about 5.80$\\times10^{-8}$ M$_\\odot$ yr$^{-1}$. The sinusoidal variation with a period of 47.9 yr and a semi-amplitude of 0.008 d can be interpreted most likely as the light-travel-time effect due to the existence of a low-mass M-type tertiary companion with a projected mass of $M_3 \\sin i_3$=0.26 M$_\\odot$...

  19. Thermodynamic modelling of the C-U and B-U binary systems

    International Nuclear Information System (INIS)

    The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B2O3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory

  20. Observations of the extreme runaway HD271791: nucleosynthesis in a core-collapse supernova

    CERN Document Server

    Schaffenroth, V; Butler, K; Irrgang, A; Heber, U

    2015-01-01

    Some young, massive stars can be found in the Galactic halo. As star formation is unlikely to occur in the halo, they must have been formed in the disk and been ejected shortly afterwards. One explanation is a supernova in a tight binary system. The companion is ejected and becomes a runaway star. HD\\,271791 is the kinematically most extreme runaway star known (Galactic restframe velocity $725 \\pm 195\\, \\rm km\\,s^{-1}$, which is even larger than the Galactic escape velocity). Moreover, an analysis of the optical spectrum showed an enhancement of the $\\alpha$-process elements. This indicates the capture of supernova ejecta, and therefore an origin in a core-collapse supernova. As such high space velocities are not reached by the runaway stars in classical binary supernova ejection scenarios, a very massive but compact primary, probably of Wolf-Rayet type is required. HD\\,271791 is therefore a perfect candidate for studying nucleosynthesis in a supernova of probably type Ibc. The goal of this project is to dete...

  1. Separated Fringe Packet Binary Star Astrometry at the CHARA Array - An Update

    Science.gov (United States)

    Ten Brummelaar, Theo; Farrington, C. D.; Mason, B. D.; Roberts, L. C.; Turner, N. H.

    2014-01-01

    When observed with optical long-baseline interferometers (OLBI), components of a binary star which are sufficiently separated such that their interferometric fringe packets do not overlap are referred to as Separated Fringe Packet (SFP) binaries. At the CHARA Array these `wide' binaries are in the range of a few tens of milliarcseconds and extend out into the regime of systems resolved by speckle interferometry at single, large-aperture telescopes. These SFP measurements can provide additional data for orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the under-sampled regime between the bounds of spectroscopic surveys and speckle interferometry. Unlike binary stars whose fringes overlap, a visibility calibration star is not needed, and the separation of the fringe packets can provide an accurate vector separation. We apply the SFP approach to Omega Andromeda, HD 178911, and Xi Cephei. For these systems we determine masses for the two components of 0.963+/-0.049 M_{sun}; and 0.860+/-0.051 M_{sun}; and an orbital parallax of 39.54+/-1.85 mas for Omega Andromeda, for HD 178911 masses of 0.802+/-0.055 M_{sun}; and 0.622+/-0.053 M_{sun}; with orbital parallax of 28.26+/-1.70 mas, and masses of 1.045+/-0.031 M_{sun}; and 0.408+/-0.066 M_{sun}; orbital parallax of 38.10+/-2.81 mas for Xi Cephei.

  2. Homogeneous bubble nucleation in binary systems of liquid solvent and dissolved gas

    Science.gov (United States)

    Němec, Tomáš

    2016-03-01

    A formulation of the classical nucleation theory (CNT) is developed for bubble nucleation in a binary system composed of a liquid solvent and a dissolved gas. The theoretical predictions are compared to the experimental nucleation data of four binary mixtures, i.e. diethylether - nitrogen, propane - carbon dioxide, isobutane - carbon dioxide, and R22 (chlorodifluoromethane) - carbon dioxide. The presented CNT formulation is found to improve the precision of the simpler theoretical method of Ward et al. [J. Basic Eng. 92 (10), 71-80, 1970] based on the weak-solution approximation. By analyzing the available experimental nucleation data, an inconsistency in the data reported by Mori et al. [Int. J. Heat Mass Transfer, 19 (10), 1153-1159, 1976] for propane - carbon dioxide and R22 - carbon dioxide is identified.

  3. Light Curve Analysis for W UMa-Type Eclipsing Binary Star Systems

    Science.gov (United States)

    Henderson, Scott; Peach, N.; Olsen, T.

    2006-12-01

    We report results from summer 2006 in an ongoing study of eclipsing binary stars. Our investigations have focused on the measurement and interpretation of light curves for W UMa-type systems 44i Boötis and VW Cephei. These contact binaries have component stars of spectral type G, and revolve with periods of 6.43 and 6.67 hours. Dome automation and scripting capabilities introduced this summer have significantly reduced experimental uncertainties in our data. In support of previous findings we continue to observe an increase in the orbital period of 44i Boo at a rate of 10.4 µs/epoch or 14.2 ms/yr. Residuals computed after incorporating the increasing period suggest an underlying sinusoidal oscillation with a 61.5 year period and amplitude of 648 seconds. AAPT Member Thomas Olsen is sponsoring the lead presenter, SPS Member Scott Henderson, and the co-presenter, SPS Member Nick Peach.

  4. Automated calculation of complete Pxy and Txy diagrams for binary systems

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht

    2007-01-01

    An algorithm for the calculation of global phase equilibrium diagrams has been recently developed [M. Cismondi, M.L. Michelsen, Global phase equilibrium calculations: critical lines, critical end points and liquid-liquid-vapour equilibrium in binary mixtures, J. Supercrit. Fluids 39 (2007) 287......-295]. It integrates the calculation of critical lines, liquid-liquid-vapour (LLV) lines and critical end points, and was implemented in the software program GPEC: global phase equilibrium calculations [M. Cismondi, D.N. Nunez, M.S. Zabaloy, E.A. Brignole, M.L. Michelsen, J.M. Mollerup, GPEC: a program for global...... phase equilibrium calculations in binary systems, in: Proceedings of the CD-ROM EQUIFASE 2006, Morelia, Michoacan, Mexico, October 21-25, 2006; www.gpec.plapiqui.edu.ar]. In this work we present the methods and computational strategy for the automated calculation of complete Pxy and Txy diagrams...

  5. Stellar Scattering and the Formation of Hot-Jupiters in Binary Systems

    CERN Document Server

    Martí, J G

    2014-01-01

    Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods $P \\le 10$ days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator. Two mechanisms have been proposed to explain the excited and misaligned sub-population of HJs: Lidov-Kozai migration and planet-planet scattering. Although both are based on completely different dynamical phenomena, they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms. In this paper we present numerical simulations of Lidov-Kozai trapping of single planets in compact binary systems. Both the planet and the binary are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of ...

