WorldWideScience

Sample records for binary stars seyfert

  1. Star Formation in Southern Seyfert Galaxies

    OpenAIRE

    Forbes, Duncan; Norris, Ray

    1998-01-01

    We have produced radio maps, using the ATCA, of the central regions of six southern Seyfert 2 galaxies (NGC 1365, 4945, 6221, 6810, 7582, and Circinus) with circumnuclear star formation, to estimate the relative contribution of star formation activity compared to activity from the active galactic nucleus (AGN). The radio morphologies range from extended diffuse structures to compact nuclear emission, with no evidence, even in the relatively compact sources, for synchrotron self--absorption. I...

  2. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  3. The star formation history of Seyfert 2 nuclei

    CERN Document Server

    Fernandes, R C; Melnick, Yu M; Terlevich, E; Terlevich, R J; Kunth, D; Lacerda, R R; Joguet, B

    2004-01-01

    We present a study of the stellar populations in the central ~ 200 pc of a large and homogeneous sample comprising 79 nearby galaxies, most of which are type 2 Seyferts. The star-formation history of these nuclei is reconstructed by means of state-of-the art population synthesis modeling of their spectra in the 3500--5200 A interval. A QSO-like featureless continuum (FC) is added to the models to account for possible scattered light from a hidden AGN. We find that: (1) The star-formation history of Seyfert 2 nuclei is remarkably heterogeneous: young starbursts, intermediate age, and old stellar populations all appear in significant and widely varying proportions. (2) A significant fraction of the nuclei show a strong FC component, but this FC is not always an indication of a hidden AGN: it can also betray the presence of a young, dusty starburst. (3) We detect weak broad Hbeta emission in several Seyfert 2s after cleaning the observed spectrum by subtracting the synthesis model. These are most likely the weak...

  4. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  5. Pairing mechanisms for binary stars

    CERN Document Server

    Kouwenhoven, M B N; Goodwin, S P; Zwart, S F Portegies; Kaper, L; 10.1002/asna.200811061

    2008-01-01

    Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments. Binarity is also a key ingredient in stellar population studies and is a prerequisite to calibrate the binary evolution channels. In these proceedings we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as the pairing function. Many pairing functions are frequently used by observers and computational astronomers, either for the mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. These quantities, when derived from a binary survey with a mass-limited sample of target stars, ...

  6. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  7. Coalescence of Binary Neutron Stars

    OpenAIRE

    Oohara, Ken-ichi; Namamura, Takashi

    1996-01-01

    The most important sources for laser-interferometric gravitational-wave detectors like LIGO or VIRGO are catastrophic events such as coalescence of a neutron-star binary. The final phase, or the last three milliseconds, of coalescence is considered. We describe results of numerical simulations of coalescing binary neutron stars using Newtonian and post-Newtonian hydrodynamics code and then discuss recent development of our 3D GR code.

  8. Exoplanets Bouncing Between Binary Stars

    CERN Document Server

    Moeckel, Nickolas

    2012-01-01

    Exoplanetary systems are found not only among single stars, but also binaries of widely varying parameters. Binaries with separations of 100--1000 au are prevalent in the Solar neighborhood; at these separations planet formation around a binary member may largely proceed as if around a single star. During the early dynamical evolution of a planetary system, planet--planet scattering can eject planets from a star's grasp. In a binary, the motion of a planet ejected from one star has effectively entered a restricted three-body system consisting of itself and the two stars, and the equations of motion of the three body problem will apply as long as the ejected planet remains far from the remaining planets. Depending on its energy, escape from the binary as a whole may be impossible or delayed until the three-body approximation breaks down, and further close interactions with its planetary siblings boost its energy when it passes close to its parent star. Until then this planet may be able to transition from the ...

  9. Hypervelocity binary stars: smoking gun of massive binary black holes

    CERN Document Server

    Lu, Youjun; Lin, D N C

    2007-01-01

    The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.

  10. Report IAU Comm. 42, Close Binary Stars

    OpenAIRE

    Ribas, Ignasi; Scarfe, Colin D.; Torres, Guillermo; Rucinski, Slavek M.; Sion, Edward M.; Richards, Mercedes T.; Niarchos, Panayiotis; Olah, Katalin

    2008-01-01

    Brief summaries are given about (1) close binary research from the perspective of the Bibliography of Close Binaries, (2) low-mass binaries and model discrepancies, (3) W UMa-type binaries, (4) cataclysmic variables, (5) Algol binaries, (6) the oEA stars, (7) effects of binarity on stellar activity.

  11. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  12. Massive Stars in Interactive Binaries

    Science.gov (United States)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  13. The Relationship Between Black Hole Growth and Star Formation in Seyfert Galaxies

    OpenAIRE

    Diamond-Stanic, Aleksandar M.; Rieke, George H.

    2011-01-01

    We present estimates of black hole accretion rates and nuclear, extended, and total star-formation rates for a complete sample of Seyfert galaxies. Using data from the Spitzer Space Telescope, we measure the active galactic nucleus (AGN) luminosity using the [O IV] 25.89 micron emission line and the star-forming luminosity using the 11.3 micron aromatic feature and extended 24 micron continuum emission. We find that black hole growth is strongly correlated with nuclear (r1 kpc) star formation...

  14. Binary nature of the Barium stars

    International Nuclear Information System (INIS)

    We present radial-velocity spectrometer observations that indicate that Ba II stars are binary systems. The secondary stars of these systems have low masses, consistent with their being degenerate objects which have lost mass onto their primaries in a previous stage of evolution. It is suggested that the Population II equivalents, the CH stars, may also be binary systems. This may be related to the fact that they are found only in globular clusters of the lowest central concentration

  15. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  16. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  17. An interferometric view of binary stars

    CERN Document Server

    Boffin, Henri M J

    2016-01-01

    The study of binary stars is critical to apprehend many of the most interesting classes of stars. Moreover, quite often, the study of stars in binary systems is our only mean to constrain stellar properties, such as masses and radii. Unfortunately, a great fraction of the most interesting binaries are so compact that they can only be apprehended by high-resolution techniques, mostly by interferometry. I present some results highlighting the use of interferometry in the study of binary stars, from finding companions and deriving orbits, determining the mass and radius of stars, to studying mass transfer in symbiotic stars, and tackling luminous blue variables. In particular, I show how interferometric studies using the PIONIER instrument have allowed us to confirm a dichotomy within symbiotic stars, obtain masses of stars with a precision better than 1%, and help us find a new Eta Carinae-like system. I will also illustrate the benefits for the study of binary stars one would get from upgrading the VLT Interfe...

  18. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    CERN Document Server

    Esquej, P; González-Martín, O; Hönig, S F; Caballero, A Hernán; Roche, P F; Almeida, C Ramos; Mason, R E; Díaz-Santos, T; Levenson, N A; Aretxaga, I; Espinosa, J M Rodríguez; Packham, C

    2013-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star formation rate (SFR) and the active galactic nuclei (AGN) luminosity (and, therefore, the black hole accretion rate) of Seyfert galaxies. This suggests a physical connection between the gas forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (0.4-0.8 arcsec) mid-infrared (8-13 micron) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalogue. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of 65 pc (median value). We found no general evidence of suppression of the 11.3 micron polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and used this feature as a proxy for the SFR. We detected the 11.3 micron PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are...

  19. The Environment of Binary Nuetron Star Mergers

    Science.gov (United States)

    Wiggins, Brandon

    2016-04-01

    In addition to detections by LIGO, binary neutron star mergers may be detected via luminous interaction with surrounding interstellar media. Upcoming observations including the VLASS survey may be able to detect such interactions and offer constraints on the binary neutron star merger rate. In this talk, I will present the results of cosmological simulations of a cluster of galaxies followed down to redshift 0. Our calculation includes star formation from which we infer a supernova and binary neutron star production rate. Using pre-existing models of neutron star binaries, we follow the positions of neutron star pairs in the cluster potential throughout cosmic time allowing us to identify regions in which neutron stars merge. We present statistics of many Monte Carlo instances of nuetron star pairs and trajectories allowing us to constrain the approximate fraction of neutron stars merging in dense gas. Our work has implications for R-process enrichment of galaxies in addition to predicting electromagnetic counterparts to gravitational wave detections of neutron star mergers.

  20. Orbital dynamics of binary boson star systems

    International Nuclear Information System (INIS)

    We extend our previous studies of head-on collisions of boson stars by considering orbiting binary boson stars. We concentrate on equal-mass binaries and study the dynamical behavior of boson/boson and boson/antiboson pairs. We examine the gravitational wave output of these binaries and compare with other compact binaries. Such a comparison lets us probe the apparent simplicity observed in gravitational waves produced by black hole binary systems. In our system of interest however, there is an additional internal freedom which plays a significant role in the system's dynamics, namely, the phase of each star. Our evolutions show rather simple behavior at early times, but large differences occur at late times for the various initial configurations

  1. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    International Nuclear Information System (INIS)

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot BH) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M ☉ yr–1 kpc–2) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot BH and showed that numerical simulations reproduce our observed relation fairly well.

  2. Red-giant stars in eccentric binaries

    Directory of Open Access Journals (Sweden)

    Beck P. G.

    2015-01-01

    Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red-giant stars and binary stars. We discuss the characterization of known eccentric system, containing a solar-like oscillating red-giant primary component. We also report several new binary systems that are candidates for hosting an oscillating companion. A powerful approach to study binary stars is to combine asteroseimic techniques with light curve fitting. Seismology allows us to deduce the properties of red giants. In addition, by modeling the ellipsoidal modulations we can constrain the parameters of the binary system. An valuable independent source are ground-bases, high-resolution spectrographs.

  3. THE RELATIONSHIP BETWEEN BLACK HOLE GROWTH AND STAR FORMATION IN SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    We present estimates of black hole accretion rates (BHARs) and nuclear, extended, and total star formation rates for a complete sample of Seyfert galaxies. Using data from the Spitzer Space Telescope, we measure the active galactic nucleus (AGN) luminosity using the [O IV] λ25.89 μm emission line and the star-forming luminosity using the 11.3 μm aromatic feature and extended 24 μm continuum emission. We find that black hole growth is strongly correlated with nuclear (r 1 kpc) star formation in the host galaxy. In particular, the nuclear star formation rate (SFR) traced by the 11.3 μm aromatic feature follows a relationship with the BHAR of the form SFR∝ M-dotBH0.8, with an observed scatter of 0.5 dex. This SFR-BHAR relationship persists when additional star formation in physically matched r = 1 kpc apertures is included, taking the form SFR∝ M-dotBH0.6. However, the relationship becomes almost indiscernible when total SFRs are considered. This suggests a physical connection between the gas on sub-kiloparsec and sub-parsec scales in local Seyfert galaxies that is not related to external processes in the host galaxy. It also suggests that the observed scaling between star formation and black hole growth for samples of AGNs will depend on whether the star formation is dominated by a nuclear or an extended component. We estimate the integrated black hole and bulge growth that occurs in these galaxies and find that an AGN duty cycle of 5%-10% would maintain the ratio between black hole and bulge masses seen in the local universe.

  4. X-ray flare from a B9 + post-T Tauri star system in the field of the Seyfert Galaxy III Zw 2

    International Nuclear Information System (INIS)

    The serendipitous detection of X-ray emission from the visual binary HD 560, consisting of a B-type primary and a later-type secondary, is reported. This system was seen in the field of the Seyfert type I galaxy III Zw 2, which was observed four times by Exosat. During one of these observations, the serendipitous source was observed to flare in both low-energy and medium-energy experiments. It is shown here that the observed variability was entirely due to the serendipitous source. It is argued that virtually all of the X-ray flux from the binary came from this late-type component, and that this component is probably a post-T Tauri star. 33 references

  5. Exploring the Birth of Binary Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    More than half of all stars are thought to be in binary or multiple star systems. But how do these systems form? The misaligned spins of some binary protostars might provide a clue.Two Formation ModelsIts hard to tell how multiple-star systems form, since these systems are difficult to observe in their early stages. But based on numerical simulations, there are two proposed models for the formation of stellar binaries:Turbulent fragmentationTurbulence within a single core leads to multiple dense clumps. These clumps independently collapse to form stars that orbit each other.Disk fragmentationGravitational instabilities in a massive accretion disk cause the formation of a smaller, secondary disk within the first, resulting in two stars that orbit each other.Log column density for one of the authors simulated binary systems, just after the formation of two protostars. Diamonds indicate the protostar positions. [Adapted from Offner et al. 2016]Outflows as CluesHow can we differentiate between these formation mechanisms? Led by Stella Offner (University of Massachusetts), a team of scientists has suggested that the key isto examine the alignment of the stars protostellar outflows jets that are often emitted from the poles of young, newly forming stars.Naively, wed expect that disk fragmentation would produce binary stars with common angular momentum. As the stars spins would be aligned, they would therefore also launch protostellar jets that were aligned with each other. Turbulent fragmentation, on the other hand, would cause the stars to have independent angular momentum. This would lead to randomly oriented spins, so the protostellar jets would be misaligned.Snapshots from the authors simulations. Left panel of each pair: column density; green arrows giveprotostellar spin directions. Right panel: synthetic observations produced from the simulations; cyan arrows giveprotostellar outflow directions. [Offner et al. 2016]Simulations of FragmentationIn order to better

  6. Adiabatic Mass Loss Model in Binary Stars

    Science.gov (United States)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the

  7. A field guide to the binary stars

    Science.gov (United States)

    Trimble, V.

    1983-05-01

    Details and examples of the six phases of existence for a binary star system are described. The birth and pre-main-sequence contraction is generally obscured from observation by the presence of gas and dust clouds; it comprises 1/1000th of a system's lifetime. The main sequence, i.e., hydrogen burning, takes up to 90 pct of a star's lifetime, and has been detected in stars with masses ranging from 0.07-32 solar masses. In binary systems, the main sequence stars may or may not interact, or one companion may burn out before the other leaves the main sequence. The primary in a binary system expands to fill its Roche lobe before mass transfer begins, then continues on a Kelvin-Helmholtz time scale until the primary is smaller than the secondary, when transfer proceeds on a nuclear time scale. The depletion of hydrogen fuel or He ignition stops the mass transfer, leading to formation of a white dwarf, neutron star, or supernova that sends both the neutron star and the OB secondary off at high speeds. Back transfer can be initiated in a fifth phase and can produce black holes or dwarf novae, or supernovae. Finally, the system terminates when both stars are extinguished and fall into one another, which can also yield supernovae or black holes.

  8. Quantitative spectroscopy of close binary stars

    CERN Document Server

    Pavlovski, K

    2011-01-01

    The method of spectral disentangling has now created the opportunity for studying the chemical composition in previously inaccessible components of binary and multiple stars. This in turn makes it possible to trace their chemical evolution, a vital aspect in understanding the evolution of stellar systems. We review different ways to reconstruct individual spectra from eclipsing and non-eclipsing systems, and then concentrate on some recent applications to detached binaries with high-mass and intermediate-mass stars, and Algol-type mass-transfer systems.

  9. Dynamics and Habitability in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Pilat-Lohinger, Elke

    2014-01-01

    Determining planetary habitability is a complex matter, as the interplay between a planet's physical and atmospheric properties with stellar insolation has to be studied in a self consistent manner. Standardized atmospheric models for Earth-like planets exist and are commonly accepted as a reference for estimates of Habitable Zones. In order to define Habitable Zone boundaries, circular orbital configurations around main sequence stars are generally assumed. In gravitationally interacting multibody systems, such as double stars, however, planetary orbits are forcibly becoming non circular with time. Especially in binary star systems even relatively small changes in a planet's orbit can have a large impact on habitability. Hence, we argue that a minimum model for calculating Habitable Zones in binary star systems has to include dynamical interactions.

  10. Interrupted Binary Mass Transfer in Star Clusters

    CERN Document Server

    Leigh, Nathan W C; Toonen, Silvia

    2016-01-01

    Binary mass transfer is at the forefront of some of the most exciting puzzles of modern astrophysics, including Type Ia supernovae, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this time-scale to the mean time for stable mass transfer to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing mass transfer that are expected to be disrupted as a function of the host cluster pro...

  11. A radio pulsing white dwarf binary star

    CERN Document Server

    Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-01-01

    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...

  12. Design and Implementation of BDB, the Binary Star Database

    Science.gov (United States)

    Kaygorodov, P.; Kovaleva, D.; Malkov, O.

    2013-02-01

    The Binary star DataBase (BDB, http://bdb.inasan.ru) is created to provide liasons between binary star catalogue data of various origin. Information on different observational types of binaries is obtained from heterogeneous sources of data - astronomical catalogues and surveys. The database allows a variety of query options useful for selected stars investigation purposes, for binary observations planning, and for construction and examination of binary datasets with certain characteristics.

  13. Orbits of Ten Visual Binary Stars

    Institute of Scientific and Technical Information of China (English)

    B.Novakovi(c)

    2007-01-01

    We present the orbits of ten visual binary stars:WDS 01015+6922.WDS 01424-0645,WDS 01461+6349,WDS 04374-0951,WDS 04478+5318,WDS 05255-0033,WDS 05491+6248,WDS 06404+4058,WDS 07479-1212,and WDS 18384+0850.We have also determined their masses,dynamical parallaxes and ephemerides.

  14. Nonlinear Dynamics, Lorenz Model and Formation of Binary Stars

    OpenAIRE

    Chang, Yi-Fang

    2008-01-01

    Based on the Lorenz model derived from the equations of hydrodynamics of nebula, we discuss the formation of binary stars by the qualitative analysis theory of nonlinear equation. Here the two wings in the Lorenz model form just the binary stars, whose Roche surface is result of evolution under certain condition. The nonlinear interaction plays a crucial role, and is necessary condition of the formation of binary stars and of multiple stars. While the linear equations form only a single star....

  15. On the formation of Be stars through binary interaction

    OpenAIRE

    Shao, Yong; Li, Xiang-Dong

    2014-01-01

    Be stars are rapidly rotating B type stars. The origin of their rapid rotation is not certain, but binary interaction remains to be a possibility. In this work we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. We calculate the binary evolution with both stars evolving simultaneously and consider different possible mass accretion histories for the accretor. From the calculated results we obtain the critical mass ratios $q_{\\rm cr}$ that determine ...

  16. Mergers of Binary Neutron Star Systems

    Science.gov (United States)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven; Neilsen, David; Palenzuela, Carlos

    2016-04-01

    We present results from fully relativistic simulations of binary neutron star mergers varying the tabular equation of state used to approximate the degenerate material and the mass ratio. The simulations incorporate both magnetic fields and the effects of neutrino cooling. In particular, we examine the amount and properties of material ejected from the merger. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  17. Implications of Binary Properties for Theories of Star Formation

    OpenAIRE

    Larson, Richard B.

    2000-01-01

    The overall frequency and other statistical properties of binary systems suggest that star formation is intrinsically a complex and chaotic process, and that most binaries and single stars actually originate from the decay of multiple systems. Interactions between stars forming in close proximity to each other may play an important role in the star formation process itself, for example via tidally induced accretion from disks. Some of the energetic activity of newly formed stars could be due ...

  18. The angular velocity of the apsidal rotation in binary stars

    CERN Document Server

    Vasilev, B V

    2004-01-01

    The shape of a rotating star consisting of equilibrium plasma is considered. The velocity of apsidal rotation of close binary stars (periastron rotation) which depends on the star shapes is calculated. The obtained estimations are in a good agreement with the observation data of the apsidal motion in binary systems.

  19. The Gaia Mission, Binary Stars and Exoplanets

    CERN Document Server

    Eyer, Laurent; Holl, Berry; North, Pierre; Zucker, Shay; Evans, Dafydd W; Pourbaix, Dimitri; Hodgkin, Simon T; Thuillot, William; Mowlavi, Nami; Carry, Benoit

    2015-01-01

    On the 19th of December 2013, the Gaia spacecraft was successfully launched by a Soyuz rocket from French Guiana and started its amazing journey to map and characterise one billion celestial objects with its one billion pixel camera. In this presentation, we briefly review the general aims of the mission and describe what has happened since launch, including the Ecliptic Pole scanning mode. We also focus especially on binary stars, starting with some basic observational aspects, and then turning to the remarkable harvest that Gaia is expected to yield for these objects.

  20. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    Joshua Faber; Phillippe Grandclément; Frederic Rasio

    2004-10-01

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.

  1. Star formation environments and the distribution of binary separations

    OpenAIRE

    Brandner, Wolfgang; Koehler, Rainer

    1998-01-01

    We have carried out K-band speckle observations of a sample of 114 X-ray selected weak-line T Tauri stars in the nearby Scorpius-Centaurus OB association. We find that for binary T Tauri stars closely associated to the early type stars in Upper Scorpius, the youngest subgroup of the OB association, the peak in the distribution of binary separations is at 90 A.U. For binary T Tauri stars located in the direction of an older subgroup, but not closely associated to early type stars, the peak in ...

  2. Evolution of Binary Stars in Multiple-Population Globular Clusters

    CERN Document Server

    Hong, Jongsuk; Sollima, Antonio; McMillan, Stephen L W; D'Antona, Franca; D'Ercole, Annibale

    2015-01-01

    The discovery of multiple stellar populations in globular clusters has implications for all the aspects of the study of these stellar systems. In this paper, by means of N-body simulations, we study the evolution of binary stars in multiple-population clusters and explore the implications of the initial differences in the spatial distribution of different stellar populations for the evolution and survival of their binary stars. Our simulations show that initial differences between the spatial distribution of first-generation (FG) and second-generation (SG) stars can leave a fingerprint in the current properties of the binary population. SG binaries are disrupted more efficiently than those of the FG population resulting in a global SG binary fraction smaller than that of the FG. As for surviving binaries, dynamical evolution produces a difference between the SG and the FG binary binding energy distribution with the SG population characterized by a larger fraction of high binding energy (more bound) binaries. ...

  3. Circumstellar disks around binary stars in Taurus

    International Nuclear Information System (INIS)

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10–4 M ☉. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of Fmm∝M∗1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  4. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  5. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  6. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  7. Binaries and the dynamical mass of star clusters

    CERN Document Server

    Kouwenhoven, M B N

    2007-01-01

    The total mass of a distant star cluster is often derived from the virial theorem, using line-of-sight velocity dispersion measurements and half-light radii, under the implicit assumption that all stars are single (although it is known that most stars form part of binary systems). The components of binary stars exhibit orbital motion, which increases the measured velocity dispersion, resulting in a dynamical mass overestimation. In this article we quantify the effect of neglecting the binary population on the derivation of the dynamical mass of a star cluster. We find that the presence of binaries plays an important role for clusters with total mass M 10^5 Msun, binaries do not affect the dynamical mass estimation significantly, provided that the cluster is significantly compact (half-mass radius < 5 pc).

  8. Time markers in interstellar communication. [with binary star civilizations

    Science.gov (United States)

    Pace, G. W.; Walker, J. C. G.

    1975-01-01

    The chances that two civilizations establish contact with each other by means of interstellar radio communication are exceedingly small in the absence of time markers which will tell the two civilizations when to search for one another. In the case of binary stars, suitable time markers are provided by the apastron and the periastron. Single star civilization would transmit signals to binaries at the observation of apastron and periastron and the binary star civilization would scan single stars at the proper time for the reception of these signals.

  9. Tidal effects and periastron events in binary stars

    OpenAIRE

    Koenigsberger, Gloria; Moreno, Edmundo

    2009-01-01

    Binary stars in eccentric orbits are frequently reported to present increasing levels of activity around periastron passage. In this paper we present results of a calculation from first principles of the velocity field on the surface of a star that is perturbed by a binary companion. This allows us to follow the orbital phase-dependence of the amount of kinetic energy that may be dissipated through the viscous shear, dot-E, driven by tidal interactions. For stars with relatively small stellar...

  10. Eccentricities of Double Neutron Star Binaries

    CERN Document Server

    Ihm, C M; Belczynski, K; Ihm, Catherine Mia; Kalogera, Vassiliki; Belczynski, Krzysztof

    2005-01-01

    Recent pulsar surveys have increased the number of observed double neutron stars (DNS) in our galaxy enough so that observable trends in their properties are starting to emerge. In particular, it has been noted that the majority of DNS have eccentricities less than 0.3, surprisingly low values for systems that must stay bound after two supernovae. To investigate this trend, we generate many different theoretical distributions of DNS eccentricities using Monte Carlo population synthesis methods. We determine which eccentricity distributions are most consistent with the observed sample of DNS binaries. In agreement with Chaurasia & Bailes (2005), we find that highly eccentric, close DNS are less likely to be observed because of their accelerated orbital evolution due to gravitational wave emission and possible early mergers. Based on our results for close DNS, we also find that models with vanishingly or moderately small kicks (sigma < about 50 km/s) are inconsistent with the current observed sample of s...

  11. A Numerical Study of Boson Star Binaries

    CERN Document Server

    Mundim, Bruno C

    2010-01-01

    This thesis describes a numerical study of binary boson stars within the context of an approximation to general relativity. The approximation we adopt places certain restrictions on the dynamical variables of general relativity (conformal flatness of the 3-metric), and on the time-slicing of the spacetime (maximal slicing). The resulting modeling problem requires the solution of a coupled nonlinear system of 4 hyperbolic, and 5 elliptic partial differential equations (PDEs) in three space dimensions and time. We approximately solve this system as an initial-boundary value problem, using finite difference techniques and well known, computationally efficient numerical algorithms such as the multigrid method in the case of the elliptic equations. Careful attention is paid to the issue of code validation, and a key part of the thesis is the demonstration that, as the basic scale of finite difference discretization is reduced, our numerical code generates results that converge to a solution of the continuum system...

  12. General Relativistic Decompression of Binary Neutron Stars During Inspiral

    CERN Document Server

    Miller, M

    2005-01-01

    We investigate the dynamic stability of inspiraling neutron stars by performing multiple-orbit numerical relativity simulations of the binary neutron star inspiral process. We find that as the separation between the stars decreases during the inspiral induced by gravitational wave emission, the central rest mass density of each star decreases, thus stabilizing each star against collapse. We compare the amount of decompression observed in our numerical relativity simulations with the amount predicted by post-Newtonian approximations.

  13. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    CERN Document Server

    Forgan, Duncan H

    2016-01-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycle...

  14. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    CERN Document Server

    Bluhm, P; Vanzi, L; Soto, M G; Vos, J; Wittenmyer, R A; Olivares, F; Drass, H; Mennickent, R E; Vuckovic, M; Rojo, P; Melo, C H F

    2016-01-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions.The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between $\\sim$ 97-1600 days and eccentricities of between $\\sim$ 0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a diffe...

  15. Evolution of the binary population in young dense star clusters

    CERN Document Server

    Kaczmarek, Thomas; Pfalzner, Susanne

    2011-01-01

    Context: Field stars are not always single stars, but can often be found in bound double systems. Since binary frequencies in the birth places of stars, young embedded clusters, are sometimes even higher than on average the question arises of how binary stars form in young dense star clusters and how their properties evolve to those observed in the field population. Aims: We assess, the influence of stellar dynamical interactions on the primordial binary population in young dense cluster environments. Methods: We perform numerical N-body simulations of the Orion Nebula Cluster like star cluster models including primordial binary populations using the simulation code nbody6++. Results: We find two remarkable results that have yet not been reported: The first is that the evolution of the binary frequency in young dense star clusters is independent predictably of its initial value. The time evolution of the normalized number of binary systems has a fundamental shape. The second main result is that the mass of th...

  16. Exploring the consequences of pairing algorithms for binary stars

    CERN Document Server

    Kouwenhoven, M B N; Goodwin, S P; Zwart, S F Portegies; Kaper, L

    2008-01-01

    Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments (see, e.g., Blaauw 1991, and references therein). Binarity is also a key ingredient in stellar population studies, and is a prerequisite to calibrate the binary evolution channels. In this paper we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as pairing functions. These pairing functions are frequently used by observers and computational astronomers, either for their mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. The mass ratio distribution and binary fraction deriv...

  17. An Introduction to the Evolution of Single and Binary Stars

    CERN Document Server

    Benacquista, Matthew

    2013-01-01

    An Introduction to the Evolution of Single and Binary Stars provides physicists with an understanding of binary and single star evolution, beginning with a background and introduction of basic astronomical concepts. Although a general treatment of stellar structure and evolution is included, the text stresses the physical processes that lead to stellar mass compact object binaries that may be sources of observable gravitational radiation. Basic concepts of astronomy, stellar structure and atmospheres, single star evolution, binary systems and mass transfer, compact objects, and dynamical systems are covered in the text. Readers will understand the astrophysics behind the populations of compact object binary systems and have sufficient background to delve deeper into specific areas of interest. In addition, derivations of important concepts and worked examples are included. No previous knowledge of astronomy is assumed, although a familiarity with undergraduate quantum mechanics, classical mechanics, and therm...

  18. Linking electromagnetic and gravitational radiation in coalescing binary neutron stars

    OpenAIRE

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L.; Ponce, Marcelo; Anderson, Matthew; Neilsen, David; Motl, Patrick

    2013-01-01

    We expand on our study of the gravitational and electromagnetic emissions from the late stage of an inspiraling neutron star binary as presented in Ref. \\cite{Palenzuela:2013hu}. Interactions between the stellar magnetospheres, driven by the extreme dynamics of the merger, can yield considerable outflows. We study the gravitational and electromagnetic waves produced during the inspiral and merger of a binary neutron star system using a full relativistic, resistive MHD evolution code. We show ...

  19. Binary Scientific Star Coauthors Core Size

    CERN Document Server

    Ausloos, Marcel

    2014-01-01

    It is examined whether the relationship $ J \\propto A/r^{\\alpha}$, and the subsequent coauthor core notion (Ausloos 2013), between the number ($J$) of joint publications (JP) by a "main scientist" (LI) with her/his coauthors (CAs) can be extended to a team-like system. This is done by considering that each coauthor can be so strongly tied to the LI that they are forming {\\it binary scientific star} (BSS) systems with respect to their other collaborators. Moreover, publications in peer review journals and in "proceedings", both often thought to be of "different quality", are separetely distinguished. The role of a time interval for measuring $J$ and $\\alpha$ is also examined. New indirect measures are also introduced. For making the point, two LI cases with numerous CAs are studied. It is found that only a few BSS need to be usefully examined. The exponent $\\alpha$ turns out to be "second scientist" weakly dependent, but still "size" and "publication type" dependent, according to the number of CAs or JP. The C...

  20. Phemenological Modeling of Eclipsing Binary Stars

    CERN Document Server

    Andronov, Ivan L; Chinarova, Lidia L

    2016-01-01

    We review the method NAV (New Algol Variable) first introduced in 2012Ap.....55..536A, which uses the locally-dependent shapes of eclipses in an addition to the trigonometric polynomial of the second order (which typically describes the "out-of-eclipse" part of the light curve with effects of reflection, ellipticity and O'Connell). Eclipsing binary stars are believed to show distinct eclipses only if belonging to the EA type. With a decreasing eclipse width, the statistically optimal value of the trigonometric polynomial s (2003ASPC..292..391A) drastically increases from ~2 for elliptic (EL) variables without eclipses, ~6-8 for EW and up to ~30-50 for some EA with narrow eclipses. In this case of large number of parameters, the smoothing curve becomes very noisy and apparent waves (the Gibbs phenomenon) may be seen. The NAV set of the parameters may be used for classification in the GCVS, VSX and similar catalogs. The maximal number of parameters is m=12, which corresponds to s=5, if correcting both the perio...

