WorldWideScience

Sample records for binary system exo

  1. High-Resolution spectroscopy of the low-mass X-ray binary EXO 0748-67

    CERN Document Server

    Cottam, J; Brinkman, A C; Den Herder, J M; Erd, Christian

    2001-01-01

    We present initial results from observations of the low-mass X-ray binary EXO 0748-67 with the Reflection Grating Spectrometer on board the XMM-Newton Observatory. The spectra exhibit discrete structure due to absorption and emission from ionized neon, oxygen, and nitrogen. We use the quantitative constraints imposed by the spectral features to develop an empirical model of the circumsource material. This consists of a thickened accretion disk with emission and absorption in the plasma orbiting high above the binary plane. This model presents challenges to current theories of accretion in X-ray binary systems.

  2. Hysteresis in the spectral states of the neutron star low-mass X-ray binary EXO 1745-248

    CERN Document Server

    Mukherjee, Arunava

    2011-01-01

    We study the low-frequency timing properties and the spectral state evolution of the transient neutron star low-mass X-ray binary EXO 1745-248 using the entire Rossi X-ray Timing Explorer Proportional Counter Array data. We tentatively conclude that EXO 1745-248 is an atoll source, and report the discovery of a ~ 0.45 Hz low-frequency quasi-periodic oscillation and ~ 10 Hz peaked noises. If it is an atoll, this source is unusual because (1) instead of a `C'-like curve, it traced a clear overall clockwise hysteresis curve in each of the colour-colour diagram and the hardness-intensity diagram; and (2) the source took at least 2.5 months to trace the softer banana state, as opposed to a few hours to a day, which is typical for an atoll source. The shape of the hysteresis track was intermediate between the characteristic `q'-like curves of several black hole systems and `C'-like curves of atolls, implying that EXO 1745-248 is an important source for the unification of the black hole and neutron star accretion pr...

  3. Disc-Jet Coupling in the Terzan 5 Neutron Star X-ray Binary EXO 1745$-$248

    CERN Document Server

    Tetarenko, A J; Sivakoff, G R; Tremou, E; Linares, M; Tudor, V; Miller-Jones, J C A; Heinke, C O; Chomiuk, L; Strader, J; Altamirano, D; Degenaar, N; Maccarone, T; Patruno, A; Sanna, A; Wijnands, R

    2016-01-01

    We present the results of VLA, ATCA, and Swift XRT observations of the 2015 outburst of the transient neutron star X-ray binary (NSXB), EXO 1745$-$248, located in the globular cluster Terzan 5. Combining (near-) simultaneous radio and X-ray measurements we measure a correlation between the radio and X-ray luminosities of $L_R\\propto L_X^\\beta$ with $\\beta=1.68^{+0.10}_{-0.09}$, linking the accretion flow (probed by X-ray luminosity) and the compact jet (probed by radio luminosity). While such a relationship has been studied in multiple black hole X-ray binaries (BHXBs), this work marks only the third NSXB with such a measurement. Constraints on this relationship in NSXBs are strongly needed, as comparing this correlation between different classes of XB systems is key in understanding the properties that affect the jet production process in accreting objects. Our best fit disc-jet coupling index for EXO 1745$-$248 is consistent with the measured correlation in NSXB 4U 1728$-$34 ($\\beta=1.5\\pm 0.2$) but inconsi...

  4. The high optical polarization in the Be/X-ray binary EXO 2030+375

    CERN Document Server

    Reig, P; Papadakis, I; Kylafis, N; Tassis, K

    2014-01-01

    Polarization in classical Be stars results from Thomson scattering of the unpolarized light from the Be star in the circumstellar disc. Theory and observations agree that the maximum degree of polarization from isolated Be stars is < 4%. We report on the first optical polarimetric observations of the Be/X-ray binary EXO\\,2030+375. We find that the optical (R band) light is strongly linearly polarized with a degee of polarization of 19%, the highest ever measured either in a classical or Be/X-ray binary. We argue that the interstellar medium cannot account for this high polarization degree and that a substantial amount must be intrinsic to the source. We propose that it may result from the alignment of non-spherical ferromagnetic grains in the Be star disc due to the strong neutron star magnetic field.

  5. XMM-Newton observations of the low-mass X-ray binary EXO 0748-676 in quiescence

    NARCIS (Netherlands)

    Trigo, M. Diaz; Boirin, L.; Costantini, E.; Mendez, M.; Parmar, A.

    2011-01-01

    The neutron star low-mass X-ray binary EXO 0748-676 started a transition from outburst to quiescence in August 2008, after more than 24 years of continuous accretion. The return of the source to quiescence has been monitored extensively by several X-ray observatories. Here, we report on four XMM-New

  6. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    Science.gov (United States)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental

  7. Systems astrobiology for a reliable biomarker on exo-worlds

    Science.gov (United States)

    Chela Flores, Julian

    2013-04-01

    Although astrobiology is a science midway between biology and astrophysics, it has surprisingly remained largely disconnected from recent trends in certain branches of both of these disciplines. Aiming at discovering how systems properties emerge has proved valuable in chemistry and in biology and should also yield insights into astrobiology. This is feasible since new large data banks in the case of astrobiology are of a geophysical/astronomical kind, rather than the also large molecular biology data that are used for questions related firstly, to genetics in a systems context and secondly, to biochemistry. The application of systems biology is illustrated for our own planetary system, where 3 Earth-like planets are within the habitable zone of a G2V star and where the process of photosynthesis has led to a single oxygenic atmosphere that was triggered during the Great Oxidation Event some 2,5 billion years before the present. The significance of the biogenic origin of a considerable fraction of our atmosphere has been discussed earlier (Kiang et al., 2007). Bonding of O2 ensures that it is stable enough to accumulate in a world's atmosphere if triggered by a living process. The reduction of F and Cl deliver energy release per e+-transfer, but unlike O2 the weaker bonding properties inhibit large atmospheric accumulation (Catling et al., 2005). The evolution of O2-producing photosynthesis is very likely on exo-worlds (Wolstencroft and Raven, 2002). With our simplifying assumption of evolutionary convergence, we show how to probe for a reliable biomarker in the exo-atmospheres of planets, or their satellites, orbiting stars of different luminosities and ages (Chela-Flores, 2013). We treat the living process as a system of exo-environments capable of radically modifying their geology and atmospheres, both for exo-planets, and especially for exo-moons, the presence of which can be extracted from the Kepler data (Kipping et al., 2012). What we are learning about the

  8. An Exo-Jupiter candidate in the eclipsing binary FL Lyr

    Science.gov (United States)

    Kozyreva, V. S.; Bogomazov, A. I.; Demkov, B. P.; Zotov, L. V.; Tutukov, A. V.

    2015-11-01

    Light curves of the eclipsing binary FL Lyr acquired by the Kepler space telescope are analyzed. Eclipse timing measurements for FL Lyr testify to the presence of a third body in the system. Preliminary estimates of its mass and orbital period are ≳2MJ and ≳7 yrs. The times of primary minimum in the light curve of FL Lyr during the operation of the Kepler mission are presented.

  9. An Exo-Jupiter Candidate in the Eclipsing Binary FL Lyr

    CERN Document Server

    Kozyreva, V S; Demkov, B P; Zotov, L V; Tutukov, A V

    2015-01-01

    Light curves of the eclipsing binary FL Lyr acquired by the Kepler space telescope are analyzed. Eclipse timing measurements for FL Lyr testify to the presence of a third body in the system. Preliminary estimates of its mass and orbital period are > 2M_Jupiter and > 7 yrs. The times of primary minimum in the light curve of FL Lyr during the operation of the Kepler mission are presented.

  10. JEM-X observations of the Be/X-ray binary EXO 2030+375

    DEFF Research Database (Denmark)

    Nunez, S.M.; Reig, P.; Blay, P.

    2003-01-01

    We have used data from the Joint European Monitor (JEM-X) to perform an X-ray spectral and timing analysis of the 42-s transient pulsar EXO 2030+375 during an X-ray outburst. X-ray pulsations are clearly detected with an average pulse period of 41.66+/-0.05 s and an average pulse fraction of 60%....

  11. Predicting the frequencies of diverse exo-planetary systems

    CERN Document Server

    Greaves, J S; Wyatt, M C; Beichman, C A; Bryden, G

    2007-01-01

    Extrasolar planetary systems range from hot Jupiters out to icy comet belts more distant than Pluto. We explain this diversity in a model where the mass of solids in the primordial circumstellar disk dictates the outcome. The star retains measures of the initial heavy-element (metal) abundance that can be used to map solid masses onto outcomes, and the frequencies of all classes are correctly predicted. The differing dependences on metallicity for forming massive planets and low-mass cometary bodies are also explained. By extrapolation, around two-thirds of stars have enough solids to form Earth-like planets, and a high rate is supported by the first detections of low-mass exo-planets.

  12. Autoregulation of Sinorhizobium meliloti exoR gene expression.

    Science.gov (United States)

    Lu, Hai-Yang; Cheng, Hai-Ping

    2010-07-01

    The successful nitrogen-fixing symbiosis between the gram-negative soil bacterium Sinorhizobium meliloti and its leguminous plant host alfalfa (Medicago sativa) requires the bacterial exopolysaccharide succinoglycan. Succinoglycan and flagellum production, along with the ability to metabolize more than 20 different carbon sources and control the expression of a large number of S. meliloti genes, is regulated by the ExoR-ExoS/ChvI signalling pathway. The ExoR protein interacts with and suppresses the sensing activities of ExoS, the membrane-bound sensor of the ExoS/ChvI two-component regulatory system. Here we show that exoR expression is clearly upregulated in the absence of any functional ExoR protein. This upregulation was suppressed by the presence of the wild-type ExoR protein but not by a mutated ExoR protein lacking signal peptide. The levels of exoR expression could be directly modified in real time by changing the levels of total ExoR protein. The expression of exoR was also upregulated by the constitutively active sensor mutation exoS96, and blocked by two single mutations, exoS* and exoS(supA), in the ExoS sensing domain. Presence of the wild-type ExoS protein further elevated the levels of exoR expression in the absence of functional ExoR protein, and reversed the effects of exoS96, exoS* and exoS(supA) mutations. Altogether, these data suggest that ExoR protein autoregulates exoR expression through the ExoS/ChvI system, allowing S. meliloti cells to maintain the levels of exoR expression based on the amount of total ExoR protein.

  13. Evolution of Close Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  14. Spin Correlation in Binary Systems

    CERN Document Server

    Farbiash, N; Farbiash, Netzach; Steinitz, Raphael

    2004-01-01

    We examine the correlation of projected rotational velocities in binary systems. It is an extension of previous work (Steinitz and Pyper, 1970; Levato, 1974). An enlarged data basis and new tests enable us to conclude that there is indeed correlation between the projected rotational velocities of components of binaries. In fact we suggest that spins are already correlated.

  15. Discs in misaligned binary systems

    CERN Document Server

    Rawiraswattana, Krisada; Goodwin, Simon P

    2016-01-01

    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-...

  16. Residue arithmetic in binary systems

    OpenAIRE

    Barsi, Ferruccio

    1988-01-01

    A natural approach to the problem of performing mod m computations in a binary system is presented and a solution is suggested which is based upon a straightforward relation between the residues of a same integer X with respect to different moduli. The proposed solution proves fruitful in various applications, such as converting binary integers to residue notation and mod m addition or multiplication. Even if the most usual implementation approach for mod m processors is based on look-up tabl...

  17. Evolution of Binaries in Dense Stellar Systems

    CERN Document Server

    Ivanova, Natalia

    2011-01-01

    In contrast to the field, the binaries in dense stellar systems are frequently not primordial, and could be either dynamically formed or significantly altered from their primordial states. Destruction and formation of binaries occur in parallel all the time. The destruction, which constantly removes soft binaries from a binary pool, works as an energy sink and could be a reason for cluster entering the binary-burning phase. The true binary fraction is greater than observed, as a result, the observable binary fraction evolves differently from the predictions. Combined measurements of binary fractions in globular clusters suggest that most of the clusters are still core-contracting. The formation, on other hand, affects most the more evolutionary advanced stars, which significantly enhances the population of X-ray sources in globular clusters. The formation of binaries with a compact objects proceeds mainly through physical collisions, binary-binary and single-binary encounters; however, it is the dynamical for...

  18. Radio Search for Water in Exo-Planetary Systems

    Science.gov (United States)

    Cosmovici, C.; Pluchino, S.; Salerno, E.; Montebugnoli, S.; Zoni, L.; Bartolini, M.

    By using a fast multichannel spectrometer coupled to the 32 m radiotelescope at Medicina (Bologna, Italy) we started 1999 the search for the water MASER line at 22 GHz (1.35 cm) on exoplanets. Up to now 32 exoplanetary systems have been observed and suspect transient emissions have been identified in some cases. In order to confirm the observations improving the detection limits a new challenging multichannel spectrometer (SPECTRA-1) was developed.

  19. Imaging exo-solar planetary systems with Terrestrial Planet Finder

    Science.gov (United States)

    Eatchel, Andrew Lynn

    The concept of building a space based telescope capable of directly imaging extra-solar planetary systems has been in existence for more than a decade. While the basic ideas of how such an instrument might work have already been discussed in the literature, specific details of the design have not been addressed that will enable a telescope of this class to be functionally realized. A straw man configuration of the instrument is examined here for its ability to acquire data of sufficient informational content and quality to produce images and spectra of distant planetary systems and to find what technical problems arise from analyzing the interferograms it delivers. Computer programs that simulate the signals expected to be produced by a structurally connected instrument (SCI) version of Terrestrial Planet Finder (TPF) and reconstruct images from those signals will be presented along with programs that extract planetary parameters. An abbreviated radiometric performance analysis will also be provided that will assist astronomers in designing an appropriate mission.

  20. Revealing Exo-Zody and Exo-Planets from Solar System Dust Measurements: ALADDIN-2 for the Solar Power Sail Mission

    Science.gov (United States)

    Yano, Hajime; Hirai, Takayuki

    2016-07-01

    The dust structure of our Solar System provides a benchmark information of dust disks of other exo-planetary systems in general, just like the Sun as the closest main sequence G-star that we can study with the most details. Heliocentric dust distributions and gravitational and orbital interactions with planets such as mean motion resonances (MMRs) of dust flux of our Solar System are what we can transfer the knowledge of our Solar System dust apply to infer anisotropic exo-zodiacal brightness, or spatial structures within a exo-planetary dust disks with information about potentially embedded planets inside. In the coming era of disk resolved observations by ALMA, TMT and other new telescopes, we will be able to apply what we find in the Solar System to the rest of planetary systems. In 2010-11, the IKAROS solar sail spacecraft carried the ALADDIN large area dust detector array to study large meteoroids between the Earth and Venus orbits. Yano et al. directly detected both the Earth's and Venus' MMRs dust structures, being consistent with numerical simulations that predict the existence of such local enhancements of dust distribution around these terrestrial planets, as well as Neptune. JAXA's Solar Power Sail mission plans to carry even larger dust detector inherited the technology onboard IKAROS, namely ALADDIN-2 in order to search for such MMRs in the Mars and Jupiter orbits, as predicted by Kuchner et al.(2000), in addition to make a continuous measurement of large dust flux from 1.0 to 5.2 AU crossing the main asteroid belt up to Jupiter Trojan region. It is also noted that recent reanalysis of the Pioneer 10 and 11 photo polarimeter data suggests a small enhancement of the brightness towards the anti-solar direction near Jupiter the largest planet of our Solar System, implying a possible existence of a dust belt related to the planet. The spatial density of dust particles directly measured by the ALADDIN-2 will provide a more conclusive and direct proof due to

  1. Exo-C: A Space Mission for Direct Imaging and Spectroscopy of Extrasolar Planetary Systems

    Science.gov (United States)

    Stapelfeldt, Karl; Belikov, Ruslan; Marley, Mark; Bryden, Geoff; Serabyn, Eugene; Trauger, John; Cahoy, Kerri; Chakrabarti, Supriya; McElwain, Michael; Meadows, Victoria; Dekens, Frank; Warfield, Keith; Brenner, Michael; Brugarolas, Paul; Effinger, Robert T.; Heeg, Casey; Birsch, Brian; Kissel, Andrew; Kirst, John E.; Lang, Jared; Nissen, Joel; Oseas, Jeffrey M.; Pong, Chris; Sunada, Eric

    2015-01-01

    Exo-C is NASAs first community study of a modest aperture space telescope designed for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discovering previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable Earth-like exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. Key elements are an unobscured telescope aperture, an internal coronagraph with deformable mirrors for precise wavefront control, and an orbit and observatory design chosen for high thermal stability. Exo-C has a similar telescope aperture, orbit, lifetime, and spacecraft bus requirements to the highly successful Kepler mission (which is our cost reference). The needed technology development is on-course for a possible mission start in 2017. This paper summarizes the study final report completed in January 2015. During 2015 NASA will make a decision on its potential development.

  2. ExoCat-1: The Nearby Stellar Systems Catalog for Exoplanet Imaging Missions

    CERN Document Server

    Turnbull, Margaret C

    2015-01-01

    We present the first version of a Nearby Stellar Systems Catalog for Exoplanet Imaging Missions (dubbed by the direct imaging community as "ExoCat") for use in exoplanet direct imaging mission planning. This version, ExoCat-1, includes 2347 stars taken from the Hipparcos Catalogue with measured parallaxes > 33.33 mas (corresponding to a distance of 30 pc). This sample is nearly complete down to V=8, corresponding to stars brighter than ~0.5 solar luminosities (late G-/early K-type dwarf stars at the 30 pc distance limit). For each star we provide astrometry (including Equatorial and Galactic coordinates, parallax, and proper motions), Johnson B and V magnitudes (converted from Hipparcos or Tycho data or taken from the literature), and Ks-band magnitudes from 2MASS (for fainter stars) or K-band magnitudes taken from the literature and converted to 2MASS Ks magnitudes (for bright stars). Using these data we estimate stellar luminosity, effective temperature, stellar radius (in solar and angular units), Earth-eq...

  3. Evolutionary Memory in Binary Systems?

    CERN Document Server

    Steinitz, N F R

    2004-01-01

    Correlation between the spins (rotational velocities) in binaries has previously been established. We now continue and show that the degree of spin correlation is independent of the components' separation. Such a result might be related for example to Zhang's non-linear model for the formation of binary stars from a nebula.

  4. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M⊙ star and a 6 M⊙ star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  5. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    黄润乾; 曾艺蓉

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M star and a 6 M star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  6. Terrestrial Planet Formation in Binary Star Systems

    Science.gov (United States)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  7. Orf1/SpcS Chaperones ExoS for Type Three Secretion by Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    DA-KANG SHEN; LAURIANE QUENEE; MARIETTE BONNET; LAURIANE KUHN; MADIHA DEROUAZI; DANIELE LAMOTTE; BERTRAND TOUSSAINT; BENOIT POLACK

    2008-01-01

    Objective Pseudomonas aeruginosa is a ubiquitous and opportunistic pathogen that uses the type III secretion system (TTSS)to inject effector proteins directly into the cytosol of target cells to subvert the host cell's functions.Specialized bacterial chaperones are required for effective secretion of some effectors.To identify the chaperone of ExoS,the representative effector secreted by the TTSS of P. aeruginosa,we analyzed the role of a postulated chaperone termed Orfl.Methods By allelic exchange,we constructed the mutant with the deletion of gene Orfl.Analysis of secreted and cell-associated fractions was performed by SDS-PAGE and Western blotting.Using strain expressing in trans Orfl,tagged by V5 polypeptide and histidine,protein-protein interaction Was determined by affinity resin pull-down assay in combination with MALDI-TOF. The role of Orfl in the expression of eroS was evaluated by genel reporter analysis.Results Pull-down assay showed that Orfl binds to ExoS and ExoT.Secretion profile analysis showedthat Orfl was necessary for the optimal secretion of ExoS and ExoT.However,Orfl had no effect on the expression of eroS.Conclusion Orfl is important for the secretion of ExoS probablY by mamtauung ExoS in a secretion-competent conformation.We propose to name Orfl as SpcS for "specific Pseudomonas chaperone for ExoS".

  8. Stability of multiplanet systems in binaries

    Science.gov (United States)

    Marzari, F.; Gallina, G.

    2016-10-01

    Context. When exploring the stability of multiplanet systems in binaries, two parameters are normally exploited: the critical semimajor axis ac computed by Holman & Wiegert (1999, AJ, 117, 621) within which planets are stable against the binary perturbations, and the Hill stability limit Δ determining the minimum separation beyond which two planets will avoid mutual close encounters. Both these parameters are derived in different contexts, i.e. Δ is usually adopted for computing the stability limit of two planets around a single star while ac is computed for a single planet in a binary system. Aims: Our aim is to test whether these two parameters can be safely applied in multiplanet systems in binaries or if their predictions fail for particular binary orbital configurations. Methods: We have used the frequency map analysis (FMA) to measure the diffusion of orbits in the phase space as an indicator of chaotic behaviour. Results: First we revisited the reliability of the empirical formula computing ac in the case of single planets in binaries and we find that, in some cases, it underestimates by 10-20% the real outer limit of stability and it does not account for planets trapped in resonance with the companion star well beyond ac. For two-planet systems, the value of Δ is close to that computed for planets around single stars, but the level of chaoticity close to it substantially increases for smaller semimajor axes and higher eccentricities of the binary orbit. In these configurations ac also begins to be unreliable and non-linear secular resonances with the stellar companion lead to chaotic behaviour well within ac, even for single planet systems. For two planet systems, the superposition of mean motion resonances, either mutual or with the binary companion, and non-linear secular resonances may lead to chaotic behaviour in all cases. We have developed a parametric semi-empirical formula determining the minimum value of the binary semimajor axis, for a given

  9. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  10. The Evolution of Compact Binary Star Systems.

    Science.gov (United States)

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  11. Debris disks in main sequence binary systems

    CERN Document Server

    Trilling, D E; Stapelfeldt, K R; Rieke, G H; Su, K Y L; Gray, R O; Corbally, C J; Bryden, G; Chen, C H; Boden, A; Beichman, C A

    2006-01-01

    We observed 69 A3-F8 main sequence binary star systems using the Multiband Imaging Photometer for Spitzer onboard the Spitzer Space Telescope. We find emission significantly in excess of predicted photospheric flux levels for 9(+4/-3)% and 40(+7/-6)% of these systems at 24 and 70 microns, respectively. Twenty two systems total have excess emission, including four systems that show excess emission at both wavelengths. A very large fraction (nearly 60%) of observed binary systems with small (<3 AU) separations have excess thermal mission. We interpret the observed infrared excesses as thermal emission from dust produced by collisions in planetesimal belts. The incidence of debris disks around main sequence A3-F8 binaries is marginally higher than that for single old AFGK stars. Whatever combination of nature (birth conditions of binary systems) and nurture (interactions between the two stars) drives the evolution of debris disks in binary systems, it is clear that planetesimal formation is not inhibited to a...

  12. Stacking Analysis of Binary Systems with HAWC

    Science.gov (United States)

    Brisbois, Chad; HAWC Collaboration

    2017-01-01

    Detecting binary systems at TeV energies is an important problem because only a handful of such systems are currently known. The nature of such systems is typically thought to be composed of a compact object and a massive star. The TeV emission from these systems does not obviously correspond to emission in GeV or X-ray, where many binary systems have previously been found. This study focuses on a stacking method to detect TeV emission from LS 5039, a known TeV binary, to test its efficacy in HAWC data. Stacking is a widely employed method for increasing signal to noise ratio in optical astronomy, but has never been attempted previously with HAWC. HAWC is an ideal instrument to search for TeV binaries, because of its wide field of view and high uptime. Applying this method to the entire sky may allow HAWC to detect binary sources of very short or very long periods not sensitive to current analyses. NSF, DOE, Los Alamos, Michigan Tech, CONACyt, UNAM, BUAP.

  13. Stability of multiplanet systems in binaries

    CERN Document Server

    Marzari, F

    2016-01-01

    When exploring the stability of multiplanet systems in binaries, two parameters are normally exploited: the critical semimajor axis ac computed by Holman and Wiegert (1999) within which planets are stable against the binary perturbations, and the Hill stability limit Delta determining the minimum separation beyond which two planets will avoid mutual close encounters. Our aim is to test whether these two parameters can be safely applied in multiplanet systems in binaries or if their predictions fail for particular binary orbital configurations. We have used the frequency map analysis (FMA) to measure the diffusion of orbits in the phase space as an indicator of chaotic behaviour. First we revisited the reliability of the empirical formula computing ac in the case of single planets in binaries and we find that, in some cases, it underestimates by 10-20% the real outer limit of stability. For two planet systems, the value of Delta is close to that computed for planets around single stars, but the level of chaoti...

  14. A Model for Contact Binary Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understanding that the energy exchange is due to the release of potential, kinetic and thermal energies of the exchanged mass. b) A special form of mass and angular momentum loss occurring in contact binaries is losses via the outer Lagrangian point. c) The effects of spin, orbital rotation and tidal action on the stellar structure as well as the effect of meridian circulation on the mixing of the chemical elements are considered. d) The model is valid not only for low-mass contact binaries but also for high-mass contact binaries. For illustration, we used the model to trace the evolution of a massive binary system consisting of one 12M⊙ and one 5M⊙ star. The result shows that the start and end of the contact stage fall within the semi-detached phase during which the primary continually transfers mass to the secondary. The time span of the contact stage is short and the mass transfer rate is very large. Therefore, the contact stage can be regarded as a special part of the semi-detached phase with a large mass transfer rate. Both mass loss through the outer Lagrangian point and oscillation between contact and semi-contact states can occur during the contact phase, and the effective temperatures of the primary and the secondary are almost equal.

  15. Demonstration of the ExoMars sample preparation and distribution system jointly with an optical instrument head

    Science.gov (United States)

    Schulte, Wolfgang; Thiele, Hans; Hofmann, Peter; Baglioni, Pietro

    The ExoMars program will search for past and present life on Mars. ExoMars will address important scientific goals and demonstrate key in-situ enabling technologies. Among such technologies are the acquisition, preparation, distribution and analysis of samples from Mars surface rocks and from the subsurface. The 2018 mission will land an ESA rover on Mars which carries a sample preparation and distribution system (SPDS) and a suite of analytical instruments, the Pasteur Payload with its Analytical Laboratory Drawer (ALD). Kayser-Threde GmbH (Germany) will be responsible for the SPDS as a subcontractor under the mission prime Thales Alenia Space. The SPDS comprises a number of complex mechanisms and mechanical devices designed to transport drill core samples within the rover analytical laboratory, to crush them to powder with a fine grain size, to portion discrete amounts of powdered sample material, to distribute and fill the material into sample containers and to prepare flat sample surfaces for scientific analysis. Breadboards of the crushing mechanism, the dosing mechanism and a distribution carousel with sample containers and a powder sample surface flattening mechanism were built and tested. Kayser-Threde, as a member of the Spanish led ExoMars Raman Instrument team, is also responsible for development of the Raman optical head, which will be mounted inside ALD and will inspect the crushed samples, when they are presented to the instrument by the distribution carousel. Within this activity, which is performed under contract with the Institute of Physical Chemistry of the University of Jena (Germany) and funded by the German DLR, Kayser-Threde can demonstrate Raman measurements with the optical head and a COTS laser and spectrometer and thus simulate the full Raman instrument optical path. An autofocus system with actuator and feedback optics is also part of this activity, which allows focusing the 50 m Raman spot on the surface of the powdered sample

  16. VLSI binary multiplier using residue number systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsi, F.; Di Cola, A.

    1982-01-01

    The idea of performing multiplication of n-bit binary numbers using a hardware based on residue number systems is considered. This paper develops the design of a VLSI chip deriving area and time upper bounds of a n-bit multiplier. To perform multiplication using residue arithmetic, numbers are converted from binary to residue representation and, after residue multiplication, the result is reconverted to the original notation. It is shown that the proposed design requires an area a=o(n/sup 2/ log n) and an execution time t=o(log/sup 2/n). 7 references.

  17. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  18. Planet formation in slightly inclined binary systems

    Directory of Open Access Journals (Sweden)

    Ge J.

    2011-07-01

    Full Text Available One of the major problems of planet formation in close binary systems, such as α Centauri AB, is the formation of planetary embryos or cores by mutual accretion of km-sized planetesimals. In this contribution, we test the planetesimal accretion in such close binary systems but with small inclinations iB = 0.1–10° between the binary orbital plane and the gas disk plane. Compared to previous studies (coplanar case with iB = 0, we find that (1 planetesimal disk is stratified in the vertical direction and planetesimals are redistributed on different orbit groups with respect to their sizes, thus (2 collisions between similar-sized bodies dominate, leading to low dV and favoring planetesimal accretion (3 the planetesimal collision timescale at 1–2 AU is estimated as: T ∼ (1 + 100iB × 103 yrs, where 0 ≤ iB ≤ 10°. As a conclusion, although planetesimal accretion are much more favored in slightly inclined binary systems, it is significantly less efficient and slowed-down as compared to the single-star case.

  19. BINARY NONLINEARIZATION FOR THE DIRAC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    MAWENXIU

    1997-01-01

    A Bargmann symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of the Dirac systems. It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensional Linuville integrable Hamiltonian system and that under the control of the spatial part, the time parts of the nonlinearized Lax pairs and adjoint Lax pairs are interpreted as a hierarchy of commutative, finite dimensional Linuville integrable Hamiltoian systems whose Hamiltonian functions consist of a series of integrals of motion for the spatial part. Moreover an invaiutive representation of solutions of the Dirac systems exhibits their integrability by quadratures. This kind of symmetry constraint procedure involving thespectral problem and the adjoint spectral problem is referred to as a binary nonlinearization technique like a binary Darhoux transformation.

  20. Dynamics and Habitability in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Pilat-Lohinger, Elke

    2014-01-01

    Determining planetary habitability is a complex matter, as the interplay between a planet's physical and atmospheric properties with stellar insolation has to be studied in a self consistent manner. Standardized atmospheric models for Earth-like planets exist and are commonly accepted as a reference for estimates of Habitable Zones. In order to define Habitable Zone boundaries, circular orbital configurations around main sequence stars are generally assumed. In gravitationally interacting multibody systems, such as double stars, however, planetary orbits are forcibly becoming non circular with time. Especially in binary star systems even relatively small changes in a planet's orbit can have a large impact on habitability. Hence, we argue that a minimum model for calculating Habitable Zones in binary star systems has to include dynamical interactions.

  1. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  2. Coalescence of Magnetized Binary Neutron Star Systems

    Science.gov (United States)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Neilsen, David; Palenzuela, Carlos; Ponce, Marcelo

    2015-01-01

    We present simulations of the merger of binary neutron star systems calculated with full general relativity and incorporating the global magnetic field structure for the stars evolved with resistive magnetohydrodynamics. Our simulation tools have recently been improved to incorporate the effects of neutrino cooling and have been generalized to allow for tabular equations of state to describe the degenerate matter. Of particular interest are possible electromagnetic counterparts to the gravitational radiation that emerges from these systems. We focus on magnetospheric interactions that ultimately tap into the gravitational potential energy of the binary to power a Poynting flux and deposition of energy through Joule heating and magnetic reconnection. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  3. Complex Binary Number System Algorithms and Circuits

    CERN Document Server

    Jamil, Tariq

    2013-01-01

    This book is a compilation of the entire research work on the topic of Complex Binary Number System (CBNS) carried out by the author as the principal investigator and members of his research groups at various universities during the years 1992-2012. Pursuant to these efforts spanning several years, the realization of CBNS as a viable alternative to represent complex numbers in an 'all-in-one' binary number format has become possible and efforts are underway to build computer hardware based on this unique number system. It is hoped that this work will be of interest to anyone involved in computer arithmetic and digital logic design and kindle renewed enthusiasm among the engineers working in the areas of digital signal and image processing for developing newer and efficient algorithms and techniques incorporating CBNS.

  4. RXTE and Swift confirm decay to quiescence of EXO0748-676

    NARCIS (Netherlands)

    M. Wolff; P. Ray; K. Wood; R. Wijnands

    2008-01-01

    EXO0748-676, a low mass X-ray binary system that shows regular total X-ray eclipses with a period of 3.82 hours, until August 2008 maintained a relatively steady X-ray flux of ~8 mcrab implying a luminosity of ~1.3E36 ergs/s (2-10 keV) at a distance of 7.7 kpc (Wolff et al. 2005, ApJ, v.632, p.1099)

  5. Stellivore extraterrestrials? Binary stars as living systems

    Science.gov (United States)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data. article>

  6. Tidal heating in close binary stellar systems

    Energy Technology Data Exchange (ETDEWEB)

    Rieutord, M.; Bonazzola, S.

    1987-07-15

    Tidal heating of a low-mass star in a close binary system, resulting from the conjugate effect of angular momentum loss and tidal action, is investigated via detailed study of the flow inside the secondary. It is found in the case of cataclysmic binaries that viscous dissipation is at most 10/sup -3/ x the nuclear luminosity of the star. It is shown, however, that the dissipation is very sensitive to the turbulent viscosity in the envelope of the secondary. The case of very close pairs of white dwarfs is also considered. It is shown that such pairs, which are thought to be the progenitors of Type I Supernovae may dissipate a power as large as 10/sup 38/ erg s/sup -1/, provided that they reach synchronization; such a heating will strongly modify the conditions in which the nuclear explosion starts.

  7. Brown Dwarf Binaries from Disintegrating Triple Systems

    CERN Document Server

    Reipurth, Bo

    2015-01-01

    We have carried out 200,000 N-body simulations of three identical stellar embryos with masses from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. To illustrate the simulations we introduce the 'triple diagnostic diagram', which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations. The separation distribution function is in good correspondence with...

  8. Circumbinary ring, circumstellar disks, and accretion in the binary system UY Aurigae

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ya-Wen; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Dutrey, Anne; Guilloteau, Stéphane; Di Folco, Emmanuel [Université de Bordeaux, Observatoire Aquitain des Sciences de l' Univers, CNRS, UMR 5804, Laboratoire d' Astrophysique de Bordeaux, 2 rue de l' Observatoire, BP 89, F-33271 Floirac Cedex (France); Piétu, Vincent; Gueth, Fréderic [IRAM, 300 rue de la piscine, F-38406 Saint Martin d' Hères Cedex (France); Beck, Tracy [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boehler, Yann [Centro de Radioastronomìa y Astrofìsica, UNAM, Apartado Postal 3-72, 58089 Morelia, Michoacàn (Mexico); Bary, Jeff [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States); Simon, Michal, E-mail: ywtang@asiaa.sinica.edu.tw [Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2014-09-20

    Recent exo-planetary surveys reveal that planets can orbit and survive around binary stars. This suggests that some fraction of young binary systems which possess massive circumbinary (CB) disks may be in the midst of planet formation. However, there are very few CB disks detected. We revisit one of the known CB disks, the UY Aurigae system, and probe {sup 13}CO 2-1, C{sup 18}O 2-1, SO 5(6)-4(5) and {sup 12}CO 3-2 line emission and the thermal dust continuum. Our new results confirm the existence of the CB disk. In addition, the circumstellar (CS) disks are clearly resolved in dust continuum at 1.4 mm. The spectral indices between the wavelengths of 0.85 mm and 6 cm are found to be surprisingly low, being 1.6 for both CS disks. The deprojected separation of the binary is 1.''26 based on our 1.4 mm continuum data. This is 0.''07 (10 AU) larger than in earlier studies. Combining the fact of the variation of UY Aur B in R band, we propose that the CS disk of an undetected companion UY Aur Bb obscures UY Aur Ba. A very complex kinematical pattern inside the CB disk is observed due to a mixing of Keplerian rotation of the CB disk, the infall and outflow gas. The streaming gas accreting from the CB ring toward the CS disks and possible outflows are also identified and resolved. The SO emission is found to be at the bases of the streaming shocks. Our results suggest that the UY Aur system is undergoing an active accretion phase from the CB disk to the CS disks. The UY Aur B might also be a binary system, making the UY Aur a triple system.

  9. Aram Dorsum, Candidate ExoMars Rover Landing Site: a Noachian Inverted Fluvial Channel System in Arabia Terra Mars

    Science.gov (United States)

    Balme, Matthew; Grindrod, Peter; Sefton-Nash, Elliot; Davis, Joel; Gupta, Sanjeev; Fawdon, Peter

    2016-04-01

    Much of Mars' Noachian-aged southern highlands is dissected by systems of fluvial channels and valleys > 3.7 Ga in age. Arabia Terra, lying between the southern highlands and the northern lowlands, is similarly ancient, yet apparently has few valley networks. This regional lack of valley networks only matches Noachian precipitation predictions from climate models if the Noachian climate was dry and cold [1]. In this scenario, highlands dissection was caused by transient flows of meltwater from large, regionally restricted ice-bodies. However, new results [2,3] show that Arabia Terra is not as poorly dissected as previously thought, and in fact there are extensive networks of inverted channel systems. Here, we describe an example of such a system - Aram Dorsum - which has been studied extensively as an ExoMars Rover candidate landing site. Aram Dorsum is an ~100 km long, 1-2 km wide, branching, flat-topped ridge system, in western Arabia Terra. We have mapped the system using CTX images, DEMs and other data. We interpret the ridge system to be fluvial in origin, preserved in positive relief due to infill and differential erosion; this working hypothesis is used as a conceptual framework for the study. Aram Dorsum is a branching, multi-level, contributory network, set in surrounding floodplains-like material. This demonstrates that it was a relatively long-lived, aggradational fluvial system, rather than an erosional outflow or bedrock-carved fluvial channel. Interestingly, the system shows little evidence for unconfined lateral channel migration, so there must have been significant bank stability. Aram Dorsum was therefore probably once a sizable river and, as just one example of many similar systems, is an exemplar for the middle part of a regional sediment transport system that could have extended from the southern highlands to the northern lowlands. Like Aram Dorsum, many of these other recently-recognized fluvial systems have an origin more consistent with

  10. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    CERN Document Server

    Bluhm, P; Vanzi, L; Soto, M G; Vos, J; Wittenmyer, R A; Olivares, F; Drass, H; Mennickent, R E; Vuckovic, M; Rojo, P; Melo, C H F

    2016-01-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions.The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between $\\sim$ 97-1600 days and eccentricities of between $\\sim$ 0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a diffe...

  11. THE EXO-PLANETARY SYSTEM OF 55 CANCRI AND THE TITIUS-BODE LAW

    Directory of Open Access Journals (Sweden)

    Arcadio Poveda

    2008-01-01

    Full Text Available El reciente descubrimiento de un quinto planeta ligado a 55 Cancri (Fischer et al. 2007 nos ha motivado a investigar si este sistema exo-planetario se ajusta a alguna forma de la ley de Titius-Bode (TB. Encontramos que una simple relación TB exponencial reproduce muy bien los cinco semiejes mayores observados siempre y cuando se asigne el número 6 al planeta con el semieje más grande. Esta forma de contar deja un vacío en la posición n = 5, una situación curiosamente reminiscente a la ley TB en nuestro propio sistema planetario, antes del descubrimiento de Ceres. La aplicación de una ley TB exponencial a 55 Cancri nos permite predecir la existencia de un planeta con a 2:0 UA y con un periodo de P 1130 días localizado en la gran brecha entre a = 0:781 UA (P = 260 días y a = 5:77 UA (P = 5218 días correspondientes a los dos más grandes periodos observados. Con menos certeza, también predecimos un séptimo planeta en a 15 UA con P 62 años.

  12. Planetesimal accretion in binary star systems

    CERN Document Server

    Marzari, Francesco; Scholl, Hans

    2007-01-01

    Numerical simulations of planetesimal accretion in circumprimary and circumbinary orbits are described. The secular perturbations by the com- panion star and gas drag are included in our models. We derive limits on the parameters of the binary system for which accretion and then planetary forma- tion are possible. In the circumbinary case we also outline the radial distance from the baricenter of the stars beyond which accumulation always occurs. Hy- drodynamical simulations are also presented to validate our N-body approach based on the axisymmetric approximation for the gas of the disk.

  13. Radio emission from RS CVn binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Doiron, D.J.

    1984-01-01

    The RS CVn binary stellar systems UX Ari, HR 1099, AR Lac, HR 5110, II Peg, lambda And, and SZ Psc were investigated by use of radio interferometry during the period from July 1982 through August 1983. Interferometry took two forms: Very Large Array (VLA) observations and Very Long Baseline Interferometry (VLBI). The VLA observations determined the characteristic polarization and flux behavior of the centimeter wavelength radio emission. The observed spectral index was near zero during quiescent periods, rising to between 0.5 and 1.0 during active periods. No net linear polarization is observed to a limit of 1.7%. This is expected since the Faraday depth of thermal electrons deduced from x-ray observations is approx. 10/sup 5/. Circular polarization is observed to be less than 20% at all frequencies often with a helicity reversal between 1.6 GHz and 5 GHz. The VLBI observations have shown that the brightness temperatures are often T/sub B/ approx.> 10/sup 10/ /sup 0/K and size sources smaller than or comparable to the overall size of the binary system. These data are consistent with incoherent gyrosynchrotron emission from mildly relativistic electrons which are optically thick to their own radiation at 1.6 GHz and optically thin at 5 GHz and above. The spectral behavior suggests that the radio emission is due to a power-law distribution of electrons.

  14. Physical parameters of close binary systems: VI

    CERN Document Server

    Gazeas, K D; Zola, S; Kreiner, J M; Rucinski, S M

    2009-01-01

    New high-quality CCD photometric light curves for the W UMa-type systems V410 Aur, CK Boo, FP Boo, V921 Her, ET Leo, XZ Leo, V839 Oph, V2357 Oph, AQ Psc and VY Sex are presented. The new multicolor light curves, combined with the spectroscopic data recently obtained at David Dunlap Observatory, are analyzed with the Wilson-Devinney code to yield the physical parameters (masses, radii and luminosities) of the components. Our models for all ten systems resulted in a contact configuration. Four binaries (V921 Her, XZ Leo, V2357 Oph and VY Sex) have low, while two (V410 Aur and CK Boo) have high fill-out factors. FP Boo, ET Leo, V839 Oph and AQ Psc have medium values of the fill-out factor. Three of the systems (FP Boo, V921 Her and XZ Leo) have very bright primaries as a result of their high temperatures and large radii.

  15. Spectral modelling of massive binary systems

    CERN Document Server

    Palate, Matthieu; Koenigsberger, Gloria; Moreno, Edmundo

    2013-01-01

    Aims: We simulate the spectra of massive binaries at different phases of the orbital cycle, accounting for the gravitational influence of the companion star on the shape and physical properties of the stellar surface. Methods: We used the Roche potential modified to account for radiation pressure to compute the stellar surface of close circular systems and we used the TIDES code for surface computation of eccentric systems. In both cases, we accounted for gravity darkening and mutual heating generated by irradiation to compute the surface temperature. We then interpolated NLTE plane-parallel atmosphere model spectra in a grid to obtain the local spectrum at each surface point. We finally summed all contributions, accounting for the Doppler shift, limb-darkening, and visibility to obtain the total synthetic spectrum. We computed different orbital phases and sets of physical and orbital parameters. Results: Our models predict line strength variations through the orbital cycle, but fail to completely reproduce t...

  16. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    CERN Document Server

    Forgan, Duncan H

    2016-01-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycle...

  17. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  18. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  19. XZ And a semidetached asynchronous binary system

    Science.gov (United States)

    Manzoori, Davood

    2016-05-01

    In this work the light curves (LCs) solutions along with the radial velocity curve of the semidetached binary systemXZ And are presented using the PHOEBE program(ver 0.31a). Absolute parameters of the stellar components were then determined, enabling us to discuss structure and evolutionary status of the system. The analysis indicates that the primary is a non-synchronous (i.e., F1 = 3.50 ± 0.01) Main Sequence (MS) star and the secondary is a bit more evolved, and fills its Roche critical surface. In addition, times of minima data (" O - C curve") were analyzed. Apart from an almost parabolic variation in the general trend of O - C data, which was attributed to a mass transfer from the secondary with the rate ˙2 = (9.52 ± 0.41) × 10-10 M ⊙ yr-1; two cyclic variations with mean periods of 34.8 ± 2.4 and 23.3 ± 3.0 yr, modulating the orbital period, were found, which were attributed to a third body orbiting around the system, and magnetic activity cycle effect, respectively.

  20. Long-Term Stability of Planets in Binary Systems

    CERN Document Server

    Holman, M; Holman, Matthew; Wiegert, Paul

    1999-01-01

    A simple question of celestial mechanics is investigated: in what regions of phase space near a binary system can planets persist for long times? The planets are taken to be test particles moving in the field of an eccentric binary system. A range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the system's center of mass, are examined. From the results, empirical expressions are developed for both 1) the largest orbit around each of the stars, and 2) the smallest orbit around the binary system as a whole, in which test particles survive the length of the integration (10^4 binary periods). The empirical expressions developed, which are roughly linear in both the mass ratio mu and the binary eccentricity e, are determined for the range 0.0 <= e <= 0.7-0.8 and 0.1 <= mu <= 0.9 in both regions, and can be used to guide searches for planets in binary systems. After consideri...

  1. Formation and Evolution of Binary Systems Containing Collapsed Stars

    Science.gov (United States)

    Rappaport, Saul; West, Donald (Technical Monitor)

    2003-01-01

    This research includes theoretical studies of the formation and evolution of five types of interacting binary systems. Our main focus has been on developing a number of comprehensive population synthesis codes to study the following types of binary systems: (i) cataclysmic variables (#3, #8, #12, #15), (ii) low- and intermediate-mass X-ray binaries (#13, #20, #21), (iii) high-mass X-ray binaries (#14, #17, #22), (iv) recycled binary millisecond pulsars in globular clusters (#5, #10, #ll), and (v) planetary nebulae which form in interacting binaries (#6, #9). The numbers in parentheses refer to papers published or in preparation that are listed in this paper. These codes take a new unified approach to population synthesis studies. The first step involves a Monte Carlo selection of the primordial binaries, including the constituent masses, and orbital separations and eccentricities. Next, a variety of analytic methods are used to evolve the primary star to the point where either a dynamical episode of mass transfer to the secondary occurs (the common envelope phase), or the system evolves down an alternate path. If the residual core of the primary is greater than 2.5 solar mass, it will evolve to Fe core collapse and the production of a neutron star and a supernova explosion. In the case of systems involving neutron stars, a kick velocity is chosen randomly from an appropriate distribution and added to the orbital dynamics which determine the state of the binary system after the supernova explosion. In the third step, all binaries which commence stable mass transfer from the donor star (the original secondary in the binary system) to the compact object, are followed with a detailed binary evolution code. Finally, we include all the relevant dynamics of the binary system. For example, in the case of LMXBs, the binary system, with its recoil velocity from the supernova explosion, is followed in time through its path in the Galactic potential. For our globular cluster

  2. Progenitor models of Wolf-Rayet+O binary systems

    NARCIS (Netherlands)

    Petrovic, J.; Langer, N.

    2007-01-01

    Since close WR+O binaries are the result of a strong interaction of both stars in massive close binary systems, they can be used to constrain the highly uncertain mass and angular momentum budget during the major mass- transfer phase. We explore the progenitor evolution of the three best suited WR+O

  3. Searching for Pulsars in Close Binary Systems

    CERN Document Server

    Jouteux, S; Stappers, B W; Jonker, P; Van der Klis, M

    2001-01-01

    We present a detailed mathematical analysis of the Fourier response of binary pulsar signals whose frequencies are modulated by circular orbital motion. The fluctuation power spectrum of such signals is found to be \

  4. The GAP Portion of Pseudomonas Aeruginosa Type III Secreted Toxin ExoS Upregulates Total and Surface Levels of Wild Type CFTR

    Directory of Open Access Journals (Sweden)

    Deepali N. Tukaye

    2013-02-01

    Full Text Available Background: Pseudomonas aeruginosa (PA infections account for a large percentage of fatal hospital acquired pneumonias. One of the PA Type III secreted toxin (TTST ExoS, a bifunctional protein with N-terminal GTPase activating protein (GAP and C-terminal ADP rybosyl transferase (ADPRT activities, significantly contributes to PA virulence by targeting small molecular weight G-proteins (SMWGP. In this study, we have looked at one of the mechanisms by which the GAP portion of ExoS (ExoS-GAP mediates cellular toxicity. Methods: The effects of ExoS-GAP on CFTR trafficking were studied in CFBE41o- Kir 2.2 and MDCK cell lines stably expressing CFTR using a transient transfection system. Results: Transient transfection of ExoS-GAP increased the total and surface protein levels of mature wild type CFTR in epithelial cells stably expressing wild type (WT CFTR. The effect of ExoS-GAP was specific to CFTR in bronchial epithelial cells since it did not affect the total protein levels of Na+/K+ATPase, another membrane protein. A point mutation in the ExoS GAP domain (R146K, known to disrupt its catalytic GAP activity, abolished the effect of ExoS-GAP on WT CFTR. Lysosomal inhibition studies with Bafilomycin A1 indicate that ExoS-GAP decreased lysosomal degradation of the mature WT CFTR with concomitant increase in the total levels of mature WT CFTR. However, ExoS-GAP did not increase the total protein levels of ∆F508CFTR. Conclusion: The GAP portion of the PA TTST ExoS increases the total and surface levels of wild type CFTR in vitro mammalian cell system. The effect of ExoS-GAP on WT CFTR total protein levels provides new insight into understanding the virulent pathophysiology of PA infections.

  5. Fuzzy rank functions in the set of all binary systems.

    Science.gov (United States)

    Kim, Hee Sik; Neggers, J; So, Keum Sook

    2016-01-01

    In this paper, we introduce fuzzy rank functions for groupoids, and we investigate their roles in the semigroup of binary systems by using the notions of right parallelisms and [Formula: see text]-shrinking groupoids.

  6. KOI-3278: A Self-Lensing Binary Star System

    CERN Document Server

    Kruse, Ethan

    2014-01-01

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  7. Global Instability of Exo-Moon System Triggered by Photo-Evaporation

    CERN Document Server

    Yang, Ming; Zhou, Ji-Lin; Liu, Hui-Gen; Zhang, Hui

    2016-01-01

    Many exoplanets have been found in orbits close to their host stars and thus they are subject to the effects of photo-evaporation. Previous studies have shown that a large portion of exoplanets detected by the Kepler mission have been significantly eroded by photo-evaporation. In this paper, we numerically study the effects of photo-evaporation on the orbital evolution of a hypothesized moon system around a planet. We find that photo-evaporation is crucial to the stability of the moon system. Photo-evaporation can erode the atmosphere of the planet thus leading to significant mass loss. As the planet loses mass, its Hill radius shrinks and its moons increase their orbital semi-major axes and eccentricities. When some moons approach their critical semi-major axes, global instability of the moon system would be triggered, which usually ends up with two, one or even zero surviving moons. Some lost moons could escape from the moon system to become a new planet orbiting the star or run away further to become a fre...

  8. Iterative Solution for Systems of Nonlinear Two Binary Operator Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhi-hong; LIWen-feng

    2004-01-01

    Using the cone and partial ordering theory and mixed monotone operator theory, the existence and uniqueness of solutions for some classes of systems of nonlinear two binary operator equations in a Banach space with a partial ordering are discussed. And the error estimates that the iterative sequences converge to solutions are also given. Some relevant results of solvability of two binary operator equations and systems of operator equations are imnroved and generalized.

  9. Status of EXO-200

    CERN Document Server

    Ackerman, Nicole

    2009-01-01

    EXO-200 is the first phase of the Enriched Xenon Observatory (EXO) experiment, which searches for neutrinoless double beta decay in 136Xe to measure the mass and probe the Majorana nature of the neutrino. EXO-200 consists of 200 kg of liquid Xe enriched to 80% in 136Xe in an ultra-low background TPC. Energy resolution is enhanced through the simultaneous collection of scintillation light using Large Area Avalanche Photodiodes (LAAPD's) and ionization charge. It is being installed at the WIPP site in New Mexico, which provides a 2000 meter water-equivalent overburden. EXO-200 will begin taking data in 2009, with the expected two-year sensitivity to the half-life for neutrinoless double beta decay of 6.4 10^25 years. According to the most recent nuclear matrix element calculations, this corresponds to an effective Majorana neutrino mass of 0.13 to 0.19 eV. It will also measure the two neutrino mode for the first time in 136Xe.

  10. Relating binary-star planetary systems to central configurations

    CERN Document Server

    Veras, Dimitri

    2016-01-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than ten degrees, and (v) the deviation increases as the substellar masse...

  11. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, H. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Borkovits, T. [Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766 (Hungary); Rappaport, S. A. [Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ngo, H. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Boulevard, MC 150-21, Pasadena, CA 91125 (United States); Mawet, D. [California Institute of Technology, Astronomy Dept. MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Csizmadia, Sz. [German Aerospace Center (DLR), Institut für Planeten-forschung, Rutherfordstraße 2, D-12489 Berlin (Germany); Forgács-Dajka, E., E-mail: lehm@tls-tautenburg.de, E-mail: borko@electra.bajaobs.hu, E-mail: sar@mit.edu, E-mail: hngo@caltech.edu, E-mail: dmawet@astro.caltech.edu, E-mail: szilard.csizmadia@dlr.de, E-mail: e.forgacs-dajka@astro.elte.hu [Astronomical Department, Eötvös University, H-1118 Budapest, Pázmány Péter stny. 1/A (Hungary)

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.

  12. The missing Wolf-Rayet X-ray binary systems

    Science.gov (United States)

    Munoz, M.; Moffat, A. F. J.; Hill, G. M.; Richardson, N. D.; Pablo, H.

    We investigate the rarity of the Wolf-Rayet X-ray binaries (WRXRBs) in contrast to their predecessors, the high mass X-ray binaries (HMXRBs). Recent studies suggest that common envelope (CE) mergers during the evolution of a HMXRBs may be responsible (Linden et al. 2012). We conduct a binary population synthesis to generate a population of HMXRBs mimicking the Galactic sample and vary the efficiency parameter during the CE phase to match the current WRXRB to HMXRB ratio. We find that ˜50% of systems must merge to match observational constraints.

  13. Milankovitch cycles of terrestrial planets in binary star systems

    Science.gov (United States)

    Forgan, Duncan

    2016-12-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N-Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular time-scales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P- and S-type binary systems, respectively. In the first case, Earth-like planets would experience rapid Milankovitch cycles (of order 1000 yr) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter time-scale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15 000 yr time-scales. This produces climate oscillations of similar strength to the variation on the orbital time-scale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100 000 yr in duration, which are further modulated by neighbouring planets.

  14. The Evolutionary Outcomes of Expansive Binary Asteroid Systems

    Science.gov (United States)

    McMahon, Jay W.