  6. Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction

    CERN Document Server

    Racine, Etienne

    2008-01-01

    We analyze in detail the spin precession equations in binary black hole systems, when the tidal torque on a Kerr black hole is taken into account. We show that completing the precession equations with this term reveals the existence of a conserved quantity at 2PN order when restricting attention to orbits with negligible eccentricity and averaging over orbital motion. This quantity allows one to solve the (orbit-averaged) precession equations exactly in the case of equal masses and arbitrary spins, neglecting radiation reaction. For unequal masses, an exact solution does not exist in closed form, but we are still able to derive accurate approximate analytic solutions. We also show how to incorporate radiation reaction effects into our analytic solutions adiabatically, and compare the results to solutions obtained numerically. For various configurations of the binary, the relative difference in the accumulated orbital phase computed using our analytic solutions versus a full numerical solution vary from about ...

  7. A novel Fingervein Recognition System based on Monogenic Local Binary Pattern Features

    Directory of Open Access Journals (Sweden)

    Alima DAMAK MASMOUDI

    2014-01-01

    Full Text Available As a new approach to human identification, fingervein recognition is becoming an active biometric recognition mode. This paper focuses on fingervein recognition system. First, a preprocessing algorithm is used to enhance each fingervein image. Then, an improvement technique of feature extraction based on Monogenic Local Binary Pattern (MLBP is presented. This novel metric integrates the conventional LBP (Local Binary Pattern with the other two rotation invariant measures (local phase and local surface type to lower the computational complexity while slightly increasing the matching accuracy. Experimental results show that the proposed algorithm offres best performances in fingervein recognition. In fact, the area under curve of proposed approach has very close to unity (0.91

  8. Eclipsing binary systems as tests of low-mass stellar evolution theory

    CERN Document Server

    Feiden, Gregory A

    2015-01-01

    Stellar fundamental properties (masses, radii, effective temperatures) can be extracted from observations of eclipsing binary systems with remarkable precision, often better than 2%. Such precise measurements afford us the opportunity to confront the validity of basic predictions of stellar evolution theory, such as the mass-radius relationship. A brief historical overview of confrontations between stellar models and data from eclipsing binaries is given, highlighting key results and physical insight that have led directly to our present understanding. The current paradigm that standard stellar evolution theory is insufficient to describe the most basic relation, that of a star's mass to its radius, along the main sequence is then described. Departures of theoretical expectations from empirical data, however, provide a rich opportunity to explore various physical solutions, improving our understanding of important stellar astrophysical processes.

  9. Kinetics of phase growth at interdiffusion in poly-phase binary systems

    International Nuclear Information System (INIS)

    The possibility of the analytical description of phase growth kinetics in the general case of the n-phase binary system is considered. The expression is obtained, for calculating the constant of phase growth for the general case of simultaneous n phase growth in the case of mutual diffusion of metals. It is established that the growth constant in this case is a complex function of the system diffusion parameters and is also dependent upon the particular experimental conditions. Presented are the results obtained for the Nb-Pb and Ni-Mo systems

  10. On the incidence of eclipsing Am binary systems in the SuperWASP survey

    CERN Document Server

    Smalley, B; Pintado, O I; Gillon, M; Holdsworth, D L; Anderson, D R; Barros, S C C; Cameron, A Collier; Delrez, L; Faedi, F; Haswell, C A; Hellier, C; Horne, K; Jehin, E; Maxted, P F L; Norton, A J; Pollacco, D; Skillen, I; Smith, A M S; West, R G; Wheatley, P J

    2014-01-01

    The results of a search for eclipsing Am star binaries using photometry from the SuperWASP survey are presented. The light curves of 1742 Am stars fainter than V = 8.0 were analysed for the presences of eclipses. A total of 70 stars were found to exhibit eclipses, with 66 having sufficient observations to enable orbital periods to be determined and 28 of which are newly identified eclipsing systems. Also presented are spectroscopic orbits for 5 of the systems. The number of systems and the period distribution is found to be consistent with that identified in previous radial velocity surveys of `classical' Am stars.

  11. Binary system and jet precession and expansion in G35.20-0.74N

    Science.gov (United States)

    Beltrán, M. T.; Cesaroni, R.; Moscadelli, L.; Sánchez-Monge, Á.; Hirota, T.; Kumar, M. S. N.

    2016-09-01

    Context. Atacama Large Millimeter/submillimeter Array (ALMA) observations of the high-mass star-forming region G35.20-0.74N have revealed the presence of a Keplerian disk in core B rotating about a massive object of 18 M⊙, as computed from the velocity field. The luminosity of such a massive star would be comparable to (or higher than) the luminosity of the whole star-forming region. To solve this problem it has been proposed that core B could harbor a binary system. This could also explain the possible precession of the radio jet associated with this core, which has been suggested by its S-shaped morphology. Aims: We establish the origin of the free-free emission from core B and investigate the existence of a binary system at the center of this massive core and the possible precession of the radio jet. Methods: We carried out VLA continuum observations of G35.20-0.74N at 2 cm in the B configuration and at 1.3 cm and 7 mm in the A and B configurations. The bandwidth at 7 mm covers the CH3OH maser line at 44.069 GHz. Continuum images at 6 and 3.6 cm in the A configuration were obtained from the VLA archive. We also carried out VERA observations of the H2O maser line at 22.235 GHz. Results: The observations have revealed the presence of a binary system of UC/HC Hii regions at the geometrical center of the radio jet in G35.20-0.74N. This binary system, which is associated with a Keplerian rotating disk, consists of two B-type stars of 11 and 6 M⊙. The S-shaped morphology of the radio jet has been successfully explained as being due to precession produced by the binary system. The analysis of the precession of the radio jet has allowed us to better interpret the IR emission in the region, which would be not tracing a wide-angle cavity open by a single outflow with a position angle of ~55°, but two different flows: a precessing one in the NE-SW direction associated with the radio jet, and a second one in an almost E-W direction. Comparison of the radio jet images

  12. An optical & X-ray study of the counterpart to the SMC X-ray binary pulsar system SXP327

    CERN Document Server

    Coe, M J; Corbet, R H D; Galache, J; McBride, V A; Townsend, L J; Udalski, A

    2008-01-01

    Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud. The data reveal many previously unknown X-ray detections of this system and clear evidence for a 49.995d binary period. In addition, the optical photometry show recurring outburst features at the binary period which may well be indicative of the neutron star interacting with a circumstellar disk around a Be star.

  13. Detectability of Earth-like Planets in Circumstellar Habitable Zones of Binary Star Systems with Sun-like Components

    CERN Document Server

    Eggl, Siegfried; Pilat-Lohinger, Elke

    2012-01-01

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the Solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the alpha Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones, especially in close S-Type binary systems, can be rather inaccurate. Recent progress in this field, however, allows to identify regions around the star permitting permanent habitability. While the discovery of alpha Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogues in habitable zones. We provide analytical expressions for the maximum and RMS values of radial velocity and astrometric signals, as well as transit...

  14. Diamonds in HD 97048

    CERN Document Server

    Habart, E; Natta, A; Carbillet, M

    2004-01-01

    We present adaptive optics high angular resolution ($\\sim0\\farcs$1) spectroscopic observations in the 3 $\\mu$m region of the Herbig Ae/Be star HD 97048. For the first time, we spatially resolve the emission in the diamond features at 3.43 and 3.53 $\\mu$m and in the adjacent continuum. Using both the intensity profiles along the slit and reconstructed two-dimensional images of the object, we derive full-width at half-maximum sizes consistent with the predictions for a circumstellar disk seen pole-on. The diamond emission originates in the inner region ($R \\lesssim 15$ AU) of the disk.