  1. Binary Stars Can Provide the "Missing Photons" Needed for Reionization

    CERN Document Server

    Ma, Xiangcheng; Kasen, Daniel; Quataert, Eliot; Faucher-Giguere, Claude-Andre; Keres, Dusan; Murray, Norman

    2016-01-01

    Empirical constraints on reionization require galactic ionizing photon escape fractions fesc>20%, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ~1-5%. While these models have included strong stellar feedback and additional processes such as runaway stars, they have almost exclusively considered stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations of galaxies with detailed models for stellar feedback from the Feedback in Realistic Environments (FIRE) project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the BPASS model). Binary mass transfer and mergers enhance the population of massive stars at late times (>3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon p...

  2. Ongoing surveys for close binary central stars and wider implications

    OpenAIRE

    Miszalski, Brent

    2011-01-01

    Binary central stars have long been invoked to explain the vexing shapes of planetary nebulae (PNe) despite there being scant direct evidence to support this hypothesis. Modern large-scale surveys and improved observing strategies have allowed us to significantly boost the number of known close binary central stars and estimate at least 20% of PNe have close binary nuclei that passed through a common-envelope (CE) phase. The larger sample of post-CE nebulae appears to have a high proportion o...

  3. Light and Life: Exotic Photosynthesis in Binary Star Systems

    CERN Document Server

    O'Malley-James, J T; Cockell, C S; Greaves, J S

    2011-01-01

    The potential for hosting photosynthetic life on Earth-like planets within binary/multiple stellar systems was evaluated by modelling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in: (i) close-binary systems; (ii) wide-binary systems and (iii) three-star systems were investigated and a range of stable radiation environments found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic forms of photosynthetic life, such as infrared photosynthesisers and organisms specialised for specific spectral niches.

  4. Compact Binaries in Star Clusters I - Black Hole Binaries Inside Globular Clusters

    OpenAIRE

    Downing, J. M. B.; Benacquista, M. J.; Giersz, M.; Spurzem, R.

    2009-01-01

    We study the compact binary population in star clusters, focusing on binaries containing black holes, using a self-consistent Monte Carlo treatment of dynamics and full stellar evolution. We find that the black holes experience strong mass segregation and become centrally concentrated. In the core the black holes interact strongly with each other and black hole-black hole binaries are formed very efficiently. The strong interactions, however, also destroy or eject the black hole-black hole bi...

  5. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    Science.gov (United States)

    Forgan, Duncan

    2016-08-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycles (of order 1000 years) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter timescale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15,000 year timescales. This produces climate oscillations of similar strength to the variation on the orbital timescale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100,000 years in duration, which are further modulated by neighbouring planets.

  6. Binary stars can provide the `missing photons' needed for reionization

    Science.gov (United States)

    Ma, Xiangcheng; Hopkins, Philip F.; Kasen, Daniel; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Murray, Norman; Strom, Allison

    2016-07-01

    Empirical constraints on reionization require galactic ionizing photon escape fractions fesc ≳ 20 per cent, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ˜1-5 per cent. While these models include strong stellar feedback and additional processes such as runaway stars, they almost exclusively consider stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations with detailed models for stellar feedback from the Feedback in Realistic Environments project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the Binary Population and Spectral Synthesis model). Binary mass transfer and mergers enhance the population of massive stars at late times (≳3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon production (especially at low metallicities). These photons are produced after feedback from massive stars has carved escape channels in the interstellar medium, and so efficiently leak out of galaxies. As a result, the time-averaged `effective' escape fraction (ratio of escaped ionizing photons to observed 1500 Å photons) increases by factors ˜4-10, sufficient to explain reionization. While important uncertainties remain, we conclude that binary evolution may be critical for understanding the ionization of the Universe.

  7. Evolution of binary stars in multiple-population globular clusters - II. Compact binaries

    Science.gov (United States)

    Hong, Jongsuk; Vesperini, Enrico; Sollima, Antonio; McMillan, Stephen L. W.; D'Antona, Franca; D'Ercole, Annibale

    2016-04-01

    We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters. We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations. The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG and the SG binary fraction with the distance from the cluster centre and its dependence on the binary binding energy and cluster structural parameters. The difference between the binary fraction in the FG and the SG populations found in our simulations is consistent with the results of observational studies finding a smaller binary fraction in the SG population.

  8. Eccentricity boost of stars around shrinking massive black hole binaries

    Science.gov (United States)

    Iwasa, Mao; Seto, Naoki

    2016-06-01

    Based on a simple geometrical approach, we analyze the evolution of the Kozai-Lidov mechanism for stars around shrinking massive black hole binaries on circular orbits. We find that, due to a peculiar bifurcation pattern induced by the Newtonian potential of stellar clusters, the orbit of stars could become highly eccentric. This transition occurs abruptly for stars with small initial eccentricities. The approach presented in this paper may be useful for studying the Kozai-Lidov mechanism in various astrophysical contexts.

  9. Simulating binary neutron stars: dynamics and gravitational waves

    OpenAIRE

    Anderson, Matthew; Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Motl, Patrick M.; Neilsen, David; Palenzuela, Carlos; Tohline, Joel E.

    2007-01-01

    We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equatio...

  10. Short-Period Binary Stars: Observations, Analyses, and Results

    CERN Document Server

    Milone, Eugene F; Hobill, David W

    2008-01-01

    Short-period binaries run the gamut from widely separated stars to black-hole pairs; in between are systems that include neutron stars and white dwarfs, and partially evolved systems such as tidally distorted and over-contact systems. These objects represent stages of evolution of binary stars, and their degrees of separation provide critical clues to how their evolutionary paths differ from that of single stars. The widest and least distorted systems provide astronomers with the essential precise data needed to study all stars: mass and radius. The interactions of binary star components, on the other hand, provide a natural laboratory to observe how the matter in these stars behaves under different and often varying physical conditions. Thus, cataclysmic variables with and without overpoweringly strong magnetic fields, and stars with densities from that found in the Sun to the degenerate matter of white dwarfs and the ultra-compact states of neutron stars and black holes are all discussed. The extensive inde...

  11. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    International Nuclear Information System (INIS)

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886

  12. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  13. Changes in the orbital periods of close binary stars

    International Nuclear Information System (INIS)

    A number of close binary stars show erratic changes in their orbital periods on time scales of order 5-10 yr. Recently it has been proposed that the period changes are the result of changes in the quadrupole moment of one star, caused in turn by an alteration of the internal structure of that star. Magnetic pressure, which either distorts the shape of the star or changes its tidally induced quadrupole moment, is suggested as the driving force behind the alteration. Here, the amount of energy required to distort one component of a binary and match the observed period changes is estimated. The rate at which energy is produced or lost is governed by the thermal time scale of the star, and the estimates indicate that the observed period changes would take at least 1000 yr for the tidal quadrupole mechanism, and of order 60 yr to match a period change in V471 Tau which took only 4 yr. 16 refs

  14. Supercritical accretion in the evolution of neutron star binaries and its implications

    International Nuclear Information System (INIS)

    Recently ∼2M⊙ neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M⊙. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M⊙. In this article we suggest that 2M⊙ neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors

  15. Binary Stars Can Provide the "Missing Photons" Needed for Reionization

    Science.gov (United States)

    Ma, Xiangcheng; Hopkins, Philip F.; Kasen, Daniel; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Murray, Norman; Strom, Allison

    2016-04-01

    Empirical constraints on reionization require galactic ionizing photon escape fractions fesc ≳ 20%, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ˜1-5%. While these models include strong stellar feedback and additional processes such as runaway stars, they almost exclusively consider stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations with detailed models for stellar feedback from the Feedback in Realistic Environments (FIRE) project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the BPASS model). Binary mass transfer and mergers enhance the population of massive stars at late times (≳ 3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon production (especially at low metallicities). These photons are produced after feedback from massive stars has carved escape channels in the ISM, and so efficiently leak out of galaxies. As a result, the time-averaged "effective" escape fraction (ratio of escaped ionizing photons to observed 1500 Å photons) increases by factors ˜4-10, sufficient to explain reionization. While important uncertainties remain, we conclude that binary evolution may be critical for understanding the ionization of the Universe.

  16. Relating binary-star planetary systems to central configurations

    CERN Document Server

    Veras, Dimitri

    2016-01-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than ten degrees, and (v) the deviation increases as the substellar masse...

  17. KOI-3278: a self-lensing binary star system.

    Science.gov (United States)

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution. PMID:24744369

  18. KOI-3278: A Self-Lensing Binary Star System

    CERN Document Server

    Kruse, Ethan

    2014-01-01

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  19. Elliptical motions of stars in close binary systems

    CERN Document Server

    Lukyanov, L G

    2010-01-01

    Motions of stars in close binary systems with a conservative mass exchange are examined. It is shown that Paczynski-Huang model widely used now for obtaining the semi-major axis variation of a relative stars orbit is incorrect, because it brings about large mistakes. A new model suitable for elliptical orbits of stars is proposed. Both of reactive and attractive forces between stars and a substance of the flowing jet are taken into account. A possibility of a mass exchange at presence of accretion disk is considered

  20. The evolution of naked helium stars with a neutron-star companion in close binary systems

    OpenAIRE

    Dewi, J D M; Pols, O. R; Savonije, G.J.; Heuvel, E.P.J. van den

    2002-01-01

    The evolution of helium stars with masses of 1.5 - 6.7 M_sun in binary systems with a 1.4 M_sun neutron-star companion is presented. Such systems are assumed to be the remnants of Be/X-ray binaries with B-star masses in the range of 8 - 20 M_sun which underwent a case B or case C mass transfer and survived the common-envelope and spiral-in process. The orbital period is chosen such that the helium star fills its Roche lobe before the ignition of carbon in the centre. We distinguish case BA (i...

  1. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  2. Black Hole - Neutron Star Binary Mergers

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...

  3. Ongoing surveys for close binary central stars and wider implications

    CERN Document Server

    Miszalski, Brent

    2011-01-01

    Binary central stars have long been invoked to explain the vexing shapes of planetary nebulae (PNe) despite there being scant direct evidence to support this hypothesis. Modern large-scale surveys and improved observing strategies have allowed us to significantly boost the number of known close binary central stars and estimate at least 20% of PNe have close binary nuclei that passed through a common-envelope (CE) phase. The larger sample of post-CE nebulae appears to have a high proportion of bipolar nebulae, low-ionisation structures (especially in SN1987A-like rings) and polar outflows or jets. These trends are guiding our target selection in ongoing multi-epoch spectroscopic and photometric surveys for new binaries. Multiple new discoveries are being uncovered that further strengthen the connection between post-CE trends and close binaries. These ongoing surveys also have wider implications for understanding CE evolution, low-ionisation structure and jet formation, spectral classification of central stars...

  4. The Binary History and the Magnetic Field of Neutron Star

    CERN Document Server

    Konar, Sushan

    2009-01-01

    There has been strong observational evidence suggesting a causal connection between the binary history of neutron stars and the evolution of their magnetic field. In this article we discuss one of the plausible mechanisms proposed for the evolution of the surface magnetic field, that of the diamagnetic screening of the field by accreted material.

  5. Remarks on numerical relativity, geodesic motions, binary neutron star evolution

    OpenAIRE

    Loinger, A.; Marsico, T.

    2012-01-01

    The computations of numerical relativity make use of (3+1)- decompositions of Einstein field equations. We examine the conceptual characteristics of this method; instances of compact-star binaries are considered. The preeminent role of the geodesic motions is emphasized.

  6. Evolution of Binary Stars in Multiple-Population Globular Clusters - II. Compact Binaries

    CERN Document Server

    Hong, Jongsuk; Sollima, Antonio; McMillan, Stephen L W; D'Antona, Franca; D'Ercole, Annibale

    2016-01-01

    We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters.We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations.The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG an...

  7. Linking electromagnetic and gravitational radiation in coalescing binary neutron stars

    CERN Document Server

    Palenzuela, Carlos; Liebling, Steven L; Ponce, Marcelo; Anderson, Matthew; Neilsen, David; Motl, Patrick

    2013-01-01

    We expand on our study of the gravitational and electromagnetic emissions from the late stage of an inspiraling neutron star binary as presented in Ref. \\cite{Palenzuela:2013hu}. Interactions between the stellar magnetospheres, driven by the extreme dynamics of the merger, can yield considerable outflows. We study the gravitational and electromagnetic waves produced during the inspiral and merger of a binary neutron star system using a full relativistic, resistive MHD evolution code. We show that the interaction between the stellar magnetospheres extracts kinetic energy from the system and powers radiative Poynting flux and heat dissipation. These features depend strongly on the configuration of the initial stellar magnetic moments. Our results indicate that this power can strongly outshine pulsars in binaries and have a distinctive angular and time-dependent pattern. Our discussion provides more detail than Ref. \\cite{Palenzuela:2013hu}, showing clear evidence of the different effects taking place during the...

  8. Gravitational and electromagnetic outputs from binary neutron star mergers

    CERN Document Server

    Palenzuela, Carlos; Ponce, Marcelo; Liebling, Steven L; Anderson, Matthew; Neilsen, David; Motl, Patrick

    2013-01-01

    The late stage of an inspiraling neutron star binary gives rise to a strong emission of gravitational waves due to its highly dynamic, strong gravity. Interactions between the stellar magnetospheres, driven by the extreme dynamics, can produce considerable outflows. We study the gravitational and electromagnetic waves produced during the inspiral and merger of a binary neutron star system using a full general relativistic, resistive MHD evolution code. We show that the interaction between the stellar magnetospheres extracts kinetic energy from the system and powers radiative Poynting flux and heat dissipation. These features depend strongly on the configuration of the initial stellar magnetic moments. Our results indicate that this power can strongly outshine pulsars in binaries and has a distinctive angular and time-dependent pattern.

  9. Accretion Disc Evolution in Single and Binary T Tauri Stars

    CERN Document Server

    Armitage, P J; Tout, C A; Armitage, Philip J.

    1998-01-01

    We present theoretical models for the evolution of T Tauri stars surrounded by circumstellar discs. The models include the effects of pre-main-sequence stellar and time dependent disc evolution, and incorporate the effects of stellar magnetic fields acting on the inner disc. For single stars, consistency with observations in Taurus-Auriga demands that disc dispersal occurs rapidly, on much less than the viscous timescale of the disc, at roughly the epoch when heating by stellar radiation first dominates over internal viscous dissipation. Applying the models to close binaries, we find that because the initial conditions for discs in binaries are uncertain, studies of extreme mass ratio systems are required to provide a stringent test of theoretical disc evolution models. We also note that no correlation of the infra-red colours of T Tauri stars with their rotation rate is observed, in apparent contradiction to the predictions of simple magnetospheric accretion models.

  10. Unequal mass binary neutron star mergers and multimessenger signals

    CERN Document Server

    Lehner, Luis; Palenzuela, Carlos; Caballero, O L; O'Connor, Evan; Anderson, Matthew; Neilsen, David

    2016-01-01

    We study the merger of binary neutron stars with different mass ratios adopting three different realistic, microphysical nuclear equations of state, as well as incorporating neutrino cooling effects. In particular, we concentrate on the influence of the equation of state on the gravitational wave signature and also on its role, in combination with neutrino cooling, in determining the properties of the resulting hypermassive neutron star, of the neutrinos produced, and of the ejected material. The ejecta we find are consistent with other recent studies that find that small mass ratios produce more ejecta than equal mass cases (up to some limit) and this ejecta is more neutron rich. This trend indicates the importance with future kilonovae observations of measuring the individual masses of an associated binary neutron star system, presumably from concurrent gravitational wave observations, in order to be able to extract information about the nuclear equation of state

  11. Radial Velocity Studies of Close Binary Stars.X

    CERN Document Server

    Rucinski, S M; Ogloza, W; De Bond, H; Thomson, J R; Mochnacki, S W; Capobianco, C C; Conidis, G; Rogoziecki, P; Rucinski, Slavek M.; Pych, Wojtek; Ogloza, Waldemar; Bond, Heide De; Mochnacki, Stefan W.; Capobianco, Christopher C.; Conidis, George

    2005-01-01

    Radial-velocity measurements and sine-curve fits to the orbital velocity variations are presented for the ninth set of ten close binary systems: V395 And, HS Aqr, V449 Aur, FP Boo, SW Lac, KS Peg, IW Per, V592 Per, TU UMi, FO Vir. The first three are very close, possibly detached, early-type binaries and all three require further investigation. Particularly interesting is V395 And whose spectral type is as early as B7/8 for a 0.685 day orbit binary. KS Peg and IW Per are single-line binaries, with the former probably hosting a very small star or a massive planet as a secondary component. We have detected a low-mass secondary in an important semi-detached system FO Vir at q=0.125+/-0.005. The contact binary FP Boo is also a very small mass-ratio system, q=0.106+/-0.005. The other contact binaries in this group are V592 Per, TU UMi and the well known SW Lac. V592 Per and TU UMi have bright tertiary companions; for these binaries, and for V395 And, we used a novel technique of the broadening functions arranged i...

  12. Magnetised winds in single and binary star systems

    Science.gov (United States)

    Johnstone, Colin

    2016-07-01

    Stellar winds are fundamentally important for the stellar magnetic activity evolution and for the immediate environment surrounding their host stars. Ionised winds travel at hundreds of km/s, impacting planets and clearing out large regions around the stars called astropheres. Winds influence planets in many ways: for example, by compressing the magnetosphere and picking up atmospheric particles, they can cause significant erosion of a planetary atmosphere. By removing angular momentum, winds cause the rotation rates of stars to decrease as they age. This causes the star's magnetic dynamo to decay, leading to a significant decay in the star's levels of X-ray and extreme ultraviolet emission. Despite their importance, little is currently known about the winds of other Sun-like stars. Their small mass fluxes have meant that no direct detections have so far been possible. What is currently known has either been learned indirectly or through analogies with the solar wind. In this talk, I will review what is known about the properties and evolution of the winds of other Sun-like stars. I will also review wind dynamics in binary star systems, where the winds from both stars impact each other, leading to shocks and compression regions.

  13. ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD

    International Nuclear Information System (INIS)

    The asymptotic response of donor stars in interacting binary systems to very rapid mass loss is characterized by adiabatic expansion throughout their interiors. In this limit, energy generation and heat flow through the stellar interior can be neglected. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed as mass is removed from the surface. The stellar interior remains in hydrostatic equilibrium. Luminosity profiles in these adiabatic models of mass-losing stars can be reconstructed from the specific entropy profiles and their gradients. These approximations are validated by comparison with time-dependent binary mass transfer calculations. We describe how adiabatic mass-loss sequences can be used to quantify threshold conditions for dynamical timescale mass transfer, and to establish the range of post-common envelope binaries that are allowed energetically. In dynamical timescale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main-sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal timescale mass transfer, a so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical timescale mass transfer as that ratio for which the adiabatic response of the donor star radius to mass loss matches that of its Roche lobe at some point during mass transfer; if the ratio of donor to accretor masses exceeds this critical value, dynamical timescale mass transfer ensues. In common envelope evolution, the dissipation of orbital energy of the

  14. Planetary Dynamics and Habitable Planet Formation In Binary Star Systems

    CERN Document Server

    Haghighipour, Nader; Pilat-Lohinger, Elke

    2009-01-01

    Whether binaries can harbor potentially habitable planets depends on several factors including the physical properties and the orbital characteristics of the binary system. While the former determines the location of the habitable zone (HZ), the latter affects the dynamics of the material from which terrestrial planets are formed (i.e., planetesimals and planetary embryos), and drives the final architecture of the planets assembly. In order for a habitable planet to form in a binary star system, these two factors have to work in harmony. That is, the orbital dynamics of the two stars and their interactions with the planet-forming material have to allow terrestrial planet formation in the habitable zone, and ensure that the orbit of a potentially habitable planet will be stable for long times. We have organized this chapter with the same order in mind. We begin by presenting a general discussion on the motion of planets in binary stars and their stability. We then discuss the stability of terrestrial planets, ...

  15. The inner $\\sim$ 40 pc Radial Distribution of the Star formation Rate for a nearby Seyfert 2 galaxy M51

    CERN Document Server

    Fang, Li-Ling; He, Zhi-Cheng; Bian, Wei-Hao

    2015-01-01

    We investigate spatially resolved specific star formation rate (SSFR) in the inner $\\sim$ 40 pc for a nearby Seyfert 2 galaxy, M51 (NGC 5194) by analyzing spectra obtained with the \\emph{Hubble Space Telescope (HST)} Space Telescope Imaging Spectrograph (STIS). We present 24 radial spectra measured along the STIS long slit in M51, extending $\\sim 1\\arcsec$ from the nucleus (i.e., -41.5 pc to 39.4 pc). By the simple stellar population synthesis, the stellar contributions in these radial optical spectra are modeled. Excluding some regions with zero young flux fraction near the center (from -6 pc to 2 pc), we find that the mean flux fraction of young stellar populations (younger than 24.5 Myr) is about 9 \\%, the mean mass fraction is about 0.09\\%. The young stellar populations are not required in the center inner $\\sim$ 8 pc in M51, suggesting a possible SSFR suppression in the circumnuclear region ($\\sim$ 10 pc) from the feedback of active galactic nuclei (AGNs). The radial distribution of SSFR in M51 is not sy...

  16. Resonant oscillations and tidal heating in coalescing binary neutron stars

    CERN Document Server

    Lai, D

    1994-01-01

    Tidal interaction in a coalescing neutron star binary can resonantly excite the g-mode oscillations of the neutron star when the frequency of the tidal driving force equals the intrinsic g-mode frequencies. We study the g-mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, where we determine self-consistently the sound speed and Brunt-V\\"ais\\"al\\"a frequency in the nuclear liquid core. The properties of the g-modes associated with the stable stratification of the core depend sensitively on the pressure-density relation as well as the symmetry energy of the dense nuclear matter. The frequencies of the first ten g-modes lie approximately in the range of 10-100 Hz. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. The angular momentum transfer is possible because a dynamical tidal lag develops even in the absence of fluid viscosity. ...

  17. Flow structure in magnetic close binary stars

    International Nuclear Information System (INIS)

    The current understanding of mass exchange processes between close binary system (CBS) components is reviewed, with particular attention on the mass flow structure and accretion disk physics. Using 3D MHD calculation results, the variation of key accretion disk characteristics with the accretor magnetic field is studied and the magnetic field generation process is analyzed. In particular, it is shown that the quasi-periodic process of toroidal magnetic field generation in disks results in alternating accretion and decretion regimes in the inner regions of the disk. By treating MHD flows in CBSs self-consistently, disk formation conditions are established and a separation criterion between intermediate-polar and polar flows is found. The possibility of using MHD simulation results for explaining observations is discussed. (reviews of topical problems)

  18. Unification of binary star ephemeris solutions

    International Nuclear Information System (INIS)

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  19. Cool and Luminous Transients from Mass-Losing Binary Stars

    CERN Document Server

    Pejcha, Ondrej; Tomida, Kengo

    2015-01-01

    We study transients produced by equatorial disk-like outflows from catastrophically mass-losing binary stars with an asymptotic velocity and energy deposition rate near the inner edge which are proportional to the binary escape velocity v_esc. As a test case, we present the first smoothed-particle radiation-hydrodynamics calculations of the mass loss from the outer Lagrange point with realistic equation of state and opacities. The resulting spiral stream becomes unbound for binary mass ratios 0.06 < q < 0.8. For synchronous binaries with non-degenerate components, the spiral-stream arms merge at a radius of ~10a, where a is the binary semi-major axis, and the accompanying shock thermalizes 10-20% of the kinetic power of the outflow. The mass-losing binary outflows produce luminosities proportional to the mass loss rate and v_esc, reaching up to ~10^6 L_Sun. The effective temperatures depend primarily on v_esc and span 500 < T_eff < 6000 K. Dust readily forms in the outflow, potentially in a catast...

  20. A Quintuple Star System Containing Two Eclipsing Binaries

    CERN Document Server

    Rappaport, S; Kalomeni, B; Borkovits, T; Latham, D; Bieryla, A; Ngo, H; Mawet, D; Howell, S; Horch, E; Jacobs, T L; LaCourse, D; Sodor, A; Vanderburg, A; Pavlovski, K

    2016-01-01

    We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11" on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclipsing binaries which are resolved within that image at 0.09", while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The 'A' binary is circular with a 5.1-day period, while the 'B' binary is eccentric with a 13.1-day period. The gamma velocities of the A and B binaries are different by ~10 km/s. That, coupled with their resolved projected separation of 0.09", indicates that the orbital period and separation of the 'C' binary (consisting of A orbiting B) are ~65 years and ~25 AU, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e., 21...

  1. MHD instabilities in accretion mounds on neutron star binaries

    CERN Document Server

    Mukherjee, Dipanjan; Mignone, Andrea

    2013-01-01

    We have numerically solved the Grad-Shafranov equation for axisymmetric static MHD equilibria of matter confined at the polar cap of neutron stars. From the equilibrium solutions we explore the stability of the accretion mounds using the PLUTO MHD code. We find that pressure driven modes disrupt the equilibria beyond a threshold mound mass. This results in formation of dynamic structures inside the mound, as matter spreads over the neutron star surface. Our results show that local variation of magnetic field will significantly affect the shape and nature of the cyclotron features observed in the spectra of High Mass X-ray Binaries.

  2. Gravitational waves and neutrino emissions from the binary neutron star mergers

    International Nuclear Information System (INIS)

    Coalescence of binary neutron stars is a main target of the ground-based gravitational observatory such as KAGRA and important target for the multimessenger astronomy. If gravitational waves and neutrinos from mergers of binary neutron star, it would be possible to probe the nuclear matter inside neutron stars. In this report, we would like to overview the discovery of the binary neutron star and the research for the gravitational wave and introduce our latest research based on Numerical Relativity. (author)

  3. ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    OpenAIRE

    Maxted, P. F. L.

    2016-01-01

    Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. I have developed a binary star model (ELLC) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time wit...

  4. Coalescence of Black Hole-Neutron Star Binaries

    Directory of Open Access Journals (Sweden)

    Masaru Shibata

    2011-08-01

    Full Text Available We review the current status of general relativistic studies for the coalescence of black hole-neutron star (BH-NS binaries. First, procedures for a solution of BH-NS binaries in quasi-equilibrium circular orbits and the numerical results, such as quasi-equilibrium sequence and mass-shedding limit, of the high-precision computation, are summarized. Then, the current status of numerical-relativity simulations for the merger of BH-NS binaries is described. We summarize our understanding for the merger and/or tidal disruption processes, the criterion for tidal disruption, the properties of the remnant formed after the tidal disruption, gravitational waveform, and gravitational-wave spectrum.

  5. Gravitational and electromagnetic outputs from binary neutron star mergers

    OpenAIRE

    Palenzuela, Carlos; Lehner, Luis; Ponce, Marcelo; Liebling, Steven L.; Anderson, Matthew; Neilsen, David; Motl, Patrick

    2013-01-01

    The late stage of an inspiraling neutron star binary gives rise to strong gravitational wave emission due to its highly dynamic, strong gravity. Moreover, interactions between the stellar magnetospheres can produce considerable electromagnetic radiation. We study this scenario using fully general relativistic, resistive magneto-hydrodynamics simulations. We show that these interactions extract kinetic energy from the system, dissipate heat, and power radiative Poynting flux, as well as develo...

  6. Tidally distorted accretion discs in binary stars

    Science.gov (United States)

    Ogilvie, G. I.

    2002-03-01

    The non-axisymmetric features observed in the discs of dwarf novae in outburst are usually considered to be spiral shocks, which are the non-linear relatives of tidally excited waves. This interpretation suffers from a number of problems. For example, the natural site of wave excitation lies outside the Roche lobe, the disc must be especially hot, and most treatments of wave propagation do not take into account the vertical structure of the disc. In this paper I construct a detailed semi-analytical model of the non-linear tidal distortion of a thin, three-dimensional accretion disc by a binary companion on a circular orbit. The analysis presented here allows for vertical motion and radiative energy transport, and introduces a simple model for the turbulent magnetic stress. The m=2 inner vertical resonance has an important influence on the amplitude and phase of the tidal distortion. I show that the observed patterns find a natural explanation if the emission is associated with the tidally thickened sectors of the outer disc, which may be irradiated from the centre. According to this hypothesis, it may be possible to constrain the physical parameters of the disc through future observations.

  7. Asteroseismology of binary stars and a compilation of core overshoot and rotational frequency values of OB stars

    CERN Document Server

    Aerts, Conny

    2013-01-01

    After a brief introduction into the asteroseismic modelling of stars, we provide a compilation of the current seismic estimates of the core overshooting parameter and of the rotational frequency of single and binary massive stars. These important stellar parameters have meanwhile become available for eleven OB-type stars, among which three spectroscopic pulsating binaries and one magnetic pulsator. We highlight the potential of ongoing and future analyses of eclipsing binary pulsators as essential laboraties to test stellar structure and evolution models of single and binary stars.

  8. A Catalogue of Temperatures for Kepler Eclipsing Binary Stars

    CERN Document Server

    Armstrong, D J; Faedi, F; Pollacco, D

    2013-01-01

    We have combined the Kepler Eclipsing Binary Catalogue with information from the HES, KIS and 2MASS photometric surveys to produce spectral energy distribution fits to over 2600 eclipsing binaries in the catalogue over a wavelength range of 0.36 to 2.16\\AA. We present primary ($T_1$) and secondary ($T_2$) stellar temperatures, plus information on the stellar radii and system distance ratios. The derived temperatures are on average accurate to 370K in $T_1$ and 620K in $T_2$. Our results improve on the similarly derived physical parameters of the Kepler Input Catalogue through consideration of both stars of the binary system rather than a single star model, and inclusion of additional U band photometry. We expect these results to aid future uses of the Kepler Eclipsing Binary data, both in target selection and to inform users of the extremely high precision light curves available. We do not include surface gravities or system metallicities, as these were found to have an insignificant effect on the observed ph...

  9. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    Science.gov (United States)

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs. PMID:26684106

  10. Star Cluster Ecology: VII The evolution of young dense star clusters containing primordial binaries

    CERN Document Server

    Zwart, S P; Makino, J; Zwart, Simon Portegies; Millan, Steve Mc; Makino, Jun

    2006-01-01

    We study the first 100Myr of the evolution of isolated star clusters initially containing 144179 stars, including 13107 (10%) primordial hard binaries. Our calculations include the effects of both stellar and binary evolution. Gravitational interactions among the stars are computed by direct N-body integration using high precision GRAPE-6 hardware. The evolution of the core radii and central concentrations of our simulated clusters are compared with the observed sample of young (about 100Myr) star clusters in the large Magellanic cloud. Even though our simulations start with a rich population of primordial binaries, core collapse during the early phase of the cluster evolution is not prevented. Throughout the simulations, the fraction of binaries remains roughly constant (about 10%). Due to the effects of mass segregation the mass function of intermediate-mass main-sequence stars becomes as flat as $\\alpha=-1.8$ in the central part of the cluster (where the initial Salpeter mass function had $\\alpha=-2.35$). ...