    2016-10-01

    Singly synchronous binary asteroid systems have several evolutionary end-states, which depend heavily on the BYORP effect. In the case of expansive BYORP, the binary system could evolve to become a wide asynchronous binary system (Jacobson, et al 2014), or the system could expand far enough to become disrupted to form a heliocentric pair (Vokrouhlicky et al 2008). Cuk et al (2011) found that upon expanding the secondary will quickly become asynchronous, and will end up re-establishing synchronous rotation with the opposite attitude, causing the binary orbit to subsequently contract. The distinction between these outcomes depends on whether the secondary asteroid stays synchronized, which keeps the BYORP effect active and the orbit expanding. As the orbit expands, the secondary libratation will expand, and the libration will also causes large variations in the binary orbit due to the elongation of the secondary. If the eccentricity and libration are bound to small enough values the system can expand significantly. This work discusses the stability of the libration and orbital motion as a binary expands from a wide variety of simulation runs with various parameters. We investigate how the strength of tides and BYORP change the stability of the librational motion; an important factor is the speed of BYORP expansion as slower expansion allows tides to have a more stabilizing effect. We also investigate the effect of heliocentric orbit semimajor axis and eccentricity. We find that resonances between the coupled orbit-libration frequencies and the heliocentric orbit cause instability in the binary orbit eccentricity which produces a strong preference for wide binary production, especially amongst retrograde binary systems. This instability also becomes stronger with large heliocentric eccentricities. Prograde binaries are more stable and can possible grow to become asteroid pairs. We find that even in the presence of tides, reestablishment of synchronous spin into a

  15. Spectral modelling of the Alpha Virginis (Spica) binary system

    CERN Document Server

    Palate, M; Rauw, G; Harrington, D; Moreno, E

    2013-01-01

    Context: The technique of matching synthetic spectra computed with theoretical stellar atmosphere models to the observations is widely used in deriving fundamental parameters of massive stars. When applied to binaries, however, these models generally neglect the interaction effects present in these systems Aims: The aim of this paper is to explore the uncertainties in binary stellar parameters that are derived from single-star models Methods: Synthetic spectra that include the tidal perturbations and irradiation effects are computed for the binary system alpha Virginis (Spica) using our recently-developed CoMBiSpeC model. The synthetic spectra are compared to S/N~2000 observations and optimum values of Teff and log(g) are derived. Results: The binary interactions have only a small effect on the strength of the photospheric absorption lines in Spica (<2% for the primary and <4% for the secondary). These differences are comparable to the uncertainties inherent to the process of matching synthetic spectra ...

  16. A quintuple star system containing two eclipsing binaries

    Science.gov (United States)

    Rappaport, S.; Lehmann, H.; Kalomeni, B.; Borkovits, T.; Latham, D.; Bieryla, A.; Ngo, H.; Mawet, D.; Howell, S.; Horch, E.; Jacobs, T. L.; LaCourse, D.; Sódor, Á.; Vanderburg, A.; Pavlovski, K.

    2016-10-01

    We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11 arcsec on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclipsing binaries which are resolved within that image at 0.09 arcsec, while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The `A' binary is circular with a 5.1-d period, while the `B' binary is eccentric with a 13.1-d period. The γ velocities of the A and B binaries are different by ˜10 km s-1. That, coupled with their resolved projected separation of 0.09 arcsec, indicates that the orbital period and separation of the `C' binary (consisting of A orbiting B) are ≃65 yr and ≃25 au, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e. 212651213) has an RV and proper motion that differ from that of 212651234 by only ˜1.4 km s-1 and ˜3 mas yr-1. This set of similar space velocities in three dimensions strongly implies that these two objects are also physically bound, making this at least a quintuple star system.

  17. A Quintuple Star System Containing Two Eclipsing Binaries

    CERN Document Server

    Rappaport, S; Kalomeni, B; Borkovits, T; Latham, D; Bieryla, A; Ngo, H; Mawet, D; Howell, S; Horch, E; Jacobs, T L; LaCourse, D; Sodor, A; Vanderburg, A; Pavlovski, K

    2016-01-01

    We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11" on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclipsing binaries which are resolved within that image at 0.09", while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The 'A' binary is circular with a 5.1-day period, while the 'B' binary is eccentric with a 13.1-day period. The gamma velocities of the A and B binaries are different by ~10 km/s. That, coupled with their resolved projected separation of 0.09", indicates that the orbital period and separation of the 'C' binary (consisting of A orbiting B) are ~65 years and ~25 AU, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e., 21...

  18. KIC 7177553: a quadruple system of two close binaries

    CERN Document Server

    Lehmann, H; Rappaport, S A; Ngo, H; Mawet, D; Csizmadia, Sz; Forgacs-Dajka, E

    2016-01-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations in this object with an amplitude of about 100 sec, and an outer period of 529 days. The implied mass of the third body is that of a superJupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the radial velocity measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.4 arcsec (about 167 AU), and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries, and very similar Gamma velocities, strongly suggest that KIC 7177553 is o...

  19. Mass transfer in eccentric binary systems using the binary evolution code BINSTAR

    CERN Document Server

    Davis, P J; Deschamps, R

    2013-01-01

    We present the first calculations of mass transfer via RLOF for a binary system with a significant eccentricity using our new binary stellar evolution code. The study focuses on a 1.50+1.40 Msun main sequence binary with an eccentricity of 0.25, and an orbital period of about 0.7 d. The reaction of the stellar components due to mass transfer is analyzed, and the evolution of mass transfer during the periastron passage is compared to recent smooth particle hydrodynamics (SPH) simulations. The impact of asynchronism and non-zero eccentricity on the Roche lobe radius, and the effects of tidal and rotational deformation on the stars' structures, are also investigated. Calculations were performed using the state-of-the-art binary evolution code BINSTAR, which calculates simultaneously the structure of the two stars and the evolution of the orbital parameters. The evolution of the mass transfer rate during an orbit has a Gaussian-like shape, with a maximum at periastron, in qualitative agreement with SPH simulation...

  20. Relating binary-star planetary systems to central configurations

    Science.gov (United States)

    Veras, Dimitri

    2016-11-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than 10°, and (v) the deviation increases as the substellar masses increase. This study may help restrict future stability analyses to architectures which resemble exoplanetary systems, and might hint at where observers may discover dust, asteroids and/or planets in binary-star systems.

  1. Stochastic Background of Gravitational Waves Generated by Compact Binary Systems

    CERN Document Server

    Evangelista, E F D

    2015-01-01

    Binary Systems are the most studied sources of gravitational waves. The mechanisms of emission and the behavior of the orbital parameters are well known and can be written in analytic form in several cases. Besides, the strongest indication of the existence of gravitational waves has arisen from the observation of binary systems. On the other hand, when the detection of gravitational radiation becomes a reality, one of the observed pattern of the signals will be probably of stochastic background nature, which are characterized by a superposition of signals emitted by many sources around the universe. Our aim here is to develop an alternative method of calculating such backgrounds emitted by cosmological compact binary systems during their periodic or quasiperiodic phases. We use an analogy with a problem of Statistical Mechanics in order to perform this sum as well as taking into account the temporal variation of the orbital parameters of the systems. Such a kind of background is of particular importance sinc...

  2. Understanding the evolution of close binary systems with radio pulsars

    CERN Document Server

    Benvenuto, O G; Horvath, J E

    2014-01-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, evolving either to helium white dwarf (HeWD) or ultra short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in-between as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such {\\it quasi - Roche Lobe Overflow} states, r...

  3. Constraining the orbits of young binary systems with ALMA

    Science.gov (United States)

    Nogueira, Natasha; Jensen, Eric L. N.; Akeson, Rachel L.

    2017-01-01

    Measuring the orbits of young binary systems can provide the stars' individual stellar masses as well as insight into the dynamical effects they should have on each others' protoplanetary disks. As a byproduct of our ALMA observations of disks in young binary systems, we are able to measure precise relative separations of binaries with separations of 0.22--0.35 arcsec (~ 30--50 AU at the distance of the Taurus star-forming region). Most of these systems were first resolved in the early 1990s, so our epoch 2015 observations add an additional point in the orbit that is 20--25 years after the discovery epoch. While this coverage does not yet yield a definitive orbit, the extended coverage allows improved constraints on the binary orbital parameters. We present updated orbital constraints on a number of young binary systems, including XZ Tau, GH Tau, GN Tau, IS Tau, V955 Tau, and JH 112.This work makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00150.S. and ADS/JAO.ALMA#2013.1.00105.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  4. Understanding Gravitational Waves from Inspiral Binary Systems and its Detection

    CERN Document Server

    Antelis, Javier M

    2016-01-01

    The discovery of the events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure this waves using the interferometer-based detector called LIGO. Subsequently, the work proposes a comprehensive data analysis methodology based on the matched filter algorithm which aims to detect GW signals emitted by inspiral binary systems of astrophysical sources. The method is validated with freely available LIGO data which contain injected GW signals. Results of experiments performed to assess detection carried out show that the method was able to recover the 85% of the injected GW.

  5. Dynamical Formation of Close Binary Systems in Globular Clusters

    CERN Document Server

    Pooley, D; Anderson, S F; Baumgardt, H; Filippenko, A V; Gaensler, B M; Homer, L; Hut, P; Kaspi, V M; Margon, B; McMillan, S; Zwart, S P; Van der Klis, M; Verbunt, F

    2003-01-01

    We know from observations that globular clusters are very efficient catalysts in forming unusual short-period binary systems or their offspring, such as low-mass X-ray binaries (LMXBs; neutron stars accreting matter from low-mass stellar companions), cataclysmic variables (CVs; white dwarfs accreting matter from stellar companions), and millisecond pulsars (MSPs; rotating neutron stars with spin periods of a few ms). Although there has been little direct evidence, the overabundance of these objects in globular clusters has been attributed by numerous authors to the high densities in the cores, which leads to an increase in the formation rate of exotic binary systems through close stellar encounters. Many such close binary systems emit X-radiation at low luminosities (L_x < 10^{34} erg/s) and are being found in large numbers through observations with the Chandra X-ray Observatory. Here we present conclusive observational evidence for a link between the number of close binaries observed in X-rays in a globul...

  6. Physical parameters of components in close binary systems: V

    OpenAIRE

    Zola, S.; Kreiner, J. M.; Zakrzewski, B.; Kjurkchieva, D. P.; Marchev, D. V.; Baran, A.; Rucinski, S. M.; Ogloza, W.; Siwak, M.; Koziel, D.; Drozdz, M.; Pokrzywka, B.

    2009-01-01

    The paper presents combined spectroscopic and photometric orbital solutions for ten close binary systems: CN And, V776 Cas, FU Dra, UV Lyn, BB Peg, V592 Per, OU Ser, EQ Tau, HN UMa and HT Vir. The photometric data consist of new multicolor light curves, while the spectroscopy has been recently obtained within the radial velocity program at the David Dunlap Observatory (DDO). Absolute parameters of the components for these binary systems are derived. Our results confirm that CN And is not a co...

  7. The distance and internal composition of the neutron star in EXO 0748-676 with XMM-Newton

    CERN Document Server

    Zhang, Guobao; Jonker, Peter; Hiemstra, Beike

    2010-01-01

    Recently, the neutron star X-ray binary EXO 0748-676 underwent a transition to quiescence. We analyzed an XMM-Newton observation of this source in quiescence, where we fitted the spectrum with two different neutron-star atmosphere models. From the fits we constrained the allowed parameter space in the mass-radius diagram for this source for an assumed range of distances to the system. Comparing the results with different neutron-star equations of state, we constrained the distance to EXO 0748-676. We found that the EOS model 'SQM1' is rejected by the atmosphere model fits for the known distance, and the 'AP3' and 'MS1' is fully consistent with the known distance.

  8. Radiation reaction in binary systems in general relativity

    Science.gov (United States)

    Kennefick, Daniel John

    1997-09-01

    This thesis is concerned with current problems in, and historical aspects of, the problem of radiation reaction in stellar binary systems in general relativity. Part I addresses current issues in the orbital evolution due to gravitational radiation damping of compact binaries. A particular focus is on the inspiral of small bodies orbiting large black holes, employing a perturbation formalism. In addition, the merger, at the end of the insprial, of comparable mass compact binaries, such as neutron star binaries is also discussed. The emphasis of Part I is on providing detailed descriptions of sources and signals with a view to optimising signal analysis in gravitational wave detectors, whether ground- or space- based interferometers, or resonant mass detectors. Part II of the thesis examines the historical controversies surrounding the problem of gravitational waves, and gravitational radiation damping in stellar binaries. In particular, it focuses on debates in the mid 20th-century on whether binary star systems would really exhibit this type of damping and emit gravitational waves, and on the 'quadrupole formula controversy' of the 1970s and 1980s, on the question whether the standard formular describing energy loss due to emission of gravitational waves was correctly derived for such systems. The study shed light on the role of analogy in science, especially where its use is controversial, on the importance of style in physics and on the problem of identity in science, as the use of history as a rhetorical device in controversial debate is examined. The concept of the Theoretician's Regress is introduced to explain the difficulty encountered by relativists in closing debate in this controversy, which persisted in one forms or another for several decades.

  9. Discovery of the Neutron Star Spin Frequency in EXO 0748-676

    Science.gov (United States)

    Villarreal, Adam R.; Strohmayer, Tod E.

    2004-01-01

    We report the results of a search for burst oscillations during thermonuclear X-ray bursts from the low mass X-ray binary (LMXB) EXO 0748-676. With the proportional counter array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) we have detected a 45 Hz oscillation in the average power spectrum of 38 thermonuclear X-ray bursts from this source. We computed power spectra with 1 Hz frequency resolution for both the rising and decaying portions of 38 X-ray bursts from the public RXTE archive. We averaged the 1 Hz power spectra and detected a significant signal at 45 Hz in the decaying phases of the bursts. The signal is detected at a significance level of 4 x 10 (exp -8) similar signal was detected in the rising intervals. The oscillation peak is unresolved at 1 Hz frequency resolution, indicating an oscillation quality factor, Q = nu (sub 0)/Delta nu (sub fwhm) greater than 45, and the average signal amplitude is approximately equal to 3% (rms) The detection of 45 Hz burst oscillations from EXO 0748-676 provides compelling evidence that this is the neutron star spin frequency in this system. We use the inferred spin frequency to model the widths of absorption lines from the neutron star surface and show that the widths of the absorption lines from EXO 0748-676 recently reported by Cottam et al. are consistent with a 45 Hz spin frequency as long as the neutron star radius is in the range from about 9.5 - 15 km. With a known spin frequency, precise modelling of the line profiles from EXO 0748-676 holds great promise for constraining the dense matter equation of state.

  10. Exo-C: a Probe-Scale Space Mission to Directly Image and Spectroscopically Characterize Exoplanetary Systems Using an Internal Coronagraph

    Science.gov (United States)

    Stapelfeldt, Karl R.; Brenner, Michael P.; Warfield, Keith R.; Dekens, Frank G.; Belikov, Ruslan; Brugarolas, Paul B.; Bryden, Geoffrey; Cahoy, Kerri L.; Chakrabarti, Supriya; Dubovitsky, Serge; Effinger, Robert T.; Hirsch, Brian; Kissil, Andrew; Krist, John E.; Lang, Jared J.; Marley, Mark S.; McElwain, Michael W.; Meadows, Victoria S.; Nissen, Joel; Oseas, Jeffrey M.; Serabyn, Eugene; Sunada, Eric; Trauger, John T.; Unwin, Stephen C.

    2014-01-01

    "Exo-C" is NASA's first community study of a modest aperture space telescope designed for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discover previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. At the study conclusion in 2015, NASA will evaluate it for potential development at the end of this decade. Keywords: Exoplanets, high contrast imaging, optical astronomy, space mission concepts

  11. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  12. Supernovae in Binary Systems: An Application of Classical Mechanics.

    Science.gov (United States)

    Mitalas, R.

    1980-01-01

    Presents the supernova explosion in a binary system as an application of classical mechanics. This presentation is intended to illustrate the power of the equivalent one-body problem and provide undergraduate students with a variety of insights into elementary classical mechanics. (HM)

  13. The new Wolf-Rayet binary system WR62a

    Science.gov (United States)

    Collado, A.; Gamen, R.; Barbá, R. H.

    2013-04-01

    Context. A significant number of the Wolf-Rayet stars seem to be binary or multiple systems, but the nature of many of them is still unknown. Dedicated monitoring of WR stars favours the discovery of new systems. Aims: We explore the possibility that WR62a is a binary system. Methods: We analysed the spectra of WR62a, obtained between 2002 and 2010, to look for radial-velocity and spectral variations that would suggest there is a binary component. We searched for periodicities in the measured radial velocities and determined orbital solutions. A period search was also performed on the "All-Sky Automated Survey" photometry. Results: We find that WR62a is a double-lined spectroscopic binary with a WN5 primary star and an O 5.5-6 type secondary component in orbit with a period of 9.1447 d. The minimum masses range between 21 and 23 M⊙ for the WN star and between 39 and 42 M⊙ for the O-type star, thus indicating that the WN star is less massive than the O-type component. We detect a phase shift in the radial-velocity curve of the He ii λ4686 emission line relative to the other emission line curves. The equivalent width of this emission line shows a minimum value when the WN star passes in front of the system. The analysis of the ASAS photometry confirms the spectroscopic periodicity, presenting a minimum at the same phase.

  14. Nonparametric statistical structuring of knowledge systems using binary feature matches

    DEFF Research Database (Denmark)

    Mørup, Morten; Glückstad, Fumiko Kano; Herlau, Tue

    2014-01-01

    Structuring knowledge systems with binary features is often based on imposing a similarity measure and clustering objects according to this similarity. Unfortunately, such analyses can be heavily influenced by the choice of similarity measure. Furthermore, it is unclear at which level clusters ha...

  15. Estimation of the Ideal Binary Mask using Directional Systems

    DEFF Research Database (Denmark)

    Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind;

    2008-01-01

    and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results....

  16. Accretion Events in Binary Systems: AZ Cas and VV Cep

    CERN Document Server

    Gałan, C; Tomov, T; Wiȩcek, M; Majcher, A; Wychudzki, P; Świerczyński, E; Kolev, D; Brożek, T; Maciejewski, G; Zoła, S; Kurpińska-Winiarska, M; Winiarski, M; Ogłoza, W; Drożdż, M; Krzesiński, J

    2011-01-01

    The sudden lengthening of orbital period of VV Cep eclipsing binary by about 1% was observed in the last epoch. The mass transfer and/or mass loss are most possible explanations of this event. The photometric behaviour of AZ Cas, the cousin of VV Cep, suggests that the accretion can occur and could be important in this system, too.

  17. Rotational mixing in massive binaries: detached short-period systems

    CERN Document Server

    de Mink, S E; Langer, N; Pols, O R; Brott, I; Yoon, S -Ch

    2009-01-01

    Models of rotating single stars can successfully account for a wide variety of observed stellar phenomena, such as the surface enhancements of N and He. However, recent observations have questioned the idea that rotational mixing is the main process responsible for the surface enhancements, emphasizing the need for a strong and conclusive test. We investigate the consequences of rotational mixing for massive main-sequence stars in short-period binaries. In these systems the tides spin up the stars to rapid rotation. We use a state-of-the-art stellar evolution code including the effect of rotational mixing, tides, and magnetic fields. We discuss the surface abundances expected in massive close binaries (M1~20 solar masses) and we propose using such systems to test the concept of rotational mixing. As these short-period binaries often show eclipses, their parameters can be determined with high accuracy, allowing for a direct comparison with binary evolution models. In more massive close systems (M1~50 solar mas...

  18. The new Wolf-Rayet binary system WR62a

    CERN Document Server

    Collado, A; Barbá, R H

    2013-01-01

    Context. A significant number of the Wolf-Rayet stars seem to be binary or multiple systems, but the nature of many of them is still unknown. Dedicated monitoring of WR stars favours the discovery of new systems. Aims. We explore the possibility that WR62a is a binary system. Methods. We analysed the spectra of WR62a, obtained between 2002 and 2010, to look for radial-velocity and spectral variations that would suggest there is a binary component. We searched for periodicities in the measured radial velocities and determined orbital solutions. A period search was also performed on the "All-Sky Automated Survey" photometry. Results. We find that WR62a is a double-lined spectroscopic binary with a WN5 primary star and an O 5.5-6 type secondary component in orbit with a period of 9.1447 d. The minimum masses range between 21 and 23 Mo for the WN star and between 39 and 42 Mo for the O-type star, thus indicating that the WN star is less massive than the O-type component. We detect a phase shift in the radial-velo...

  19. Estimating gravitational radiation from super-emitting compact binary systems

    CERN Document Server

    Hanna, Chad; Lehner, Luis

    2016-01-01

    Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the pre-merger orbital energy and angular momentum. A non-vacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model can capture the merger of neutron stars, but it can also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.

  20. VX Her: Eclipsing Binary System or Single Variable Star

    Science.gov (United States)

    Perry, Kathleen; Castelaz, Michael; Henson, Gary; Boghozian, Andrew

    2015-01-01

    VX Her is a pulsating variable star with a period of .4556504 days. It is believed to be part of an eclipsing binary system (Fitch et al. 1966). This hypothesis originated from Fitch seeing VX Her's minimum point on its light curve reaching a 0.7 magnitude fainter than normal and remaining that way for nearly two hours. If VX Her were indeed a binary system, I would expect to see similar results with a fainter minimum and a broader, more horizontal dip. Having reduced and analyzed images from the Southeastern Association for Research in Astronomy Observatory in Chile and Kitt Peak, as well as images from a 0.15m reflector at East Tennessee State University, I found that VX Her has the standard light curve of the prototype variable star, RR Lyrae. Using photometry, I found no differing features in its light curve to suggest that it is indeed a binary system. However, more observations are needed in case VX Her is a wide binary.

  1. Physical parameters of components in close binary systems: V

    CERN Document Server

    Zola, S; Zakrzewski, B; Kjurkchieva, D P; Marchev, D V; Baran, A; Rucinski, S M; Ogloza, W; Siwak, M; Koziel, D; Drozdz, M; Pokrzywka, B

    2009-01-01

    The paper presents combined spectroscopic and photometric orbital solutions for ten close binary systems: CN And, V776 Cas, FU Dra, UV Lyn, BB Peg, V592 Per, OU Ser, EQ Tau, HN UMa and HT Vir. The photometric data consist of new multicolor light curves, while the spectroscopy has been recently obtained within the radial velocity program at the David Dunlap Observatory (DDO). Absolute parameters of the components for these binary systems are derived. Our results confirm that CN And is not a contact system. Its configuration is semi-detached with the secondary component filling its Roche lobe. The configuration of nine other systems is contact. Three systems (V776 Cas, V592 Per and OU Ser) have high (44-77%) and six (FU Dra, UV Lyn, BB Peg, EQ Tau, HN UMa and HT Vir) low or intermediate (8-32%) fill-out factors. The absolute physical parameters are derived.

  2. Mass transfer in binary X-ray systems

    Science.gov (United States)

    Mccray, R.; Hatchett, S.

    1975-01-01

    The influence of X-ray heating on gas flows in binary X-ray systems is examined. A simple estimate is obtained for the evaporative wind flux from a stellar atmosphere due to X-ray heating which agrees with numerical calculations by Alme and Wilson (1974) but disagrees with calculations by Arons (1973) and by Basko and Sunyaev (1974) for the Her X-1/HZ Her system. The wind flux is sensitive to the soft X-ray spectrum. The self-excited wind mechanism does not work. Mass transfer in the Hercules system probably occurs by flow of the atmosphere of HZ Her through the gravitational saddle point of the system. The accretion gas stream is probably opaque with atomic density of not less than 10 to the 15th power per cu cm and is confined to a small fraction of 4(pi) steradians. Other binary X-ray systems are briefly discussed.

  3. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); De Vito, M. A. [Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  4. Sequential observations of exencephaly and subsequent morphological changes by mouse exo utero development system: analysis of the mechanism of transformation from exencephaly to anencephaly.

    Science.gov (United States)

    Matsumoto, Akihiro; Hatta, Toshihisa; Moriyama, Kenji; Otani, Hiroki

    2002-01-01

    Anencephaly has been suggested to develop from exencephaly; however, there is little direct experimental evidence to support this, and the mechanism of transformation remains unclear. We examined this theory using the exo utero development system that allows direct and sequential observations of mid- to late-gestation mouse embryos. We observed the exencephaly induced by 5-azacytidine at embryonic day 13.5 (E13.5), let the embryos develop exo utero until E18.5, and re-observed the same embryos at E18.5. We confirmed several cases of transformation from exencephaly to anencephaly. However, in many cases, the exencephalic brain tissue was preserved with more or less reduction during this period. To analyze the transformation patterns, we classified the exencephaly by size and shape of the exencephalic tissue into several types at E13.5 and E18.5. It was found that the transformation of exencephalic tissue was not simply size-dependent, and all cases of anencephaly at E18.5 resulted from embryos with a large amount of exencephalic tissue at E13.5. Microscopic observation showed the configuration of exencephaly at E13.5, frequent hemorrhaging and detachment of the neural plate from surface ectoderm in the exencephalic head at E15.5, and multiple modes of reduction in the exencephalic tissue at E18.5. From observations of the vasculature, altered distribution patterns of vessels were identified in the exencephalic head. These findings suggest that overgrowth of the exencephalic neural tissue causes the altered distribution patterns of vessels, subsequent peripheral circulatory failure and/or hemorrhaging in various parts of the exencephalic head, leading to the multiple modes of tissue reduction during transformation from exencephaly to anencephaly.

  5. A thermodynamic assessment of the iron-lead binary system

    Energy Technology Data Exchange (ETDEWEB)

    Vaajamo, I., E-mail: Iina.Vaajamo@aalto.fi [Aalto University School of Chemical Technology, Metallurgical Thermodynamics and Modelling Research Group PL 16200, FI-00076 Aalto (Finland); Taskinen, P., E-mail: Pekka.Taskinen@aalto.fi [Aalto University School of Chemical Technology, Metallurgical Thermodynamics and Modelling Research Group PL 16200, FI-00076 Aalto (Finland)

    2011-09-20

    Highlights: {center_dot} Isothermal equilibration experiments of the Fe-Pb binary were conducted in a special quartz ampoule and analyzed with ICP and EPMA. {center_dot} The method enables to obtain two experimental points from each end of the phase diagram in one experiment. {center_dot} New experimental data of the Pb solubility to Fe(s) below the monotectic temperature was obtained. {center_dot} This study consists of the widest critical compilation of the literature data done of the Fe-Pb binary system done so far, corrected also some errors in previous assessments. {center_dot} More accurate thermodynamic description of the Fe-Pb binary and its phases were obtained. - Abstract: The thermodynamic properties and phase equilibria of the Fe-Pb binary system were assessed using the CALPHAD (CALculation of PHAse Diagrams) method based upon available literature data and results of isothermal equilibration experiments reported in this paper. The phase diagram and excess Gibbs energy values of the solution phases, namely the molten alloy and the {gamma}-fcc and {alpha}- and {delta}-bcc solid solutions were expressed using Redlich-Kister polynomials. The experimental data were fitted by a least squares method using the MTDATA software. Agreement between experimental and calculated values is good. In particular the description of the solubility of lead in iron below the monotectic temperature has been improved.

  6. Frequencies Shift in Relativistic Binary System (Theoretical Study)

    Science.gov (United States)

    El Fady Morcos, Abd

    2016-07-01

    A generalized formula for Kermack, McCrea and Whittaker (KMW), has been derived by the author and et al., to study the limb effect of massive rapidly rotating stars. In this work a modified Curzon exact solution for Einstein's field equations has been used to study the variation in the frequencies of signals' carriers from a relativistic binary system. The primary star is assumed to be massive with respect to the secondary one. The center of mass is considered to be coincident to the center of rotating polar coordinate system. The rotation of the secondary star around the primary star and Earth's observer rotates with the Earth are considered in our calculation. A general theoretical formula for the variation in the frequencies of the signals' carriers from a binary system is obtained

  7. Binary Systems as Resonance Detectors for Gravitational Waves

    CERN Document Server

    Hui, Lam; Yang, I-Sheng

    2012-01-01

    Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk -- with the variance of orbital elements growing with time. The lack of such a random walk in binaries that have been monitored with high precision over long time-scales can thus be used to place an upper bound on the gravitational-wave background. Using periastron time data from the Hulse-Taylor binary pulsar spanning ~30 years, we obtain a bound of h_c < 7.9 x 10^-14 at ~10^-4 Hz, where h_c is the strain amplitude per logarithmic frequency interval. Our constraint complements those from pulsar timing arrays, which probe much lower frequencies, and ground-based gravitational-wave observations, which probe much higher frequencies. Interesting sources in our frequency band, which overlaps the lower sensitive frequencies of proposed space-based observatories, include white-...

  8. Periodic orbits of planets in binary systems

    Science.gov (United States)

    Voyatzis, G.

    2017-03-01

    Periodic solutions of the three body problem are very important for understanding its dynamics either in a theoretical framework or in various applications in celestial mechanics. In this paper we discuss the computation and continuation of periodic orbits for planetary systems. The study is restricted to coplanar motion. Starting from known results of two-planet systems around single stars, we perform continuation of solutions with respect to the mass and approach periodic orbits of single planets in two-star systems. Also, families of periodic solutions can be computed for fixed masses of the primaries. When they are linearly stable, we can conclude about the existence of phase space domains of long-term orbital stability.

  9. Orbital Parameters for a Pre-Main Sequence Binary System

    Science.gov (United States)

    Karnath, Nicole; Prato, L.; Wasserman, L.

    2011-01-01

    The young system VSB 111 was originally classified as a single-lined spectroscopic binary in the star forming region of NGC 2264. Using the Keck II telescope we measured radial velocities for both the primary and secondary components in the infrared. By combining these data with previous visible light observations of the primary star, we derived the period, eccentricity, and other orbital parameters, as well as the mass ratio of the system. With additional information gained from further observations, for example the inclination derived from the angularly resolved orbit, we will eventually obtain the individual stellar masses, necessary to help to calibrate models of young star evolution. Furthermore, by compiling dozens or even hundreds of mass ratios for young binaries we can use mass ratio distributions to improve our understanding of binary star formation. No infrared excess or any other indication of a circumstellar disk is in evidence for VSB 111, indicating that either the accretion rate has dropped to an undetectable value or that this system has aged enough that its disk has dissipated, if originally present. Given the approximately 900 day period of this system, and its relatively high eccentricity, 0.8, the action of the companion could have been responsible for early dissipation of any disk material.

  10. Tenoxicam-kollicoat IR binary systems: physicochemical and biological evaluation.

    Science.gov (United States)

    Ibrahim, Mohamed Abbas

    2014-01-01

    Tenoxicam (TNX) binary systems in Kollicoat IR (KL) matrix were prepared in different drug: polymer ratios using kneading and spray-drying method. The prepared binary systems were characterized for drug dissolution rate, differential scanning calorimetry (DSC), IR spectroscopy and x-ray diffractometry. The results showed that the drug dissolution rate was remarkably enhanced by incorporating it in the KL matrix either by kneading or spray-drying, and the dissolution rate was increased by decreasing the drug weight ratio. The DSc and x-ray studies revealed the presence of TNX in less crystalline or amorphous state in its-KL binary systems. Moreover, the spray-dried TNX-KL system in 1:4 ratio, that exhibited the faster dissolution rate, was formulated in oral disintegrating tablets (ODTs). The data indicated that a fast disintegration and higher drug dissolution rate was achieved in case of the ODTs containing the spray-dried form compared to the ODTS containing untreated drug or the commercial tablet (Epicotil). Also, the drug exhibited significantly (p < 0.01) faster onset of the anti-inflammatory analgesic activities in case of the ODTs containing the spray-dried form, that was superior to that observed with both the commercial tablet product and the ODTS containing untreated drug.

  11. Deep, Low Mass Ratio Overcontact Binary Systems. XIV. A Statistical Analysis of 46 Sample Binaries

    Science.gov (United States)

    Yang, Yuan-Gui; Qian, Sheng-Bang

    2015-09-01

    A sample of 46 deep, low mass ratio (DLMR) overcontact binaries (i.e., q≤slant 0.25 and f≥slant 50%) is statistically analyzed in this paper. It is found that five relations possibly exist among some physical parameters. The primary components are little-evolved main sequence stars that lie between the zero-age main sequence line and the terminal-age main sequence (TAMS) line. Meanwhile, the secondary components may be evolved stars above the TAMS line. The super-luminosities and large radii may result from energy transfer, which causes their volumes to expand. The equations of M-L and M-R for the components are also determined. The relation of P-Mtotal implies that mass may escape from the central system when the orbital period decreases. The minimum mass ratio may preliminarily be {q}{min}=0.044(+/- 0.007) from the relations of q-f and q-Jspin/Jorb. With mass and angular momentum loss, the orbital period decreases, which finally causes this kind of DLMR overcontact binary to merge into a rapid-rotating single star.

  12. Be discs in binary systems I. Coplanar orbits

    CERN Document Server

    Panoglou, Despina; Vieira, Rodrigo G; Cyr, Isabelle H; Jones, Carol E; Okazaki, Atsuo T; Rivinius, Thomas

    2016-01-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio, eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar systems. We simulate such binaries with the use of a smoothed particle hydrodynamics code. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. In circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc is smaller in size, more elongated and more massive for low viscosity parameter, small orbital separation and/or high mass ratio. Highly eccentric orbits are more complex, with the disc structure and total mass strongly dependent on the orbital phas...

  13. Excess Molar Volume of Binary Systems Containing Mesitylene

    Directory of Open Access Journals (Sweden)

    Morávková, L.

    2013-05-01

    Full Text Available This paper presents a review of density measurements for binary systems containing 1,3,5-trimethylbenzene (mesitylene with a variety of organic compounds at atmospheric pressure. Literature data of the binary systems were divided into nine basic groups by the type of contained organic compound with mesitylene. The excess molar volumes calculated from the experimental density values have been compared with literature data. Densities were measured by a few experimental methods, namely using a pycnometer, a dilatometer or a commercial apparatus. The overview of the experimental data and shape of the excess molar volume curve versus mole fraction is presented in this paper. The excess molar volumes were correlated by Redlich–Kister equation. The standard deviations for fitting of excess molar volume versus mole fraction are compared. Found literature data cover a huge temperature range from (288.15 to 343.15 K.

  14. Ordered Structures of a Binary Mixture with Mobile Particles System

    Institute of Scientific and Technical Information of China (English)

    诸跃进; 马余强

    2003-01-01

    We study the ordered structures of a binary mixture through the introduction of mobile particles under periodically oscillating driving fields, and find that the particle motion can break up the isotropy of the system, so that the continuous structure along the oscillation forcing direction is observed for properly chosen oscillating field.Furthermore, the dependences of the morphology and domain size on the mixture-particle coupling interaction,the diffusion coefficient, and the quench depth are examined in details.

  15. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  16. WOBBLING AND PRECESSING JETS FROM WARPED DISKS IN BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnezami, Somayeh [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Fendt, Christian, E-mail: nezami@mpia.de, E-mail: fendt@mpia.de [Max Planck Institute for Astronomy, Heidelberg (Germany)

    2015-12-01

    We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion–ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star–disk–jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 500 rotations of the inner disk, confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due by a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet bending outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indications of precession effects, we have also run an exemplary parameter setup, essentially governed by a small binary separation of only ≃200 inner disk radii. This simulation shows a strong indication that we observe the onset of a jet precession caused by the wobbling of the jet-launching disk. We estimate the opening angle of the precession cone defined by the lateral motion of the jet axis to be about 4° after about 5000 dynamical time steps.

  17. Self Regulated Shocks in Massive Star Binary Systems

    CERN Document Server

    Parkin, E R

    2013-01-01

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, LX remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind-driving, we term this scenario as self regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the m...

  18. ExoData: A python package to handle large exoplanet catalogue data

    CERN Document Server

    Varley, Ryan

    2015-01-01

    Exoplanet science often involves using the system parameters of real exoplanets for tasks such as simulations, fitting routines, and target selection for proposals. Software that bridges the barrier between the catalogues and code enables users to improve the specific repeatability of results by facilitating the retrieval of exact system parameters used in an articles results along with unifying the equations and software used. As exoplanet science moves towards large data, gone are the days where researchers can recall the current population from memory. An interface able to query the population now becomes invaluable for target selection and population analysis. ExoData is a python interface and exploratory analysis tool for the Open Exoplanet Catalogue. It allows the loading of exoplanet systems into python as objects (Planet, Star, Binary etc) from which common orbital and system equations can be calculated and measured parameters retrieved. This allows researchers to use tested code of the common equatio...

  19. ExoData: A Python package to handle large exoplanet catalogue data

    Science.gov (United States)

    Varley, Ryan

    2016-10-01

    Exoplanet science often involves using the system parameters of real exoplanets for tasks such as simulations, fitting routines, and target selection for proposals. Several exoplanet catalogues are already well established but often lack a version history and code friendly interfaces. Software that bridges the barrier between the catalogues and code enables users to improve the specific repeatability of results by facilitating the retrieval of exact system parameters used in articles results along with unifying the equations and software used. As exoplanet science moves towards large data, gone are the days where researchers can recall the current population from memory. An interface able to query the population now becomes invaluable for target selection and population analysis. ExoData is a Python interface and exploratory analysis tool for the Open Exoplanet Catalogue. It allows the loading of exoplanet systems into Python as objects (Planet, Star, Binary, etc.) from which common orbital and system equations can be calculated and measured parameters retrieved. This allows researchers to use tested code of the common equations they require (with units) and provides a large science input catalogue of planets for easy plotting and use in research. Advanced querying of targets is possible using the database and Python programming language. ExoData is also able to parse spectral types and fill in missing parameters according to programmable specifications and equations. Examples of use cases are integration of equations into data reduction pipelines, selecting planets for observing proposals and as an input catalogue to large scale simulation and analysis of planets.

  20. EXO-200 results and cosmogenic backgrounds

    Science.gov (United States)

    Belov, V. A.; EXO-200 collaboration

    2017-01-01

    Status update and recent results from the double beta decay search experiment EXO-200 are presented. Detector is a liquid xenon TPC with charge and light readout located underground in low-background laboratory at 1600 m.w.e. depth. It contains 175 kg of xenon with 80.6% abundance of 136Xe, which acts as both the decaying nucleus and detection medium. Detector showed good performance and achieved remarkable results. The detector has demonstrated excellent energy resolution and background rejection capabilities and has set a lower limit on the 0νββ-decay half-life of 1.1 × 1025 years at 90% C.L. in early 2014. The EXO-200 collaboration has since published several papers on experimental backgrounds and searches for rare or exotic processes. After a two-year data interruption, EXO-200 is now back online with significant hardware improvements, including a radon reduction air system and a front end electronics upgrade for better energy resolution.

  1. Carrying a Torch for Dust in Binary Star Systems

    CERN Document Server

    Cotton, Daniel V; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Bailey, Jeremy

    2016-01-01

    Young stars are frequently observed to host circumstellar disks, within which their attendant planetary systems are formed. Scattered light imaging of these proto-planetary disks reveals a rich variety of structures including spirals, gaps and clumps. Self-consistent modelling of both imaging and multi-wavelength photometry enables the best interpretation of the location and size distribution of disks' dust. Epsilon Sagittarii is an unusual star system. It is a binary system with a B9.5III primary that is also believed to host a debris disk in an unstable configuration. Recent polarimetric measurements of the system with the High Precision Polarimetric Instrument (HIPPI) revealed an unexpectedly high fractional linear polarisation, one greater than the fractional infrared excess of the system. Here we develop a spectral energy distribution model for the system and use this as a basis for radiative transfer modelling of its polarisation with the RADMC-3D software package. The measured polarisation can be repro...

  2. The low mass ratio contact binary system V728 Herculis

    CERN Document Server

    Erkan, Naci

    2015-01-01

    We present the orbital period study and the photometric analys of the contact binary system V728 Her. Our orbital period analysis shows that the period of the system increases (dP/dt=1.92x10^-7dyr^-1) and the mass transfer rate from the less massive component to more massive one is 2.51x10^-8M_suny^-1. In addition, an advanced sinusoidal variation in period can be attributed to the light-time effect by a tertiary component or the Applegate mechanism triggered by the secondary component. The simultaneous multicolor BVR light and radial velocity curves solution indicates that the physical parameters of the system are M1=1.8M_sun, M2=0.28M_sun, R1=1.87R_sun, R2=0.82R_sun, L1=5.9L_sun, and L2=1.2L_sun. We discuss the evolutionary status and conclude that V728 Her is a deep (f=81%), low mass ratio (q=0.16) contact binary system.

  3. Intelligent binary schema matching system in heterogeneity environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    For the past three decades, interoperability among heterogeneous systems had been a hard nut to crack due to the schematic and semantic perspectives that exist between objects. These systems were built under different data models. As such, levels of the local schemas are semantically very poor due to the limited expressiveness of traditional data models in which they were designed. Further more, most of the existing schema integration architectural conponents are inadequately equipped to handle the mapping schemas, especially when the semantics and structural conflicts are involved. This paper introduces an Intelligent Binary Schema Matching system (IBSMS), which exploits the phenomenon of making its components intelligent. That's equipping its components such as translators and integrators with adequate knowledge about various data models. This allows the components acquire enough intelligence to maneuver or manipulate the correspondence between constructs from different models. In addition, the system has a Binary Matcher, which compares the attribute correspondences of various databases in a pairwise form, in order to establish the equivalences. With the establishment of the mappings, the users shall be able to access them (mappings) for their desired usage.

  4. Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis.

    Science.gov (United States)

    Wiech, Eliza M; Cheng, Hai-Ping; Singh, Shaneen M

    2015-03-01

    The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods. Our model suggests that ExoR possesses a super-helical fold comprising 12 α-helices forming six Sel1-like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein-protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1-like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm -ExoS interactions, and studies of ExoR homologs in other bacterial host interactions.

  5. Photometric data analysis of the eclipsing binary system AH Tauri

    CERN Document Server

    El-Sadek, M A; Essam, A; Rassem, M A

    2014-01-01

    Two sets of photometric observations of the system AH Tauri have been analyzed using the latest version of the Wilson-Devinney code. The results show that AH Tauri may classified as A-type of W-UMa eclipsing binary. The mass ratio of q = 0.81, an over-contact degree of f = 0.095, and a slightly temperature difference between the two components have been obtained. The asymmetry of its light curve explained by the presence of a dark spot on the massive component. The physical, geometrical, and absolute parameters have been derived and compared with previous work.

  6. Properties of the components in young binary systems

    Science.gov (United States)

    Woitas, Jens

    1999-10-01

    Using near-infrared speckle-interferometry we have obtained resolved JHK-photometry for the components of 58 young binary systems. By placing the components into a color-color diagram we identify some unusual red objects that are candidates for infrared companions or substellar objects. We place a subsample that consists of the components of 14 weak-lined TTS systems (where no significant circumstellar excess emission is expected) into a color-magnitude diagram and show that in all these systems the components are coeval within the uncertainties. Particularly this is the case for the triple system HBC 358. Using the J-magnitude as an indicator for the stellar luminosity, the optical spectral type of the system and the previously justified assumption that all components are coeval we can place the components into the HRD and derive their masses by comparison with theoretical pre-main sequence evolutionary tracks. The results are the following: The distribution of mass ratios is neither clustered towards M2 / M1 = 1 nor is it a function of the primary's mass or the components' projected separation. Comparison of these results with predictions of theoretical multiple star formation models suggests that most of the systems have formed by fragmentation during protostellar collapse, and that the components' masses are principally determined by fragmentation and not by the following accretion processes. Furthermore the infrared source HV Tau C is discussed using new observational data. We show that this source is no Herbig-Haro object, but an active T Tauri star. So the HV Tau-system does not impose a problem on current models of T Tauri stars and their environment. From relative positions of the components at different epochs we derive their relative velocities and show that in most close systems orbital motion can be proved. The analysis of this orbital motion leads to an empirical mass estimate for T Tauri-stars which is larger than the masses one would expect from the

  7. Observational Evidence for Tidal Interaction in Close Binary Systems

    CERN Document Server

    Mazeh, Tsevi

    2008-01-01

    This paper reviews the rich corpus of observational evidence for tidal effects in short-period binaries. We review the evidence for ellipsoidal variability and for the observational manifestation of apsidal motion in eclipsing binaries. Among the long-term effects, circularization was studied the most, and a transition period between circular and eccentric orbits has been derived for eight coeval samples of binaries. As binaries are supposed to reach synchronization before circularization, one can expect finding eccentric binaries in pseudo-synchronization state, the evidence for which is reviewed. The paper reviews the Rossiter-McLaughlin effect and its potential to study spin-orbit alignment. We discuss the tidal interaction in close binaries that are orbited by a third distant companion, and review the effect of pumping the binary eccentricity by the third star. We then discuss the idea that the tidal interaction induced by the eccentricity modulation can shrink the binary separation. The paper discusses t...

  8. Thermodynamic reassessment of Ni-Pr binary system

    Energy Technology Data Exchange (ETDEWEB)

    Rahou, Z., E-mail: rahou.zakarea@gmail.com; Mahdouk, K.; Moustain, D.; Otmani, S.; Kardellass, S.; Iddaoudi, A.; Selhaoui, N.

    2015-01-25

    Highlights: • The Ni-Pr has been re-assessed using the latest experimental results. • The enthalpies of formation of NiPr and Ni{sub 5}Pr measured by Kleppa were considered her for the first time. • The errors of related modeling presented in previous articles have been modified. • A self-consistent thermodynamic description of the Sm–Ni system was obtained. - Abstract: Based on the available experimental data of phase equilibria and thermodynamic properties from the literature, the Ni-Pr binary system has been thermodynamically assessed using the CALPHAD method. The solution phases, Liquid, FCC{sub A}1, DHCP and BCC{sub A}2 were modeled as substitutional solution phases, for which the excess Gibbs energies were formulated with Redlich–Kister polynomials. All intermetallic phases were described as stoichiometric compounds. Subsequently, a set of self-consistent thermodynamic parameters describing various phases in this binary system has been obtained. The calculated results reproduce well the corresponding experimental data.

  9. Thermodynamic assessment of the Bi-Mg binary system

    Institute of Scientific and Technical Information of China (English)

    Chunju NIU; Changrong LI; Zhenmin DU; Cuiping GUO; Yongjuan JING

    2012-01-01

    The Bi-Mg binary system had been assessed by adopting the ionic melt and the modified quasi-chemical models to describe the liquid phase with short range ordering behavior.In general considerations of the development of the thermodynamic database of the multi-component Mg-based alloys and the consistency of the thermodynamic models of the related phases,the Gibbs energy descriptions of all the phases in the Bi-Mg binary system were reasonably re-modeled and critically re-assessed in the present work.Especially for the liquid phase,the associate model was used with the constituent species Bi,Mg and Bi2Mg3.The Mg-rich terminal phase hcp_A3 was modeled as a substitutional solution following Redlich-Kister equation and the Bi-rich terminal phase Rhombohedral_A7 was treated as a pure Bi substance since the extremely small solubility of Mg in Bi. The low and high temperature nonstoichiometric compounds β-Bi2Mg3 and α-Bi2Mg3 were described by the sublattice models (Bi,Va)2Mg3 and (Bi)1 (Bi,Va)aMg6 respectively based on their structure features.A set of self-consistent thermodynamic parameters of the Bi-Mg system was obtained and the experimental thermodynamic and phase equilibrium data were well reproduced by the optimized thermodynamic data.

  10. A new detached K7 dwarf eclipsing binary system

    CERN Document Server

    Young, T B; Webb, J K; Ashley, M C B; Christiansen, J L; Derekas, A; Nutto, C

    2006-01-01

    We present an analysis of a new, detached, double-lined eclipsing binary system with K7 Ve components, discovered as part of the University of New South Wales Extrasolar Planet Search. The object is significant in that only 6 other binary systems are known with comparable or lower mass. Such systems offer important tests of mass-radius theoretical models. Follow-up photometry and spectroscopy were obtained with the 40-inch and 2.3m telescopes at SSO respectively. An estimate of the radial velocity amplitude from spectral absorption features, combined with the orbital inclination (83.5 deg) estimated from lightcurve fitting, yielded a total mass of M=(1.041 +/- 0.06)M_sun and component masses of M_A=(0.529 +/- 0.035)M_sun and M_B=(0.512 +/- 0.035)M_sun. The radial velocity amplitude estimated from absorption features (167 +/- 3)kmps was found to be less than the estimate from the H_alpha emission lines (175 +/- 1.5)kmps. The lightcurve fit produced radii of R_A=(0.641 +/- 0.05)R_sun and R_B=(0.608 +/- 0.06)R_s...

  11. Possible regular phenomena in EXO 2030+375

    CERN Document Server

    Laplace, Eva; Moritani, Yuki; Nakajima, Motoki; Takagi, Toshihiro; Makishima, Kazuo; Santangelo, Andrea

    2016-01-01

    In the last 10 years, since its last giant outburst in 2006, regular X-ray outbursts (type I) were detected every periastron passage in the Be X-ray binary EXO 2030+375. Recently, however, it was reported that the source started to show a peculiar behavior: its X-ray flux decreased significantly and type I outbursts were missed in several cases. At the same time, the spin frequency of the neutron star, which had been increasing steadily since the end of the 2006 giant outburst, reached a plateau. Very recent observations indicate that the source is now starting to spin down. These observed phenomena have a striking similarity with those which took place 20 years ago, just before the source displayed a sudden orbital phase shift of the outburst peak (1995). This historical event occurred at the time exactly between the two giant outbursts (1985 and 2006). These phenomena suggest the system to have an underlying periodicity of 10.5 years between orbital phase shifts and/or giant outbursts. The suggested periodi...

  12. Pulsating red giant stars in eccentric binary systems discovered from Kepler space-based photometry

    CERN Document Server

    Beck, P G; Vos, J; Kallinger, T; Bloemen, S; Tkachenko, A; García, R A; Østensen, R H; Aerts, C; Kurtz, D W; De Ridder, J; Hekker, S; Pavlovski, K; Mathur, S; De Smedt, K; Derekas, A; Corsaro, E; Mosser, B; Van Winckel, H; Huber, D; Degroote, P; Davies, G R; Prša, A; Debosscher, J; Elsworth, Y; Nemeth, P; Siess, L; Schmid, V S; Pápics, P I; de Vries, B L; van Marle, A J; Marcos-Arenal, P; Lobel, A

    2013-01-01

    The unparalleled photometric data obtained by NASA's Kepler space telescope led to an improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries, exhibiting ellipsoidal modulations, have been detected with Kepler. We aim to study the properties of eccentric binary systems containing a red giant star and derive the parameters of the primary giant component. We apply asteroseismic techniques to determine masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques are applied to extract the parameters of the system. The effects of stellar on the binary system are studied. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440days. From radial velocity measuremen...

  13. Search for pulsations in the LMXB EXO 0748-676

    Institute of Scientific and Technical Information of China (English)

    Chetana Jain; Biswajit Paul

    2011-01-01

    We present here results from our search for X-ray pulsations of the neutron star in the low mass X-ray binary EXO 0748-676 at a frequency near the burstoscillation frequency of 44.7 Hz.Using the observations made with the Proportional Counter Array onboard the Rossi X-ray Timing Explorer, we did not find any pulsations in the frequency band of 44.4 Hz to 45.0 Hz and obtained a 3σ upper limit of 0.47% on the pulsed fraction for any possible underlying pulsation in this frequency band.We also discuss the importance of EXO 0748-676 as a promising source for the detection of Gravitational Waves.

  14. Thermodynamic optimization of Co–Ge binary system

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.S.; Liu, S.G. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Tao, X.M. [College of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004 (China); Xiao, F.H.; Huang, L.H.; Yang, F.; He, Y.; Chen, Q. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Liu, H.S., E-mail: hsliu@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Jin, Z.P. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2013-11-20

    Graphical abstract: - Highlights: • The Co–Ge binary system was reassessed and optimized. • The first-principle approach was employed to calculate formation enthalpies of two compounds. • A self-consistent set of thermodynamic parameters was obtained. • The experimental data were well reproduced in the present optimization. - Abstract: Phase diagram of Co–Ge binary system was thermodynamically assessed by using CALPHAD approach in this study. The excess Gibbs energy of the solution phases, liquid, α(Co) and ε(Co), were modeled with Redlich–Kister polynomial. Magnetic contribution to the Gibbs energy was also taken into account for α(Co) and ε(Co). Considering its crystal structure and solubility range, the intermetallic compound βCo{sub 5}Ge{sub 3}, with B8{sub 2}-structure, was particularly described with a three-sublattice model, (Co,Va){sub 1}:(Co){sub 4}:(Co,Ge){sub 3}. And the compound CoGe was described with two-sublattice model according to its crystal structure. Other intermetallic compounds were described as stoichiometric phases because of their narrow homogeneity ranges or unknown crystal structure. In order to obtain a reasonable description of several Co–Ge compounds, first-principle calculations were performed before optimization to determine their formation enthalpies. Finally, a set of thermodynamic parameters was finally obtained so that most data of phase boundaries and thermodynamic properties of various phases were reproduced in present optimization.

  15. New systemic radial velocities of suspected RR Lyrae binary stars

    CERN Document Server

    Guggenberger, Elisabeth; Kolenberg, Katrien

    2015-01-01

    Among the tens of thousands of known RR Lyrae stars there are only a handful that show indications of possible binarity. The question why this is the case is still unsolved, and has recently sparked several studies dedicated to the search for additional RR Lyraes in binary systems. Such systems are particularly valuable because they might allow to constrain the stellar mass. Most of the recent studies, however, are based on photometry by finding a light time effect in the timings of maximum light. This approach is a very promising and successful one, but it has a major drawback: by itself, it cannot serve as a definite proof of binarity, because other phenomena such as the Blazhko effect or intrinsic period changes could lead to similar results. Spectroscopic radial velocity measurements, on the other hand, can serve as definite proof of binarity. We have therefore started a project to study spectroscopically RR Lyrae stars that are suspected to be binaries. We have obtained radial velocity (RV) curves with t...

  16. Close stellar binary systems by grazing envelope evolution

    CERN Document Server

    Soker, Noam

    2014-01-01

    I suggest a spiral-in process by which a stellar companion graze the envelope of a giant star while both the orbital separation and the giant radius shrink simultaneously, and a close binary system is formed. The binary system might be viewed as evolving in a constant state of `just entering a common envelope (CE) phase'. In cases where this process takes place it can be an alternative to the CE evolution where the secondary star is immerses in the giant's envelope. The grazing envelope evolution (GEE) is made possible only if the companion manages to accreted mass at a high rate and launch jets that remove the outskirts of the giant envelope, hence preventing the formation of a CE . The high accretion rate is made possible by the accretion disk that launches jets that efficiently carry the excess angular momentum and energy from the accreted mass. Mass loss through the second Lagrangian point can carry additional angular momentum and envelope mass. The GEE lasts for tens to hundreds of years. The high accret...

  17. DETERMINATION OF DIFFUSION COEFFICIENTS OF BINARY LIQUID SYSTEMS

    Directory of Open Access Journals (Sweden)

    Erol İNCE

    2001-03-01

    Full Text Available The diaphragm cell method technique was used to determine the diffusion coefficients of selected binary systems (Cyclopentanol-Acetic acid, Cyclohexanol-Acetic acid and Methylcyclohexanol-Acetic acid. The technique was chosen because of simplicity and accuracy. The stirring rate was 60 rpm. The diaphragm cell was calibrated at 298.15 K by diffusing of 0.1 N KCl solution into distilled water. The experimental diaphragm cell constant (ß was found 0.09293 cm -2 . The temperature of water bath was controlled by a contact thermometer with an accuracy of ± 0.1 °C. The obtained experimental diffusion coefficients for Cyclopentanol-Acetic acid, Cyclohexanol-Acetic acid and Methylcyclohexanol - Acetic acid binary systems were 2.40 x 10 -5 cm 2 /s, 1.16 x 10 -5 cm 2 /s, 3.97 x 10 -5 cm 2 /s, respectively. Furthermore, diffusion coefficients have been estimated by the theoretical methods of Wilke - Chang and Scheibel equations and compared with the experimental results.

  18. The Habitable Zone of the Binary System Kepler-16

    Science.gov (United States)

    Moorman, Sarah; Cuntz, Manfred

    2017-01-01

    We report on the current results and envisioned future work from our study of the binary star system Kepler-16, which consists of a K-type main-sequence star and an M dwarf as well as a circumbinary Saturnian planet, Kepler-16b. We focus on the calculation of the location and extent of the habitable zone while considering several criteria for both the inner and outer boundaries previously given in the literature. In particular, we investigate the impact of the two stellar components (especially Kepler-16A) as well as of the system’s binarity regarding the provision of circumbinary habitability. Another aspect of our work consists in a careful assessment of how the extent of the system’s habitable zone is impacted by the relative uncertainties of the stellar and system parameters. Finally, we comment on the likelihood of habitable objects in the system by taking into account both radiative criteria and the need of orbital stability.