  15. RY Aquarius a Binary System with Pulsating delta-scuti Primary Component

    Science.gov (United States)

    Manzoori, Davood; Salar, Abbasvand

    2016-07-01

    We present simultaneous new BVI light curves along with radial velocity curve analysis of the RY Aqr system, using the PHysics Of Eclipsing BinariEs code. The analysis indicates that while the primary is completely inside its Roche critical surface, the secondary has filled out its Roche surface. In addition, the positions of the system components on M–R, H–R diagrams are specified, which show that the primary is a main-sequence or nearly main-sequence star while the secondary is an evolved subgiant. In addition, analysis of the period and luminosity variations of the system were carried out. Fourier frequency analysis of light variation indicates that the primary is a pulsating, δ-scuti variable star. Moreover, O–C curve analysis shows that the period of the system is secularly decreasing with a rate of dp/dt = 0.074 s yr‑1. This decrease in the orbital period variations was attributed to a mass and angular momentum loss from the system with a rate of 2.57× {10}-10{M}ȯ {{yr}}-1. Apart from the secular period decreases, the orbital period of the system is modulated by a cyclic period of 72.69 year, which was attributed to a third body orbiting around the barycenter of the system.

  16. SMA Observations of Class 0 Protostars: A High-Angular Resolution Survey of Protostellar Binary Systems

    CERN Document Server

    Chen, Xuepeng; Zhang, Qizhou; Bourke, Tyler L; Launhardt, Ralf; Jorgensen, Jes K; Lee, Chin-Fee; Foster, Jonathan B; Dunham, Michael M; Pineda, Jaime E; Henning, Thomas

    2013-01-01

    We present high angular resolution 1.3 mm and 850 um dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.5 arcsec, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64+/-0.08 and 0.91+/-0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I YSOs, and approxima...

  17. A Solar-type Stellar Companion to a Deep Contact Binary in a Quadruple System

    CERN Document Server

    Zhou, X; Zhang, J; Jiang, L -Q; Zhang, B; Kreiner, J

    2016-01-01

    The four-color ($B$ $V$ $R_c$ $I_c$) light curves of V776 Cas are presented and analyzed using the Wilson-Devinney (W-D) method. It is discovered that V776 Cas is an early F-type (F2V) overcontact binary with a very high contact degree ($ f=64.6\\,\\%$) and an extremely low mass ratio ($q=0.130$), which indicate that it is at the final evolutionary stage of cool short-period binaries. The mass of the primary and secondary stars are calculated to be $M_1 = 1.55(\\pm0.04)M_\\odot$, $M_2 = 0.20(\\pm0.01)M_\\odot$. V776 Cas is supposed to be formed from an initially detached binary system via the loss of angular momentum due to the magnetic wind. The initial mass of the present primary and secondary components are calculated to be $M_{1i} = 0.86(\\pm0.10)M_\\odot$ and $M_{2i} = 2.13(\\pm0.04)M_\\odot$. The observed-calculated ($O$-$C$) curve exhibits a cyclic period variation, which is due to the light-travel time effect (LTTE) caused by the presence of a third component with a period of 23.7 years. The mass of the third c...

  18. Discovery of an X-Ray-emitting Contact Binary System 2MASS J11201034-2201340

    Science.gov (United States)

    Hu, Chin-Ping; Yang, Ting-Chang; Chou, Yi; Liu, L.; Qian, S.-B.; Hui, C. Y.; Kong, Albert K. H.; Lin, L. C. C.; Tam, P. H. T.; Li, K. L.; Ngeow, Chow-Choong; Chen, W. P.; Ip, Wing-Huen

    2016-06-01

    We report the detection of orbital modulation, a model solution, and the X-ray properties of a newly discovered contact binary, Two Micron All Sky Survey (2MASS) J11201034-2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of γ-ray millisecond pulsars among the unidentified objects detected by the Fermi Gamma-ray Space Telescope. The optical counterpart of the X-ray source (unrelated to the γ-ray source) was then identified using archival databases. The long-term Catalina Real-Time Transient Survey detected a precise signal with a period of P=0.28876208(56) days. A follow-up observation made by the Super Light Telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution (SED), which is well fit by a K2V spectral template. The fitting result of the orbital profile using the Wilson-Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type contact binary and the more massive component has a cool spot. The X-ray emission was first noted in observations made by Swift, and then further confirmed and characterized by an XMM-Newton observation. The X-ray spectrum can be described by a power law or thermal Bremsstrahlung. Unfortunately, we could not observe significant X-ray orbital modulation. Finally, according to the SED, this system is estimated to be 690 pc from Earth with a calculated X-ray intensity of (0.7-1.5)× {10}30 erg s-1, which is in the expected range of an X-ray emitting contact binary.

  19. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. III. HD 5583 and BD+15 2375 - two cool giants with warm companions

    Science.gov (United States)

    Niedzielski, A.; Villaver, E.; Nowak, G.; Adamów, M.; Kowalik, K.; Wolszczan, A.; Deka-Szymankiewicz, B.; Adamczyk, M.; Maciejewski, G.

    2016-04-01

    Context. Evolved stars are crucial pieces for our understanding of the dependency of the planet formation mechanism on the stellar mass and for exploring the mechanism involved in star-planet interactions more deeply. Over the last ten years, we have monitored about 1000 evolved stars for radial velocity variations in the search for low-mass companions under the Penn State - Torun Centre for Astronomy Planet Search program with the Hobby-Eberly Telescope (HET). Selected prospective candidates that required higher RV precision measurements were followed with HARPS-N at the 3.6 m Telescopio Nazionale Galileo under the TAPAS project. Aims: We aim to detect planetary systems around evolved stars to be able to build sound statistics on the frequency and intrinsic nature of these systems, and to deliver in-depth studies of selected planetary systems with evidence of star-planet interaction processes. Methods: For HD 5583 we obtained 14 epochs of precise RV measurements that were collected over 2313 days with the HET, and 22 epochs of ultra-precise HARPS-N data collected over 976 days. For BD+15 2375 we collected 24 epochs of HET data over 3286 days and 25 epochs of HARPS-S data over 902 days. Results: We report the discovery of two planetary mass objects that are orbiting two evolved red giant stars: HD 5583 has a msini = 5.78MJ companion at 0.529 AU in a nearly circular orbit (e = 0.076), the closest companion to a giant star detected with the RV technique, and BD+15 2735 that, with a msini = 1.06MJ, holds the record for the lightest planet orbiting an evolved star found so far (in a circular e = 0.001, 0.576 AU orbit). These are the third and fourth planets found within the TAPAS project, a HARPS-N monitoring of evolved planetary systems identified with the HET. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig

  20. A Hot Spot and Mass Transfer of the Algol-type Binary System WZ Crv

    CERN Document Server

    Virnina, Natalia A; Mogorean, Maxim V

    2011-01-01

    We present the results of two color VR observation of the Algol-type binary system WZ Crv (12h44m15.19s, -21d25m35.4s) which were obtained using the remotely controlled telescope TOA-150 of Tzec Maun Observatory. We determined the moments of individual minima, the orbital period and its derivative, the initial epoch, color indices V-R and temperature estimates of the components. Also we noticed that the phase curve is asymmetric: the second maximum is higher than the first one. It indicates that there is a spot in the photosphere of one of the stars in this system.