  11. {\\Delta}{\\mu} Binaries among Stars with Large Proper Motions

    CERN Document Server

    Khovritchev, M Yu

    2016-01-01

    Based on observations performed with the Pulkovo normal astrograph in 2008-2015 and data from sky surveys (DSS, 2MASS, SDSS DR12, WISE), we have investigated the motions of 1308 stars with proper motions larger than 300 mas/yr down to magnitude 17. The main idea of our search for binary stars based on this material is reduced to comparing the quasi-mean (POSS2-POSS1; an epoch difference of $\\approx$50 yr) and quasi-instantaneous (2MASS, SDSS, WISE, Pulkovo; an epoch difference of $\\approx$10 yr) proper motions. If the difference is statistically significant compared to the proper motion errors, then the object may be considered as a {\\Delta}{\\mu}-binary candidate. One hundred and twenty one stars from among those included in the observational program satisfy this requirement. Additional confirmations of binarity for a number of stars have been obtained by comparing the calculated proper motions with the data from several programs of stellar trigonometric parallax determinations and by analyzing the asymmetry ...

  12. Simulating binary neutron stars: dynamics and gravitational waves

    CERN Document Server

    Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David; Palenzuela, Carlos; Tohline, Joel E

    2007-01-01

    We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equations are solved in a first order reduction of the generalized harmonic formulation, and the fluid equations are solved using a modified Convex Essentially Non-Oscillatory method. All calculations are done in three spatial dimensions without symmetry assumptions. We use the \\had computational infrastructure for distributed adaptive mesh refinement.

  13. Neutrino Flavor Evolution in Binary Neutron Star Merger Remnants

    CERN Document Server

    Frensel, Maik; Volpe, Cristina; Perego, Albino

    2016-01-01

    We study the neutrino flavor evolution in the neutrino-driven wind from a binary neutron star merger remnant consisting of a massive neutron star surrounded by an accretion disk. With the neutrino emission characteristics and the hydrodynamical profile of the remnant consistently extracted from a three-dimensional simulation, we compute the flavor evolution by taking into account neutrino coherent forward scattering off ordinary matter and neutrinos themselves. We employ a "single-trajectory" approach to investigate the dependence of the flavor evolution on the neutrino emission location and angle. We also show that the flavor conversion in the merger remnant can affect the (anti-)neutrino absorption rates on free nucleons and may thus impact the $r$-process nucleosynthesis in the wind. We discuss the sensitivity of such results on the change of neutrino emission characteristics, also from different neutron star merger simulations.

  14. Observational Constraints From Binary Stars on Stellar Evolution Models

    CERN Document Server

    Torres, Guillermo

    2013-01-01

    Accurate determinations of masses and radii in binary stars, along with estimates of the effective temperatures, metallicities, and other properties, have long been used to test models of stellar evolution. As might be expected, observational constraints are plentiful for main-sequence stars, although some problems with theory remain even in this regime. Models in other areas of the H-R diagram are considerably less well constrained, or not constrained at all. I summarize the status of the field, and provide examples of how accurate measurements can supply stringent tests of stellar theory, including aspects such as the treatment of convection. I call attention to the apparent failure of current models to match the properties of stars with masses of 1.1-1.7 MSun that are near the point of central hydrogen exhaustion, possibly connected with the simplified treatment of convective core overshooting.

  15. Binary interactions with high accretion rates onto main sequence stars

    Science.gov (United States)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10‑2 M ⊙ yr‑1 for solar type stars, and up to ≈ 1 M ⊙ yr‑1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  16. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  17. Supercritical accretion in the evolution of neutron star binaries and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hwan, E-mail: clee@pusan.ac.kr; Cho, Hee-Suk

    2014-08-15

    Recently ∼2M{sub ⊙} neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M{sub ⊙}. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M{sub ⊙}. In this article we suggest that 2M{sub ⊙} neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors.

  18. The Frequency Of Binary Star Interlopers Amongst Transitional Discs

    CERN Document Server

    Ruíz-Rodríguez, D; Cieza, L; Kraus, A

    2016-01-01

    Using Non-Redundant Mask interferometry (NRM), we searched for binary companions to objects previously classified as Transitional Disks (TD). These objects are thought to be an evolutionary stage between an optically thick disk and optically thin disk. We investigate the presence of a stellar companion as a possible mechanism of material depletion in the inner region of these disks, which would rule out an ongoing planetary formation process in distances comparable to the binary separation. For our detection limits, we implement a new method of completeness correction using a combination of randomly sampled binary orbits and Bayesian inference. The selected sample of 24 TDs belong to the nearby and young star forming regions: Ophiuchus ($\\sim$ 130 pc), Taurus-Auriga ($\\sim$ 140 pc) and IC348 ( $\\sim$ 220 pc). These regions are suitable to resolve faint stellar companions with moderate to high confidence levels at distances as low as 2 au from the central star. With a total of 31 objects, including 11 known TD...

  19. Dynamical Mass Ejection from Binary Neutron Star Mergers

    CERN Document Server

    Radice, David; Lippuner, Jonas; Roberts, Luke F; Ott, Christian D; Rezzolla, Luciano

    2016-01-01

    We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad $\\sim 60^\\circ$ angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. This is the effect of the strong tidal torques exerted on the neutron stars during their ...

  20. On the Neutron Star-Black Hole Binaries Produced by Binary-driven Hypernovae

    CERN Document Server

    Fryer, C L; Rueda, J A; Ruffini, R

    2015-01-01

    Binary-driven hypernovae (BdHNe) following the induced gravitational collapse (IGC) paradigm have been introduced to explain the concomitance of energetic long gamma-ray bursts (GRBs) with type Ic supernovae. The progenitor system is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core triggers a hypercritical accretion process onto the NS, which in a few seconds reach the NS critical mass, and gravitationally collapses to a black hole (BH) emitting a GRB. These tight binary systems evolve through the supernova explosion very differently than compact binary progenitors studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and momentum of the binary. Second, because the explosion timescale is on par with the orbital period, the mass ejection can not be assumed to be instantaneous. Finally, the bow shock created as the accreting NS plows through the supern...

  1. Characterization of the Most Luminous Star in M33: A Super Symbiotic Binary

    CERN Document Server

    Mikolajewska, Joanna; Shara, Michael M; Ilkiewicz, Krystian

    2014-01-01

    We present the first spectrum of the most luminous infrared star in M33, and use it to demonstrate that the object is almost certainly a binary composed of a massive O star and a dust-enshrouded Red Hypergiant. This is the most luminous symbiotic binary ever discovered. Its radial velocity is an excellent match to that of the hydrogen gas in the disk of M33, supporting our interpretation that it is a very young and massive binary star.

  2. The gravitational-wave signal generated by a galactic population of double neutron-star binaries

    OpenAIRE

    Yu, Shenghua; Jeffery, C. Simon

    2015-01-01

    We investigate the gravitational wave (GW) signal generated by a population of double neutron-star binaries (DNS) with eccentric orbits caused by kicks during supernova collapse and binary evolution. The DNS population of a standard Milky-Way type galaxy has been studied as a function of star formation history, initial mass function (IMF) and metallicity and of the binary-star common-envelope ejection process. The model provides birth rates, merger rates and total numbers of DNS as a function...

  3. Identifying close binary central stars of PN with Kepler

    CERN Document Server

    De Marco, Orsola; Jacoby, George H; Hillwig, T; Kronberger, M; Howell, Steve B; Reindl, N; Margheim, Steve

    2016-01-01

    Six planetary nebulae (PN) are known in the Kepler space telescope field of view, three newly identified. Of the 5 central stars of PN with useful Kepler data, one, J193110888+4324577, is a short-period, post common envelope binary exhibiting relativistic beaming effects. A second, the central star of the newly identified PN Pa5, has a rare O(He) spectral type and a periodic variability consistent with an evolved companion, where the orbital axis is almost aligned with the line of sight. The third PN, NGC~6826 has a fast rotating central star, something that can only be achieved in a merger. Fourth, the central star of the newly identified PN Kn61, has a PG1159 spectral type and a mysterious semi-periodic light variability which we conjecture to be related to the interplay of binarity with a stellar wind. Finally, the central star of the circular PN A61 does not appear to have a photometric variability above 2 mmag. With the possible exception of the variability of Kn61, all other variability behaviour, wheth...

  4. Radial Velocity Studies of Close Binary Stars. XV

    CERN Document Server

    Pribulla, T; Blake, R M; Lu, W; Thomson, J R; De Bond, H; Karmo, T; de Ridder, A; Ogloza, W; Stachowski, G; Siwak, M

    2008-01-01

    Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for the last eight close binary systems analyzed the same way as in the previous papers of this series: QX And, DY Cet, MR Del, HI Dra, DD Mon, V868 Mon, ER Ori, and Y Sex. For another seven systems (TT Cet, AA Cet, CW Lyn, V563 Lyr, CW Sge, LV Vir and MW Vir) phase coverage is insufficient to provide reliable orbits but radial velocities of individual components were measured. Observations of a few complicated systems observed throughout the DDO close-binary program are also presented; among them an especially interesting is the multiple system V857 Her which - in addition to the contact binary - very probably contains one or more sub-dwarf components of much earlier spectral type. All suspected binaries which were found to be most probably pulsating stars are briefly discussed in terms of mean radial velocities and projected rotation velocities (v sin i) as well as spectral type estimates. In two of them...

  5. LISA, binary stars, and the mass of the graviton

    CERN Document Server

    Cutler, C; Larson, S L; Cutler, Curt; Hiscock, William A.; Larson, Shane L.

    2003-01-01

    We extend and improve earlier estimates of the ability of the proposed LISA (Laser Interferometer Space Antenna) gravitational wave detector to place upper bounds on the graviton mass, m_g, by comparing the arrival times of gravitational and electromagnetic signals from binary star systems. We show that the best possible limit on m_g obtainable this way is ~ 50 times better than the current limit set by Solar System measurements. Among currently known, well-understood binaries, 4U1820-30 is the best for this purpose; LISA observations of 4U1820-30 should yield a limit ~ 3-4 times better than the present Solar System bound. AM CVn-type binaries offer the prospect of improving the limit by a factor of 10, if such systems can be better understood by the time of the LISA mission. We briefly discuss the likelihood that radio and optical searches during the next decade will yield binaries that more closely approach the best possible case.

  6. A Close Binary Star Resolved from Occultation by 87 Sylvia

    CERN Document Server

    Lin, Chi-Long; Chen, W P; King, Sun-Kun; Lin, Hung-Chin; Bianco, F B; Lehner, M J; Coehlo, N K; Wang, J -H; Mondal, S; Alcock, C; Axelrod, T; Byun, Y -I; Cook, K H; Davé, R; De Pater, I; Porrata, R; Kim, D -W; Lee, T; Lissauer, J J; Marshall, S L; Rice, J A; Schwamb, M E; Wang, S -Y; Wen, C -Y

    2009-01-01

    The star BD+29 1748 was resolved to be a close binary from its occultation by the asteroid 87 Sylvia on 2006 December 18 UT. Four telescopes were used to observe this event at two sites separated by some 80 km apart. Two flux drops were observed at one site, whereas only one flux drop was detected at the other. From the long-term variation of Sylvia, we inferred the probable shape of the shadow during the occultation, and this in turn constrains the binary parameters: the two components of BD+29 1748 have a projected separation of 0.097" to 0.110" on the sky with a position angle 104 deg to 107 deg. The asteroid was clearly resolved with a size scale ranging from 130 to 290 km, as projected onto the occultation direction. No occultation was detected for either of the two known moonlets of 87 Sylvia.

  7. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    CERN Document Server

    de Souza, R S; Krone-Martins, A; Cameron, E; Coelho, P; Hattab, M W; de Val-Borro, M; Hilbe, J M; Elliott, J; Hagen, A

    2016-01-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, $M_{200}$, and the normalized cluster centric distance, $r/r_{200}$. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control for the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within a HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g., whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a...

  8. Gravitational radiation from primordial solitons and soliton-star binaries

    Science.gov (United States)

    Gleiser, Marcelo

    1989-01-01

    The possibility that both the formation of nontopological solitons in a primordial second-order phase transition and binary systems of soliton stars could generate a stochastic gravitational-wave background is examined. The present contribution of gravitational radiation to the energy density of the universe from these processes is estimated for a number of different models. The detectability of such contributions from the timing measurements of the millisecond pulsar and spaceborne laser interferometry is briefly discussed and compared to other cosmological and local sources of background gravitational waves.

  9. Visual Measurements of the Binary Star S 654

    Science.gov (United States)

    Frey, Thomas; Achildiyev, Irina; Alduenda, Chandra; Bridgeman, Reid; Chamberlain, Rebecca; Hendrix, Alex

    2011-01-01

    A member of the faculty and students from The Evergreen State College, Olympia, Washington, participated in the 2010 summer astronomy workshop at Pine Mountain Observatory. They learned the proper techniques and skills required for measuring the separation and position angle of binary star S 654. They learned how to calibrate an astrometric eyepiece, make appropriate measurements, do a statistical analysis, and analyze the data. The separation and position angle values obtained were 69.9 arc seconds and 237 degrees, respectively. The percent difference for each value was less than 0.5% from the literature value.

  10. Carrying a Torch for Dust in Binary Star Systems

    CERN Document Server

    Cotton, Daniel V; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Bailey, Jeremy

    2016-01-01

    Young stars are frequently observed to host circumstellar disks, within which their attendant planetary systems are formed. Scattered light imaging of these proto-planetary disks reveals a rich variety of structures including spirals, gaps and clumps. Self-consistent modelling of both imaging and multi-wavelength photometry enables the best interpretation of the location and size distribution of disks' dust. Epsilon Sagittarii is an unusual star system. It is a binary system with a B9.5III primary that is also believed to host a debris disk in an unstable configuration. Recent polarimetric measurements of the system with the High Precision Polarimetric Instrument (HIPPI) revealed an unexpectedly high fractional linear polarisation, one greater than the fractional infrared excess of the system. Here we develop a spectral energy distribution model for the system and use this as a basis for radiative transfer modelling of its polarisation with the RADMC-3D software package. The measured polarisation can be repro...

  11. Approximate Universal Relations among Tidal Parameters for Neutron Star Binaries

    CERN Document Server

    Yagi, Kent

    2016-01-01

    One of largest uncertainties in nuclear physics is the relation between the pressure and density of supranuclear matter: the equation of state. Some of this uncertainty may be removed through future gravitational wave observations of neutron star binaries by extracting the tidal deformabilities (or Love numbers) of neutron stars. Previous studies showed that only a certain combination of the individual deformabilities of each body (chirp tidal deformability) can be measured with second-generation gravitational wave interferometers, such as Adv. LIGO, due to correlations between the individual deformabilities. To overcome this, we search for approximately universal (or equation-of-state independent) relations between two combinations of the individual tidal deformabilities, such that once one of them has been measured, the other can be automatically obtained and the individual ones decoupled through these relations. We find an approximately universal relation between the symmetric and the anti-symmetric combin...

  12. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    Science.gov (United States)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  13. Binary dynamics on star networks under external perturbations.

    Science.gov (United States)

    Moreira, Carolina A; Schneider, David M; de Aguiar, Marcus A M

    2015-10-01

    We study a binary dynamical process that is a representation of the voter model with two candidates and opinion makers. The voters are represented by nodes of a network of social contacts with internal states labeled 0 or 1 and nodes that are connected can influence each other. The network is also perturbed by opinion makers, a set of external nodes whose states are frozen in 0 or 1 and that can influence all nodes of the network. The quantity of interest is the probability of finding m nodes in state 1 at time t. Here we study this process on star networks, which are simple representations of hubs found in complex systems, and compare the results with those obtained for networks that are fully connected. In both cases a transition from disordered to ordered equilibrium states is observed as the number of external nodes becomes small. For fully connected networks the probability distribution becomes uniform at the critical point. For star networks, on the other hand, we show that the equilibrium distribution splits in two peaks, reflecting the two possible states of the central node. We obtain approximate analytical solutions for the equilibrium distribution that clarify the role of the central node in the process. We show that the network topology also affects the time scale of oscillations in single realizations of the dynamics, which are much faster for the star network. Finally, extending the analysis to two stars we compare our results with simulations in simple scale-free networks. PMID:26565294

  14. Binary dynamics on star networks under external perturbations

    Science.gov (United States)

    Moreira, Carolina A.; Schneider, David M.; de Aguiar, Marcus A. M.

    2015-10-01

    We study a binary dynamical process that is a representation of the voter model with two candidates and opinion makers. The voters are represented by nodes of a network of social contacts with internal states labeled 0 or 1 and nodes that are connected can influence each other. The network is also perturbed by opinion makers, a set of external nodes whose states are frozen in 0 or 1 and that can influence all nodes of the network. The quantity of interest is the probability of finding m nodes in state 1 at time t . Here we study this process on star networks, which are simple representations of hubs found in complex systems, and compare the results with those obtained for networks that are fully connected. In both cases a transition from disordered to ordered equilibrium states is observed as the number of external nodes becomes small. For fully connected networks the probability distribution becomes uniform at the critical point. For star networks, on the other hand, we show that the equilibrium distribution splits in two peaks, reflecting the two possible states of the central node. We obtain approximate analytical solutions for the equilibrium distribution that clarify the role of the central node in the process. We show that the network topology also affects the time scale of oscillations in single realizations of the dynamics, which are much faster for the star network. Finally, extending the analysis to two stars we compare our results with simulations in simple scale-free networks.

  15. The dynamical importance of binary systems in young massive star clusters

    CERN Document Server

    de Grijs, Richard; Geller, Aaron M

    2015-01-01

    Characterization of the binary fractions in star clusters is of fundamental importance for many fields in astrophysics. Observations indicate that the majority of stars are found in binary systems, while most stars with masses greater than $0.5 M_\\odot$ are formed in star clusters. In addition, since binaries are on average more massive than single stars, in resolved star clusters these systems are thought to be good tracers of (dynamical) mass segregation. Over time, dynamical evolution through two-body relaxation will cause the most massive objects to migrate to the cluster center, while the relatively lower-mass objects remain in or migrate to orbits at greater radii. This process will globally dominate a cluster's stellar distribution. However, close encounters involving binary systems may disrupt `soft' binaries. This process will occur more frequently in a cluster's central, dense region than in its periphery, which may mask the effects of mass segregation. Using high resolution Hubble Space Telescope o...

  16. Initial data for black hole-neutron star binaries, with rotating stars

    CERN Document Server

    Tacik, Nick; Pfeiffer, Harald P; Muhlberger, Curran; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela

    2016-01-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole--neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as $S_{\\rm BH}/M_{\\rm BH}^2=0.99$.

  17. EL CVn-type binaries - Discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems

    CERN Document Server

    Maxted, P F L; Heber, U; Geier, S; Wheatley, P J; Marsh, T R; Breedt, E; Sebastian, D; Faillace, G; Owen, C; Pulley, D; Smith, D; Kolb, U; Haswell, C A; Southworth, J; Anderson, D R; Smalley, B; Cameron, A Collier; Hebb, L; Simpson, E K; West, R G; Bochinski, J; Busuttil, R; Hadigal, S

    2013-01-01

    The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP0247-25B). The remnant is in a rarely-observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low-mass white dwarf composed almost entirely of helium, i.e., it is a pre-He-WD. We have used the WASP photometric database to find 17 eclipsing binary stars with orbital periods P=0.7 to 2.2 days with similar lightcurves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic lightcurves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for 6 of these systems to confirm that the comp...

  18. New systemic radial velocities of suspected RR Lyrae binary stars

    CERN Document Server

    Guggenberger, Elisabeth; Kolenberg, Katrien

    2015-01-01

    Among the tens of thousands of known RR Lyrae stars there are only a handful that show indications of possible binarity. The question why this is the case is still unsolved, and has recently sparked several studies dedicated to the search for additional RR Lyraes in binary systems. Such systems are particularly valuable because they might allow to constrain the stellar mass. Most of the recent studies, however, are based on photometry by finding a light time effect in the timings of maximum light. This approach is a very promising and successful one, but it has a major drawback: by itself, it cannot serve as a definite proof of binarity, because other phenomena such as the Blazhko effect or intrinsic period changes could lead to similar results. Spectroscopic radial velocity measurements, on the other hand, can serve as definite proof of binarity. We have therefore started a project to study spectroscopically RR Lyrae stars that are suspected to be binaries. We have obtained radial velocity (RV) curves with t...

  19. Spectroscopic metallicity determinations for W~UMa-type binary stars

    CERN Document Server

    Rucinski, Slavek M; Budaj, Jan

    2013-01-01

    This study is an attempt to determine the metallicities of WUMa-type binary stars using spectroscopy. ~4,500 spectra collected at the David Dunlap Observatory were subject to the same Broadening Function processing to determine the combined line strength in the spectral window centered on the MgI triplet (5080-5285A). Individual integrated BF's were phase averaged to derive a single line-strength indicator. The sample was limited to 90 EW binaries with the strict phase-constancy of colors and without spectral contamination by companions. The best defined results were obtained for a F-type sub-sample (0.32<(B-V)0<0.62) of 52 stars for which the BF strengths could be interpolated in the model predictions. The metallicities, [M/H], for the F-type sub-sample indicate abundances roughly similar to the solar [M/H], but with a large scatter which is partly due to combined random and systematic errors. Because of a color trend resulting from limitations in our approach, we set the scale of metallicities to corr...

  20. The effect of starspots on eclipse timings of binary stars

    CERN Document Server

    Watson, C A

    2004-01-01

    We investigate the effects that starspots have on the light curves of eclipsing binaries and in particular how they may affect the accurate measurement of eclipse timings. Concentrating on systems containing a low-mass main-sequence star and a white dwarf, we find that if starspots exhibit the Wilson depression they can alter the times of primary eclipse ingress and egress by several seconds for typical binary parameters and starspot depressions. In addition, we find that the effect on the eclipse ingress/egress times becomes more profound for lower orbital inclinations. We show how it is possible, in principle, to determine estimates of both the binary inclination and depth of the Wilson depression from light curve analysis The effect of depressed starspots on the O-C diagrams of eclipsing systems is also investigated. It is found that the presence of starspots will introduce a `jitter' in the O-C residuals and can cause spurious orbital period changes to be observed. Despite this, we show that the period ca...

  1. Self Regulated Shocks in Massive Star Binary Systems

    CERN Document Server

    Parkin, E R

    2013-01-01

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, LX remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind-driving, we term this scenario as self regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the m...

  2. Abell 41: nebular shaping by a binary central star?

    CERN Document Server

    Jones, D; Santander-García, M; López, J A; Meaburn, J; Mitchell, D L; O'Brien, T J; Pollacco, D; Rubio-Díez, M M; Vaytet, N M H

    2010-01-01

    We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell~41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Longslit observations of the \\NII\\ emission from Abell~41 were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro M\\'artir Telescope. These spectra, combined with deep, narrowband imagery acquired using ACAM on the William Herschel Telescope, were used to develop a spatio-kinematical model of \\NII\\ emission from Abell~41. The best fitting model reveals Abell~41 to have a waisted, bipolar structure with an expansion velocity of $\\sim$40\\kms{} at the waist. The symmetry axis of the model nebula is within 5$^\\circ$ of perpendicular to the orbital plane of the central...

  3. New systemic radial velocities of suspected RR Lyrae binary stars

    Science.gov (United States)

    Guggenberger, E.; Barnes, T. G.; Kolenberg, K.

    2016-05-01

    Among the tens of thousands of known RR Lyrae stars there are only a handful that show indications of possible binarity. The question why this is the case is still unsolved, and has recently sparked several studies dedicated to the search for additional RR Lyraes in binary systems. Such systems are particularly valuable because they might allow to constrain the stellar mass. Most of the recent studies, however, are based on photometry by finding a light time effect in the timings of maximum light. This approach is a very promising and successful one, but it has a major drawback: by itself, it cannot serve as a definite proof of binarity, because other phenomena such as the Blazhko effect or intrinsic period changes could lead to similar results. Spectroscopic radial velocity measurements, on the other hand, can serve as definite proof of binarity. We have therefore started a project to study spectroscopically RR Lyrae stars that are suspected to be binaries. We have obtained radial velocity (RV) curves with the 2.1m telescope at McDonald observatory. From these we derive systemic RVs which we will compare to previous measurements in order to find changes induced by orbital motions. We also construct templates of the RV curves that can facilitate future studies. We also observed the most promising RR Lyrae binary candidate, TU UMa, as no recent spectroscopic measurements were available. We present a densely covered pulsational RV curve, which will be used to test the predictions of the orbit models that are based on the O - C variations.

  4. Kepler Eclipsing Binary Stars. V. Identification of 31 Eclipsing Binaries in the K2 Engineering Data-set

    CERN Document Server

    Conroy, Kyle E; Stassun, Keivan G; Bloemen, Steven; Parvizi, Mahmoud; Quarles, Billy; Boyajian, Tabetha; Barclay, Thomas; Shporer, Avi; Latham, David W; Abdul-Masih, Michael

    2014-01-01

    Over 2500 eclipsing binaries were identified and characterized from the ultra-precise photometric data provided by the Kepler space telescope. Kepler is now beginning its second mission, K2, which is proving to again provide ultra-precise photometry for a large sample of eclipsing binary stars. In the 1951 light curves covering 12 days in the K2 engineering data-set, we have identified and determined the ephemerides for 31 eclipsing binaries that demonstrate the capabilities for eclipsing binary science in the upcoming campaigns in K2. Of those, 20 are new discoveries. We describe both manual and automated approaches to harvesting the complete set of eclipsing binaries in the K2 data, provide identifications and details for the full set of eclipsing binaries present in the engineering data-set, and discuss the prospects for application of eclipsing binary searches in the K2 mission.

  5. Dynamical Mass Ejection from Binary Neutron Star Mergers

    Science.gov (United States)

    Radice, David; Galeazzi, Filippo; Lippuner, Jonas; Roberts, Luke F.; Ott, Christian D.; Rezzolla, Luciano

    2016-05-01

    We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ˜60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer timescales after the mergers, or from core-collapse supernovae.

  6. Dynamical mass ejection from binary neutron star mergers

    Science.gov (United States)

    Radice, David; Galeazzi, Filippo; Lippuner, Jonas; Roberts, Luke F.; Ott, Christian D.; Rezzolla, Luciano

    2016-08-01

    We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ˜60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae.

  7. Bowen-York Type Initial Data for Binaries with Neutron Stars

    CERN Document Server

    Clark, Michael

    2016-01-01

    A new approach to construct initial data for binary systems with neutron star components is introduced. The approach is a generalization of the puncture initial data method for binary black holes based on Bowen-York solutions to the momentum constraint. As with binary black holes, the method allows setting orbital configurations with direct input from post-Newtonian approximations and involves solving only the Hamiltonian constraint. The effectiveness of the method is demonstrated with evolutions of double neutron star and black hole -- neutron star binaries in quasi-circular orbits.

  8. Evolution of intermediate mass and massive binary stars: physics, mass loss, and rotation

    CERN Document Server

    Vanbeveren, D

    2016-01-01

    In the present review we discuss the past and present status of the interacting OB-type binary frequency. We critically examine the popular idea that Be-stars and supergiant sgB[e] stars are binary evolutionary products. The effects of rotation on stellar evolution in general, stellar population studies in particular, and the link with binaries will be evaluated. Finally a discussion is presented of massive double compact star binary mergers as possible major sites of chemical enrichment of r-process elements and as the origin of recent aLIGO GW events.

  9. Characterizing Binary Properties of $5\\, M_\\odot$ Stars: New Approaches Using Cepheids

    CERN Document Server

    Evans, Nancy Remage

    2014-01-01

    Cepheids provide approaches to determining binary parameters which are often complementary to those for main sequence massive and intermediate mass stars. Specifically, we are using high resolution imaging, radial velocities, and X-ray studies to determine binary characteristics. Among the results are that they have both a high frequency of binary systems, and also a high proportion of triple systems.

  10. The VLT Unravels the Nature of the Fastest Binary Star

    Science.gov (United States)

    2002-03-01

    Two Hot White Dwarfs Perform a Tight Dance Summary Observations with ESO's Very Large Telescope (VLT) in Chile and the Italian Telescopio Nazionale Galileo (TNG) on the Canary Islands during the past two years have enabled an international group of astronomers [1] to unravel the true nature of an exceptional binary stellar system. This system, designated RX J0806.3+1527 , was first discovered as an X-ray source of variable brightness - once every five minutes, it "switches off" for a short moment. The new observations have shown beyond doubt that this period reflects the orbital motion of two "white dwarf" stars that revolve around each other at a distance of only 80,000 km . Each of the stars is about as large as the Earth and this is the shortest orbital period known for any binary stellar system. The VLT spectrum displays lines of ionized helium, indicating that the presence of an exceedingly hot area on one of the stars - a "hot spot" with a temperature of approx. 250,000 degrees. The system is currently in a rarely seen, transitory evolutionary state . PR Photo 10a/02 : U- and R-band images of RX J0806.3+1527. PR Photo 10b/02 : Spectrum of RX J0806.3+1527 An amazing stellar binary system ESO PR Photo 10a/02 ESO PR Photo 10a/02 [Preview - JPEG: 800 x 400 pix - 440k] [Normal - JPEG: 1600 x 800 pix - 1.1M] Caption : PR Photo 10a/02 shows U and R filter images of the sky field around RX J0806.3+1527 (at centre of circle), obtained with the FORS2 multi-mode instrument on VLT KUEYEN. The object is brightest at the shorter wavelength (U-band) - reflecting its very high temperature. Technical information about the photo is available below. One year is the time it takes the Earth to move once around the Sun, our central star. This may seem quite fast when measured on the scale of the Universe, but this is a snail's motion compared to the the speed of two recently discovered stars. They revolve around each other 100,000 times faster; one full revolution takes only 321

  11. Magnetic energy production by turbulence in binary neutron star mergers

    CERN Document Server

    Zrake, Jonathan

    2013-01-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would aid greatly in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level (~10^16) G fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger time scale. Since turbulent magnetic energy dissipates through reconnection events which accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10^-4 of the ~ 10^53 erg of orbital kinetic available gets processed through reconnection, and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10^-7 erg/cm^2, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detecta...

  12. MAGNETIC ENERGY PRODUCTION BY TURBULENCE IN BINARY NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan; MacFadyen, Andrew I. [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2013-06-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would greatly aid in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level ({approx}> 10{sup 16} G) fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger timescale. Since turbulent magnetic energy dissipates through reconnection events that accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10{sup -4} of the {approx}10{sup 53} erg of orbital kinetic available gets processed through reconnection and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10{sup -7} erg cm{sup -2}, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detectable by Swift BAT.