  19. Binary mass ratios: system mass not primary mass

    CERN Document Server

    Goodwin, Simon P

    2012-01-01

    Binary properties are usually expressed (for good observational reasons) as a function of primary mass. It has been found that the distribution of companion masses -- the mass ratio distribution -- is different for different primary masses. We argue that system mass is the more fundamental physical parameter to use. We show that if system masses are drawn from a log-normal mass function, then the different observed mass ratio distributions as a function of primary mass, from M-dwarfs to A-stars, are all consistent with a universal, flat, system mass ratio distribution. We also show that the brown dwarf mass ratio distribution is not drawn from the same flat distribution, suggesting that the process which decides upon mass ratios is very different in brown dwarfs and stars.

  20. Modulated Gamma-ray emission from compact millisecond pulsar binary systems

    CERN Document Server

    Bednarek, W

    2013-01-01

    A significant amount of the millisecond pulsars has been discovered within binary systems. In several such binary systems the masses of the companion stars have been derived allowing to distinguish two classes of objects, called the Black Widow and the Redback binaries. Pulsars in these binary systems are expected to produce winds which, colliding with stellar winds, create conditions for acceleration of electrons. These electrons should interact with the anisotropic radiation from the companion stars producing gamma-ray emission modulated with the orbital period of the binary system. We consider the interaction of a millisecond pulsar (MSP) wind with a very inhomogeneous stellar wind from the companion star within binary systems of the Black Widow and Redback types. It is expected that the pulsar wind should mix efficiently with the inhomogeneous stellar wind. Electrons accelerated in such mixed, turbulent winds can interact with the magnetic field and also strong radiation from the companion star producing ...

  1. Planetary Nebulae that Cannot Be Explained by Binary Systems

    Science.gov (United States)

    Bear, Ealeal; Soker, Noam

    2017-03-01

    We examine the images of hundreds of planetary nebulae (PNe) and find that for about one in six PNe the morphology is too “messy” to be accounted for by models of stellar binary interaction. We speculate that interacting triple stellar systems shaped these PNe. In this preliminary study, we qualitatively classify PNe by one of four categories. (1) PNe that show no need for a tertiary star to account for their morphology. (2) PNe whose structure possesses a pronounced departure from axial-symmetry and/or mirror-symmetry. We classify these, according to our speculation, as “having a triple stellar progenitor.” (3) PNe whose morphology possesses departure from axial-symmetry and/or mirror-symmetry, but not as pronounced as in the previous class, and are classified as “likely shaped by triple stellar system.” (4) PNe with minor departure from axial-symmetry and/or mirror-symmetry that could have been also caused by an eccentric binary system or the interstellar medium. These are classified as “maybe shaped by a triple stellar system.” Given a weight η t = 1, η l = 0.67, and η m = 0.33 to classes 2, 3, and 4, respectively, we find that according to our assumption about 13%–21% of PNe have been shaped by triple stellar systems. Although in some evolutionary scenarios not all three stars survive the evolution, we encourage the search for a triple stellar systems at the center of some PNe.

  2. Accurate absolute parameters of the binary system V4089 Sgr

    CERN Document Server

    Veramendi, M E

    2014-01-01

    We carried out a spectroscopic-photometric analysis of the binary V4089 Sgr with the aim to obtain absolute masses and radii of the components and to contrast these parameters with stellar evolution theoretical models. We took high-resolution spectra and measured radial velocity using standard cross-correlations and a technique of spectral disentangling. Absolute parameters of the components were determined through the simultaneous fitting of measured radial velocities and Geneva photometric data available in the literature. In this way we obtained Ma=2.584+-0.008 Msun, Mb=1.607+-0.007 Msun, Ra=3.959+-0.013 Rsun, and Rb=1.605+-0.016 Rsun. The comparison of these parameters with two grids of theoretical models led to estimate narrow ranges of possible values for system metallicity and age. According circularization theory it is not expected that the binary had been achieved a circular orbit as a result of tidal friction, so the null eccentricity found is an interesting fact. On the other hand, we measured proj...

  3. Evolution of an Accretion Disk in Binary Black Hole Systems

    CERN Document Server

    Kimura, Shigeo S; Toma, Kenji

    2016-01-01

    We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...

  4. Evolution of an accretion disc in binary black hole systems

    Science.gov (United States)

    Kimura, Shigeo S.; Takahashi, Sanemichi Z.; Toma, Kenji

    2017-03-01

    We investigate evolution of an accretion disc in binary black hole (BBH) systems and possible electromagnetic counterparts of the gravitational waves from mergers of BBHs. Perna et al. proposed a novel evolutionary scenario of an accretion disc in BBHs in which a disc eventually becomes 'dead', i.e. the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disc survives until a few seconds before the merger event. We improve the dead disc model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disc is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the mass inflow induced by the tidal torque reactivates MRI, restarting mass accretion on to the black hole. We also find that this disc 'revival' happens more than thousands of years before the merger. The mass accretion induced by the tidal torque increases as the separation decreases, and a relativistic jet could be launched before the merger. The emissions from these jets are too faint compared to gamma-ray bursts, but detectable if the merger events happen within ≲10 Mpc or if the masses of the black holes are as massive as ∼105 M⊙.

  5. Collective Modes in Two Dimensional Binary Yukawa Systems

    CERN Document Server

    Kalman, Gabor J; Donko, Zoltan; Golden, Kenneth I; Kyrkos, Stamatios

    2013-01-01

    We analyze via theoretical approaches and molecular dynamics simulations the collective mode structure of strongly coupled two-dimensional binary Yukawa systems, for selected density, mass and charge ratios, both in the liquid and crystalline solid phases. Theoretically, the liquid phase is described through the Quasi-Localized Charge Approximation (QLCA) approach, while in the crystalline phase we study the centered honeycomb and the staggered rectangular crystal structures through the standard harmonic phonon approximation. We identify "longitudinal" and "transverse" acoustic and optic modes and find that the longitudinal acoustic mode evolves from its weakly coupled counterpart in a discontinuous non-perturbative fashion. The low frequency acoustic excitations are governed by the oscillation frequency of the average atom, while the high frequency optic excitation frequencies are related to the Einstein frequencies of the systems.

  6. Study on Critical Properties for CO2+Cosolvent Binary System and Ternary System

    Institute of Scientific and Technical Information of China (English)

    张敬畅; 吴向阳; 曹维良

    2002-01-01

    The performance of supercritical fluid (SCF) as a solvent can be greatly affected by addition of anentrainer to the system. In this study, a constant volume visual method is used to measure the critical point ofCO2+n-butyraldehyde, CO2+ i-butyraldehyde and CO2+alcohol binary systems and CO2+entrainer+trisodiumsalt of tri-(m-sulfonphenyl)phosphine (TPPTS) ternary systems, which provides us good theoretical basis for super-critical extraction and chemical reaction. The relationship between critical point and concentration of the entrainerare discussed. The phase behavior of binary system and that of ternary system are compared. The relationshipbetween the concentration of TPPTS and critical point of binary systems are also discussed.

  7. Near-Infrared Observations of Compact Binary Systems

    Science.gov (United States)

    Khargharia, Juthika

    Low mass X-ray binaries (LMXBs) are a subset of compact binary systems in which a main-sequence or slightly evolved star fills its Roche lobe and donates mass to a neutron star or a black hole (BH) via an accretion disk. Robust estimates of compact object masses in these systems are required to enhance our current understanding of the physics of compact object formation, accretion disks and jets. Compact object masses are typically determined at near-infrared (NIR) wavelengths when the system is in quiescence and the donor star is the dominant source of flux. Previous studies have assumed that any non-stellar contribution at these wavelengths is minimal. However, this assumption is rarely true. By performing NIR spectroscopy, we determined the fractional donor star contribution to the NIR flux and the compact object masses in two LMXBs: V404 Cyg and Cen X-4. In our analysis, it was assumed that the light curve morphology remains consistent throughout quiescence. It has now been shown in several systems that veiling measurements from non-stellar sources are meaningful only if acquired contemporaneously with light curve measurements. We accounted for this in the measurement of the BH mass in the LMXB, XTE J1118+480. LMXBs are also considered to be the most likely candidates responsible for the formation of milli-second pulsars (MSP). Here, I present the unique case of PSR J1903+0327 that challenges this currently accepted theory of MSP formation and is a potential candidate for testing General Relativity. Observations in the NIR come with their own set of challenges. NIR detector arrays used in these observations generally have high dark current and readout noise. In an effort to lower the read noise in NICFPS at APO, we present a study done on the Hawaii-1RG engineering grade chip that served as a test bed for reducing the read noise in NICFPS.

  8. Thermodynamic assessment of the Ni-Sb binary system

    Institute of Scientific and Technical Information of China (English)

    CAO Zhanmin; TAKADU Yoshikazu; OHNUMA Ikuo; KAINUMA Ryosuke; ZHU Hongmin; ISHIDA Kiyohito

    2008-01-01

    The Ni-Sb binary alloy system was thermodynamically assessed using CALPHAD approach in this article.Excess Gibbs energies of solution phases,liquid and fcc phases,were formulated using the Redlich-Kister expression.The intermediate phases were modeled by the sublattice model with (Ni,Va)0.5(Ni,Sb)0.25(Ni)0.25 for Ni3Sb_HT phase and (Ni,Va)0.3333(Sb)0.3333(Ni,Va)0.3333 for NiSb phase.The other phases including Ni3Sb,Ni7Sb3,and NiSb2 were treated as stoichiometric compound owing to their narrow composition ranges.Based on the reported thermodynamic properties and phase diagram data,the thermodynamic parameters of these phases were optimized,and the obtained values can reproduce the available experimental data well.

  9. Thermodynamic modeling of the Ba - Mg binary system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xin; Li, Changrong; Du, Zhenmin; Guo, Cuiping; Chen, Sicheng [Univ. of Science and Technology, Beijing (China). School of Materials Science and Engineering

    2013-04-15

    On the basis of the thermochemical and phase equilibrium experimental data, the phase diagram of the Ba - Mg binary system has been assessed by means of the calculation of phase diagrams technique. The liquid phase is of unlimited solubility and modeled as a solution phase using the Redlich-Kister equation. The intermetallic compounds, Mg{sub 17}Ba{sub 2}, Mg{sub 23}Ba{sub 6} and Mg{sub 2}Ba, with no solubility ranges are treated as strict stoichiometric compounds with the formula Mg{sub m} Ba{sub n}. Two terminal phases, BccBa and HcpMg, are kept as solution phases, since the solubilities of the two phases are of considerable importance. After optimization, a set of self-consistent thermodynamic parameters has been obtained. The calculated values agree well with the available experimental data.

  10. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    Science.gov (United States)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  11. Complicated Structure of Interacting Young Binary System: Outflows and Gas-Streams

    Science.gov (United States)

    Pyo, Tae-Soo; Hayashi, M.; Beck, T. L.; Chris, C. J.; Takami, M.

    2014-07-01

    It is important to understand the formation and evolution of the young binary system because many young stars are born in binary or multiple systems. We report recent discovery of binary jet and wind from UY Aur system with high-angular resolution observation by using NIFS (NIR Integral Field Spectrograph) /GEMINI combined with adaptive optics system, Altair. The primary, UY Aur A, reveals widely opened wind while the secondary, UY Aur B, shows small jets in NIR [Fe II] emission. Outflows from low-mass young binary or multiple systems have been observed from a few tens of samples. Outflows are closely related mass accretion. Many simulations show an accretion flow toward the individual circumstellar disks from the outer circumbinary disk as well as a stream bridge between the circumstellar disks. We will discuss how to use TMT and ALMA for anatomy of young binary systems.

  12. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase

    DEFF Research Database (Denmark)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana;

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression...

  13. Dynamical Study of the Exoplanet Host Binary System HD 106515

    Science.gov (United States)

    Rica, F. M.; Barrena, R.; Henríquez, J. A.; Pérez, F. M.; Vargas, P.

    2017-01-01

    HD 106515 AB (STF1619 AB) is a high common proper motion and common radial velocity binary star system composed of two G-type bright stars located at 35 pc and separated by about 7 arcsec. This system was observed by the Hipparcos satellite with a precision in distance and proper motion of 3 and 2%, respectively. The system includes a circumprimary planet of nearly 10 Jupiter masses and a semimajor axis of 4.59 AU, discovered using the radial velocity method. The observational arc of 21° shows a small curvature that evidences HD 106515 AB is a gravitationally bound system. This work determines the dynamical parameters for this system which reinforce the bound status of both stellar components. We determine orbital solutions from instantaneous position and velocity vectors. In addition, we provide a very preliminary orbital solution and a distribution of the orbital parameters, obtained from the line of sight (z). Our results show that HD 106515 AB presents an orbital period of about 4 800 years, a semimajor axis of 345 AU and an eccentricity of about 0.42. Finally, we use an N-body numerical code to perform simulations and reproduce the longer term octupole perturbations on the inner orbit.

  14. The ExoMars 2016 Mission

    Science.gov (United States)

    Svedhem, Håkan; Vago, Jorge; de Groot, Rolf; McCoy, Don

    2016-04-01

    ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2018 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2018 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. The 2016 mission will be launched by a Russian Proton rocket from Baikonur in March 2016 (launch window 14-25 March) and will arrive at Mars on 19 October. This presentation will cover a description of the 2016 mission, including the spacecraft

  15. Orbital Parameters for Two Young Spectroscopic Binary Systems

    Science.gov (United States)

    Karnath, Nicole; Prato, L. A.; Wasserman, L. H.; Torres, G.; Mathieu, R. D.

    2013-01-01

    Orbital parameters for two young, low-mass, pre-main sequence binary systems are described. Originally, VSB 111 and VSB 126 had parameters reported based on single-lined spectroscopic solutions. High-resolution, infrared spectra were obtained with the Keck II telescope on Mauna Kea and used to identify the lines of the secondary stars, yielding double-lined orbital solutions that include the systems' mass ratios. VSB 126 has a period of 12.9247±0.0001 days, an eccentricity of 0.184±0.015, and a mass ratio of 0.27±0.01. VSB 111 has a period of 901.3062±1.1792 days, an eccentricity of 0.791±0.008, and a mass ratio of 0.60±0.06. The two systems are located in the ~3 Myr old star forming region NGC 2264, at a distance of ~800 pc. We compare the cluster age and dynamical properties of the stars in these systems with the masses and ages predicted by models of pre-main sequence evolution. Partial support for this work was provided by NSF grant AST-1009136 (to LP).

  16. Modeling Mergers of Known Galactic Systems of Binary Neutron Stars

    CERN Document Server

    Feo, Alessandra; Maione, Francesco; Löffler, Frank

    2016-01-01

    We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between $0.75$ and $0.99$. Specifically, these systems are J1756-2251, J0737-3039A, J1906+0746, B1534+12, J0453+1559 and B1913+16. We follow the dynamics of the merger from the late stage of the inspiral process up to $\\sim$ 20 ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems ($q=0.75$, J0453+1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein Toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and fr...

  17. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  18. Exo/Astrobiology in Europe

    Science.gov (United States)

    Brack, André; Horneck, Gerda; Wynn-Williams, David

    2001-08-01

    The question of the chemical origins of life is engraved in the European scientific patrimony as it can be traced back to the pioneer ideas of Charles Darwin, Louis Pasteur, and more recently to Alexander Oparin. During the last decades, the European community of origin of life scientists has organized seven out of the twelve International Conferences on the Origins of Life held since 1957. This community contributed also to enlarge the field of research to the study of life in extreme environments and to the search for extraterrestrial life, i.e. exobiology in its classical definition or astrobiology if one uses a more NASA-inspired terminology. The present paper aims to describe the European science background in exo/astrobiology as well as the project of a European Network of Exo/Astrobiology.

  19. Evolution of Accreting Binary Systems on the Spin-up Line

    CERN Document Server

    Taani, Ali; Khasawneh, Awni

    2014-01-01

    The measured characteristics of binary pulsars provide valuable insights into the evolution of these systems. We study the aspects of binary evolution particularly relevant to binary Millisecond Pulsars (MSPs), and the formation of close binaries involving degenerate stars through a spin-evolution diagram (spin-up line). For this task, we use a wide variety of binaries, including those with compact components that observed in different energy bands, which we analyze them according to the spin-up line. Their formation and evolution over timescales of binary evolution models are investigated in order to grab any constraint on their evolution, and to estimate the masses of neutron stars with different mass-transfer histories.

  20. The third post-Newtonian gravitational waveforms for compact binary systems in general orbits: instantaneous terms

    CERN Document Server

    Mishra, Chandra Kant; Iyer, Bala R

    2015-01-01

    We compute the instantaneous contributions to the spherical harmonic modes of gravitational waveforms from compact binary systems in general orbits up to the third post-Newtonian order. We further extend these results for compact binaries in quasi-elliptical orbits using the 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric orbits. Using the multipolar post-Minkowskian formalism, starting from the different mass and current type multipole moments, we compute the spin weighted spherical harmonic decomposition of the instantaneous part of the gravitational waveform. These are terms which are functions of the retarded time and do not depend on the history of the binary evolution. Together with the hereditary part, which depends on the binary's dynamical history, these waveforms form the basis for construction of accurate templates for the detection of gravitational wave signals from binaries moving in quasi-elliptical orbits.

  1. On the Physical Processes in Contact Binary Systems

    Institute of Scientific and Technical Information of China (English)

    Run-Qian Huang; Han-Feng Song; Shao-Lan Bi

    2007-01-01

    Three important physical processes occurring in contact binary systems are studied.The first one is the effect of spin, orbital rotation and tide on the structure of the components,which includes also the effect of meridian circulation on the mixing of the chemical elements in the components. The second one is the mass and energy exchange between the components.To describe the energy exchange, a new approach is introduced based on the understanding that the exchange is due to the release of the potential, kinetic and thermal energy of the exchanged mass. The third is the loss of mass and angular momentum through the outer Lagrangian point. The rate of mass loss and the angular momentum carried away by the lost mass are discussed. To show the effects of these processes, we follow the evolution of a binary system consisting of a 12M⊙ and a 5M⊙ star with mass exchange between the components and mass loss via the outer Lagrangian point, both with and without considering the effects of rotation and tide. The result shows that the effect of rotation and tide advances the start of the semi-detached and the contact phases, and delays the end of the hydrogen-burning phase of the primary. Furthermore, it can change not only the occurrence of mass and angular momentum loss via the outer Lagrangian point, but also the contact or semi-contact status of the system. Thus, this effect can result in the special phenomenon of short-term variations occurring over a slow increase of the orbital period. The occurrence of mass and angular momentum loss via the outer Lagrangian point can affect the orbital period of the system significantly, but this process can be influenced, even suppressed out by the effect of rotation and tide. The mass and energy exchange occurs in the common envelope. The net result of the mass exchange process is a mass transfer from the primary to the secondary during the whole contact phase.

  2. The Effect of Novel Binary Accelerator System on Properties of Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Moez Kamoun

    2009-01-01

    Full Text Available The mechanical properties, curing characteristics, and swelling behaviour of vulcanized natural rubber with a novel binary accelerator system are investigated. Results indicate that the mechanical properties were improved. Crosslinking density of vulcanized natural rubber was measured by equilibrium swelling method. As a result, the new binary accelerator was found to be able to improve both cure rate and crosslinking density. Using the numerical analysis of test interaction between binary accelerator and operational modelling of vulcanization-factors experiments, it can be concluded that the interaction (Cystine, N-cyclohexyl-2-benzothiazyl sulfenamide was significant and the optimum value of binary accelerator was suggested, respectively, at levels 0 and +1.

  3. An Accretion Disc Model For Eclipsing Binary System: AV Del

    CERN Document Server

    Ghoreyshi, Sayyed Mohammad Reza; Salehi, Fatemeh

    2008-01-01

    We investigate the light and radial-velocity curves of the eclipsing binary AV Del. Using the most new version of Wilson & Van Hamme (2003) code, the absolute elements, fundamental orbital and physical parameters of the system are determined. Then, using the new SHELLSPEC code, we study and present an accretion disc model for the system. We found AV Del is a semi-detached system which has an accretion disc around the primary star. By combining the radial-velocity and light curve analysis, we derive accurate absolute masses for the components of M1=1.449 Msun and M2 =0.687 Msun and radii of R1=2.61 Rsun and R2=4.21 Rsun as well as effective temperatures of T1=6000 K and T2= 4281 K for the primary and the secondary, respectively. Also, we derived a temperature of T=5700 K for the disc. Finally, our results are compared with those of previous authors.

  4. Phase equilibria in the neodymium-cadmium binary system.

    Science.gov (United States)

    Skołyszewska-Kühberger, Barbara; Reichmann, Thomas L; Ipser, Herbert

    2014-09-05

    The equilibrium phase diagram of the neodymium-cadmium system has been established by thermal, metallographic and X-ray analysis based on a study of 70 alloys. The system contains three congruently melting intermetallic compounds, i.e. NdCd (1040 °C), NdCd2 (995 °C), Nd11Cd45 (855 °C), and four incongruently melting compounds NdCd3 (860 °C), Nd13Cd58 (740 °C), NdCd6 (655 °C) and NdCd11 (520 °C). Four eutectic reactions are found in this binary system, i.e. at ∼25 at.% Cd and 770 °C, at 58 at.% Cd and 955 °C, at 79 at.% Cd and 850 °C, and very close to pure Cd at 318 °C, as well as one eutectoid reaction at ∼15 at.% Cd and 500 °C. The solid solubility of Nd in Cd is negligible. Dilatometric curves were recorded for three Nd-Cd compositions up to 4 at.% Cd, to accurately determine phase transitions between the solid solutions of Cd in the low- and high-temperature modification of Nd.

  5. Phase equilibria in the neodymium–cadmium binary system

    Science.gov (United States)

    Skołyszewska-Kühberger, Barbara; Reichmann, Thomas L.; Ipser, Herbert

    2014-01-01

    The equilibrium phase diagram of the neodymium–cadmium system has been established by thermal, metallographic and X-ray analysis based on a study of 70 alloys. The system contains three congruently melting intermetallic compounds, i.e. NdCd (1040 °C), NdCd2 (995 °C), Nd11Cd45 (855 °C), and four incongruently melting compounds NdCd3 (860 °C), Nd13Cd58 (740 °C), NdCd6 (655 °C) and NdCd11 (520 °C). Four eutectic reactions are found in this binary system, i.e. at ∼25 at.% Cd and 770 °C, at 58 at.% Cd and 955 °C, at 79 at.% Cd and 850 °C, and very close to pure Cd at 318 °C, as well as one eutectoid reaction at ∼15 at.% Cd and 500 °C. The solid solubility of Nd in Cd is negligible. Dilatometric curves were recorded for three Nd–Cd compositions up to 4 at.% Cd, to accurately determine phase transitions between the solid solutions of Cd in the low- and high-temperature modification of Nd. PMID:25197164

  6. Binary polypeptide system for permanent and oriented protein immobilization

    Directory of Open Access Journals (Sweden)

    Bailes Julian

    2010-05-01

    Full Text Available Abstract Background Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag. Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case leading to the requirement for chemical coupling. Results Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. This irreversible protein attachment system (IPAS uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. Conclusions IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

  7. Exo-endo cellulase fusion protein

    Science.gov (United States)

    Bower, Benjamin S [Palo Alto, CA; Larenas, Edmund A [Palo Alto, CA; Mitchinson, Colin [Palo Alto, CA

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  8. The dynamical importance of binary systems in young massive star clusters

    CERN Document Server

    de Grijs, Richard; Geller, Aaron M

    2015-01-01

    Characterization of the binary fractions in star clusters is of fundamental importance for many fields in astrophysics. Observations indicate that the majority of stars are found in binary systems, while most stars with masses greater than $0.5 M_\\odot$ are formed in star clusters. In addition, since binaries are on average more massive than single stars, in resolved star clusters these systems are thought to be good tracers of (dynamical) mass segregation. Over time, dynamical evolution through two-body relaxation will cause the most massive objects to migrate to the cluster center, while the relatively lower-mass objects remain in or migrate to orbits at greater radii. This process will globally dominate a cluster's stellar distribution. However, close encounters involving binary systems may disrupt `soft' binaries. This process will occur more frequently in a cluster's central, dense region than in its periphery, which may mask the effects of mass segregation. Using high resolution Hubble Space Telescope o...

  9. Escape dynamics in a binary system of interacting galaxies

    CERN Document Server

    Zotos, Euaggelos E

    2016-01-01

    The escape dynamics in an analytical gravitational model which describes the motion of stars in a binary system of interacting dwarf spheroidal galaxies is investigated in detail. We conduct a numerical analysis distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. In order to distinguish safely and with certainty between ordered and chaotic motion, we apply the Smaller ALingment Index (SALI) method. It is of particular interest to locate the escape basins through the openings around the collinear Lagrangian points $L_1$ and $L_2$ and relate them with the corresponding spatial distribution of the escape times of the orbits. Our exploration takes place both in the configuration $(x,y)$ and in the phase $(x,\\dot{x})$ space in order to elucidate the escape process as well as the overall orbital properties of the galactic system. Our numerical analysis reveals the strong dependence of the properties of the con...

  10. MILLIONS OF MULTIPLES: DETECTING AND CHARACTERIZING CLOSE-SEPARATION BINARY SYSTEMS IN SYNOPTIC SKY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Terziev, Emil; Law, Nicholas M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Arcavi, Iair [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Baranec, Christoph; Bui, Khanh; Dekany, Richard G.; Kulkarni, S. R.; Riddle, Reed; Tendulkar, Shriharsh P. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bloom, Joshua S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Burse, Mahesh P.; Chorida, Pravin; Das, H. K.; Punnadi, Sujit; Ramaprakash, A. N. [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Nugent, Peter [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Ofek, Eran O. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark, E-mail: emil.terziev@utoronto.ca [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-06-01

    The direct detection of binary systems in wide-field surveys is limited by the size of the stars' point-spread functions (PSFs). A search for elongated objects can find closer companions, but is limited by the precision to which the PSF shape can be calibrated for individual stars. Based on a technique from weak-lensing analysis, we have developed the BinaryFinder algorithm to search for close binaries by using precision measurements of PSF ellipticity across wide-field survey images. We show that the algorithm is capable of reliably detecting binary systems down to Almost-Equal-To 1/5 of the seeing limit, and can directly measure the systems' position angles, separations, and contrast ratios. To verify the algorithm's performance we evaluated 100,000 objects in Palomar Transient Factory (PTF) wide-field-survey data for signs of binarity, and then used the Robo-AO robotic laser adaptive optics system to verify the parameters of 44 high-confidence targets. We show that BinaryFinder correctly predicts the presence of close companions with a <11% false-positive rate, measures the detected binaries' position angles within 1 Degree-Sign to 4 Degree-Sign (depending on signal-to-noise ratio and separation), and separations within 25%, and weakly constrains their contrast ratios. When applied to the full PTF data set, we estimate that BinaryFinder will discover and characterize {approx}450,000 physically associated binary systems with separations <2 arcsec and magnitudes brighter than m{sub R} = 18. New wide-field synoptic surveys with high sensitivity and sub-arcsecond angular resolution, such as LSST, will allow BinaryFinder to reliably detect millions of very faint binary systems with separations as small as 0.1 arcsec.

  11. The photometric investigation of the newly discovered W UMa type binary system GSC 03122-02426

    Science.gov (United States)

    Zhou, X.; Qian, S.-B.; He, J.-J.; Zhang, J.; Zhang, B.

    2016-10-01

    The B V Rc Ic bands light curves of the newly discovered binary system GSC 03122-02426 are obtained and analyzed using the Wilson-Devinney (W-D) code. The solutions suggest that the mass ratio of the binary system is q = 2.70 and the less massive component is 422 K hotter than the more massive one. We conclude that GSC 03122-02426 is a W-subtype shallow contact (with a contact degree of f = 15.3 %) binary system. It may be a newly formed contact binary system which is just under geometrical contact and will evolve to be a thermal contact binary system. The high orbital inclination (i = 81 .6∘) implies that GSC 03122-02426 is a total eclipsing binary system and the photometric parameters obtained by us are quite reliable. We also estimate the absolute physical parameters of the two components in GSC 03122-02426, which will provide fundamental information for the research of contact binary systems. The formation and evolutionary scenario of GSC 03122-02426 is discussed.

  12. The photometric investigation of the newly discovered W UMa type binary system GSC 03122-02426

    CERN Document Server

    Zhou, X; He, J -J; Zhang, J; Zhang, B

    2016-01-01

    The $B$ $V$ $R_c$ $I_c$ bands light curves of the newly discovered binary system \\astrobj{GSC 03122-02426} are obtained and analyzed using the Wilson-Devinney (W-D) code. The solutions suggest that the mass ratio of the binary system is $q = 2.70$ and the less massive component is $422K$ hotter than the more massive one. We conclude that \\astrobj{GSC 03122-02426} is a W-subtype shallow contact (with a contact degree of $f = 15.3\\,\\%$) binary system. It may be a newly formed contact binary system which is just under geometrical contact and will evolve to be a thermal contact binary system. The high orbital inclination ($i = 81.6^{\\circ}$) implies that \\astrobj{GSC 03122-02426} is a total eclipsing binary system and the photometric parameters obtained by us are quite reliable. We also estimate the absolute physical parameters of the two components in \\astrobj{GSC 03122-02426}, which will provide fundamental information for the research of contact binary systems. The formation and evolutionary scenario of \\astro...

  13. Magnetised winds in single and binary star systems

    Science.gov (United States)

    Johnstone, Colin

    2016-07-01

    Stellar winds are fundamentally important for the stellar magnetic activity evolution and for the immediate environment surrounding their host stars. Ionised winds travel at hundreds of km/s, impacting planets and clearing out large regions around the stars called astropheres. Winds influence planets in many ways: for example, by compressing the magnetosphere and picking up atmospheric particles, they can cause significant erosion of a planetary atmosphere. By removing angular momentum, winds cause the rotation rates of stars to decrease as they age. This causes the star's magnetic dynamo to decay, leading to a significant decay in the star's levels of X-ray and extreme ultraviolet emission. Despite their importance, little is currently known about the winds of other Sun-like stars. Their small mass fluxes have meant that no direct detections have so far been possible. What is currently known has either been learned indirectly or through analogies with the solar wind. In this talk, I will review what is known about the properties and evolution of the winds of other Sun-like stars. I will also review wind dynamics in binary star systems, where the winds from both stars impact each other, leading to shocks and compression regions.

  14. The two-dimensional alternative binary L-J system: liquid-gas phase diagram

    Institute of Scientific and Technical Information of China (English)

    张陟; 陈立溁

    2003-01-01

    A two-dimensional (2D) binary system without considering the Lennard-Jones (L-J) potential has been studied by using the Collins model. In this paper, we introduce the L-J potential into the 2D binary system and consider the existence of the holes that are called the "molecular fraction". The liquid-gas phase diagram of the 2D alternative binary L-J system is obtained. The results are quite analogous to the behaviour of 3D substances.

  15. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase.

    Science.gov (United States)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana; Gritsenko, Natalia; Rask, Lene; Mainbakh, Yuli; Zilberstein, Yael; Yagil, Ezra; Kolot, Mikhail

    2016-04-27

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a cytotoxic gene. In the present study we developed a new cancer specific binary expression system activated by the Integrase (Int) of the lambdoid phage HK022. We demonstrate the validity of this system by the specific expression of a luciferase (luc) reporter in human embryonic kidney 293T (HEK293T) cells and in a lung cancer mouse model. Due to the absence viral vectors and of cytotoxicity the Int based binary system offers advantages over previously described counterparts and may therefore be developed into a safer cancer cell killing system.

  16. Impact of glutathione on the gene expression of exoY and exoS in Pseudomonas aeruginosa%谷胱甘肽对铜绿假单胞菌exoS和exoY基因的影响

    Institute of Scientific and Technical Information of China (English)

    张亚妮; 卫阳

    2009-01-01

    [Objective]: To study the impact of GSH (glutathione) on the gene expression of exoY and exoS in Pseudomonas aeruginosa. [Methods]: We treated P. aeruginosa with BSO (buthionine sulfoximine) and DEM (diethylmaleate) to deplete GSH, or construct the P. aeruginosa mutant containing a lacZGm disrupted gshB (glutathione synthetase) gene by homologous recombination technology. The expression of exoY and exoS was determined by measuring light production of the lux-based reporters on pMS402. [Results] :The expression of exoY and exoS decreased in the gshB mutant and P. aeruginosa treated with BSO and DEM. [Conclusion]: GSH in the P. aeruginosa can increase the expression of the genes exoY and exoS. Furthermore, this result provided possibilities to elucidate the molecular mechanisms of pathogenesis and immune response triggered by P. aeruginosa .%[目的]研究谷胱甘肽对铜绿假单胞菌exoS和exoY基因表达的影响.[方法]利用丁硫氨酸亚砜胺和马来酸二乙酯同时耗竭细胞内的谷胱甘肽,并构建包含被lacZGm破坏的谷胱甘肽合成酶基因的突变体.通过分别连有exoS和exoY基因启动子的pMS402质粒上Lux报道子发光值大小检测exoS和exoY基因表达变化情况.[结果]exoS和exoY基因的表达在用化学药品耗竭的细胞中或是在谷胱甘肽合成酶突变体中都降低.[结论]铜绿假单胞菌细胞内的谷胱甘肽可以促进exos和exoY的表达.这将为进一步研究铜绿假单胞菌的感染以及致病性机理提供一定的理论基础.

  17. SINBAD electronic models of the interface and control system for the NOMAD spectrometer on board of ESA ExoMars Trace Gas Orbiter mission

    Science.gov (United States)

    Jerónimo Zafra, José M.; Sanz Mesa, Rosario; Gómez López, Juan M.; Rodríguez Gómez, Julio F.; Aparicio del Moral, Beatriz; Morales Muñoz, Rafael; Candini, Gian Paolo; Pastor Morales, M. Carmen; Robles Muñoz, Nicolás.; López-Moreno, José Juan; Vandaele, Ann Carine; Neefs, Eddy; Drummond, Rachel; Delanoye, Sofie; Berkenbosch, Sophie; Clairquin, Roland; Ristic, Bojan; Maes, Jeroen; Bonnewijn, Sabrina; Patel, Manish R.; Leese, Mark

    2016-07-01

    NOMAD is a spectrometer suite: UV-visible-IR spectral ranges. NOMAD is part of the payload of ESA ExoMars Trace Gas Orbiter Mission. SINBAD boards are in charge of the communication and management of the power and control between the spacecraft and the instrument channels. SINBAD development took four years, while the entire development and test required five years, a very short time to develop an instrument devoted to a space mission. The hardware of SINBAD is shown in the attached poster: developed boards, prototype boards and final models. The models were delivered to the ESA in order to testing and integration with the spacecraft.

  18. Understanding the Relationship Between Observations and Stellar Parameters in an Eclipsing Binary System

    CERN Document Server

    Creevey, O L; Jiménez-Reyes, S J; Belmonte, J A

    2006-01-01

    We would like to investigate the information contained in our observations and to what extent each of them contributes individually to constraining the physical parameters of the system we are investigating. To do this, we present a study involving the technique of Singular Value Decomposition using as a simple example a detached eclipsing binary system. We intend to apply an extension of this technique to asteroseismic measurements of Delta~Scuti stars that are members of eclipsing binary systems.

  19. Analytic calculation of formation enthalpies directly from interatomic potentials for binary and ternary refractory metal systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An analytic method is proposed to calculate the formation enthalpy directly from empirical n-body potential and applied to the binary and ternary systems consisting of the refractory metals Mo, Nb, Ta and W. It turns out that the calculated enthalpies are in overall agreement with experimental observations and some other theoretical calculations. Interestingly, it shows that the formation enthalpies of the ternary systems are significantly affected by those of the constituent binary systems.

  20. Near-Infrared Polarimetry of the GG Tauri A Binary System

    CERN Document Server

    Itoh, Yoichi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D; Carson, Joseph C; Egner, Sebastian; Feldt, Markus; Grady, Carol A; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S; Henning, Thomas; Hodapp, Klaus W; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Mayama, Satoshi; Currie, Thayne; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2015-01-01

    A high angular resolution near-infrared polarized-intensity image of the GG Tau A binary system was obtained with the Subaru Telescope. The image shows the circumbinary disk scattering the light from the central binary. The azimuthal profile of the polarized intensity of the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein function and the Rayleigh function, indicating small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits anti-clockwise, while material in the disk orbit clockwise. We propose a shadow of material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 years are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  1. Results and Status of EXO-200

    Science.gov (United States)

    Daniels, Tim; Kaufman, Lisa; EXO-200 Collaboration

    2016-09-01

    EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1 . 1 ×1025 y at 90% C.L. on the neutrinoless double-beta decay half-life of Xe136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 has resumed data taking in earnest with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.

  2. Result from, and status of, EXO-200

    Science.gov (United States)

    MacLellan, Ryan; EXO-200 Collaboration

    2016-03-01

    EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1 . 1 ×1025 y at 90% C.L. on the neutrinoless double-beta decay half-life of 136Xe. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.

  3. Review of candidates of binary systems with an RR Lyrae component

    CERN Document Server

    Skarka, Marek; Zejda, Miloslav; Mikulášek, Zdeněk

    2016-01-01

    We present an overview and current status of research on RR Lyrae stars in binary systems. In present days the number of binary candidates has steeply increased and suggested that multiple stellar systems with an RR Lyrae component is much higher than previously thought. We discuss the probability of their detection using various observing methods, compare recent results regarding selection effects, period distribution, proposed orbital parameters and the Blazhko effect.

  4. The 2D Alternative Binary L-J System: Solid-Liquid Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi; CHEN Li-Rong

    2002-01-01

    The Lennard-Jones potential is introduced into the Collins model and is generalized to the two-dimensionalalternative binary system. The Gibbs free energy of the binary system is calculated. According to the thermodynamicconditions of solid-liquid equilibrium, the "cigar-type" phase diagram and the phase diagram with a minimum areobtained. The results are quite analogous to the behavior of three-dimensional substances.

  5. ExoMars 2016 arrives at Mars

    Science.gov (United States)

    Svedhem, Hakan; Vago, Jorge L.; ExoMars Team

    2016-10-01

    The Trace Gas Orbiter (TGO) and the Schiaparelli Entry, descent and landing Demonstrator Model (EDM) will arrive at Mars on 19 October 2016. The TGO and the EDM are part of the first step of the ExoMars Programme. They will be followed by a Rover and a long lived Surface Platform to be launched in 2020.The EDM is attached to the TGO for the full duration of the cruise to Mars and will be separated three days before arrival at Mars. After separation the TGO will perform a deflection manoeuvre and, on 19 October (during the EDM landing), enter into a highly elliptical near equatorial orbit. TGO will remain in this parking orbit until January 2017, when the orbital plane inclination will be changed to 74 degrees and aerobraking to the final 400 km near circular orbit will start. The final operational orbit is expected to be reached at the end of 2017.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The main objective of the EDM is to demonstrate the capability of performing a safe entry, descent and landing on the surface, but it does carry a descent camera and a small battery powered meteorological package that may operate for a few days on the surface.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and

  6. LISA Astronomy of Double White Dwarf Binary Systems

    NARCIS (Netherlands)

    Stroeer, A.; Vecchio, A.; Nelemans, G.A.

    2005-01-01

    The Laser Interferometer Space Antenna (LISA) will provide us with the largest observational sample of (interacting) double white dwarf binaries, whose evolution is driven by the radiation reaction and other effects, such as tides and mass transfer. We show that, depending on the actual physical par

  7. Migration into a Companion's Trap: Disruption of Multiplanet Systems in Binaries

    CERN Document Server

    Touma, Jihad R

    2015-01-01

    Most exoplanetary systems in binary stars are of S--type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Gravitational forcing of a single planet by a sufficiently inclined binary orbit can induce large amplitude oscillations of the planet's eccentricity and inclination through the Kozai-Lidov (KL) instability. KL cycling was invoked to explain: the large eccentricities of planetary orbits; the family of close--in hot Jupiters; and the retrograde planetary orbits in eccentric binary systems. However, several kinds of perturbations can quench the KL instability, by inducing fast periapse precessions which stabilize circular orbits of all inclinations: these could be a Jupiter--mass planet, a massive remnant disc or general relativistic precession. Indeed, mutual gravitational perturbations in multiplanet S--type systems can be strong enough to lend a certain dynamical rigidity to their orbital planes. Here we present a new and faster process that is driven by t...

  8. Further X-ray observations of EXO 0748-676 in quiescence: evidence for a cooling neutron star crust

    NARCIS (Netherlands)

    N. Degenaar; M.T. Wolff; P.S. Ray; K.S. Wood; J. Homan; W.H.G. Lewin; P.G. Jonker; E.M. Cackett; J.M. Miller; E.F. Brown; R. Wijnands

    2011-01-01

    In late 2008, the quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748−676 started a transition from outburst to quiescence, after it actively accreted for more than 24 yr. In a previous work, we discussed Chandra and Swift observations obtained during the first 5 months of th

  9. The distance and internal composition of the neutron star in EXO 0748−676 with XMM-Newton

    NARCIS (Netherlands)

    Zhan, Guobao; Méndez, Mariano; Jonker, Peter; Hiemstra, Beike

    2011-01-01

    Recently, the neutron star X-ray binary EXO 0748-676 underwent a transition to quiescence. We analyzed an XMM-Newton observation of this source in quiescence, where we fitted the spectrum with two different neutron-star atmosphere models. From the fits we constrained the allowed parameter space in t

  10. Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748−676 back to quiescence

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands; M.T. Wolff; P.S. Ray; K.S. Wood; J. Homan; W.H.G. Lewin; P.G. Jonker; E.M. Cackett; J.M. Miller; E.F. Brown

    2009-01-01

    The quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 recently started the transition to quiescence following an accretion outburst that lasted more than 24 years. We report on two Chandra and 12 Swift observations performed within five months after the end of the outbu

  11. Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-06-01

    Full Text Available A simple linear equation was developed and applied to a hypothetical binary equilibrium diagram to evaluate the eutectic composition of the binary alloy system. Solution of the equations revealed that the eutectic composition of the case study Pb – Sn, Bi – Cd and Al – Si alloys are 39.89% Pb, 60.11% Sn, 58.01% Bi, 41.99% Cd and 90.94% Al, 9.06% Si respectively. These values are very close to experimental values. The percent deviation of analytical values from experimental values ranged between 2.87 and 5% for the three binary systems considered, except for Si – Al alloy in which the percent deviation for the silicon element was 22%.It is concluded that equation of straight line could be used to predict the eutectic composition of simple binary alloys within tolerable experimental deviation range of 2.5%.

  12. The Impact of Stellar Multiplicity on Planetary Systems, I.: The Ruinous Influence of Close Binary Companions

    CERN Document Server

    Kraus, Adam L; Huber, Daniel; Mann, Andrew W; Dupuy, Trent J

    2016-01-01

    The dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of 382 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry (NRM) on the Keck-II telescope. Among the full sample of 506 candidate binary companions to KOIs, we super-resolve some binary systems to projected separations of 0.4; we instead only found 23 companions (a 4.6 sigma deficit), many of which must be wider pairs that are only close in projection. When the binary population is parametrized with a semimajor axis cutoff a_cut and a suppression factor inside that cutoff S_bin, we find with correlated uncertainties that inside a_cut = 47 +59/-23 AU, the planet occurrence rate in...

  13. Solid/liquid interfacial free energies in binary systems

    Science.gov (United States)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  14. Speckle Imaging and Spectroscopy of Kepler Exo-planet Transit Candidate Stars

    Science.gov (United States)

    Howell, Steve B.; Sherry, William; Horch, Elliott; Doyle, Laurance

    2010-02-01

    The NASA Kepler mission was successfully launched on 6 March 2009 and has begun science operations. Commissioning tests done early on in the mission have shown that for the bright sources, 10-15 ppm relative photometry can be achieved. This level assures we will detect Earth- like transits if they are present. ``Hot Jupiter" and similar large planet candidates have already been discovered and will be discussed at the Jan. AAS meeting as well as in a special issue of Science magazine to appear near years end. The plethora of variability observed is astounding and includes a number of eclipsing binaries which appear to have Jupiter and smaller size objects as an orbiting their body. Our proposal consists of three highly related objectives: 1) To continue our highly successful speckle imaging program which is a major component of defense to weed out false positive candidate transiting planets found by Kepler and move the rest to probable or certain exo-planet detections; 2) To obtain low resolution ``discovery" type spectra for planet candidate stars in order to provide spectral type and luminosity class indicators as well as a first look triage to eliminate binaries and rapid rotators; and 3) to obtain ~1Aresolution time ordered spectra of eclipsing binaries that are exo-planet candidates in order to obtain the velocity solution for the binary star, allowing its signal to be modeled and removed from the Keck or HET exo-planet velocity search. As of this writing, Kepler has produced a list of 227 exo-planet candidates which require false positive decision tree observations. Our proposed effort performs much of the first line of defense for the mission.

  15. High Resolution Imaging of Very Low Mass Spectral Binaries: Three Resolved Systems and Detection of Orbital Motion in an L/T Transition Binary

    CERN Document Server

    Gagliuffi, Daniella C Bardalez; Burgasser, Adam J

    2015-01-01

    We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341$-$3052, SDSS J1511+0607 and SDSS J2052$-$1609; the first two are resolved for the first time. All three have projected separations $<8$ AU and estimated periods of $14-80$ years. We also report a preliminary orbit determination for SDSS J2052$-$1609 based on six epochs of resolved astrometry between 2005$-$2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of $47^{+12}_{-11}\\%$ for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging.

  16. The Planet in the HR 7162 Binary System Discovered by PHASES Astrometry

    Science.gov (United States)

    Muterspaugh, Matthew W.; Lane, B. F.; Konacki, M.; Burke, B. F.; Colavita, M. M.; Shao, M.; Hartkopf, W. I.; Boss, A. P.; O'Connell, J.; Fekel, F. C.; Wiktorowicz, S. J.

    2011-01-01

    The now-completed Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) used phase-referenced long-baseline interferometry to monitor 51 binary systems with 35 micro-arcsecond measurement precision, resulting in the high-confidence detection of a planet in the HR 7162 system. The 1.5 Jupiter mass planet is in a 2 AU orbit around one of the stars, whereas the binary itself has a separation of only 19 AU. Despite the close stellar companion, this configuration is expected to be stable, based on dynamic simulations. In the context of our solar system, this is analogous to a Jovian planet just outside of Mars' orbit, with a second star at the distance of Uranus. If this configuration were present during the period of planet formation, the complex gravitational environment created by the stars would seem to disrupt planet formation mechanisms that require long times to complete (thousands of years or more). While it is possible the arrangement resulted from the planet being formed in another environment (a single star or wider binary) after which the system reached its current state via dynamic interactions (star-planet exchange with a binary, or the binary orbit shrinking by interacting with a passing star), the frequency of such interactions is very low. Because the PHASES search only had the sensitivity to rule out Jovian mass companions in 11 of our 51 systems, yet one such system was found, the result indicates either extreme luck or that there is a high frequency of 20 AU binaries hosting planets. The latter interpretation is supported by previous detections of planets in 5-6 additional 20 AU binaries in other surveys (though with less control over the statistics for determining frequency of occurrence). Thus, there is observational support suggesting that a mechanism for rapid Jovian planet formation occurs in nature.

  17. Thermodynamic assessment of Au-La and Au-Er binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong, H.Q., E-mail: hongqun.dong@aalto.fi [Department of Electronics, Aalto University School of Science and Technology, FIN-02601 Espoo (Finland); Tao, X.M. [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Liu, H.S. [Scientific Center of Phase Diagrams and Materials Design, Central South University, Changsha, Hunan 410083 (China); Laurila, T.; Paulastro-Kroeckel, M. [Department of Electronics, Aalto University School of Science and Technology, FIN-02601 Espoo (Finland)

    2011-03-31

    Research highlights: > It's the first time that Au-La and Au-Er binary systems were thermodynamically assessed since 1985. > Besides, in the present work, the ab initio approach has been employed to calculate the formation enthalpies of the IMCs involved in Au-Er and Au-La binary systems, and then, by combining with all of the available experimental information, these two-system were thermodynamically optimized via CALPHAD method. Therefore, a more reliable thermodynamic description has been obtained for these systems. - Abstract: Phase relationships in Au-La and Au-Er binary systems have been thermodynamically assessed by using the CALPHAD technique. The existing thermodynamic descriptions of the systems were improved by incorporating the ab initio calculated enthalpies of formation of the intermetallic compounds, except for the Au{sub 51}La{sub 14} and Au{sub 10}Er{sub 7} phases. All the binary intermetallic compounds were treated as stoichiometric phases, while the solution phases, including liquid, fcc, bcc, and dhcp, were treated as substitutional solution phases and the excess Gibbs energies were formulated with Redlich-Kister polynomial function. As a result, two self-consist thermodynamic data sets for describing the Au-La and Au-Er binary systems were obtained.

  18. ANALYSIS OF THE MOTION OF AN EXTRASOLAR PLANET IN A BINARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Plávalová, Eva [Astronomical Institute, Slovak Academy of Science, Bratislava (Slovakia); Solovaya, Nina A., E-mail: plavala@slovanet.sk, E-mail: solov@sai.msu.ru [Sternberg State Astronomical Institute, Lomonosov Moscow State University, Moscow (Russian Federation)

    2013-11-01

    More than 10% of extra-solar planets (EPs) orbit in a binary or multiple stellar system. We investigated the motion of planets revolving in binary systems in the case of the three-body problem. We carried out an analysis of the motion of an EP revolving in a binary system with the following conditions: (1) a planet in a binary system revolves around one of the components (parent star); (2) the distance between the star's components is greater than that between the parent star and the orbiting planet (ratio of the semi-major axes is a small parameter); and (3) the mass of the planet is smaller than the mass of the stars, but is not negligible. The Hamiltonian of the system without short periodic terms was used. We expanded the Hamiltonian in terms of the Legendre polynomial and truncated after the second-order term, depending on only one angular variable. In this case, the solution of the system was obtained and the qualitative analysis of the motion was produced. We have applied this theory to real EPs and compared to the numerical integration. Analyses of the possible regions of motion are presented. It is shown that stable and unstable motions of EPs are possible. We applied our calculations to two binary systems hosting an EP and calculated the possible values for their unknown orbital elements.

  19. Binary Systems with a Black Hole Component as Sources of Gravitational Waves

    CERN Document Server

    Koçak, D

    2016-01-01

    Discovery of gravitational waves by LIGO team (Abbott et al. 2016) bring a new era for observation of black hole systems. These new observations will improve our knowledge on black holes and gravitational physics. In this study, we present angular momentum loss mechanism through gravitational radiation for selected X-ray binary systems. The angular momentum loss in X-ray binary systems with a black hole companion due to gravitational radiation and mass loss time-scales are estimated for each selected system. In addition, their gravitational wave amplitudes are also estimated and their detectability with gravitational wave detectors has been discussed.

  20. Structural Expression of Exo-Anomeric Effect

    Science.gov (United States)

    Alonso, E. R.; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2016-06-01

    Structural signatures for exo--anomeric effect have been extracted from the archetypal methyl--β--D--xyloside using broadband Fourier transform microwave spectroscopy combined with laser ablation. Spectrum analysis allows the determination of a set of rotational constants, which has been unequivocally attributed to conformer cc--β-4C1 g-, corresponding to the global minimum of the potential energy surface, where the aglycon residue (CH3) orientation contributes towards maximization of the exo-anomeric effect. Further analysis allowed the determination of the rs structure, based on the detection of eleven isotopologues - derived from the presence of six 13C and five 18O atoms - observed in their natural abundances. The observed glycosidic C1-O1 bond length decrease (1.38 Å) can be interpreted in terms of the exo--anomeric effect. As such, the exo--anomeric effect presents itself as one of the main driving forces controlling the shape of many biologically important oligosaccharides.

  1. Relationship between the density of supercritical CO2 +ethanol binary system and its critical properties

    Institute of Scientific and Technical Information of China (English)

    张敬畅; 张建军; 曹维良

    2003-01-01

    The dependent relation between temperature and pressure of supercritical CO2 + ethanol binary system under the pressure range from 5 to 10 MPa with the variety of densities and mole fractions of ethanol that range from 0 to 2% was investigated by the static visual method in a constant volume. The critical temperature and pressure were experimentally determined simultaneously. The PTρ figures at different ethanol contents were described based on the determined pressure and temperature data, from which pressure of supercritical CO2 + ethanol binary system was found to increase linearly with the increasing temperature. P-T lines show certain convergent feature in a specific concentration of ethanol and the convergent points shift to the region of higher temperature and pressure with the increasing ethanol compositions. Furthermore, the effect of density and ethanol concentration on the critical point of CO2 + ethanol binary system was discussed in details. Critical points increase linearly with the increasing mole fraction of ethanol in specific density and critical points change at different densities. The critical compressibility factors Zc of supercritical CO2 + ethanol binary systems at different compositions of ethanol were calculated and Zc-ρ figure was obtained accordingly. It was found from Zc-ρ figure that critical compressibility factors of supercritical CO2 unitary or binary systems decline linearly with the increasing density, by which the critical point can be predicted precisely.

  2. The formation and evolution of wind-capture discs in binary systems

    Science.gov (United States)

    Huarte-Espinosa, M.; Carroll-Nellenback, J.; Nordhaus, J.; Frank, A.; Blackman, E. G.

    2013-07-01

    We study the formation, evolution and physical properties of accretion discs formed via wind capture in binary systems. Using the adaptive mesh refinement (AMR) code AstroBEAR, we have carried out high-resolution 3D simulations that follow a stellar mass secondary in the corotating frame as it orbits a wind producing asymptotic giant branch (AGB) primary. We first derive a resolution criteria, based on considerations of Bondi-Hoyle flows, that must be met in order to properly resolve the formation of accretion discs around the secondary. We then compare simulations of binaries with three different orbital radii (Ro = 10, 15, 20 au). Discs are formed in all three cases, however, the size of the disc and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disc becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with `fluttering' around the bow shock observed. The discs are generally well aligned with the orbital plane after a few binary orbits. We do not observe the presence of any large-scale, violent instabilities (such as the flip-flop mode). For the first time, moreover, it is observed that the wind component that is accreted towards the secondary has a vortex tube-like structure, rather than a column-like one as it was previously thought. In the context of AGB binary systems that might be precursors to pre-planetary nebula (PPN) and planetary nebula (PN), we find that the wind accretion rates at the chosen orbital separations are generally too small to produce the most powerful outflows observed in these systems if the companions are main-sequence stars but marginally capable if the companions are white dwarfs. It is likely that many of the more powerful PPN and PN involve closer binaries than the ones considered here. The results also demonstrate principles of broad relevance to all wind-capture binary systems.

  3. Communication: radial distribution functions in a two-dimensional binary colloidal hard sphere system.

    Science.gov (United States)

    Thorneywork, Alice L; Roth, Roland; Aarts, Dirk G A L; Dullens, Roel P A

    2014-04-28

    Two-dimensional hard disks are a fundamentally important many-body model system in classical statistical mechanics. Despite their significance, a comprehensive experimental data set for two-dimensional single component and binary hard disks is lacking. Here, we present a direct comparison between the full set of radial distribution functions and the contact values of a two-dimensional binary colloidal hard sphere model system and those calculated using fundamental measure theory. We find excellent quantitative agreement between our experimental data and theoretical predictions for both single component and binary hard disk systems. Our results provide a unique and fully quantitative mapping between experiments and theory, which is crucial in establishing the fundamental link between structure and dynamics in simple liquids and glass forming systems.