  1. The VLT-FLAMES Tarantula Survey: II. R139 revealed as a massive binary system

    OpenAIRE

    Taylor, W.D.; Evans, C J; Sana, H.A.A.; N. R. Walborn; Mink, de, S.E.; Stroud, V.E.; Alvarez-Candal, A.; R. H. Barbá; Bestenlehner, J. M.; Bonanos, A. Z.; Brott, I; Crowther, P. A.; Koter, de, A.; Friedrich, K.; Gräfener, G.

    2011-01-01

    We report the discovery that R139 in 30 Doradus is a massive spectroscopic binary system. Multi-epoch optical spectroscopy of R139 was obtained as part of the VLT-FLAMES Tarantula Survey, revealing a double-lined system. The two components are of similar spectral types; the primary exhibits strong C III 4650 emission and is classified as an O6.5 Iafc supergiant, while the secondary is an O6 Iaf supergiant. The radial-velocity variations indicate a highly eccentric orbit with a period of 153.9...

  2. The VLT-FLAMES Tarantula Survey. II. R139 revealed as a massive binary system

    OpenAIRE

    Taylor, W.D.; Evans, C J; Brott, I; de Koter, A.; Vink, J. S.

    2011-01-01

    We report the discovery that R139 in 30 Doradus is a massive spectroscopic binary system.Multi-epoch optical spectroscopy of R139 was obtained as part of the VLT-FLAMES Tarantula Survey, revealing a double-lined system. The two components are of similar spectral types; the primary exhibits strong C III λ4650 emission and is classified as an O6.5 Iafc supergiant, while the secondary is an O6 Iaf supergiant. The radial-velocity variations indicate a highly eccentric orbit with a period of 153.9...

  3. Photometric Observation and Light Curve Analysis of Binary System ER-Orionis

    Indian Academy of Sciences (India)

    M. M. Lame’e; B. Javanmardi; N. Riazi

    2010-06-01

    Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves and calculate the newtimes of minimum light in each filter and plot the O–C diagram of ER ORI. Using the Wilson’s computer code with the help of an auxiliary computer program to improve the optimizations, the light curve analyses were carried out to find out the photometric elements of the system.

  4. Cometary Dust in the Debris of HD 31648 and HD163296: Two "Baby" Beta pictoris Stars

    Science.gov (United States)

    Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.

    1999-01-01

    The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 Am that resembles that of the star P Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.

  5. A Search For X-ray Emission From Colliding Magnetospheres In Young Eccentric Stellar Binaries

    CERN Document Server

    Getman, Konstantin V; Kospal, Agnes; Salter, Demerese M; Garmire, Gordon P

    2016-01-01

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all 4 binaries the current X-ray data show an increasing average X-ray flux near periastron (at about 2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries can not be...

  6. Photometric solution and period analysis of the contact binary system AH Cnc

    Science.gov (United States)

    Peng, Ying-Jiang; Luo, Zhi-Quan; Zhang, Xiao-Bin; Deng, Li-Cai; Wang, Kun; Tian, Jian-Feng; Yan, Zheng-Zhou; Pan, Yang; Fang, Wei-Jing; Feng, Zhong-Wen; Tang, De-Lin; Liu, Qi-Li; Sun, Jin-Jiang; Zhou, Qiang

    2016-10-01

    Photometric observations of AH Cnc, a W UMa-type system in the open cluster M67, were carried out by using the 50BiN telescope. About 100 h of time-series B- and V -band data were taken, based on which eight new times of light minima were determined. By applying the Wilson-Devinney method, the light curves were modeled and a revised photometric solution of the binary system was derived. We confirmed that AH Cnc is a deep contact (f = 51%), low mass-ratio (q = 0.156) system. Adopting the distance modulus derived from study of the host cluster, we have re-calculated the physical parameters of the binary system, namely the masses and radii. The masses and radii of the two components were estimated to be respectively 1.188(±0.061) M ⊙, 1.332(±0.063) R ⊙ for the primary component and 0.185(±0.032) M ⊙, 0.592(±0.051) R ⊙ for the secondary. By adding the newly derived minimum timings to all the available data, the period variations of AH Cnc were studied. This shows that the orbital period of the binary is continuously increasing at a rate of dp/dt = 4.29 × 10‑10 d yr‑1. In addition to the long-term period increase, a cyclic variation with a period of 35.26 yr was determined, which could be attributed to an unresolved tertiary component of the system.

  7. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. III. HD 5583 and BD+15 2375 - two cool giants with warm companions

    CERN Document Server

    Niedzielski, A; Nowak, G; Adamów, M; Kowalik, K; Wolszczan, A; Deka-Szymankiewicz, B; Adamczyk, M; Maciejewski, G

    2016-01-01

    Evolved stars are crucial pieces to understand the dependency of the planet formation mechanism on the stellar mass and to explore deeper the mechanism involved in star-planet interactions. Over the past ten years, we have monitored about 1000 evolved stars for radial velocity variations in search for low-mass companions under the Penn State - Torun Centre for Astronomy Planet Search program with the Hobby-Eberly Telescope. Selected prospective candidates that required higher RV precision measurements have been followed with HARPS-N at the 3.6 m Telescopio Nazionale Galileo under the TAPAS project. We aim to detect planetary systems around evolved stars to be able to build sound statistics on the frequency and intrinsic nature of these systems, and to deliver in-depth studies of selected planetary systems with evidence of star-planet interaction processes. For HD 5583 we obtained 14 epochs of precise RV measurements collected over 2313 days with the Hobby-Eberly Telescope (HET), and 22 epochs of ultra-precise...

  8. First light of the VLT planet finder SPHERE - II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited

    CERN Document Server

    Maire, A -L; Ginski, C; Vigan, A; Messina, S; Mesa, D; Galicher, R; Gratton, R; Desidera, S; Kopytova, T G; Millward, M; Thalmann, C; Claudi, R U; Ehrenreich, D; Zurlo, A; Chauvin, G; Antichi, J>; Baruffolo, A; Bazzon, A; Beuzit, J -L; Blanchard, P; Boccaletti, A; de Boer, J; Carle, M; Cascone, E; Costille, A; De Caprio, V; Delboulbe, A; Dohlen, K; Dominik, C; Feldt, M; Fusco, T; Girard, J H; Giro, E; Gisler, D; Gluck, L; Gry, C; Henning, T; Hubin, N; Hugot, E; Jaquet, M; Kasper, M; Lagrange, A -M; Langlois, M; Mignant, D Le; Llored, M; Madec, F; Martinez, P; Mawet, D; Milli, J; Moeller-Nilsson, O; Mouillet, D; Moulin, T; Moutou, C; Origne, A; Pavlov, A; Petit, C; Pragt, J; Puget, P; Ramos, J; Rochat, S; Roelfsema, R; Salasnich, B; Sauvage, J -F; Schmid, H M; Turatto, M; Udry, S; Vakili, F; Wahhaj, Z; Weber, L; Wildi, F

    2015-01-01

    [Abridged] Context. The young systems PZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to refine the physical properties and architecture of both systems. Methods. We use SPHERE commissioning data and REM observations, as well as literature and unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2. Results. We derive new photometry and confirm the nearly daily photometric variability of PZ Tel A. Using literature data spanning 38 yr, we show that the star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100 K, log(g)0.66) of PZ Tel B. For e4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2 color can be used with YJH low-resolution spectra to identify young L-type companions, provided high photometric accuracy (<0.05 mag) is achieved. Conclusi...