  13. Phemenological Modelling of a Group of Eclipsing Binary Stars

    CERN Document Server

    Andronov, Ivan L; Chinarova, Lidia L

    2015-01-01

    Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the "General Catalogue of Variable Stars" and similar catalogs. We apply a recent method NAV ("New Algol Variable") to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the...

  14. Formation and Evolution of Neutron Star Binaries: Masses of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2012-02-01

    Full Text Available Neutron star (NS is one of the most interesting astrophysical compact objects for hardronic physics. It is believed that the central density of NS can reach several times the normal nuclear matter density (ρ0. Hence, the inner part of NS is the ultimate testing place for the physics of dense matter. Recently, the mass of NS in a NS-white dwarf (WD binary PSR J1614-2230 has been estimated to be 1.97 ± 0.04M๏ [1]. Since this estimate is based on the observed Shapiro delay, it can give the lower limit of the maximum NS mass and rules out many soft equations of state. On the other hand, all the well-measured NS masses in NS-NS binaries are smaller than 1.5M๏. In this work, by introducing the supercritical accretion during the binary evolution, we propose a possibility of forming higher mass NS in NS-WD binaries. In this scenario, the lifetimes of NS and WD progenitors are significantly different, and NS in NS-WD binary can accrete > 0.5M๏ after NS formation during the giant phase of the progenitor of WD. On the other hand, for the binary system with NS and heavier (> 8M๏ giants, the first-born NS will accrete more from the companion and can collapse into black hole. The only way to avoid the supercritical accretion is that the initial masses of progenitors of NS binary should be very close so that they evolve almost at the same time and don’t have time to accrete after NS formation.

  15. Database of candidates for RR Lyrae stars in binary systems - RRLyrBinCan

    Science.gov (United States)

    Liska, J.; Skarka, M.

    2016-05-01

    A new on-line database with RR Lyrae stars bound in binary systems is presented. Its purpose is to give a quick overview about known and suspected RR Lyrae stars in binaries on the basis of available literature. The first released version of the catalogue contains information about 61 double-star candidates, their orbital periods, method of detection, comments and active links to published papers.

  16. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    International Nuclear Information System (INIS)

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, LX, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (LX/Lbol). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  17. The Seyfert 2 galaxy NGC 2110: hard X-ray emission observed by NuSTAR and variability of the iron Kα line

    DEFF Research Database (Denmark)

    Marinucci, A.; Matt, G.; Bianchi, S.;

    2015-01-01

    We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suz...... linearly correlated with the source flux (possibly arising from Compton-thin material much closer to the black hole)....... found and, by using temporal information collected over more than a decade, we investigate variations of the iron Kα line on time-scales of years. The Fe K alpha line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable and...

  18. Pulsating red giant stars in eccentric binary systems discovered from Kepler space-based photometry

    CERN Document Server

    Beck, P G; Vos, J; Kallinger, T; Bloemen, S; Tkachenko, A; García, R A; Østensen, R H; Aerts, C; Kurtz, D W; De Ridder, J; Hekker, S; Pavlovski, K; Mathur, S; De Smedt, K; Derekas, A; Corsaro, E; Mosser, B; Van Winckel, H; Huber, D; Degroote, P; Davies, G R; Prša, A; Debosscher, J; Elsworth, Y; Nemeth, P; Siess, L; Schmid, V S; Pápics, P I; de Vries, B L; van Marle, A J; Marcos-Arenal, P; Lobel, A

    2013-01-01

    The unparalleled photometric data obtained by NASA's Kepler space telescope led to an improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries, exhibiting ellipsoidal modulations, have been detected with Kepler. We aim to study the properties of eccentric binary systems containing a red giant star and derive the parameters of the primary giant component. We apply asteroseismic techniques to determine masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques are applied to extract the parameters of the system. The effects of stellar on the binary system are studied. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440days. From radial velocity measuremen...

  19. Magnetically-induced outflows from binary neutron star merger remnants

    CERN Document Server

    Siegel, Daniel M

    2015-01-01

    Recent observations by the Swift satellite have revealed long-lasting ($\\sim 10^2-10^5\\,\\mathrm{s}$), "plateau-like" X-ray afterglows in the vast majority of short gamma-ray bursts events. This has put forward the idea of a long-lived millisecond magnetar central engine being generated in a binary neutron star (BNS) merger and being responsible for the sustained energy injection over these timescales ("magnetar model"). We elaborate here on recent simulations that investigate the early evolution of such a merger remnant in general-relativistic magnetohydrodynamics. These simulations reveal very different conditions than those usually assumed for dipole spin-down emission in the magnetar model. In particular, the surrounding of the newly formed NS is polluted by baryons due to a dense, highly magnetized and isotropic wind from the stellar surface that is induced by magnetic field amplification in the interior of the star. The timescales and luminosities of this wind are compatible with early X-ray afterglows, ...

  20. Modeling Mergers of Known Galactic Systems of Binary Neutron Stars

    CERN Document Server

    Feo, Alessandra; Maione, Francesco; Löffler, Frank

    2016-01-01

    We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between $0.75$ and $0.99$. Specifically, these systems are J1756-2251, J0737-3039A, J1906+0746, B1534+12, J0453+1559 and B1913+16. We follow the dynamics of the merger from the late stage of the inspiral process up to $\\sim$ 20 ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems ($q=0.75$, J0453+1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein Toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and fr...

  1. Can SGRs/AXPs Originate from Neutron Star Binaries?

    Directory of Open Access Journals (Sweden)

    Joan Jing Wang

    2014-01-01

    Full Text Available Soft gamma repeaters (SGRs and anomalous X-ray pulsars (AXPs are two groups of enigmatic objects, which have been extensively investigated in past few decades. Based on the ample information about their timing behaviors, spectra, and variability properties, it was proposed that SGRs/AXPs are isolated neutron stars (NSs with extremely strong magnetic fields, the so-called magnetars. Nonetheless, some alternative models are probably equally convincing such as those proposing that they are accreting NSs with a fall-back disk or rotation-powered magnetized and massive white dwarfs. The nature and nurture of SGRs/AXPs remain controversial. In this paper, we propose that SGRs/AXPs can, alternatively, originate from normal NSs in binary systems, which resorts to the reexplosion of normal NS induced by instant contraction of the massive star envelope in a Thorne-Żytkow object (TZO. The spin-period clustering is due to either the brake of a slowly rotating envelope or the frictional drag during the common-envelope phase.

  2. A low-luminosity type-1 QSO sample . IV. Molecular gas contents and conditions of star formation in three nearby Seyfert galaxies

    Science.gov (United States)

    Moser, Lydia; Krips, Melanie; Busch, Gerold; Scharwächter, Julia; König, Sabine; Eckart, Andreas; Smajić, Semir; García-Marin, Macarena; Valencia-S., Mónica; Fischer, Sebastian; Dierkes, Jens

    2016-03-01

    We present a pilot study of ~3'' resolution observations of low CO transitions with the Submillimeter Array in three nearby Seyfert galaxies, which are part of the low-luminosity quasi-stellar object (LLQSOs) sample consisting of 99 nearby (z = 0.06) type-1 active galactic nuclei (AGN) taken from the Hamburg/ESO quasi-stellar object (QSO) survey. Two sources were observed in 12CO(2-1) and 13CO(2-1) and the third in 12CO(3-2) and HCO+(4-3). None of the sources is detected in continuum emission. More than 80% of the 12CO detected molecular gas is concentrated within a diameter (FWHM) 1.5 × 109M⊙ and for the dust masses of Mdust> 1.6 × 106M⊙. The R21 = 12CO/13CO(2-1) line luminosity ratios show Galactic values of R21 ~ 5-7 in the outskirts and R21 ≳ 20 in the central region, similar to starbursts and (ultra)luminous infrared galaxies ((U)LIRGs; i.e. LIRGs and ULIRGs), implying higher temperatures and stronger turbulence. All three sources show indications of 12CO(2-1)/12CO(1-0) ratios of ~0.5, suggesting a cold or diffuse gas phase. Strikingly, the 12CO(3-2)/(1-0) ratio of ~1 also indicates a higher excited phase. Since these galaxies have high infrared luminosities of LIR ≥ 1011L⊙ and seem to contain a circumnuclear starburst with minimum surface densities of gas and star formation rate (SFR) around Σmol = 50-550 M⊙pc-2 and ΣSFR = 1.1-3.1 M⊙ kpc-2 yr-1, we conclude that the interstellar medium in the centers of these LIRG Seyferts is strongly affected by violent star formation and better described by the ULIRG mass conversion factor.

  3. Chemical Abundances in the Secondary Star of the Neutron Star Binary Centaurus X-4

    CERN Document Server

    Hern'andez, J I G; Israelian, G; Casares, J; Maeda, K; Bonifacio, P; Molaro, P; Hern\\'andez, Jonay I. Gonz\\'alez; Rebolo, Rafael; Israelian, Garik; Casares, Jorge; Maeda, Keiichi; Bonifacio, Piercarlo; Molaro, Paolo

    2005-01-01

    Using a high resolution spectrum of the secondary star in the neutron star binary {Cen X-4}, we have derived the stellar parameters and veiling caused by the accretion disk in a consistent way. We have used a $\\chi^{2}$ minimization procedure to explore a grid of 1 500 000 LTE synthetic spectra computed for a plausible range of both stellar and veiling parameters. Adopting the best model parameters found, we have determined atmospheric abundances of Fe, Ca, Ti, Ni and Al. These element abundances are super solar ($\\mathrm{[Fe/H]}=0.23 \\pm 0.10$), but only the abundance of Ti and Ni appear to be moderately enhanced ($\\ge1\\sigma$) as compared with the average values of stars of similar iron content. These element abundances can be explained if the secondary star captured a significant amount of matter ejected from a spherically symmetric supernova explosion of a 4 {$M_\\odot$} He core progenitor and assuming solar abundances as primordial abundances in the secondary star. The kinematic properties of the system i...

  4. Binary star formation: gravitational fragmentation followed by capture

    Science.gov (United States)

    Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.

    1995-11-01

    We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does

  5. On the Use of Roche Equipotentials in Analysing the Problems of Binary and Rotating Stars

    Indian Academy of Sciences (India)

    A. Pathania; A. K. Lal; C. Mohan

    2013-03-01

    Kopal (Adv. Astron. Astrophys., 9, 1, 1972) introduced the concept of Roche equipotentials to analyse the effects of rotational and tidal distortions in case of stars in binary systems. In this approach a mathematical expression for the potential of a star in a binary system is obtained by approximating its inner structure with Roche model. This expression for the potential has been used in subsequent analysis by various authors to analyse the problems of structures and oscillations of synchronous and nonsynchronus binary stars as well as single rotating stars. Occasionally, doubts have been expressed regarding the validity of the use of this approach for analysing nonsynchronous binaries and rotationally and tidally distorted single stars. In this paper we have tried to clarify these doubts.

  6. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    International Nuclear Information System (INIS)

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P0), morphology type, physical parameters (Teff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T2/T1, q, fillout factor, and sin i for overcontacts, and T2/T1, (R1 + R2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ∼1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  7. Formation of the widest binary stars from dynamical unfolding of triple systems.

    Science.gov (United States)

    Reipurth, Bo; Mikkola, Seppo

    2012-12-13

    The formation of very wide binary systems, such as the α Centauri system with Proxima (also known as α Centauri C) separated from α Centauri (which itself is a close binary A/B) by 15,000 astronomical units (1 AU is the distance from Earth to the Sun), challenges current theories of star formation, because their separation can exceed the typical size of a collapsing cloud core. Various hypotheses have been proposed to overcome this problem, including the suggestion that ultrawide binaries result from the dissolution of a star cluster--when a cluster star gravitationally captures another, distant, cluster star. Recent observations have shown that very wide binaries are frequently members of triple systems and that close binaries often have a distant third companion. Here we report N-body simulations of the dynamical evolution of newborn triple systems still embedded in their nascent cloud cores that match observations of very wide systems. We find that although the triple systems are born very compact--and therefore initially are more protected against disruption by passing stars--they can develop extreme hierarchical architectures on timescales of millions of years as one component is dynamically scattered into a very distant orbit. The energy of ejection comes from shrinking the orbits of the other two stars, often making them look from a distance like a single star. Such loosely bound triple systems will therefore appear to be very wide binaries. PMID:23222523

  8. The effect of binaries on the dynamical mass determination of star clusters

    CERN Document Server

    Kouwenhoven, M B N

    2007-01-01

    The total mass of distant star clusters is often derived from the virial theorem, using line-of-sight velocity dispersion measurements and half-light radii. Although most stars form in binary systems, this is mostly ignored when interpreting the observations. The components of binary stars exhibit orbital motion, which may increase the measured velocity dispersion, and may therefore result in a dynamical mass overestimation. In this paper we quantify the effect of neglecting the binary population on the derivation of the dynamical mass of a star cluster. We simulate star clusters numerically, and study the dependence of the derived dynamical mass on the properties of the binary population. We find that the presence of binaries plays a crucial role for very sparse clusters with a stellar density comparable to that of the field star population (~0.1 stars/pc3), as the velocity dispersion is fully dominated by the binary orbital motion. For such clusters, the dynamical mass may overestimate the true mass by up t...

  9. Radial Velocity Solution for Kepler Eclipsing Binary Stars from SDSS APOGEE

    Science.gov (United States)

    Clark, Joni Marie; Mason, Paul A.; Rawls, Meredith L.; Jackiewicz, Jason; SDSS NMSU FAST

    2016-06-01

    Proper characterization of binary stars is provided by high quality spectra combined with light curves allowing for precise determination of stellar masses, radii, and effective temperatures along with binary semi-major axes and eccentricities. A program to extract radial velocities of Kepler eclipsing binaries observed by SDSS APOGEE is presented. We combine the quality light curves from the Kepler telescope with high precision radial velocity measurements from SDSS APOGEE in order to characterize the binary and stellar components. We report on the first results of this program on three eclipsing binaries, KIC 6864859, KIC 6698670, and KIC 7121885.

  10. Mining Planet Search Data for Binary Stars: The $\\psi^1$ Draconis system

    OpenAIRE

    Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.

    2015-01-01

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral line...

  11. Projected Constraints on Scalarization with Gravitational Waves from Neutron Star Binaries

    CERN Document Server

    Sampson, Laura; Cornish, Neil; Ponce, Marcelo; Barausse, Enrico; Klein, Antoine; Palenzuela, Carlos; Lehner, Luis

    2014-01-01

    Certain scalar-tensor theories have the property of endowing stars with scalar hair, sourced either by the star's own compactness (spontaneous scalarization) or, for binary systems, by the companion's scalar hair (induced scalarization) or by the orbital binding energy (dynamical scalarization). Scalarized stars in binaries present different conservative dynamics than in General Relativity, and can also excite a scalar mode in the metric perturbation that carries away dipolar radiation. As a result, the binary orbit shrinks faster than predicted in General Relativity, modifying the rate of decay of the orbital period. In spite of this, scalar-tensor theories can pass existing binary pulsar tests, because observed pulsars may not be compact enough or sufficiently orbitally bound to activate scalarization. Gravitational waves emitted during the last stages of compact binary inspirals are thus ideal probes of scalarization effects. For the standard projected sensitivity of advanced LIGO, we here show that, if ne...

  12. International conference entitled Zdeněk Kopal’s Binary Star Legacy

    CERN Document Server

    Drechsel, Horst; ZDENEK KOPAL’S BINARY STAR LEGACY

    2005-01-01

    An international conference entitled "Zdenek Kopal's Binary Star Legacy" was held on the occasion of the late Professor Kopal's 90th birthday in his home town of Litomyšl/Czech Republic and dedicated to the memory of one of the leading astronomers of the 20th century. Professor Kopal, who devoted 60 years of his scientific life to the exploration of close binary systems, initiated a breakthrough in this field with his description of binary components as non-spherical stars deformed by gravity, with surfaces following Roche equipotentials. Such knowledge triggered the development of new branches of astrophysics dealing with the structure and evolution of close binaries and the interaction effects displayed by exciting objects such as cataclysmic variables, symbiotic stars or X-ray binaries. Contributions to this conference included praise of the achievements of a great astronomer and personal reminiscences brought forward by Kopal's former students and colleagues, and reflected the state of the art of the dyn...

  13. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    CERN Document Server

    Bagchi, Manjari

    2014-01-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  14. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Manjari [International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012 (India); Torres, Diego F., E-mail: manjari.bagchi@icts.res.in, E-mail: dtorres@ieec.uab.es [ICREA and Institute of Space Sciences, Barcelona 2a Planta E-08193 (Spain)

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  15. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    International Nuclear Information System (INIS)

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  16. Probing the models: Abundances for high-mass stars in binaries

    CERN Document Server

    Pavlovski, K

    2013-01-01

    The complexity of composite spectra of close binary star system makes study of the spectra of their component stars extremely difficult. For this reason there exists very little information on the photospheric chemical composition of stars in close binaries, despite its importance for informing our understanding of the evolutionary processes of stars. In a long-term observational project we aim to fill this gap with systematic abundance studies for the variety of binary systems. The core of our analysis is the spectral disentangling technique, which allows isolation of the individual component star spectra from the time-series of observed spectra. We present new results for high-mass stars in close binaries. So far, we have measured detailed abundances for 22 stars in a dozen detached binary systems. The parameter space for the stars in our sample comprises masses in the range 8--22 M_sun, surface gravities of 3.1--4.2 (c.g.s.) and projected rotational velocities of 30--240 km/s. Whilst recent evolutionary mo...

  17. Observing Gravitational Waves From The Post-Merger Phase Of Binary Neutron Star Coalescence

    CERN Document Server

    Clark, James Alexander; Stergioulas, Nikolaos; Shoemaker, Deirdre

    2015-01-01

    We present an effective, low-dimensionality frequency-domain template for the gravitational wave signal from the stellar remnants from binary neutron star coalescence. A principal component decomposition of a suite of numerical simulations of binary neutron star mergers is used to construct orthogonal basis functions for the amplitude and phase spectra of the waveforms for a variety of neutron star equations of state and binary mass configurations. We review the phenomenology of late merger / post-merger gravitational wave emission in binary neutron star coalescence and demonstrate how an understanding of the dynamics during and after the merger leads to the construction of a universal spectrum. We also provide a discussion of the prospects for detecting the post-merger signal in future gravitational wave detectors as a potential contribution to the science case for third generation instruments. The template derived in our analysis achieves $>90\\%$ match across a wide variety of merger waveforms and strain se...

  18. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  19. Wolf-Rayet stars in the Small Magellanic Cloud. II. Analysis of the binaries

    Science.gov (United States)

    Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D.

    2016-06-01

    Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (Mi ≳ 20 M⊙) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims: By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods: The spectral analysis is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results: Significant hydrogen mass fractions (0.1 stars in our sample are not chemically homogeneous. The WR component in the binary AB 6 is found to be very luminous (log L ≈ 6.3 [L⊙]) given its orbital mass (≈10 M⊙), presumably because of observational contamination by a third component. Evolutionary paths derived for our objects suggest that Roche lobe overflow had occurred in most systems, affecting their evolution. However, the implied initial masses (≳60 M⊙) are large enough for the primaries to have entered the WR phase, regardless of binary interaction. Conclusions: Together with the results for the putatively single SMC WR stars, our study suggests that the binary evolution channel does not dominate the formation of WR stars at

  20. Fragmentation of Molecular Clouds and Binary Star Formation

    Science.gov (United States)

    Machida, Masahiro N.; Tomisaka, Kohji; Matsumoto, Tomoaki

    Using three-dimensional MHD nested-grid simulations we study the binary star formation process paying particular attention to the fragmentation of a rotating magnetized molecular cloud. We assume an isothermal rotating and magnetized cylindrical cloud in hydrostatic balance. Non-axisymmetric as well as axisymmetric perturbations are added to the initial state and the subsequent evolutions are studied. The evolution is characterized by three parameters: the amplitude of the non-axisymmetric perturbations the rotation speed and the magnetic field strength. As a result it is found that non-axisymmetry hardly evolves in the early phase but begins to grow after the gas contracts and forms a thin disk. Disk formation is strongly promoted by the rotation speed and the magnetic field strength. There are two types of fragmentation: fragmentation from a ring and that from a bar. Thin adiabatic cores fragments if a thickness is smaller than 1/4 of the radius. For the fragments to survive they should be formed in a heavily elongated barred core or a flat round disk. In the models showing fragmentation outflows from respective fragments are found as well as those driven by the rotating bar or the disk

  1. Binary star formation and mass outflows: MHD nested grid simulation

    Science.gov (United States)

    Machida, M. N.; Tomisaka, K.; Matsumoto, T.

    2004-08-01

    We study the binary star formation process from a rotating magnetized molecular cloud. We assume an isothermal cylindrical cloud in hydrostatic balance whose rotation axis and the direction of global magnetic field lines are both identical, and parallel to the cylinder axis. We added axisymmetric and non-axisymmetric density perturbations to the initial state and followed the subsequent evolutions. The evolution is characterized by three parameters: the amplitude of the non-axisymmetric perturbations, the rotation speed, and the magnetic field strength. As a result, it is found that non-axisymmetry hardly evolves in the early phase, but begins to grow after the gas contracts and forms a thin disk. There are two types of fragmentation: fragmentation from a ring and that from a bar. Thin adiabatic cores fragments if a thickness is smaller than 1/4 of the radius. For the fragments to survive, they should be formed in a heavily elongated barred core or a flat round disk. In the models showing fragmentation, outflows from respective fragments are found as well as those driven by the rotating bar or the disk.

  2. Binary dynamics on star networks under external perturbations

    CERN Document Server

    Moreira, Carolina A

    2015-01-01

    We study a binary dynamical process that is a representation of the voter model with opinion makers. The process models an election with two candidates but can also describe the frequencies of a biallelic gene in a population or atoms with two spin orientations in a magnetic material. The system is represented by a network whose nodes have internal states labeled 0 or 1, and nodes that are connected can influence each other. The network is perturbed by a set of external nodes whose states are fixed in 0 or 1 and that can influence all nodes of the network. The fixed nodes play the role of opinion makers in the voter model, mutation rates in population genetics or temperature in a magnetic material. The quantity of interest is the probability $\\rho(m,t)$ that $m$ nodes are in state 1 at time $t$. Here we study this process on star networks and compare the results with those obtained for networks that are fully connected. In both cases a transition from disordered to ordered equilibrium states is observed as th...

  3. Differential Rotation of Close Binary Stars: Application to HR 1099

    Science.gov (United States)

    Petit, P.; Donati, J.-F.; Wade, G. A.; Landstreet, J. D.; Oliveira, J. M.; Shorlin, S. L. S.; Sigut, T. A. A.; Collier Cameron, A.

    We propose a new method for estimating differential rotation in binary stars, for which only moderate to poor phase coverage can be obtained (rotation period of order of a few days), preventing the use of conventional cross-correlation methods. Assuming a solar-like differential rotation law with two independent parameters (equatorial rotation rate φeq and rotational shear between pole and equator dφ), we reconstruct Doppler images for different values of the two parameters, and derive the optimal φeq, dφ and associated error bars from the corresponding 2 ° map. Simulations show that φeq and dφ can be recovered with good accuracy, even if the phase coverage per rotation cycle is poor, provided the total data set is long enough. From observations of the HR 1099 K1 subgiant secured in 1998, 1999 and 2000, we obtain that the equator rotates faster than the pole with a rotational shear about 3 times smaller than solar.

  4. An Apparent Descriptive Method for Judging the Synchronization of Rotation of Binary Stars

    Indian Academy of Sciences (India)

    Li Lin-sen

    2004-09-01

    The problem of the synchronous rotation of binary stars is judged by using a synchronous parameter introduced in an apparent descriptive method. The synchronous parameter is defined as the ratio of the rotational period to the orbital period. The author suggests several apparent phenomenal descriptive methods for judging the synchronization of rotation of binary stars. The first method is applicable when the orbital inclination is well-known. The synchronous parameter is defined by using the orbital inclination and the observable rotational velocity (1,2 sin ). The method is mainly suitable for eclipsing binary stars. Several others are suggested for the cases when the orbital inclination is unknown. The synchronous parameters are defined by using 1,2 sin , 1,2 sin3 , the mass function () and semi-amplitudes of the velocity curve, 1,2 given in catalogue of parameters of spectroscopic binary systems and (1,2 sin ). These methods are suitable for spectroscopic binary stars including those that show eclipses and visual binary stars concurrently. The synchronous parameters for fifty-five components in thirty binary systems are calculated by using several methods. The numerical results are listed in Tables 1 and 2. The statistical results are listed in Table 3. In addition, several apparent descriptive methods are discussed.

  5. Conic-Helical Orbits of Planets around Binary Stars do not Exist

    CERN Document Server

    Egan, Greg

    2015-01-01

    Oks proposes the existence of stable planetary orbits around binary stars, in the shape of a helix on a conical surface whose axis of symmetry coincides with the interstellar axis. We show that planetary orbits initially meeting this description will not continue to do so as the binary pair rotates.

  6. Binary star detectability in $Kepler$ data from phase modulation of different types of oscillations

    CERN Document Server

    Compton, Douglas L; Murphy, Simon J; Stello, Dennis

    2016-01-01

    Detecting binary stars in photometric time series is traditionally done by measuring eclipses. This requires the orbital plane to be aligned with the observer. A new method without that requirement uses stellar oscillations to measure delays in the light arrival time and has been successfully applied to $\\delta$ Scuti stars. However, application to other types of stars has not been explored. To investigate this we simulated light curves with a range of input parameters. We find a correlation between the signal-to-noise of the pulsation modes and the time delay required to detect binary motion. The detectability of the binarity in the simulations and in real $Kepler$ data shows strong agreement, hence, we describe the factors that have prevented this method from discovering binary companions to stars belonging to various classes of pulsating stars.

  7. Impact flux of asteroids and water transport to the habitable zone in binary star systems

    CERN Document Server

    Bancelin, D; Eggl, S; Dvorak, R

    2015-01-01

    By now, observations of exoplanets have found more than 50 binary star systems hosting 71 planets. We expect these numbers to increase as more than 70% of the main sequence stars in the solar neighborhood are members of binary or multiple systems. The planetary motion in such systems depends strongly on both the parameters of the stellar system (stellar separation and eccentricity) and the architecture of the planetary system (number of planets and their orbital behaviour). In case a terrestrial planet moves in the so-called habitable zone (HZ) of its host star, the habitability of this planet depends on many parameters. A crucial factor is certainly the amount of water. We investigate in this work the transport of water from beyond the snow-line to the HZ in a binary star system and compare it to a single star system.

  8. The Seyfert 2 Galaxy NGC 2110: Hard X-Ray Emission Observed by NuStar and Variability of the Iron K-Alpha Line

    Science.gov (United States)

    Marinucci, A.; Matt, G.; Bianchi, S.; Lu, T. N.; Arevalo, P.; Balokovic, M.; Ballantyne, D.; Bauer, F. E.; Boggs, S. E.; Stern, D.; Zhang, William W.

    2014-01-01

    We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suzaku, BeppoSAX, Chandra and Swift. Simultaneous NuSTAR and Swift broad band spectra (in the 3-80 keV range) indicate a cutoff energy E(sub c) greater than 210 keV, with no detectable contribution from Compton reflection. NGC 2110 is one of the very few sources where no evidence for distant Compton thick scattering is found and, by using temporal information collected over more than a decade, we investigate variations of the iron K(alpha) line on time scales of years. The Fe K alpha line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable and linearly correlated with the source flux (possibly arising from Compton-thin material much closer to the black hole).

  9. Chemical evolution of high-mass stars in close binaries. I. The eclipsing binary V453 Cygni

    CERN Document Server

    Pavlovski, K

    2008-01-01

    The eclipsing and double-lined spectroscopic binary system V453 Cygni consists of two early B-type stars, one of which is nearing the terminal age main sequence and one which is roughly halfway through its main sequence lifetime. Accurate measurements of the masses and radii of the two stars are available, which makes a detailed abundance analysis both more interesting and more precise than for isolated stars. We have reconstructed the spectra of the individual components of V453 Cyg from the observed composite spectra using the technique of spectral disentangling. From these disentangled spectra we have obtained improved effective temperature measurements of 27900 +/- 400 K and 26200 +/- 500 K, for the primary and secondary stars respectively, by fitting non-LTE theoretical line profiles to the hydrogen Balmer lines. Armed with these high-precision effective temperatures and the accurately known surface gravities of the stars we have obtained the abundances of helium and metallic elements. A detailed abundan...

  10. An Interacting Binary System Powers Precessing Outflows of an Evolved Star

    CERN Document Server

    Boffin, Henri M J; Rauch, Thomas; Jones, David; Corradi, Romano L M; Napiwotzki, Ralf; Day-Jones, Avril C; Koeppen, Joachim

    2012-01-01

    Stars are generally spherical, yet their gaseous envelopes often appear non-spherical when ejected near the end of their lives. This quirk is most notable during the planetary nebula phase when these envelopes become ionized. Interactions among stars in a binary system are suspected to cause the asymmetry. In particular, a precessing accretion disk around a companion is believed to launch point-symmetric jets, as seen in the prototype Fleming 1. Our discovery of a post common-envelope binary nucleus in Fleming 1 confirms that this scenario is highly favorable. Similar binary interactions are therefore likely to explain these kinds of outflows in a large variety of systems.

  11. Planetary Systems Around Spectroscopic Binary Stars: The Very Dusty, Old, Sun-like BD+20 307

    Science.gov (United States)

    Zuckerman, Ben M.; Fekel, F. C.; Williamson, M. H.; Henry, G. W.; Muno, M. P.; Melis, C.; Marois, C.

    2009-01-01

    Field star BD+20 307 is the dustiest known main sequence star, based on the fraction of its bolometric luminosity, 4%, emitted at infrared wavelengths (Song et al. 2005; Rhee et al. 2008). The temperature of the particles that carry this large IR luminosity is comparable to that of the Sun's zodiacal dust, and their existence is likely a consequence of a fairly recent collision of large objects such as planets or planetary embryos. BD+20 307 is now known to be a 3.4 day spectroscopic binary composed of two nearly equal solar-mass stars (Weinberger 2008; Zuckerman et al. 2008). Consideration of various age indicators implies that that star is likely to be at least one Gyr old, perhaps many Gyr old. Probably the dust around this close binary star has nothing to do with planet formation and everything to do with some major catastrophic event that recently took place near 1 AU in a mature planetary system. Destabilizing planetary orbits in an old system with a single star at its center appears to be possible, e.g., Mercury (Batygin & Laughlin 2008 and references therein). Destabilization may be easier to achieve in a close binary star system and easier yet in a triple star system. Tokovinin et al. (2006) conclude that, for a spectroscopic binary star with an orbital period of 3.4 days, the probability is 70% that a third star is present. Thus, we have searched for such a tertiary star in the BD+20 307 system using accurate radial velocities measured at Fairborn and Lick observatories and with adaptive optics imaging at Keck observatory. As of the writing of this abstract, no third star is detected. Limits on mass and semimajor axis of any tertiary star will be discussed. This research was supported by a grant from the Chandra X-ray Observatory.