  4. Rotationally-Driven Fragmentation for the Formation of the Binary Protostellar System L1551 IRS 5

    CERN Document Server

    Lim, Jeremy; Hanawa, Tomoyuki; Takakuwa, Shigehisa; Matsumoto, Tomoaki; Saigo, Kazuya

    2016-01-01

    Either bulk rotation or local turbulence is widely invoked to drive fragmentation in collapsing cores so as to produce multiple star systems. Even when the two mechanisms predict different manners in which the stellar spins and orbits are aligned, subsequent internal or external interactions can drive multiple systems towards or away from alignment thus masking their formation process. Here, we demonstrate that the geometrical and dynamical relationship between the binary system and its surrounding bulk envelope provide the crucial distinction between fragmentation models. We find that the circumstellar disks of the binary protostellar system L1551 IRS 5 are closely parallel not just with each other but also with their surrounding flattened envelope. Measurements of the relative proper motion of the binary components spanning nearly 30 yr indicate an orbital motion in the same sense as the envelope rotation. Eliminating orbital solutions whereby the circumstellar disks would be tidally truncated to sizes smal...

  5. Solid—Liquid Equilibria of Several Binary and Ternary Systems Containing Meleic Anhydride

    Institute of Scientific and Technical Information of China (English)

    MAPeisheng; CHENMingming; 等

    2002-01-01

    Solid-liquid equilibria(SLE) of three binary systems and seven ternary systems containing maleic anhydride(MA) are measured by visual method. The experimental data are compared with the calculated ones with modified universal quasichemical functional group activity coefficient(UNIFAC) method in which the interaction parameters between groups come from two sources,dortmund data bank (DDB), if there′s any,and correlations based on our former presented experimental SLE data of twenty binary systems.New groups of MA,ACCOO group,COO group,>C=O group and cy-CH2 group are defined and the SLE data of maleic anhydride in isopropyl acetate in literature are cited in order to assess the new interaction parameters,correlated with Wilson equation and the λh equation.The modified UNIFAC method with these new regressed interaction parameters is also used to predict other three binary systems containing maleic anhydride.

  6. Observational Investigations on Contact Binaries in Multiple-star Systems and Star Clusters

    Science.gov (United States)

    Liu, L.

    2013-01-01

    The W UMa-type contact binaries are strongly interacting systems whose components both fill their critical Roche lobes and share a convective common envelope. The models of contact binaries are bottlenecked due to too many uncertain parameters. In the 1960s and 1970s, the common convective envelope model was accepted after several fierce controversies. And then, the thermal relaxation oscillation (TRO) model, the discontinuity model, and the angular momentum loss (AML) model appeared. However, in the past forty years, there lacked remarkable advance. The coexistence of many unknown parameters blocks the theoretical development of contact binaries. A study on the contact binaries in multiple star systems and star clusters, which could provide lots of information for their formation and evolution, may be a potential growing point for understanding these objects. More and more evidence shows that many of contact binaries are located in multiple star systems and star clusters. In this thesis, we observed and analyzed contact binaries in the forementioned systems. The observational and theoretical studies for contact binary are also summarized briefly. The results obtained are as follows: (1) Three contact binaries V1128 Tau, GZ And, VW Boo which possess visual companions show periodic oscillations. The period ranges from 16.7 years to 46.5 years. These oscillations probably come from the orbital movement of a close third body. (2) Four contact binaries GSC 02393-00680, V396 Mon, FU Dra, SS Ari which do not have visual companions also present periodic oscillations. Whether they are real members of multiple star systems needs further investigations. These oscillations probably result from the orbital movement of a close M-type companion. (3) The periods of three contact binaries EQ Cep, ER Cep and V371 Cep in the old open cluster NGC 188 show a long-term increase. There is a cyclic period oscillation in ER Cep, with a period of 5.4 years. We find that the total mass of

  7. Morphological Evolution of Disc Galaxies in Binary Systems

    CERN Document Server

    Chan, R

    2013-01-01

    We present the results of several numerical simulations of disc binary galaxies. It was performed detailed numerical N-body simulations of the dynamical interaction of two disc galaxies. The disc galaxies are embedded in spherical halos of dark matter and present central bulges. The dynamical evolution of the binary galaxy is analyzed in order to study the morphological evolution of the stellar distribution of the discs. The satellite galaxy is held on fixed, coplanar or polar discs, of eccentric ($e=0.1$, $e=0.4$ or $e=0.7$) orbits. Both galaxies have the same mass and size similar to the Milk Way. We have shown that the merge of two disc galaxy, depending on the initial conditions, can result in a disc or a lenticular galaxy, instead of an elliptical one. Besides, we have demonstrated that the time of merging increases linearly with the initial apocentric distance of the galaxies and decreases with the orbit's eccentricity. We also have shown that the tidal forces and the fusion of the discs can excite tran...

  8. Study on Phase Equilibrium Properties for CO2+Cosolvent Binary Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this study, the constant volume, visual method is used to measure thc critical point of CO2toluene, CO2+cyclohexane, CO2+n-butyraldehyde, CO2+i-butyraldchyde, CO2+methanol and CO2+alcohol binary systems. The relationship between critical point and the concentration of the entrainer for different substances has been discussed, and the comparison of the phase behavior of single component system and that of binary systems have been carried out.

  9. Isobaric Vapor—Liquid Equilibrium for Methyldichlorosilane+Methylvinyldichlorosilane+Toluene and Constituent Binary Systems

    Institute of Scientific and Technical Information of China (English)

    邱祖民; 孙Wei; 余淑娴; 余祖兵

    2003-01-01

    Vapor-liquid euilibrium (VLE) for a ternary system of Methyldichlorosilane+methylvinyldichlorosilane+toluene and constituent binary systems were measured at 101.3kPa using a new type of magnetical pump-ebulliometer,The equilibrium conpositions of the vapor phase of binary systems were calculated indirectly from the total pressure-temperature-liquid composition(pTx).The experimental data were correlated with the Wilson and NRTL(non-random two liquid )equations.The parameters of the Wilson moldel were employed to predict the ternary VLE data .The calculated boiling points were in good agreement with the experimental ones.

  10. Millions of Multiples: Detecting and Characterizing Close-Separation Binary Systems in Synoptic Sky Surveys

    CERN Document Server

    Terziev, Emil; Arcavi, Iair; Baranec, Christoph; Bloom, Joshua S; Bui, Khanh; Burse, Mahesh P; Chorida, Pravin; Das, H K; Dekany, Richard G; Kraus, Adam L; Kulkarni, S R; Nugent, Peter; Ofek, Eran O; Punnadi, Sujit; Ramaprakash, A N; Riddle, Reed; Tendulkar, Shriharsh P

    2012-01-01

    The direct detection of binary systems in wide-field surveys is limited by the size of the stars' point-spread-functions (PSFs). A search for elongated objects can find closer companions, but is limited by the precision to which the PSF shape can be calibrated for individual stars. We have developed the BinaryFinder algorithm to search for close binaries by using precision measurements of PSF ellipticity across wide-field survey images. We show that the algorithm is capable of reliably detecting binary systems down to approximately 1/5 of the seeing limit, and can directly measure the systems' position angles, separations and contrast ratios. To verify the algorithm's performance we evaluated 100,000 objects in Palomar Transient Factory (PTF) wide-field-survey data for signs of binarity, and then used the Robo-AO robotic laser adaptive optics system to verify the parameters of 44 high-confidence targets. We show that BinaryFinder correctly predicts the presence of close companions with a <5% false-positive...

  11. Apsidal motions of 90 eccentric binary systems in the Small Magellanic Cloud

    CERN Document Server

    Hong, K; Kim, S -L; Koo, J -R; Lee, C -U

    2016-01-01

    We examined light curves of 1138 stars brighter than 18.0 mag in the $I$ band and less than a mean magnitude error of 0.1 mag in the $V$ band from the OGLE-III eclipsing binary catalogue, and found 90 new binary systems exhibiting apsidal motion. In this study, the samples of apsidal motion stars in the SMC were increased by a factor of about 3 than previously known. In order to determine the period of the apsidal motion for the binaries, we analysed in detail both the light curves and eclipse timings using the MACHO and OGLE photometric database. For the eclipse timing diagrams of the systems, new times of minimum light were derived from the full light curve combined at intervals of one year from the survey data. The new 90 binaries have apsidal motion periods in the range of 12$-$897 years. An additional short-term oscillation was detected in four systems (OGLE-SMC-ECL-1634, 1947, 3035, and 4946), which most likely arises from the existence of a third body orbiting each eclipsing binary. Since the systems p...

  12. Black holes in stellar-mass binary systems: expiating original spin?

    Science.gov (United States)

    King, Andrew; Nixon, Chris

    2016-10-01

    We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs), there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions, we expect misalignment of the spin and orbital planes by ˜1 rad for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries. A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers mass on a thermal or nuclear time-scale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of ≳ 10 systems. Recent observational work shows that eclipses are either absent or extremely rare in ULXs, supporting the picture that most ULXs are stellar-mass binaries with companion stars more massive than the accretor.

  13. Direct thermal imaging of circumstellar discs and exo-planets

    Science.gov (United States)

    Pantin, Eric; Siebenmorgen, Ralf; Cavarroc, Celine; Sterzik, Michael F.

    2008-07-01

    The phase A study of a mid infrared imager and spectrograph for the European Extremely Large Telescope (E-ELT), called METIS, was endorsed in May 2008. Two key science drivers of METIS are: a) direct thermal imaging of exo-planets and b) characterization of circumstellar discs from the early proto-planetary to the late debris phase. Observations in the 10μm atmospheric window (N band) require a contrast ratio between stellar light and emitted photons from the exo-planet or the disc of ~ 105. At shorter wavelengths the contrast between star and reflected light from the planet-disc system exceeds >~ 107 posing technical challenges. By means of end-to-end detailed simulations we demonstrate that the superb spatial resolution of a 42m telescope in combination with stellar light rejection methods such as coronagraphic or differential imaging will allow detections at 10μm for a solar type system down to a star-planet separation of 0.1" and a mass limit for irradiated planets of 1 Jupiter (MJ) mass. In case of self-luminous planets observations are possible further out e.g. at the separation limit of JWST of ~ 0.7", METIS will detect planets >~5MJ. This allows to derive a census of all such exo-planets by means of thermal imaging in a volume limited sample of up to 6pc. In addition, METIS will provide the possibility to study the chemical composition of atmospheres of exo-planets using spectroscopy at moderate spectral resolution (λ/Δλ ~ 100) for the brightest targets. Based on detailed performance and sensitivity estimates, we demonstrate that a mid-infrared instrument on an ELT is perfectly suited to observe gravitationally created structures such as gaps in proto- and post- planetary discs, in a complementary way to space missions (e.g. JWST, SOFIA) and ALMA which can only probe the cold dust emission further out.

  14. Evidence Contrary to the Existing Exo-Planet Migration Concept

    CERN Document Server

    Herndon, J M

    2006-01-01

    Exo-planet migration is assumed to have occurred to explain close-to-star gas giant exo-planets within the context of the so-called standard model of solar system formation, rather than giving cause to question the validity of that particular model. I present evidence against the concept of planet migration, evidence that is historical, interdisciplinary, and model-independent. First, I demonstrate a flaw in the standard model of solar system formation that would lead to the contradiction of terrestrial planets having insufficiently massive cores. Then, I discuss the evidence that points to the Earth previously having been a Jupiter-like close-to-Sun gas giant and the consequences that arise there from. Observations of close-to-star gas giant exo-planets orbiting stars other than our own Sun, rather than being evidence for planet migration, I submit, are evidence for differing degrees of violence associated with the thermonuclear ignition of their particular stars. As observational resolution improves, one mi...

  15. Study of complex properties of binary system of ethanol-methanol at extreme concentrations

    CERN Document Server

    Nilavarasi, K; Madhurima, V

    2016-01-01

    At low concentrations of methanol in ethanol-methanol binary system, the molecular interactions are seen to be uniquely complex. It is observed that the ethanol aggregates are not strictly hydrogen-bonded complexes; dispersion forces also play a dominant role in the self- association of ethanol molecules. On the addition of small amount of methanol to ethanol, the dipolar association of ethanol is destroyed. The repulsive forces between the two moieties dominate the behavior of the binary system at lower concentration of methanol. At higher concentration of methanol (> 30%), the strength and extent (number) of formation of hydrogen bonds between ethanol and methanol increases. The geometry of molecular structure at high concentration favors the fitting of component molecules with each other. Intermolecular interactions in the ethanol-methanol binary system over the entire concentration range were investigated in detail using broadband dielectric spectroscopy, FTIR, surface tension and refractive index studies...

  16. Realization of a Binary-Outcome Projection Measurement of a Three-Level Superconducting Quantum System

    Science.gov (United States)

    Jerger, Markus; Macha, Pascal; Hamann, Andrés Rosario; Reshitnyk, Yarema; Juliusson, Kristinn; Fedorov, Arkady

    2016-07-01

    Binary-outcome measurements allow one to determine whether a multilevel quantum system is in a certain state while preserving quantum coherence between all orthogonal states. In this paper, we explore different regimes of the dispersive readout of a three-level superconducting quantum system coupled to a microwave cavity in order to implement binary-outcome measurements. By designing identical cavity-frequency shifts for the first and second excited states of the system, we realize strong projective binary-outcome measurements onto its ground state with a fidelity of 94.3%. Complemented with standard microwave control and low-noise parametric amplification, this scheme enables the quantum nondemolition detection of leakage errors and can be used to create sets of compatible measurements to reveal the contextual nature of superconducting circuits.

  17. Deep HST-WFPC2 photometry of NGC 288. I. Binary Systems and Blue Stragglers

    CERN Document Server

    Bellazzini, M; Messineo, M; Monaco, L L; Rood, R T

    2001-01-01

    We present the first results of a deep WFPC2 photometric survey of the loose galactic globular cluster NGC 288. The fraction of binary systems is estimated from the color distribution of objects near the Main Sequence (MS) with a method analogous to that introduced by Rubenstein & Bailyn(1997). We have unequivocally detected a significant population of binary systems which has a radial distribution that has been significantly influenced by mass segregation. In the inner region of the cluster (r 1 r_h), f_b must be less than 0.10, and the most likely value is 0.0, independently of the adopted F(q). The detected population of binaries is dominated by primordial systems. The specific frequency of Blue Straggler Stars (BSS) is exceptionally high, suggesting that the BSS production mechanism via binary evolution can be very efficient. A large population of BSS is possible even in low density environments if a sufficient reservoir of primordial binaries is available. The observed distribution of BSS in the Colo...

  18. Deep Hubble Space Telescope WFPC2 Photometry of NGC 288. I. Binary Systems and Blue Stragglers

    Science.gov (United States)

    Bellazzini, Michele; Fusi Pecci, Flavio; Messineo, Maria; Monaco, Lorenzo; Rood, Robert T.

    2002-03-01

    We present the first results of a deep WFPC2 photometric survey of the loose galactic globular cluster NGC 288. The fraction of binary systems is estimated from the color distribution of objects near the main sequence (MS) with a method analogous to that introduced by Rubenstein & Bailyn. We have unequivocally detected a significant population of binary systems with a radial distribution that has been significantly influenced by mass segregation. In the inner region of the cluster (r=1rh), fb must be less than 0.10, and the most likely value is 0.0, independently of the adopted F(q). The detected population of binaries is dominated by primordial systems. The specific frequency of blue stragglers (BSs) is exceptionally high, suggesting that the BS production mechanism via binary evolution can be very efficient. A large population of BSs is possible even in low-density environments if a sufficient reservoir of primordial binaries is available. The observed distribution of BSs in the color-magnitude diagram is not compatible with a rate of BS production that has been constant in time, if it is assumed that all the BSs are formed by the merging of two stars. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal GO-6804.

  19. Solubilization and quantification of lycopene in aqueous media in the form of cyclodextrin binary systems.

    Science.gov (United States)

    Vertzoni, Maria; Kartezini, Theodora; Reppas, Christos; Archontaki, Helen; Valsami, Georgia

    2006-02-17

    An optimized kneading method for the preparation of lycopene-cyclodextrin binary systems was developed leading to solubilization of lycopene in water and 5% (w/v) dextrose solution. Lycopene quantification in the prepared binary systems was performed by a developed spectrometric method that followed a successful single-step extraction with dichloromethane. Storage stability characteristics of the binary systems were studied at 4 degrees C in solution and at -20 degrees C in the lyophilized products. Lycopene content was monitored at lambda(max)=482 nm, the limit of detection was 0.41 microg/ml and relative standard deviation was less than 3.1%. The results obtained with the spectrometric method were confirmed by a HPLC method. In the presence of cyclodextrins, lycopene concentration in water was 8.0+/-1.0, 27.1+/-3.2 and 16.0+/-2.2 microg/ml for beta-CD, HP-beta-CD and Me-beta-CD, respectively. In 5% (w/v) aqueous dextrose solutions the corresponding values were 16.0+/-1.8, 48.0+/-5.1 and 4.0+/-0.5 microg/ml, respectively. At 4 degrees C, storage stability of lycopene-cyclodextrin binary systems in water or 5% (w/v) aqueous dextrose solutions, was limited (t(1/2)=1-4 days). Addition of the antioxidant sodium metabisulfite increased the stability of lycopene-HP-beta-CD binary system in water. At -20 degrees C, the lyophilized lycopene-cyclodextrin binary systems were stable for at least 2 weeks.

  20. Liquid crystalline behaviour of mixtures of structurally dissimilar mesogens in binary systems

    Indian Academy of Sciences (India)

    Jayrang S Dave; Meera R Menon; Pratik R Patel

    2002-06-01

    We have studied four binary systems comprising four ester components, viz. 4-nitrophenyl-4'--alkoxybenzoates (where -alkoxy is nbutoxy, C4, -hexyloxy, C6, -octyloxy, C8 and -decyloxy, C10) and one azo component, 4--decyloxy phenylazo-4'-isoamyloxy benzene. A variety of mesomorphic properties are observed in these mixtures. The properties of these systems are discussed on the basis of phase diagrams.

  1. Recognition of binary x-ray systems utilizing the doppler effect

    Science.gov (United States)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  2. The formation of the black hole in the X-ray binary system V404 Cyg

    NARCIS (Netherlands)

    J.C.A. Miller-Jones; P.G. Jonker; G. Nelemans; S. Portegies Zwart; V. Dhawan; W. Brisken; E. Gallo; M.P. Rupen

    2009-01-01

    Using new and archival radio data, we have measured the proper motion of the black hole X-ray binary V404 Cyg to be 9.2 +/- 0.3 mas yr(-1). Combined with the systemic radial velocity from the literature, we derive the full three-dimensional heliocentric space velocity of the system, which we use to

  3. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  4. A massive binary black-hole system in OJ287 and a test of general relativity

    OpenAIRE

    Valtonen, M. J.; Lehto, H. J.; Nilsson, K.; Heidt, J.; Takalo, L. O.; Sillanpää, A.; Villforth, C.; Kidger, M.; Poyner, G.; Pursimo, T.; Zola, S.; Wu, J. -H.; Zhou, X.; Sadakane, K.; Drozdz, M.

    2008-01-01

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ287. This quasar shows quasi-p...

  5. Differential rotation on both components of the pre main-sequence binary system HD 155555

    OpenAIRE

    Dunstone, N. J.; Hussain, G A J; Cameron, A. Collier; Marsden, S. C.; Jardine, M.; Barnes, J. R.; Vlex, J. C. Ramirez; Donati, J.-F.

    2008-01-01

    We present the first measurements of surface differential rotation on a pre-main sequence binary system. Using intensity (Stokes I) and circularly polarised (Stokes V) timeseries spectra, taken over eleven nights at the Anglo-Australian Telescope (AAT), we incorporate a solar-like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator-pole...

  6. Numerical calculations of mass transfer flow in semi-detached binary systems. [of stars

    Science.gov (United States)

    Edwards, D. A.; Pringle, J. E.

    1987-01-01

    The details of the mass transfer flow near the inner Lagrangian point in a semidetached binary system are numerically calculated. A polytropic equation of state with n = 3/2 is used. The dependence of the mass transfer rate on the degree to which the star overfills its Roche lobe is calculated, and good agreement with previous analytic estimates is found. The variation of mass transfer rate which occurs if the binary system has a small eccentricity is calculated and is used to cast doubt on the model for superhumps in dwarf novae proposed by Papaloizou and Pringle (1979).

  7. Hydrodynamic moving-mesh simulations of the common envelope phase in binary stellar systems

    CERN Document Server

    Ohlmann, Sebastian T; Pakmor, Ruediger; Springel, Volker

    2015-01-01

    The common envelope (CE) phase is an important stage in binary stellar evolution. It is needed to explain many close binary stellar systems, such as cataclysmic variables, Type Ia supernova progenitors, or X-ray binaries. To form the resulting close binary, the initial orbit has to shrink, thereby transferring energy to the primary giant's envelope that is hence ejected. The details of this interaction, however, are still not understood. Here, we present new hydrodynamic simulations of the dynamical spiral-in forming a CE system. We apply the moving-mesh code AREPO to follow the interaction of a $1M_\\odot$ compact star with a $2M_\\odot$ red giant possessing a $0.4M_\\odot$ core. The nearly Lagrangian scheme combines advantages of smoothed particle hydrodynamics and traditional grid-based hydrodynamic codes and allows us to capture also small flow features at high spatial resolution. Our simulations reproduce the initial transfer of energy and angular momentum from the binary core to the envelope by spiral shoc...

  8. Reducing False Alarms in Searches for Gravitational Waves from Coalescing Binary Systems

    CERN Document Server

    Rodriguez, Andres

    2008-01-01

    LIGO observatories in Livingston, LA and Hanford, WA may detect gravitational waves emitted from coalescing binary systems composed of two compact objects. In order to detect compact binary coalescence (CBC) events, LIGO searches utilize matched filtering techniques. Matched filtering is the optimal detection strategy for stationary, Gaussian noise, however, LIGO noise is often non-stationary, non-Gaussian. Non-stationary noise result in an excess of false candidate events, commonly known as false alarms. This thesis develops the r^2 test to reduce the false alarm rate for LIGO CBC searches. Results of the search for primordial black hole binary systems (where each object has less than 1M_solar), in LIGO's Third Science Run (S3) is also presented. Results of the r^2 test are shown for several LIGO CBC searches, including the binary neutron star searches in the Third and Fourth Science Runs (S3/S4), the S3/S4 primordial black hole searches, and the binary black hole search in the first three months of the Fift...

  9. A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves

    CERN Document Server

    Farr, Benjamin; Farr, Will M; O'Shaughnessy, Richard

    2014-01-01

    Ground-based gravitational wave detectors are sensitive to a narrow range of frequencies, effectively taking a snapshot of merging compact-object binary dynamics just before merger. We demonstrate that by adopting analysis parameters that naturally characterize this 'picture', the physical parameters of the system can be extracted more efficiently from the gravitational wave data, and interpreted more easily. We assess the performance of MCMC parameter estimation in this physically intuitive coordinate system, defined by (a) a frame anchored on the binary's spins and orbital angular momentum and (b) a time at which the detectors are most sensitive to the binary's gravitational wave emission. Using anticipated noise curves for the advanced-generation LIGO and Virgo gravitational wave detectors, we find that this careful choice of reference frame and reference time significantly improves parameter estimation efficiency for BNS, NS-BH, and BBH signals.

  10. KIC 10080943: An eccentric binary system containing two pressure and gravity mode hybrid pulsators

    CERN Document Server

    Schmid, V S; Aerts, C; Degroote, P; Bloemen, S; Murphy, S J; Van Reeth, T; Papics, P I; Bedding, T R; Keen, M A; Prsa, A; Menu, J; Debosscher, J; Hrudkova, M; De Smedt, K; Lombaert, R; Nemeth, P

    2015-01-01

    Gamma Doradus and delta Scuti pulsators cover the transition region between low mass and massive main-sequence stars, and are as such critical for testing stellar models. When they reside in binary systems, we can combine two independent methods to derive critical information, such as precise fundamental parameters to aid asteroseismic modelling. In the Kepler light curve of KIC10080943, clear signatures of gravity and pressure mode pulsations have been found. Ground-based spectroscopy revealed this target to be a double-lined binary system. We present the analysis of four years of Kepler photometry and high-resolution spectroscopy to derive observational constraints, which will serve to evaluate theoretical predictions of the stellar structure and evolution for intermediate-mass stars. We used the method of spectral disentangling to determine atmospheric parameters for both components and derive the orbital elements. With phoebe we modelled the ellipsoidal variation and reflection signal of the binary in the...

  11. The Be/X-ray binary system V 0332+53: A Short Review

    CERN Document Server

    Caballero-Garcia, M D; Arabaci, M Ozbey; Hudec, R

    2015-01-01

    Be/X-ray binary systems provide an excellent opportunity to study the physics around neutron stars through the study of the behaviour of matter around them. Intermediate and low-luminosity type outbursts are interesting because they provide relatively clean environments around neutron stars. In these conditions the physics of the magnetosphere around the neutron star can be better studied without being very disturbed by other phenomena regarding the transfer of matter between the two components of the Be/X-ray binary system. A recent study presents the optical longterm evolution of the Be/X-ray binary V 0332+53 plus the X-ray emission mainly during the intermediate-luminosity outburst on 2008. In this paper we comment on the context of these observations and on the properties that can be derived through the analysis of them.

  12. ExoMars: Overview of scientific programme

    Science.gov (United States)

    Rodionov, Daniel; Witasse, Olivier; Vago, Jorge L.

    The ExoMars Programme is a joint project between the European Space Agency (ESA) and the Russian Federal Space Agency (Roscosmos). The project consists of two missions with launches in 2016 and 2018. The scientific objectives of ExoMars are: begin{itemize} To search for signs of past and present life on Mars. To investigate the water/geochemical environment as a function of depth in the shallow subsurface. To study Martian atmospheric trace gases and their sources. To characterize the surface environment. The 2016 mission will be launched (January 2016) on a Proton rocket. It includes the Trace Gas Orbiter (TGO) and an Entry, descent and landing Demonstrator Module (EDM), both contributed by ESA. The TGO will carry European and Russian scientific instruments for remote observations, while the EDM will have a European payload for in-situ measurements during descent and on the Martian surface. The TGO scientific payload includes:begin{itemize} NOMAD. Suite of 2 Infrared (IR) and 1 Ultraviolet (UV) spectrometer. ACS. Suite of 2 IR echelle-spectrometers (near and middle IR) and 1 Fourier spectrometer. FREND. Neutron spectrometer with a collimation module. CaSSIS. High-resolution camera. The EDM payload includes a set of accelerometers and heat shield sensors (AMELIA), to study the Martian atmosphere and obtain images throughout the EDM’s descent, and an environmental station (DREAMS), to conduct a series of short meteorological observations at the EDM’s landing location. The 2018 mission will land a Rover, provided by ESA, making use of a Descent Module (DM) contributed by Roscosmos. The mission will be launched on a Proton rocket (May 2018). The ExoMars rover will have a nominal lifetime of approximately 6 months. During this period, it will ensure a regional mobility of several kilometres, relying on solar array electrical power. The rover’s Pasteur payload will produce self-consistent sets of measurements capable to provide reliable evidence, for or against

  13. The New Space Age in the making: Emergence of exo-mining, exo-burials and exo-marketing

    Science.gov (United States)

    Capova, Klara Anna

    2016-10-01

    At the beginning of the 21st century we witness considerable global developments in space exploration and a new era has begun: the New Space Age. The principal symbols of that age are firstly internationalization of space activities, secondly commercial utilization of space technologies, and lastly emergence of outer space economy. This paper presents selected signposts of the New Space Age. Three cases of recent outer space enterprises: recovery of asteroid resources (exo-mining), post-cremation memorial spaceflight (exo-burials) and first extraterrestrial advert (exo-marketing), are introduced in order to emphasize the monetary and social dimension of commercial application of space technologies. To give an illustration of these trends, this paper provides a brief socioculturally minded account of three outer space undertakings that are interpreted as signposts of the new era.

  14. The Earth-Moon system as a typical binary in the Solar System

    CERN Document Server

    Ipatov, S I

    2016-01-01

    Solid embryos of the Earth and the Moon, as well as trans-Neptunian binaries, could form as a result of contraction of the rarefied condensation which was parental for a binary. The angular momentum of the condensation needed for formation of a satellite system could be mainly acquired at the collision of two rarefied condensations at which the parental condensation formed. The minimum value of the mass of the parental condensation for the Earth-Moon system could be about 0.02 of the Earth mass. Besides the main collision, which was followed by formation of the condensation that was a parent for the embryos of the Earth and the Moon, there could be another main collision of the parental condensation with another condensation. The second main collision (or a series of similar collisions) could change the tilt of the Earth. Depending on eccentricities of the planetesimals that collided with the embryos, the Moon could acquire 0.04-0.3 of its mass at the stage of accumulation of solid bodies while the mass of th...

  15. Improving enzymatic production of diglycerides by engineering binary ionic liquid medium system.

    Science.gov (United States)

    Guo, Zheng; Kahveci, Derya; Ozçelik, Beraat; Xu, Xuebing

    2009-10-01

    The tunable property of ionic liquids (ILs) offers tremendous opportunity to rethink the strategy of current efforts to resolve technical challenges that occurred in many production approaches. To establish an efficient glycerolysis approach for enzymatic production of diglycerides (DG), this work reported a novel concept to improve DG yield by applying a binary IL system that consisted of one IL with better DG production selectivity and another IL being able to achieve higher conversion of triglycerides (TG). The candidates for combination were determined by individually examining lipase-catalyzed glycerolysis in different ILs, as a result, promising ones are divided into two groups based on their reaction specificities. The effects of parametric variables were then preliminarily evaluated, following a further investigation of the reaction performance in different binary IL systems from cross-group combinations. The combination of TOMA.Tf(2)N/Ammoeng 102 was employed for optimization by Response Surface Methodology. Eighty to eighty-five percent (mol%) of oil conversion and up to 90% (mol%) of total DG yield (73%, wt%) were obtained, which are markedly higher than those previously reported. This work demonstrated the practical feasibility to couple the technical advantage (high TG conversion and high DG production selective in this work) of individual ILs into a binary system to over-perform the reaction. It is believed that binary IL system could be also applicable to other enzymatic reaction systems for establishment of more efficient reaction protocols.

  16. Modeling the Formation and Evolution of Wind-Capture Disks In Binary Systems

    Science.gov (United States)

    Huarte-Espinosa, M.; Carroll-Nellenback, J.; Nordhaus, J.; Frank, A.; Blackman, E.

    2014-04-01

    In this talk I will present results of recent models of the formation, evolution and physical properties of accretion disks formed via wind capture in binary systems. Using the AMR code AstroBEAR, we have carried out high resolution 3D simulations that follow a stellar mass secondary in the co-rotating frame as it orbits a wind producing AGB primary. A resolution criteria, based on considerations of Bondi-Hoyle flows, must be met in order to properly resolve the formation of accretion disks around the secondary. We then compare simulations of binaries with three different orbital radii (10, 15, 20 AU). Disks are formed in all three cases, however the size of the disk and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disk becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with "fluttering" around the bow shock observed. The disks are generally well aligned with the orbital plane after a few binary orbits. We do not observe the presence of any large scale, violent instabilities (such as the flip-flop mode). For the first time it is observed that the wind component that is accreted towards the secondary has a vortex tube-like structure. In the context of AGB binary systems that might be precursors to Pre-Planetary and Planetary Nebula, we find that the wind accretion rates at the chosen orbital separations are generally too small to produce the most powerful outflows observed in these systems if the companions are main sequence stars but marginally capable if the companions are white dwarfs. It is likely that many of the more powerful PPN and PN involve closer binaries than the ones considered here.

  17. Orbital parameters and variability of the emission spectrum for the massive binary system 103 Tau

    Science.gov (United States)

    Tarasov, A. E.

    2016-09-01

    Based on high-resolution spectra taken near the He I 6678 Å line for the massive binary system 103 Tau, we have detected a weak absorption component belonging to the binary's secondary component. We have measured the radial velocities of both components, improved the previously known orbital parameters, and determined the new ones. The binary has an orbital period P orb = 58.305d, an orbital eccentricity e = 0.277, a radial velocity semi-amplitude of the bright component K A = 44.8 km s-1, and a component mass ratio M A / M B = 1.77. The absence of photometric variability and the estimates of physical parameters for the primary component suggest that the binary most likely has a considerable inclination of the orbital plane to the observer, i ≈ 50°-60°. In this case, the secondary component is probably a normal dwarf of spectral type B5-B8. Based on the spectra taken near the H α line, we have studied the variability of the emission profile. It is shown to be formed in the Roche lobe of the secondary component, but no traces of active mass exchange in the binary have been detected.

  18. Near-Infrared Polarimetry of the GG Tauri A Binary System

    Science.gov (United States)

    Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi

    2014-01-01

    A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  19. Apsidal motion in massive close binary systems. I. HD 165052 an extreme case?

    CERN Document Server

    Ferrero, G; Benvenuto, O G; Fernández-Lajús, E

    2013-01-01

    We present a new set of radial-velocity measurements of the spectroscopic binary HD 165052 obtained by disentangling of high-resolution optical spectra. The longitude of the periastron (60 +- 2 degrees) shows a variation with respect to previous studies. We have determined the apsidal motion rate of the system (12.1 +- 0.3 degree/yr), which was used to calculate the absolute masses of the binary components: M_1 = 22.5 +- 1.0 and M_2 = 20.5 +- 0.9 solar masses. Analysing the separated spectra we have re-classified the components as O7Vz and O7.5Vz stars.

  20. Near-periodical spin period evolution in the binary system LMC X-4

    CERN Document Server

    Molkov, S; Falanga, M; Tsygankov, S; Bozzo, E

    2016-01-01

    In this paper we investigated the long-term evolution of the pulse-period in the high-mass X-ray binary LMC X-4 by taking advantage of more than 43~yrs of measurements in the X-ray domain. Our analysis revealed for the first time that the source is displaying near-periodical variations of its spin period on a time scale of roughly 6.8~yrs, making LMC X-4 one of the known binary systems showing remarkable long term spin torque reversals. We discuss different scenarios to interpret the origin of these torque reversals.

  1. The OGLE Collection of Variable Stars. Eclipsing Binaries in the Magellanic System

    Science.gov (United States)

    Pawlak, M.; Soszyński, I.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.

    2016-12-01

    We present the collection of eclipsing binaries in the Large and Small Magellanic Clouds, based on the OGLE survey. It contains 48 605 systems, 40 204 belonging to the LMC and 8401 to the SMC. Out of the total number of presented here binaries, 16 374 are the new discoveries. We present the time-series photometry obtained for the selected objects during the fourth phase of the OGLE project. The catalog has been created using a two step machine learning procedure based on the Random Forest algorithm.

  2. Deriving the orbital properties of pulsators in binary systems through their light arrival time delays

    CERN Document Server

    Murphy, Simon J

    2015-01-01

    We present the latest developments to the phase modulation method for finding binaries among pulsating stars. We demonstrate how the orbital elements of a pulsating binary star can be obtained analytically, that is, without converting time delays to radial velocities by numerical differentiation. Using the time delays directly offers greater precision, and allows the parameters of much smaller orbits to be derived. The method is applied to KIC9651065, KIC10990452, and KIC8264492, and a set of the orbital parameters is obtained for each system. Radial velocity curves for these stars are deduced from the orbital elements thus obtained.

  3. A Photometric Study of the W UMa-type Eclipsing Binary System GSC 0445-1993

    Institute of Scientific and Technical Information of China (English)

    Yuan-Gui Yang; Sheng-Bang Qian; M. D. Koppelman

    2005-01-01

    Several new light minimum times for the eclipsing binary GSC 0445-1993 have been determined from the observations by Koppelman et al. and the orbital period of this ,system was revised. A photometric analysis was carried out using the 2003 version of the Wilson-Devinney code. The results reveal that GSC 0445-1993 is a W-type eclipsing binary with a mass ratio of q = 0.323(±0.002) and an over-contact degree of f = 22.8%(±4.2%). A small temperature difference between the components of AT = 135 K and an orbital inclination of i = 65.7°(±0.3°) were obtained. The asymmetry of its light curve (i.e., the O'Connell effect) for this binary star is explained by the presence of a dark spot on the more massive component.

  4. Measuring the spin of black holes in binary systems using gravitational waves

    CERN Document Server

    Vitale, Salvatore; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-01-01

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions, and the opportunity of measuring spins directly through GW observations. In this letter we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientation, and signal-to-noise ratio. We find that spin magnitudes and tilt angles can be estimated to accuracy of a few percent for neutron star--black hole systems and $\\sim$ 5-30% for black hole binaries. In contrast, the difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum, and that a sudden change of behavior occurs when a system is observed from ...

  5. Experimental investigation and thermodynamic assessment of the Mn–In binary system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.Y. [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Wang, J., E-mail: wangjiang158@163.com [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Zhu, C.F.; Cheng, G.; Tang, C.Y. [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Rao, G.H., E-mail: rgh@guet.edu.cn [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Zhou, H.Y. [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2015-05-10

    Highlights: • Three invariant reactions and liquidus were determined by thermal analysis. • The Mn–In binary system was assessed using CALPHAD method. • A set of self-consistent thermodynamic parameters was obtained. • The calculation results agree well with phase equilibria and thermodynamic data. - Abstract: In the present work, sixteen Mn–In alloys were investigated experimentally by means of thermal analysis and X-ray diffraction techniques. The temperatures of the invariant reactions and liquidus in the Mn–In binary system were determined. Based on the experimental results obtained in the present work and the critical review of the available experimental data from the published literature, the Mn–In binary system was assessed thermodynamically using the CALPHAD method. The solution phases including liquid, α-Mn, β-Mn, γ-Mn, δ-Mn and tetragonal-A6(In), are modeled by the substitutional solution model and their excess Gibbs energies are expressed with the Redlich–Kister polynomial. The intermetallic compound, InMn{sub 3}, is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters obtained finally to describe the Gibbs energies of various phases in the Mn–In binary system can be used to reproduce well the phase equilibria and thermodynamic data.

  6. A simple estimate of gravitational wave memory in binary black hole systems

    CERN Document Server

    Garfinkle, David

    2016-01-01

    A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. This estimate might be helpful in finding better numerical relativity memory waveforms.

  7. A massive binary black-hole system in OJ287 and a test of general relativity

    CERN Document Server

    Valtonen, M J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V P; Nissinen, M; Liakos, A; Dogru, S

    2008-01-01

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ287. This quasar shows quasi-periodic optical outbursts at 12 yr intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened twenty days later.

  8. High-pressure density measurements for the binary system ethanol plus heptane

    DEFF Research Database (Denmark)

    Watson, G.; Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.;

    2006-01-01

    The density of the asymmetrical binary system composed of ethanol and heptane has been measured (630 points) for nine different compositions including the pure compounds at five temperatures in the range (293.15 to 333.15) K and 14 isobars up to 65 MPa with a vibrating-tube densimeter, The experi...

  9. Density measurements under pressure for the binary system 1-propanol plus toluene

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Andersen, Simon Ivar

    2005-01-01

    The density of the binary system composed of 1-propanol and toluene has been measured under pressure using a vibrating-tube densimeter. The measurements have been performed for four different compositions as well as the pure compounds at four temperatures in the range of (303.15 to 333.15) K and ...

  10. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  11. Black holes in stellar-mass binary systems: expiating original spin?

    CERN Document Server

    King, Andrew

    2016-01-01

    We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs) there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions we expect misalignment of the spin and orbital planes by ~1 radian for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries (HMXBs). A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers on a thermal timescale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of > ~10 systems. Recent observational wo...

  12. High-pressure viscosity measurements for the ethanol plus toluene binary system

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.; Watson, G.

    2005-01-01

    The viscosity of the ethanol + toluene binary system has been measured with a falling-body viscometer for seven compositions as well as for the pure ethanol in the temperature range from 293.15 to 353.15 K and up to 100 MPa with an experimental uncertainty of 2%. At 0.1 MPa the viscosity has been...

  13. Automated Generation of Phase Diagrams for Binary Systems with Azeotropic Behavior

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht; Zabaloy, Marcelo S.

    2008-01-01

    In this work, we propose a computational strategy and methods for the automated calculation of complete loci of homogeneous azeotropy of binary mixtures and the related Pxy and Txy diagrams for models of the equation-of-state (EOS) type. The strategy consists of first finding the system's azeotro...

  14. Preparations for ExoMars: Learning Lessons from Curiosity

    Science.gov (United States)

    Edwards, Peter Henry; Hutchinson, Ian; Morgan, Sally; McHugh, Melissa; Malherbe, Cedric; Lerman, Hannah; INGLEY, Richard

    2016-10-01

    In 2020, the European Space Agency will launch its first Mars rover mission, ExoMars. The rover will use a drill to obtain samples from up to 2m below the Martian surface that will then be analysed using a variety of analytical instruments, including the Raman Laser Spectrometer (RLS), which will be the first Raman spectrometer to be used on a planetary mission.To prepare for ExoMars RLS operations, we report on a series of experiments that have been performed in order to investigate the response of a representative Raman instrument to a number of analogue samples (selected based on the types of material known to be important, following investigations performed by NASA's Mars Science Laboratory, MSL, on the Curiosity rover). Raman spectroscopy will provide molecular and mineralogical information about the samples obtained from the drill cores on ExoMars. MSL acquires similar information using the CheMin XRD instrument which analyses samples acquired from drill holes several centimetres deep. Like Raman spectroscopy, XRD also provides information on the mineralogical makeup of the analysed samples.The samples in our study were selected based on CheMin data obtained from drill sites at Yellowknife Bay, one of the first locations visited by Curiosity (supplemented with additional fine scale elemental information obtained with the ChemCam LIBS laser instrument). Once selected (or produced), the samples were characterised using standard laboratory XRD and XRF instruments (in order to compare with the data obtained by CheMin) and a standard, laboratory based LIBS system (in order to compare with the ChemCam data). This characterisation provides confirmation that the analogue samples are representative of the materials likely to be encountered on Mars by the ExoMars rover.A representative, miniaturised Raman spectrometer was used to analyse the samples, using acquisition strategies and operating modes similar to those expected for the ExoMars instrument. The type of

  15. The impact of viscosity on the morphology of gaseous flows in semidetached binary systems

    CERN Document Server

    Bisikalo, D V; Kuznetsov, O A; Chechetkin, V M

    2000-01-01

    Results of 3D gas dynamical simulation of mass transfer in binaries are presented for systems with various values of viscosity. Analysis of obtained solutions shows that in the systems with low value of viscosity the flow structure is qualitatively similar to one for systems with high viscosity. Presented calculations confirm that there is no shock interaction between the stream from L1 and the forming accretion disk (`hot spot') at any value of viscosity.

  16. Phase equilibria calculation of LaI3-MI (M=Na, K, Cs) binary systems

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; SHAO Guoquan; LI Shaobo; SUN Yimin; QIAO Zhiyu

    2009-01-01

    The Gibbs energies of liquid phases in the LaI3-MI (M=Na, K, Cs) systems were described by the modified quasi-chemical model. From the measured phase equilibrium data of these binary systems, a set of thermodynamic functions were optimized by using the CAL-PHAD technique. The enthalpy of mixing and the interaction parameter of the liquid phase were predicted from known data for the LaI3-MI systems.

  17. Three-dimensional simulations of phase separation in model binary alloy systems with elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowski, D.; Roland, C. [North Carolina State Univ., Raleigh, NC (United States); Sagui, C. [McGill Univ., Montreal, Quebec (Canada). Dept. of Physics; Somoza, A.S. [Univ. de Murcia (Spain). Dept. de Fisica

    1998-12-31

    The authors report on large-scale three-dimensional simulations of phase separation in model binary alloy systems in the presence of elastic fields. The elastic field has several important effects on the morphology of the system: the ordered domains are subject to shape transformations, and spatial ordering. In contrast to two-dimensional system, no significant slowing down in the growth is observed. There is also no evidence of any reverse coarsening of the domains.

  18. Thermodynamic analysis of the change of solid solubility in a binary system processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)], E-mail: ceaguilar@uach.cl; Martinez, V. [TEKMETALL, Metallurgical Solutions S.L., Po de Manuel Lardizabal No17, 20018 Donostia-Gipuzkoa (Spain); Navea, L.; Pavez, O.; Santander, M. [Departamento de Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

    2009-03-05

    Using a non-equilibrium process, it is possible to extend the solid solubility range in metallic systems. Therefore, the main objective of this work was to apply a thermodynamic model to predict the change in the solubility limit of systems with positive enthalpy mixing (Cu-Cr and Fe-Cu) processed by mechanical alloying. It was found that increasing the density of crystalline defects alters the solubility limit in these binary systems.

  19. Discriminating Formation Channels of Binary Black Hole Systems with Advanced LIGO

    Science.gov (United States)

    Zevin, Michael; Rodriguez, Carl; Pankow, Chris; Kalogera, Vicky; Rasio, Fred

    2017-01-01

    The field of gravitational-wave astronomy has been initiated by the recent observations of binary black hole mergers. These observations illuminate objects that are inaccessible with electromagnetic telescopes, and open inquiries as to how heavy binary black hole systems form and merge. Two possible formation channels proposed for such systems are isolated binary evolution in galactic fields and dynamical formation in star clusters. Currently, the coarse localization of these gravitational-wave events cannot indicate the environment in which the binary formed, and the mass distributions and merger rates from simulations of the aforementioned formation channels do not have an appreciable difference. However, the component spins of the black holes have the potential to unveil the formation history of the system. In this talk, I will discuss how to match measurements of the black hole component spin alignment with the projected spin distributions produced by population synthesis simulations. Using this framework we will link the estimated black hole spin to the formation channel of a merger, thus leading to a more detailed picture of their environments and origins.

  20. Glass transition in binary eutectic systems: best glass-forming composition.

    Science.gov (United States)

    Wang, Li-Min; Li, Zijing; Chen, Zeming; Zhao, Yue; Liu, Riping; Tian, Yongjun

    2010-09-23

    The glass transition and glass-forming ability in a binary eutectic system of methyl o-toluate (MOT) versus methyl p-toluate (MPT) are studied across the whole composition range. The phase diagram is constructed to explore the best glass-forming composition as the characteristic temperatures of the glass transition, crystallization, eutectic, and liquidus are determined. The best vitrification region is found to locate between the eutectic and the midpoint compositions of the eutectic line, indicating a remarkable deviation from the eutectic composition. The compilation of various simple binary eutectic systems covering inorganic, metallic, ionic, and molecular glass-forming liquids reproduces the rule. Kinetics and thermodynamics in binary systems are investigated to associate with the rule. The composition dependence of the structural relaxation time and the kinetic fragility are presented with dielectric measurements. It is found that whereas mixing of binary miscible liquids kinetically favors glass formation, thermodynamic contribution to the deviation of the best glass-forming composition from eutectics is implied.

  1. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    Science.gov (United States)

    Prsa, Andrej

    Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary

  2. Burrell-Optical-Kepler Survey (BOKS): Exo-planet Search In Cygnus

    Science.gov (United States)

    Proctor, Amanda; Howell, S.; Sherry, W.; Everett, M.; von Braun, K.; Feldmeier, J.; BOKS Consortium

    2007-12-01

    We present the results of >20; continuous days of time series photometric observations of a 1.0 sq. deg field in Cygnus centered on the NASA Kepler Mission field of view. Using the Case Western Burrell Schmidt telescope located at Kitt Peak National Observatory we gathered a dataset containing light curves of roughly 30000 stars between 14exo-planet occultations. We present a summary of our photometric project including many examples of eclipsing binaries and characterization the level and content of stellar variability in this portion of the Kepler field. We will also discuss our potential exo-planet candidates.

  3. A xenon gas purity monitor for EXO

    CERN Document Server

    Dobi, A; Herrin, S; Odian, A; Prescott, C Y; Rowson, P C; Ackerman, N; Aharmin, B; Auger, M; Barbeau, P S; Barry, K; Benitez-Medina, C; Breidenbach, M; Cook, S; Counts, I; Daniels, T; DeVoe, R; Dolinski, M J; Donato, K; Fairbank, W; Farine, J; Giroux, G; Gornea, R; Graham, K; Gratta, G; Green, M; Hagemann, C; Hall, K; Hallman, D; Hargrove, C; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Lacey, J; Leonard, D S; LePort, F; Mackay, D; MacLellan, R; Mong, B; Diez, M Montero; Muller, A R; Neilson, R; Niner, E; O'Sullivan, K; Piepke, A; Pocar, A; Pushkin, K; Rollin, E; Sinclair, D; Slutsky, S; Stekhanov, V; Twelker, K; Voskanian, N; Vuilleumier, J -L; Wichoski, U; Wodin, J; Yang, L; Yen, Y -R

    2011-01-01

    We discuss the design, operation, and calibration of two versions of a xenon gas purity monitor (GPM) developed for the EXO double beta decay program. The devices are sensitive to concentrations of oxygen well below 1 ppb at an ambient gas pressure of one atmosphere or more. The theory of operation of the GPM is discussed along with the interactions of oxygen and other impurities with the GPM's tungsten filament. Lab tests and experiences in commissioning the EXO-200 double beta decay experiment are described. These devices can also be used on other noble gases.

  4. Design of a Content Addressable Memory-based Parallel Processor implementing (−1+j-based Binary Number System

    Directory of Open Access Journals (Sweden)

    Tariq Jamil

    2014-11-01

    Full Text Available Contrary to the traditional base 2 binary number system, used in today’s computers, in which a complex number is represented by two separate binary entities, one for the real part and one for the imaginary part, Complex Binary Number System (CBNS, a binary number system with base (−1+j, is used to represent a given complex number in single binary string format. In this paper, CBNS is reviewed and arithmetic algorithms for this number system are presented. The design of a CBNS-based parallel processor utilizing content-addressable memory for implementation of associative dataflow concept has been described and software-related issues have also been explained.

  5. Applicability of four parameter formalisms in interpreting thermodynamic properties of binary systems

    Indian Academy of Sciences (India)

    S Acharya; J P Hajra

    2011-04-01

    The four parameter functions are generally considered to be adequate for representation of the thermodynamic properties for the strongly interacting binary systems. The present study involves a critical comparison in terms of applicability of the three well known four-parameter formalisms for the representation of the thermodynamic properties of binary systems. The study indicates that the derived values of the infinite dilution parameters based on the formalisms compare favourably with the computed data available in the literature. The standard deviations in terms of the partial and integral excess functions of all the models lie well within the experimental scatter of the computed data and coincide exactly with each other. The formalisms are useful in representation of the thermodynamic properties of most of the binary systems except for the Mg–Bi and Mg–In systems. In such systems, it appears that the additional compositional terms may be necessary for the formalisms for adequate description of behaviour of the systems. Since the derived values of the thermodynamic properties of all the formalisms match favourably over the entire compositional range for the systems as studied in the present research, any one of them may be used for adequate representation of the properties of the systems.

  6. Measurement of VLE data for binary lipids systems

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent;

    (monocaprylin) + fatty acid (palmitic acid)] and system 2 [monoacylglycerol (monocaprylin) + fatty ester (methyl stearate)]. System 1 is relevant in the purification steps of the deodorizer distillates while system 2 is relevant in the purification steps of biodiesel and bioglycerin. A non-ideal behavior...

  7. On the possibility of habitable Trojan planets in binary star systems

    CERN Document Server

    Schwarz, Richard; Bazsó, Ákos

    2016-01-01

    Approximately 60 percent of all stars in the solar neighbourhood (up to 80 percent in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations - where planets may stay in stable orbits - to increase the probability to find a planet like the Earth. Therefore we investigated five candidates and found that two systems (HD 41004 and HD 196885) which have small stable regions.

  8. Gravitational Microlensing Evidence for a Planet Orbiting a Binary Star System

    CERN Document Server

    Bennett, D P; Becker, A C; Butler, N; Dann, J H; Kaspi, S; Leibowitz, E M; Lipkin, Yu M; Maoz, D; Mendelson, H; Peterson, B A; Quinn, J; Shemmer, O; Thomson, S; Turner, S E

    1999-01-01

    The study of extra-solar planetary systems has emerged as a new discipline of observational astronomy in the past few years with the discovery of a number of extra-solar planets. The properties of most of these extra-solar planets were not anticipated by theoretical work on the formation of planetary systems. Here we report observations and light curve modeling of gravitational microlensing event MACHO-97-BLG-41, which indicates that the lens system consists of a planet orbiting a binary star system. According to this model, the mass ratio of the binary star system is 3.8:1 and the stars are most likely to be a late K dwarf and an M dwarf with a separation of about 1.8 AU. A planet of about 3 Jupiter masses orbits this system at a distance of about 7 AU. If our interpretation of this light curve is correct, it represents the first discovery of a planet orbiting a binary star system and the first detection of a Jovian planet via the gravitational microlensing technique. It suggests that giant planets may be co...

  9. Ray trajectories, binomial of a new type, and the binary system

    CERN Document Server

    Yurkin, Alexander V

    2013-01-01

    The paper describes a new algorithm of construction of the nonlinear arithmetic triangle on the basis of numerical simulation and the binary system. It demonstrates that the numbers that fill the nonlinear arithmetic triangle may be binomial coefficients of a new type. An analogy has been drawn with the binomial coefficients calculated with the use of the Pascal triangle. The paper provides a geometrical interpretation of binomials of different types in considering the branching systems of rays.

  10. Solid state amorphisation in binary systems prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G., E-mail: gemagonz@ivic.v [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Sagarzazu, A. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Bonyuet, D. [Instituto de Investigacion en Biomedicina y Ciencias Aplicadas, Universidad de Oriente, Cumana (Venezuela, Bolivarian Republic of); D' Angelo, L. [UNEXPO, Universidad Experimental Politecnica Luis Caballero Mejias, Dpto. Ing. Mecanica (Venezuela, Bolivarian Republic of); Villalba, R. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of)

    2009-08-26

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  11. Binary Laser Direct Writing System and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new laser direct writing system is introduced and the potential application of the diffractive optical elements (DOE's) fabricated by applying laser direct writing system are presented. The fabrication techniques by applying the laser direct writing are developed. Experimental results have been obtained by applying laser direct writing machine with line width of 5μm and 10μm.

  12. Reconfiguration of distribution system using a binary programming model

    Directory of Open Access Journals (Sweden)

    Md Mashud Hyder

    2016-03-01

    Full Text Available Distribution system reconfiguration aims to choose a switching combination of branches of the system that optimize certain performance criteria of power supply while maintaining some specified constraints. The ability to automatically reconfigure the network quickly and reliably is a key requirement of self-healing networks which is an important part of the future Smart Grid system. We present a unified mathematical framework, which allows us to consider different objectives of distribution system reconfiguration problems in a flexible manner, and investigate its performance. The resulting optimization problem is in quadratic form which can be solved efficiently by using a quadratic mixed integer programming (QMIP solver. The proposed method has been applied for reconfiguring different standard test distribution systems.

  13. Investigation of the Orbital Properties of Intermediate-Mass Eclipsing Binary Star Systems

    Science.gov (United States)

    Obryan, Sierra; Ryle, W. T.; Williams, S.

    2013-06-01

    This research examines the orbital properties of intermediate-mass eclipsing binary stars. A binary eclipsing star system consists of two stars which orbit their common center of mass and pass in front of one another from our point of view. Many intermediate-mass eclipsing binary systems have been identified from the All Sky Automated Survey. However, this survey fails to produce well resolved data on each individual eclipse. This study overcomes this issue with dedicated observations from small aperture telescopes. By measuring the brightness of the system during an eclipse, light curves for each system can be generated. This information can then be combined with spectroscopic data to determine important physical parameters of the system. In particular, a new data analysis software package will be used to find revised mass and radius estimates for these stars. Refined physical parameters are vital due to these stars being used as astronomical distance indicators and comparison standards. This study currently focuses on star systems BD +11 3569, TYC 5933-142-1, and V448 Mon.

  14. Tidal Interaction among Red Giants Close Binary Systems in APOGEE Database

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Majewski, Steven R.; Troup, Nicholas William; Weinberg, Nevin N.