  9. The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems

    CERN Document Server

    Lovis, C; Mayor, M; Udry, S; Benz, W; Bertaux, J -L; Bouchy, F; Correia, A C M; Laskar, J; Curto, G Lo; Mordasini, C; Pepe, F; Queloz, D; Santos, N C

    2010-01-01

    Context. Low-mass extrasolar planets are presently being discovered at an increased pace by radial velocity and transit surveys, opening a new window on planetary systems. Aims. We are conducting a high-precision radial velocity survey with the HARPS spectrograph which aims at characterizing the population of ice giants and super-Earths around nearby solar-type stars. This will lead to a better understanding of their formation and evolution, and yield a global picture of planetary systems from gas giants down to telluric planets. Methods. Progress has been possible in this field thanks in particular to the sub-m/s radial velocity precision achieved by HARPS. We present here new high-quality measurements from this instrument. Results. We report the discovery of a planetary system comprising at least five Neptune-like planets with minimum masses ranging from 12 to 25 M_Earth, orbiting the solar-type star HD 10180 at separations between 0.06 and 1.4 AU. A sixth radial velocity signal is present at a longer perio...

  10. An M-dwarf star in the transition disk of Herbig HD 142527. Physical parameters and orbital elements

    Science.gov (United States)

    Lacour, S.; Biller, B.; Cheetham, A.; Greenbaum, A.; Pearce, T.; Marino, S.; Tuthill, P.; Pueyo, L.; Mamajek, E. E.; Girard, J. H.; Sivaramakrishnan, A.; Bonnefoy, M.; Baraffe, I.; Chauvin, G.; Olofsson, J.; Juhasz, A.; Benisty, M.; Pott, J.-U.; Sicilia-Aguilar, A.; Henning, T.; Cardwell, A.; Goodsell, S.; Graham, J. R.; Hibon, P.; Ingraham, P.; Konopacky, Q.; Macintosh, B.; Oppenheimer, R.; Perrin, M.; Rantakyrö, F.; Sadakuni, N.; Thomas, S.

    2016-05-01

    Aims: HD 42527A is one of the most studied Herbig Ae/Be stars with a transitional disk, as it has the largest imaged gap in any protoplanetary disk: the gas is cleared from 30 to 90 AU. The HD 142527 system is also unique in that it has a stellar companion with a small mass compared to the mass of the primary star. This factor of ≈20 in mass ratio between the two objects makes this binary system different from any other YSO. The HD 142527 system could therefore provide a valuable test bed for understanding the impact of a lower mass companion on disk structure. This low-mass stellar object may be responsible for both the gap and dust trapping observed by ALMA at longer distances. Methods: We observed this system with the NACO and GPI instruments using the aperture masking technique. Aperture masking is ideal for providing high dynamic range even at very small angular separations. We present the spectral energy distribution (SED) for HD 142527A and B. Brightness of the companion is now known from the R band up to the M' band. We also followed the orbital motion of HD 142527B over a period of more than two years. Results: The SED of the companion is compatible with a T = 3000 ± 100 K object in addition to a 1700 K blackbody environment (likely a circum-secondary disk). From evolution models, we find that it is compatible with an object of mass 0.13 ± 0.03 M⊙, radius 0.90 ± 0.15 R⊙, and age Myr. This age is significantly younger than the age previously estimated for HD 142527A. Computations to constrain the orbital parameters found a semimajor axis of mas, an eccentricity of 0.5 ± 0.2, an inclination of 125 ± 15 degrees, and a position angle of the right ascending node of -5 ± 40 degrees. Inclination and position angle of the ascending node are in agreement with an orbit coplanar with the inner disk, not coplanar with the outer disk. Despite its high eccentricity, it is unlikely that HD 142527B is responsible for truncating the inner edge of the outer disk.

  11. Searching for twins of the V1309 Sco progenitor system: a selection of long-period contact binaries

    CERN Document Server

    Kurtenkov, Alexander

    2016-01-01

    The only well-studied red nova progenitor (V1309 Sco) was a contact binary with a 1.4-day period. The prospects for searching for similar systems, as well as stellar merger candidates in general, are explored in this work. The photospheric temperatures of 128 variables with periods P = 1.1 - 1.8 d classified as W UMa-type binaries are calculated using their colors listed in the SDSS catalog. A selection of 15 contact binaries with similar temperatures and periods as the V1309 Sco progenitor is thus compiled. The Kepler Eclipsing Binary Catalog is used to analyse systems with eclipse timing variations (ETV) possibly caused by changes of the orbital period. Out of the 31 systems with parabolic ETV curves listed by Conroy et al. (2014, AJ, 147, 45) two could be contact binaries with a decreasing period and, therefore, potential stellar merger candidates. Out of the 569 contact binaries in the OGLE field analysed by Kubiak et al. (2006, AcA, 56, 253) 14 systems have periods longer than 0.8 d and a statistically s...

  12. Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant?

    CERN Document Server

    Funk, Barbara; Eggl, Siegfried

    2015-01-01

    Locating planets in HabitableZones (HZs) around other stars is a growing field in contemporary astronomy. Since a large percentage of all G-M stars in the solar neighbourhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional habitable terrestrial planets. Those systems are Gliese 86, gamma Cephei, HD 41004 and HD 196885. In the case of gamma Cephei, our results suggest that only the M dwarf companion could host additional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885 A. HD 196885 B can be considered a slightly more promising target ...

  13. Asteroid flux towards circumprimary habitable zones in binary star systems: II. Dynamics

    CERN Document Server

    Bancelin, D; Bazso, A

    2015-01-01

    Secular and mean motion resonances (hearafter MMR) are effective perturbations to shape planetary systems. In binary star systems, they play a key role during the early and late phases of planetary formation as well as the dynamical stability of a planetary system. In this study, we aim to correlate the presence of orbital resonances with the rate of icy asteroids crossing the habitable zone (hearafter HZ), from a circumprimary disk of planetesimals in various binary star systems. We modelled a belt of small bodies in the inner and outer regions, respectively below and beyond the orbit of a gas giant planet. The planetesimals are equally placed around a primary G-type star and move under the gravitational influence of the two stars and the gas giant. We numerically integrated the system for 50 Myr considering various parameters for the secondary star. Its stellar type varies from a M- to F-type; its semimajor axis is either 50 au or 100 au and its eccentricity is either 0.1 or 0.3. Our simulations highlight t...