  12. Asteroseismology of eclipsing binary stars using Kepler and the HERMES spectrograph

    CERN Document Server

    Schmid, V S; Degroote, P; Aerts, C

    2014-01-01

    We introduce our PhD project in which we focus on pulsating stars in eclipsing binaries. The combination of high-precision Kepler photometry with high-resolution HERMES spectroscopy allows for detailed descriptions of our sample of target stars. We report here the detection of three false positives by radial velocity measurements.

  13. Gamma-ray binaries : a bridge between Be stars and high energy astrophysics

    CERN Document Server

    Lamberts, Astrid

    2014-01-01

    Advances in X-ray and gamma-ray astronomy have opened a new window on our universe and revealed a wide variety of binaries composed of a compact object and a Be star. In Be X-ray binaries, a neutron star accretes the Be disk and truncates it through tidal interactions. Such systems have important X-ray outbursts, some related to the disk structure. In other systems, strong gamma ray emission is observed. In gamma-ray binaries, the neutron star is not accreting but driving a highly relativistic wind. The wind collision region presents similarities to colliding wind binaries composed of massive stars. The high energy emission is coming from particles being accelerated at the relativistic shock. I will review the physics of X-ray and gamma-ray binaries, focusing particularly on the recent developments on gamma-ray binaries. I will describe physical mechanisms such as relativistic hydrodynamics, tidal forces and non thermal emission. I will highlight how high energy astrophysics can shed a new light on Be star ph...

  14. Hydro-without-hydro framework for simulations of black hole-neutron star binaries

    International Nuclear Information System (INIS)

    We introduce a computational framework which avoids solving explicitly hydrodynamic equations and is suitable for studying the pre-merger evolution of black hole-neutron star binary systems. The essence of the method consists of constructing a neutron star model with a black hole companion and freezing the internal degrees of freedom of the neutron star during the course of the evolution of the spacetime geometry. We present the main ingredients of the framework, from the formulation of the problem to the appropriate computational techniques to study these binary systems. In addition, we present numerical results of the construction of initial data sets and evolutions that demonstrate the feasibility of this approach

  15. ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    CERN Document Server

    Maxted, P F L

    2016-01-01

    Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. I have developed a binary star model (ELLC) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaughlin effect). The main features of the model have tested by comparison to observed data and other light curve models. The model is found to be accurate enough t...

  16. Constraining Properties of AGN Coronae with NuSTAR: the Case of the Obscured Seyfert 1.9 Nucleus MCG -05-23-016

    Science.gov (United States)

    Balokovic, Mislav; Harrison, Fiona

    2016-04-01

    Robust measurements of the high-energy cut-off in the coronal continuum of AGN have long been limited to a small set of the brightest examples and almost exclusively to unobscured nuclei. We report on a direct measurement of the cut-off energy in the nuclear continuum of the obscured Seyfert 1.9 nucleus MCG-05-23-016 with unprecedented precision. The high sensitivity of NuSTAR in the hard X-ray band allows us to clearly disentangle the spectral curvature of the primary continuum from that of the reprocessed component. Using a simple phenomenological spectral model, we measured the cut-off energy to be 116+/-6 keV, while more complex Comptonization models provided independent constraints on the kinetic temperature of the electrons in the corona and its optical depth. Similar to a number of such measurements perfomed with NuSTAR in the past few years, and consistent with analyses of relatively large samples of hard X-ray spectra from the NuSTAR survey of nearby AGN, the optical depth was found to be of order unity for a range of assumed simple geometries. This means that the data are pushing the currently available models to the limits of their validity. In combination with the observations of spectral signatures from the innermost region of the accretion disk, and the observed variability of the high-energy cut-off, these results allow us to constrain the spatial extent of the AGN corona, its inhomogeneity and physical conditions needed to maintain its structure.

  17. No time for dead time: timing analysis of bright black hole binaries with NuSTAR

    DEFF Research Database (Denmark)

    Bachetti, Matteo; Harrison, Fiona A.; Cook, Rick;

    2015-01-01

    Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time ...... techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1, and GRS 1915+105....

  18. Binary neutron star mergers: a jet engine for short gamma-ray burst

    OpenAIRE

    Ruiz, Milton; Lang, Ryan N.; Paschalidis, Vasileios; Shapiro, Stuart L.

    2016-01-01

    We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of quasicircular, equal-mass, binary neutron stars that undergo merger. The initial stars are irrotational, $n=1$ polytropes and are magnetized. We explore two types of magnetic-field geometries: one where each star is endowed with a dipolar magnetic field extending from the interior into the exterior, as in a pulsar, and the other where the dipolar field is initially confined to the interior. In both cases the adop...

  19. Imaging the cool stars in the interacting binaries AE Aqr, BV Cen and V426 Oph

    CERN Document Server

    Watson, C A; Dhillon, V S; Shahbaz, T

    2007-01-01

    It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.

  20. Imaging the cool stars in the interacting binaries AE Aqr, BV Cen and V426 Oph

    Science.gov (United States)

    Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Shahbaz, T.

    2007-10-01

    It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.

  1. Star cluster stability and the effects of binary stars: Galactic open clusters

    CERN Document Server

    De Grijs, R; Kouwenhoven, M B N; Kroupa, P

    2008-01-01

    The diagnostic age versus mass-to-light ratio diagram is often used in attempts to constrain the shape of the stellar initial mass function (IMF), and the stability and the potential longevity of extragalactic young to intermediate-age massive star clusters. Here, we explore its potential for Galactic open clusters. On the basis of a homogenised cluster sample we provide useful constraints on the dynamical state of the individual clusters, and also on the presence of significant binary fractions. Using the massive young Galactic cluster Westerlund 1 as a key example, we caution that stochasticity in the IMF introduces significant additional uncertainties. Therefore, the stability and long-term survival chances of Westerlund 1 remain largely inconclusive. We conclude that for an open cluster to survive for any significant length of time and in the absence of substantial external perturbations, it is a necessary but not a sufficient condition to be located close to or (in the presence of a significant binary po...

  2. Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis

    CERN Document Server

    Abate, C; Stancliffe, R J; Izzard, R G; Karakas, A I; Beers, T C; Lee, Y S

    2015-01-01

    The stellar population in the Galactic halo is characterised by a large fraction of CEMP stars. Most CEMP stars are enriched in $s$-elements (CEMP-$s$ stars), and some of these are also enriched in $r$-elements (CEMP-$s/r$ stars). One formation scenario proposed for CEMP stars invokes wind mass transfer in the past from a TP-AGB primary star to a less massive companion star which is presently observed. We generate low-metallicity populations of binary stars to reproduce the observed CEMP-star fraction. In addition, we aim to constrain our wind mass-transfer model and investigate under which conditions our synthetic populations reproduce observed abundance distributions. We compare the CEMP fractions and the abundance distributions determined from our synthetic populations with observations. Several physical parameters of the binary stellar population of the halo are uncertain, e.g. the initial mass function, the mass-ratio and orbital-period distributions, and the binary fraction. We vary the assumptions in o...

  3. Relativistic simulations of eccentric binary neutron star mergers: One-arm spiral instability and effects of neutron star spin

    Science.gov (United States)

    East, William E.; Paschalidis, Vasileios; Pretorius, Frans; Shapiro, Stuart L.

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Furthermore, we find that the initial neutron star spin can strongly affect the already rich phenomenology in the postmerger gravitational wave signatures that arise from the oscillation modes of the hypermassive neutron star. In several of our simulations, the resulting hypermassive neutron star develops the one-arm (m =1 ) spiral instability, the most pronounced cases being those with small but non-negligible neutron star spins. For long-lived hypermassive neutron stars, the presence of this instability leads to improved prospects for detecting these events through gravitational waves, and thus may give information about the neutron star equation of state.

  4. Binary pulsars as probes of neutron star birth

    NARCIS (Netherlands)

    R.A.M.J. Wijers; J. van Paradijs; E.P.J. van den Heuvel

    1992-01-01

    We discuss two issues in the physics of neutron stars and their progenitors. The first is whether a neutron star receives a velocity kick when it is formed in the supernova-explosion of a massive star, and if it does, what is the characteristic magnitude, v(0), thereof? The second concerns the fate

  5. Stability of magnetic fields of isolated and binary neutron stars

    International Nuclear Information System (INIS)

    It is suggested that convective instabilities in cooling neutron stars may lead to magnetic field decay. Since rotation may have a stabilizing influence, the rotational history of the star is more important, than the age of the star, in determining whether its magnetic field decays or not. 27 references

  6. Wide double stars - I. The spectroscopic binaries: Double stars with wide separations in the AGK3 - I. The components that are themselves spectroscopic binaries

    CERN Document Server

    Halbwachs, Jean-Louis; Udry, Stéphane

    2011-01-01

    Wide binaries are tracers of the gravity field of the Galaxy, but their study requires some caution. A large list of common proper motion stars selected from the AGK3 were monitored with the CORAVEL spectrovelocimeter, in order to prepare a sample of physical binaries with very wide separations. Sixty-six stars received special attention, since their RV seemed to be variable. These stars were monitored over several years in order to derive the elements of their spectroscopic orbits. In addition, 10 of them received accurate RV measurements from the SOPHIE spectrograph of the T193 telescope at the Observatory of Haute-Provence. For deriving the orbital elements of double-lined spectroscopic binaries (SB2), a new method was applied, which assumed that the RV of blended measurements are linear combinations of the RV of the components. Thirteen SB2 orbits were thus calculated. The orbital elements were eventually obtained for 52 spectroscopic binaries (SB), two of them making a triple system. Forty SB received th...

  7. Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. I. Detailed analysis of 15 binary stars with known orbital periods

    CERN Document Server

    Abate, C; Karakas, A I; Izzard, R G

    2015-01-01

    AGB stars are responsible for producing a variety of elements, including carbon, nitrogen, and the heavy elements produced in the slow neutron-capture process ($s$-elements). There are many uncertainties involved in modelling the evolution and nucleosynthesis of AGB stars, and this is especially the case at low metallicity, where most of the stars with high enough masses to enter the AGB have evolved to become white dwarfs and can no longer be observed. The stellar population in the Galactic halo is of low mass ($\\lesssim 0.85M_{\\odot}$) and only a few observed stars have evolved beyond the first giant branch. However, we have evidence that low-metallicity AGB stars in binary systems have interacted with their low-mass secondary companions in the past. The aim of this work is to investigate AGB nucleosynthesis at low metallicity by studying the surface abundances of chemically peculiar very metal-poor stars of the halo observed in binary systems. To this end we select a sample of 15 carbon- and $s$-element-en...

  8. Electromagnetic extraction of energy from black hole-neutron star binaries

    CERN Document Server

    McWilliams, Sean T

    2011-01-01

    The coalescence of black hole-neutron star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. Ideally, these and other gravitational wave sources would have a distinct electromagnetic counterpart, as significantly more information could be gained through two separate channels. In addition, since these detectors will probe distances with non-negligible redshift, a coincident observation of an electromagnetic counterpart to a gravitational wave signal would facilitate a novel measurement of dark energy [1]. For black hole masses not much larger than the neutron star mass, the tidal disruption and subsequent accretion of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart [2]. However, in this work, we demonstrate that, for all black hole-neutron star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will...

  9. ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    Science.gov (United States)

    Maxted, P. F. L.

    2016-06-01

    Context. Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. Aims: I have developed a binary star model (ellc) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. Methods: The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). The main features of the model have been tested by comparison to observed data and other light curve models. Results: The model is found to be accurate enough to analyse the very high quality photometry that is now available from space-spaced instruments, flexible enough to model a wide range of eclipsing binary stars and extrasolar planetary systems, and fast enough to enable the use of modern Monte Carlo methods for data analysis and model testing. The software package is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A111

  10. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    Science.gov (United States)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  11. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Wako; Suda, Takuma [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame,225 Nieuwland Science Hall, Notre Dame, IN 46656 (United States); Honda, Satoshi, E-mail: aoki.wako@nao.ac.jp, E-mail: takuma.suda@nao.ac.jp, E-mail: tbeers@nd.edu, E-mail: honda@nhao.jp [Center for Astronomy, University of Hyogo, 407-2, Nishigaichi, Sayo-cho, Sayo, Hyogo 679-5313 (Japan)

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.

  12. Stellar loci II. a model-free estimate of the binary fraction for field FGK stars

    CERN Document Server

    Yuan, Haibo; Xiang, Maosheng; Huang, Yang; Chen, Bingqiu

    2014-01-01

    We propose a Stellar Locus OuTlier (SLOT) method to determine the binary fraction of main-sequence stars statistically. The method is sensitive to neither the period nor mass-ratio distributions of binaries, and able to provide model-free estimates of binary fraction for large numbers of stars of different populations in large survey volumes. We have applied the SLOT method to two samples of stars from the SDSS Stripe 82, constructed by combining the re-calibrated SDSS photometric data with respectively the spectroscopic information from the SDSS and LAMOST surveys. For the SDSS spectroscopic sample, we find an average binary fraction for field FGK stars of $41%\\pm2%$. The fractions decrease toward late spectral types, and are respectively $44%\\pm5%$, $43%\\pm3%$, $35%\\pm5%$, and $28%\\pm6%$ for stars of $g-i$ colors between 0.3 -- 0.6, 0.6 -- 0.9, 0.9 -- 1.2, and 1.2 - 1.6\\,mag. A modest metallicity dependence is also found. The fraction decreases with increasing metallicity. For stars of [Fe/H] between $-0.5$...

  13. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    CERN Document Server

    Mainetti, Deborah; Campana, Sergio; Colpi, Monica

    2016-01-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double peaked flare (Mandel & Levin 2015). In this paper we perform for the first time, with GADGET2, a suite of SPH simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the syst...

  14. Radial Velocity Studies of Close Binary Stars. XII.

    Science.gov (United States)

    Pribulla, Theodor; Rucinski, Slavek M.; Conidis, George; DeBond, Heide; Thomson, J. R.; Gazeas, Kosmas; Ogłoza, Waldemar

    2007-05-01

    Radial velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for 10 close binary systems: OO Aql, CC Com, V345 Gem, XY Leo, AM Leo, V1010 Oph, V2612 Oph, XX Sex, W UMa, and XY UMa. Most of these binaries have been observed spectroscopically before, but our data are of higher quality and consistency than in the previous studies. While most of the studied eclipsing pairs are contact binaries, V1010 Oph is probably a detached or semidetached double-lined binary, and XY UMa is a detached, chromospherically active system whose broadening functions clearly show well-defined and localized dark spots on the primary component. A particularly interesting case is XY Leo, which is a member of visually unresolved quadruple system composed of a contact binary and a detached, noneclipsing, active binary with an 0.805 day orbital period. V345 Gem and AM Leo are known members of visual binaries. We found faint visual companions at about 2"-3" from XX Sex and XY UMa. Based on data obtained at the David Dunlap Observatory, University of Toronto.

  15. Radial Velocity Studies of Close Binary Stars. XII

    CERN Document Server

    Pribulla, T; Conidis, G; De Bond, H; Thomson, J R; Gazeas, K; Ogloza, W; Pribulla, Theodor; Rucinski, Slavek M.; Conidis, George; Bond, Heide De; Gazeas, Kosmas; Ogloza, Waldemar

    2006-01-01

    Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for ten close binary systems: OO Aql, CC Com, V345 Gem, XY Leo, AM Leo, V1010 Oph, V2612 Oph, XX Sex, W UMa, and XY UMa. Most of these binaries have been observed spectroscopically before, but our data are of higher quality and consistency than in the previous studies. While most of the studied eclipsing pairs are contact binaries, V1010 Oph is probably a detached or semi-detached double-lined binary and XY UMa is a detached, chromospherically active system whose broadening functions clearly show well defined and localized dark spots on the primary component. A particularly interesting case is XY Leo, which is a member of visually unresolved quadruple system composed of a contact binary and a detached, non-eclipsing, active binary with 0.805 days orbital period. V345 Gem and AM Leo are known members of visual binaries. We found faint visual companions at about 2-3 arcsec from XX Sex and XY UMa.

  16. Initial-data contribution to the error budget of gravitational waves from neutron-star binaries

    CERN Document Server

    Tsokaros, Antonios; Galeazzi, Filippo; Rezzolla, Luciano; Uryū, Kōji

    2016-01-01

    As numerical calculations of inspiralling neutron-star binaries reach values of accuracy that are comparable with those of binary black holes, a fine budgeting of the various sources of error becomes increasingly important. Among such sources, the initial data is normally not accounted for, the rationale being that the error on the initial spacelike hypersurface is always far smaller than the one gained during the evolution. We here consider critically this assumption and perform a comparative analysis of the gravitational waveforms relative to essentially the same physical binary configuration when computed with two different initial-data codes, and then evolved with the same evolution code. More specifically, we consider the evolution of irrotational neutron-star binaries computed either with the pseudo-spectral code \\lorene{}, or with the newly developed finite-difference code \\cocal{}; both sets of initial data are subsequently evolved with the high-order evolution code \\whiskythc{}. In this way we find t...

  17. Binaries, cluster dynamics and population studies of stars and stellar phenomena

    CERN Document Server

    Vanbeveren, D

    2004-01-01

    The effects of binaries on population studies of stars and stellar phenomena have been investigated over the past 3 decades by many research groups. Here we will focus mainly on the work that has been done recently in Brussels and we will consider the following topics: the effect of binaries on overall galactic chemical evolutionary models and on the rates of different types of supernova, the population of point-like X-ray sources where we distinguish the standard high mass X-ray binaries and the ULXs, a UFO-scenario for the formation of WR+OB binaries in dense star systems. Finally we critically discuss the possible effect of rotation on population studies.

  18. Destruction of wide binary stars in low mass elliptical galaxies: implications for initial mass function estimates

    CERN Document Server

    Maccarone, Thomas J

    2014-01-01

    We discuss the effects of destruction of wide binaries in the nuclei of the lower mass giant elliptical galaxies. We show that the numbers of barium stars and extrinsic S stars should be dramatically reduced in these galaxies compared to what is seen in the largest elliptical galaxies. Given that the extrinsic S stars show strong Wing-Ford band and Na I D absorption, we argue that the recent claims of different initial mass functions from the most massive elliptical galaxies versus lower mass ellipticals may be the result of extrinsic S stars, rather than bottom-heavy initial mass function.

  19. Numerical simulation of the surface flow of a companion star in a close binary system

    OpenAIRE

    Oka, Kazutaka; Nagae, Takizo; Matsuda, Takuya; Fujiwara, Hidekazu; Boffin, Henri M. J.

    2002-01-01

    We simulate numerically the surface flow of a gas-supplying companion star in a semi-detached binary system. Calculations are carried out for a region including only the mass-losing star, thus not the mass accreting star. The equation of state is that of an ideal gas characterized by a specific heat ratio gamma, and the case with gamma=5/3 is mainly studied. A system of eddies appears on the surface of the companion star: an eddy in the low pressure region near the L1 point, one around the hi...

  20. Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries

    OpenAIRE

    Flanagan, Éanna É.; Racine, Étienne

    2006-01-01

    In coalescing neutron star binaries, r-modes in one of the stars can be resonantly excited by the gravitomagnetic tidal field of its companion. This post-Newtonian gravitomagnetic driving of these modes dominates over the Newtonian tidal driving previously computed by Ho and Lai. To leading order in the tidal expansion parameter R/r (where R is the radius of the neutron star and r is the orbital separation), only the l=2, |m|=1, and |m|=2 r-modes are excited. The tidal work done on the star t...

  1. Eclipsing binary stars in the Large and Small Magellanic Clouds from the MACHO project: The Sample

    Energy Technology Data Exchange (ETDEWEB)

    Faccioli, L; Alcock, C; Cook, K; Prochter, G; Protopapas, P; Syphers, D

    2007-03-29

    We present a new sample of 4634 eclipsing binary stars in the Large Magellanic Cloud (LMC), expanding on a previous sample of 611 objects and a new sample of 1509 eclipsing binary stars in the Small Magellanic Cloud (SMC), that were identified in the light curve database of the MACHO project. We perform a cross correlation with the OGLE-II LMC sample, finding 1236 matches. A cross correlation with the OGLE-II SMC sample finds 698 matches. We then compare the LMC subsamples corresponding to center and the periphery of the LMC and find only minor differences between the two populations. These samples are sufficiently large and complete that statistical studies of the binary star populations are possible.

  2. Explosions Triggered by Violent Binary-Star Collisions: Application to Eta Carinae and other Eruptive Transients

    CERN Document Server

    Smith, Nathan

    2010-01-01

    This paper discusses a model where a violent periastron collision of stars in an eccentric binary system induces an eruption or explosion seen as a brief transient source, attributed to LBVs, SN impostors, or other transients. The key ingredient is that an evolved primary increases its photospheric radius on relatively short timescales, to a point where the radius is comparable to or larger than the periastron separation in an eccentric binary. In such a configuration, a violent and sudden collision would ensue, possibly leading to substantial mass ejection instead of a binary merger. Repeated periastral grazings in an eccentric system could quickly escalate to a catastrophic encounter, wherein the companion star actually plunges deep inside the photosphere of a bloated primary during periastron, as a result of the primary star increasing its own radius. This is motivated by the case of $\\eta$~Carinae, where such a collision must have occured if conventional estimates of the present-day orbit are correct, and...

  3. BBO and the Neutron-Star-Binary Subtraction Problem

    CERN Document Server

    Cutler, C

    2006-01-01

    The Big Bang Observer (BBO) is a proposed space-based gravitational-wave (GW) mission designed primarily to search for an inflation-generated GW background in the frequency range 0.1-1 Hz. The major astrophysical foreground in this range is gravitational radiation from inspiraling compact binaries. This foreground is expected to be much larger than the inflation-generated background, so to accomplish its main goal, BBO must be sensitive enough to identify and subtract out practically all such binaries in the observable universe. It is somewhat subtle to decide whether BBO's current baseline design is sufficiently sensitive for this task, since, at least initially, the dominant noise source impeding identification of any one binary is confusion noise from all the others. Here we present a self-consistent scheme for deciding whether BBO's baseline design is indeed adequate for subtracting out the binary foreground. We conclude that the current baseline should be sufficient. However if BBO's instrumental sensiti...

  4. Stable Conic-Helical Orbits of Planets around Binary Stars: Analytical Results

    Science.gov (United States)

    Oks, E.

    2015-05-01

    Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z‧ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape of a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the

  5. A Cornucopia of Massive Binary Star Systems in the Cygnus OB2 Association: Fifty and Counting

    Science.gov (United States)

    Kobulnicky, Henry A.; Kiminki, D. C.; Burke, J. F.; Chapman, J. E.; Keller, E.; Lester, K. V.; Rolen, E.; Topel, E.; Lundquist, M. J.; Bhattacharjee, A.; Vargas Alvarez, C. A.; Runnoe, J. C.; Dale, D. A.

    2014-01-01

    Massive binary star systems produce nature's most energetic events, including some classes of supernovae, gamma-ray bursts, X-ray binaries, and double-degenerate objects that generate gravitational wave radiation. The Cygnus OB2 Association is the largest nearby collection of massive stars, consisting of several hundred O and early B stars at a distance of just 1.4 kpc. Our Cygnus OB2 Radial Velocity Survey team at the University of Wyoming has spectroscopically monitored 115 stars of type B2 or earlier between 1999 and 2013, accruing an average of 12 observations per star at a velocity precision of 2-6 km/s. We have identified fifty massive binary systems, nearly all of which have full orbital solutions. Periods range from 1.4 days - 12.5 years and velocity semi-amplitudes span 4-300 km/s. Monte-Carlo modeling indicates that as many as 90% of massive systems contain multiple stars and that 45% of these can be characterized as ``close'' binaries that will interact, exchanging matter during main-sequence or post-main-sequence evolution. Statistical analysis of the orbital parameters reveals a striking surplus of close, short-period systems with periods P=1.4--7 days, with fully 30% (17 out of 50 systems) of the known binaries falling in this tight range; their typical orbital separations are just a small fraction of an astronomical unit. The remainder of the binary systems are consistent with a period distribution described as flat in log(P) out to several thousand day periods. The mass ratio distribution appears flat over the interval q=M2/M1=0.1-1.0, meaning that massive stars preferentially have massive companions. These data constitute the largest and most complete homogeneous database on any single collection of massive stars in a common formation environment covering the full range of stars expected to explode as supernovae (B2V and earlier). As such, the Survey provides the raw data for modeling rates of cosmic supernova, gamma-ray bursts, and X-ray binaries

  6. Radiation-driven warping of circumbinary disks around eccentric young star binaries

    International Nuclear Information System (INIS)

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 104 L ☉, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  7. Relativistic Simulations of Eccentric Binary Neutron Star Mergers: One-arm Spiral Instability and Effects of Neutron Star Spin

    CERN Document Server

    East, William E; Pretorius, Frans; Shapiro, Stuart L

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Fur...

  8. Detecting circumbinary planets using eclipse timing of binary stars - numerical simulations

    OpenAIRE

    Sybilski, P.; Konacki, M.; Kozłowski, S.

    2010-01-01

    The presence of a body in an orbit around a close eclipsing binary star manifests itself through the light time effect influencing the observed times of eclipses as the close binary and the circumbinary companion both move around the common centre of mass. This fact combined with the periodicity with which the eclipses occur can be used to detect the companion. Given a sufficient precision of the times of eclipses, the eclipse timing can be employed to detect substellar or even planetary mass...

  9. Post-Newtonian Theory for Precision Doppler Measurements of Binary Star Orbits

    OpenAIRE

    Kopeikin, S. M.; Ozernoy, L. M.

    1998-01-01

    The determination of velocities of stars from precise Doppler measurements is described here using relativistic theory of astronomical reference frames so as to determine the Keplerian and post-Keplerian parameters of binary systems. We apply successive Lorentz transformations and the relativistic equation of light propagation to establish the exact treatment of Doppler effect in binary systems both in special and general relativity theories. As a result, the Doppler shift is a sum of (1) lin...

  10. The dynamical fate of binary star clusters in the Galactic tidal field

    Science.gov (United States)

    Priyatikanto, R.; Kouwenhoven, M. B. N.; Arifyanto, M. I.; Wulandari, H. R. T.; Siregar, S.

    2016-04-01

    Fragmentation and fission of giant molecular clouds occasionally results in a pair of gravitationally bound star clusters that orbit their mutual centre of mass for some time, under the influence of internal and external perturbations. We investigate the evolution of binary star clusters with different orbital configurations, with a particular focus on the Galactic tidal field. We carry out N-body simulations of evolving binary star clusters and compare our results with estimates from our semi-analytic model. The latter accounts for mass-loss due to stellar evolution and two-body relaxation, and for evolution due to external tides. Using the semi-analytic model, we predict the long-term evolution for a wide range of initial conditions. It accurately describes the global evolution of such systems, until the moment when a cluster merger is imminent. N-body simulations are used to test our semi-analytic model and also to study additional features of evolving binary clusters, such as the kinematics of stars, global cluster rotation, evaporation rates, and the cluster merger process. We find that the initial orientation of a binary star cluster with respect to the Galactic field, and also the initial orbital phase, is crucial for its fate. Depending on these properties, the binaries may experience orbital reversal, spiral-in, or vertical oscillation about the Galactic plane before they actually merge at t ≈ 100 Myr, and produce rotating star clusters with slightly higher evaporation rates. The merger process of a binary cluster induces an outburst that ejects ˜10 per cent of the stellar members into the Galactic field.

  11. Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse

    CERN Document Server

    Favata, M

    2005-01-01

    (abridged) Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general relativistic tidal interactions cause an otherwise stable neutron star to be compressed? We have found that if a non-rotating neutron star possess a current quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent consta...

  12. Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    CERN Document Server

    Schneider, F R N; Langer, N; de Mink, S E

    2015-01-01

    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyse the evolution of stellar mass functions of coeval main sequence stars including all relevant aspects of single- and binary-star evolution. We show that the slope of the upper part of the mass function in a stellar cluster can be quite different to the slope of the initial mass function. Wind mass loss from massive stars leads to an accumulation of stars which is visible as a peak at the high mass end of mass functions, thereby flattening the mass function slope. Mass accretion and mergers in close binary systems create a tail of rejuvenated binary products. These blue straggler stars extend the single star mass function by up to a factor of two in mass and can appear up to ten times younger than their parent stellar cluster. Cluster ages derived from their most massive stars that are close to the turn-off may thus be significantly biased. To overcome such difficulties, we propose t...

  13. Rotational velocities of single and binary O-type stars in the Tarantula Nebula

    Science.gov (United States)

    Ramírez-Agudelo, O. H.; Sana, H.; de Koter, A.; Simón-Díaz, S.; de Mink, S. E.; Tramper, F.; Dufton, P. L.; Evans, C. J.; Gräfener, G.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2015-01-01

    Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υ e sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υ e sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s-1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s-1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part - and could potentially be completely due - to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.

  14. The rate of neutron star binary mergers in the universe - Minimal predictions for gravity wave detectors

    Science.gov (United States)

    Phinney, E. S.

    1991-01-01

    Of the many sources which gravitational wave observatories might see, merging neutron star binaries are the most predictable. Their waveforms at the observable frequencies are easy to calculate. And three systems which will merge in less than a Hubble time have already been observed as binary pulsars: two in the disk of the Galaxy, and one in a globular cluster. From the lifetimes and positions of these, a lower limit to the merger rate in the Galaxy and globular cluster system are inferred with confidence. Taking the merger rate in other galaxies to scale with the star formation rate, the merger rate expected in the local universe is computed. An ultraconservative lower limit to the rate gives three per year within 1 Gpc. The best estimate, still conservative in that it considers only systems like those already observed, gives three per year within 200 Mpc. An upper limit of three mergers per year within 23/h Mpc is set by the rate of Type Ib supernovae. The rates of black hole binary mergers and black hole-neutron star binary mergers are model-dependent, but could be comparable to the given rate of neutron-star binary mergers.

  15. The quest for collapsed/frozen stars in single-line spectroscopic binary systems

    CERN Document Server

    Trimble, Virginia

    2014-01-01

    Black holes are now commonplace, among the stars, in Galactic centers, and perhaps other places. But within living memory, their very existence was doubted by many, and few chose to look for them. Zeldovich and Guseinov were first, followed by Trimble and Thorne, using a method that would have identified HDE 226868 as a plausible candidate, if it had been in the 1968 catalogue of spectroscopic binaries. That it was not arose from an unhappy accident in the observing program of Daniel M. Popper long before the discovery of X-ray binaries and the identification of Cygnus X-1 with that hot, massive star and its collapsed companion.