    2017-01-01

    Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), the tidal evolution of binaries containing a red giant branch (RGB) star with a stellar or substellar companion was investigated. The tide raised by the companion in the RGB star leads to exchange of angular momentum between the orbit and the stellar spin, causing the orbit to contract. The tidal dissipation rate is computed using turbulent viscosity acting on the equilibrium tidal flow, where careful attention is paid to the effects of reduced viscosity for close-in companions. Evolutionary models for the RGB stars, from the zero-age main sequence to the present, were acquired from the MESA code. "Standard" turbulent viscosity gives rise to such a large orbital decay that many observed systems have decay times much shorter than the RGB evolution time. Several theories for "reduced" turbulent viscosity are investigated, and reduce the number of systems with uncomfortably short decay times.

  15. Critical evaluation and thermodynamic optimization of the U-Pb and U-Sb binary systems

    Science.gov (United States)

    Wang, Jian; Jin, Liling; Chen, Chuchu; Rao, Weifeng; Wang, Cuiping; Liu, Xingjun

    2016-11-01

    A complete literature review, critical evaluation and thermodynamic optimization of the phase diagrams and thermodynamic properties of U-Pb and U-Sb binary systems are presented. The CALculation of PHAse Diagrams (CALPHAD) method was used for the thermodynamic optimization, the results of which can reproduce all available reliable experimental phase equilibria and thermodynamic data. The modified quasi-chemical model in the pair approximation (MQMPA) was used for modeling the liquid solution. The Gibbs energies of all terminal solid solutions and intermetallic compounds were described by the compound energy formalism (CEF) model. All reliable experimental data of the U-Pb and U-Sb systems have been reproduced. A self-consistent thermodynamic database has been constructed for these binary systems; this database can be used in liquid-metal fuel reactor (LMFR) research.

  16. Gravitational radiation by point particle eccentric binary systems in the linearised characteristic formulation of general relativity

    CERN Document Server

    M., C E Cedeño

    2016-01-01

    We study a binary system composed of point particles of unequal masses in eccentric orbits in the linear regime of the characteristic formulation of general relativity, generalising a previous study found in the literature in which a system of equal masses in circular orbits is considered. We also show that the boundary conditions on the time-like world tubes generated by the orbits of the particles can be extended beyond circular orbits. Concerning the power lost by the emission of gravitational waves, it is directly obtained from the Bondi's News function. It is worth stressing that our results are completely consistent, because we obtain the same result for the power derived by Peters and Mathews, in a different approach, in their seminal paper of 1963. In addition, the present study constitutes a powerful tool to construct extraction schemes in the characteristic formalism to obtain the gravitational radiation produced by binary systems during the inspiralling phase.

  17. Eclipsing time variations in close binary systems: Planetary hypothesis vs. Applegate mechanism

    CERN Document Server

    Völschow, M; Perdelwitz, V; Banerjee, R

    2015-01-01

    The observed eclipsing time variations in post-common-envelope binaries (PCEBs) can be interpreted as potential evidence for massive Jupiter-like planets, or as a result of magnetic activity, leading to quasi-periodic changes in the quadrupole moment of the secondary star. The latter is commonly referred to as the Applegate mechanism. Following Brinkworth et al. (2006), we employ here an improved version of Applegate's model including the angular momentum exchange between a finite shell and the core of the star. The framework is employed to derive the general conditions under which the Applegate mechanism can work, and is subsequently applied to a sample of 16 close binary systems with potential planets, including 11 PCEBs. Further, we present a detailed derivation and study of analytical models which allow for an straightforward extension to other systems. Using our full numerical framework, we show that the Applegate mechanism can clearly explain the observed eclipsing time variations in 4 of the systems, w...

  18. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.

  19. The Formation and Evolution of Wind-Capture Disks In Binary Systems

    CERN Document Server

    Huarte-Espinosa, Martin; Nordhaus, Jason; Frank, Adam; Blackman, Eric G

    2012-01-01

    We study the formation, evolution and physical properties of accretion disks formed via wind capture in binary systems. Using the AMR code AstroBEAR, we have carried out high resolution 3D simulations that follow a stellar mass secondary in the co-rotating frame as it orbits a wind producing AGB primary. We first derive a resolution criteria, based on considerations of Bondi-Hoyle flows, that must be met in order to properly resolve the formation of accretion disks around the secondary. We then compare simulations of binaries with three different orbital radii (10, 15, 20 AU). Disks are formed in all three cases, however the size of the disk and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disk becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with "fluttering" around the bow shock observed. The disks are generally well aligned with the orbital plane after a few binary orbit...

  20. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.

    2014-09-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.

  1. Close encounters of the third-body kind. [intruding bodies in binary star systems

    Science.gov (United States)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1994-01-01

    We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi

  2. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  3. The ExoMars DREAMS scientific data archive

    Science.gov (United States)

    Schipani, P.; Marty, L.; Mannetta, M.; Esposito, F.; Molfese, C.; Aboudan, A.; Apestigue-Palacio, V.; Arruego-Rodríguez, I.; Bettanini, C.; Colombatti, G.; Debei, S.; Genzer, M.; Harri, A.-M.; Marchetti, E.; Montmessin, F.; Mugnuolo, R.; Pirrotta, S.; Wilson, C.

    2016-08-01

    DREAMS (Dust Characterisation, Risk Assessment, and Environment Analyser on the Martian Surface) is a payload accommodated on the Schiaparelli Entry and Descent Module (EDM) of ExoMars 2016, the ESA - Roscosmos mission to Mars successfully launched on 14 March 2016. The DREAMS data will be archived and distributed to the scientific community through the ESA's Planetary Science Archive (PSA). All data shall be compliant with NASA's Planetary Data System (PDS4) standards for formatting and labelling files. This paper summarizes the format and content of the DREAMS data products and associated metadata. The pipeline to convert the raw telemetries to the final products for the archive is sketched as well.

  4. Analysis of the motion of an extrasolar planet in a binary system

    CERN Document Server

    Plávalová, E

    2012-01-01

    We investigated the motion of planets revolving in binary systems in the frame of the particular case of the three body problem. We analysed of the motion an extrasolar plant (EP) revolving in a binary system by following conditions; a) a planet in a binary system revolves around one of the components (parent star), b) the distance between the stars components is greater than between the parent star and the orbiting planet (ratio of these two distances is a small parameter), c) the mass of the planet is smaller than the mass of the star, but is not negligible. The Hamiltonian of the system without short periodic terms was used. Expanded in the terms of the Legendre polynomial and truncated after the second order term depending on the one angular variable. In this case the solution of the system was obtained and the qualitative analysis of motion was done. We have applied this theory to real EPs. Analysis of the possible regions of motion are presented. It is shown that the case of the stable and unstable moti...

  5. The synchronous rotations of Eris/Dysnomia and Orcus/Vanth binary systems

    Science.gov (United States)

    Rabinowitz, David L.; Owainati, Yasi

    2014-11-01

    We have measured the rotation periods of the Eris/Dysnomia and Orcus/Vanth binary systems using long-term observations obtained with the SMARTS 1.3m telescope at Cerro Tololo, combined with incidental observations obtained by the La Silla - QUEST survey on the ESO 1.0-m Schmidt at La Silla, and using historical observations of Eris published by others. We find that both binary systems are synchronous, with the dominant periodicity in their light curves matching their mutual orbit periods (9.54 and 15.774 days, respectively). For Orcus/Vanth, the reflected light from both bodies contributes to the signal. The measured periodicity could be due to the rotation of Orcus or Vanth separately, but it is most likely the system is doubly synchronous. For Eris/Dysnomia, only Eris is bright enough to contribute significantly to the observations. The conclusion is therefore unambiguous that Eris is synchronously rotating with the orbit of Dysnomia. This is surprising given that Eris is 500 times brighter than Dysnomia, and likely to be 100 to 10000 times more massive (assuming an albedo > 5% for Dysnomia). If Dysnomia has migrated outward from Eris owing to long-term tidal interactions, the time for Eris to slow from an initially fast rotation (period < 1 day) to a synchronous one is longer than the age of the solar system. We discuss the constraints these observations place on the relative albedos, masses, and internal composition of the two binary systems.

  6. The Quasi-Roche lobe overflow state in the evolution of Close Binary Systems containing a radio pulsar

    CERN Document Server

    Benvenuto, O G; Horvath, J E

    2014-01-01

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate mass donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These non-standard ingredients deeply modify the mass transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long standing mass transfer episodes, models including these effect suffer a number cycles of mass transfer and detachment. During mass transfer the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when detached they behave as a binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have a radius slightly smaller than its Roche lobe. Remarkably, these conditions are attained for orbital period and donor mass values in the range corresponding to a family of binary radio pulsars known as "redbacks". Thus, redback companions ...

  7. The ExoMars Raman Laser Spectrometer: Performance and Optimisation

    Science.gov (United States)

    Hutchinson, Ian; EDWARDS, Howell G. M.; Ingley, Richard; Waltham, Nick; ExoMars RLS Team

    2016-10-01

    The ExoMars rover, which is due for launch in 2020, will incorporate an analytical laboratory for interrogating the composition of drill cores retrieved from the near sub-surface of the planet. The laboratory includes a Raman spectrometer with a green laser (532 nm) that will be used to investigate the molecular and structural properties of the material within the samples. The ExoMars, Raman Laser Spectrometer (RLS) is expected to be the first instrument of its kind to be used on another planet.In preparation for the deployment and operation of the RLS instrument, a broad range of laboratory and fieldwork activities are currently being performed in order to ensure optimum scientific return from the mission. These studies include: science operations and data exploitation, terrestrial analogue studies (and laboratory simulations) and lessons learned from previous planetary mission experiences.Here we report on the status of the RLS science team activities related to studies of terrestrial analogues. This work includes the recovery and characterisation of appropriate samples from various field-site locations (e.g. clay based samples and materials recovered from dry deserts) that reflect the nature of the materials that are expected to be present in the landing site locations currently anticipated for the ExoMars rover mission. Other work includes the detailed analysis of such analogue samples using flight-like prototype instruments, both in-situ and in the laboratory.A summary of the results obtained from all of these studies is presented along with an overview of the anticipated performance capabilities of the instrument. Particular emphasis is placed on the design and performance of the camera system (including both the detector and data processing sub-systems).

  8. Interspecies stress in momentum equations for dense binary particulate systems.

    Science.gov (United States)

    Zhang, D Z; Ma, X; Rauenzahn, R M

    2006-07-28

    For two-species particulate systems, ensemble averaged continuity and momentum equations for each species are derived based on the Liouville equation of the system. The ensemble average used is species specific. It is found that the interaction between species results in not only the interspecies force but also a stress in the momentum equations. In the limit that particles of one of the species can be considered as a continuum, the existence of the interspecies stress enables us to reduce the derived equations to the familiar form for dispersed two-phase flows.

  9. Eccentricity evolution in hierarchical triple systems with eccentric outer binaries

    CERN Document Server

    Georgakarakos, Nikolaos

    2014-01-01

    We develop a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular, while the outer one is eccentric. We consider coplanar systems with well separated components and comparable masses. The derivation of short period terms is based on an expansion of the rate of change of the Runge-Lenz vector. Then, the short period terms are combined with secular terms, obtained by means of canonical perturbation theory. The validity of the theoretical equations is tested by numerical integrations of the full equations of motion.

  10. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Daniela; Tinney, C. G. [School of Physics, University of New South Wales, NSW 2052 (Australia); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); Sweet, Sarah [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Gelino, Christopher R.; Kirkpatrick, J. Davy, E-mail: daniela.opitz@student.unsw.edu.au [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-03-01

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.

  11. Trajectory exploration within asynchronous binary asteroid systems using refined Lagrangian coherent structures

    Science.gov (United States)

    Shang, Haibin; Wu, Xiaoyu; Cui, Pingyuan

    2017-02-01

    Ground observations have found that asynchronous systems constitute most of the population of the near-Earth binary asteroids. This paper concerns the trajectory of a particle in the asynchronous system which is systematically described using periodic ellipsoidal and spherical body models. Due to the non-autonomous characteristics of the asynchronous system, Lagrangian coherent structures (LCS) are employed to identify the various dynamical behaviors. To enhance the accuracy of LCS, a robust LCS finding algorithm is developed incorporating hierarchical grid refinement, one-dimensional search and variational theory verification. In this way, the intricate dynamical transport boundaries are detected efficiently. These boundaries indicate that a total of 15 types of trajectories exist near asynchronous binary asteroids. According to their Kepler energy variations, these trajectories can be grouped into four basic categories, i.e., transitory, escape, impact and flyby trajectories. Furthermore, the influence of the ellipsoid's spin period on the dynamical behavior is discussed in the context of the change of dynamical regions. We found that the transitory and impact motions occur easily in the synchronous-like binary systems, in which the rotation period of the ellipsoid is nearly equal to that of the mutual orbit. Meanwhile, the results confirm a positive correlation between the spinning rate of the ellipsoid and the probability of the escape and flyby trajectories. The LCS also reveal a marked increase in trajectory diversity after a larger initial energy is selected.

  12. Error correcting codes for binary unitary channels on multipartite quantum systems

    CERN Document Server

    Choi, M D; Kribs, D W; Zyczkowski, K; Choi, Man-Duen; Holbrook, John A.; Kribs, David W.; Zyczkowski, Karol

    2006-01-01

    We conduct an analysis of ideal error correcting codes for randomized unitary channels determined by two unitary error operators -- what we call ``binary unitary channels'' -- on multipartite quantum systems. In a wide variety of cases we give a complete description of the code structure for such channels. Specifically, we find a practical geometric technique to determine the existence of codes of arbitrary dimension, and then derive an explicit construction of codes of a given dimension when they exist. For instance, given any binary unitary noise model on an n-qubit system, we design codes that support n-2 qubits. We accomplish this by verifying a conjecture for higher rank numerical ranges of normal operators in many cases.

  13. Determination and Prediction of Binary Solubility for Aromatic-Tetraethylene Glycol (with Water) Systems

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The binary solubilities of tetraethylene glycol (TTEG) with benzene, toluene or p-xylene, were measured by the turbidity point method. In TTEG the content of water ranged from 0 to 5% and the test temperature ranged from 20℃ to 120℃. Increasing the temperature resulted in greater solubility of the aromatics in TTEG, while increasing the content of water caused the aromatic solubility to decrease. The benzene solubillity in TTEG was the greatest followed by toluene and xylene at the same water content and temperature. The mutual solubility was predicted by correlating the paramaters of a new group for the UNIFAC model for the aromatics extraction system. The modified UNIFAC group contribution model was used to predict the binary solubility of TTEG and aromatics. The average deviation between the experimental result and prediction is 4.06%. Therefore, the UNIFAC model can be used to describe the solubility phenomena for TTEG-aromatics systems.

  14. Markov-Binary Visibility Graph: a new method for analyzing Complex Systems

    CERN Document Server

    Sadra, Yaser; Ahadpour, Sodief

    2011-01-01

    In this work, we introduce a new and simple transformation from time series to complex networks based on markov-binary visibility graph(MBVG). Due to the simple structure of this transformation in comparison with other transformations be obtained more precise results. Moreover, several topological aspects of the constructed graph, such as degree distribution, clustering coefficient, and mean visibility length have been thoroughly investigated. Numerical simulations confirm the reliability of markov-binary visibility graph for time series analysis. This algorithm have the capability of distinguishing between uncorrelated and correlated systems. Finaly, we illustrate this algorithm analyzing the human heartbeat dynamics. The results indicate that the human heartbeat (RR-interval) time series of normally, Congestive Heart Failure (CHF) and Atrial Fibrillation (AF) subjects are uncorrelated, chaotic and correlated stochastic systems, respectively.

  15. The parameters of binary black hole system in PKS 1510-089

    Institute of Scientific and Technical Information of China (English)

    Li Juan; Fan Jun-Hui; Yuan Yu-Hai

    2007-01-01

    Observations of PKS 1510-089 indicate the existence of a deep flux minimum with a timescale of ~35 min and an interval of about 336±14 d. A binary black hole system is proposed to be at the nucleus of this object. The secondary black hole orbits around the primary black hole.The minimum is caused by the periodic eclipse of the primary black hole by the secondary black hole.Based on the observations of PKS 1510-089,we estimate the parameters of the binary black hole system.The masses for the primary and secondary black holes are 1.37×109M⊙(M⊙ is the solar mass) and 1.37×107M⊙,and the major axis for this pair being about 0.1 parsec(pc).

  16. DSC study of phase transitions of cephalin pseudo-binary systems in excess water

    Institute of Scientific and Technical Information of China (English)

    王邦宁; 谈夫

    1999-01-01

    The gel-liquid crystal phase transitions of the pseudo-binary systems of cephalins DMPE and DHPE in excess water were studied by differential scanning calorimetry. The phase diagram of the pseudo-binary systems has been given. The experiments showed that the partial phase separation in gel phase might occur at least at the mole fractions of DHPE below 0.1. The analysis by the model of ideal solution showed that both the cephalins were non-ideally miscible both in the gel phases and in the liquid crystal phases. The analysis by the model of regular solution showed that all the non-ideality parameters in the gel phases were larger than those in the liquid crystal phases at the same temperature. All the non-ideality parameters were not constant, but rather dependent on temperature.

  17. Thermal Diffusion in binary Surfactant Systems and Microemulsions

    OpenAIRE

    Arlt, B.

    2012-01-01

    In dieser Arbeit haben wir das Thermodiffusionsverhalten von mizellaren Systemen und Mikroemulsionen untersucht. Beide Systeme werden als Modellsysteme genutzt um zwei Fragestellungen zu beantworten. Die erste Fragestellung bezieht sich auf den Einfluss der Mizellenbildung nahe der kritischen Mizellenkonzentration (cmc) auf das Thermodiffusionsverhalten. Dazu untersuchen wir das Thermodiffusionsverhalten des nichtionischen Tensides n-Octyl beta-D-Glucopyranoside (C8G1) in Wasser, welches e...

  18. Prediction of vapor-liquid equilibriafor hydrocarbon binary systems by regular solution model

    OpenAIRE

    下山, 裕介; 米澤, 節子; 小渕, 茂寿; 福地, 賢治; 荒井, 康彦; Shimoyama, Yusuke; Yonezawa, Setsuko; Kobuchi, Shigetoshi; Fukuchi, Kenii; Arai, Yasuhiko

    2007-01-01

    Vapor-liquid equilibria (VLE) of hydrocarbon binary systems : hexane + benzene (25 °C), toluene + octane (60°C) and cyclohexane + toluene (50°C) were predicted by using a regular solution model. In the present model, the mixing entropy term (Flory-Huggins equation) is included and an interaction parameter between unlike molecules is introduced. Solubility parameters and molar volumes at each temperature required in calculation are estimated by previously proposed methods. VLE of hexane + benz...

  19. Comments on gravitational radiation damping and energy loss in binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, J.; Rosenblum, A.; Goldberg, J.N.; Havas, P.

    1976-09-01

    It is argued that a formula for the energy loss due to gravitaional radiation of bound systems such as binaries has not yet been derived either exactly or by means of a consistent approximation method within general relativity, a view which contradicts some widely accepted claims in the literature. The main aproaches used to obtain such a formula are critically reviewed, and it is pointed out that the derivations presented so far either contain inconsistencies or are incomplete. (AIP)

  20. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  1. Structure and Spectrum of Binary Classic Systems Confined in a Parabolic Trap

    Institute of Scientific and Technical Information of China (English)

    YANG Wen; ZENG Zhi

    2009-01-01

    @@ The static and dynamic properties of the two-dimensional classic system of two-species interacting charged par-ticles in a parabolic trap are studied. The ground state energy and configuration for different kinds of binary systems are obtained by Monte Carlo simulation and Newton optimization. The spectrum and normal modes vectors can be gained by diagonalizing the dynamical matrix of the system. It is found that the total particle number, particle number and mass-to-charge ratio of each species are decisive factors for the system structure and spectrum. The three intrinsic normal modes of single species Coulomb clusters are inherent, concluded from our numerical simulations and analytical results.

  2. Thermodynamic assessment of the Pd–Y binary system

    Directory of Open Access Journals (Sweden)

    Kardellass S.

    2013-09-01

    Full Text Available The Pd–Y system was critically assessed using the CALPHAD technique. The solution phases (liquid, b.c.c., f.c.c. and h.c.p. were modeled using the Redlich–Kister equation. The intermetallic compounds Pd3Y and PdY, which have homogeneity ranges, were treated as the formula (Pd,Y0.75(Pd,Y0.25 and (Pd,Y0.5(Pd,Y0.5 by a two-sublattice model with a mutual substitution of Pd and Y on both sublattices. The optimization was carried out in two steps. In the first treatment, Pd3Y and PdY are assumed to be stoichiometric compounds; in the second treatment they are treated by a sublattice model. The parameters obtained from the first treatment were used as starting values for the second treatment. The calculated phase diagram and the thermodynamic properties of the system are in satisfactory agreement with the experimental data.

  3. Windtalking Computers: Frequency Normalization, Binary Coding Systems and Encryption

    CERN Document Server

    Zirkind, Givon

    2009-01-01

    The goal of this paper is to discuss the application of known techniques, knowledge and technology in a novel way, to encrypt computer and non-computer data. To-date most computers use base 2 and most encryption systems use ciphering and/or an encryption algorithm, to convert data into a secret message. The method of having the computer "speak another secret language" as used in human military secret communications has never been imitated. The author presents the theory and several possible implementations of a method for computers for secret communications analogous to human beings using a secret language or; speaking multiple languages. The kind of encryption scheme proposed significantly increases the complexity of and the effort needed for, decryption. As every methodology has its drawbacks, so too, the data of the proposed system has its drawbacks. It is not as compressed as base 2 would be. However, this is manageable and acceptable, if the goal is very strong encryption: At least two methods and their ...

  4. Observations of TeV binary systems with the H.E.S.S. telescope

    CERN Document Server

    Bordas, Pol; de Naurois, Mathieu; Ohm, Stefan; Wilhelmi, Emma de Oña; Sushch, Iurii; Volpe, Francesca; Zabalza, Víctor

    2013-01-01

    Recent observations of binary systems obtained with the H.E.S.S. telescopes are providing crucial information on the physics of relativistic outflows and the engines powering them. We report here on new H.E.S.S. results on HESS J0632+057, PSR B1259-63/LS 2883, Eta Carinae and the recently discovered source HESS J1018-589. Despite the high-quality data obtained in the last years through both ground and space-based gamma-ray detectors, many questions on the mechanisms that permit binary systems to emit at gamma-rays remain open. In particular, it is becoming apparent that emission at high and very-high energies is uncorrelated in some gamma-ray binary systems, with bright GeV flares not observed at TeV energies (e.g. PSR B1259-63), and sources periodically detected at VHEs which are lacking its HE counterpart (e.g. HESS J0632+057). Our results mainly confirm the predictions derived previously for the studied sources, but unexpected results are also found in a few cases, which are discussed in the context of con...

  5. New Pleiades Eclipsing Binaries and a Hyades Transiting System Identified by K2

    CERN Document Server

    David, Trevor J; Hillenbrand, Lynne A; Stassun, Keivan G; Stauffer, John; Rebull, Luisa M; Cody, Ann Marie; Isaacson, Howard; Howard, Andrew W; Aigrain, Suzanne

    2016-01-01

    We present the discovery in Kepler's $K2$ mission observations and our follow-up radial velocity observations from Keck/HIRES for four eclipsing binary (EB) star systems in the young benchmark Pleiades cluster. Based on our modeling results, we announce two new low mass ($M_{tot} < 0.6 M_\\odot$) EBs among Pleiades members (HCG 76 and MHO 9) and we report on two previously known Pleiades binaries that are also found to be EB systems (HII 2407 and HD 23642). We measured the masses of the binary HCG 76 to $\\lesssim$2.5% precision, and the radii to $\\lesssim$4.5% precision, which together with the precise effective temperatures yield an independent Pleiades distance of 132$\\pm$5 pc. We discuss another EB towards the Pleiades that is a possible but unlikely Pleiades cluster member (AK II 465). The two new confirmed Pleiades systems extend the mass range of Pleiades EB components to 0.2-2 $M_\\odot$. Our initial measurements of the fundamental stellar parameters for the Pleiades EBs are discussed in the context o...

  6. High-energy signatures of binary systems of supermassive black holes

    CERN Document Server

    Romero, Gustavo E; Pérez, Daniela

    2016-01-01

    Context. Binary systems of supermassive black holes are expected to be strong sources of long gravitational waves prior to merging. These systems are good candidates to be observed with forthcoming space-borne detectors. Only a few of these systems, however, have been firmly identified to date. Aims. We aim at providing a criterion for the identification of some supermassive black hole binaries based on the characteristics of the high-energy emission of a putative relativistic jet launched from the most massive of the two black holes. Methods. We study supermassive black hole binaries where the less massive black hole has carved an annular gap in the circumbinary disk, but nevertheless there is a steady mass flow across its orbit. Such a perturbed disk is hotter and more luminous than a standard thin disk in some regions. Assuming that the jet contains relativistic electrons, we calculate its broadband spectral energy distribution focusing on the inverse Compton up-scattering of the disk photons. We also comp...

  7. Stability and Fourier-series periodic solution in the binary stellar systems

    CERN Document Server

    Mia, Rajib

    2016-01-01

    In this paper, we use the restricted three body problem in the binary stellar systems, taking photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. We have computed semi-analytical expressions for the locations of the collinear points with the help of the perturbation technique. The stability of the triangular points is studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16. To investigate the stability of the triangular points, we have obtained the expressions for critical mass which depends on the radiation of both primaries. Fourier-series method is applied to obtain periodic orbits of the infinitesimal mass around triangular points in binary stellar systems. We have obtained Fourier expansions of the periodic orbits around triangular points upto third order terms. A comparison is made between periodic orbits obtained by Fourier-series method and with Runge-Kutta integrat...

  8. Colliding Winds in Low-Mass Binary Star Systems: wind interactions and implications for habitable planets

    CERN Document Server

    Johnstone, C P; Pilat-Lohinger, E; Bisikalo, D; Güdel, M; Eggl, S

    2015-01-01

    Context. In binary star systems, the winds from the two components impact each other, leading to strong shocks and regions of enhanced density and temperature. Potentially habitable circumbinary planets must continually be exposed to these interactions regions. Aims. We study, for the first time, the interactions between winds from low-mass stars in a binary system, to show the wind conditions seen by potentially habitable circumbinary planets. Methods. We use the advanced 3D numerical hydrodynamic code Nurgush to model the wind interactions of two identical winds from two solar mass stars with circular orbits and a binary separation of 0.5 AU. As input into this model, we use a 1D hydrodynamic simulation of the solar wind, run using the Versatile Advection Code. We derive the locations of stable and habitable orbits in this system to explore what wind conditions potentially habitable planets will be exposed to during their orbits. Results. Our wind interaction simulations result in the formation of two stron...

  9. A 3D dynamical model of the colliding winds in binary systems

    CERN Document Server

    Parkin, E R

    2008-01-01

    We present a 3D dynamical model of the orbital induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high resolution images of the so-called ``pinwheel nebulae''. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and Gamma-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar m...

  10. Accretion, Ablation and Propeller Evolution in Close Millisecond Pulsar Binary Systems

    CERN Document Server

    Kiel, P D

    2013-01-01

    A model for the formation and evolution of binary millisecond radio pulsars in systems with low mass companions (< 0.1 Msun) is investigated using a binary population synthesis technique. Taking into account the non conservative evolution of the system due to mass loss from an accretion disk as a result of propeller action and from the companion via ablation by the pulsar, the transition from the accretion powered to rotation powered phase is investigated. It is shown that the operation of the propeller and ablation mechanisms can be responsible for the formation and evolution of black widow millisecond pulsar systems from the low mass X-ray binary phase at an orbital period of ~0.1 day. For a range of population synthesis input parameters, the results reveal that a population of black widow millisecond pulsars characterized by orbital periods as long as ~0.4 days and companion masses as low as ~0.005 Msun can be produced. The orbital periods and minimum companion mass of this radio millisecond pulsar popu...

  11. Eclipse timing variations to detect possible Trojan planets in binary systems

    CERN Document Server

    Schwarz, R; Funk, B; Zechner, R

    2016-01-01

    This paper is devoted to study the circumstances favourable to detect Trojan planets in close binary-star-systems by the help of eclipse timing variations (ETVs). To determine the probability of the detection of such variations with ground based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions like Plato, Tess and Cheops), we investigated the dynamics of binary star systems with a planet in tadpole motion. We did numerical simulations by using the full three-body problem as dynamical model. The stability and the ETVs are investigated by computing stability/ETV maps for different masses of the secondary star and the Trojan planet. In addition we changed the eccentricity of the possible Trojan planet. By the help of the libration amplitude $\\sigma$ we could show whether or not all stable objects are moving in tadpole orbits. We can conclude that many amplitudes of ETVs are large enough to detect Earth-like Trojan planets in binary star systems. As an application, ...

  12. A Showcase of Unique Binary Systems Discovered by the Kepler Satellite

    Science.gov (United States)

    Kirk, Brian; Prsa, A.; Conroy, K.; Bloemen, S.; Shporer, A.; Barclay, T.; Hambleton, K.; Devor, J.; Kinemuchi, K.; Fulton, B.

    2012-05-01

    The importance of eclipsing binaries in modern astrophysics ranges from deriving fundamental stellar parameters across the Hertzsprung-Russell Diagram and calibrating the mass-radius-temperature relationships to determining the distances in the Galaxy and beyond. The unprecedented quality and uninterrupted sampling of Kepler data with sub-millimag precision are a leap forward in observational capabilities and enable us to perform modeling and analysis of these systems to an unparalleled precision. Currently the Kepler mission is providing a nearly seamless stream of photometric data of approximately 2500 eclipsing binary stars in its 105-square degree field of view. The Kepler Eclipsing Binary (EB) catalog is continuously being augmented as more data are collected and EBs are being detected at longer periods. The quarterly data segments for the entire mission are “stitched” together and detrended by fitting a variable order Legendre series to the light curve baseline. Each system is then classified into a morphology type by the method of Locally Linear Embedding. By fitting a polynomial chain to the data an analytic representation is obtained and passed through a trained artificial neural network to yield the remaining parameters. The catalog now contains more than six times the number of EB systems originally observed in the Kepler FOV. This high-precision instrument holds great promise for the discovery of many objects and we present here a showcase of unique objects from the Q0 through Q9 data release.

  13. Detection of a white dwarf in a visual binary system

    Science.gov (United States)

    Boehm-Vitense, Erika

    1992-01-01

    The F6 giant HD 160365 was detected to have a white dwarf companion about 8 arcsec south of the star. The UV energy distribution observed with IUE shows that the white dwarf has an effective temperature of 23,000 +/- 2000 K. If log g = 8 the Lya profile indicates an effective temperature around 24,500 K. Using the theoretical models by Wesemael et al. (1980) one finds a visual magnitude of m(V) about 16.5. For T(eff) = 24,500 K one expects for a white dwarf a luminosity of log L/L(solar) about 1.3 and M(V) about 10.67. This gives a distance modulus for the system of m(V) - M(V) = 5.83 and an absolute magnitude M(V)= 0.3 for the giant.

  14. EXO-ZODI MODELING FOR THE LARGE BINOCULAR TELESCOPE INTERFEROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Grant M.; Wyatt, Mark C.; Panić, Olja; Shannon, Andrew [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Bailey, Vanessa; Defrère, Denis; Hinz, Philip M.; Rieke, George H.; Skemer, Andrew J.; Su, Katherine Y. L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bryden, Geoffrey; Mennesson, Bertrand; Morales, Farisa; Serabyn, Eugene [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Danchi, William C.; Roberge, Aki; Stapelfeldt, Karl R. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics, Code 667, Greenbelt, MD 20771 (United States); Haniff, Chris [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Lebreton, Jérémy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Millan-Gabet, Rafael [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); and others

    2015-02-01

    Habitable zone dust levels are a key unknown that must be understood to ensure the success of future space missions to image Earth analogs around nearby stars. Current detection limits are several orders of magnitude above the level of the solar system's zodiacal cloud, so characterization of the brightness distribution of exo-zodi down to much fainter levels is needed. To this end, the Large Binocular Telescope Interferometer (LBTI) will detect thermal emission from habitable zone exo-zodi a few times brighter than solar system levels. Here we present a modeling framework for interpreting LBTI observations, which yields dust levels from detections and upper limits that are then converted into predictions and upper limits for the scattered light surface brightness. We apply this model to the HOSTS survey sample of nearby stars; assuming a null depth uncertainty of 10{sup –4} the LBTI will be sensitive to dust a few times above the solar system level around Sun-like stars, and to even lower dust levels for more massive stars.

  15. AL Cassiopeiae: An F-type Contact Binary System with a Cool Stellar Companion

    Science.gov (United States)

    Qian, S.-B.; Zhou, X.; Zola, S.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Leung, K.-C.

    2014-11-01

    According to the general catalog of variable stars, AL Cas was classified as an EW-type eclipsing binary with a spectral type of B and an orbital period of P = 0.5005555 days. The first photometric light curves of the close binary in the B, V, R, and I bands are presented. New low-resolution spectra indicate that its spectral type is about F7 rather than B-type. A photometric analysis with the Wilson-Devinney method suggests that it is a contact binary (f = 39.3%) with a mass ratio of 0.61. Using 17 newly determined eclipse times together with those collected from the literature, we found that the observed-calculated (O - C) curve of AL Cas shows a cyclic change with a period of 86.6 yr and an amplitude of 0.0181 days. The periodic variation was analyzed for the light-travel time effect via the presence of a third body. The mass of the third body was determined to be M 3sin i' = 0.29(± 0.05) M ⊙ when a total mass of 2.14 M ⊙ for AL Cas is adopted. It is expected that the cool companion star may have played an important role in the origin and evolution of the system by removing angular momentum from the central binary system during early dynamical interaction and/or late dynamical evolution. This causes the original detached system to have a low angular momentum and a short initial orbital period. Then it can evolve into the present contact configuration via a case A mass transfer.

  16. Constructing optimized binary masks for reservoir computing with delay systems

    Science.gov (United States)

    Appeltant, Lennert; van der Sande, Guy; Danckaert, Jan; Fischer, Ingo

    2014-01-01

    Reservoir computing is a novel bio-inspired computing method, capable of solving complex tasks in a computationally efficient way. It has recently been successfully implemented using delayed feedback systems, allowing to reduce the hardware complexity of brain-inspired computers drastically. In this approach, the pre-processing procedure relies on the definition of a temporal mask which serves as a scaled time-mutiplexing of the input. Originally, random masks had been chosen, motivated by the random connectivity in reservoirs. This random generation can sometimes fail. Moreover, for hardware implementations random generation is not ideal due to its complexity and the requirement for trial and error. We outline a procedure to reliably construct an optimal mask pattern in terms of multipurpose performance, derived from the concept of maximum length sequences. Not only does this ensure the creation of the shortest possible mask that leads to maximum variability in the reservoir states for the given reservoir, it also allows for an interpretation of the statistical significance of the provided training samples for the task at hand.

  17. The ExoMars science data archive: status and plans

    Science.gov (United States)

    Heather, David; Barbarisi, Isa; Besse, Sebastien; Brumfitt, Jon; Lim, Tanya; Metcalfe, Leo; Villacorta, Antonio; PSA Team

    2016-10-01

    The ExoMars program is a co-operation between ESA and Roscosmos comprising two missions: the first, launched on 14 March 2016, includes the Trace Gas Orbiter and Schiaparelli lander; the second, due for launch in 2020, will be a Rover and Surface Platform (RSP). The Schiaparelli lander for the 2016 mission is due to land on 19th October, during this conference. The status of that landing will be included as part of this presentation.The archiving and management of the science data to be returned from ExoMars will require a significant development effort for the new Planetary Science Archive (PSA). These are the first data in the PSA to be formatted according to the new PDS4 Standards, and there are also significant differences in the way in which a scientist will want to query, retrieve, and use data from a suite of rover instruments as opposed to remote sensing instrumentation from an orbiter. NASA has a strong user community interaction for their rovers, and a similar approach to their 'Analysts Notebook' will be needed for the future PSA.In addition to the archiving interface itself, there are differences with the overall archiving process being followed for ExoMars compared to previous ESA planetary missions. The first level of data processing for the 2016 mission, from telemetry to raw, is completed by ESA at ESAC in Madrid, where the archive itself resides. Data continuously flow direct to the PSA, where after the given proprietary period, they will be released to the community via the user interfaces. For the rover mission, the data pipelines are being developed by European industry, in close collaboration with ESA PSA experts and with the instrument teams. The first level of data processing will be carried out for all instruments at ALTEC in Turin where the pipelines are developed, and from where the rover operations will also be run.This presentation will focus on the challenges involved in archiving the data from the ExoMars Program, and will outline the

  18. On the incidence of eclipsing Am binary systems in the SuperWASP survey

    CERN Document Server

    Smalley, B; Pintado, O I; Gillon, M; Holdsworth, D L; Anderson, D R; Barros, S C C; Cameron, A Collier; Delrez, L; Faedi, F; Haswell, C A; Hellier, C; Horne, K; Jehin, E; Maxted, P F L; Norton, A J; Pollacco, D; Skillen, I; Smith, A M S; West, R G; Wheatley, P J

    2014-01-01

    The results of a search for eclipsing Am star binaries using photometry from the SuperWASP survey are presented. The light curves of 1742 Am stars fainter than V = 8.0 were analysed for the presences of eclipses. A total of 70 stars were found to exhibit eclipses, with 66 having sufficient observations to enable orbital periods to be determined and 28 of which are newly identified eclipsing systems. Also presented are spectroscopic orbits for 5 of the systems. The number of systems and the period distribution is found to be consistent with that identified in previous radial velocity surveys of `classical' Am stars.

  19. Stellar Scattering and the Formation of Hot-Jupiters in Binary Systems

    CERN Document Server

    Martí, J G

    2014-01-01

    Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods $P \\le 10$ days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator. Two mechanisms have been proposed to explain the excited and misaligned sub-population of HJs: Lidov-Kozai migration and planet-planet scattering. Although both are based on completely different dynamical phenomena, they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms. In this paper we present numerical simulations of Lidov-Kozai trapping of single planets in compact binary systems. Both the planet and the binary are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of ...

  20. Eclipsing binary systems as tests of low-mass stellar evolution theory

    CERN Document Server

    Feiden, Gregory A

    2015-01-01

    Stellar fundamental properties (masses, radii, effective temperatures) can be extracted from observations of eclipsing binary systems with remarkable precision, often better than 2%. Such precise measurements afford us the opportunity to confront the validity of basic predictions of stellar evolution theory, such as the mass-radius relationship. A brief historical overview of confrontations between stellar models and data from eclipsing binaries is given, highlighting key results and physical insight that have led directly to our present understanding. The current paradigm that standard stellar evolution theory is insufficient to describe the most basic relation, that of a star's mass to its radius, along the main sequence is then described. Departures of theoretical expectations from empirical data, however, provide a rich opportunity to explore various physical solutions, improving our understanding of important stellar astrophysical processes.

  1. Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays

    CERN Document Server

    Sesana, A; Volonteri, M

    2008-01-01

    Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >10^7 solar masses. The whole cosmic population produces a stochastic background that could be detectable with upcoming Pulsar Timing Arrays. Sources sufficiently close and/or massive generate gravitational radiation that significantly exceeds the level of the background and could be individually resolved. We consider a wide range of massive black hole binary assembly scenarios, we investigate the distribution of the main physical parameters of the sources, such as masses and redshift, and explore the consequences for Pulsar Timing Arrays observations. Depending on the specific massive black hole population model, we est...

  2. Compact object detection in self-lensing binary systems with a main-sequence star

    CERN Document Server

    Rahvar, S; Dominik, M

    2010-01-01

    Detecting compact objects by means of their gravitational lensing effect on an observed companion in a binary system has already been suggested almost four decades ago. However, these predictions were made even before the first observations of gravitational lensing, whereas nowadays gravitational microlensing surveys towards the Galactic bulge yield almost 1000 events per year where one star magnifies the light of a more distant one. With a specific view on those experiments, we therefore carry out simulations to assess the prospects for detection of the transient periodic magnification of the companion star, which lasts typically only a few hours binaries involving a main-sequence star. We find that detectability is given by the achievability of dense monitoring with the required photometric accuracy. In sharp contrast to earlier expectations by other authors, we find that main-sequence stars are not substantially less favourable targets to observe this effect than white dwarfs. The requirement of an almost ...

  3. Equipotential Surfaces and Lagrangian points in Non-synchronous, Eccentric Binary and Planetary Systems

    CERN Document Server

    Sepinsky, J F; Kalogera, V

    2006-01-01

    We investigate the existence and properties of equipotential surfaces and Lagrangian points in non-synchronous, eccentric binary star and planetary systems under the assumption of quasi-static equilibrium. We adopt a binary potential that accounts for non-synchronous rotation and eccentric orbits, and calculate the positions of the Lagrangian points as functions of the mass ratio, the degree of asynchronism, the orbital eccentricity, and the position of the stars or planets in their relative orbit. We find that the geometry of the equipotential surfaces may facilitate non-conservative mass transfer in non-synchronous, eccentric binary star and planetary systems, especially if the component stars or planets are rotating super-synchronously at the periastron of their relative orbit. We also calculate the volume-equivalent radius of the Roche lobe as a function of the four parameters mentioned above. Contrary to common practice, we find that replacing the radius of a circular orbit in the fitting formula of Eggl...

  4. Activity Calculation by Application of Sub-Regular Solution Model in Binary Oxide Systems

    Institute of Scientific and Technical Information of China (English)

    HOU Yan-qing; XIE Gang; TAO Dong-ping; LI Rong-xing; YU Xiao-hua

    2012-01-01

    To confirm sub-regular solution model valid for predicting the activity of component in binary oxide systems, seven systems in the whole concentration and twelve systems presenting saturation concentration have been studied. The total average relative errors of component 1 and 2 are 3.2 % and 4.1% respectively by application of the sub-regular solution model into the systems within the whole concentration. However, the total average relative errors are 16 % and 1088 % in the systems presenting saturation concentration. The results show that sub-regular solu- tion model is not good for predicting the systems presenting saturation concentration, especially for the systems con- taining acidic or neutral oxide. The reason may be that the influence of the two types of oxide on the configuration is greater in binary oxide systems. These oxides can be present in the form of complex anion partly, Si-O, Al-O, Ti-O and so on, for example (SiO4)4-. That is contrary to sub-regular solution model which is supposed that the oxide systems consist of cation and O2-. But compared with regular solution model and quasi-regular solution model, sub- regular solution model is closer to the characteristics of actual solution and the calculated results are superior.

  5. ExoU activates NF-κB and increases IL-8/KC secretion during Pseudomonas aeruginosa infection.

    Directory of Open Access Journals (Sweden)

    Carolina Diettrich Mallet de Lima

    Full Text Available ExoU, a Pseudomonas aeruginosa cytotoxin injected into host cytosol by type III secretion system, exhibits a potent proinflammatory activity that leads to a marked recruitment of neutrophils to infected tissues. To evaluate the mechanisms that account for neutrophil infiltration, we investigated the effect of ExoU on IL-8 secretion and NF-κB activation. We demonstrate that ExoU increases IL-8 mRNA and protein levels in P. aeruginosa-infected epithelial and endothelial cell lines. Also, ExoU induces the nuclear translocation of p65/p50 NF-κB transactivator heterodimer as well as NF-κB-dependent transcriptional activity. ChIP assays clearly revealed that ExoU promotes p65 binding to NF-κB site in IL-8 promoter and the treatment of cultures with the NF-κB inhibitor Bay 11-7082 led to a significant reduction in IL-8 mRNA levels and protein secretion induced by ExoU. These results were corroborated in a murine model of pneumonia that revealed a significant reduction in KC secretion and neutrophil infiltration in bronchoalveolar lavage when mice were treated with Bay 11-7082 before infection with an ExoU-producing strain. In conclusion, our data demonstrate that ExoU activates NF-κB, stimulating IL-8 expression and secretion during P. aeruginosa infection, and unveils a new mechanism triggered by this important virulence factor to interfere in host signaling pathways.

  6. Binary system and jet precession and expansion in G35.20-0.74N

    Science.gov (United States)

    Beltrán, M. T.; Cesaroni, R.; Moscadelli, L.; Sánchez-Monge, Á.; Hirota, T.; Kumar, M. S. N.

    2016-09-01

    Context. Atacama Large Millimeter/submillimeter Array (ALMA) observations of the high-mass star-forming region G35.20-0.74N have revealed the presence of a Keplerian disk in core B rotating about a massive object of 18 M⊙, as computed from the velocity field. The luminosity of such a massive star would be comparable to (or higher than) the luminosity of the whole star-forming region. To solve this problem it has been proposed that core B could harbor a binary system. This could also explain the possible precession of the radio jet associated with this core, which has been suggested by its S-shaped morphology. Aims: We establish the origin of the free-free emission from core B and investigate the existence of a binary system at the center of this massive core and the possible precession of the radio jet. Methods: We carried out VLA continuum observations of G35.20-0.74N at 2 cm in the B configuration and at 1.3 cm and 7 mm in the A and B configurations. The bandwidth at 7 mm covers the CH3OH maser line at 44.069 GHz. Continuum images at 6 and 3.6 cm in the A configuration were obtained from the VLA archive. We also carried out VERA observations of the H2O maser line at 22.235 GHz. Results: The observations have revealed the presence of a binary system of UC/HC Hii regions at the geometrical center of the radio jet in G35.20-0.74N. This binary system, which is associated with a Keplerian rotating disk, consists of two B-type stars of 11 and 6 M⊙. The S-shaped morphology of the radio jet has been successfully explained as being due to precession produced by the binary system. The analysis of the precession of the radio jet has allowed us to better interpret the IR emission in the region, which would be not tracing a wide-angle cavity open by a single outflow with a position angle of ~55°, but two different flows: a precessing one in the NE-SW direction associated with the radio jet, and a second one in an almost E-W direction. Comparison of the radio jet images

  7. In search of RR Lyrae type stars in eclipsing binary systems. OGLE052218.07-692827.4: an optical blend

    CERN Document Server

    Prsa, A; Devinney, E J; Engle, S G

    2008-01-01

    During the OGLE-2 operation, Soszynski et al. (2003) found 3 LMC candidates for an RR Lyr-type component in an eclipsing binary system. Two of those have orbital periods that are too short to be physically plausible and hence have to be optical blends. For the third, OGLE052218.07-692827.4, we developed a model of the binary that could host the observed RR Lyr star. After being granted HST/WFPC2 time, however, we were able to resolve 5 distinct sources within a 1.3" region that is typical of OGLE resolution, proving that OGLE052218.07-692827.4 is also an optical blend. Moreover, the putative eclipsing binary signature found in the OGLE data does not seem to correspond to a physically plausible system; the source is likely another background RR Lyr star. There are still no RR Lyr stars discovered so far in an eclipsing binary system.

  8. Management of flight control for "ExoMars-2018" robotic interplanetary space station

    Science.gov (United States)

    Shirshakov, A. E.; Artyukhov, M. I.; Kazakevich, Yu. V.; Kalashnikov, A. I.

    2015-12-01

    The article covers the current status of activities on development of "ExoMars-2018" robotic interplanetary space station in terms of SC Composite flight program, results of onboard systems interaction functional design study. Organizational structure of p]Russian part of ground control and management of its interaction with European part of ground control are proposed.

  9. MERLIN radio detection of an interaction zone within a binary Orion proplyd system

    CERN Document Server

    Graham, M F; Garrington, S T; O'Brien, T J; Henney, W J; O'Dell, C R

    2002-01-01

    Presented here are high angular resolution MERLIN 5 GHz (6 cm) continuum observations of the binary proplyd system, LV 1 in the Orion nebula, which consists of proplyd 168--326SE and its binary proplyd companion 168--326NW (separation 0.4 arcsec). Accurate astrometric alignment allows a detailed comparison between these data and published HST PC Halpha and [Oiii] images. Thermal radio sources coincide with the two proplyds and originate in the ionized photoevaporating flows seen in the optical emission lines. Flow velocities of approx 50 km/s from the ionized proplyd surfaces and \\geq 100 km/s from a possible micro-jet have been detected using the Manchester Echelle spectrometer. A third radio source is found to coincide with a region of extended, high excitation, optical line emission that lies between the binary proplyds 168--326SE/326NW . This is modelled as a bowshock due to the collision of the photoevaporating flows from the two proplyds. Both a thermal and a non-thermal origin for the radio emission in...

  10. A Solar-type Stellar Companion to a Deep Contact Binary in a Quadruple System

    CERN Document Server

    Zhou, X; Zhang, J; Jiang, L -Q; Zhang, B; Kreiner, J

    2016-01-01

    The four-color ($B$ $V$ $R_c$ $I_c$) light curves of V776 Cas are presented and analyzed using the Wilson-Devinney (W-D) method. It is discovered that V776 Cas is an early F-type (F2V) overcontact binary with a very high contact degree ($ f=64.6\\,\\%$) and an extremely low mass ratio ($q=0.130$), which indicate that it is at the final evolutionary stage of cool short-period binaries. The mass of the primary and secondary stars are calculated to be $M_1 = 1.55(\\pm0.04)M_\\odot$, $M_2 = 0.20(\\pm0.01)M_\\odot$. V776 Cas is supposed to be formed from an initially detached binary system via the loss of angular momentum due to the magnetic wind. The initial mass of the present primary and secondary components are calculated to be $M_{1i} = 0.86(\\pm0.10)M_\\odot$ and $M_{2i} = 2.13(\\pm0.04)M_\\odot$. The observed-calculated ($O$-$C$) curve exhibits a cyclic period variation, which is due to the light-travel time effect (LTTE) caused by the presence of a third component with a period of 23.7 years. The mass of the third c...

  11. The tidally induced warping, precession and truncation of accretion discs in binary systems three dimensional simulations

    CERN Document Server

    Larwood, J D; Papaloizou, J C B; Terquem, C

    1996-01-01

    We present the results of non linear, hydrodynamic simulations, in three dimensions, of the tidal perturbation of accretion discs in binary systems where the orbit is circular and not necessarily coplanar with the disc mid-plane. The accretion discs are assumed to be geometrically thin, and of low mass relative to the stellar mass so that they are governed by thermal pressure and viscosity, but not self-gravity. The parameters that we consider in our models are the ratio of the orbital distance to the disc radius, D/R, the binary mass ratio, the initial inclination angle between the orbit and disc planes and the Mach number in the outer parts of the unperturbed disc. For binary mass ratios of around unity and D/R in the range 3 to 4, we find that the global evolution of the discs is governed primarily by the value of the Mach number. For relatively low Mach numbers (i.e. 10 to 20) we find that the discs develop a mildly warped structure, are tidally truncated, and undergo a near rigid body precession at a rat...

  12. Evolution of warped and twisted accretion discs in close binary systems

    CERN Document Server

    Fragner, Moritz

    2009-01-01

    We aim to examine the detailed disc structure that arises in a misaligned binary system as a function of the disc aspect ratio h, viscosity parameter alpha, disc outer radius R, and binary inclination angle gamma_F. We also aim to examine the conditions that lead to an inclined disc being disrupted by strong differential precession. We use a grid-based hydrodynamic code to perform 3D simulations. This code has a relatively low numerical viscosity compared with the SPH schemes that have been used previously to study inclined discs. This allows the influence of viscosity on the disc evolution to be tightly controlled. We find that for thick discs (h=0.05) with low alpha, efficient warp communication in the discs allows them to precess as rigid bodies with very little warping or twisting. Such discs are observed to align with the binary orbit plane on the viscous evolution time. Thinner discs with higher viscosity, in which warp communication is less efficient, develop significant twists before achieving a state...

  13. Discovery of an X-Ray-emitting Contact Binary System 2MASS J11201034-2201340

    Science.gov (United States)

    Hu, Chin-Ping; Yang, Ting-Chang; Chou, Yi; Liu, L.; Qian, S.-B.; Hui, C. Y.; Kong, Albert K. H.; Lin, L. C. C.; Tam, P. H. T.; Li, K. L.; Ngeow, Chow-Choong; Chen, W. P.; Ip, Wing-Huen

    2016-06-01

    We report the detection of orbital modulation, a model solution, and the X-ray properties of a newly discovered contact binary, Two Micron All Sky Survey (2MASS) J11201034-2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of γ-ray millisecond pulsars among the unidentified objects detected by the Fermi Gamma-ray Space Telescope. The optical counterpart of the X-ray source (unrelated to the γ-ray source) was then identified using archival databases. The long-term Catalina Real-Time Transient Survey detected a precise signal with a period of P=0.28876208(56) days. A follow-up observation made by the Super Light Telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution (SED), which is well fit by a K2V spectral template. The fitting result of the orbital profile using the Wilson-Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type contact binary and the more massive component has a cool spot. The X-ray emission was first noted in observations made by Swift, and then further confirmed and characterized by an XMM-Newton observation. The X-ray spectrum can be described by a power law or thermal Bremsstrahlung. Unfortunately, we could not observe significant X-ray orbital modulation. Finally, according to the SED, this system is estimated to be 690 pc from Earth with a calculated X-ray intensity of (0.7-1.5)× {10}30 erg s-1, which is in the expected range of an X-ray emitting contact binary.

  14. New Results for Two Optically Faint Low Mass X-Ray Binary Systems

    OpenAIRE

    Wachter, Stefanie

    1997-01-01

    We present optical photometry of the low mass X-ray binary systems GX 349+2 and Ser X-1. Extensive VRI photometry of the faint optical counterpart (V=18.4) to GX 349+2 reveals a period of 22.5 +/- 0.1 h and half-amplitude 0.2 mag. This result confirms and extends our previously reported 22 h period. No color change is detected over the orbit, although the limits are modest. We also report the discovery of two new variable stars in the field of GX 349+2, including a probable W UMa system. Ser ...

  15. A Hot Spot and Mass Transfer of the Algol-type Binary System WZ Crv

    CERN Document Server

    Virnina, Natalia A; Mogorean, Maxim V

    2011-01-01

    We present the results of two color VR observation of the Algol-type binary system WZ Crv (12h44m15.19s, -21d25m35.4s) which were obtained using the remotely controlled telescope TOA-150 of Tzec Maun Observatory. We determined the moments of individual minima, the orbital period and its derivative, the initial epoch, color indices V-R and temperature estimates of the components. Also we noticed that the phase curve is asymmetric: the second maximum is higher than the first one. It indicates that there is a spot in the photosphere of one of the stars in this system.

  16. Photometric Observation and Light Curve Analysis of Binary System ER-Orionis

    Indian Academy of Sciences (India)

    M. M. Lame’e; B. Javanmardi; N. Riazi

    2010-06-01

    Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves and calculate the newtimes of minimum light in each filter and plot the O–C diagram of ER ORI. Using the Wilson’s computer code with the help of an auxiliary computer program to improve the optimizations, the light curve analyses were carried out to find out the photometric elements of the system.

  17. Photometric solution and period analysis of the contact binary system AH Cnc

    Science.gov (United States)

    Peng, Ying-Jiang; Luo, Zhi-Quan; Zhang, Xiao-Bin; Deng, Li-Cai; Wang, Kun; Tian, Jian-Feng; Yan, Zheng-Zhou; Pan, Yang; Fang, Wei-Jing; Feng, Zhong-Wen; Tang, De-Lin; Liu, Qi-Li; Sun, Jin-Jiang; Zhou, Qiang

    2016-10-01

    Photometric observations of AH Cnc, a W UMa-type system in the open cluster M67, were carried out by using the 50BiN telescope. About 100 h of time-series B- and V -band data were taken, based on which eight new times of light minima were determined. By applying the Wilson-Devinney method, the light curves were modeled and a revised photometric solution of the binary system was derived. We confirmed that AH Cnc is a deep contact (f = 51%), low mass-ratio (q = 0.156) system. Adopting the distance modulus derived from study of the host cluster, we have re-calculated the physical parameters of the binary system, namely the masses and radii. The masses and radii of the two components were estimated to be respectively 1.188(±0.061) M ⊙, 1.332(±0.063) R ⊙ for the primary component and 0.185(±0.032) M ⊙, 0.592(±0.051) R ⊙ for the secondary. By adding the newly derived minimum timings to all the available data, the period variations of AH Cnc were studied. This shows that the orbital period of the binary is continuously increasing at a rate of dp/dt = 4.29 × 10‑10 d yr‑1. In addition to the long-term period increase, a cyclic variation with a period of 35.26 yr was determined, which could be attributed to an unresolved tertiary component of the system.