  14. A close-pair binary in a distant triple supermassive black hole system.

    Science.gov (United States)

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-01

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  15. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  16. Spectral and timing nature of the symbiotic X-ray binary 4U 1954+319: The slowest rotating neutron star in an X-ray binary system

    Energy Technology Data Exchange (ETDEWEB)

    Enoto, Teruaki; Corbet, Robin H. D. [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771 (United States); Sasano, Makoto [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamada, Shin' ya; Tamagawa, Toru; Makishima, Kazuo [High Energy Astrophysics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Pottschmidt, Katja; Marcu, Diana [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Fuerst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Wilms, Jörn, E-mail: teruaki.enoto@nasa.gov [Dr. Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2014-05-10

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ∼5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (∼7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (∼60%-80%), and the location in the Corbet diagram favor high B-field (≳ 10{sup 12} G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10{sup 33}-10{sup 35} erg s{sup –1}), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ∼10{sup 13} G NS, this scheme can explain the ∼5.4 hr equilibrium rotation without employing the magnetar-like field (∼10{sup 16} G) required in the disk accretion case. The timescales of multiple irregular flares (∼50 s) can also be attributed to the free-fall time from the Alfvén shell for a ∼10{sup 13} G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  17. Account of observational selection effects and distribution of close binary systems of types DM and SD in space

    International Nuclear Information System (INIS)

    The probabilities of the discovery of close binary systems as eclipsing variables are calculated and tabulated (for the systems of types DM and SD). The spatial density of these systems in solar neighbourhood, as well as their distribution depending on the parameters of systems are evaluated. 28 refs.; 20 figs.; 3 tabs

  18. Deqing Radio and Television Networks based HD Video Conference System%基于德清广电网络的高清视频会议系统

    Institute of Scientific and Technical Information of China (English)

    俞高明; 沈永华

    2014-01-01

    在三网融合的大环境下,德清广电在拓展宽带业务的同时大力发展IP增值业务,承接了德清县党政高清视频会议系统,该高清视频会议系统以1个主会场和N个分会场为载体,实现各个会场之间的双向音视频传送,达到面对面视频会议的需求。%Under the triple play circumstance , Deqing photoelectric is expanding the broadband service , while the same time , it also vigorously develops the IP value -added business and undertakes the Deqing party's high-definition video conference system project .The HD video conferencing system contains a main venue and N sub-venues;it achieves two-way video and audio transmission and provides face to face video confer-ence .

  19. ALMA observations of a misaligned binary protoplanetary disk system in Orion

    International Nuclear Information System (INIS)

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO+ 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ∼9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ∼72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  20. ALMA observations of a misaligned binary protoplanetary disk system in Orion

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96816 (United States); Mann, Rita K.; Francesco, James Di; Johnstone, Doug; Matthews, Brenda [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Andrews, Sean M.; Ricci, Luca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hughes, A. Meredith [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Bally, John, E-mail: jpw@ifa.hawaii.edu [CASA, University of Colorado, CB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO{sup +} 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ∼9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ∼72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  1. Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766

    CERN Document Server

    Lisse, C M; Wyatt, M C; Morlok, A

    2007-01-01

    We present an analysis of the gas-poor circumstellar material in the HD 113766 binary system (F3/F5, 10 - 16 Myr), recently observed by the Spitzer Space Telescope. For our study we have used the infrared mineralogical model derived from observations of the Deep Impact experiment. We find the dust dominated by warm, fine (~1 um) particles, abundant in Mg-rich olivine, crystalline pyroxenes, amorphous silicates, Fe-rich sulfides, amorphous carbon, and colder water-ice. The warm dust material mix is akin to an inner main belt asteroid of S-type composition. The ~440 K effective temperature of the warm dust implies that the bulk of the observed material is in a narrow belt ~1.8 AU from the 4.4 L_solar central source, in the terrestrial planet-forming region and habitable zone of the system (equivalent to 0.9 AU in the solar system). The icy dust lies in 2 belts, located at 4-9 AU and at 30 - 80 AU. The lower bound of warm dust mass in 0.1 - 20 um, dn/da ~ a^-3.5 particles is very large, at least 3 x 10^20 kg, eq...

  2. Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure. First applications to multiplanet and multistar systems

    Science.gov (United States)

    Hamers, Adrian S.; Portegies Zwart, Simon F.

    2016-07-01

    We present a method for studying the secular gravitational dynamics of hierarchical multiple systems consisting of nested binaries, which is valid for an arbitrary number of bodies and arbitrary hierarchical structure. We derive the Hamiltonian of the system and expand it in terms of the - assumed to be - small ratios xi of binary separations. At the lowest non-trivial expansion order (quadrupole order, second order in xi), the Hamiltonian consists of terms which, individually, depend on binary pairs. At higher orders, in addition to terms depending on binary pairs, we also find terms which, individually, depend on more than two binaries. In general, at order n in xi, individual terms depend on at most n - 1 binaries. We explicitly derive the Hamiltonian including all terms up and including third order in xi (octupole order), and including the binary pairwise terms up and including fifth order in xi. These terms are orbit averaged, and we present a new algorithm for efficiently solving the equations of motion. This algorithm is highly suitable for studying the secular evolution of hierarchical systems with complex hierarchies, making long-term integrations of such systems feasible. We show that accurate results are obtained for multiplanet systems with semimajor axis ratios as large as ≈0.4, provided that high-order terms are included. In addition to multiplanet systems with a single star, we apply our results to multistar systems with multiple planets.

  3. Magnetic field effect on the liquidus boundary of Bi-Mn binary system

    Science.gov (United States)

    Mitsui, Yoshifuru; Koyama, Keiichi; Oikawa, Katsunari; Watanabe, Kazuo

    2014-10-01

    The magnetic field effect (MFE) on liquidus boundary of Bi-Mn binary system was investigated by differential thermal analysis (DTA) and the computer coupling of phase diagram method (CALPHAD). The liquidus boundary for Bi-18at.%Mn and Bi-24at.%Mn rose clearly by the application of the magnetic fields. The MFE for liquidus boundary temperature Tliq changed from ΔTliq∝B2 to ΔTliq∝B because of the large increase of the peritectic temperature from BiMn and BiMn1.08 by the application of magnetic field.

  4. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  5. A NEW SYNCHRONIZATION SCHEME USING PERFECT PUNCTURED BINARY SEQUENCE PAIRS IN DS-UWB SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ultra WideBand (UWB) radio is a new wireless technology that transmits extremely short durationradio impulses. In this paper, a new synchronization scheme is proposed in Direct Sequence (DS) UWB sys-tem using Perfect Punctured Binary Sequence Pairs (PPBSP) as the preamble. It can acquire both Pseudo-Noise (PN) sequence and frame synchronization at the same time. The properties and the combinatorial admis-sibility conditions of PPBSP are presented. The simulation results show that PPBSP is good for synchroniza-tion by their good cross-correlation properties both under Additive White Gaussian Noise (AWGN) channeland modified Saleh-Valenzuela channel.