  16. The Formation of Low-Mass Binary Star Systems Via Turbulent Fragmentation

    CERN Document Server

    Offner, S S R; Matzner, C D; Krumholz, M R; Klein, R I

    2010-01-01

    We characterize the infall rate onto protostellar systems forming in self-gravitating radiation-hydrodynamic simulations. Using two dimensionless parameters to determine disks' susceptability to gravitational fragmentation, we infer limits on protostellar system multiplicity and the mechanism of binary formation. We show that these parameters give robust predictions even in the case of marginally resolved protostellar disks. We find that protostellar systems with radiation feedback predominately form binaries via turbulent fragmentation, not disk instability, and we predict turbulent fragmentation is the dominant channel for binary formation for low-mass stars. We clearly demonstrate that systems forming in simulations including radiative feedback have fundamentally different parameters than those in purely hydrodynamic simulations.

  17. Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries

    CERN Document Server

    Shenar, T; Todt, H; Sander, A; Hamann, W -R; Moffat, A F J; Eldridge, J J; Pablo, H; Oskinova, L M; Richardson, N D

    2016-01-01

    Massive WR stars are evolved massive stars characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of the known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. By performing a spectral analysis of all multiple WR systems in the SMC, we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. The spectral analysis is performed with the PoWR model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the BPASS evolution tool. Significant Hydrogen mass fractions (0.1 - 0.4) are detected in all WN components. A comparison with mass-luminosity relations and evolutionary tracks implies that the majority of the WR stars in our sample are not chemically homogeneous. The WR component in the binary ...

  18. The Galactic Formation Rate of Eccentric Neutron Star-White Dwarf Binaries

    CERN Document Server

    Kalogera, V; Lorimer, D R; Ihm, M; Belczynski, K

    2004-01-01

    In this paper we consider the population of eccentric binaries with a neutron star and a white dwarf that has been revealed in our galaxy in recent years through binary pulsar observations. We apply our statistical analysis method (Kim, Kalogera, & Lorimer 2003)and calculate the Galactic formation rate of these binaries empirically. We then compare our results with rate predictions based on binary population synthesis from various research groups and for various ranges of model input parameters. For our reference moel, we find the Galactic formation rate of these eccentric systems to be ~7 per Myr, about an order of magnitude smaller than results from binary evolution estimations. However, the empirical estimates are calculated with no correction for pulsar beaming, and therefore they should be taken as lower limits. Despite uncertainties that exceed an order of magnitude, there is significant overlap of the various rate calculations. This consistency lends confidence that our current understanding of the...

  19. Does Planet Formation Influence Whether Binary Stars Are Identical or Fraternal “Twins”?

    Science.gov (United States)

    Teske, Johanna

    2015-12-01

    Disentangling how an individual star’s atmospheric composition is affected by the chemistry and transport of disk material, the formation of planets, and its broader position in/motion through the Galaxy during its evolution is difficult. While initially suggested as a sign of accretion of H-depleted material onto the star, the giant planet-metallicity correlation is now established as a mostly primordial effect -- stellar composition affects planet formation. But is it still possible that planet formation may also alter host star composition? Previous studies hinted at a few cases of compositional differences between stars in binary systems, and now high-precision abundance analyses are exploring this possibility in systems known to host planets. I will discuss the important role binary host stars have to play in extending correlations between stellar composition and the presence/type of planets that form, including brand new (not yet published!) results.

  20. Testing Asteroseismic Scaling Relations using Eclipsing Binaries in Star Clusters and the Field

    CERN Document Server

    Brogaard, K; Handberg, R; Arentoft, T; Frandsen, S; Grundahl, F; Bruntt, H; Sandquist, E L; Miglio, A; Beck, P G; Thygesen, A O; Kjærgaard, K L; Haugaard, N A

    2016-01-01

    The accuracy of stellar masses and radii determined from asteroseismology is not known! We examine this issue for giant stars by comparing classical measurements of detached eclipsing binary systems (dEBs) with asteroseismic measurements from the Kepler mission. For star clusters, we extrapolate measurements of dEBs in the turn-off region to the red giant branch and the red clump where we investigate the giants as an ensemble. For the field stars, we measure dEBs with an oscillating giant component. These measurements allow a comparison of masses and radii calculated from a classical eclipsing binary analysis to those calculated from asteroseismic scaling relations and/or other asteroseismic methods. Our first results indicate small but significant systematic differences between the classical and asteroseismic measurements. In this contribution we show our latest results and summarize the current status and future plans. We also stress the importance of realizing that for giant stars mass cannot always be tra...

  1. An Apparent Precessing Helical Outflow from a Massive Evolved Star: Evidence for Binary Interaction

    CERN Document Server

    Lau, Ryan M; Herter, Terry L; Morris, Mark R; Mills, Elisabeth A C; Ressler, Michael E

    2015-01-01

    Massive, evolved stars play a crucial role in the metal-enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA) of a conical ``helix'' of warm dust ($\\sim180$ K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to $800\\,\\mathrm{d}

  2. A gravitational wave afterglow in binary neutron star mergers

    CERN Document Server

    Doneva, Daniela D; Pnigouras, Pantelis

    2015-01-01

    We study in detail the f-mode secular instability for rapidly rotating neutron stars, putting emphasis on supermassive models which do not have a stable nonrotating counterpart. Such neutron stars are thought to be the generic outcome of the merger of two standard mass neutron stars. In addition we take into account the effects of strong magnetic field and r-mode instability, that can drain a substantial amount of angular momentum. We find that the gravitational wave signal emitted by supramassive neutron stars can reach above the Advance LIGO sensitivity at distance of about 20Mpc and the detectability is substantially enhanced for the Einstein Telescope. The event rate will be of the same order as the merging rates, while the analysis of the signal will carry information for the equation of state of the post-merging neutron stars and the strength of the magnetic fields.

  3. The $m=1$ instability \\& gravitational wave signal in binary neutron star mergers

    OpenAIRE

    Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos; Motl, Patrick

    2016-01-01

    We examine the development and detectability of the $m=1$ instability in the remnant of binary neutron star mergers. The detection of the gravitational mode associated with the $m=1$ degree of freedom could potentially reveal details of the equation of state. We analyze the post-merger epoch of simulations of both equal and non-equal mass neutron star mergers using three, realistic, microphysical equations of state and neutrino cooling. From these evolutions, we estimate the signal to noise r...

  4. Are Post-Newtonian templates faithful and effectual in detecting gravitational signals from neutron star binaries?

    OpenAIRE

    E. Berti; Pons, J. A.; G. Miniutti(Centro de Astrobiologia); Gualtieri, L.; Ferrari, V.

    2002-01-01

    We compute the overlap function between Post-Newtonian (PN) templates and gravitational signals emitted by binary systems composed of one neutron star and one point mass, obtained by a perturbative approach. The calculations are performed for different stellar models and for different detectors, to estimate how effectual and faithful the PN templates are, and to establish whether effects related to the internal structure of neutron stars may possibly be extracted by the matched filtering tech...

  5. Radial Velocity Studies of Close Binary Stars.VIII

    CERN Document Server

    Rucinski, S M; Lu, W; De Bond, H; Thomson, J R; Mochnacki, S W; Blake, R M; Ogloza, W; Stachowski, G; Rogoziecki, P

    2003-01-01

    Radial-velocity measurements and sine-curve fits to the orbital velocity variations are presented for the seventh set of ten close binary systems: V410 Aur, V523 Cas, QW Gem, V921 Her, V2357 Oph, V1130 Tau, HN UMa, HX UMa, HD 93917, NSV 223. All systems, but three (V523 Cas, HD 93917, NSV 223), were discovered photometrically by the Hipparcos mission. All systems are double-lined (SB2) binaries and all, but the detached, very close system V1130 Tau, are contact binaries. The broadening-function permitted improvement of the orbital elements for V523 Cas, which was the only system observed before for radial velocity variations. Spectroscopic/visual companions were detected for V410 Aur and HX UMa.

  6. Evolution in Binary and Triple Stars, with an application to SS Lac

    CERN Document Server

    Eggleton, P P; Eggleton, Peter P.; Kiseleva-Eggleton, Ludmila

    2001-01-01

    We present equations governing the way in which both the orbit and the intrinsic spins of stars in a close binary should evolve subject to a number of perturbing forces, including the effect of a third body in a possibly inclined wider orbit. We illustrate the solutions in some binary-star and triple-star situations: tidal friction in a wide but eccentric orbit of a radio pulsar about a B star, the Darwin and eccentricity instabilities in a more massive but shorter-period massive X-ray binary, and the interaction of tidal friction with Kozai cycles in a triple such as Algol (beta-Per), at an early stage in that star's life when all 3 components were ZAMS stars. We also attempt to model in some detail the interesting triple system SS Lac, which stopped eclipsing in about 1950. We find that our model of SS Lac is quite constrained by the relatively good observational data of this system, and leads to a specific inclination (29 deg) of the outer orbit relative to the inner orbit at epoch zero (1912). Although th...

  7. Tidal breakup of binary stars at the Galactic Center. II. Hydrodynamic simulations

    CERN Document Server

    Antonini, Fabio; Merritt, David

    2010-01-01

    In Paper I, we followed the evolution of binary stars as they orbited near the supermassive black hole (SMBH) at the Galactic center, noting the cases in which the two stars would come close enough together to collide. In this paper we replace the point-mass stars by fluid realizations, and use a smoothed-particle hydrodynamics (SPH) code to follow the close interactions. We model the binary components as main-sequence stars with initial masses of 1, 3 and 6 Solar masses, and with chemical composition profiles taken from stellar evolution codes. Outcomes of the close interactions include mergers, collisions that leave both stars intact, and ejection of one star at high velocity accompanied by capture of the other star into a tight orbit around the SMBH. For the first time, we follow the evolution of the collision products for many ($\\gtrsim 100$) orbits around the SMBH. Stars that are initially too small to be tidally disrupted by the SMBH can be puffed up by close encounters or collisions, with the result th...

  8. CORONAL PROPERTIES OF THE SEYFERT 1.9 GALAXY MCG-05-23-016 DETERMINED FROM HARD X-RAY SPECTROSCOPY WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Baloković, M.; Harrison, F. A.; Esmerian, C. J.; Fürst, F.; Walton, D. J. [Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125 (United States); Matt, G.; Marinucci, A. [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Zoghbi, A.; Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Boggs, S. E.; Craig, W. W. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, A. C.; Parker, M. L. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, W. W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    Measurements of the high-energy cut-off in the coronal continuum of active galactic nuclei have long been elusive for all but a small number of the brightest examples. We present a direct measurement of the cut-off energy in the nuclear continuum of the nearby Seyfert 1.9 galaxy MCG-05-23-016 with unprecedented precision. The high sensitivity of NuSTAR up to 79 keV allows us to clearly disentangle the spectral curvature of the primary continuum from that of its reflection component. Using a simple phenomenological model for the hard X-ray spectrum, we constrain the cut-off energy to 116{sub −5}{sup +6} keV with 90% confidence. Testing for more complex models and nuisance parameters that could potentially influence the measurement, we find that the cut-off is detected robustly. We further use simple Comptonized plasma models to provide independent constraints for both the kinetic temperature of the electrons in the corona and its optical depth. At the 90% confidence level, we find kT{sub e} = 29 ± 2 keV and τ {sub e} = 1.23 ± 0.08 assuming a slab (disk-like) geometry, and kT{sub e} = 25 ± 2 keV and τ {sub e} = 3.5 ± 0.2 assuming a spherical geometry. Both geometries are found to fit the data equally well and their two principal physical parameters are correlated in both cases. With the optical depth in the τ {sub e} ≳ 1 regime, the data are pushing the currently available theoretical models of the Comptonized plasma to the limits of their validity. Since the spectral features and variability arising from the inner accretion disk have been observed previously in MCG-05-23-016, the inferred high optical depth implies that a spherical or disk-like corona cannot be homogeneous.

  9. Accretion Disc Evolution in Single and Binary T Tauri Stars

    OpenAIRE

    Armitage, Philip J.; C.J. Clarke; Tout, C.A.

    1998-01-01

    We present theoretical models for the evolution of T Tauri stars surrounded by circumstellar discs. The models include the effects of pre-main-sequence stellar and time dependent disc evolution, and incorporate the effects of stellar magnetic fields acting on the inner disc. For single stars, consistency with observations in Taurus-Auriga demands that disc dispersal occurs rapidly, on much less than the viscous timescale of the disc, at roughly the epoch when heating by stellar radiation firs...

  10. Binary stars as probes of dark substructures in dwarf galaxies

    CERN Document Server

    Penarrubia, Jorge; Walker, Matthew G; Gilmore, Gerry; Evans, N Wyn; Mackay, Craig D

    2010-01-01

    We use analytical and N-body methods to examine the survival of wide stellar binaries against repeated encounters with dark substructures orbiting in the dark matter haloes of dwarf spheroidal galaxies (dSphs). Our models adopt cosmologically-motivated conditions wherein dSphs are dark-matter dominated systems that form hierarchically and orbit about a host galaxy. Our analytical estimates show that wide binaries are disrupted at a rate that is proportional to the local density of dark substructures averaged over the life-time of the binary population. The fact that external tides can efficiently strip dark substructures from the outskirts of dSphs implies that the present number and distribution of binaries is strongly coupled with the mass evolution of individual galaxies. Yet we show that for the range of dynamical masses and Galactocentric distances spanned by Milky Way dSphs, a truncation in the separation function at a_max <~ 0.1 pc is expected in all these galaxies. An exception may be the Sagittari...

  11. Kepler Eclipsing Binary Stars. Scientific Harvest from the First 4 Months of Data

    Science.gov (United States)

    Prsa, Andrej; Orosz, J. A.; Welsh, W. F.; Slawson, R. W.; Batalha, N.; Rucker, M.; Doyle, L. R.

    2011-05-01

    The Kepler mission observed over 2200 eclipsing binary stars in its 105-square degree field of view. Their importance in modern astrophysics cannot be overstated -- it ranges from deriving the fundamental stellar parameters across the Hertzsprung-Russell Diagram and calibrating the mass-radius-temperature relationships, to determining the distances in the Galaxy and beyond. Kepler observations provide a unique sample with a nearly continuous coverage and sub-millimag precision, allowing us to model binary star light curves to unprecedented accuracy. In the context of planet hunting, the period and amplitude statistics derived from this sample are used to estimate the occurence rate of false positives: stellar sources that mimic planet transits due to third light contamination. I will present the results of the studies performed by the Kepler Eclipsing Binary Working Group: 1) determining the physical parameters of binary star components, 2) studying the eclipse timing variations that attest to the presence of third bodies or arise due to component interaction, 3) performing statistical analysis of the whole sample, 4) estimating the occurence rate of background eclipsing binaries, and 5) searching for tertiary events due to other eclipsing objects. This work is supported by the NASA/SETI grant 08-SC-1041 and NSF RUI #AST-05-07542.

  12. A Search for X-ray Emitting Binary Stars in the Globular Cluster Omega Centauri

    Science.gov (United States)

    Deveny, Sarah; Gallien, Michael; Rickards Vaught, Ryan; Waters, Miranda; Cool, Adrienne; Bellini, Andrea; Anderson, Jay; Henleywillis, Simon; Haggard, Daryl; Heinke, Craig O.

    2016-06-01

    Omega Centauri is one of the most widely studied globular clusters, and is expected to harbor a significant population of binary stars. Binaries play a crucial role in determining the progression of stellar dynamics within globular clusters, and as such are relevant to questions concerning the possible formation of intermediate black holes at their centers. One effective way to identify certain classes of binary systems is to first locate X-ray sources in the cluster and then to search for their optical counterparts. Using Chandra X-ray Observatory's ACIS-I instrument we have identified 275 X-ray sources in and toward Omega Cen, more than 50 of which lie within the cluster's core radius. Here we present a search for the optical counterparts of these core sources using an extensive database of archival Hubble Space Telescope images. Using WFC3/UVIS data from 11 different filters, we construct color-magnitude diagrams that reveal a diverse array of objects, including (in addition to background and foreground objects) cataclysmic variables, coronally active binaries, and, interestingly, stars that lie on Omega Cen's anomalous giant branch. We discuss the significance of these results in the context of studies of the formation and evolution of binary stars in globular clusters.

  13. Separated Fringe Packet Binary Star Astrometry at the CHARA Array - An Update

    Science.gov (United States)

    Ten Brummelaar, Theo; Farrington, C. D.; Mason, B. D.; Roberts, L. C.; Turner, N. H.

    2014-01-01

    When observed with optical long-baseline interferometers (OLBI), components of a binary star which are sufficiently separated such that their interferometric fringe packets do not overlap are referred to as Separated Fringe Packet (SFP) binaries. At the CHARA Array these `wide' binaries are in the range of a few tens of milliarcseconds and extend out into the regime of systems resolved by speckle interferometry at single, large-aperture telescopes. These SFP measurements can provide additional data for orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the under-sampled regime between the bounds of spectroscopic surveys and speckle interferometry. Unlike binary stars whose fringes overlap, a visibility calibration star is not needed, and the separation of the fringe packets can provide an accurate vector separation. We apply the SFP approach to Omega Andromeda, HD 178911, and Xi Cephei. For these systems we determine masses for the two components of 0.963+/-0.049 M_{sun}; and 0.860+/-0.051 M_{sun}; and an orbital parallax of 39.54+/-1.85 mas for Omega Andromeda, for HD 178911 masses of 0.802+/-0.055 M_{sun}; and 0.622+/-0.053 M_{sun}; with orbital parallax of 28.26+/-1.70 mas, and masses of 1.045+/-0.031 M_{sun}; and 0.408+/-0.066 M_{sun}; orbital parallax of 38.10+/-2.81 mas for Xi Cephei.

  14. Evolving radio structure of the binary star SS433 at a resolution of 15 marc s

    International Nuclear Information System (INIS)

    A comprehensive series of VLBI (very-long-baseline interferometry) observations of SS433, carried out over an 11-day period on the European VLBI Network at 5 GHz, reveals the motion and evolution of a series of faint 'blobs' ejected from the system. These blobs are observed to brighten at a substantial distance from the binary star. (author)

  15. Angular Momentum Loss by Magnetic Braking and Gravitational Radiation in Relativistic Binary Stars

    CERN Document Server

    Yakut, K; Tout, C A

    2008-01-01

    Angular momentum loss (AML) mechanisms and dynamical evolution owing to magnetic braking and gravitational radiation in relativistic binary stars (RBS) are studied with use of physical parameters collected from the literature. We have calculated and compared AML time scales for the RBS with non-degenerate components and double degenerate (DD) systems.

  16. Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. II. Statistical analysis of a sample of 67 CEMP-$s$ stars

    CERN Document Server

    Abate, C; Izzard, R G; Karakas, A I

    2015-01-01

    Many observed CEMP stars are found in binary systems and show enhanced abundances of $s$-elements. The origin of the chemical abundances of these CEMP-$s$ stars is believed to be accretion in the past of enriched material from a primary star in the AGB phase. We investigate the mechanism of mass transfer and the process of nucleosynthesis in low-metallicity AGB stars by modelling the binary systems in which the observed CEMP-$s$ stars were formed. For this purpose we compare a sample of $67$ CEMP-$s$ stars with a grid of binary stars generated by our binary evolution and nucleosynthesis model. We classify our sample CEMP-$s$ stars in three groups based on the observed abundance of europium. In CEMP$-s/r$ stars the europium-to-iron ratio is more than ten times higher than in the Sun, whereas it is lower than this threshold in CEMP$-s/nr$ stars. No measurement of europium is currently available for CEMP-$s/ur$ stars. On average our models reproduce well the abundances observed in CEMP-$s/nr$ stars, whereas in C...

  17. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars -- CEMP-s stars

    CERN Document Server

    Hansen, T T; Nordström, B; Beers, T C; Placco, V M; Yoon, J; Buchhave, L A

    2016-01-01

    Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of the CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82+-10%, while four stars appear to be single (18+-10%). We thus confirm that the binary frequency of CEMP-s stars...

  18. Binary Stars as the Source of the Far-UV Excess in Elliptical Galaxies

    OpenAIRE

    Han, Zhanwen; Podsiadlowski, Philipp; Lynas-Gray, Anthony E.

    2007-01-01

    The discovery of an excess of light in the far-ultraviolet (UV) spectrum in elliptical galaxies was a major surprise in 1969. While it is now clear that this UV excess is caused by an old population of hot helium-burning stars without large hydrogen-rich envelopes rather than young stars, their origin has remained a mystery. Here we show that these stars most likely lost their envelopes because of binary interactions, similar to the hot subdwarf population in our own Galaxy. This has major im...

  19. Constraints on binary neutron star merger product from short GRB observations

    OpenAIRE

    Gao, He; Zhang, Bing; Lü, Hou-Jun

    2015-01-01

    Binary neutron star mergers are strong gravitational wave (GW) sources and the leading candidates to interpret short duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the X-ray plateau followed by a steep decay as observed in SGRB X-ray light curves marks the collapse of a supra-massive neutron star to a black hole (BH), we use the statistical observational properties of {\\em Swift} SGRBs and the mass distribution of Galac...

  20. Angular Momentum Loss and Gravitational wave amplitudes for X-ray Binaries with a Neutron Star Component

    CERN Document Server

    İçli, T

    2016-01-01

    Binary systems with neutron stars and double degenerate systems are crucial objects to test current stellar evolution models and Einstein's general relativity. In this study, we present angular momentum loss mechanism via gravitational radiation and magnetized stellar winds for some selected systems with a neutron star. We calculated and plotted their time scales for angular momentum loss. Gravitational wave amplitudes of binary systems with a neutron star components are also estimated and their detectability with a gravitational wave detector (LISA) has been plotted.

  1. Collapse of dense star clusters to supermassive black holes - binaries and gravitational radiation

    International Nuclear Information System (INIS)

    The formation of binaries as a result of normal stellar-dynamic processes in dense clusters of compact stars is investigated analytically. The results of numerical simulations based on a simple homological model for the evolution of a cluster up to the point of catastrophic collapse are presented in extensive graphs and characterized in detail. It is shown that gravitational radiation begins to have a significant effect long before the onset of the high-redshift state. In the later stages, radiative dissipation from binary captures and flyby orbits acts to increase the final core mass that can undergo catastrophic collapse. Realistic initial conditions are found to lead to final cores of 100-100,000 solar masses, which can then collapse in a few dynamical time scales to form black holes 10-150 times larger. It is suggested that gravitational radiation from compact-star binaries may be detectable by ground-based interferometers. 55 references

  2. No circumbinary planets transiting the tightest Kepler binaries - a fingerprint of a third star

    CERN Document Server

    Martin, David V; Fabrycky, Daniel C

    2015-01-01

    The Kepler mission has yielded the discovery of eight eclipsing binaries, within period range of 7 - 40 d, hosting circumbinary planets. This is longer than the typical eclipsing binary period found by Kepler, and hence there is a dearth of planets around the closest binaries. In this paper we demonstrate how this dearth may be explained by the presence of a distant stellar tertiary companion, which shrunk the inner binary orbit by the process of Kozai cycles and tidal friction, a mechanism that has been implicated for producing most binaries with periods below 7 d. We show that the geometry and orbital dynamics of these evolving triple-star systems are highly restrictive for a circumbinary planet, which is subject itself to Kozai modulation, on one hand, and can shield the two inner stars from their Kozai cycle and subsequent shrinking, on the other hand. Only small planets on wide and inclined orbits may form, survive and allow for the inner binary shrinkage. Those are difficult to detect.

  3. On the relation between the mass-ratio distribution in binary stars and the mass function for single stars

    International Nuclear Information System (INIS)

    In the understanding of the formation of binary stars one valuable observational constraint is the distribution of mass ratios. Many attempts have been made to determine this elusive function but these have resulted in almost as many distributions. One possibility that must be considered is that both stars may be chosen independently from the same mass function. We derive the relationship between the mass-ratio distribution and the mass function and show how use of a Salpeter mass function has led to confusion. We also consider the expected distributions for spectroscopic binaries, both single- and double-lined, and explain some of the diversity of previous results while assuming independence and conclude that unknown selection effects severely limit the information that can be extracted from these samples. Complete samples that avoid selection effects can be found and used to identify the finer details of the mass-ratio distribution. (author)

  4. Eclipsing Binary Stars as Tests of Stellar Evolutionary Models and Stellar Ages

    CERN Document Server

    Stassun, Keivan G; Lopez-Morales, Mercedes; Prsa, Andrej

    2009-01-01

    Eclipsing binary stars provide highly accurate measurements of the fundamental physical properties of stars. They therefore serve as stringent tests of the predictions of evolutionary models upon which most stellar age determinations are based. Models generally perform very well in predicting coeval ages for eclipsing binaries with main-sequence components more massive than ~1.2 Msun; relative ages are good to ~5% or better in this mass regime. Low-mass main-sequence stars (M < 0.8 Msun) reveal large discrepancies in the model predicted ages, primarily due to magnetic activity in the observed stars that appears to inhibit convection and likely causes the radii to be 10-20% larger than predicted. In mass-radius diagrams these stars thus appear 50-90% older or younger than they really are. Aside from these activity-related effects, low-mass pre--main-sequence stars at ages ~1 Myr can also show non-coevality of ~30% due to star formation effects, however these effects are largely erased after ~10 Myr.

  5. Mining Planet Search Data for Binary Stars: The $\\psi^1$ Draconis system

    CERN Document Server

    Gullikson, Kevin; Cochran, William D; MacQueen, Phillip J

    2015-01-01

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to $\\psi^1$ Draconis A, which has a known roughly equal-mass companion at ${\\sim}680$ AU. We measure the mass of $\\psi^1$ Draconis C as $M_2 = 0.70 \\pm 0.07 M_{\\odot}$, with an orbital period of ${\\sim}20$ years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.

  6. Mining Planet Search Data for Binary Stars: The ψ1 Draconis system

    Science.gov (United States)

    Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.

    2015-12-01

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ1 Draconis A, which has a known roughly equal-mass companion at ∼680 AU. We measure the mass of ψ1 Draconis C as M2 = 0.70 ± 0.07M⊙, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.

  7. Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems

    Science.gov (United States)

    Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek

    2016-07-01

    We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.

  8. General-relativistic resistive-magnetohydrodynamic simulations of binary neutron stars

    CERN Document Server

    Dionysopoulou, K; Rezzolla, L

    2015-01-01

    We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed at assessing the modifications introduced by resistive effects on the dynamics of the binary after the merger and through to collapse, we have carried out a close comparison with an equivalent simulation performed within the traditional ideal-MHD (IMHD) approximation. We have found that there are many similarities between the two evolutions, but also one important difference: the survival time of the hypermassive neutron star increases in a RMHD simulation. This difference is due to a less efficient magnetic-braking mechanism in the resistive regime, in which matter can move across magnetic-field lines, thus reducing the outward transport of angular momentum. Interestingly, a longer-lived magnetized hypermassive neutron star brings support to the recent modelling...

  9. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth. PMID:26113154

  10. Identifying Close Binary Central Stars of PN From the Kepler K2 Mission

    Science.gov (United States)

    Jacoby, George H.; Long, Joseph; Kronberger, Matthias; De Marco, Orsola; Hillwig, Todd C.

    2016-01-01

    During the Kepler mission, De Marco et al (2015) reported observing 5 PN central stars. Of these, the light curves for 4 central stars exhibited signatures of close binary interactions during their evolution. While suggestive that a large fraction of PN evolve as a binary phenomenon, the sample is far too small to be compelling. We have acquired Kepler K2 data for campaigns 0 and 2 to monitor an additional 6 central stars, and we expect data for another 8-10 targets in campaign 7. We present preliminary results from Kepler K2 campaigns 0 and 2, describe our expectations for campaign 7, and discuss the challenges of using Kepler for these observations.

  11. Interaction of misaligned magnetospheres in the coalescence of binary neutron stars

    CERN Document Server

    Ponce, Marcelo; Lehner, Luis; Liebling, Steven L

    2014-01-01

    We study the dependence of the electromagnetic luminosity --produced by interactions of force-free magnetospheres-- on dipole inclinations in binary neutron star systems. We show that this interaction extracts kinetic energy from the system and powers a Poynting flux with a strong dependence on the dipole orientations. This dependence can be linked to the reconnection and redistribution of magnetic field as the stars interact. Although the details of the Poynting luminosity are very much dependent on the orientation, all the cases considered here nevertheless radiate a large Poynting flux. This robust emission suggests that the pre-merger stage of binary neutron star systems can yield interesting electromagnetic counterparts to gravitational wave events.

  12. Reconstruction and Analysis of Component Spectra of Binary and Multiple Stars

    CERN Document Server

    Pavlovski, K

    2009-01-01

    In the last two decades about a dozen methods were invented which derive, from a series of composite spectra over the orbit, the spectra of individual components in binary and multiple systems. Reconstructed spectra can then be analyzed with the tools developed for single stars. Eventually this has created the opportunity for chemical composition studies in previously inaccessible components of binary stars, and to follow their chemical evolution, an important aspect in understanding evolution of stellar systems. First, we review new developments in techniques to separate and reconstruct individual spectra, and thereafter concentrate on some applications. In particular, we emphasize the elemental abundance studies for high-mass stars, and present our recent results in probing theoretical evolution models which include effects of rotationally induced mixing.

  13. The unusual interacting S star binary HR 1105

    Science.gov (United States)

    Ake, Thomas B., III; Johnson, Hollis R.; Bopp, Bernard W.

    1994-01-01

    IUE observations of HR 1105 over its 596-day orbit show strong orbital modulation of both continuum and emission lines. These are most intense just before both conjunctions and nearly disappear near quadratures, the most intense phase being just before the hot component passes in front of the S star. High dispersion observations exhibit a blue-shifted absorption feature in Mg II, representing an outflow of material of about 55 km/s. These observations are consistent with the UV source being an optically thin gas stream between the components of the system, which is partially eclipsed when the S star is in front.

  14. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    Science.gov (United States)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  15. Electromagnetic outflows in scalar-tensor theories vs General Relativity: binary neutron star coalescence

    CERN Document Server

    Ponce, Marcelo; Barausse, Enrico; Lehner, Luis

    2014-01-01

    As we showed in previous work, the dynamics and gravitational emission of binary neutron star systems in scalar-tensor theories can differ significantly from that expected from General Relativity in the coalescing stage. In this work we examine whether the characteristics of the electromagnetic counterparts to these binaries -- driven by magnetosphere interactions prior to the merger event -- can provide an independent way to test gravity in the most strongly dynamical stages of binary mergers. We find that the electromagnetic flux emitted by binaries in scalar-tensor theories can show deviations from the GR prediction in particular cases. These differences are quite subtle, thus requiring delicate measurements to differentiate between GR and the type of scalar-tensor theories considered in this work using electromagnetic observations alone. However, if coupled with a gravitational-wave detection, electromagnetic measurements might provide a way to increase the confidence with which GR will be confirmed (or r...