  18. EPIC 220204960: A Quadruple Star System Containing Two Strongly Interacting Eclipsing Binaries

    Science.gov (United States)

    Rappaport, S.; Vanderburg, A.; Borkovits, T.; Kalomeni, B.; Halpern, J. P.; Ngo, H.; Mace, G. N.; Fulton, B. J.; Howard, A. W.; Isaacson, H.; Petigura, E. A.; Mawet, D.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Bieryla, A.; Forgács-Dajka, E.; Nelson, L.

    2017-01-01

    We present a strongly interacting quadruple system associated with the K2 target EPIC 220204960. The K2 target itself is a Kp = 12.7 magnitude star at Teff ≃ 6100 K which we designate as "B-N" (blue northerly image). The host of the quadruple system, however, is a Kp ≃ 17 magnitude star with a composite M-star spectrum, which we designate as "R-S" (red southerly image). With a 3.2″ separation and similar radial velocities and photometric distances, `B-N' is likely physically associated with `R-S', making this a quintuple system, but that is incidental to our main claim of a strongly interacting quadruple system in `R-S'. The two binaries in `R-S' have orbital periods of 13.27 d and 14.41 d, respectively, and each has an inclination angle of ≳ 89°. From our analysis of radial velocity measurements, and of the photometric lightcurve, we conclude that all four stars are very similar with masses close to 0.4 M⊙. Both of the binaries exhibit significant ETVs where those of the primary and secondary eclipses `diverge' by 0.05 days over the course of the 80-day observations. Via a systematic set of numerical simulations of quadruple systems consisting of two interacting binaries, we conclude that the outer orbital period is very likely to be between 300 and 500 days. If sufficient time is devoted to RV studies of this faint target, the outer orbit should be measurable within a year.

  19. Searching for twins of the V1309 Sco progenitor system: a selection of long-period contact binaries

    CERN Document Server

    Kurtenkov, Alexander

    2016-01-01

    The only well-studied red nova progenitor (V1309 Sco) was a contact binary with a 1.4-day period. The prospects for searching for similar systems, as well as stellar merger candidates in general, are explored in this work. The photospheric temperatures of 128 variables with periods P = 1.1 - 1.8 d classified as W UMa-type binaries are calculated using their colors listed in the SDSS catalog. A selection of 15 contact binaries with similar temperatures and periods as the V1309 Sco progenitor is thus compiled. The Kepler Eclipsing Binary Catalog is used to analyse systems with eclipse timing variations (ETV) possibly caused by changes of the orbital period. Out of the 31 systems with parabolic ETV curves listed by Conroy et al. (2014, AJ, 147, 45) two could be contact binaries with a decreasing period and, therefore, potential stellar merger candidates. Out of the 569 contact binaries in the OGLE field analysed by Kubiak et al. (2006, AcA, 56, 253) 14 systems have periods longer than 0.8 d and a statistically s...

  20. A close-pair binary in a distant triple supermassive black hole system.

    Science.gov (United States)

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  1. Discovery And Characterization of Wide Binary Systems With a Very Low Mass Component

    CERN Document Server

    Baron, Frédérique; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Davison, Cassy L; Malo, Lison; Robert, Jasmin; Nadeau, Daniel; Reylé, Céline

    2015-01-01

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of 9 other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the OMM 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: L...

  2. Asteroid flux towards circumprimary habitable zones in binary star systems: II. Dynamics

    CERN Document Server

    Bancelin, D; Bazso, A

    2015-01-01

    Secular and mean motion resonances (hearafter MMR) are effective perturbations to shape planetary systems. In binary star systems, they play a key role during the early and late phases of planetary formation as well as the dynamical stability of a planetary system. In this study, we aim to correlate the presence of orbital resonances with the rate of icy asteroids crossing the habitable zone (hearafter HZ), from a circumprimary disk of planetesimals in various binary star systems. We modelled a belt of small bodies in the inner and outer regions, respectively below and beyond the orbit of a gas giant planet. The planetesimals are equally placed around a primary G-type star and move under the gravitational influence of the two stars and the gas giant. We numerically integrated the system for 50 Myr considering various parameters for the secondary star. Its stellar type varies from a M- to F-type; its semimajor axis is either 50 au or 100 au and its eccentricity is either 0.1 or 0.3. Our simulations highlight t...

  3. MODELING VAPOR LIQUID EQUILIBRIUM OF IONIC LIQUIDS plus GAS BINARY SYSTEMS AT HIGH PRESSURE WITH CUBIC EQUATIONS OF STATE

    OpenAIRE

    Freitas, ACD; Cunico, LP; M. Aznar; Guirardello,R.

    2013-01-01

    Ionic liquids (IL) have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (v...

  4. Spectral and timing nature of the symbiotic X-ray binary 4U 1954+319: The slowest rotating neutron star in an X-ray binary system

    Energy Technology Data Exchange (ETDEWEB)

    Enoto, Teruaki; Corbet, Robin H. D. [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771 (United States); Sasano, Makoto [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamada, Shin' ya; Tamagawa, Toru; Makishima, Kazuo [High Energy Astrophysics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Pottschmidt, Katja; Marcu, Diana [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Fuerst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Wilms, Jörn, E-mail: teruaki.enoto@nasa.gov [Dr. Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2014-05-10

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ∼5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (∼7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (∼60%-80%), and the location in the Corbet diagram favor high B-field (≳ 10{sup 12} G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10{sup 33}-10{sup 35} erg s{sup –1}), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ∼10{sup 13} G NS, this scheme can explain the ∼5.4 hr equilibrium rotation without employing the magnetar-like field (∼10{sup 16} G) required in the disk accretion case. The timescales of multiple irregular flares (∼50 s) can also be attributed to the free-fall time from the Alfvén shell for a ∼10{sup 13} G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  5. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  6. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    Energy Technology Data Exchange (ETDEWEB)

    Yaqoob, Khurram [Chimie Metallurgique des Terres Rares (CMTR), Institut de Chimie et des Materiaux Paris-Est (ICMPE), 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Joubert, Jean-Marc, E-mail: jean-marc.joubert@icmpe.cnrs.fr [Chimie Metallurgique des Terres Rares (CMTR), Institut de Chimie et des Materiaux Paris-Est (ICMPE), 2-8 rue Henri Dunant, 94320 Thiais Cedex (France)

    2012-12-15

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information. - Graphical abstract: Ni-Re phase diagram according to the present study. Highlights: Black-Right-Pointing-Pointer Re-investigation of the Ni-Re phase diagram. Black-Right-Pointing-Pointer Extended phase field of the hcp phase. Black-Right-Pointing-Pointer Different freezing ranges and peritectic reaction temperature. Black-Right-Pointing-Pointer Thermodynamic modeling of the studied system by using the CALPHAD method.

  7. ALMA observations of a misaligned binary protoplanetary disk system in Orion

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96816 (United States); Mann, Rita K.; Francesco, James Di; Johnstone, Doug; Matthews, Brenda [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Andrews, Sean M.; Ricci, Luca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hughes, A. Meredith [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Bally, John, E-mail: jpw@ifa.hawaii.edu [CASA, University of Colorado, CB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO{sup +} 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ∼9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ∼72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  8. ExoPTF Science Uniquely Enabled by Far-IR Interferometry: Probing the Formation of Planetary Systems, and Finding and Characterizing Exoplanets

    CERN Document Server

    Leisawitz, David; Bender, Chad; Benford, Dominic; Calzetti, Daniella; Carpenter, John; Danchi, William C; Fich, Michel; Fixsen, Dale; Gezari, Daniel Y; Griffin, Matt; Harwit, Martin; Kogut, Alan J; Langer, William D; Lawrence, Charles; Lester, Dan; Mundy, Lee G; Najita, Joan; Neufeld, David; Pilbratt, Goran; Rinehart, Stephen; Roberge, Aki; Serabyn, Eugene; Shenoy, Sachindev; Shibai, Hiroshi; Silverberg, Robert; Staguhn, Johannes; Swain, Mark R; Unwin, Stephen C; Wright, Edward L; Yorke, Harold W

    2007-01-01

    By providing sensitive sub-arcsecond images and integral field spectroscopy in the 25 - 400 micron wavelength range, a far-IR interferometer will revolutionize our understanding of planetary system formation, reveal otherwise-undetectable planets through the disk perturbations they induce, and spectroscopically probe the atmospheres of extrasolar giant planets in orbits typical of most of the planets in our solar system. The technical challenges associated with interferometry in the far-IR are greatly relaxed relative to those encountered at shorter wavelengths or when starlight nulling is required. A structurally connected far-IR interferometer with a maximum baseline length of 36 m can resolve the interesting spatial structures in nascent and developed exoplanetary systems and measure exozodiacal emission at a sensitivity level critical to TPF-I mission planning. The Space Infrared Interferometric Telescope was recommended in the Community Plan for Far-IR/Submillimeter Space Astronomy, studied as a Probe-cl...

  9. Fluctuation limit theorems for age-dependent critical binary branching systems

    Directory of Open Access Journals (Sweden)

    Murillo-Salas Antonio

    2011-03-01

    Full Text Available We consider an age-dependent branching particle system in ℝd, where the particles are subject to α-stable migration (0 < α ≤ 2, critical binary branching, and general (non-arithmetic lifetimes distribution. The population starts off from a Poisson random field in ℝd with Lebesgue intensity. We prove functional central limit theorems and strong laws of large numbers under two rescalings: high particle density, and a space-time rescaling that preserves the migration distribution. Properties of the limit processes such as Markov property, almost sure continuity of paths and generalized Langevin equation, are also investigated.

  10. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  11. New nanocrystalline materials: a previously unknown simple cubic phase in the SnS binary system.

    Science.gov (United States)

    Rabkin, Alexander; Samuha, Shmuel; Abutbul, Ran E; Ezersky, Vladimir; Meshi, Louisa; Golan, Yuval

    2015-03-11

    We report a new phase in the binary SnS system, obtained as highly symmetric nanotetrahedra. Due to the nanoscale size and minute amounts of these particles in the synthesis yield, the structure was exclusively solved using electron diffraction methods. The atomic model of the new phase (a = 11.7 Å, P2(1)3) was deduced and found to be associated with the rocksalt-type structure. Kramers-Kronig analysis predicted different optical and electronic properties for the new phase, as compared to α-SnS.

  12. Gravitational-radiation damping of compact binary systems to second post-newtonian order

    CERN Document Server

    Blanchet, L; Iyer, B R; Will, C M; Wiseman, A G; Blanchet, Luc; Damour, Thibault; Iyer, Bala R; Will, Clifford M; Wiseman, Alan G

    1995-01-01

    The rate of gravitational-wave energy loss from inspiralling binary systems of compact objects of arbitrary mass is derived through second post-Newtonian (2PN) order O[(Gm/rc^2)^2] beyond the quadrupole approximation. The result has been derived by two independent calculations of the (source) multipole moments. The 2PN terms, and in particular the finite mass contribution therein (which cannot be obtained in perturbation calculations of black hole spacetimes), are shown to make a significant contribution to the accumulated phase of theoretical templates to be used in matched filtering of the data from future gravitational-wave detectors.

  13. Density measurements under pressure for the binary system (ethanol plus methylcyclohexane)

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Lugo, L.; Fernandez, J.

    2005-01-01

    to 353.15 K and ten isobars up to 45 MPa. The uncertainty for the reported densities is estimated to be 0. 1 kg center dot m(-3). A non-monotonical behavior involving a minimum in the density versus composition has been found for this binary system. The measured data have been used to study the behavior......-volume, disruption of the order molecular structure and the breaking of hydrogen bonds within the self-associating alcohol. (c) 2005 Elsevier Ltd. All rights reserved....

  14. Magnetic field effect on the liquidus boundary of Bi-Mn binary system

    Science.gov (United States)

    Mitsui, Yoshifuru; Koyama, Keiichi; Oikawa, Katsunari; Watanabe, Kazuo

    2014-10-01

    The magnetic field effect (MFE) on liquidus boundary of Bi-Mn binary system was investigated by differential thermal analysis (DTA) and the computer coupling of phase diagram method (CALPHAD). The liquidus boundary for Bi-18at.%Mn and Bi-24at.%Mn rose clearly by the application of the magnetic fields. The MFE for liquidus boundary temperature Tliq changed from ΔTliq∝B2 to ΔTliq∝B because of the large increase of the peritectic temperature from BiMn and BiMn1.08 by the application of magnetic field.

  15. Highly ordered and highly aligned two-dimensional binary superlattice of a SWNT/cylindrical-micellar system.

    Science.gov (United States)

    Lim, Sung-Hwan; Jang, Hyung-Sik; Ha, Jae-Min; Kim, Tae-Hwan; Kwasniewski, Pawel; Narayanan, Theyencheri; Jin, Kyeong Sik; Choi, Sung-Min

    2014-11-10

    We report a highly ordered intercalated hexagonal binary superlattice of hydrophilically functionalized single-walled carbon nanotubes (p-SWNTs) and surfactant (C12 E5 ) cylindrical micelles. When p-SWNTs (with a diameter slightly larger than that of the C12 E5 cylinders) were added to the hexagonally packed C12 E5 cylindrical-micellar system, p-SWNTs positioned themselves in such a way that the free-volume entropies for both p-SWNTs and C12 E5 cylinders were maximized, thus resulting in the intercalated hexagonal binary superlattice. In this binary superlattice, a hexagonal array of p-SWNTs is embedded in a honeycomb lattice of C12 E5 cylinders. The intercalated hexagonal binary superlattice can be highly aligned in one direction by an oscillatory shear field and remains aligned after the shear is removed.

  16. Further X-ray observations of EXO 0748-676 in quiescence: evidence for a cooling neutron star crust

    Science.gov (United States)

    Degenaar, N.; Wolff, M. T.; Ray, P. S.; Wood, K. S.; Homan, J.; Lewin, W. H. G.; Jonker, P. G.; Cackett, E. M.; Miller, J. M.; Brown, E. F.; Wijnands, R.

    2011-04-01

    In late 2008, the quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 started a transition from outburst to quiescence, after it actively accreted for more than 24 yr. In a previous work, we discussed Chandra and Swift observations obtained during the first 5 months of this transition. Here, we report on further X-ray observations of EXO 0748-676, extending the quiescent monitoring to 1.6 yr. Chandra and XMM-Newton data reveal quiescent X-ray spectra composed of a soft, thermal component that is well fitted by a neutron star atmosphere model. An additional hard power-law tail is detected that changes non-monotonically over time, contributing between 4 and 20 per cent to the total unabsorbed 0.5-10 keV flux. The combined set of Chandra, XMM-Newton and Swift data reveals that the thermal bolometric luminosity fades from ˜ 1 × 1034 to 6 × 1033 (D/7.4 kpc)2 erg s -1, whereas the inferred neutron star effective temperature decreases from ˜124 to 109 eV. We interpret the observed decay as cooling of the neutron star crust and show that the fractional quiescent temperature change of EXO 0748-676 is markedly smaller than observed for three other neutron star X-ray binaries that underwent prolonged accretion outbursts.

  17. Circumstellar Habitable Zones of Binary Star Systems in the Solar Neighborhood

    CERN Document Server

    Eggl, Siegfried; Funk, Barbara; Georgakarakos, Nikolaos; Haghighipour, Nader

    2012-01-01

    Binary and multiple systems constitute more than half of the total stellar population in the Solar neighborhood (Kiseleva-Eggleton and Eggleton 2001). Their frequent occurrence as well as the fact that more than 70 (Schneider et al. 2011) planets have already been discovered in such configurations - most noteably the telluric companion of alpha Centauri B (Dumusque et al. 2012) - make them interesting targets in the search for habitable worlds. Recent studies (Eggl et al. 2012b, Forgan 2012) have shown, that despite the variations in gravitational and radiative environment, there are indeed circumstellar regions where planets can stay within habitable insolation limits on secular dynamical timescales. In this article we provide habitable zones for 19 near S-Type binary systems from the Hipparchos and WDS catalogues with semimajor axes between 1 and 100 AU. Hereby, we accounted for the combined dynamical and radiative influence of the second star on the Earth-like planet. Out of the 19 systems presented, 17 of...

  18. Observations of Binary Systems with the H.E.S.S. Telescopes

    CERN Document Server

    Bordas, P; Eger, P; Ernenwein, J -P; Laffon, H; Mariaud, C; Murach, T; de Naurois, M; Romoli, C; Schüssler, F

    2016-01-01

    Observations of binary systems obtained recently with the High Energy Stereoscopic System (H.E.S.S) of Cherenkov telescopes are reported. The outcomes of a detailed observation campaign on PSR B1259-63 during its periastron passage in 2014 will be presented. This system was observed for the first time with H.E.S.S. II, providing spectra and light curves down to 200 GeV, which will be compared with observations conducted during previous periastron passages and with results from an analysis of contemporaneously taken Fermi-LAT data. Also long-term observations of LS 5039 with H.E.S.S in phase I and phase II are reported. This source was monitored at very high energies (VHEs) in a period of time spanning more than ten years. Its spectral energy distribution measured with H.E.S.S. II extends down to 120 GeV. Spectral results from the Fermi-LAT observations are shown as well, and the compatibility with H.E.S.S. results in the overlapping energy range is discussed. The identification of the new gamma-ray binary can...

  19. The VLT-FLAMES Tarantula Survey II: R139 revealed as a massive binary system

    CERN Document Server

    Taylor, W D; Sana, H; Walborn, N R; de Mink, S E; Stroud, V E; Alvarez-Candal, A; Barbá, R H; Bestenlehner, J M; Bonanos, A Z; Brott, I; Crowther, P A; de Koter, A; Friedrich, K; Gräfener, G; Hénault-Brunet, V; Herrero, A; Kaper, L; Langer, N; Lennon, D J; Apellániz, J Maíz; Markova, N; Morrell, N; Monaco, L; Vink, J S

    2011-01-01

    We report the discovery that R139 in 30 Doradus is a massive spectroscopic binary system. Multi-epoch optical spectroscopy of R139 was obtained as part of the VLT-FLAMES Tarantula Survey, revealing a double-lined system. The two components are of similar spectral types; the primary exhibits strong C III 4650 emission and is classified as an O6.5 Iafc supergiant, while the secondary is an O6 Iaf supergiant. The radial-velocity variations indicate a highly eccentric orbit with a period of 153.9 days. Photometry obtained with the Faulkes Telescope South shows no evidence for significant variability within an 18 month period. The orbital solution yields lower mass limits for the components of M1sin^3 i = 78 \\pm 8 Msun and M2sin^3 i = 66 \\pm 7 Msun. As R139 appears to be the most massive binary system known to contain two evolved Of supergiants, it will provide an excellent test for atmospheric and evolutionary models.

  20. MAMA: An Algebraic Map for the Secular Dynamics of Planetesimals in Tight Binary Systems

    CERN Document Server

    Leiva, A M; Beaugé, C

    2013-01-01

    We present an algebraic map (MAMA) for the dynamical and collisional evolution of a planetesimal swarm orbiting the main star of a tight binary system (TBS). The orbital evolution of each planetesimal is dictated by the secular perturbations of the secondary star and gas drag due to interactions with a protoplanetary disk. The gas disk is assumed eccentric with a constant precession rate. Gravitational interactions between the planetesimals are ignored. All bodies are assumed coplanar. A comparison with full N-body simulations shows that the map is of the order of 100 times faster, while preserving all the main characteristics of the full system. In a second part of the work, we apply MAMA to the \\gamma-Cephei, searching for friendly scenarios that may explain the formation of the giant planet detected in this system. For low-mass protoplanetary disks, we find that a low-eccentricity static disk aligned with the binary yields impact velocities between planetesimals below the disruption threshold. All other sc...

  1. Investigation of potassium sulphate–calcium sulphate binary system by Knudsen effusion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Armatys, Kamila, E-mail: k.armatys@fz-juelich.de [Institute of Non Metallic Materials, Clausthal University of Technology, Clausthal-Zellerfeld 38678 (Germany); Bencze, Laszlo [Department of Physical Chemistry, EötvösLoránd University, Budapest H-1117, PázmányPéter sétány 1/A (Hungary); Miller, Miroslaw [International Laboratory of High Magnetic Felds and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); Wolter, Albrecht [Institute of Non Metallic Materials, Clausthal University of Technology, Clausthal-Zellerfeld 38678 (Germany)

    2014-01-10

    Highlights: • Thermodynamic activities of the system K{sub 2}SO{sub 4}–CaSO{sub 4} determined for the first time. • New approach of ion division in Knudsen effusion mass spectrometry. • The confirmation of the vaporisation of pure sulphates with the previous literature data. - Abstract: Vaporisation studies of pure K{sub 2}SO{sub 4} and mixtures of K{sub 2}SO{sub 4} and CaSO{sub 4} in the quasi-binary K{sub 2}SO{sub 4}–CaSO{sub 4} system using Knudsen effusion mass spectrometry resulted in the determination of thermodynamic data. From the partial pressures of the gaseous species over the condensed phases it was possible to determine the sublimation enthalpyΔ{sub sub}H and the thermodynamic activities of the components. The sublimation enthalpy of K{sub 2}SO{sub 4} agrees very well with that of two literature sources. For the first time the experimental data of activities of K{sub 2}SO{sub 4} and CaSO{sub 4} in the binary system could confirm the theoretical studies.

  2. The magnetic field of the double-lined spectroscopic binary system HD 5550

    CERN Document Server

    Alecian, E; Neiner, C; Folsom, C P; Leroy, B

    2016-01-01

    (Abridged) In the framework of the BinaMicS project, we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems, as a function of binarity properties. We report in this paper the characterisation of the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate-mass, using high-resolution spectropolarimetric Narval observations of HD 5550. We first fit the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light-ratio of the system. We then fit the least-square deconvolved $I$ profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the LSD $V$ profiles using the oblique rotator model to characterise the magnetic fields of both stars. We confirm the Ap nature of the primary, previously reported in the liter...

  3. Simulations of an inhomogeneous stellar wind interacting with a pulsar wind in a binary system

    CERN Document Server

    Paredes-Fortuny, Xavier; Perucho, Manel; Ribó, Marc

    2014-01-01

    Binary systems containing a massive star and a non-accreting pulsar present strong interaction between the stellar and the pulsar winds. The properties of this interaction, which largely determine the non-thermal radiation in these systems, strongly depend on the structure of the stellar wind, which can be clumpy or strongly anisotropic, as in Be stars. We study numerically the influence of inhomogeneities in the stellar wind on the structure of the two-wind interaction region. We carried out for the first time axisymmetric, relativistic hydrodynamical simulations, with Lorentz factors of ~6 and accounting for the impact of instabilities, to study the impact in the two-wind interaction structure of an over-dense region of the stellar wind. We also followed the evolution of this over-dense region or clump as it faces the impact of the pulsar wind. For typical system parameters, and adopting a stellar wind inhomogeneity with a density contrast >~10, clumps with radii of a few percent of the binary size can sign...

  4. Dynamical model of binary asteroid systems through patched three-body problems

    Science.gov (United States)

    Ferrari, Fabio; Lavagna, Michèle; Howell, Kathleen C.

    2016-08-01

    The paper presents a strategy for trajectory design in the proximity of a binary asteroid pair. A novel patched approach has been used to design trajectories in the binary system, which is modeled by means of two different three-body systems. The model introduces some degrees of freedom with respect to a classical two-body approach and it is intended to model to higher accuracy the peculiar dynamical properties of such irregular and low gravity field bodies, while keeping the advantages of having a full analytical formulation and low computational cost required. The neighborhood of the asteroid couple is split into two regions of influence where two different three-body problems describe the dynamics of the spacecraft. These regions have been identified by introducing the concept of surface of equivalence (SOE), a three-dimensional surface that serves as boundary between the regions of influence of each dynamical model. A case of study is presented, in terms of potential scenario that may benefit of such an approach in solving its mission analysis. Cost-effective solutions to land a vehicle on the surface of a low gravity body are selected by generating Poincaré maps on the SOE, seeking intersections between stable and unstable manifolds of the two patched three-body systems.

  5. Tracing CNO exposed layers in the Algol-type binary system u Her

    CERN Document Server

    Kolbas, V; Pavlovski, K; Southworth, J

    2014-01-01

    The chemical composition of stellar photospheres in mass-transferring binary systems is a precious diagnostic of the nucleosynthesis processes that occur deep within stars, and preserves information on the components history. The binary system u Her belongs to a group of hot Algols with both components being B-stars. We have isolated the individual spectra of the two components by the technique of spectral disentangling of a new series of 43 high-resolution echelle spectra. Augmenting these with an analysis of the Hipparcos photometry of the system yields revised stellar quantities for the components of u Her. For the primary component (the mass-gaining star) we find M_A = 7.88 +/- 0.26 M_sun, R_A = 4.93 +/- 0.15 R_sun and T_eff_A = 21600 +/- 220 K. For the secondary (the mass-losing star) we find M_B = 2.79 +/- 0.12 M_sun, R_B = 4.26 +/- 0.06 R_sun and T_eff_B = 12600 +/- 550 K. A non-LTE analysis of the primary star's atmosphere reveals deviations in the abundances of nitrogen and carbon from the standard c...

  6. Impact of the orbital uncertainties on the timing of pulsars in binary systems

    CERN Document Server

    Caliandro, G Andrea; Rea, Nanda

    2012-01-01

    The detection of pulsations from an X-ray binary is an unambiguous signature of the presence of a neutron star in the system. When the pulsations are missed in the radio band, their detection at other wavelengths, like X-ray or gamma-rays, requires orbital demodulation, since the length of the observations are often comparable to, or longer than the system orbital period. The detailed knowledge of the orbital parameters of binary systems plays a crucial role in the detection of the spin period of pulsars, since any uncertainty in their determination translates into a loss in the coherence of the signal during the demodulation process. In this paper, we present an analytical study aimed at unveiling how the uncertainties in the orbital parameters might impact on periodicity searches. We find a correlation between the power of the signal in the demodulated arrival time series and the uncertainty in each of the orbital parameters. This correlation is also a function of the pulsar frequency. We test our analytica...

  7. ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment

    Science.gov (United States)

    Li, D.; Li, R.; Yilmaz, A.

    2014-08-01

    ExoMars is the flagship mission of the European Space Agency (ESA) Aurora Programme. The mobile scientific platform, or rover, will carry a drill and a suite of instruments dedicated to exobiology and geochemistry research. As the ExoMars rover is designed to travel kilometres over the Martian surface, high-precision rover localization and topographic mapping will be critical for traverse path planning and safe planetary surface operations. For such purposes, the ExoMars rover Panoramic Camera system (PanCam) will acquire images that are processed into an imagery network providing vision information for photogrammetric algorithms to localize the rover and generate 3-D mapping products. Since the design of the ExoMars PanCam will influence localization and mapping accuracy, quantitative error analysis of the PanCam design will improve scientists' awareness of the achievable level of accuracy, and enable the PanCam design team to optimize its design to achieve the highest possible level of localization and mapping accuracy. Based on photogrammetric principles and uncertainty propagation theory, we have developed a method to theoretically analyze how mapping and localization accuracy would be affected by various factors, such as length of stereo hard-baseline, focal length, and pixel size, etc.

  8. Nanosatellites for Interplanetary Exploration : Missions of Co-Operation and Exploration to Mars, Exo-Moons and other worlds in the Solar System

    Science.gov (United States)

    Ravi, Aditya; Radhakrishnan, Arun

    2016-07-01

    The last decade has borne witness to a large number of Nano-satellites being launched.This increasing trend is mainly down to the advancements in consumer electronics that has played a crucial role in increasing the potential power available on board for mission study and analysis whilst being much smaller in size when compared to their satellite counterparts. This overall reduction in size and weight is a crucial factor when coupled with the recent innovations in various propulsion systems and orbital launch vehicles by private players has also allowed the cost of missions to brought down to a very small budget whilst able to retain the main science objectives of a dedicated space Missions. The success of first time missions such as India's Mars Orbiter Mission and the upcoming Cube-Sat Mission to Mars has served as a catalyst and is a major eye-opener on how Interplanetary missions can be funded and initiated in small time spans. This shows that Interplanetary missions with the main objective of a scientific study can be objectified by using Dedicated Nano-satellite constellations with each satellite carrying specific payloads for various mission parameters such as Telemetry, Observation and possible small lander payloads for studying the various Atmospheric and Geo-Physical parameters of a particular object with-out the requirement of a very long term expensive Spacecraft Mission. The association of Major Universities and Colleges in building Nano and-satellites are facilitating an atmosphere of innovation and research among students in a class-room level as their creative potential will allow for experiments and innovation on a scale never imagined before. In this paper, the Author envisions the feasibility of such low cost Nano satellite missions to various bodies in the solar system and how Nano satellite partnerships from universities and space agencies from around the world could foster a new era in diplomacy and International Co-operation.

  9. Exo-celiac liver in Glyptosternum maculatum

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A unique structure in the fish of Glyptosternum maculatum (Regan) (Siluriformes: Sisoridae) is reported. It was identified as a part of the liver named "exo-celiac liver". This new organ is located between skin and muscle and connected with the celiac liver by a funiform tissue, "joint belt". It has similar histological features and isozyme electrophoretogramic bands of lactate dehydrogenase, esterase, malate dehydrogenase and alcohol dehydrogenase as in the celiac liver. This unique organ has biological research value and could serve as an important tool for studying organogenesis and evolution.

  10. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo......-metabolome in filamentous fungi, which comprises more than 30,000 known secondary metabolites. Profiles of this diverse range of secondary metabolites have, for more than 25 years, been central in development of fungal systematics, taxonomy, and ecology, today integrated in a multidisciplinary and polyphasic approach...

  11. ASAS J083241+2332.4: A NEW EXTREME LOW MASS RATIO OVERCONTACT BINARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, K.; Malu, S.; Vivekananda Rao, P. [Department of Astronomy, Osmania University, Hyderabad 500007 (India); Choi, C. S., E-mail: astrosriram@yahoo.co.in [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)

    2016-03-15

    We present the R- and V-band CCD photometry and Hα line studies of an overcontact binary ASAS J083241+2332.4. The light curves exhibit totality along with a trace of the O’Connell effect. The photometric solution indicates that this system falls into the category of extreme low-mass ratio overcontact binaries with a mass ratio, q ∼ 0.06. Although a trace of the O’ Connell effect is observed, constancy of the Hα line along various phases suggest that a relatively higher magnetic activity is needed for it to show a prominent fill-in effect. The study of O–C variations reveals that the period of the binary shows a secular increase at the rate of dP/dt ∼ 0.0765 s years{sup −1}, which is superimposed by a low, but significant, sinusoidal modulation with a period of ∼8.25 years. Assuming that the sinusoidal variation is due to the presence of a third body, orbital elements have been derived. There exist three other similar systems, SX Crv, V857 Her, and E53, which have extremely low mass ratios and we conclude that ASAS J083241+2332.4 resembles SX Crv in many respects. Theoretical studies indicate that at a critical mass ratio range, q{sub critical} = 0.07–0.09, overcontact binaries should merge and form a fast rotating star, but it has been suggested that q{sub critical} can continue to fall up to 0.05 depending on the primary's mass and structure. Moreover, the obtained fill-out factors (50%–70%) indicate that mass loss is considerable and hydrodynamical simulations advocate that mass loss from L{sub 2} is mandatory for a successful merging process. Comprehensively, the results indicate that ASAS J083241+2332.4 is at a stage of merger. The pivotal role played by the subtle nature of the derived mass ratio in forming a rapidly rotating star has been discussed.

  12. Grid search in stellar parameters: a software for spectrum analysis of single stars and binary systems

    Science.gov (United States)

    Tkachenko, A.

    2015-09-01

    Context. The currently operating space missions, as well as those that will be launched in the near future, will deliver high-quality data for millions of stellar objects. Since the majority of stellar astrophysical applications still (at least partly) rely on spectroscopic data, an efficient tool for the analysis of medium- to high-resolution spectroscopy is needed. Aims: We aim at developing an efficient software package for the analysis of medium- to high-resolution spectroscopy of single stars and those in binary systems. The major requirements are that the code should have a high performance, represent the state-of-the-art analysis tool, and provide accurate determinations of atmospheric parameters and chemical compositions for different types of stars. Methods: We use the method of atmosphere models and spectrum synthesis, which is one of the most commonly used approaches for the analysis of stellar spectra. Our Grid Search in Stellar Parameters (gssp) code makes use of the Message Passing Interface (OpenMPI) implementation, which makes it possible to run in parallel mode. The method is first tested on the simulated data and is then applied to the spectra of real stellar objects. Results: The majority of test runs on the simulated data were successful in that we were able to recover the initially assumed sets of atmospheric parameters. We experimentally find the limits in signal-to-noise ratios of the input spectra, below which the final set of parameters is significantly affected by the noise. Application of the gssp package to the spectra of three Kepler stars, KIC 11285625, KIC 6352430, and KIC 4931738, was also largely successful. We found an overall agreement of the final sets of the fundamental parameters with the original studies. For KIC 6352430, we found that dependence of the light dilution factor on wavelength cannot be ignored, as it has a significant impact on the determination of the atmospheric parameters of this binary system. Conclusions: The

  13. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada); Davison, Cassy L. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Malo, Lison [Canada-France-Hawaii Telescope, 65–1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Reylé, Céline, E-mail: baron@astro.umontreal.ca [Institut Utinam, CNRS UMR6213, Université de Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France)

    2015-03-20

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3.

  14. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Laurent [Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Monnier, John D. [Department of Astronomy, University of Michigan, 941 Dennison Building, 500 Church Street, Ann Arbor, MI 48109-1090 (United States); Crepp, Justin [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Parry, Ian [University of Cambridge, Institute of Astronomy, Madingley Road, Cambridge, CB3, OHA (United Kingdom); Beichman, Charles [NASA Exoplanet Science Institute, 770 South Wilson Avenue, Pasadena, CA 91225 (United States); Soummer, Remi [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-09-20

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 {mu}m interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A{sub V} = 8-12, with an effective temperature of {approx}4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  15. The evolution of low mass, close binary systems with a neutron star component: a detailed grid

    CERN Document Server

    De Vito, M A

    2012-01-01

    In close binary systems composed of a normal, donor star and an accreting neutron star, the amount of material received by the accreting component is, so far, a real intrigue. In the literature there are available models that link the accretion disk surrounding the neutron star with the amount of material it receives, but there is no model linking the amount of matter lost by the donor star to that falling onto the neutron star. In this paper we explore the evolutionary response of these close binary systems when we vary the amount of material accreted by the neutron star. We consider a parameter \\beta, which represents the fraction of material lost by the normal star that can be accreted by the neutron star. \\beta is considered as constant throughout evolution. We have computed the evolution of a set of models considering initial donor star masses (in solar units) between 0.5 and 3.50, initial orbital periods (in days) between 0.175 and 12, initial masses of neutron stars (in solar units) of 0.80, 1.00, 1.20...

  16. The Formation of a Helium White Dwarf in Close Binary System with Diffusion

    CERN Document Server

    Benvenuto, O G

    2004-01-01

    We study the evolution of a system composed by a 1.4 \\msun neutron star and a normal, solar composition star of 2 \\msun in orbit with a period of 1 day. Calculations were performed employing the binary hydro code presented in Benvenuto & De Vito (2003) that handle the mass transfer rate in a fully implicit way. Now we included the main standard physical ingredients together with diffusion processes and a proper outer boundary condition. We have assumed fully non - conservative mass transfer episodes. In order to study the interplay of mass loss episodes and diffusion we considered evolutionary sequences with and without diffusion in which all Roche lobe overflows (RLOFs) produce mass transfer. Another two sequences in which thermonuclearly-driven RLOFs are not allowed to drive mass transfer have been computed with and without diffusion. To our notice, this study represents the first binary evolution calculations in which diffusion is considered. The system produces a helium white dwarf of \\sim 0.21 \\msun ...

  17. The formation of a helium white dwarf in a close binary system with diffusion

    Science.gov (United States)

    Benvenuto, O. G.; De Vito, M. A.

    2004-07-01

    We study the evolution of a system composed of a 1.4-Msolar neutron star and a normal, solar composition star of 2 Msolar in orbit with a period of 1 d. Calculations were performed employing the binary HYDRO code presented by Benvenuto & De Vito that handle the mass transfer rate in a fully implicit way. We then included the main standard physical ingredients together with the diffusion processes and a proper outer boundary condition. We have assumed fully non-conservative mass transfer episodes. In order to study the interplay of mass loss episodes and diffusion we considered evolutionary sequences with and without diffusion in which all Roche lobe overflows (RLOFs) produce mass transfer. Another two sequences in which thermonuclearly driven RLOFs were not allowed to drive mass transfer have been computed with and without diffusion. As far as we are aware, this study represents the first binary evolution calculations in which diffusion is considered. The system produces a helium white dwarf of ~0.21 Msolar in an orbit with a period of ~4.3 d for the four cases. We find that mass transfer episodes induced by hydrogen thermonuclear flashes drive a tiny amount of mass transfer. As diffusion produces stronger flashes, the amount of hydrogen-rich matter transferred is slightly higher than in the models without diffusion. We find that diffusion is the main agent in determining the evolutionary time-scale of low-mass white dwarfs even in the presence of mass transfer episodes.

  18. A temperature condensation trend in the debris-disk binary system Zet2 Ret

    CERN Document Server

    Saffe, C; Arancibia, M Jaque; Buccino, A; Jofre, E

    2016-01-01

    We explore condensation temperature Tc trends in the unique binary system Zet1 Ret - Zet2 Ret, to determine whether there is a depletion of refractories, which could be related to the planet formation process. The star Zet2 Ret hosts a debris disk which was detected by an IR excess and confirmed by direct imaging and numerical simulations, while Zet1 Ret does not present IR excess nor planets. We carried out a high-precision abundance determination in both components of the binary system via a line-by-line, strictly differential approach. The stellar parameters Teff , log g, [Fe/H] and vturb were determined by imposing differential ionization and excitation equilibrium of Fe I and Fe II lines, with an updated version of the program FUNDPAR. The star Zet1 Ret resulted slightly more metal rich than Zet2 Ret by 0.02 dex. In the differential calculation of Zet1 Ret using Zet2 Ret as reference, the abundances of the refractory elements resulted higher than the volatile elements, and the trend of the refractory ele...

  19. Gravitational conundrum? Dynamical mass segregation versus disruption of binary stars in dense stellar systems

    CERN Document Server

    de Grijs, Richard; Zheng, Yong; Deng, Licai; Hu, Yi; Kouwenhoven, M B N; Wicker, James E

    2013-01-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr-old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the >= 2 sigma level of significance (> 3 sigma if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 Msun) with increasing distance from the cluster center, specifically between the inner 10 to 20" (approximately equivalent to the cluster's core and half-mass radii) and the outer 60 to 80". If confirmed, this will offer support of the theoretically...

  20. IGR J17463-2854, a Possible Symbiotic Binary System in the Galactic Center Region

    CERN Document Server

    Karasev, D I; Lutovinov, A A

    2015-01-01

    This paper is devoted to determining the nature of the hard X-ray source IGR J17463-2854 located toward the Galactic bulge. Using data from the INTEGRAL and Chandra X-ray observatories, we show that five point X-ray sources with approximately identical fluxes in the 2-10 keV energy band are detected in the error circle of the object under study. In addition, significant absorption at low energies has been detected in the spectra of all these sources. Based on data from the VVV (VISTA/ESO) infrared Galactic Bulge Survey, we have unambiguously identified three of the five sources, determined the J, H and K magnitudes of the corresponding stars, and obtained upper limits on the fluxes for the remaining two sources. Analysis of the color-magnitude diagrams has shown that one of these objects most likely belongs to a class of rarely encountered objects, symbiotic binary systems (several tens are known with certainty), i.e., low-mass binary systems consisting of a white dwarf and a red giant. Note that all our resu...

  1. Impact of a Binary System Common Envelope on Mass Transfer through the Inner Lagrange Point

    CERN Document Server

    Bisikalo, D V; Kuznetsov, O A; Chechetkin, V M

    1997-01-01

    Results of numerical simulations of the impact of a common envelope on the matter flow pattern near the outflowing component in a semidetached binary system are presented. Three-dimensional modeling of the matter transfer gas dynamics in a low-mass X-ray binary X1822-371 enable investigation of the structure of flows in the vicinity of the inner Lagrange point L1. Taking into account the common envelope of the system substantially changes the flow pattern near the Roche surface of the outflowing component. In a stationary regime, accretion of common envelope gas is observed over a significant fraction of the donor star's surface, which inhibits the flow of gas along the Roche surface to L1. The change in the flow pattern is particularly significant near L1, where the stream of common envelope gas strips matter off the stellar surface. This, in turn, significantly increases (by an order of magnitude) the gas flow from the donor surface in comparison with the estimates of standard models.

  2. A statistical test on the reliability of the non-coevality of stars in binary systems

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2016-01-01

    We develop a statistical test on the expected difference in age estimates of two coeval stars in detached double-lined eclipsing binary systems that are only caused by observational uncertainties. We focus on stars in the mass range [0.8; 1.6] Msun, and on stars in the main-sequence phase. The ages were obtained by means of the maximum-likelihood SCEPtER technique. The observational constraints used in the recovery procedure are stellar mass, radius, effective temperature, and metallicity [Fe/H]. We defined the statistic W computed as the ratio of the absolute difference of estimated ages for the two stars over the age of the older one. We determined the critical values of this statistics above which coevality can be rejected. The median expected difference in the reconstructed age between the coeval stars of a binary system -- caused alone by the observational uncertainties -- shows a strong dependence on the evolutionary stage. This ranges from about 20% for an evolved primary star to about 75% for a near Z...

  3. Decoupling of a giant planet from its disk in an inclined binary system

    CERN Document Server

    Picogna, Giovanni

    2015-01-01

    We explore the dynamical evolution of a planet embedded in a disk surrounding a star part of a binary system where the orbital plane of the binary is significantly tilted respect to the initial disk plane. Our aim is to test whether the planet remains within the disk and continues to migrate towards the star in a Type I/II mode in spite of the secular perturbations of the companion star. This would explain observed exoplanets with significant inclination respect to the equatorial plane of their host star. We have used two different SPH codes, vine and phantom, to model the evolution of a system star+disk+planet and companion star with time. After an initial coupled evolution, the inclination of the disk and that of the planet begin to differ significantly. The period of oscillation of the disk inclination, respect to the initial plane, is shorter than that of the planet which evolves independently after about 10^4 yr following a perturbed N-body behavior. However, the planet keeps migrating towards the star b...

  4. Differential rotation on both components of the pre main-sequence binary system HD 155555

    CERN Document Server

    Dunstone, N J; Cameron, A Collier; Marsden, S C; Jardine, M; Barnes, J R; Vlex, J C Ramirez; Donati, J -F

    2008-01-01

    We present the first measurements of surface differential rotation on a pre-main sequence binary system. Using intensity (Stokes I) and circularly polarised (Stokes V) timeseries spectra, taken over eleven nights at the Anglo-Australian Telescope (AAT), we incorporate a solar-like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator-pole laptimes as determined from the intensity spectra are 80 days for the primary star and 163 days for the secondary. Similarly for the magnetic spectra we obtain equator-pole laptimes of 44 and 71 days respectively, showing that the shearing timescale of magnetic regions is approximately half that found for stellar spots. Both components are therefore found to have rates of differential rotation similar to those of the same spectral type main sequence single stars. The results for HD 155555 are therefore in contrast to tho...

  5. The first magnetic maps of a pre-main sequence binary star system - HD 155555

    CERN Document Server

    Dunstone, N J; Cameron, A Collier; Marsden, S C; Jardine, M; Stempels, H C; Vlex, J C Ramirez; Donati, J -F

    2008-01-01

    We present the first maps of the surface magnetic fields of a pre-main sequence binary system. Spectropolarimetric observations of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) system were obtained at the Anglo-Australian Telescope in 2004 and 2007. Both datasets are analysed using a new binary Zeeman Doppler imaging (ZDI) code. This allows us to simultaneously model the contribution of each component to the observed circularly polarised spectra. Stellar brightness maps are also produced for HD 155555 and compared to previous Doppler images. Our radial magnetic maps reveal a complex surface magnetic topology with mixed polarities at all latitudes. We find rings of azimuthal field on both stars, most of which are found to be non-axisymmetric with the stellar rotational axis. We also examine the field strength and the relative fraction of magnetic energy stored in the radial and azimuthal field components at both epochs. A marked weakening of the field strength of the secondary star is observed between t...

  6. Jet precession/expansion and binary system in G35.20-0.74N

    CERN Document Server

    Beltrán, M T; Moscadelli, L; Sánchez-Monge, Á; Hirota, T; Kumar, M S N

    2016-01-01

    Context. ALMA observations of the high-mass star-forming region G35.20-0.74N have revealed the presence of a Keplerian disk in core B rotating about a massive object of 18 Msun, as computed from the velocity field. The luminosity of such a massive star would be comparable to (or higher than) the luminosity of the whole star-forming region. To solve this problem it has been proposed that core B could harbor a binary system. This could also explain the possible precession of the radio jet associated with this core, which has been suggested by its S-shaped morphology. Aims. To establish the origin of the free-free emission from core B and investigate the existence of a binary system at the center of this massive core and the possible precession of the radio jet. Methods. We carried out VLA continuum observations of G35.20-0.74N at 2 cm in the B configuration and at 1.3 cm and 7 mm in the A and B configurations. The bandwidth at 7 mm covers the CH3OH maser line at 44.069 GHz. Continuum images at 6 and 3.6 cm in t...

  7. The impact of secular resonances on habitable zones in circumstellar planetary systems of known binary stars

    CERN Document Server

    Bazsó, Ákos; Eggl, Siegfried; Funk, Barbara; Bancelin, David

    2016-01-01

    We present a survey on binary star systems with stellar separations less than 100 astronomical units. For a selection of 11 binaries with a detected (giant) planet in circumstellar motion we determine the conditions that would allow additional planets to be present inside or nearby the habitable zone (HZ) of the host star. First we calculate the three-body HZ for these systems, in order to investigate the dynamics of bodies in those regions. After adding the giant planet's influence the final HZ is considerably modified in particular by mean motion and secular resonances. We apply a semi-analytical method to determine the locations of linear secular resonances, which is based on finding the apsidal precession frequencies of the massive bodies. For very close-in giant planets we also take the general relativistic precession of the pericenter into account. Our results demonstrate that there is a qualitative difference in the dynamics whether the giant planet is located exterior or interior to the HZ. An exterio...

  8. Hogg 12 and NGC 3590: A New Open Cluster Binary System Candidate

    Science.gov (United States)

    Piatti, Andrés E.; Clariá, Juan J.; Ahumada, Andrea V.

    2010-05-01

    We have obtained CCD UBVIKC photometry down to V ∼ 22.0 for the open clusters Hogg 12 and NGC 3590 and the fields surrounding them. Based on photometric and morphological criteria, as well as on the stellar density in the region, our evidence is sufficient to confirm that Hogg 12 is a genuine open cluster. NGC 3590 was used as a control cluster. The color-magnitude diagrams of Hogg 12, cleaned from field star contamination, reveal that this is a solar metal content cluster, affected by E(B - V) = 0.40 ± 0.05, located at a heliocentric distance d = 2.0 ± 0.5 kpc, and of an age similar to that of NGC 3590 (t = 30 Myr). Both clusters are surprisingly small objects whose radii are barely ∼1 pc, andthey are separated in the sky by scarcely 3.6 pc. These facts, added to their similar ages, reddenings, and metallicities, allow us to consider them a new open cluster binary system candidate. Of the ∼180 open cluster binary systems estimated to exist in the Galaxy, of which 27 are actually well known, Hogg 12 and NGC 3590 appear to be one of the two closest pairs.

  9. Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748-676 in quiescence

    CERN Document Server

    Degenaar, N; Wolff, M T; Ray, P S; Wood, K S; Homan, J; Lewin, W H G; Jonker, P G; Cackett, E M; Miller, J M; Brown, E F

    2008-01-01

    The quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 recently returned to quiescence following an accretion outburst that lasted more than 24 years. We report on 2 Chandra and 5 Swift observations performed approximately one to two months after the transition from outburst to quiescence. The Chandra observations detect the source at a bolometric thermal luminosity of ~9.8E33 (d/7.4 kpc) erg/s. The spectrum is composed of a soft, thermal component that fits to a neutron star atmosphere model with kT^inf~0.11 keV, combined with a hard powerlaw tail that contributes ~20% of the total 0.5-10 keV quiescent flux. Several Swift observations were obtained 1-2 weeks before the Chandra observations and another series was taken approximately 2 weeks thereafter. The combined Chandra/Swift data set reveals a relatively hot and luminous quiescent system with a temperature of kT^inf~0.11-0.13 keV and a bolometric thermal luminosity that slightly decreased from ~1.6E34 to ~8.3E33 (d/7.4 kpc) er...

  10. Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis

    DEFF Research Database (Denmark)

    Chieng, Norman; Trnka, Hjalte; Boetker, Johan;

    2013-01-01

    -PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile......The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were...

  11. Confronting Numerical Relativity With Nature: A model-independent characterization of binary black-hole systems in LIGO

    Science.gov (United States)

    Jani, Karan; Clark, James; Shoemaker, Deirdre; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Stellar and Intermediate mass binary black hole systems (10-1000 solar masses) are likely to be among the strongest sources of gravitational wave detection in Advanced LIGO. In this talk we discuss the prospects for the detection and characterization of these extreme astrophysical system using robust, morphology-independent analysis techniques. In particular, we demonstrate how numerical relativity simulations of black hole collisions may be combined with waveform reconstructions to constrain properties of a binary black-hole system using only exact solutions from general relativity and any potential gravitational wave signal in the data.

  12. Effect of Potassium on Ammonium Fixation and Adsorption of Vermiculite in Binary and Ternary Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ammonium fixation and adsorption experiments were conducted to study the effect of potassium on ammonium fixation into interlayer of vermiculite and ammonium adsorption at the surface of vermiculite both in the binary (NH4+-Ca2+) and ternary (NH4+-K+-Ca2+) systems. In the ammonium fixation experiment, 5 mmol NH4+ kg-1 was added alone, or after, before or simultaneously with 5 mmol K+ kg-1 to the vermiculite (vermiculite:solution = 1:1), and the incubation was conducted for 3 days under constant 20℃. In the adsorption experiment, after addition of 10 mmol Ca2+ L-1 as matrix ions, either NH4+ alone with a concentration series from 0.1 to 5.0 mmol NH4+ L-1 (binary exchange system of NH4+ and Ca2+) or NH4+ together with 5 mmol K+ L-1 (ternary exchange system of NH4+, K+ and Ca2+) was added to vermiculite at a vermiculite to solution ratio of 1:10 for 24-h equilibrium. The results of the fixation experiment showed that the presence of K+ increased NH4+ fixation for all the treatments, regardless of the addition orders. For ammonium adsorption a linear relationship between activity ratios of NH4+ to Ca2+ and Mg2+ in the equilibrium solutions (ARNH4) and increases of exchangeable NH4+ at the surface of vermiculite after 24- h equilibrium (ΔEx-NH4+) was shown for almost the whole concentration ranges tested. Compared with the binary system, the slope of the curve of the ternary system was steeper, indicating a more intensive adsorption of NH4+ in the presence of K+. It was demonstrated that K+ did not reduce the ammonium fixation into the interlayer and ammonium adsorption at the surface of vermiculite, which indicated that, under the experimental conditions of this study, K+ did neither occupy the sites for NH4+-fixation in the interlayer nor the sites for NH4+-adsorption at the surface of vermiculite.

  13. A radio map of the colliding winds in the very massive binary system HD 93129A

    Science.gov (United States)

    Benaglia, P.; Marcote, B.; Moldón, J.; Nelan, E.; De Becker, M.; Dougherty, S. M.; Koribalski, B. S.

    2015-07-01

    Context. Radio observations are an effective tool for discovering particle acceleration regions in colliding-wind binaries through detection of synchrotron radiation. Wind-collision region (WCR) models can reproduce the radio continuum spectra of massive binaries. However, key constraints for models come from high-resolution imaging. Only five WCRs have been resolved to date at radio frequencies on milliarcsec (mas) angular scales. The source HD 93129A, a prototype of the very few known O2 I stars, is a promising target for study. Recently, a second massive, early-type star about 50 mas away was discovered, and a non-thermal radio source was detected in the region. Preliminary long-baseline array data suggest that a significant fraction of the radio emission from the system comes from a putative WCR. Aims: We seek evidence that HD 93129A is a massive binary system with colliding stellar winds that produce non-thermal radiation through spatially resolved images of the radio emitting regions. Methods: We completed observations with the Australian Long Baseline Array (LBA) to resolve the system at mas angular resolutions and reduced archival Australia Telescope Compact Array (ATCA) data to derive the total radio emission. We also compiled optical astrometric data of the system in a homogeneous way. We reduced historical Hubble Space Telescope data and obtained absolute and relative astrometry with milliarcsec accuracy. Results: The astrometric analysis leads us to conclude that the two stars in HD 93129A form a gravitationally bound system. The LBA data reveal an extended arc-shaped non-thermal source between the two stars, which is indicative of a WCR. The wind momentum-rate ratio of the two stellar winds is estimated. The ATCA data show a point source with a change in flux level between 2003-4 and 2008-9, which is modeled with a non-thermal power-law spectrum with spectral indices of -1.03 ± 0.09 and -1.21 ± 0.03, respectively. The mass-loss rates derived from the

  14. Measurement and Correlation of Vapor-Liquid Equilibrium for Binary System 1,2-Epoxycyclohexane+1,2-Dichloroethane

    Institute of Scientific and Technical Information of China (English)

    周彩荣; 王海峰; 石晓华; 蒋登高

    2013-01-01

    Vapor-liquid equilibrium data (T, x, y) of binary system 1,2-epoxycyclohexane+1,2-dichloroethane were determined experimentally by using a modified ROSE-Williams equilibrium vaporization system at 101.33 kPa. The results show that this binary system does not have azeotropic point. The vapor-liquid equilibrium data are in thermodynamic consistency. The binary interaction parameters in the Wilson equation are presented with the correlation of vapor-liquid equilibrium data. The measurements of liquid phase composition and bubble point tem-perature are well represented by the Wilson equation. Values of vapor molecular fractions and activity coefficients from the Wilson equation are presented. This work provides important engineering data for the separation of 1,2-dichloroethane and 1,2-epoxycyclohexane .

  15. Tidally-Driven Transport in Accretion Disks in Close Binary Systems

    CERN Document Server

    Blondin, J M

    1999-01-01

    The effects of binary tidal forces on transport within an accretion disk are studied with a time-dependent hydrodynamical model of a two-dimensional isothermal accretion disk. Tidal forces quickly truncate the accretion disk to radii of order half the average radius of the Roche lobe, and excite a two-armed spiral wave that remains stationary in the rotating reference frame of the binary system. We measure an effective alpha of order 0.1 near the outer edge of the disk in all of our models, independent of the mass ratio, Mach number, and radial density profile. However, in cold disks with high Mach number, the effective alpha drops rapidly with decreasing radius such that it falls below our threshold of measurement (roughly .001) at a radius of only one third the tidal radius. In warmer disks where the Mach numbers remain below 20, we can measure an effective alpha down to radii 10 times smaller than the maximum size of the disk.

  16. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    CERN Document Server

    Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr\\Hoczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J

    2014-01-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for ci...