  6. Tidal pressure induced neutrino emission as an energy dissipation mechanism in binary pulsar systems

    International Nuclear Information System (INIS)

    We briefly review possible systematic limitations to the inferred General Relativity tests in binary pulsar systems, then propose a new mechanism whereby orbital energy can drive the electron-proton vs. neutron density away from equilibrium, and the concomitant neutrino (or antineutrino) emission represents an orbital energy dissipation. Of the total orbital energy loss rate, we estimate the fractional contribution of this mechanism as 8x10-6, whereas the observational accuracy is at the level of 7x10-3, and agrees with the predicted rate of gravitational radiation. 10 refs

  7. Gravitational-radiation damping of compact binary systems to second post-newtonian order

    CERN Document Server

    Blanchet, L; Iyer, B R; Will, C M; Wiseman, A G; Blanchet, Luc; Damour, Thibault; Iyer, Bala R; Will, Clifford M; Wiseman, Alan G

    1995-01-01

    The rate of gravitational-wave energy loss from inspiralling binary systems of compact objects of arbitrary mass is derived through second post-Newtonian (2PN) order O[(Gm/rc^2)^2] beyond the quadrupole approximation. The result has been derived by two independent calculations of the (source) multipole moments. The 2PN terms, and in particular the finite mass contribution therein (which cannot be obtained in perturbation calculations of black hole spacetimes), are shown to make a significant contribution to the accumulated phase of theoretical templates to be used in matched filtering of the data from future gravitational-wave detectors.

  8. Fluctuation limit theorems for age-dependent critical binary branching systems

    Directory of Open Access Journals (Sweden)

    Murillo-Salas Antonio

    2011-03-01

    Full Text Available We consider an age-dependent branching particle system in ℝd, where the particles are subject to α-stable migration (0 < α ≤ 2, critical binary branching, and general (non-arithmetic lifetimes distribution. The population starts off from a Poisson random field in ℝd with Lebesgue intensity. We prove functional central limit theorems and strong laws of large numbers under two rescalings: high particle density, and a space-time rescaling that preserves the migration distribution. Properties of the limit processes such as Markov property, almost sure continuity of paths and generalized Langevin equation, are also investigated.

  9. The complex circumstellar environment of HD142527

    CERN Document Server

    Verhoeff, A P; Pantin, E; Waters, L B F M; Tielens, A G G M; Honda, M; Fujiwara, H; Bouwman, J; van Boekel, R; Dougherty, S M; de Koter, A; Dominik, C; Mulders, G D

    2011-01-01

    The recent findings of gas giant planets around young A-type stars suggest that disks surrounding Herbig Ae/Be stars will develop planetary systems. An interesting case is HD142527, for which previous observations revealed a complex circumstellar environment and an unusually high ratio of infrared to stellar luminosity. Its properties differ considerably from other Herbig Ae/Be stars. This suggests that the disk surrounding HD142527 is in an uncommon evolutionary stage. We aim for a better understanding of the geometry and evolutionary status of the circumstellar material around the Herbig Ae/Be star HD142527. We map the composition and spatial distribution of the dust around HD142527. We analyze SEST and ATCA millimeter data, VISIR N and Q-band imaging and spectroscopy. We gather additional relevant data from the literature. We use the radiative transfer code MCMax to construct a model of the geometry and density structure of the circumstellar matter, which fits all of the observables satisfactorily. We find...

  10. HD 285507b

    DEFF Research Database (Denmark)

    Quinn, Samuel N.; White, Russel J.; Latham, David W.;

    2014-01-01

    We report the discovery of the first hot Jupiter in the Hyades open cluster. HD 285507b orbits a V = 10.47 K4.5V dwarf (M * = 0.734 M ☉; R * = 0.656 R ☉) in a slightly eccentric () orbit with a period of days. The induced stellar radial velocity corresponds to a minimum companion mass of M Psin i...... = 0.917 ± 0.033 M Jup. Line bisector spans and stellar activity measures show no correlation with orbital phase, and the radial velocity amplitude is independent of wavelength, supporting the conclusion that the variations are caused by a planetary companion. Follow-up photometry indicates with high...

  11. The VLT-FLAMES Tarantula Survey II: R139 revealed as a massive binary system

    CERN Document Server

    Taylor, W D; Sana, H; Walborn, N R; de Mink, S E; Stroud, V E; Alvarez-Candal, A; Barbá, R H; Bestenlehner, J M; Bonanos, A Z; Brott, I; Crowther, P A; de Koter, A; Friedrich, K; Gräfener, G; Hénault-Brunet, V; Herrero, A; Kaper, L; Langer, N; Lennon, D J; Apellániz, J Maíz; Markova, N; Morrell, N; Monaco, L; Vink, J S

    2011-01-01

    We report the discovery that R139 in 30 Doradus is a massive spectroscopic binary system. Multi-epoch optical spectroscopy of R139 was obtained as part of the VLT-FLAMES Tarantula Survey, revealing a double-lined system. The two components are of similar spectral types; the primary exhibits strong C III 4650 emission and is classified as an O6.5 Iafc supergiant, while the secondary is an O6 Iaf supergiant. The radial-velocity variations indicate a highly eccentric orbit with a period of 153.9 days. Photometry obtained with the Faulkes Telescope South shows no evidence for significant variability within an 18 month period. The orbital solution yields lower mass limits for the components of M1sin^3 i = 78 \\pm 8 Msun and M2sin^3 i = 66 \\pm 7 Msun. As R139 appears to be the most massive binary system known to contain two evolved Of supergiants, it will provide an excellent test for atmospheric and evolutionary models.

  12. Impact of the orbital uncertainties on the timing of pulsars in binary systems

    CERN Document Server

    Caliandro, G Andrea; Rea, Nanda

    2012-01-01

    The detection of pulsations from an X-ray binary is an unambiguous signature of the presence of a neutron star in the system. When the pulsations are missed in the radio band, their detection at other wavelengths, like X-ray or gamma-rays, requires orbital demodulation, since the length of the observations are often comparable to, or longer than the system orbital period. The detailed knowledge of the orbital parameters of binary systems plays a crucial role in the detection of the spin period of pulsars, since any uncertainty in their determination translates into a loss in the coherence of the signal during the demodulation process. In this paper, we present an analytical study aimed at unveiling how the uncertainties in the orbital parameters might impact on periodicity searches. We find a correlation between the power of the signal in the demodulated arrival time series and the uncertainty in each of the orbital parameters. This correlation is also a function of the pulsar frequency. We test our analytica...

  13. Circumstellar Habitable Zones of Binary Star Systems in the Solar Neighborhood

    CERN Document Server

    Eggl, Siegfried; Funk, Barbara; Georgakarakos, Nikolaos; Haghighipour, Nader

    2012-01-01

    Binary and multiple systems constitute more than half of the total stellar population in the Solar neighborhood (Kiseleva-Eggleton and Eggleton 2001). Their frequent occurrence as well as the fact that more than 70 (Schneider et al. 2011) planets have already been discovered in such configurations - most noteably the telluric companion of alpha Centauri B (Dumusque et al. 2012) - make them interesting targets in the search for habitable worlds. Recent studies (Eggl et al. 2012b, Forgan 2012) have shown, that despite the variations in gravitational and radiative environment, there are indeed circumstellar regions where planets can stay within habitable insolation limits on secular dynamical timescales. In this article we provide habitable zones for 19 near S-Type binary systems from the Hipparchos and WDS catalogues with semimajor axes between 1 and 100 AU. Hereby, we accounted for the combined dynamical and radiative influence of the second star on the Earth-like planet. Out of the 19 systems presented, 17 of...