  16. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    International Nuclear Information System (INIS)

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation

  17. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael [Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  18. Gravitational-wave signal from binary neutron stars: a systematic analysis of the spectral properties

    CERN Document Server

    Rezzolla, Luciano

    2016-01-01

    A number of works have shown that important information on the equation of state of matter at nuclear density can be extracted from the gravitational waves emitted by merging neutron-star binaries. We present a comprehensive analysis of the gravitational-wave signal emitted during the inspiral, merger and post-merger of 56 neutron-star binaries. This sample of binaries, arguably the largest studied to date with realistic equations of state, spans across six different nuclear-physics equations of state and ten masses, allowing us to sharpen a number of results recently obtained on the spectral properties of the gravitational-wave signal. Overall we find that: (i) for binaries with masses differing no more than $20\\%$, the frequency at gravitational-wave amplitude's maximum is related quasi-universally with the tidal deformability of the two stars; (ii) the spectral properties vary during the post-merger phase, with a transient phase lasting a few millisecond after the merger and followed by a quasi-stationary ...

  19. Radiation-Driven Warping of Circumbinary Disks Around Eccentric Young Star Binaries

    CERN Document Server

    Hayasaki, Kimitake; Okazaki, Atsuo T; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-01-01

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from the optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the bina...

  20. A statistical test on the reliability of the non-coevality of stars in binary systems

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2016-01-01

    We develop a statistical test on the expected difference in age estimates of two coeval stars in detached double-lined eclipsing binary systems that are only caused by observational uncertainties. We focus on stars in the mass range [0.8; 1.6] Msun, and on stars in the main-sequence phase. The ages were obtained by means of the maximum-likelihood SCEPtER technique. The observational constraints used in the recovery procedure are stellar mass, radius, effective temperature, and metallicity [Fe/H]. We defined the statistic W computed as the ratio of the absolute difference of estimated ages for the two stars over the age of the older one. We determined the critical values of this statistics above which coevality can be rejected. The median expected difference in the reconstructed age between the coeval stars of a binary system -- caused alone by the observational uncertainties -- shows a strong dependence on the evolutionary stage. This ranges from about 20% for an evolved primary star to about 75% for a near Z...

  1. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE-NEUTRON-STAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Sean T.; Levin, Janna, E-mail: stmcwill@princeton.edu [Institute for Strings, Cosmology and Astroparticle Physics (ISCAP), Columbia University, New York, NY 10027 (United States)

    2011-12-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  2. Giants of eclipse the ζ [Zeta] Aurigae stars and other binary systems

    CERN Document Server

    Griffin, Elizabeth

    2015-01-01

    The zeta Aurigae stars are the rare but illustrious sub-group of binary stars that undergo the dramatic phenomenon of "chromospheric eclipse". This book provides detailed descriptions of the ten known systems, illustrates them richly with examples of new spectra, and places them in the context of stellar structure and evolution. Comprised of a large cool giant plus a small hot dwarf, these key eclipsing binaries reveal fascinating changes in their spectra very close to total eclipse, when the hot star shines through differing heights of the "chromosphere", or outer atmosphere, of the giant star. The phenomenon provides astrophysics with the means of analyzing the outer atmosphere of a giant star and how that material is shed into space. The physics of these critical events can be explained qualitatively, but it is more challenging to extract hard facts from the observations, and tough to model the chromosphere in any detail. The book offers current thinking on mechanisms for heating a star's chromosphere an...

  3. One-arm Spiral Instability in Hypermassive Neutron Stars Formed by Dynamical-Capture Binary Neutron Star Mergers

    CERN Document Server

    Paschalidis, Vasileios; Pretorius, Frans; Shapiro, Stuart L

    2015-01-01

    Using general-relativistic hydrodynamical simulations, we show that merging binary neutron stars can form hypermassive neutrons stars that undergo the one-arm spiral instability. We study the particular case of a dynamical capture merger where the stars have a small spin, as may arise in globular clusters, and focus on an equal-mass scenario where the spins are aligned with the orbital angular momentum. We find that this instability develops when post-merger fluid vortices lead to the generation of a toroidal remnant - a configuration whose maximum density occurs in a ring around the center-of-mass - with high vorticity along its rotation axis. The instability quickly saturates on a timescale of $\\sim 10$ ms, with the $m=1$ azimuthal density multipole mode dominating over higher modes. The instability also leaves a characteristic imprint on the post-merger gravitational wave signal that could be detectable if the instability persists in long-lived remnants.

  4. Emission of gravitational waves from binary systems in the galactic center and diffraction by star clusters

    CERN Document Server

    Longo, P; Nucita, A A; De Paolis, F; Ingrosso, G

    2006-01-01

    Binary systems of compact objects are strong emitters of gravitational waves whose amplitude depends on the binary orbital parameters as the component mass, the orbital semi-major axis and eccentricity. Here, in addition to the famous Hulse-Taylor binary system, we have studied the possibility to detect the gravitational wave signal emitted by binary systems at the center of our galaxy. In particular, recent infrared observation of the galactic center have revealed the existence of a cluster of stars each of which appears to orbit the central black hole in $SgrA^*$. For the stars labelled as S2 and S14, we have studied the emitted spectrum of gravitational wave and compare it with the sensitivity threshold of space-based interferometers like Lisa and Astrod. Furthermore, following recent observations, we have considered the possibility that $SgrA^*$ is actually a binary system of massive black holes and calculated the emission spectrum as a function of the system parameters. The diffraction pattern of gravita...

  5. Double-lined Spectroscopic Binary Stars in the Radial Velocity Experiment Survey

    CERN Document Server

    Matijevic, G; Munari, U; Bienayme, O; Binney, J; Bland-Hawthorn, J; Boeche, C; Campbell, R; Freeman, K C; Gibson, B; Gilmore, G; Grebel, E K; Helmi, A; Navarro, J F; Parker, Q A; Seabroke, G M; Siebert, A; Siviero, A; Steinmetz, M; Watson, F G; Williams, M; Wyse, R F G; 10.1088/0004-6256/140/1/184

    2010-01-01

    We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra, and compared to direct visual inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover ~80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 year are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested cl...

  6. Can SGRs/AXPs Originate from Neutron Star Binaries?

    OpenAIRE

    Joan Jing Wang; Hsiang-Kuang Chang

    2014-01-01

    Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are two groups of enigmatic objects, which have been extensively investigated in past few decades. Based on the ample information about their timing behaviors, spectra, and variability properties, it was proposed that SGRs/AXPs are isolated neutron stars (NSs) with extremely strong magnetic fields, the so-called magnetars. Nonetheless, some alternative models are probably equally convincing such as those proposing that they are ac...

  7. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. XII. Eclipsing Binary Stars in the Large Magellanic Cloud

    CERN Document Server

    Graczyk, D; Poleski, R; Pietrzyński, G; Udalski, A; Szymański, M K; Kubiak, M; Wyrzykowski, Ł; Ulaczyk, K

    2011-01-01

    We present catalog of 26 121 visually inspected eclipsing binary stars identified in the Large Magellanic Cloud during the third phase of the Optical Gravitational Lensing Experiment. The sample is limited to the out-of-eclipse brightness I < 20 mag. The catalog consists mostly of detached eclipsing binaries - ellipsoidal variables were not included. For stars brighter than I = 18 mag the detection rate of eclipsing binaries is 0.5% and for all stars it falls to 0.2%. The absolute completeness of the whole catalog is about 15% assuming the occurence rate of EBs toward the LMC equal to 1.5%. Among thousands of regular eclipsing systems we distinguished a subclass of eclipsing binaries - transient eclipsing binaries (TEB) - presenting cycles of appearance and disappearance of eclipses due to the precession of their orbits.

  8. Binary Neutron Star Mergers: Dependence on the Nuclear Equation of State

    CERN Document Server

    Hotokezaka, Kenta; Okawa, Hirotada; Shibata, Masaru; Kiuchi, Kenta

    2011-01-01

    We perform a numerical-relativity simulation for the merger of binary neutron stars with 6 nuclear-theory-based equations of state (EOSs) described by piecewise polytropes. Our purpose is to explore the dependence of the dynamical behavior of the binary neutron star merger and resulting gravitational waveforms on the EOS of the supernuclear-density matter. The numerical results show that the merger process and the first outcome are classified into three types; (i) a black hole is promptly formed, (ii) a short-lived hypermassive neutron star (HMNS) is formed, (iii) a long-lived HMNS is formed. The type of the merger depends strongly on the EOS and on the total mass of the binaries. For the EOS with which the maximum mass is larger than 2Msun, the lifetime of the HMNS is longer than 10 ms for a total mass m_0=2.7Msun. A recent radio observation suggests that the maximum mass of spherical neutron stars is M_max \\geq 1.97\\pm 0.04Msun in one \\sigma level. This fact and our results support the possible existence of...

  9. An Apparent Precessing Helical Outflow from a Massive Evolved Star: Evidence for Binary Interaction

    Science.gov (United States)

    Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.

    2016-02-01

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (˜180 K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τp ˜ 1.4 × 104 yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  10. The dynamical fate of binary star clusters in the Galactic tidal field

    CERN Document Server

    Priyatikanto, R; Arifyanto, M I; Wulandari, H R T; Siregar, S

    2016-01-01

    Fragmentation and fission of giant molecular clouds occasionally results in a pair of gravitationally bound star clusters that orbit their mutual centre of mass for some time, under the influence of internal and external perturbations. We investigate the evolution of binary star clusters with different orbital configurations, with a particular focus on the Galactic tidal field. We carry out $N$-body simulations of evolving binary star clusters and compare our results with estimates from our semi-analytic model. The latter accounts for mass loss due to stellar evolution and two-body relaxation, and for evolution due to external tides. Using the semi-analytic model we predict the long-term evolution for a wide range of initial conditions. It accurately describes the global evolution of such systems, until the moment when a cluster merger is imminent. $N$-body simulations are used to test our semi-analytic model and also to study additional features of evolving binary clusters, such as the kinematics of stars, g...

  11. The gravitational-wave signal generated by a galactic population of double neutron-star binaries

    CERN Document Server

    Yu, Shenghua

    2015-01-01

    We investigate the gravitational wave (GW) signal generated by a population of double neutron-star binaries (DNS) with eccentric orbits caused by kicks during supernova collapse and binary evolution. The DNS population of a standard Milky-Way type galaxy has been studied as a function of star formation history, initial mass function (IMF) and metallicity and of the binary-star common-envelope ejection process. The model provides birth rates, merger rates and total numbers of DNS as a function of time. The GW signal produced by this population has been computed and expressed in terms of a hypothetical space GW detector (eLISA) by calculating the number of discrete GW signals at different confidence levels, where `signal' refers to detectable GW strain in a given frequency-resolution element. In terms of the parameter space explored, the number of DNS-originating GW signals is greatest in regions of recent star formation, and is significantly increased if metallicity is reduced from 0.02 to 0.001, consistent wi...

  12. Speckle observations of the central binary star in the Red Rectangle

    International Nuclear Information System (INIS)

    The binary nature of the central star in the Red Rectangle HD 44179 has been confirmed using the Imperial College speckle interferometer on the AAT. The position angle of 146 +- 30 and separation 0.29 +- 0.02 arcsec are given for 1981 November 11. An orbital period of 60 +- 5 yr and a total mass of the two components of the binary approx.= to 31 sun masses are both predicted. No correlation between the inclination of the orbit and the striking geometry of the nebulosity is found. (author)

  13. GRBs from Weakly-Magnetized, Slowly-Rotating Stars in Binaries

    OpenAIRE

    Méndez, Enrique Moreno

    2014-01-01

    The spin of a number of black holes (BHs) in X-ray binaries (XBs) has been predicted (and, in at least three cases, confirmed by observations) by using a binary stellar evolution model with Case-C mass transfer . The rotational energy of such BHs is sufficient to power up (long) gamma-ray bursts and hypernovae (GRBs/HNe) and still leave a Kerr BH behind. However, strong magnetic fields (B fields) and/or dynamo effects in the interior of a BH-progenitor star may be capable of rapidly depleting...

  14. Kepler Eclipsing Binary Stars. II. 2165 Eclipsing Binaries in the Second Data Release

    CERN Document Server

    Slawson, Robert W; Welsh, William F; Orosz, Jerome A; Rucker, Michael; Batalha, Natalie M; Doyle, Laurance R; Engle, Scott G; Conroy, Kyle; Coughlin, Jared; Gregg, Trevor Ames; Fetherolf, Tara; Short, Donald R; Windmiller, Gur; Fabrycky, Daniel C; Howell, Steve B; Jenkins, Jon M; Uddin, Kamal; Mullally, Fergal; Seader, Shawn E; Thompson, Susan E; Sanderfer, Dwight T; Borucki, William; Koch, David

    2011-01-01

    The Kepler Mission provides nearly continuous monitoring of ~156 000 objects with unprecedented photometric precision. Coincident with the first data release, we presented a catalog of 1879 eclipsing binary systems identified within the 115 square degree Kepler FOV. Here, we provide an updated catalog augmented with the second Kepler data release which increases the baseline nearly 4-fold to 125 days. 386 new systems have been added, ephemerides and principle parameters have been recomputed. We have removed 42 previously cataloged systems that are now clearly recognized as short-period pulsating variables and another 58 blended systems where we have determined that the Kepler target object is not itself the eclipsing binary. A number of interesting objects are identified. We present several exemplary cases: 4 EBs that exhibit extra (tertiary) eclipse events; and 8 systems that show clear eclipse timing variations indicative of the presence of additional bodies bound in the system. We have updated the period a...

  15. VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)

    Science.gov (United States)

    Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.

    2016-02-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass

  16. MISSING SEYFERT GALAXIES

    Directory of Open Access Journals (Sweden)

    Hrant M. Tovmassian

    2011-01-01

    Full Text Available El objetivo de este trabajo es la estimación del número de galaxias Seyfert faltantes debido a la ocultación por el polvo del disco de las galaxias espirales. Comparamos la distribución de las inclinaciones de las galaxias anfitrionas de las Sy1s y Sy2s con la de la muestra de control de las galaxias espirales. Encontramos que el número relativo de galaxias Seyfert es mayor para las Seyfert vistas de frente, en las galaxias con i 61 que en las galaxias espirales sin núcleos activos. Concluimos que la diferencia observada se debe a la absorción de los núcleos Seyfert en el disco de polvo de las galaxias inclinadas. Estimamos que las Seyfert faltantes son alrededor del 100% para las Sy1y y del 50% para las Sy2s.

  17. Evidence for a warm wind from the red star in symbiotic binaries

    Science.gov (United States)

    Friedjung, M.; Stencel, R. E.; Viotti, R.

    1983-01-01

    A systematic redshift of the high ionization resonance emission lines with respect to the intercombination lines is found from an examination of the ultraviolet spectra of symbiotic stars obtained with IUE. After consideration of other possibilities, this is most probably explained by photon scattering in an expanding envelope optically thick to the resonance lines. Line formation in a wind, or at the base of a wind is therefore suggested. Reasons are also given indicating line formation of the most ionized species in a region with an electron temperature of the order of 100,000 K, probably around the cool star. The behavior of the emission line width with ionization energy seems to support this model. The cool components of symbiotic stars appear to differ from normal red giants, which do not have winds of this temperature. An explanation in terms of a higher rotation velocity due to the binary nature of these stars is suggested.

  18. Star formation history and X-ray binary populations: the case of the Large Magellanic Cloud

    Science.gov (United States)

    Antoniou, V.; Zezas, A.

    2016-06-01

    In this work we investigate the link between high-mass X-ray binaries (HMXBs) and star formation in the Large Magellanic Cloud (LMC), our nearest star-forming galaxy. Using optical photometric data, we identify the most likely counterpart of 44 X-ray sources. Among the 40 HMXBs classified in this work, we find 33 Be/X-ray binaries (Be-XRBs), and 4 supergiant XRBs. Using this census and the published spatially resolved star formation history map of the LMC, we find that the HMXBs (and as expected the X-ray pulsars) are present in regions with star formation bursts ∼6-25 Myr ago, in contrast to the Small Magellanic Cloud (SMC), for which this population peaks at later ages (∼25-60 Myr ago). We also estimate the HMXB production rate to be equal to one system per ∼43.5× 10-3 M⊙ yr-1 or one system per ∼143M⊙ of stars formed during the associated star formation episode. Therefore, the formation efficiency of HMXBs in the LMC is ∼17 times lower than that in the SMC. We attribute this difference primarily in the different ages and metallicity of the HMXB populations in the two galaxies. We also set limits on the kicks imparted on the neutron star during the supernova explosion. We find that the time elapsed since the supernova kick is ∼3 times shorter in the LMC than the SMC. This in combination with the average offsets of the HMXBs from their nearest star clusters results in ∼4 times faster transverse velocities for HMXBs in the LMC than in the SMC.

  19. A Survey of the Local Group of Galaxies for Symbiotic Binary Stars. I. First detection of symbiotic stars in M33

    CERN Document Server

    Mikolajewska, Joanna; Caldwell, Nelson; Ilkiewicz, Krystian; Zurek, David

    2016-01-01

    We present and discuss initial selection criteria and first results in M33 from a systematic search for extragalactic symbiotic stars. We show that the presence of diffuse interstellar gas emission can significantly contaminate the spectra of symbiotic star candidates. This important effect forces upon us a more stringent working definition of an extragalactic symbiotic star. We report the first detections and spectroscopic characterisation of 12 symbiotic binaries in M33. We found that four of our systems contain carbon-rich giants. In another two of them the giant seems to be a Zr-enhanced MS star, while the remaining six objects host M-type giants. The high number ratio of C to M giants in these binaries is consistent with the low metallicity of M33. The spatial and radial velocity distributions of these new symbiotic binaries are consistent with a wide range of progenitor star ages.

  20. Gravitational waves from nonspinning black hole-neutron star binaries: dependence on equations of state

    CERN Document Server

    Kyutoku, Koutarou; Taniguchi, Keisuke

    2010-01-01

    We report results of a numerical-relativity simulation for the merger of a black hole-neutron star binary with a variety of equations of state (EOSs) modeled by piecewise polytropes. We focus in particular on the dependence of the gravitational waveform at the merger stage on the EOSs. The initial conditions are computed in the moving-puncture framework, assuming that the black hole is nonspinning and the neutron star has an irrotational velocity field. For a small mass ratio of the binaries (e.g., MBH/MNS = 2 where MBH and MNS are the masses of the black hole and neutron star, respectively), the neutron star is tidally disrupted before it is swallowed by the black hole irrespective of the EOS. Especially for less-compact neutron stars, the tidal disruption occurs at a more distant orbit. The tidal disruption is reflected in a cutoff frequency of the gravitational-wave spectrum, above which the spectrum amplitude exponentially decreases. A clear relation is found between the cutoff frequency of the gravitatio...

  1. Asteroid flux towards circumprimary habitable zones in binary star systems: II. Dynamics

    CERN Document Server

    Bancelin, D; Bazso, A

    2015-01-01

    Secular and mean motion resonances (hearafter MMR) are effective perturbations to shape planetary systems. In binary star systems, they play a key role during the early and late phases of planetary formation as well as the dynamical stability of a planetary system. In this study, we aim to correlate the presence of orbital resonances with the rate of icy asteroids crossing the habitable zone (hearafter HZ), from a circumprimary disk of planetesimals in various binary star systems. We modelled a belt of small bodies in the inner and outer regions, respectively below and beyond the orbit of a gas giant planet. The planetesimals are equally placed around a primary G-type star and move under the gravitational influence of the two stars and the gas giant. We numerically integrated the system for 50 Myr considering various parameters for the secondary star. Its stellar type varies from a M- to F-type; its semimajor axis is either 50 au or 100 au and its eccentricity is either 0.1 or 0.3. Our simulations highlight t...

  2. Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

    CERN Document Server

    Brown, Duncan A; Lundgren, Andrew; Nitz, Alexander H

    2012-01-01

    The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars' angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cJ/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method of constructing filter banks for advanced-detector searches, which can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotr...

  3. Binary Neutron Stars with Generic Spin, Eccentricity, Mass ratio, and Compactness - Quasi-equilibrium Sequences and First Evolutions

    CERN Document Server

    Dietrich, Tim; Johnson-McDaniel, Nathan K; Bernuzzi, Sebastiano; Markakis, Charalampos M; Bruegmann, Bernd; Tichy, Wolfgang

    2015-01-01

    Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasi-equilibrium configurations and dynamical evolutions. In this article, we construct quasi-equilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the SGRID code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity reduced data; we present the possibility of computing data for significantly unequal-mass binaries; and we create equal-mass binaries with individual compactness up to 0.23. As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a $q=2.06$ mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. ...

  4. Electromagnetic emission from long-lived binary neutron star merger remnants I: formulation of the problem

    OpenAIRE

    Siegel, Daniel M.; Ciolfi, Riccardo

    2015-01-01

    Binary neutron star (BNS) mergers are the leading model to explain the phenomenology of short gamma-ray bursts (SGRBs), which are among the most luminous explosions in the universe. Recent observations of long-lasting X-ray afterglows of SGRBs challenge standard paradigms and indicate that in a large fraction of events a long-lived neutron star (NS) may be formed rather than a black hole. Understanding the mechanisms underlying these afterglows is necessary in order to address the open questi...

  5. Search for gravitational waves from galactic and extra--galactic binary neutron stars

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; DeSalvo, R; Delker, T; Dergachev, V; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; Goler, S; González, G; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Gustafson, E; Gustafson, R; Günther, M; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mukherjee, S; Murray, P; Myers, J; Müller, G; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; O'Reilly, B; Olson, T; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Russell, P; Ryan, K; Rüdiger, A; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J

    2005-01-01

    We use 373 hours ($\\approx$ 15 days) of data from the second science run of the LIGO gravitational-wave detectors to search for signals from binary neutron star coalescences within a maximum distance of about 1.5 Mpc, a volume of space which includes the Andromeda Galaxy and other galaxies of the Local Group of galaxies. This analysis requires a signal to be found in data from detectors at the two LIGO sites, according to a set of coincidence criteria. The background (accidental coincidence rate) is determined from the data and is used to judge the significance of event candidates. No inspiral gravitational wave events were identified in our search. Using a population model which includes the Local Group, we establish an upper limit of less than 47 inspiral events per year per Milky Way equivalent galaxy with 90% confidence for non-spinning binary neutron star systems with component masses between 1 and 3 $M_\\odot$.

  6. Joint LIGO and TAMA300 Search for Gravitational Waves from Inspiralling Neutron Star Binaries

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A; Agresti, J; Ajith, P; Akutsu, T; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Ando, M; Arai, K; Araya, A; Araya, M; Armandula, H; Asada, H; Ashley, M; Asiri, F; Aso, Y; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Beyersdorf, P; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Dalrymple, J; Danzmann, K; Davies, G; Daw, E; De Bra, D; DeSalvo, R; Delker, T; Dergachev, V; Desai, S; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Díaz, M; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fujiki, Y; Fujimoto, M K; Fujita, R; Fukushima, M; Futamase, T; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; Goggin, L; Goler, S; González, G; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Gustafson, E; Gustafson, R; Günther, M; Hamilton, W O; Hammond, M; Hamuro, Y; Hanna, C; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Haruyama, T; Hayama, K; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Iguchi, H; Iida, Y; Ioka, K; Ishitsuka, H; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, G; Jones, L; Jungwirth, D; Kalogera, V; Kamikubota, N; Kanda, N; Kaneyama, T; Karasawa, Y; Kasahara, K; Kasai, T; Katsavounidis, E; Katsuki, M; Kawabe, K; Kawamura, M; Kawamura, S; Kawazoe, F; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Kojima, Y; Kokeyama, K; Kondo, K; Koranda, S; Kotter, K; Kovalik, Yu; Kozai, Y; Kozak, D; Krishnan, B; Kudoh, H; Kuroda, K; Kuwabara, T; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Luna, M; Lyons, T T; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mandic, V; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Matsuda, N; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mio, N; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miura, K; Miyakawa, O; Miyama, S; Miyoki, S; Mizusawa, H; Mohanty, S; Moreno, G; Moriwaki, S; Mossavi, K; Mukherjee, S; Murray, P; Musha, M; Myers, E; Myers, J; Müller, G; Nagano, S; Nagayama, Y; Nakagawa, K; Nakamura, T; Nakano, H; Nakao, K; Nash, T; Nayak, R; Newton, G; Nishi, Y; Nocera, F; Noel, J S; Numata, K; Nutzman, P; O'Reilly, B; Ogawa, Y; Ohashi, M; Ohishi, N; Okutomi, A; Olson, T; Oohara, K; Otsuka, S; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robinson, C; Robison, L; Roddy, S; Rodríguez, A; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Ruet, L; Russell, P; Ryan, K; Rüdiger, A; Saitô, Y; Sakata, S; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sasaki, M; Sathyaprakash, B; Sato, K; Sato, N; Sato, S; Sato, Y; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sekido, A; Sellers, D; Sengupta, A S; Seto, N; Shapiro, C A; Shawhan, P; Shibata, M; Shinkai, H; Shintomi, T; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D

    2006-01-01

    We search for coincident gravitational wave signals from inspiralling neutron star binaries using LIGO and TAMA300 data taken during early 2003. Using a simple trigger exchange method, we perform an inter-collaboration coincidence search during times when TAMA300 and only one of the LIGO sites were operational. This data set is complementary to that used in the LIGO S2 search. The observation time of the search is 648 hours. We find no evidence of any gravitational wave signals. We place an observational upper limit on the rate of binary neutron star coalescence with component masses between 1 and 3 M_sun of 49 per year per Milky Way equivalent galaxy at a 90% confidence level.

  7. Discovery of non-radial pulsations in the spectroscopic binary Herbig Ae star RS Cha

    CERN Document Server

    Böhm, T; Catala, C; Alecian, E; Pollard, K; Wright, D

    2008-01-01

    In this article we present a first discovery of non radial pulsations in both components of the Herbig Ae spectroscopic binary star RS Cha. The binary was monitored in quasi-continuous observations during 14 observing nights (Jan 2006) at the 1m Mt John (New Zealand) telescope with the Hercules high-resolution echelle spectrograph. The cumulated exposure time on the star was 44 hrs, corresponding to 255 individual high-resolution echelle spectra with $R = 45000$. Least square deconvolved spectra (LSD) were obtained for each spectrum representing the effective photospheric absorption profile modified by pulsations. Difference spectra were calculated by subtracting rotationally broadened artificial profiles; these residual spectra were analysed and non-radial pulsations were detected. A subsequent analysis with two complementary methods, namely Fourier Parameter Fit (FPF) and Fourier 2D (F2D) has been performed and first constraints on the pulsation modes have been derived. In fact, both components of the spect...

  8. Phenomenological Modeling of the Light Curves of Algol-Type Eclipsing Binary Stars

    CERN Document Server

    Andronov, Ivan L

    2012-01-01

    We introduce a special class of functions for mathematical modeling of periodic signals of special shape with irregularly spaced arguments. This method was developed for determination of phenomenological characteristics of the light curves, which are necessary for registration in the "General Catalogue of Variable Stars" and other databases. For eclipsing binary stars with smooth light curves - of types EB and EW - it is recommended a trigonometric polynomial of optimal degree in a complete or symmetric form. For eclipsing binary systems with relatively narrow minima (EA-type), statistically optimal is an approximation of the light curves in a class of non-polynomial spline functions. It is used a combination of the second-order trigonometric polynomial (TP2, what describes effects of "reflection", "ellipsoidality" and "spotness") and localized contibutions of minima (parametrized in depth and profile separately for primary and secondary minima). Effectivity of the proposed method increases with decreasing ec...

  9. Gravitational waveforms from binary neutron star mergers with high-order WENO schemes in numerical relativity

    CERN Document Server

    Bernuzzi, Sebastiano

    2016-01-01

    The theoretical modeling of gravitational waveforms from binary neutron star mergers requires precise numerical relativity simulations. Assessing convergence of the numerical data and building the error budget is currently challenging due to the low accuracy of general-relativistic hydrodynamics schemes and to the grid resolutions that can be employed in (3+1)-dimensional simulations. In this work, we explore the use of high-order weighted-essentially-non-oscillatory (WENO) schemes in neutron star merger simulations and investigate the accuracy of the waveforms obtained with such methods. We find that high-order WENO schemes can be robustly employed for simulating the inspiral-merger phase and they significantly improve the assessment of the waveform's error budget with respect to finite-volume methods. High-order WENO schemes can be thus efficiently used for high-quality waveforms production, also in future large-scale investigations of the binary parameter space.

  10. X-Ray Binary Populations in a Cosmological Context, Including NuSTAR Predictions

    Science.gov (United States)

    Cardiff, Ann Hornschemeier

    2011-01-01

    The new ultradeep 4 Ms Chandra Deep Field South has afforded the deepest view ever of X-ray binary populations. We report on the latest results on both LMXB and HMXB evolution out to redshifts of approximately four, including comparison with the latest theoretical models, using this deepest-ever view of the X-ray universe with Chandra. The upcoming NuSTAR mission will open up X-ray binary populations in the hard X-ray band, similar to the pioneering work of Fabbiano et al. in the Einstein era. We report on plans to study both Local Group and starburst galaxies as well as the implications those observations may have for X-ray binary populations in galaxies contributing to the Cosmic X-ray Background.

  11. The Formation of Low-mass Binary Star Systems Via Turbulent Fragmentation

    Science.gov (United States)

    Offner, Stella S. R.; Kratter, Kaitlin M.; Matzner, Christopher D.; Krumholz, Mark R.; Klein, Richard I.

    2010-12-01

    We characterize the infall rate onto protostellar systems forming in self-gravitating radiation-hydrodynamics simulations. Using two dimensionless parameters to determine the disks' susceptibility to gravitational fragmentation, we infer limits on protostellar system multiplicity and the mechanism of binary formation. We show that these parameters give robust predictions even in the case of marginally resolved protostellar disks. We find that protostellar systems with radiation feedback predominately form binaries via turbulent fragmentation, not disk instability, and predict that turbulent fragmentation is the dominant channel for binary formation for low-mass stars. We clearly demonstrate that systems forming in simulations including radiative feedback have fundamentally different parameters than those in purely hydrodynamics simulations.

  12. Numerical method for binary black hole/neutron star initial data: Code test

    CERN Document Server

    Tsokaros, A A; Tsokaros, Antonios A.; Uryu, Koji

    2007-01-01

    A new numerical method to construct binary black hole/neutron star initial data is presented. The method uses three spherical coordinate patches; Two of these are centered at the binary compact objects and cover a neighborhood of each object; the third patch extends to the asymptotic region. As in the Komatsu-Eriguchi-Hachisu method, nonlinear elliptic field equations are decomposed into a flat space Laplacian and a remaining nonlinear expression that serves in each iteration as an effective source. The equations are solved iteratively, integrating a Green's function against the effective source at each iteration. Detailed convergence tests for the essential part of the code are performed for a few types of selected Green's functions to treat different boundary conditions. Numerical computation of the gravitational potential of a fluid source, and a toy model for a binary black hole field are carefully calibrated with the analytic solutions to examine accuracy and convergence of the new code. As an example of...

  13. Improved basic physical properties of the Oe-star binary V1007 Sco

    Czech Academy of Sciences Publication Activity Database

    Mayer, P.; Harmanec, Petr; Lorenz, R.; Drechsel, H.; Eenens, P.; Corral, L. J.; Morrell, N.