  17. Constraining white dwarf viscosity through tidal heating in detached binary systems

    CERN Document Server

    Dall'Osso, Simone

    2013-01-01

    Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short period (< 1 hr), detached white dwarf binaries, such as the newly discovered ~12.8 min system. These binaries are wide enough that mass transfer has not yet started but close enough that the least massive component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity within the deformed star. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of asynchronism (ratio of stellar to orbital spin) as a function of the viscous time. Specializing our calculations to J0651, we find that the discrepancy between the measured radius of the secondary star and He white dwarf model p...

  18. Planetesimal Dynamics in Inclined Binary Systems: The Role of Gas-Disk Gravity

    CERN Document Server

    Zhao, Gang; Zhou, Ji-Lin; Lin, Douglas N C

    2012-01-01

    We investigate the effects of gas-disk gravity on the planetesimal dynamics in inclined binary systems, where the circumprimary disk plane is tilted by a significant angle ($i_B$) with respect to the binary disk plane. Our focus is on the Lidov-Kozai mechanism and the evolution of planetesimal eccentricity and inclination. Using both analytical and numerical methods, we find that, on one hand, the disk gravity generally narrows down the Kozai-on region, i.e., the Lidov-Kozai effect can be suppressed in certain parts of (or even the whole of) the disk, depending on various parameters. In the Kozai-off region, planetesimals would move on orbits close to the mid-plane of gas-disk, with the relative angle ($i^{'}$) following a small amplitude periodical oscillation. On the other hand, when we include the effects of disk gravity, we find that the Lidov-Kozai effect can operate even at arbitrarily low inclinations ($i_B$), although lower $i_B$ leads to a smaller Kozai-on region. Furthermore, in the Kozai-on region,...

  19. Giants of eclipse the ζ [Zeta] Aurigae stars and other binary systems

    CERN Document Server

    Griffin, Elizabeth

    2015-01-01

    The zeta Aurigae stars are the rare but illustrious sub-group of binary stars that undergo the dramatic phenomenon of "chromospheric eclipse". This book provides detailed descriptions of the ten known systems, illustrates them richly with examples of new spectra, and places them in the context of stellar structure and evolution. Comprised of a large cool giant plus a small hot dwarf, these key eclipsing binaries reveal fascinating changes in their spectra very close to total eclipse, when the hot star shines through differing heights of the "chromosphere", or outer atmosphere, of the giant star. The phenomenon provides astrophysics with the means of analyzing the outer atmosphere of a giant star and how that material is shed into space. The physics of these critical events can be explained qualitatively, but it is more challenging to extract hard facts from the observations, and tough to model the chromosphere in any detail. The book offers current thinking on mechanisms for heating a star's chromosphere an...

  20. The Formation Mass of a Binary System via Fragmentation of a Rotating Parent Core with Increasing Total Mass

    CERN Document Server

    Arreaga-Garcia, Guillermo

    2016-01-01

    Recent VLA and CARMA observations have shown proto-stars in binaries with unprecedented resolution. Specifically, the proto-stellar masses of systems such as CB230 IRS1 and L1165-SMM1 have been detected in the range of $0.1-0.25 \\, M_{\\odot}$. These are much more massive than the masses generally obtained by numerical simulations of binary formation, around $0.01 \\, M_{\\odot}$. Motivated by these discrepancies in mass, in this paper we study the formation mass of a binary system as a function of the total mass of its parent core. To achieve this objective, we present a set of numerical simulations of the gravitational collapse of a uniform and rotating core, in which azimuthal symmetric mass seeds are initially implemented in order to favor the formation of a dense filament, out of which a binary system may be formed by direct fragmentation. We first observed that this binary formation process is diminished when the total mass of the parent core $M_0$ is increased; then we increased the level of the ratio of ...

  1. Circumstellar multi-planetary systems in binary stars: secular resonances and a semi-analytical approach to determine the location

    CERN Document Server

    Pilat-Lohinger, Elke; Funk, Barbara

    2016-01-01

    Binary stars are of special interest for studies of planetary motion and habitability as most of the stars in the solar neighborhood are part of such stellar systems. Since a secondary star causes gravitational perturbations the planetary motion is restricted to certain regions of the phase space depending on the binary configuration. In case a binary system hosts a giant planet it is obvious that additional perturbations will occur. These perturbations will be studied in detail in this investigation where we take into account various binary-planet configurations. We show how the dynamics of another test-planet is influenced by mean motion and secular resonances. Therefore, it is important to know the locations of these resonances. First, we study the binary system HD41004AB to visualize the perturbations on the dynamics of test-planets caused by the secondary star and the detected giant planet. Then we perform a frequency analysis of the orbits to identify of the secular resonance. And finally, we develop a ...

  2. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IV. A 0.61 + 0.45 M_sun binary in a multiple system

    CERN Document Server

    Hełminiak, K G; Rozyczka, M; Kaluzny, J; Ratajczak, M; Borkowski, J; Sybilski, P; Muterspaugh, M W; Reichart, D E; Ivarsen, K M; Haislip, J B; Crain, J A; Foster, A C; Nysewander, M C; LaCluyze, A P

    2012-01-01

    We present the orbital and physical parameters of a newly discovered low-mass detached eclipsing binary from the All-Sky Automated Survey (ASAS) database: ASAS J011328-3821.1 A - a member of a visual binary system with the secondary component separated by about 1.4 seconds of arc. The radial velocities were calculated from the high-resolution spectra obtained with the 1.9-m Radcliffe/GIRAFFE, 3.9-m AAT/UCLES and 3.0-m Shane/HamSpec telescopes/spectrographs on the basis of the TODCOR technique and positions of H_alpha emission lines. For the analysis we used V and I band photometry obtained with the 1.0-m Elizabeth and robotic 0.41-m PROMPT telescopes, supplemented with the publicly available ASAS light curve of the system. We found that ASAS J011328-3821.1 A is composed of two late-type dwarfs having masses of M_1 = 0.612 +/- 0.030 M_sun, M_2 = 0.445 +/- 0.019 M_sun and radii of R_1 = 0.596 +/- 0.020 R_sun, R_2 = 0.445 +/- 0.024 R_sun, both show a substantial level of activity, which manifests in strong H_alp...

  3. Hot subdwarf binaries from the MUCHFUSS project - Analysis of 12 new systems and a study of the short-period binary population

    CERN Document Server

    Kupfer, T; Heber, U; Østensen, R H; Barlow, B N; Maxted, P F L; Heuser, C; Schaffenroth, V; Gänsicke, B T

    2015-01-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions like massive white dwarfs (M>1.0 M$_\\odot$), neutron stars, or stellar-mass black holes. We present orbital and atmospheric parameters and put constraints on the nature of the companions of 12 close hot subdwarf B star (sdB) binaries found in the course of the MUCHFUSS project. The systems show periods between 0.14 and 7.4 days. Three systems most likely have white dwarf companions. SDSS J083006.17+475150.3 is likely to be a rare example of a low-mass helium-core white dwarf. SDSS J095101.28+034757.0 shows an excess in the infrared that probably originates from a third companion in a wide orbit. SDSS J113241.58-063652.8 is the first helium deficient sdO star with a confirmed close companion. This study brings to 142 the number of sdB binaries with orbital periods of less than 30 days and with measured mass functions. We present an analysis of the minimu...

  4. PHASE EQUILIBRIA INVESTIGATION OF BINARY, TERNARY, AND HIGHER ORDER SYSTEMS. PART 9. CALCULATION OF THERMODYNAMIC QUANTITIES FROM PHASE DIAGRAMS

    Science.gov (United States)

    The thermodynamic fundamentals relating phase equilibria in binary and ternary systems to the thermodynamic properties of the phases are reviewed and...system demonstrate the application of the equations for extracting thermodynamic data from phase diagrams and also for the prediction of phase equilibria .

  5. ν Octantis: a conjectured S-type retrograde planet in a spectroscopic binary system

    Science.gov (United States)

    Nelson, Benjamin E.; Ramm, David; Endl, Michael

    2016-01-01

    ν Octantis is a single-lined spectroscopic binary system consisting of a K-giant primary and a secondary orbiting near 1050 days. Radial velocity observations reveal an additional ~400 day periodicity with a semi-amplitude of 40 m/s. If this signal is planetary in nature, the ν Octantis system would be unique amongst all known exoplanet systems in that long-term stability can only be achieved if the orbit is retrograde with respect to the stellar companions (i.e. mutual inclination ~ 180°).Spectral line analyses suggest this signal is unlikely to be due to surface activity or pulsations (Ramm 2015). We also rule out an exotic scenario where the secondary itself is a binary.We report an analysis of 1437 radial velocity measurements taken with HERCULES at the Mt. John Observatory spanning nearly 13 years, 1180 being new iodine iodine-cell velocities (2009-2013). The sensitive orbital dynamics of the two-companion model allow us to constrain the three-dimensional orbital architecture directly from the observations. Posterior samples obtained from an n-body Markov chain Monte Carlo (Nelson et al. 2014) yields a mutual inclination of 158.4 ± 1.2°. None of these are dynamically stable beyond 106 years. However, a grid search around the posterior sample suggests that they are in close proximity to a region of parameter space that is stable for at least 106 years.If real, the tight orbital architecture here imposes a considerable challenge for formation of this dynamically extreme system.

  6. First CCD photometric observation of the W-UMa eclipsing binary system 1SWASP J064501.21+342154.9

    Directory of Open Access Journals (Sweden)

    A. Essam

    2013-12-01

    Full Text Available New BVRI light curves of the eclipsing binary system 1SWASP J064501.21+342154.9 (J0645 have been constructed based on CCD observations that were obtained by using the 1.88-m telescope of Kottamia Astronomical Observatory (KAO, Egypt on January and February, 2013. New times of minima and new ephemeris have been determined from these light curves. Using the Binary Maker 3.0 (BM3 package, a preliminary determination of the geometric and photometric element parameters of the system J0645 is derived.

  7. THE QUASI-ROCHE LOBE OVERFLOW STATE IN THE EVOLUTION OF CLOSE BINARY SYSTEMS CONTAINING A RADIO PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G.; De Vito, M. A. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2015-01-01

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.

  8. Deep, Low Mass Ratio Overcontact Binary Systems. XI. V1191 Cygni

    Science.gov (United States)

    Zhu, L. Y.; Qian, S. B.; Soonthornthum, B.; He, J. J.; Liu, L.

    2011-10-01

    Complete CCD photometric light curves in BV(RI) c bands obtained on one night in 2009 for the short-period close-binary system V1191 Cygni are presented. A new photometric analysis with the 2003 version of the Wilson-Van Hamme code shows that V1191 Cyg is a W-type overcontact binary system and suggests that it has a high degree of overcontact (f = 68.6%) with very low mass ratio, implying that it is at the late stage of overcontact evolution. The absolute parameters of V1191 Cyg are derived using spectroscopic and photometric solutions. Combining new determined times of light minimum with others published in the literature, the period change of the binary star is investigated. A periodic variation, with a period of 26.7 years and an amplitude of 0.023 days, was discovered to be superimposed on a long-term period increase (dP/dt = +4.5(± 0.1) × 10-7 days yr-1). The cyclic period oscillation may be caused by the magnetic activity cycles of either of the components or the light-time effect due to the presence of a third body with a mass of m 3 = 0.77 M sun and an orbital radius of a 3 = 7.6 AU, when this body is coplanar to the orbit of the eclipsing pair. The secular orbital period increase can be interpreted as a mass transfer from the less massive component to the more massive one. With the period increases, V1191 Cyg will evolve from its present low mass ratio, high filled overcontact state to a rapidly rotating single star when its orbital angular momentum is less than three times the total spin angular momentum. V1191 Cyg is too blue for its orbital period and it is an unusual W-type overcontact system with such a low mass ratio and high fill-out overcontact configuration, which is worth monitoring continuously in the future.

  9. Algorithms for searching Fast radio bursts and pulsars in tight binary systems.

    Science.gov (United States)

    Zackay, Barak

    2017-01-01

    Fast radio bursts (FRB's) are an exciting, recently discovered, astrophysical transients which their origins are unknown.Currently, these bursts are believed to be coming from cosmological distances, allowing us to probe the electron content on cosmological length scales. Even though their precise localization is crucial for the determination of their origin, radio interferometers were not extensively employed in searching for them due to computational limitations.I will briefly present the Fast Dispersion Measure Transform (FDMT) algorithm,that allows to reduce the operation count in blind incoherent dedispersion by 2-3 orders of magnitude.In addition, FDMT enables to probe the unexplored domain of sub-microsecond astrophysical pulses.Pulsars in tight binary systems are among the most important astrophysical objects as they provide us our best tests of general relativity in the strong field regime.I will provide a preview to a novel algorithm that enables the detection of pulsars in short binary systems using observation times longer than an orbital period.Current pulsar search programs limit their searches for integration times shorter than a few percents of the orbital period.Until now, searching for pulsars in binary systems using observation times longer than an orbital period was considered impossible as one has to blindly enumerate all options for the Keplerian parameters, the pulsar rotation period, and the unknown DM.Using the current state of the art pulsar search techniques and all computers on the earth, such an enumeration would take longer than a Hubble time. I will demonstrate that using the new algorithm, it is possible to conduct such an enumeration on a laptop using real data of the double pulsar PSR J0737-3039.Among the other applications of this algorithm are:1) Searching for all pulsars on all sky positions in gamma ray observations of the Fermi LAT satellite.2) Blind searching for continuous gravitational wave sources emitted by pulsars with

  10. Double stars with wide separations in the AGK3 - II. The wide binaries and the multiple systems

    CERN Document Server

    Halbwachs, Jean-Louis; Udry, Stéphane

    2016-01-01

    A large observation programme was carried out to measure the radial velocities of the components of a selection of common proper motion (CPM) stars, in order to select the physical binaries. Eighty wide binaries (WBs) were detected, and 39 optical pairs were identified. Adding CPM stars with separations close enough to be almost certain they are physical, a "bias-controlled" sample of 116 wide binaries was obtained, and used to derive the distribution of separations from 100 to 30,000 au. The distribution obtained doesn't match the log-constant distribution, but is in agreement with the log-normal distribution. The spectroscopic binaries detected among the WB components were used to derive statistical informations about the multiple systems. The close binaries in WBs seem to be similar to those detected in other field stars. As for the WBs, they seem to obey the log-normal distribution of periods. The number of quadruple systems is in agreement with the "no correlation" hypothesis; this indicates that an envi...

  11. A new code for quasi-equilibrium initial data of binary neutron stars: corotating, irrotational and slowly spinning systems

    CERN Document Server

    Tsokaros, Antonios; Rezzolla, Luciano

    2015-01-01

    We present the extension of our \\cocal~- Compact Object CALculator - code to compute general-relativistic initial data for asymmetric binary compact-star systems. We construct quasi-equilibrium initial data for spinning binaries and multiple coordinate systems are employed. The Isenberg-Wilson-Mathews formalism is adopted and the constraint equations are solved using the representation formula with a suitable choice of a Green's function. We validate the new code with solutions for equal-mass binaries and explore its capabilities for a wide range of compactnesses, from a white dwarf binary with compactness $\\sim 10^{-4}$, up to a highly relativistic neutron-star binary with compactness $\\sim 0.22$. We also present a comparison with corotating and irrotational quasi-equilibrium sequences from the spectral code \\lorene~\\cite{TG2002b} with different compactness, showing that the results from the two codes agree to a precision of the order of $0.05\\%$. Finally, we present equilibria for spinning configurations wi...

  12. An Analytic Method to determine Habitable Zones for S-Type Planetary Orbits in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Georgakarakos, Nikolaos; Gyergyovits, Markus; Funk, Barbara

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical Habitable Zone arise. Do the radiative and gravitational perturbations of the second star influence the extent of the Habitable Zone significantly, or is it sufficient to consider the host-star only? In this article we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time independent analytical estimates and compare these to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of Habitable Zones towards the secondary in close binary systems.

  13. A new system identification approach to identify genetic variants in sequencing studies for a binary phenotype.

    Science.gov (United States)

    Kang, Guolian; Bi, Wenjian; Zhao, Yanlong; Zhang, Ji-Feng; Yang, Jun J; Xu, Heng; Loh, Mignon L; Hunger, Stephen P; Relling, Mary V; Pounds, Stanley; Cheng, Cheng

    2014-01-01

    We propose in this paper a set-valued (SV) system model, which is a generalized form of logistic (LG) and Probit (Probit) regression, to be considered as a method for discovering genetic variants, especially rare genetic variants in next-generation sequencing studies, for a binary phenotype. We propose a new SV system identification method to estimate all underlying key system parameters for the Probit model and compare it with the LG model in the setting of genetic association studies. Across an extensive series of simulation studies, the Probit method maintained type I error control and had similar or greater power than the LG method, which is robust to different distributions of noise: logistic, normal, or t distributions. Additionally, the Probit association parameter estimate was 2.7-46.8-fold less variable than the LG log-odds ratio association parameter estimate. Less variability in the association parameter estimate translates to greater power and robustness across the spectrum of minor allele frequencies (MAFs), and these advantages are the most pronounced for rare variants. For instance, in a simulation that generated data from an additive logistic model with an odds ratio of 7.4 for a rare single nucleotide polymorphism with a MAF of 0.005 and a sample size of 2,300, the Probit method had 60% power whereas the LG method had 25% power at the α = 10(-6) level. Consistent with these simulation results, the set of variants identified by the LG method was a subset of those identified by the Probit method in two example analyses. Thus, we suggest the Probit method may be a competitive alternative to the LG method in genetic association studies such as candidate gene, genome-wide, or next-generation sequencing studies for a binary phenotype.

  14. A New System Identification Approach to Identifying Genetic Variants in Sequencing Studies for A Binary Phenotype

    Science.gov (United States)

    Kang, Guolian; Bi, Wenjian; Zhao, Yanlong; Zhang, Ji-Feng; Yang, Jun J.; Xu, Heng; Loh, Mignon L.; Hunger, Stephen P.; Relling, Mary V.; Pounds, Stanley; Cheng, Cheng

    2014-01-01

    We propose in this paper a set-valued (SV) system model, which is a generalized form of Logistic (LG) and Probit (Probit) regression, to be considered as a method for discovering genetic variants, especially rare genetic variants in next generation sequencing studies, for a binary phenotype. We propose a new set-valued system identification method to estimate all the underlying key system parameters for the Probit model and compare it with the LG model in the setting of genetic association studies. Across an extensive series of simulation studies, the Probit method maintained Type I error control and had similar or greater power than the LG method which is robust to different distributions of noise: logistic, normal or t distributions. Additionally, the Probit association parameter estimate was 2.7–46.8 fold less variable than the LG log-odds ratio association parameter estimate. Less variability in the association parameter estimate translates to greater power and robustness across the spectrum of minor allele frequencies (MAFs), and these advantages are the most pronounced for rare variants. For instance, in a simulation that generated data from an additive logistic model with odds ratio of 7.4 for a rare single nucleotide polymorphism with a MAF of 0.005 and a sample size of 2300, the Probit method had 60% power whereas the LG method had 25% power at the α=10−6 level. Consistent with these simulation results, the set of variants identified by the LG method was a subset of those identified by the Probit method in two example analyses. Thus, we suggest the Probit method may be a competitive alternative to the LG method in genetic association studies such as candidate gene, genome-wide, or next generation sequencing studies for a binary phenotype. PMID:25096228

  15. A new massive double-lined spectroscopic binary system: The Wolf-Rayet star WR 68a

    Science.gov (United States)

    Collado, A.; Gamen, R.; Barbá, R. H.; Morrell, N.

    2015-09-01

    Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of their components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double-lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 ± 5 M⊙ and 30 ± 4 M⊙, respectively. The equivalent width of the He ii λ4686 emission line shows variations with the orbital phase, presenting a minimum when the WN star is in front of the system. The light curve constructed from available photometric data presents minima in both conjunctions of the system. Table 2 is available in electronic form at http://www.aanda.org

  16. Erosion study of Fe–W binary mixed layer prepared as model system for RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, K., E-mail: kazuyoshi.sugiyama@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Roth, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Alimov, V.Kh. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan); Schmid, K.; Balden, M.; Elgeti, S.; Koch, F.; Höschen, T. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Baldwin, M.J.; Doerner, R.P. [Center for Energy Research, University of California at San Diego, La Jolla, CA (United States); Maier, H.; Jacob, W. [Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-08-15

    Fe–W binary mixed layers were prepared as a model system for reduced-activation ferritic–martensitic (RAFM) steel for studying their dynamic erosion behavior resulting from energetic deuterium (D) irradiation. This investigation aims toward an assessment of RAFM steels as plasma-facing material. The surface composition of the model layers is modified by D irradiation. W is enriched at the surface with D irradiation fluence due to the preferential sputtering of Fe. It depends on the D impinging energy as well as the initial W fraction of the Fe–W layer. No significant development of surface topography was observed within the examined conditions. The erosion yield of a Fe–W layer is comparable to that of pure Fe in the low-fluence range and decreases with increasing D fluence. These results indicate that the dynamic change of erosion yield is significantly correlated with the surface W enrichment.

  17. Be{sub 2}C formation in beryllium-carbon binary system by vacuum heating

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, Kan; Watanabe, Kuniaki [Toyama Univ. (Japan). Hydrogen Isotope Research Center

    1998-01-01

    The surface chemical states of beryllium and carbon binary systems at elevated temperature were investigated by means of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The XPS measurements revealed that the mixed subsurface layers containing Be and C readily yield Be{sub 2}C layers by vacuum heating and ion bombardment. The SIMS measurements showed that hydrogen isotope atoms are trapped by three distinct sites; namely Be, C, and O-sites on the sample surface. The SIMS measurements also showed that carbon atoms lose its ability to bind with hydrogen isotope atoms on forming Be{sub 2}C. It would be a key to control hydrogen inventory when Be and C are used together as PFM. (author)

  18. Fourier transformed infrared spectral investigations of molecular interactions in propionic acid-2-propanol binary system.

    Science.gov (United States)

    Umadevi, M; Thomas, Ammu Elizabeth

    2010-04-01

    FTIR spectra of propionic acid (PA), 2-propanol (PROH) and its binary mixtures with varying molefraction of the PA were recorded in the region 500-3500 cm(-1), to investigate the formation of hydrogen bonded complexes in a mixed system. The observed features in nu(CO), nu(CO) and delta(COH) of PA, nu(CO) of PROH and delta(COH) of PA+PROH have been explained in terms of the hydrogen bonding interactions between PROH and PA and dipole-dipole interaction. The dipole moment derivative for the above mentioned vibrational modes have also been predicted from the integrated absorbance. The intrinsic linewidth for the vibrational modes nu(CO) and delta(COH) of PA has been elucidated using Bondarev and Mardaeva model.

  19. High Mass X-ray Binaries: Progenitors of double neutron star systems

    CERN Document Server

    Chaty, Sylvain

    2015-01-01

    In this review I briefly describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. A previously unknown population of HMXBs hosting supergiant stars has been revealed in the last years, with multi-wavelength campaigns including high energy (INTEGRAL, Swift, XMM, Chandra) and optical/infrared (mainly ESO) observations. This population is divided between obscured supergiant HMXBs, and supergiant fast X-ray transients (SFXTs), characterized by short and intense X-ray flares. I discuss the characteristics of these types of supergiant HMXBs, propose a scenario describing the properties of these high-energy sources, and finally show how the observations can constrain the accretion models (e.g. clumpy winds, magneto-centrifugal barrier, transitory accretion disc, etc). Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of double neutron star systems,...

  20. Non-LTE analysis of subluminous O-star. V - The binary system HD 128220

    Science.gov (United States)

    Gruschinske, J.; Hamann, W. R.; Kudritzki, R. P.; Simon, K. P.; Kaufmann, J. P.

    1983-05-01

    Spectra of the binary system HD 128220 were taken in the UV and in the visual. The hot component - an O subdwarf - is analysed by means of non-LTE calculations. The cool companion has an effective temperature about 5500 ± 500K (Type G). The discussion of the stellar parameters arrives at results which agree with those derived from the mass function (Wallerstein and Wolff, 1966): if both components have about the same mass, these masses lie above 3 M_sun;. An O subdwarf of such a high mass has not yet been found and may be a supernova candidate. However, within the error margin of the orbital data also a mass ratio of MO/MG = 0.5 cannot be excluded, which would lead to stellar parameters which are more common for sdO's.

  1. Is the Hogg 12-NGC 3590 pair a new open cluster binary system?

    Science.gov (United States)

    Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.

    Based on CCD UBVI_(KC) images obtained at Cerro Tololo Inter-American Observatory (CTIO, Chile) and on morphological criteria, as well as on the stellar density in the region, we confirm that Hogg 12 is a genuine open cluster (OC) separated in the sky from NGC 3590 by scarcely 3.6 pc. The colour-magnitude diagrams of Hogg 12, cleaned from field star contamina- tion, reveal that this is a solar metal content cluster, affected by E(B-V) = 0.40 ± 0.05, located at a heliocentric distance d = 2.0 ± 0.5 kpc, and of an age similar to that of NGC 3590. Evidence that these two objects form an OC binary system is presented. A detailed version of this work can be seen in PASP, 122, 516 (2010).

  2. The vapour-liquid equilibria of several binary systems of fluorocarbons and hydrocarbons. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, S. [Inst. fuer Physikalische Chemie, Univ. Goettingen (Germany); Wagner, H.G. [Inst. fuer Physikalische Chemie, Univ. Goettingen (Germany)

    1995-06-01

    The vapour-liquid equilibria of the binary systems perfluoromethylcyclohexane-pentafluorobenzene, benzene-pentafluorobenzene, benzene-methylperfluorobutanoate and perfluoromethylcyclohexane-methylperfluorobutanoate have been measured at 333.07 K and 343.12 K using a dynamic circulation still of the Sieg-Roeck type. The thermodynamic consistency of the measurements was tested by two different methods. New UNIFAC interaction parameters [1] were calculated for the following groups: ACH-ACF, ACF-CF{sub 2}, CF{sub 2}-COO, ACCH{sub 2}-ACF, ACH-CF{sub 2}. The abbreviations stand for the following increments: ACH = aromatic CH group, ACF = aromatic CF group, CF{sub 2} = aliphatic CF{sub 2} group, COO = ester group and ACCH{sub 2} = side chain CH group. (orig.)

  3. APPLICATION OF BINARY DESCRIPTORS TO MULTIPLE FACE TRACKING IN VIDEO SURVEILLANCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. L. Oleinik

    2016-07-01

    Full Text Available Subject of Research. The paper deals with the problem of multiple face tracking in a video stream. The primary application of the implemented tracking system is the automatic video surveillance. The particular operating conditions of surveillance cameras are taken into account in order to increase the efficiency of the system in comparison to existing general-purpose analogs. Method. The developed system is comprised of two subsystems: detector and tracker. The tracking subsystem does not depend on the detector, and thus various face detection methods can be used. Furthermore, only a small portion of frames is processed by the detector in this structure, substantially improving the operation rate. The tracking algorithm is based on BRIEF binary descriptors that are computed very efficiently on modern processor architectures. Main Results. The system is implemented in C++ and the experiments on the processing rate and quality evaluation are carried out. MOTA and MOTP metrics are used for tracking quality measurement. The experiments demonstrated the four-fold processing rate gain in comparison to the baseline implementation that processes every video frame with the detector. The tracking quality is on the adequate level when compared to the baseline. Practical Relevance. The developed system can be used with various face detectors (including slow ones to create a fully functional high-speed multiple face tracking solution. The algorithm is easy to implement and optimize, so it may be applied not only in full-scale video surveillance systems, but also in embedded solutions integrated directly into cameras.

  4. High pressure phase transition in Zr–Ni binary system: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Debojyoti, E-mail: debojyoti@barc.gov.in; Sahoo, B.D.; Joshi, K.D.; Gupta, Satish C.

    2015-11-05

    Total energy calculations have been performed on zirconium–nickel (with 50% nickel by atom) binary system to examine its structural stability under high pressure. The evolutionary structure search method in conjunction with density functional theory based projector augmented wave (PAW) method suggested that at zero pressure an orthorhombic phase with space group symmetry Cmcm is the lowest enthalpy structure, in agreement with the experiments. Further, it has been predicted that upon compression at ∼10 GPa, this structure will transform to a lower symmetry triclinic phase (space group P-1) which will remain stable up to ∼50 GPa, the maximum pressure of the present calculations. To support the results of our static lattice calculations, we performed lattice dynamic calculations also on Cmcm and P-1 structures. Lattice dynamic calculations correctly showed that at ambient condition the Cmcm phase is dynamically stable. Further, these calculations carried around the Cmcm to P-1 transition pressure predicted that the Cmcm phase will become unstable dynamically due to failure of acoustic zone boundary phonons, suggesting that the Cmcm to P-1 transition is phonon driven. For P-1 phase our calculations showed that this structure is dynamically stable not only at high pressures but also at ambient condition, indicating that at pressure lower than 10 GPa this phase could be a metastable structure. Further, we have calculated the elastic constants for both the phase at various pressures. - Highlights: • Pressure induced phonon driven orthorhombic to triclinic phase transformations in Zr–Ni binary system at ∼10 GPa. • Elastic and lattice dynamic stability of orthorhombic and triclinic phase. • Exploitation of evolutionary structure searching method to explore high pressure phase of Zr–Ni material.

  5. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke [University of Vienna, Institute for Astrophysics, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at [Institute for Astronomy and NASA Astrobiology Institute, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  6. Spitzer as Microlens Parallax Satellite: Mass and Distance Measurements of Binary Lens System OGLE-2014-BLG-1050L

    CERN Document Server

    Zhu, Wei; Gould, A; Dominik, M; Bozza, V; Han, C; Yee, J C; Novati, S Calchi; Beichman, C A; Carey, S; Poleski, R; Skowron, J; Kozlowski, S; Mroz, P; Pietrukowicz, P; Pietrzynski, G; Szymanski, M K; Soszynski, I; Ulaczyk, K; Wyrzykowski, L; Han, C; Gaudi, B S; Pogge, R W; DePoy, D L; Jung, Y K; Choi, J -Y; Hwang, K -H; Shin, I -G; Park, H; Jeong, J

    2015-01-01

    We report the first mass and distance measurement of a caustic-crossing binary system OGLE-2014-BLG-1050L using the space-based microlens parallax method. \\emph{Spitzer} captured the second caustic-crossing of the event, which occurred $\\sim$10 days before that seen from Earth. Due to the coincidence that the source-lens relative motion was almost parallel to the direction of the binary-lens axis, the four-fold degeneracy, which was known before only to occur in single-lens events, persists in this case, leading to either a lower-mass (0.2 $M_\\odot$ and 0.07 $M_\\odot$) binary at $\\sim$1.1 kpc or a higher-mass (0.9 $M_\\odot$ and 0.35 $M_\\odot$) binary at $\\sim$3.5 kpc. However, the latter solution is strongly preferred for reasons including blending and lensing probability. OGLE-2014-BLG-1050L demonstrates the power of microlens parallax in probing stellar and substellar binaries.

  7. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  8. V773 Cas, QS Aql, and BR Ind: Eclipsing Binaries as Parts of Multiple Systems

    Science.gov (United States)

    Zasche, P.; Juryšek, J.; Nemravová, J.; Uhlař, R.; Svoboda, P.; Wolf, M.; Hoňková, K.; Mašek, M.; Prouza, M.; Čechura, J.; Korčáková, D.; Šlechta, M.

    2017-01-01

    Eclipsing binaries remain crucial objects for our understanding of the universe. In particular, those that are components of multiple systems can help us solve the problem of the formation of these systems. Analysis of the radial velocities together with the light curve produced for the first time precise physical parameters of the components of the multiple systems V773 Cas, QS Aql, and BR Ind. Their visual orbits were also analyzed, which resulted in slightly improved orbital elements. What is typical for all these systems is that their most dominant source is the third distant component. The system V773 Cas consists of two similar G1-2V stars revolving in a circular orbit and a more distant component of the A3V type. Additionally, the improved value of parallax was calculated to be 17.6 mas. Analysis of QS Aql resulted in the following: the inner eclipsing pair is composed of B6V and F1V stars, and the third component is of about the B6 spectral type. The outer orbit has high eccentricity of about 0.95, and observations near its upcoming periastron passage between the years 2038 and 2040 are of high importance. Also, the parallax of the system was derived to be about 2.89 mas, moving the star much closer to the Sun than originally assumed. The system BR Ind was found to be a quadruple star consisting of two eclipsing K dwarfs orbiting each other with a period of 1.786 days; the distant component is a single-lined spectroscopic binary with an orbital period of about 6 days. Both pairs are moving around each other on their 148 year orbit. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 091.D-0122(A), 094.A-9029(D), 095.A-9032(A), and 096.A-9039(A) and also on data from the 2 m telescope at the Ondřejov observatory in the Czech Republic

  9. Directed searches for continuous gravitational waves from spinning neutron stars in binary systems

    Science.gov (United States)

    Meadors, Grant David

    2014-09-01

    Gravitational wave detectors such as the Laser Interferometer Gravitational-wave Observatory (LIGO) seek to observe ripples in space predicted by General Relativity. Black holes, neutron stars, supernovae, the Big Bang and other sources can radiate gravitational waves. Original contributions to the LIGO effort are presented in this thesis: feedforward filtering, directed binary neutron star searches for continuous waves, and scientific outreach and education, as well as advances in quantum optical squeezing. Feedforward filtering removes extraneous noise from servo-controlled instruments. Filtering of the last science run, S6, improves LIGO's astrophysical range (+4.14% H1, +3.60% L1: +12% volume) after subtracting noise from auxiliary length control channels. This thesis shows how filtering enhances the scientific sensitivity of LIGO's data set during and after S6. Techniques for non-stationarity and verifying calibration and integrity may apply to Advanced LIGO. Squeezing is planned for future interferometers to exceed the standard quantum limit on noise from electromagnetic vacuum fluctuations; this thesis discusses the integration of a prototype squeezer at LIGO Hanford Observatory and impact on astrophysical sensitivity. Continuous gravitational waves may be emitted by neutron stars in low-mass X-ray binary systems such as Scorpius X-1. The TwoSpect directed binary search is designed to detect these waves. TwoSpect is the most sensitive of 4 methods in simulated data, projecting an upper limit of 4.23e-25 in strain, given a year-long data set at an Advanced LIGO design sensitivity of 4e-24 Hz. (-1/2). TwoSpect is also used on real S6 data to set 95% confidence upper limits (40 Hz to 2040 Hz) on strain from Scorpius X-1. A millisecond pulsar, X-ray transient J1751-305, is similarly considered. Search enhancements for Advanced LIGO are proposed. Advanced LIGO and fellow interferometers should detect gravitational waves in the coming decade. Methods in these

  10. Glancing through the accretion column of EXO 2030+375

    Science.gov (United States)

    Ferrigno, Carlo; Pjanka, Patryk; Bozzo, Enrico; Klochkov, Dmitry; Ducci, Lorenzo; Zdziarski, Andrzej A.

    2016-09-01

    Context. The current generation of X-ray instruments progressively reveals more and more details about the complex magnetic field topology and the geometry of the accretion flows in highly magnetized accretion-powered pulsars. Aims: We took advantage of the large collecting area and good timing capabilities of the EPIC cameras onboard XMM-Newton to investigate the accretion geometry onto the magnetized neutron star hosted in the high-mass X-ray binary EXO 2030+375 during the rise of a source type I outburst in 2014. Methods: We carried out a timing and spectral analysis of the XMM-Newton observation as a function of the neutron star spin phase. We used a phenomenological spectral continuum model comprising the required fluorescence emission lines. Two neutral absorption components are present: one covering the source fully, one only partially. The same analysis was also carried out on two Suzaku observations of the source performed during outbursts in 2007 and 2012, to search for possible spectral variations at different luminosities. Results: The XMM-Newton data caught the source at an X-ray luminosity of 2 × 1036 erg s-1 and revealed a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. Based on the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from the Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (≳2 × 1037 erg s-1). Conclusions: This discovery allowed us to derive additional constraints on the physical properties of the accretion flow in this object at relatively small distances from the neutron star surface. The narrow dip-like feature in the

  11. New Low Accretion-Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables

    CERN Document Server

    Schmidt, G D; Vanlandingham, K M; Anderson, S F; Barentine, J C; Brewington, H J; Hall, P B; Harvanek, M; Kleinman, S J; Krzesínski, J; Long, D; Margon, B; Neilsen, E H; Newman, P R; Nitta, A; Schneider, D P; Snedden, S A

    2005-01-01

    Discoveries of two new white dwarf plus M star binaries with striking optical cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to six the total number of X-ray faint, magnetic accretion binaries that accrete at rates 3 hr. Optical surveys for the cyclotron harmonics appear to be the only means of discovery, so the space density of pre-Polars could rival that of Polars, and the binaries provide an important channel of progenitors (in addition to the asynchronous Intermediate Polars). Both physical and SDSS observational selection effects are identified that may help to explain the clumping of all six systems in a narrow range of magnetic field strength around 60 MG.

  12. Spectroscopic Analysis of Subluminous B Stars in Binaries - Four Candidate Systems with Neutron Star/Black Hole Companions Discovered

    CERN Document Server

    Geier, S; Edelmann, H; Heber, U; Napiwotzki, R

    2006-01-01

    The masses of compact objects like white dwarfs, neutron stars and black holes are fundamental to astrophysics, but very difficult to measure. We present the results of an analysis of subluminous B (sdB) stars in close binary systems with unseen compact companions to derive their masses and clarify their nature. Radial velocity curves were obtained from time resolved spectroscopy. The atmospheric parameters were determined in a quantitative spectral analysis. With high resolution spectra we were able to measure the projected rotational velocity of the stars with high accuracy. The assumption of orbital synchronization made it possible to constrain inclination angle and companion mass of the binaries. Five invisible companions have masses that are compatible with white dwarfs or late type main sequence stars. But four sdBs have very massive companions like heavy white dwarfs, neutron stars or even black holes. Such a high fraction of massive compact companions can not be explained with current models of binary...

  13. NUMERICAL ANALYSES FOR TREATING DIFFUSION IN SINGLE-, TWO-, AND THREE-PHASE BINARY ALLOY SYSTEMS

    Science.gov (United States)

    Tenney, D. R.

    1994-01-01

    This package consists of a series of three computer programs for treating one-dimensional transient diffusion problems in single and multiple phase binary alloy systems. An accurate understanding of the diffusion process is important in the development and production of binary alloys. Previous solutions of the diffusion equations were highly restricted in their scope and application. The finite-difference solutions developed for this package are applicable for planar, cylindrical, and spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included to account for differences in modal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. In each analysis, an effort was made to achieve good accuracy while minimizing computation time. The solutions to the diffusion equations for single-, two-, and threephase binary alloy systems are numerically calculated by the three programs NAD1, NAD2, and NAD3. NAD1 treats the diffusion between pure metals which belong to a single-phase system. Diffusion in this system is described by a one-dimensional Fick's second law and will result in a continuous composition variation. For computational purposes, Fick's second law is expressed as an explicit second-order finite difference equation. Finite difference calculations are made by choosing the grid spacing small enough to give convergent solutions of acceptable accuracy. NAD2 treats diffusion between pure metals which form a two-phase system. Diffusion in the twophase system is described by two partial differential equations (a Fick's second law for each phase) and an interface-flux-balance equation which describes the location of the interface. Actual interface motion is obtained by a mass conservation procedure. To account for changes in the thicknesses of the two phases as diffusion

  14. Observations on the Re-Emergence of a Binary System in UK Universities for Economics Degree Programmes

    Science.gov (United States)

    Talbot, Steve; Reeves, Alan; Johnston, James

    2014-01-01

    An audit of economics provision shows that over the past decade economics has disappeared from large parts of the UK's higher education landscape, especially the post-1992 universities. In the north of Britain the binary system has effectively re-emerged leaving many potential students unable to study key subjects such as economics. Post-1992…

  15. Observations on the Re-Emergence of a Binary System in UK Universities for Economics Degree Programmes

    Science.gov (United States)

    Talbot, Steve; Reeves, Alan; Johnston, James

    2014-01-01

    An audit of economics provision shows that over the past decade economics has disappeared from large parts of the UK's higher education landscape, especially the post-1992 universities. In the north of Britain the binary system has effectively re-emerged leaving many potential students unable to study key subjects such as economics. Post-1992…

  16. Disc-protoplanet interaction Influence of circumprimary radiative discs on self-gravitating protoplanetary bodies in binary star systems

    CERN Document Server

    Gyergyovits, M; Lohinger, E Pilat -; Theis, Ch

    2014-01-01

    Context. More than 60 planets have been discovered so far in systems that harbour two stars, some of which have binary semi-major axes as small as 20 au. It is well known that the formation of planets in such systems is strongly influenced by the stellar components, since the protoplanetary disc and the particles within are exposed to the gravitational influence of the binary. However, the question on how self-gravitating protoplanetary bodies a?ect the evolution of a radiative, circumprimary disc is still open. Aims. We present our 2D hydrodynamical GPU-CPU code and study the interaction of several thousands of self-gravitating particles with a viscous and radiative circumprimary disc within a binary star system. To our knowledge this program is the only one at the moment that is capable to handle this many particles and to calculate their influence on each other and on the disc. Methods. We performed hydrodynamical simulations of a circumstellar disc assuming the binary system to be coplanar. Our gridbased ...

  17. A new massive double-lined spectroscopic binary system: The Wolf-Rayet star WR 68a

    CERN Document Server

    Collado, A; Barbá, R H; Morrell, N

    2015-01-01

    Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of their components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double- lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 +/- 5 Msun and 30 +/- 4 Msun , respectively. The equivalent width of the He II {\\lambda}4686 emission ...

  18. Assessments of applicability of Q and RMi systems in binary tunnels of Bakhtiari dam_ Iran

    Directory of Open Access Journals (Sweden)

    Farshad Nejadshahmohamad

    2013-06-01

    Full Text Available The main rock mass classification systems make use of similar rock mass parameters. Due to lack of comprehensive estimation systems, determining the real specifications of jointed rocks faces some difficulties. A vast number of parameters with various degrees of impact are involved in such definitions. Combination impact of all the effective parameters is to be figured out in order to come up with an acceptable value. Different classification systems have some well-known drawbacks and limitations mainly due to their empirical base. However, they are still very useful in practice. Therefore, there is a need to improve their efficiency. Two of these classification systems are the RMi and the Q-system. Bakhtiari dam site is located in the southwest of Iran. The project area consists of the sedimentary bedrocks of Sarvak and Garau formations. The Sarvak Formation is divided into 7 units from Sv1 (oldest to Sv7 (youngest. Deviation system of Bakhtiari dam includes two tunnels, namely upper and lower tunnels. In this paper, the result of geological scanning of rock masses in seven geological zones hosting binary tunnels of Bakhtiari dam have been utilized. This information along with data produced from many different laboratory tests have been used to estimate the values of Q and RMi for each of the geological zones. The pros and cons of both systems are revealed and relationships are driven between the two systems through statistical analysis. The paper also shows that there are good correlations between the two systems. Finally, the support details suggested by each system are determined.

  19. Heat Transfer of Single and Binary Systems inPool Boiling

    Directory of Open Access Journals (Sweden)

    Abbas J. Sultan

    2010-01-01

    Full Text Available The present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltmeter and ammeter readings. A water cooled coil condenses the vapor produced by the heat input and the liquid formed returns to the cylinder for re-evaporation.The boiling results show that the nucleate pool boiling heat transfer coefficients of binary mixtures were always lower than the pure components nucleate pool boiling heat transfer coefficients. This confirmed that the mass transfer resistance to the movement of the more volatile component was responsible for decrease in heat transfer and that the maximum deterioration that was observed at a point was the absolute concentration differences between vapor and liquid phases at their maximum. All the data points were tested with the most widely known correlations namely those of Calus-Leonidopoulos, Fujita and Thome. It was found that Thome's correlation is the more representative form, for it gave the least mean and standard deviations

  20. A close-pair binary in a distant triple supermassive black-hole system

    CERN Document Server

    Deane, R P; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H -R; Grainge, K; Rumsey, C

    2014-01-01

    Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass $\\sim$10$^9$ M$_\\odot$ (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs. Here we report observations of a triple black hole system at redshift z=0.39, with the closest pair separated by $\\sim$140 parsecs. The presence of the tight pair is imprinted onto the properties of the large-scale radio jets, as a rotationally-symmetric helical modulation, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs ar...

  1. Asteroid flux towards circumprimary habitable zones in binary star systems: I. Statistical Overview

    CERN Document Server

    Bancelin, D; Eggl, S; Maindl, T I; Schäfer, C; Speith, R; Dvorak, R

    2015-01-01

    So far, multiple stellar systems harbor more than 130 extra solar planets. Dynamical simulations show that the outcome of planetary formation process can lead to various planetary architecture (i.e. location, size, mass and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (hereafter HZ). In this study, we make a comparison of several binary star systems and their efficiency to move icy asteroids from beyond the snow-line into orbits crossing the HZ. We modeled a belt of 10000 asteroids (remnants from the late phase of planetary formation process) beyond the snow-line. The planetesimals are placed randomly around the primary star and move under the gravitational influence of the two stars and a gas giant. As the planetesimals do not interact with each other, we divided the belt into 100 subrings ...

  2. PSR J1753-2240: A mildly recycled pulsar in an eccentric binary system

    CERN Document Server

    Keith, M J; Lyne, A G; Eatough, R P; Stairs, I H; Possenti, A; Camilo, F; Manchester, R N

    2008-01-01

    We report the discovery of PSR J1753-2240 in the Parkes Multibeam Pulsar Survey database. This 95-ms pulsar is in an eccentric binary system with a 13.6-day orbital period. Period derivative measurements imply a characteristic age in excess of 1 Gyr, suggesting that the pulsar has undergone an episode of accretion-induced spin-up. The eccentricity and spin period are indicative of the companion being a second neutron star, so that the system is similar to that of PSR J1811-1736, although other companion types cannot be ruled out at this time. The companion mass is constrained by geometry to lie above 0.48 solar masses, although long-term timing observations will give additional constraints. If the companion is a white dwarf or main sequence star, optical observations may yield a direct detection of the companion. If the system is indeed one of the few known double neutron star systems, it would lie significantly far from the recently proposed spin-period/eccentricity relationship.

  3. Binary blend of carbon dioxide and fluoro ethane as working fluid in transcritical heat pump systems

    Directory of Open Access Journals (Sweden)

    Zhang Xian-Ping

    2015-01-01

    Full Text Available As an eco-friendly working fluid, carbon dioxide or R744 is expected to substitute for the existing working fluids used in heat pump systems. It is, however, challenged by the much higher heat rejection pressure in transcritical cycle compared with the traditional subcritical cycle using freons. There exists a worldwide tendency to utilize blend refrigerants as alternatives. Therefore, a new binary blend R744/R161 in this research is proposed in order to decrease the heat rejection pressure. Meanwhile, on mixing R744 with R161, the flammability and explosivity of R161 can be suppressed because of the extinguishing effect of R744. A transcritical thermodynamic model is developed, and then the system performances of heat pump using R744/R161 blend are investigated and compared with those of pure R744 system under the same operation conditions. The variations of heat rejection pressure, heating coefficient of performance, unit volumetric heating capacity, discharge temperature of compressor and the mass fraction of R744/R161 are researched. The results show that R744/R161 mixture can reduce the heat rejection pressure of transcritical heat pump system.

  4. Demodulation of acoustic telemetry binary phase shift keying signal based on high-order Duffing system

    Science.gov (United States)

    Yan, Bing-Nan; Liu, Chong-Xin; Ni, Jun-Kang; Zhao, Liang

    2016-10-01

    In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. Project supported by the National Natural Science Foundation of China (Grant No. 51177117) and the National Key Science & Technology Special Projects, China (Grant No. 2011ZX05021-005).

  5. Novel endo- to exo-isomerization of dicyclopentadiene

    Institute of Scientific and Technical Information of China (English)

    Xiang Wen Zhang; Kai Jiang; Qiang Jiang; Ji Jun Zou; Li Wang; Zhen Tao Mi

    2007-01-01

    Endo-dicyclopentadiene was isomerized to exo-isomer by thermal treatment at evaluated temperature and pressure.The reaction temperature and pressure are key factors for this novel isomerization.This result may have great potential for practical application.

  6. Characterization of Large Area APDs for the EXO-200 Detector

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, R.; LePort, F.; Pocar, A.; /Stanford U., Phys. Dept.; Kumar, K.; /Massachusetts U., Amherst; Odian, A.; Prescott, C.Y.; /SLAC; Tenev, V.; /Stanford U., Phys. Dept.; Ackerman, N.; /SLAC; Akimov, D.; /Moscow, ITEP; Auger, M.; /Bern U., LHEP; Benitez-Medina, C.; /Colorado State U.; Breidenbach, M.; /SLAC; Burenkov, A.; /Moscow, ITEP; Conley, R.; /SLAC; Cook, S.; /Colorado State U.; deVoe, R.; Dolinski, M.J.; /Stanford U., Phys. Dept.; Fairbank, W., Jr.; /Colorado State U.; Farine, J.; /Laurentian U.; Fierlinger, P.; Flatt, B.; /Stanford U., Phys. Dept. /Bern U., LHEP /Stanford U., Phys. Dept. /Maryland U. /Colorado State U. /Laurentian U. /Carleton U. /SLAC /Maryland U. /Moscow, ITEP /Alabama U. /SLAC /Colorado State U. /Stanford U., Phys. Dept. /Alabama U. /Stanford U., Phys. Dept. /Alabama U. /SLAC /Carleton U. /SLAC /Maryland U. /Moscow, ITEP /Carleton U. /Stanford U., Phys. Dept. /Bern U., LHEP /SLAC /Laurentian U. /SLAC /Maryland U.

    2011-12-02

    EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-low-background liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169 K - the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.

  7. Characterization of large area APDs for the EXO-200 detector

    CERN Document Server

    Neilson, R; Pocar, A; Kumar, K; Odian, A; Prescott, C Y; Tenev, V; Ackerman, N; Akimov, D; Auger, M; Benitez-Medina, C; Breidenbach, M; Burenkov, A; Conley, R; Cook, S; deVoe, R; Dolinski, M J; Fairbank, W; Farine, J; Fierlinger, P; Flatt, B; Gornea, R; Gratta, G; Green, M; Hall, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Hodgson, J; Kaufman, L J; Kovalenko, A; Leonard, D S; Mackay, D; Mong, B; Diez, M Montero; Niner, E; O'Sullivan, K; Piepke, A; Rowson, P C; Sinclair, D; Skarpaas, K; Slutsky, S; Stekhanov, V; Strickland, V; Twelker, K; Vuilleumier, J -L; Wamba, K; Wichoski, U; Wodin, J; Yang, L; Yen, Y -R

    2009-01-01

    EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-low-background liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169K - the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.

  8. New Close Binary Systems from the SDSS-I (Data Release Five) and the Search for Magnetic White Dwarfs in Cataclysmic Variable Progenitor Systems

    CERN Document Server

    Silvestri, Nicole M; Hawley, Suzanne L; West, Andrew A; Schmidt, Gary D; Liebert, James; Szkody, Paula; Mannikko, Lee; Wolfe, Michael A; Barentine, J C; Brewington, Howard J; Harvanek, Michael; Krzesinski, Jurik; Long, Dan; Schneider, Donald P; Snedden, Stephanie A

    2007-01-01

    We present the latest catalog of more than 1200 spectroscopically-selected close binary systems observed with the Sloan Digital Sky Survey through Data Release Five. We use the catalog to search for magnetic white dwarfs in cataclysmic variable progenitor systems. Given that approximately 25% of cataclysmic variables contain a magnetic white dwarf, and that our large sample of close binary systems should contain many progenitors of cataclysmic variables, it is quite surprising that we find only two potential magnetic white dwarfs in this sample. The candidate magnetic white dwarfs, if confirmed, would possess relatively low magnetic field strengths (B_WD < 10 MG) that are similar to those of intermediate-Polars but are much less than the average field strength of the current Polar population. Additional observations of these systems are required to definitively cast the white dwarfs as magnetic. Even if these two systems prove to be the first evidence of detached magnetic white dwarf + M dwarf binaries, th...

  9. Enantiomeric 3-chloromandelic acid system: binary melting point phase diagram, ternary solubility phase diagrams and polymorphism.

    Science.gov (United States)

    Le Minh, Tam; von Langermann, Jan; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2010-09-01

    A systematic study of binary melting point and ternary solubility phase diagrams of the enantiomeric 3-chloromandelic acid (3-ClMA) system was performed under consideration of polymorphism. The melting point phase diagram was measured by means of thermal analysis, that is, using heat-flux differential scanning calorimetry (DSC). The results reveal that 3-ClMA belongs to the racemic compound-forming systems. Polymorphism was found for both the enantiomer and the racemate as confirmed by X-ray powder diffraction analysis. The ternary solubility phase diagram of 3-ClMA in water was determined between 5 and 50 degrees C by the classical isothermal technique. The solubilities of the pure enantiomers are extremely temperature-dependent. The solid-liquid equilibria of racemic 3-ClMA are not trivial due to the existence of polymorphism. The eutectic composition in the chiral system changes as a function of temperature. Further, solubility data in the alternative solvent toluene are also presented.

  10. Anomalous Accretion Activity and the Spotted Nature of the DQ Tau Binary System

    CERN Document Server

    Bary, Jeffrey S

    2014-01-01

    We report the detection of an anomalous accretion flare in the tight eccentric pre-main-sequence binary system DQ Tau. In a multi-epoch survey consisting of randomly acquired low to moderate resolution near-infrared spectra obtained over a period of almost ten years, we detect a significant and simultaneous brightening of four standard accretion indicators (CaII infrared triplet, the Paschen and Brackett series HI lines, and HeI 1.083 um), on back-to-back nights (phase = 0.372, 0.433) with the flare increasing in strength as the system approached apastron (phase = 0.5). The mass accretion rate measured for the anomalous flare is nearly an order of magnitude stronger than the average quiescent rate. While previous observations established that frequent, periodic accretion flares phased with periastron passages occur in this system, these data provide evidence that orbitally-modulated accretion flares occur near apastron, when the stars make their closest approach to the circumbinary disk. The timing of the fla...

  11. Direct Detection of a (Proto)Binary-Disk System in IRAS 20126+4104

    CERN Document Server

    Sridharan, T K; Fuller, G A

    2005-01-01

    We report the direct detection of a binary/disk system towards the high-mass (proto)stellar object IRAS20126+4104 at infrared wavengths. The presence of a multiple system had been indicated by the precession of the outflow and the double jet system detected earlier at cm-wavelengths. Our new K, L' & M' band infrared images obtained with the UKIRT under exceptional seeing conditions on Mauna Kea are able to resolve the central source for the first time, and we identify two objects separated by ~ 0.5'' (850 AU). The K and L' images also uncover features characteristic of a nearly edge-on disk, similar to many low mass protostars with disks: two emission regions oriented along an outflow axis and separated by a dark lane. The peaks of the L' & M' band and mm-wavelength emission are on the dark lane, presumably locating the primary young star. The thickness of the disk is measured to be ~ 850 AU for radii < 1000 AU. Approximate limits on the NIR magnitudes of the two young stars indicate a high-mass sy...

  12. The Parallax, Mass and Age of the PSR J2145-0750 binary system

    CERN Document Server

    Löhmer, O; Driebe, T; Jessner, A; Mitra, D; Lyne, A G

    2004-01-01

    We present results of timing measurements of the binary millisecond pulsar PSR J2145-0750. Combining timing data obtained with the Effelsberg and Lovell radio telescopes we measure a significant timing parallax of 2.0(6) mas placing the system at 500 pc distance to the solar system. The detected secular change of the projected semi-major axis of the orbit $\\dot x=1.8(6)\\times 10^{-14}$ lt-s s$^{-1}$, where $x=(a_{\\rm p}\\sin i)/c$, is caused by the proper motion of the system. With this measurement we can constrain the orbital inclination angle to $i<61\\degr$, with a median likelihood value of $46\\degr$ which is consistent with results from polarimetric studies of the pulsar magnetosphere. This constraint together with the non-detection of Shapiro delay rules out certain combinations of the companion mass, $m_2$, and the inclination, $i$. For typical neutron star masses and using optical observations of the carbon/oxygen-core white dwarf we derive a mass range for the companion of $0.7 M_\\odot\\leq m_2\\leq 1...