  14. MAMA: An Algebraic Map for the Secular Dynamics of Planetesimals in Tight Binary Systems

    CERN Document Server

    Leiva, A M; Beaugé, C

    2013-01-01

    We present an algebraic map (MAMA) for the dynamical and collisional evolution of a planetesimal swarm orbiting the main star of a tight binary system (TBS). The orbital evolution of each planetesimal is dictated by the secular perturbations of the secondary star and gas drag due to interactions with a protoplanetary disk. The gas disk is assumed eccentric with a constant precession rate. Gravitational interactions between the planetesimals are ignored. All bodies are assumed coplanar. A comparison with full N-body simulations shows that the map is of the order of 100 times faster, while preserving all the main characteristics of the full system. In a second part of the work, we apply MAMA to the \\gamma-Cephei, searching for friendly scenarios that may explain the formation of the giant planet detected in this system. For low-mass protoplanetary disks, we find that a low-eccentricity static disk aligned with the binary yields impact velocities between planetesimals below the disruption threshold. All other sc...

  15. Observations of Binary Systems with the H.E.S.S. Telescopes

    CERN Document Server

    Bordas, P; Eger, P; Ernenwein, J -P; Laffon, H; Mariaud, C; Murach, T; de Naurois, M; Romoli, C; Schüssler, F

    2016-01-01

    Observations of binary systems obtained recently with the High Energy Stereoscopic System (H.E.S.S) of Cherenkov telescopes are reported. The outcomes of a detailed observation campaign on PSR B1259-63 during its periastron passage in 2014 will be presented. This system was observed for the first time with H.E.S.S. II, providing spectra and light curves down to 200 GeV, which will be compared with observations conducted during previous periastron passages and with results from an analysis of contemporaneously taken Fermi-LAT data. Also long-term observations of LS 5039 with H.E.S.S in phase I and phase II are reported. This source was monitored at very high energies (VHEs) in a period of time spanning more than ten years. Its spectral energy distribution measured with H.E.S.S. II extends down to 120 GeV. Spectral results from the Fermi-LAT observations are shown as well, and the compatibility with H.E.S.S. results in the overlapping energy range is discussed. The identification of the new gamma-ray binary can...

  16. MAMA: an algebraic map for the secular dynamics of planetesimals in tight binary systems

    Science.gov (United States)

    Leiva, A. M.; Correa-Otto, J. A.; Beaugé, C.

    2013-12-01

    We present an algebraic map (MAMA) for the dynamical and collisional evolution of a planetesimal swarm orbiting the main star of a tight binary system. The orbital evolution of each planetesimal is dictated by the secular perturbations of the secondary star and gas drag due to interactions with a protoplanetary disc. The gas disc is assumed eccentric with a constant precession rate. Gravitational interactions between the planetesimals are ignored. All bodies are assumed coplanar. A comparison with full N-body simulations shows that the map is of the order of 102 times faster, while preserving all the main characteristics of the full system. In a second part of the work, we apply multiparticle algebraic map for accretion (MAMA) to the γ-Cephei, searching for friendly scenarios that may explain the formation of the giant planet detected in this system. For low-mass protoplanetary discs, we find that a low-eccentricity static disc aligned with the binary yields impact velocities between planetesimals below the disruption threshold. All other scenarios appear hostile to planetary formation.

  17. Dynamical model of binary asteroid systems through patched three-body problems

    Science.gov (United States)

    Ferrari, Fabio; Lavagna, Michèle; Howell, Kathleen C.

    2016-08-01

    The paper presents a strategy for trajectory design in the proximity of a binary asteroid pair. A novel patched approach has been used to design trajectories in the binary system, which is modeled by means of two different three-body systems. The model introduces some degrees of freedom with respect to a classical two-body approach and it is intended to model to higher accuracy the peculiar dynamical properties of such irregular and low gravity field bodies, while keeping the advantages of having a full analytical formulation and low computational cost required. The neighborhood of the asteroid couple is split into two regions of influence where two different three-body problems describe the dynamics of the spacecraft. These regions have been identified by introducing the concept of surface of equivalence (SOE), a three-dimensional surface that serves as boundary between the regions of influence of each dynamical model. A case of study is presented, in terms of potential scenario that may benefit of such an approach in solving its mission analysis. Cost-effective solutions to land a vehicle on the surface of a low gravity body are selected by generating Poincaré maps on the SOE, seeking intersections between stable and unstable manifolds of the two patched three-body systems.

  18. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO2 + alkanol) binary systems

    International Nuclear Information System (INIS)

    Research highlights: → (Vapor + liquid) equilibria of three (CO2 + C5 alcohol) binary systems were measured. → Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. → No liquid immiscibility was observed at the temperatures and pressures studied. → Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. → Correlation results showed relative deviations ≤8 % (liquid) and ≤2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO2 + 3-methyl-2-butanol), (CO2 + 2-pentanol), and (CO2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  19. Possible solution to the riddle of HD 82943 multi-planet system: the three-planet resonance 1:2:5?

    CERN Document Server

    Baluev, Roman V

    2013-01-01

    We carry out a new analysis of the published radial velocity data for the planet-hosting star HD82943. We include the recent Keck/HIRES measurements as well as the aged but much more numerous CORALIE data. We find that the CORALIE radial velocity measurements are polluted by a systematic annual variation which affected the robustness of many previous results. We show that after purging this variation, the residuals still contain a clear signature of an additional $\\sim 1100$ days periodicity. The latter variation leaves significant hints in all three independent radial velocity subsets that we analysed: the CORALIE data, the Keck data acquired prior to a hardware upgrade, and the Keck data taken after the upgrade. We mainly treat this variation as a signature of a third planet in the system, although we cannot rule out other interpretations, such as long-term stellar activity. We find it easy to naturally obtain a stable three-planet radial-velocity fit close to the three-planet mean-motion resonance 1:2:5, w...

  20. Characterization of Turbulent Processes by the Raman Lidar System Basil in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope

    Science.gov (United States)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Behrendt, Andreas; Wulfmeyer, Volker

    2016-06-01

    Measurements carried out by the Raman lidar system BASIL are reported to demonstrate the capability of this instrument to characterize turbulent processes within the Convective Boundary Layer (CBL). In order to resolve the vertical profiles of turbulent variables, high resolution water vapour and temperature measurements, with a temporal resolution of 10 sec and a vertical resolution of 90 and 210 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of spectral and auto-covariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (IOP 5, 20 April 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. The noise errors are demonstrated to be small enough to allow the derivation of up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations with sufficient accuracy.