  13. New Results for Two Optically Faint Low Mass X-Ray Binary Systems

    CERN Document Server

    Wachter, S

    1997-01-01

    We present optical photometry of the low mass X-ray binary systems GX 349+2 and Ser X-1. Extensive VRI photometry of the faint optical counterpart (V=18.4) to GX 349+2 reveals a period of 22.5 +/- 0.1 h and half-amplitude 0.2 mag. This result confirms and extends our previously reported 22~h period. No color change is detected over the orbit, although the limits are modest. We also report the discovery of two new variable stars in the field of GX 349+2, including a probable W UMa system. Ser X-1 is one of the most intense persistent X-ray burst sources known. It is also one of only three burst systems for which simultaneous optical and X-ray bursts have been observed. The faint blue optical counterpart MM Ser (B~19.2) has long been known to have a companion 2.1" distant. Our images indicate that MM Ser is itself a further superposition of two stars, separated by only 1". At the very least, the ratio of inferred burst to quiescent optical flux is affected by the discovery of this additional component. In the w...

  14. Barium Tagging in Liquid Xenon for the nEXO Experiment

    Science.gov (United States)

    Kravitz, Scott; nEXO Collaboration

    2016-09-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of xenon-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a MAJORANA particle, as well as measure the absolute neutrino mass scale. In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, barium-136. Barium tagging may be available for a second phase of nEXO operation, allowing for neutrino mass sensitivity beyond the inverted mass hierarchy. Tagging methods for this phase include barium-ion capture on a probe with identification by resonance ionization laser spectroscopy. Inclusion of an argon ion gun in this system allows for improved cleaning and preparation of the barium deposition substrate, with recent results reported in this presentation.

  15. The magnetic field of the double-lined spectroscopic binary system HD 5550

    Science.gov (United States)

    Alecian, E.; Tkachenko, A.; Neiner, C.; Folsom, C. P.; Leroy, B.

    2016-05-01

    Context. The origin of fossil fields in intermediate- and high-mass stars is poorly understood, as is the interplay between binarity and magnetism during stellar evolution. Thus we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems as a function of binarity properties. Aims: This paper specifically aims to characterise the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate mass. Methods: We gathered 25 high-resolution spectropolarimetric observations of HD 5550 using the instrument Narval. We first fitted the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light ratio of the system. We then applied the multi-line least-square deconvolution (LSD) technique to the intensity and circularly polarised spectra, which provided us with mean LSD I and V line profiles. We fitted the Stokes I line profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the V profiles using the oblique rotator model to characterise the magnetic fields of both stars. Results: We confirm the Ap nature of the primary, which has previously been reported, and find that the secondary displays spectral characteristics typical of an Am star. While a magnetic field is clearly detected in the lines of the primary, no magnetic field is detected in the secondary in any of our observations. If a dipolar field were present at the surface of the Am star, its polar strength must be below 40 G. The faint variability observed in the Stokes V profiles of the Ap star allowed us to propose a rotation period of 6.84-0.39+0.61 d, which is close to the orbital period (~6.82 d), suggesting that the star is synchronised with its orbit. By fitting the variability of the V profiles, we propose that the

  16. The Binary Fission Model for the Formation of the Pluto system

    Science.gov (United States)

    Prentice, Andrew

    2016-10-01

    The ratio F of the mass of Pluto (P) to Charon (C), viz. F ≈ 8:1, is the largest ratio of any planet-satellite pair in the solar system. Another measure of the PC binary is its normalized angular momentum density J (see McKinnon 1989). Analysis of astrometric data (Brozovic et al 2015) acquired before the New Horizons (NH) arrival at Pluto and new measurements made by NH (Stern et al 2015) show that J = 0.39. Yet these F & J values are ones expected if the PC binary had formed by the rotational fission of a single liquid mass (Darwin 1902; Lyttleton 1953). At first glance, therefore, the fission model seems to be a viable model for the formation of the Pluto system. In fact, Prentice (1993 Aust J Astron 5 111) had used this model to successfully predict the existence of several moons orbiting beyond Charon, before their discovery in 2005-2012. The main problem with the fission model is that the observed mean density of Charon, namely 1.70 g/cm3, greatly exceeds that of water ice. Charon thus could not have once been a globe of pure water. Here I review the fission model within the framework of the modern Laplacian theory of solar system origin (Prentice 1978 Moon Planets 19 341; 2006 PASA 23 1) and the NH results. I assume that Pluto and Charon were initially a single object (proto-Pluto [p-P]) which had condensed within the same gas ring shed by the proto-solar cloud at orbital distance ~43 AU, where the Kuiper belt was born. The temperature of this gas ring is 26 K and the mean orbit pressure is 1.3 × 10-9 bar. After the gas ring is shed, chemical condensation takes place. The bulk chemical composition of the condensate is anhydrous rock (mass fraction 0.5255), graphite (0.0163), water ice (0.1858), CO2 ice (0.2211) and methane ice (0.0513). Next I assume that melting of the ices in p-P takes place through the decay of short-lived radioactive nuclides, thus causing internal segregation of the rock & graphite. Settling of heavy grains to the centre lowers the

  17. Double stars with wide separations in the AGK3 - II. The wide binaries and the multiple systems*

    Science.gov (United States)

    Halbwachs, J.-L.; Mayor, M.; Udry, S.

    2017-02-01

    A large observation programme was carried out to measure the radial velocities of the components of a selection of common proper motion (CPM) stars to select the physical binaries. 80 wide binaries (WBs) were detected, and 39 optical pairs were identified. By adding CPM stars with separations close enough to be almost certain that they are physical, a bias-controlled sample of 116 WBs was obtained, and used to derive the distribution of separations from 100 to 30 000 au. The distribution obtained does not match the log-constant distribution, but agrees with the log-normal distribution. The spectroscopic binaries detected among the WB components were used to derive statistical information about the multiple systems. The close binaries in WBs seem to be like those detected in other field stars. As for the WBs, they seem to obey the log-normal distribution of periods. The number of quadruple systems agrees with the no correlation hypothesis; this indicates that an environment conducive to the formation of WBs does not favour the formation of subsystems with periods shorter than 10 yr.

  18. Exploring eclipsing binaries, triples and higher-order multiple star systems with the SuperWASP archive

    CERN Document Server

    Lohr, M E

    2015-01-01

    The Super Wide Angle Search for Planets (SuperWASP) is a whole-sky high-cadence optical survey which has searched for exoplanetary transit signatures since 2004. Its archive contains long-term light curves for ~30 million 8-15 V magnitude stars, making it a valuable serendipitous resource for variable star research. We have concentrated on the evidence it provides for eclipsing binaries, in particular those exhibiting orbital period variations, and have developed custom tools to measure periods precisely and detect period changes reliably. Amongst our results are: a collection of 143 candidate contact or semi-detached eclipsing binaries near the short-period limit in the main sequence binary period distribution; a probable hierarchical triple exhibiting dramatic sinusoidal period variations; a new doubly-eclipsing quintuple system; and new evidence for period change or stability in 12 post-common-envelope eclipsing binaries, which may support the existence of circumbinary planets in such systems. A large-scal...

  19. Ole Romer's method still on the stage. The study of two bound eclipsing binaries in quintuple system V994 Her

    CERN Document Server

    Zasche, P; 10.1093/mnras/sts616

    2013-01-01

    More than three hundred years ago, Ole Romer measured the speed of light only by observing the periodic shifting of the observed eclipse arrival times of Jupiter's moons arising from the varying Earth-Jupiter distance. The same method of measuring the periodic modulation of delays is still used in astrophysics. The ideal laboratories for this effect are eclipsing binaries. The unique system V994 Her consists of two eclipsing binaries orbiting each other. However, until now it was not certain whether these are gravitationally bound and what their orbital period is. We show that the system is in fact quintuple and the two eclipsing binaries are orbiting each other with period about 6.3 years. This analysis was made only from studying the periodic modulation of the two periods, when during the periastron passage one binary has an apparently shorter period, while the other one longer, exactly as required by a theory. Additionally, it was found that both inner eclipsing pairs orbit with slightly eccentric orbits u...

  20. Discovery of a Red Giant with Solar-like Oscillations in an Eclipsing Binary System from Kepler Space-based Photometry

    DEFF Research Database (Denmark)

    Hekker, S.; Debosscher, J.; Huber, D.

    2010-01-01

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satell...

  1. A new determination of the orbit and masses of the Be binary system delta Scorpii

    CERN Document Server

    Tango, W J; Jacob, A P; Méndez, A; North, J R; O'Byrne, J W; Seneta, E B; Tuthill, P G

    2008-01-01

    The binary star delta Sco (HD143275) underwent remarkable brightening in the visible in 2000, and continues to be irregularly variable. The system was observed with the Sydney University Stellar Interferometer (SUSI) in 1999, 2000, 2001, 2006 and 2007. The 1999 observations were consistent with predictions based on the previously published orbital elements. The subsequent observations can only be explained by assuming that an optically bright emission region with an angular size of > 2 +/- 1 mas formed around the primary in 2000. By 2006/2007 the size of this region grew to an estimated > 4 mas. We have determined a consistent set of orbital elements by simultaneously fitting all the published interferometric and spectroscopic data as well as the SUSI data reported here. The resulting elements and the brightness ratio for the system measured prior to the outburst in 2000 have been used to estimate the masses of the components. We find Ma = 15 +/- 7 Msun and Mb = 8.0 +/- 3.6 Msun. The dynamical parallax is est...

  2. Does the Corona Borealis Supercluster form a giant binary-like system?

    Science.gov (United States)

    Baiesi Pillastrini, Giovanni C.

    2016-05-01

    The distribution of local gravitational potentials generated by a complete volume-limited sample of galaxy groups and clusters filling the Corona Borealis region has been derived to search for new gravitational hints in the context of clustering analysis unrevealed by alternative methodologies. Mapping such a distribution as a function of spatial positions, the deepest potential wells in the sample trace unambiguously the locations of the densest galaxy cluster clumps providing the physical keys to bring out gravitational features connected to the formation, composition and evolution of the major clustered structures filling that region. As expected, the three deepest potential wells found at Equatorial coordinates: (˜230°, ˜28°, z ˜ 0.075), (˜240°, ˜27°, z ˜ 0.09) and, (227°, 5.8°, z ˜ 0.0788) correspond to massive superclusters of galaxy groups and clusters identified as the Corona Borealis, A2142 and Virgo-Serpent, respectively. However, the deepest isopotential contours around the Corona Borealis and A2142 superclusters seem to suggest a gravitational feature similar to a giant binary-like system connected by a filamentary structure. To a first approximation, it seems unlikely that this hypothesized system could be gravitationally bound.

  3. Binarity and Pulsation in Algol-type Binary System SX Draconis

    Science.gov (United States)

    Soydugan, E.; Kaçar, Y.

    2013-04-01

    Photometric observations of SX Dra were carried out to determine the properties of the components and pulsational characteristics of the more massive pulsational component. Physical parameters of the component stars were obtained by modeling B and V light curves using the Wilson-Devinney code. Results indicate that SX Dra is a semi-detached system with the secondary component filling its Roche lobe. The O-C data showed parabolic and sinusoidal variation. Cyclic variation in the O-C diagram could be the result of the possible magnetic activity of the secondary component instead of the third body. The secular increase in the orbital period of the system can be interpreted as being the result of mass transfer from the secondary component to the primary one at a rate of 2.1 × 10-7 M ⊙ yr-1. Results of a time-series analysis performed after removing binary effects indicated that the hot component shows δ Scuti light variations with pulsational periods of 63 and 73 minutes. Spherical harmonic degrees (l) were determined to be 3 for the first frequency and 1-2 for the second frequency.

  4. The spectroscopic binary system Gl 375. I. Orbital parameters and chromospheric activity

    CERN Document Server

    Díaz, Rodrigo F; Cincunegui, Carolina; Mauas, Pablo J D

    2007-01-01

    We study the spectroscopic binary system Gl 375. We employ medium resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO and photometric observations obtained from the ASAS database. We separate the composite spectra into those corresponding to both components. The separated spectra allow us to confirm that the spectral types of both components are similar (dMe3.5) and to obtain precise measurements of the orbital period (P = 1.87844 days), minimum masses (M_1 sin^3 i = 0.35 M_sun and M_2 sin^3 i =0.33 M_sun) and other orbital parameters. The photometric observations exhibit a sinusoidal variation with the same period as the orbital period. We interpret this as signs of active regions carried along with rotation in a tidally synchronized system, and study the evolution of the amplitude of the modulation in longer timescales. Together with the mean magnitude, the modulation exhibits a roughly cyclic variation with a period of around 800 days. This periodicity is also ...

  5. GMRT Discovery of A Millisecond Pulsar in a Very Eccentric Binary System

    CERN Document Server

    Freire, P C; Ransom, S M; Ishwara-Chandra, C H; Freire, Paulo C.; Gupta, Yashwant; Ransom, Scott M.

    2004-01-01

    We report the discovery of the binary millisecond pulsar J0514-4002A, which is the first known pulsar in the globular cluster NGC 1851 and the first pulsar discovered using the Giant Metrewave Radio Telescope (GMRT). The pulsar has a rotational period of 4.99 ms, an orbital period of 18.8 days, and the most eccentric pulsar orbit yet measured (e = 0.89). The companion has a minimum mass of 0.9 M_sun and its nature is presently unclear. After accreting matter from a low-mass companion star which spun it up to a (few) millisecond spin period, the pulsar eventually exchanged the low-mass star for its more massive present companion. This is exactly the same process that could form a system containing a millisecond pulsar and a black hole; the discovery of NGC 1851A demonstrates that such systems might exist in the Universe, provided that stellar mass black holes exist in globular clusters.

  6. Detection of a very low mass star in an Eclipsing Binary system

    CERN Document Server

    Chaturvedi, Priyanka; Anandarao, B G; Roy, Arpita; Mahadevan, Suvrath

    2016-01-01

    We report the detection of a very low mass star (VLMS) companion to the primary star 1SWASPJ234318.41+295556.5A (J2343+29A), using radial velocity (RV) measurements from the PARAS (PRL Advanced Radial-velocity Abu-sky Search) high resolution echelle spectrograph. The periodicity of the single-lined eclipsing binary (SB1) system, as determined from 20 sets of RV observations from PARAS and 6 supporting sets of observations from SOPHIE data, is found to be 16.953 d as against the 4.24 d period reported from SuperWasp photometry. It is likely that inadequate phase coverage of the transit with SuperWasp photometry led to the incorrect determination of the period for this system. We derive the spectral properties of the primary star from the observed stellar spectra: Teff = 5125 +/- 67 K, [Fe/H] = 0.1 +/- 0.14 and log g = 4.6 +/- 0.14, indicating a K1V primary. Applying the Torres relation to the derived stellar parameters, we estimate a primary mass 0.864 +/- 0.097 M_sun and a radius of 0.854 +/- 0.050 R_sun. We ...

  7. Effect Of Polar Component(1-Propanol On The RelativeVolatility Of The Binary System N-Hexane - Benzene

    Directory of Open Access Journals (Sweden)

    Khalid Farhod Chasib Al-Jiboury

    2008-01-01

    Full Text Available Vapor-liquid equilibrium data are presented for the binary systems n-hexane - 1-propanol, benzene - 1-propanol and n-hexane – benzene at 760 mm of mercury pressure. In addition ternary data are presented at selected compositions with respect to the 1-propanol in the 1-propanol, benzene, n-hexane system at 760 mmHg. The results indicate the relative volatility of n-hexane relative to benzene increases appreciably with addition of 1-propanol

  8. Proof of a Conjecture on Contextuality in Cyclic Systems with Binary Variables

    Science.gov (United States)

    Kujala, Janne V.; Dzhafarov, Ehtibar N.

    2016-03-01

    We present a proof for a conjecture previously formulated by Dzhafarov et al. (Found Phys 7:762-782, 2015). The conjecture specifies a measure for the degree of contextuality and a criterion (necessary and sufficient condition) for contextuality in a broad class of quantum systems. This class includes Leggett-Garg, EPR/Bell, and Klyachko-Can-Binicioglu-Shumovsky type systems as special cases. In a system of this class certain physical properties q1,ldots ,qn are measured in pairs ( qi,qj) ; every property enters in precisely two such pairs; and each measurement outcome is a binary random variable. Denoting the measurement outcomes for a property qi in the two pairs it enters by Vi and Wi, the pair of measurement outcomes for ( qi,qj) is ( Vi,Wj) . Contextuality is defined as follows: one computes the minimal possible value Δ 0 for the sum of Pr [ Vinot =Wi] (over i=1,ldots ,n) that is allowed by the individual distributions of Vi and Wi; one computes the minimal possible value Δ _{min } for the sum of Pr [ Vinot =Wi] across all possible couplings of (i.e., joint distributions imposed on) the entire set of random variables V1,W1,ldots ,Vn,Wn in the system; and the system is considered contextual if Δ _{min }>Δ 0 (otherwise Δ _{min }=Δ 0). This definition has its justification in the general approach dubbed Contextuality-by-Default, and it allows for measurement errors and signaling among the measured properties. The conjecture proved in this paper specifies the value of Δ _{min }-Δ 0 in terms of the distributions of the measurement outcomes ( Vi,Wj).

  9. Identification and Analysis of Landing sites for the ESA ExoMars Rover (2018)

    Science.gov (United States)

    Balme, Matthew; Bridges, John; Fawdon, Peter; Grindrod, Peter; Gupta, Sanjeev; Michalski, Joe; Conway, Susan

    2014-05-01

    The exploration and search for life on Mars forms a cornerstone of international solar system exploration. In 2018, the European Space agency will launch the ExoMars Rover and Lander to further this exploration. The key science objectives of the ExoMars Rover are to: 1) search for signs of past and present life on Mars; 2) investigate the water/geochemical environment as a function of depth in the shallow subsurface; and 3) to characterise the surface environment. To meet these objectives ExoMars will drill into the sub-surface to look for indicators of past life using a range of complementary techniques, including assessment of morphology (potential fossil organisms), mineralogy (past environments) and a search for organic molecules and their chirality (biomarkers). The choice of landing site is vital if ExoMars' scientific objectives are to be met. The landing site must: (i) be ancient (≥3.6 Ga); (ii) show abundant morphological and mineral evidence for long-term, or frequently reoccurring, aqueous activity; (iii) include numerous sedimentary outcrops that (iv) are distributed over the landing region (the typical Rover traverse range is only a few km, but the uncertainty in the location of the landing site forms an elliptical of size ~ 100 by 15 km); and (v) have little dust coverage. In addition, in order to land and operate safely, various 'engineering constraints' apply, including: (i) latitude limited to 5º S to 25º N; (ii) maximum altitude of the landing site 2 km below Mars's datum, (iii) few steep slopes within the uncertainty ellipse. These constraints are onerous. In particular, the objective to drill into sediments, the requirement for distributed targets within the ellipse, and the ellipse size, make ExoMars site selection extremely challenging. To meet these challenges, we have begun an intensive study of the martian landscape to identify as many possible ExoMars landing sites as possible. We have converted the current engineering constraints into

  10. S-Type and P-Type Habitability in Stellar Binary Systems: A Comprehensive Approach. I. Method and Applications

    CERN Document Server

    Cuntz, Manfred

    2013-01-01

    A comprehensive approach is provided to the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in case of S-type orbits the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) The consideration of a joint constraint including orbital stability and a habitable environment for a putative system planet through the stellar radiative energy fluxes ("radiative habitable zone"; RHZ) needs to be met. (2) The treatment of conservative, general and extended zones of habitability for the various systems as defined for the Solar System and beyond. (3) The providing of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for which kind of system S-type ...

  11. VHE Gamma-rays from Galactic X-ray Binary Systems

    CERN Document Server

    Paredes, J M

    2008-01-01

    The detection of TeV gamma-rays from LS 5039 and the binary pulsar PSR B1259-63 by HESS, and from LS I +61 303 and the stellar-mass black hole Cygnus X-1 by MAGIC, provides a clear evidence of very efficient acceleration of particles to multi-TeV energies in X-ray binaries. These observations demonstrate the richness of non-thermal phenomena in compact galactic objects containing relativistic outflows or winds produced near black holes and neutron stars. I review here some of the main observational results on very high energy (VHE) gamma-ray emission from X-ray binaries, as well as some of the proposed scenarios to explain the production of VHE gamma-rays. I put special emphasis on the flare TeV emission, suggesting that the flaring activity might be a common phenomena in X-ray binaries.

  12. Determining the Age of the Kepler Open Cluster NGC 6819 With a New Triple System and Other Eclipsing Binary Stars

    CERN Document Server

    Brewer, Lauren N; Mathieu, Robert D; Milliman, Katelyn; Geller, Aaron M; Jeffries, Mark W; Orosz, Jerome A; Brogaard, Karsten; Platais, Imants; Bruntt, Hans; Grundahl, Frank; Stello, Dennis; Frandsen, Soeren

    2016-01-01

    As part of our study of the old (~2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVRcIc) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses M_B =1.090+/-0.010 Msun and M_C =1.075+/-0.013 Msun, and radii R_B =1.095+/-0.007 Rsun and R_C =1.057+/-0.008 Rsun. The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is M_A =1.251+/-0.057 Msun. A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and pl...

  13. A possible binary system of a stellar remnant in the high magnification gravitational microlensing event OGLE-2007-BLG-514

    CERN Document Server

    Miyake, N; Sumi, T; Bennett, D P; Dong, S; Street, R A; Greenhill, J; Bond, I A; Gould, A; Kubiak, M; Szymanski, M K; Pietrzynski, G; Soszynski, I; Ulaczyk, K; Wyrzykowski, L; Abe, F; Fukui, A; Furusawa, K; Holderness, S; Itow, Y; Korpela, A; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagayama, T; Ohnishi, K; Rattenbury, N; Saito, To; Sako, T; Sullivan, D J; Sweatman, W L; Tristram, P J; Yock, P C M; Allen, W; Christie, G W; DePoy, D L; Gaudi, B S; Han, C; Lee, C -U; McCormick, J; Monard, B; Natusch, T; Park, B -G; Pogge, R W; Allan, A; Bode, M; Bramich, D M; Clay, N; Dominik, M; Horne, K D; Kains, N; Mottram, C; Snodgrass, C; Steele, I; Tsapras, Y; Albrow, M D; Batista, V; Beaulieu, J P; Brillant, S; Burgdorf, M; Caldwell, J A R; Cassan, A; Cole, A; Cook, K H; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouque, P; Jorgensen, U G; Kane, S; Kubas, D; Marquette, J B; Martin, R; Menzies, J; Pollard, K R; Sahu, K C; Wambsganss, J; Williams, A; Zub, M

    2012-01-01

    We report the extremely high magnification (A > 1000) binary microlensing event OGLE-2007-BLG-514. We obtained good coverage around the double peak structure in the light curve via follow-up observations from different observatories. The binary lens model that includes the effects of parallax (known orbital motion of the Earth) and orbital motion of the lens yields a binary lens mass ratio of q = 0.321 +/- 0.007 and a projected separation of s = 0.072 +/- 0.001$ in units of the Einstein radius. The parallax parameters allow us to determine the lens distance D_L = 3.11 +/- 0.39 kpc and total mass M_L=1.40 +/- 0.18 M_sun; this leads to the primary and secondary components having masses of M_1 = 1.06 +/- 0.13 M_sun and M_2 = 0.34 +/- 0.04 M_sun, respectively. The parallax model indicates that the binary lens system is likely constructed by the main sequence stars. On the other hand, we used a Bayesian analysis to estimate probability distributions by the model that includes the effects of xallarap (possible orbi...

  14. The ExoMars PanCam Instrument

    Science.gov (United States)

    Griffiths, Andrew; Coates, Andrew; Muller, Jan-Peter; Jaumann, Ralf; Josset, Jean-Luc; Paar, Gerhard; Barnes, David

    2010-05-01

    The ExoMars mission has evolved into a joint European-US mission to deliver a trace gas orbiter and a pair of rovers to Mars in 2016 and 2018 respectively. The European rover will carry the Pasteur exobiology payload including the 1.56 kg Panoramic Camera. PanCam will provide multispectral stereo images with 34 deg horizontal field-of-view (580 microrad/pixel) Wide-Angle Cameras (WAC) and (83 microrad/pixel) colour monoscopic "zoom" images with 5 deg horizontal field-of-view High Resolution Camera (HRC). The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage [1]. Integrated with the WACs and HRC into the PanCam optical bench (which helps the instrument meet its planetary protection requirements) is the PanCam interface unit (PIU); which provides image storage, a Spacewire interface to the rover and DC-DC power conversion. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission [2] as well as providing multispectral geological imaging, colour and stereo panoramic images and solar images for water vapour abundance and dust optical depth measurements. The High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls. Additionally HRC will be used to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. In short, PanCam provides the overview and context for the ExoMars experiment locations, required to enable the exobiology aims of the mission. In addition to these baseline capabilities further enhancements are possible to PanCam to enhance it's effectiveness for astrobiology and planetary exploration: 1. Rover Inspection Mirror (RIM) 2. Organics Detection by Fluorescence Excitation (ODFE) LEDs [3-6] 3. UVIS broadband UV Flux and Opacity Determination (UVFOD) photodiode This paper will discuss the scientific objectives and resource

  15. Water transport to circumprimary habitable zones from icy planetesimal disks in binary star systems

    Science.gov (United States)

    Bancelin, D.; Pilat-Lohinger, E.; Maindl, T. I.; Bazsó, Á.

    2017-03-01

    So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architectures (i.e. location, size, mass, and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and aim to show how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. We also analyze the influence of secular and mean motion resonances on the water transport towards the HZ. Our study shows that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favors a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ. However, due to the secular resonance located either inside the HZ or inside the asteroid belt, impacts between icy planetesimals from the disk and big objects in the HZ can occur at high impact speed. Therefore, real collision modeling using a GPU 3D-SPH code show that in reality, the water content of the projectile is greatly reduced and therefore, also the water transported to planets or embryos initially inside the HZ.

  16. EXOS research on force-reflecting controllers

    Science.gov (United States)

    Eberman, Brian S.; An, Bin

    1993-03-01

    EXOS has developed two state of the art prototype master controllers for controlling robot hands and manipulators under the Small Business Innovation Research (SBIR) program with NASA. One such device is a two degree-of-freedom Sensing and Force Reflecting Exoskeleton (SAFiRE) worn on the operator's hand. The device measures the movement of the index finger and reflects the interaction forces between the slave robot and the environment to the human finger. The second device is a position sensing Exoskeleton ArmMaster (EAM) worn by a human operator. The device simultaneously tracks the motions of the operator's three DOF shoulder and two DOF elbow. Both of these devices are currently used to control robots at NASA. We are currently developing a full fingered SAFiRE and a position sensing and force reflecting EAM under two second phase SBIR grants with NASA. This paper will include discussions of: (1) the design of the current prototypes, (2) kinematics of the EAM and force control of the SAFiRE, (3) design issues that must be addressed in developing more advanced versions, and (4) our progress to date in addressing these issues.

  17. THE ENDO-EXO-FEMORAL PROSTHESIS

    Directory of Open Access Journals (Sweden)

    H. Aschoff

    2011-01-01

    Full Text Available Patients with above knee amputation (AKA face many challenges to mobility including difficulty with socket fit and fatigue due to high energy consumption. The aim of the Endo-Exo-Femur Prosthesis (EEFP is to avoid problems at the interface between the sleeve of the socket-prosthesis and the soft tissue coat of the femur stump which often impedes an inconspicuous and harmonic gait. In 1999 we began using a transcutaneous, press-fit distal femoral intramedullary device whose most distal external aspect serves as a hard point for AKA prosthesis attachment. The bone guided prosthesis enables an advanced gait via osseoperception and leads to a decreased oxygen consumption of the patient. Thirty two patients underwent the procedure between 1999 and 2008. Their indication for surgery was persistent AKA prosthesis difficulties with a history of AKA for trauma. The paper presents the patient data regarding the design of the implant, the operative procedure, patient satisfaction, gait analysis and oxygen consumption.

  18. Effect of squeezing on parameter estimation of gravitational waves emitted by compact binary systems

    Science.gov (United States)

    Lynch, Ryan; Vitale, Salvatore; Barsotti, Lisa; Dwyer, Sheila; Evans, Matthew

    2015-02-01

    The LIGO gravitational wave (GW) detectors will begin collecting data in 2015, with Virgo following shortly after. These detectors are expected to reach design sensitivity before the end of the decade, and yield the first direct detection of GWs before then. The use of squeezing has been proposed as a way to reduce the quantum noise without increasing the laser power, and has been successfully tested at one of the LIGO sites and at GEO in Germany. When used in Advanced LIGO without a filter cavity, the squeezer improves the performances of detectors above ˜100 Hz , at the cost of a higher noise floor in the low-frequency regime. Frequency-dependent squeezing, on the other hand, will lower the noise floor throughout the entire band. Squeezing technology will have a twofold impact: it will change the number of expected detections and it will impact the quality of parameter estimation for the detected signals. In this work we consider three different GW detector networks, each utilizing a different type of squeezer—all corresponding to plausible implementations. Using LALInference, a powerful Monte Carlo parameter estimation algorithm, we study how each of these networks estimates the parameters of GW signals emitted by compact binary systems, and compare the results with a baseline advanced LIGO-Virgo network. We find that, even in its simplest implementation, squeezing has a large positive impact: the sky error area of detected signals will shrink by ˜30 % on average, increasing the chances of finding an electromagnetic counterpart to the GW detection. Similarly, we find that the measurability of tidal deformability parameters for neutron stars in binaries increases by ˜30 % , which could aid in determining the equation of state of neutron stars. The degradation in the measurement of the chirp mass, as a result of the higher low-frequency noise, is shown to be negligible when compared to systematic errors. Implementations of a quantum squeezer coupled with a

  19. Discovery of WASP-85Ab: a hot Jupiter in a visual binary system

    CERN Document Server

    Brown, D J A; Armstrong, D J; Bouchy, F; Cameron, A Collier; Delrez, L; Doyle, A P; Gillon, M; Hebb, L; Hebrard, G; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; McCormac, J; Neveu-VanMalle, M; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Turner, O D; Triaud, A H M J; Udry, S

    2014-01-01

    We report the discovery of the transiting hot Jupiter exoplanet WASP-85Ab. Using a combined analysis of spectroscopic and photometric data, we determine that the planet orbits its host star every 2.66 days, and has a mass of 1.09+/-0.03 M_Jup and a radius of 1.44+/-0.02 R_Jup. The host star is of G5 spectral type, with magnitude V=11.2, and lies 125+/-80 pc distant. We find stellar parameters of T_eff=5685+/-65 K, super-solar metallicity ([Fe/H]=0.08+/-0.10), M_star=1.04+/-0.07 M_sun and R_star=0.96+/-0.13 R_sun. The system has a K-dwarf binary companion, WASP-85B, at a separation of approximately 1.5". The close proximity of this companion leads to contamination of our photometry, decreasing the apparent transit depth that we account for during our analysis. Without this correction, we find the depth to be 50 percent smaller, the stellar density to be 32 percent smaller, and the planet radius to be 18 percent smaller than the true value. Many of our radial velocity observations are also contaminated; these a...

  20. TU Comae Berenices : Blazhko RR Lyrae Star in a Potential Binary System

    CERN Document Server

    de Ponthiere, Pierre; Menzies, Kenneth; Sabo, Richard

    2016-01-01

    We present the results of a photometry campaign of TU Com performed over a five-year time span. The analysis showed that the possible Blazhko period of 75 days published by the General Catalogue of Variable Stars is not correct. We identified two Blazhko periods of 43.6 and 45.5 days. This finding is based on measurement of 124 light maxima. A spectral analysis of the complete light curve confirmed these two periods. Besides the Blazhko amplitude and phase modulations, another long term periodic phase variation has been identified. This long term periodic variation affects the times of maximum light only and can be attributed to a light-travel time effect due to orbital motion of a binary system. The orbital parameters have been estimated by a nonlinear least-square fit applied to the set of (O-C) values. The Levenberg-Marquart algorithm has been used to perform the nonlinear least-square fit. The tentative orbital parameters include an orbital period of 1676 days, a minimal semi-major axis of 1.55 AU and a s...

  1. Recent activity of the Be/X-ray binary system SAX J2103.5+4545

    CERN Document Server

    Camero, A; Soto, J Gutierrez; Arabaci, M Ozbey; Nespoli, E; Kiaeerad, F; Beklen, E; Garcia-Rojas, J; Caballero-Garcia, M

    2014-01-01

    Aims. We present a multiwavelength study of the Be/X-ray binary system SAX J2103.5+4545 with the goal of better characterizing the transient behaviour of this source. Methods. SAX J2103.5+4545 was observed by Swift-XRT four times in 2007 from April 25 to May 5, and during quiescence in 2012 August 31. In addition, this source has been monitored from the ground-based astronomical observatories of El Teide (Tenerife, Spain), Roque de los Muchachos (La Palma, Spain) and Sierra Nevada (Granada, Spain) since 2011 August, and from the TUBITAK National Observatory (Antalya, Turkey) since 2009 June. We have performed spectral and photometric temporal analyses in order to investigate the different states exhibited by SAX J2103.5+4545. Results. In X-rays, an absorbed power law model provided the best fit for all the XRT spectra. An iron-line feature at ~6.42 keV was present in all the observations except for that taken during quiescence in 2012. The photon indexes are consistent with previous studies of SAX J2103.5+454...

  2. Grid Search in Stellar Parameters: a software for spectrum analysis of single stars and binary systems

    CERN Document Server

    Tkachenko, Andrew

    2015-01-01

    The currently operating space missions, as well as those that will be launched in the near future, (will) deliver high-quality data for millions of stellar objects. Since the majority of stellar astrophysical applications still (at least partly) rely on spectroscopic data, an efficient tool for the analysis of medium- to high-resolution spectroscopy is needed. We aim at developing an efficient software package for the analysis of medium- to high-resolution spectroscopy of single stars and those in binary systems. The major requirements are that the code has a high performance, represents the state-of-the-art analysis tool, and provides accurate determinations of atmospheric parameters and chemical compositions for different types of stars. We use the method of atmosphere models and spectrum synthesis, which is one of the most commonly used approaches for the analysis of stellar spectra. Our Grid Search in Stellar Parameters (GSSP) code makes use of the OpenMPI implementation, which makes it possible to run in...

  3. The Helium content and age of the Hyades Constraints from five binary systems and Hipparcos parallaxes

    CERN Document Server

    Lebreton, Y; Lejeune, T; Lebreton, Yveline; Fernandes, Jo\\~ao; Lejeune, Thibault

    2001-01-01

    We compare the accurate empirical mass-luminosity (M-L) relation based on five Hyades binary systems to predictions of stellar models calculated with various input parameters (helium, metallicity, age) or physics (mixing-length ratio, model atmosphere, equation of state, microscopic diffusion). Models based on a helium content Ysim0.28 inferred from the dydz enrichment law are more than 3sigma beyond the observations, suggesting that the initial helium abundance is lower than expected from its supersolar metallicity. With the photometric metallicity (FeH=0.144pm0.013 dex, Grenon (2000) we derive Y=0.255\\pm0.009. Because of the (Y,FeH) degeneracy in the M-L plane, the uncertainty grows to Delta Y=0.013 if the metallicity from spectroscopy is adopted (FeH=0.14pm0.05 dex, Cayrel de Strobel et al 1997). We use these results to discuss the Hertzsprung-Russell (HR) diagram of the Hyades, in the (Mv,B-V) plane, based on the very precise Hipparcos dynamical parallaxes. Present models fit the tight observed sequence v...

  4. Binary mask optimization for forward lithography based on the boundary layer model in coherent systems.

    Science.gov (United States)

    Ma, Xu; Arce, Gonzalo R

    2009-07-01

    Recently, a set of generalized gradient-based optical proximity correction (OPC) optimization methods have been developed to solve for the forward and inverse lithography problems under the thin-mask assumption, where the mask is considered a thin 2D object. However, as the critical dimension printed on the wafer shrinks into the subwavelength regime, thick-mask effects become prevalent, and thus these effects must be taken into account in OPC optimization methods. OPC methods derived under the thin-mask assumption have inherent limitations and perform poorly in the subwavelength regime. This paper focuses on developing model-based forward binary mask optimization methods that account for the thick-mask effects of coherent imaging systems. The boundary layer (BL) model is exploited to simplify and characterize the thick-mask effects, leading to a model-based OPC method. The BL model is simpler than other thick-mask models, treating the near field of the mask as the superposition of the interior transmission areas and the boundary layers. The advantages and limitations of the proposed algorithm are discussed, and several illustrative simulations are presented.

  5. Binary mask optimization for forward lithography based on boundary layer model in coherent systems

    Science.gov (United States)

    Ma, Xu; Arce, Gonzalo R.

    2010-04-01

    Recently, a set of generalized gradient-based optical proximity correction (OPC) optimization methods have been developed to solve for the forward and inverse lithography problem under the thin-mask assumption, where the mask is considered a thin 2-D object. However, as the critical dimension printed on the wafer shrinks into the subwavelength regime, thick-mask effects become prevalent and thus these effects must be taken into account in OPC optimization methods. OPC methods derived under the thin-mask assumption have inherent limitations and perform poorly in the subwavelength scenario. This paper focuses on developing model-based forward binary mask optimization methods which account for the thick-mask effects of coherent imaging systems. The boundary layer (BL) model is exploited to simplify and characterize the thick-mask effects, leading to a computationally efficient OPC method. The BL model is simpler than other thick-mask models, treating the near field of the mask as the superposition of the interior transmission areas and the boundary layers. The advantages and limitations of the proposed algorithm are discussed and several illustrative simulations are presented.

  6. Absolute dimensions of detached eclipsing binaries. II. The metallic-lined system XY Ceti

    CERN Document Server

    Southworth, John; Tamajo, E; Smalley, B; West, R G; Anderson, D R

    2011-01-01

    We present phase-resolved spectroscopy and extensive survey photometry of the detached eclipsing binary system XY Cet, which is composed of two metallic-lined stars. We measure their masses to be 1.773 +/- 0.016 and 1.615 +/- 0.014 Msun and their radii to be 1.873 +/- 0.035 and 1.773 +/- 0.029 Rsun, resulting in logarithmic surface gravities of 4.142 +/- 0.016 and 4.149 +/- 0.014 (cgs). We determine effective temperatures of 7870 +/- 115 and 7620 +/- 125 K. The projected rotational velocities are 34.4 +/- 0.4 and 34.1 +/- 0.4 km/s, which are close to synchronous. Theoretical models cannot match all of these properties, but come closest for a solar helium and metal abundance and an age in the region of 850 Myr. We obtain the individual spectra of the two stars by the spectral disentangling method, and compare them to synthetic spectra calculated for the measured effective temperatures and a solar chemical composition. Both stars show enhanced abundances of iron-group elements and clear deficiencies of Ca I and...

  7. The Limiting Stellar Initial Mass for Black Hole Formation in Close Binary Systems

    CERN Document Server

    Fryer, C L; Langer, N; Wellstein, S

    2002-01-01

    We present models for the complete life and death of a 60 solar mass star evolving in a close binary system, from the main sequence phase to the formation of a compact remnant and fallback of supernova debris. After core hydrogen exhaustion, the star expands, loses most of its envelope by Roche lobe overflow, and becomes a Wolf-Rayet star. We study its post-mass transfer evolution as a function of the Wolf-Rayet wind mass loss rate (which is currently not well constrained and will probably vary with initial metallicity of the star). Varying this mass loss rate by a factor 6 leads to stellar masses at collapse that range from 3.1 to 10.7 solar masses. Although the iron core masses at collapse are generally larger for stars with larger final masses, they do not depend monotonically on the final stellar mass or even the C/O-core mass. We then compute the evolution of all models through collapse and bounce. The results range from strong supernova explosions for the lower final masses to the direct collapse of the...

  8. Elemental abundance differences in the 16 Cygni binary system: a signature of gas giant planet formation?

    CERN Document Server

    Ramirez, I; Cornejo, D; Roederer, I U; Fish, J R

    2011-01-01

    The atmospheric parameters of the components of the 16Cygni binary system, in which the secondary has a gas giant planet detected, are measured accurately using high quality observational data. Abundances relative to solar are obtained for 25 elements with a mean error of 0.023 dex. The fact that 16CygA has about four times more lithium than 16CygB is normal considering the slightly different masses of the stars. The abundance patterns of 16CygA and B, relative to iron, are typical of that observed in most of the so-called solar twin stars, with the exception of the heavy elements (Z>30), which can, however, be explained by Galactic chemical evolution. Differential (A-B) abundances are measured with even higher precision (0.018 dex, on average). We find that 16CygA is more metal-rich than 16CygB by 0.041+/-0.007 dex. On an element-to-element basis, no correlation between the A-B abundance differences and dust condensation temperature (Tc) is detected. Based on these results, we conclude that if the process of...

  9. SDSSJ212531.92-010745.9 - the first definite PG1159 close binary system

    CERN Document Server

    Nagel, T; Kusterer, D J; Stahn, T; H"ugelmeyer, S D; Dreizler, S; Gänsicke, B T; Schreiber, M R

    2006-01-01

    The archival spectrum of SDSSJ212531.92-010745.9 shows not only the typical signature of a PG1159 star, but also indicates the presence of a companion. Our aim was the proof of the binary nature ofthis object and the determination of its orbital period.We performed time-series photometry of SDSSJ212531.92-010745.9. We observed the object during 10 nights, spread over one month, with the Tuebingen 80cm and the Goettingen 50cm telescopes. We fitted the observed light curve with a sine and simulated the light curve of this system with the nightfall program. Furthermore, we compared the spectrum of SDSSJ212531.92-010745.9 with NLTE models, the results of which also constrain the light curve solution. An orbital period of 6.95616(33)h with an amplitude of 0.354(3)mag is derived from our observations. A pulsation period could not be detected. For the PG1159 star we found, as preliminary results from comparison with our NLTE models, Teff about 90000K, log g about 7.60, and the abundance ratio C/He = 0.05 by number f...

  10. PHASE EQUILIBRIA FOR BINARY SYSTEMS CONTAINING IONIC LIQUID WITH WATER OR HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Dheiver Santos

    2015-12-01

    Full Text Available Abstract In this work, the mutual solubilities of sets of ionic liquids ([CnMIM] [TF2N] (n = 4, 8, 12, [C4PY] [TF2N], [C8MIM] [OTF] and organic compounds (heptane, o-xylene, toluene, or water are investigated. The experimental data measured for these systems were used to adjust the binary interaction parameters between their components for the Non-Random Two Liquid (NRTL model. The results showed that the solubility increased with temperature, with high hygroscopicity (10-1 in terms of mole fraction of the ILs, low interactions with aliphatic hydrocarbons, high interactions with aromatic hydrocarbons and the presence of a lower critical solution temperature (LCST. In addition, this study is the first to show that [C12MIM] [TF2N] is completely soluble in toluene and ortho-xylene between 273.15 and 373.15 K at 1 bar. The average deviations related to the mole fraction between the experimental and calculated values by the NRTL were less than 2.4%.

  11. Accreting Neutron Stars in Low-Mass X-Ray Binary Systems

    CERN Document Server

    Lamb, Frederick K

    2007-01-01

    Using the Rossi X-ray Timing Explorer (RossiXTE), astronomers have discovered that disk-accreting neutron stars with weak magnetic fields produce three distinct types of high-frequency X-ray oscillations. These oscillations are powered by release of the binding energy of matter falling into the strong gravitational field of the star or by the sudden nuclear burning of matter that has accumulated in the outermost layers of the star. The frequencies of the oscillations reflect the orbital frequencies of gas deep in the gravitational field of the star and/or the spin frequency of the star. These oscillations can therefore be used to explore fundamental physics, such as strong-field gravity and the properties of matter under extreme conditions, and important astrophysical questions, such as the formation and evolution of millisecond pulsars. Observations using RossiXTE have shown that some two dozen neutron stars in low-mass X-ray binary systems have the spin rates and magnetic fields required to become milliseco...

  12. The first stages of planet formation in binary systems: How far can dust coagulation proceed?

    CERN Document Server

    Zsom, Andras; Dullemond, Cornelis

    2010-01-01

    We examine the first phase of the core accretion model, namely the dust growth/fragmentation in binary systems. In our model, a gas and dust disk is present around the primary star and is perturbed by the secondary. We study the effects of a secondary with/without eccentricity on the dust population to determine what sizes the aggregates can reach and how that compares to the dust population in disks around single stars. We find that the secondary star has two effects on the dust population. 1.) The disk is truncated due to the presence of the secondary star and the maximum mass of the particles is decreased in the lowered gas densities. This effect is dominant in the outer disk. 2.) The perturbation of the secondary pumps up the eccentricity of the gas disk, which in turn increases the relative velocity between the dust and the gas. Therefore the maximum particle sizes are further decreased. The second effect of the secondary influences the entire disk. Coagulation is efficiently reduced even at the very inn...

  13. The semi-detached binary system IU Per and its intrinsic oscillation

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bin Zhang; Rong-Xian Zhang; Qi-Sheng Li

    2009-01-01

    We present a long-term time-resolved photometry of the short-period eclipsing binary IU Per. It confirms the intrinsic δ Scuti-like pulsation of the system reported by Kim et al.. With the obtained data, an orbital period study and an eclipsing light curve synthesis based on the Wilson-Devinney method were carried out. The photometric so- lution reveals a semi-detached configuration with the less-massive component filling its own Roche-lobe. By subtracting the eclipsing light changes from the data, we obtained the pure pulsating light curve of the mass-accreting primary component. A Fourier anal- ysis reveals four pulsation modes with confidence larger than 99%. A mode identification based on the results of the photometric solution was made. It suggests that the star may be in radial pulsation with a fundamental period of about 0.0628 d. A brief discussion concerning the evolutionary status and the pulsation nature is finally given.

  14. Discovery of a Wide Low-mass Binary System in Upper Scorpius

    CERN Document Server

    Luhman, K L

    2005-01-01

    Using the near-infrared spectrometer SpeX and its slit-viewing camera at the IRTF, I have resolved a low-mass member of the Upper Scorpius OB association into a double star. From K-band images of the pair, DENIS-P J161833.2-251750.4 A and B, I measure a separation of 0.96" and a magnitude difference of dK=0.42 mag. I present resolved 0.8-2.5 micron spectroscopy of the two objects, both of which exhibit signatures of youth in the shape of their H- and K-band continua, demonstrating that both are members of Upper Scorpius rather than field stars. In addition, through a comparison to optically-classified pre-main-sequence objects, I derive a spectral type near M5 for each component, corresponding to a mass of ~0.15 Msun with the evolutionary models of Chabrier and Baraffe. The probability that this pair is composed of unrelated M-type members of Upper Scorpius is ~10^-5. When added to the recent discoveries of other wide, easily disrupted low-mass binaries, this new system further establishes that the formation ...

  15. The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system

    CERN Document Server

    Ramirez, I; Aleo, P; Sobotka, A; Liu, F; Casagrande, L; Melendez, J; Yong, D; Lambert, D L; Asplund, M

    2015-01-01

    Using high-quality spectra of the twin stars in the XO-2 binary system, we have detected significant differences in the chemical composition of their photospheres. The differences correlate strongly with the elements' dust condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex and refractories are overabundant by up to 0.090 dex. On average, our error bar in relative abundance is 0.012 dex. We present an early metal-depletion scenario in which the formation of the gas giant planets known to exist around these stars is responsible for a 0.015 dex offset in the abundances of all elements while 20 M_Earth of non-detected rocky objects that formed around XO-2S explain the additional refractory-element difference. An alternative explanation involves the late accretion of at least 20 M_Earth of planet-like material by XO-2N, allegedly as a result of the migration of the hot Jupiter detected around that star. Dust cleansing by a nearby hot star as well as age or Galactic birthplace effects can...

  16. IP Eri: A surprising long-period binary system hosting a He white dwarf

    CERN Document Server

    Merle, T; Masseron, T; Van Eck, S; Siess, L; Van Winckel, H

    2014-01-01

    We determine the orbital elements for the K0 IV + white dwarf (WD) system IP Eri, which appears to have a surprisingly long period of 1071 d and a significant eccentricity of 0.25. Previous spectroscopic analyses of the WD, based on a distance of 101 pc inferred from its Hipparcos parallax, yielded a mass of only 0.43 M$_\\odot$, implying it to be a helium-core WD. The orbital properties of IP Eri are similar to those of the newly discovered long-period subdwarf B star (sdB) binaries, which involve stars with He-burning cores surrounded by extremely thin H envelopes, and are therefore close relatives to He WDs. We performed a spectroscopic analysis of high-resolution spectra from the HERMES/Mercator spectrograph and concluded that the atmospheric parameters of the K0 component are $T_{\\rm eff} = 4960$ K, $\\log{g} = 3.3$, [Fe/H] = 0.09 and $\\xi = 1.5$ km/s. The detailed abundance analysis focuses on C, N, O abundances, carbon isotopic ratio, light (Na, Mg, Al, Si, Ca, Ti) and s-process (Sr, Y, Zr, Ba, La, Ce, N...

  17. Dynamical Stability of Earth-Like Planetary Orbits in Binary Systems

    CERN Document Server

    David, E M; Fatuzzo, M; Adams, F C; David, Eva-Marie; Quintana, Elisa V.; Fatuzzo, Marco; Adams, Fred C.

    2003-01-01

    This paper explores the stability of an Earth-like planet orbiting a solar mass star in the presence of an outer-lying intermediate mass companion. The overall goal is to estimate the fraction of binary systems that allow Earth-like planets to remain stable over long time scales. We numerically determine the planet's ejection time $\\tauej$ over a range of companion masses ($M_C$ = 0.001 -- 0.5 $M_\\odot$), orbital eccentricities $\\epsilon$, and semi-major axes $a$. This suite of $\\sim40,000$ numerical experiments suggests that the most important variables are the companion's mass $M_C$ and periastron distance $\\rmin$ = $a(1-\\epsilon)$ to the primary star. At fixed $M_C$, the ejection time is a steeply increasing function of $\\rmin$ over the range of parameter space considered here (although the ejection time has a distribution of values for a given $\\rmin$). Most of the integration times are limited to 10 Myr, but a small set of integrations extend to 500 Myr. For each companion mass, we find fitting formulae ...

  18. Anomalous accretion activity and the spotted nature of the DQ Tau binary system

    Energy Technology Data Exchange (ETDEWEB)

    Bary, Jeffrey S.; Petersen, Michael S. [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States)

    2014-09-01

    We report the detection of an anomalous accretion flare in the tight eccentric pre-main-sequence binary system DQ Tau. In a multi-epoch survey consisting of randomly acquired low- to moderate-resolution near-infrared spectra obtained over a period of almost 10 yr, we detect a significant and simultaneous brightening of four standard accretion indicators (Ca II infrared triplet, the Paschen and Brackett series H I lines, and He I 1.083 μm), on back-to-back nights (φ = 0.372 and 0.433) with the flare increasing in strength as the system approached apastron (φ = 0.5). The mass accretion rate measured for the anomalous flare is nearly an order of magnitude stronger than the average quiescent rate. While previous observations established that frequent, periodic accretion flares phased with periastron passages occur in this system, these data provide evidence that orbitally modulated accretion flares occur near apastron, when the stars make their closest approach to the circumbinary disk. The timing of the flare suggests that this outburst is due to interactions of the stellar cores (or the highly truncated circumstellar disks) with material in non-axisymmetric structures located at the inner edge of the circumbinary disk. We also explore the optical/infrared spectral type mismatch previously observed for T Tauri stars (TTSs) and successfully model the shape of the spectra from 0.8 to 1.0 μm and the strengths of the TiO and FeH bands as manifestations of large cool spots on the surfaces of the stellar companions in DQ Tau. These findings illustrate that a complete model of near-infrared spectra of many TTSs must include parameters for spot filling factors and temperatures.

  19. Dynamics of Binary Near-Earth Asteroid System (35107) 1991 VH

    Science.gov (United States)

    Naidu, Shantanu P.; Margot, J. L.; Busch, M. W.; Taylor, P. A.; Nolan, M. C.; Howell, E. S.; Giorgini, J. D.; Benner, L. A. M.; Brozovic, M.; Magri, C.

    2012-05-01

    Near-Earth Asteroid (35107) 1991 VH was discovered to be a binary in March 1997, based on its light-curve (IAUC 6607). It made a very close approach to the Earth in August 2008 at a distance of 0.045 AU. We used this opportunity to secure an extensive radar data set with the Arecibo S-band (2380 MHz, 13 cm wavelength) planetary radar system, including range-Doppler images with spatial resolution as fine as 15 m. The images (spanning 14 days) reveal that the primary is roughly spheroidal with a radius of 650 m. The range extent of the secondary in these images varies from less than 100 m to more than 200 m indicating that it is highly elongated. The radar data provide an excellent determination of the mutual orbit: The orbital period is 32 hours, the eccentricity is 0.05, and the total system mass is 1.5e12 kg. Numerical simulations of the spin of the elongated secondary in this eccentric mutual orbit reveal a large region of chaos in the phase space, similar to that observed in Saturn’s moon Hyperion (Wisdom, Peale, Mignard 1984). The chaotic region surrounds the 1:2, 1:1, 3:2 and 2:1 spin-orbit resonances, but allows for islands of stability around the 1:2 and 1:1 spin-orbit states. The secondary’s echo bandwidths indicate that its spin rate indeed lies within or very close to this chaotic region. To date no acceptable fit to the sequence of secondary images has been found under the assumption of synchronous spin. Saturn’s moon Hyperion is the only solar system object known so far to have a chaotic spin state (Wisdom, Peale, Mignard 1984).

  20. Detection of a very low mass star in an eclipsing binary system

    Science.gov (United States)

    Chaturvedi, Priyanka; Chakraborty, Abhijit; Anandarao, B. G.; Roy, Arpita; Mahadevan, Suvrath

    2016-10-01

    We report the detection of a very low mass star (VLMS) companion to the primary star 1SWASP J234318.41+295556.5A (J2343+29A), using radial velocity (RV) measurements from the PARAS (PRL Advanced Radial-velocity Abu-sky Search) high-resolution echelle spectrograph. The periodicity of the single-lined eclipsing binary (SB1) system, as determined from 20 sets of RV observations from PARAS and 6 supporting sets of observations from SOPHIE data, is found to be 16.953 d as against the 4.24 d period reported from SuperWASP photometry. It is likely that inadequate phase coverage of the transit with SuperWASP photometry led to the incorrect determination of the period for this system. We derive the spectral properties of the primary star from the observed stellar spectra: Teff = 5125 ± 67 K, [Fe/H] = 0.1 ± 0.14 and logg = 4.6 ± 0.14, indicating a K1V primary. Applying the Torres relation to the derived stellar parameters, we estimate a primary mass 0.864_{-0.098}^{+0.097} M⊙ and a radius of 0.854_{-0.060}^{+0.050} R⊙. We combine RV data with SuperWASP photometry to estimate the mass of the secondary, MB = 0.098 ± 0.007 M⊙, and its radius, RB = 0.127 ± 0.007 R⊙, with an accuracy of ˜7 per cent. Although the observed radius is found to be consistent with the Baraffe's theoretical models, the uncertainties on the mass and radius of the secondary reported here are model dependent and should be used with discretion. Here, we establish this system as a potential benchmark for the study of VLMS objects, worthy of both photometric follow-up and the investment of time on high-resolution spectrographs paired with large-aperture telescopes.