    Dordrecht : Kluwer, 2001 - (Vanbeveren, D.), s. 567-569 - (Astrophysics and space science library.. 264). [Influence of binaries on stellar population studies. Brusel (BE), 21.08.2000-25.08.2000] R&D Projects: GA MŠk ME 402 Institutional research plan: CEZ:AV0Z1003909 Keywords : hot stars * masses and radii * apsidal motion Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  14. Jets in neutron star X-ray binaries: a comparison with black holes

    OpenAIRE

    Migliari, S.; Fender, R. P.

    2005-01-01

    (Abridged) We present a comprehensive study of the relation between radio and X-ray emission in neutron star X-ray binaries, use this to infer the general properties of the disc-jet coupling in such systems, and compare the results quantitatively with those already established for black hole systems. There are clear qualitative similarities between the two classes of object: hard states below about 1% of the Eddington luminosity produce steady jets, while transient jets are associated with ou...

  15. Tidal evolution of close binary stars. I - Revisiting the theory of the equilibrium tide

    Science.gov (United States)

    Zahn, J.-P.

    1989-01-01

    The theory of the equilibrium tide in stars that possess a convective envelope is reexamined critically, taking recent developments into account and treating thermal convection in the most consistent way within the mixing-length approach. The weak points are identified and discussed, in particular, the reduction of the turbulent viscosity when the tidal period becomes shorter than the convective turnover time. An improved version is derived for the secular equations governing the dynamical evolution of close binaries of such type.

  16. Electromagnetic extraction of energy from black hole-neutron star binaries

    OpenAIRE

    McWilliams, Sean T.; Levin, Janna

    2011-01-01

    The coalescence of black hole-neutron star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. Ideally, these and other gravitational wave sources would have a distinct electromagnetic counterpart, as significantly more information could be gained through two separate channels. In addition, since these detectors will probe distances with non-negligible redshift, a coincident observation of an electromagne...

  17. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, & Binary Stars

    CERN Document Server

    Hinkley, Sasha

    2011-01-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Fu...

  18. Wide Low-Mass Tertiary Companions of Binary Star Systems as a Test of Star Formation Theories

    Science.gov (United States)

    Douglas, Stephanie; Allen, P.

    2012-01-01

    We will present the status of a common proper motion search for wide low-mass stellar and sub-stellar companions to known white dwarf-M dwarf binary systems. I-band observations were made using the 31" NURO telescope at Lowell Observatory. Candidate companions are selected using astrometry from our own data and 2MASS photometry. We have begun to spectroscopically confirm candidates that pass our selection criteria. The ultimate goal of the search is to test star formation theories which predict that close binary systems form by transferring angular momentum to a third companion. To this end, we will model the physical companion population and perform Bayesian statistical analysis to determine the best-fit population model to our data. Here we will present our spectroscopically confirmed companions as well as the preliminary results of our population models and statistical analysis.

  19. Photometric Modelling of Close Binary Star CN And

    Indian Academy of Sciences (India)

    D. M. Z. Jassur; A. Khodadadi

    2006-03-01

    The results of two color photometry of active close binary CN And are presented and analyzed. The light curves of the system are obviously asymmetric, with the primary maximum brighter than the secondary maximum, which is known as the O’Conell effect. The most plausible explanation of the asymmetry is expected to be due to spot activity of the primary component. For the determination of physical and geometrical parameters, the most new version of W–D code was used, but the presence of asymmetry prevented the convergence of the method when the whole light curves were used. The solutions were obtained by applying mode 3 of W–D code to the first half of the light curves, assuming synchronous rotation and zero eccentricity. Absolute parameters of the system were obtained from combining the photometric solution with spectroscopic data obtained from radial velocity curve analysis. The results indicate the poor thermal contact of the components and transit primary minimum. Finally the O–C diagram was analyzed. It was found that the orbital period of the system is changing with a rate of / = -2.2(6) × 10-10 which corresponds to mass transfer from more massive component to less massive with the rate of / ∼ 4.82 × 10-88sun/year.

  20. The Seyfert galaxy population

    International Nuclear Information System (INIS)

    A large sample of Seyfert galaxies, many of which are Markarian galaxies, has been observed with the WSRT in lambda 21 cm continuum radiation. The results are presented, and the number of radio detected Seyferts has now increased considerably. A number of accurate optical positions are given that were needed to identify radio sources with the Seyfert galaxies observed. Optical and radio luminosity functions of Seyfert galaxies are derived. The results are compared with such functions for other categories of objects that may be related to these galaxies. The discussions focus on the possible connections between normal galaxies, Seyferts, and optically selected quasars. Three investigations are reported on individual objects that are related to Seyfert galaxies. WSRT observations of four bright, optically selected quasars are presented. The identification of an X-ray discovered BL Lacertae object is discussed. Its radio emission is on a much lower level than for other BL Lacs. Perhaps it is a radio-quiet object in this class, suggesting a comparable difference in radio emission for BL Lacs as is known for quasars. Photo-electric photometry for the Seyfert galaxy NGC 1566 is reported. Besides a monitoring programme, multi-aperture photometry is described. (Auth.)

  1. Stochastic Background of Gravitational Waves Generated by Eccentric Neutron Star Binaries

    CERN Document Server

    Evangelista, E F D

    2015-01-01

    Binary systems emit gravitational waves in a well-known pattern; for binaries in circular orbits, the emitted radiation has a frequency that is twice the orbital frequency. Systems in eccentric orbits, however, emit gravitational radiation in the higher harmonics too. In this paper, we are concerned with the stochastic background of gravitational waves generated by double neutron star systems of cosmological origin in eccentric orbits. We consider in particular the long-lived systems, that is, those binaries for which the time to coalescence is longer than the Hubble time ($\\sim 10$Gyr). Thus, we consider double neutron stars with orbital frequencies ranging from $10^{-8}$ to $2\\times 10^{-6}$Hz. Although in the literature some papers consider the spectra generated by eccentric binaries, there is still space for alternative approaches for the calculation of the backgrounds. In this paper, we use a method that consists in summing the spectra that would be generated by each harmonic separately in order to obtai...

  2. Rotational velocities of single and binary O-type stars in the Tarantula Nebula

    CERN Document Server

    Ramírez-Agudelo, O H; de Koter, A; Simón-Díaz, S; de Mink, S E; Tramper, F; Dufton, P L; Evans, C J; Gräfener, G; Herrero, A; Langer, N; Lennon, D J; Apellániz, J Maíz; Markova, N; Najarro, F; Puls, J; Taylor, W D; Vink, J S

    2014-01-01

    Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, $v_e\\sin i$, of $\\sim$330 O-type objects, i.e. $\\sim$210 spectroscopic single stars and $\\sim$110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30\\,Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the $v_e\\sin i$ distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100\\,$\\rm{km s^{-1}}$. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tai...

  3. Colliding Winds in Low-Mass Binary Star Systems: wind interactions and implications for habitable planets

    CERN Document Server

    Johnstone, C P; Pilat-Lohinger, E; Bisikalo, D; Güdel, M; Eggl, S

    2015-01-01

    Context. In binary star systems, the winds from the two components impact each other, leading to strong shocks and regions of enhanced density and temperature. Potentially habitable circumbinary planets must continually be exposed to these interactions regions. Aims. We study, for the first time, the interactions between winds from low-mass stars in a binary system, to show the wind conditions seen by potentially habitable circumbinary planets. Methods. We use the advanced 3D numerical hydrodynamic code Nurgush to model the wind interactions of two identical winds from two solar mass stars with circular orbits and a binary separation of 0.5 AU. As input into this model, we use a 1D hydrodynamic simulation of the solar wind, run using the Versatile Advection Code. We derive the locations of stable and habitable orbits in this system to explore what wind conditions potentially habitable planets will be exposed to during their orbits. Results. Our wind interaction simulations result in the formation of two stron...

  4. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    CERN Document Server

    Patricelli, Barbara; Cella, Giancarlo; Fidecaro, Francesco; Pian, Elena; Branchesi, Marica; Stamerra, Antonio

    2016-01-01

    The detection of the event GW150914 opened the era of gravitational wave (GW) astronomy. Besides binary systems of black holes, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016-2017 run; however, as the interferometers a...

  5. MISSING SEYFERT GALAXIES

    OpenAIRE

    Tovmassian, Hrant M.; Yam, O.

    2011-01-01

    El objetivo de este trabajo es la estimación del número de galaxias Seyfert faltantes debido a la ocultación por el polvo del disco de las galaxias espirales. Comparamos la distribución de las inclinaciones de las galaxias anfitrionas de las Sy1s y Sy2s con la de la muestra de control de las galaxias espirales. Encontramos que el número relativo de galaxias Seyfert es mayor para las Seyfert vistas de frente, en las galaxias con i 61 que ...

  6. The donor star winds in High-Mass X-ray Binaries

    Science.gov (United States)

    Oskinova, Lida

    2014-10-01

    High-mass X-ray binaries (HMXBs) are essential astrophysical laboratories. These objects represent an advanced stage in the evolution of massive binary systems, after the initially more massive star has already collapsed in a supernova explosion, but its remnant, a neutron star or black hole, remains gravitationally bound. The stellar wind from the OB-type donor is partially accreted onto its compact companion powering its relatively high X-ray luminosity. Since HMXBs accrete from the stellar wind, parameters such as the donor's mass-loss rate, the velocity of the wind, and its clumpiness are of fundamental importance.This proposal takes advantage of the unique capabilities of HST/STIS for UV spectroscopy. We focus on the most populous in the Galaxy class of those HMXBs where the stellar wind of the OB donor is directly accreted onto a neutron star. Recently, a new sub-class of HMXBs - "supergiant fast X-ray transients" - was discovered. It has been proposed that these enigmatic objects can be explained by the specific properties of their donor-star winds. The only way to validate or disprove this hypothesis is by a studying the wind diagnostics lines in the UV spectra of donor stars. The observations proposed here will, for the first time, provide the UV spectra of this important new type of accreting binaries. Our state-of-the art non-LTE expanding stellar atmospheres and 3-D stellar wind simulations allow thorough exploitation of the STIS spectra. As a result we will obtain the wind parameters for a representative sample of six Galactic HMXBs, thus heightening our knowledge thereof considerably.

  7. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Science.gov (United States)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  8. Spin and orbital angular momentum exchange in binary star systems II. Ascending the giant branch: a new path to FK Comae stars

    NARCIS (Netherlands)

    Keppens, R.; Solanki, S. K.; Charbonnel, C.

    2000-01-01

    Using the model by Keppens (1997), we investigate the angular momentum (AM) evolution in asymmetric binary star systems from Zero-Age Main Sequence times until at least one component has ascended the giant branch. We concentrate on stars ranging in mass from 0.9 M. - 1.7 M. in almost synchronous, sh

  9. Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries

    International Nuclear Information System (INIS)

    In coalescing neutron star binaries, r-modes in one of the stars can be resonantly excited by the gravitomagnetic tidal field of its companion. This post-Newtonian gravitomagnetic driving of these modes dominates over the Newtonian tidal driving previously computed by Ho and Lai. To leading order in the tidal expansion parameter R/r (where R is the radius of the neutron star and r is the orbital separation), only the l=2, |m|=1, and |m|=2 r-modes are excited. The tidal work done on the star through this driving has an effect on the evolution of the inspiral and on the phasing of the emitted gravitational wave signal. For a neutron star of mass M, radius R, spin frequency fspin, modeled as a Γ=2 polytrope, with a companion also of mass M, the gravitational wave phase shift for the m=2 mode is ∼0.1 radians (R/10 km)4(M/1.4M·)-10/3(fspin/100 Hz)2/3 for optimal spin orientation. For canonical neutron star parameters this phase shift will likely not be detectable by gravitational wave detectors such as LIGO, but if the neutron star radius is larger it may be detectable if the signal-to-noise ratio is moderately large. The energy transfer is large enough to drive the mode into the nonlinear regime if fspin > or approx. 100 Hz. For neutron star--black hole binaries, the effect is smaller; the phase shift scales as companion mass to the -4/3 power for large companion masses. The net energy transfer from the orbit into the star is negative corresponding to a slowing down of the inspiral. This occurs because the interaction reduces the spin of the star, and occurs only for modes which satisfy the Chandrasekhar-Friedman-Schutz instability criterion. A large portion of the paper is devoted to developing a general formalism to treat mode driving in rotating stars to post-Newtonian order, which may be useful for other applications. We also correct some conceptual errors in the literature on the use of energy conservation to deduce the effect of the mode driving on the

  10. Hα Imaging of Nearby Seyfert Host Galaxies

    Science.gov (United States)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log(L Hα /erg s‑1) > 41.5) would still be identified as such at z ∼ 0.3.

  11. Kepler Eclipsing Binary Stars. III. Classification of Kepler Eclipsing Binary Light Curves with Locally Linear Embedding

    CERN Document Server

    Matijevic, Gal; Orosz, Jerome A; Welsh, William F; Bloemen, Steven; Barclay, Thomas

    2012-01-01

    We present an automated classification of 2165 \\textit{Kepler} eclipsing binary (EB) light curves that accompanied the second \\textit{Kepler} data release. The light curves are classified using Locally Linear Embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used Principal Component Analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of "detachedness" of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classif...

  12. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars - CEMP-s stars

    Science.gov (United States)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-04-01

    Context. Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of the CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Aims: Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Methods: We have systematically monitored the radial velocities of a sample of 22 CEMP-s stars for several years with ~monthly, high-resolution, low S/N échelle spectra obtained at the Nordic Optical Telescope (NOT) at La Palma, Spain. From these spectra, radial velocities with an accuracy of ≈100 m s-1 were determined by cross-correlation with optimised templates. Results: Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82 ± 10%, while four stars appear to be single (18 ± 10%). We thus confirm that the binary frequency of CEMP-s stars is much higher than for normal metal-poor giants, but not 100% as previously claimed. Secure orbits are determined for eleven of the binaries and provisional orbits for six long-period systems (P > 3000 days), and orbital circularisation timescales are discussed. Conclusions: The conventional scenario of local mass transfer from a former asymptotic giant branch (AGB) binary companion does appear to account for the chemical composition of most CEMP-s stars. However, the excess of C and s-process elements in some single CEMP-s stars was apparently transferred to their

  13. Double White Dwarfs as Probes of Single and Binary Star Evolution

    Science.gov (United States)

    Andrews, Jeffrey John

    2016-01-01

    As the endpoints of stars less massive than roughly eight solar masses, the population of Galactic white dwarfs (WD) contain information about complex stellar evolution processes. Associated pairs of WDs add an extra degree of leverage; both WDs must have formed and evolved together. The work presented in this dissertation uses various populations of double WDs (DWD) to constrain evolution of both single and binary stars. One example is the set of low-mass WDs with unseen WD companions, which are formed through a dynamically-unstable mass loss process called the common envelope. To work toward a quantitative understanding of the common envelope, we develop and apply a Bayesian statistical technique to identify the masses of the unseen WD companions. We provide results which can be compared to evolutionary models and hence a deeper understanding of how binary stars evolve through a common envelope. The statistical technique we develop can be applied to any population of single-line spectroscopic binaries. Binaries widely separated enough that they avoid any significant interaction independently evolve into separate WDs that can be identified in photometric and astrometric surveys. We discuss techniques for finding these objects, known as wide DWDs. We present a catalog of 142 candidate wide DWDs, combining both previously detected systems and systems we identify in our searches in the Sloan Digital Sky Survey. Having been born at the same time, the masses and cooling ages of the WDs in wide DWDs, obtained with our spectroscopic follow-up campaign can be used to constrain the initial-final mass relation, which relates a main sequence star to the mass of the WD into which it will evolve. We develop a novel Bayesian technique to interpret our data and present our resulting constraints on this relation which are particularly strong for initial masses between two and four solar masses. During this process, we identified one wide DWD, HS 2220+2146, that was peculiar since

  14. Expected Large Synoptic Survey Telescope (LSST) Yield of Eclipsing Binary Stars

    Science.gov (United States)

    Prša, Andrej; Pepper, Joshua; Stassun, Keivan G.

    2011-08-01

    In this paper, we estimate the Large Synoptic Survey Telescope (LSST) yield of eclipsing binary stars, which will survey ~20,000 deg2 of the southern sky during a period of 10 years in six photometric passbands to r ~ 24.5. We generate a set of 10,000 eclipsing binary light curves sampled to the LSST time cadence across the whole sky, with added noise as a function of apparent magnitude. This set is passed to the analysis-of-variance period finder to assess the recoverability rate for the periods, and the successfully phased light curves are passed to the artificial-intelligence-based pipeline ebai to assess the recoverability rate in terms of the eclipsing binaries' physical and geometric parameters. We find that, out of ~24 million eclipsing binaries observed by LSST with a signal-to-noise ratio >10 in mission lifetime, ~28% or 6.7 million can be fully characterized by the pipeline. Of those, ~25% or 1.7 million will be double-lined binaries, a true treasure trove for stellar astrophysics.

  15. Expected Large Synoptic Survey Telescope (LSST) Yield of Eclipsing Binary Stars

    CERN Document Server

    Prsa, Andrej; Stassun, Keivan G

    2011-01-01

    In this paper we estimate the Large Synoptic Survey Telescope (LSST) yield of eclipsing binary stars, which will survey ~20,000 square degrees of the southern sky during the period of 10 years in 6 photometric passbands to r ~ 24.5. We generate a set of 10,000 eclipsing binary light curves sampled to the LSST time cadence across the whole sky, with added noise as a function of apparent magnitude. This set is passed to the Analysis of Variance (AoV) period finder to assess the recoverability rate for the periods, and the successfully phased light curves are passed to the artificial intelligence-based pipeline EBAI to assess the recoverability rate in terms of the eclipsing binaries' physical and geometric parameters. We find that, out of ~24 million eclipsing binaries observed by LSST with S/N>10 in mission life-time, ~28% or 6.7 million can be fully characterized by the pipeline. Of those, ~25% or 1.7 million will be double-lined binaries, a true treasure trove for stellar astrophysics.

  16. Close binary stars in the solar-age Galactic open cluster M67

    CERN Document Server

    Yakut, K; Kalomeni, B; Van Winckel, H; Waelkens, C; De Cat, P; Bauwens, E; Vuckovic, M; Saesen, S; Guillou, L Le; Parmaksizoglu, M; Uluc, K; Khamitov, I; Raskin, G; Aerts, C

    2009-01-01

    We present multi-colour time-series CCD photometry of the solar-age galactic open cluster M67 (NGC 2682). About 3600 frames spread over 28 nights were obtained with the 1.5 m Russian-Turkish and 1.2 m Mercator telescopes. High-precision observations of the close binary stars AH Cnc, EV Cnc, ES Cnc, the $\\delta$ Scuti type systems EX Cnc and EW Cnc, and some long-period variables belonging to M67 are presented. Three full multi-colour light curves of the overcontact binary AH Cnc were obtained during three observing seasons. Likewise we gathered three light curves of EV Cnc, an EB-type binary, and two light curves of ES Cnc, a blue straggler binary. Parts of the light change of long-term variables S1024, S1040, S1045, S1063, S1242, and S1264 are obtained. Period variation analysis of AH Cnc, EV Cnc, and ES Cnc were done using all times of mid-eclipse available in the literature and those obtained in this study. In addition, we analyzed multi-colour light curves of the close binaries and also determined new fre...

  17. On the kinematics of the neutron star low mass X-ray binary Cen X-4

    CERN Document Server

    Hern'andez, J I G; Penarrubia, J; Casares, J; Israelian, G

    2005-01-01

    We present the first determination of the proper motion of the neutron star low mass X-ray binary {Cen X-4} measured from relative astrometry of the secondary star using optical images at different epochs. We determine the Galactic space velocity components of the system and find them to be significantly different from the mean values that characterize the kinematics of stars belonging to the halo, and the thin and the thick disc of the Galaxy. The high metallicity of the secondary star of the system rules out a halo origin and indicates that the system probably originated in the Galactic disc. A statistical analysis of the galactocentric motion revealed that this binary moves in a highly eccentric ($e\\simeq 0.85\\pm0.1$) orbit with an inclination of $\\simeq 110^\\circ$ to the Galactic plane. The large Galactic space velocity components strongly support that a high natal kick as a result of a supernova explosion could have propelled the system into such an orbit from a birth place in the Galactic disc. The high...

  18. High Energy spectra of Seyferts and Unification schemes

    CERN Document Server

    Middleton, Matthew; Schurch, Nick

    2007-01-01

    The Unified Model of AGN predicts the sole difference between Seyfert 1 and Seyfert 2 nuclei is the viewing angle with respect to an obscuring structure around the nucleus. High energy photons above 20 keV are not affected by this absorption if the column is Compton thin, so their 30--100 keV spectra should be the same. However, the observed spectra at high energies appear to show a systematic difference, with Seyfert 1's having $\\Gamma \\sim $2.1 whereas Seyfert 2's are harder with $\\Gamma \\sim$ 1.9. We estimate the mass and accretion rate of Seyferts detected in these high energy samples and show that they span a wide range in $L/L_{Edd}$. Both black hole binary systems and AGN show a correlation between spectral softness and Eddington fraction, so these samples are probably heterogeneous, spanning a range of intrinsic spectral indices which are hidden in individual objects by poor signal-to-noise. However, the mean Eddington fraction for the Seyfert 1's is higher than for the Seyfert 2's, so the samples are...

  19. Binary Stars as the Source of the Far-UV Excess in Elliptical Galaxies

    CERN Document Server

    Han, Zhanwen; Lynas-Gray, Anthony E

    2007-01-01

    The discovery of an excess of light in the far-ultraviolet (UV) spectrum in elliptical galaxies was a major surprise in 1969. While it is now clear that this UV excess is caused by an old population of hot helium-burning stars without large hydrogen-rich envelopes rather than young stars, their origin has remained a mystery. Here we show that these stars most likely lost their envelopes because of binary interactions, similar to the hot subdwarf population in our own Galaxy. This has major implications for understanding the evolution of the UV excess and of elliptical galaxies in general. In particular, it implies that the UV excess is not a sign of age, as had been postulated previously, and predicts that it should not be strongly dependent on the metallicity of the population.

  20. The universality hypothesis: binary and stellar populations in star clusters and galaxies

    CERN Document Server

    Kroupa, Pavel

    2010-01-01

    It is possible to extract, from the observations, distribution functions of the birth dynamical properties of a stellar population, and to also infer that these are quite invariant to the physical conditions of star formation. The most famous example is the stellar IMF, and the initial binary population (IBP) seems to follow suit. A compact mathematical formulation of the IBP can be derived from the data. It has three broad parts: the IBP of the dominant stellar population (0.08-2 M_sol), the IBP of the more-massive stars and the IBP of brown dwarfs. These three mass regimes correspond to different physical regimes of star formation but not to structure in the IMF. With this formulation of the IBP it becomes possible to synthesise the stellar-population of whole galaxies.

  1. Interstellar medium, young stars, and astrometric binaries in Galactic archaeology spectroscopic surveys

    CERN Document Server

    Zwitter, Tomaž; Žerjal, Maruša; Traven, Gregor

    2015-01-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and structure of the Galaxy. But they allow for important auxiliary science: (i) Galactic interstellar medium can be studied in four dimensions (position in space + radial velocity) through weak but numerous diffuse insterstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and qua...

  2. Investigation of the binary fraction among candidate A-F type hybrid stars detected by Kepler

    Directory of Open Access Journals (Sweden)

    Lampens P.

    2015-01-01

    Full Text Available We are currently monitoring up to 40 Kepler candidate δ Scuti-γ Doradus (resp. γ Doradus-δ Scuti hybrid stars in radial velocity in order to identify the physical cause behind the low frequencies observed in the periodograms based on the ultra-high accuracy Kepler space photometry. The presence of low frequency variability in unevolved or slightly evolved oscillating A/F-type stars can generally be explained in three ways: either 1 the star is an (undetected binary or multiple system, or 2 the star is a g-mode pulsator (i.e. a genuine hybrid, or 3 the star’s atmosphere displays an asymmetric intensity distribution (caused by spots, i.e. chemical anomalies, or by (very high rotation, which is detected through rotational modulation. Our targets were selected from the globally characterized variable A/F-type stars of the Kepler mission [7]. We observe each star at least 4 times unevenly spread over a time lapse up to 2 months with the HERMES spectrograph [6]. In the case of composite, multiple-lined spectra, these observations also provide the atmospheric properties of each component. Our principal goal is to estimate the fraction of short-period, spectroscopic systems in the sample.

  3. Binary Neutron Star Mergers: A Jet Engine for Short Gamma-Ray Bursts

    Science.gov (United States)

    Ruiz, Milton; Lang, Ryan N.; Paschalidis, Vasileios; Shapiro, Stuart L.

    2016-06-01

    We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of quasi-circular, equal-mass, binary neutron stars that undergo merger. The initial stars are irrotational, n = 1 polytropes and are magnetized. We explore two types of magnetic-field geometries: one where each star is endowed with a dipole magnetic field extending from the interior into the exterior, as in a pulsar, and the other where the dipole field is initially confined to the interior. In both cases the adopted magnetic fields are initially dynamically unimportant. The merger outcome is a hypermassive neutron star that undergoes delayed collapse to a black hole (spin parameter a/M BH ∼ 0.74) immersed in a magnetized accretion disk. About 4000M ∼ 60(M NS/1.625 M ⊙) ms following merger, the region above the black hole poles becomes strongly magnetized, and a collimated, mildly relativistic outflow—an incipient jet—is launched. The lifetime of the accretion disk, which likely equals the lifetime of the jet, is Δ t ∼ 0.1 (M NS/1.625 M ⊙) s. In contrast to black hole–neutron star mergers, we find that incipient jets are launched even when the initial magnetic field is confined to the interior of the stars.

  4. A survey study of energy distribution in component stars of Algol-type binary systems

    Science.gov (United States)

    Dobias, Jan Joseph

    A study survey of Algol-type binary systems was undertaken in order to investigate radiative flux distributions of their component stars. For hot primaries low-dispersion ultraviolet spectra, made with the International Ultraviolet Explorer (IUD) satellite, are combined at comparable phases with optical spectrophotometric scans, made at Lick Observatory, and then matched with a least-square method to Kurucz model atmospheres. Cooler secondaries are classified by matching their optical flux distributions, observed at totality, to standard stars. Results show that the U Sagittae system consists of a B7.5V-IV star while the secondary is matched by a G4III IV standard. The RW Tauri system consists of a B8V primary, while the secondary is matched by a KOIII standard. The UV spectrum of the primary in RY Geminorum matches that of an AOV standard. The secondary in RY GEM is KOIV. The system of RS Cephei consists of B9.7Ve and G8III-IV stars. The system of RW Persei consists of B9.6e and K2(+ or - 2)IV-III stars. The system of RX Geminorum consists of AOV or AOIII and K2(+ or - 2) stars. Finally, in Beta Lyrae the primary appears to be a B8.5-B9II-Ib object.

  5. Refined Neutron-Star Mass Determinations for Six Eclipsing X-Ray Pulsar Binaries

    CERN Document Server

    Rawls, Meredith L; McClintock, Jeffrey E; Torres, Manuel A P; Bailyn, Charles D; Buxton, Michelle M

    2011-01-01

    We present an improved method for determining the mass of neutron stars in eclipsing X-ray pulsar binaries and apply the method to six systems, namely Vela X-1, 4U 1538-52, SMC X-1, LMC X-4, Cen X-3, and Her X-1. In previous studies to determine neutron star mass, the X-ray eclipse duration has been approximated analytically by assuming the companion star is spherical with an effective Roche lobe radius. We use a numerical code based on Roche geometry with various optimizers to analyze the published data for these systems, which we supplement with new spectroscopic and photometric data for 4U 1538-52. This allows us to model the eclipse duration more accurately and thus calculate an improved value for the neutron star mass. The derived neutron star mass also depends on the assumed Roche lobe filling factor beta of the companion star, where beta = 1 indicates a completely filled Roche lobe. In previous work a range of beta between 0.9 and 1.0 was usually adopted. We use optical ellipsoidal lightcurve data to c...

  6. K 1-6: an asymmetric planetary nebula with a binary central star

    CERN Document Server

    Frew, David J; Fitzgerald, Michael; Parker, Quentin; Danaia, Lena; McKinnon, David; Guerrero, Martín A; Hedberg, John; Hollow, Robert; An, Yvonne; Bor, Shu Han; Colman, Isabel; Graham-White, Claire; Li, Qing Wen; Mai, Juliette; Papadakis, Katerina; Picone-Murray, Julia; Hoang, Melanie Vo; Yean, Vivian

    2010-01-01

    We present new imaging data and archival multiwavelength observations of the little studied emission nebula K 1-6 and its central star. Narrow-band images in H-alpha (+ [NII]) and [OIII] taken with the Faulkes Telescope North reveal a stratified, asymmetric, elliptical nebula surrounding a central star which has the colours of a late G- or early K-type subgiant or giant. GALEX ultraviolet images reveal a very hot subdwarf or white dwarf coincident in position with this star. The cooler, optically dominant star is strongly variable with a period of 21.312 +/- 0.008 days, and is possibly a high amplitude member of the RS CVn class, although an FK Com classification is also possible. Archival ROSAT data provide good evidence that the cool star has an active corona. We conclude that K 1-6 is most likely an old bona fide planetary nebula at a distance of ~1.0 kpc, interacting with the interstellar medium, and containing a binary or ternary central star. The observations and data analyses reported in this paper wer...

  7. The role of binaries in the enrichment of the early Galactic halo. II. Carbon-enhanced metal-poor stars: CEMP-no stars

    Science.gov (United States)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-02-01

    Context. The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon; these are the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Aims: Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Methods: High-resolution, low S/N spectra of the stars were obtained at roughly monthly intervals over a time span of up to eight years with the FIES spectrograph at the Nordic Optical Telescope. Radial velocities of ~100 m s-1 precision were determined by cross-correlation after each observing night, allowing immediate, systematic follow-up of any variable object. Results: Most programme stars exhibit no statistically significant radial-velocity variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2000 days and normal eccentricity; the binary frequency for the sample is 17 ± 9%. The single stars mostly belong to the recently identified low-C band, while the binaries have higher absolute carbon abundances. Conclusions: We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic interstellar

  8. AN UPDATED LOOK AT BINARY CHARACTERISTICS OF MASSIVE STARS IN THE CYGNUS OB2 ASSOCIATION

    International Nuclear Information System (INIS)

    This work provides a statistical analysis of the massive star binary characteristics in the Cygnus OB2 association using radial velocity information of 114 B3-O5 primary stars and orbital properties for the 24 known binaries. We compare these data to a series of Monte Carlo simulations to infer the intrinsic binary fraction and distributions of mass ratios, periods, and eccentricities. We model the distribution of mass ratio, log-period, and eccentricity as power laws and find best-fitting indices of α = 0.1 ± 0.5, β = 0.2 ± 0.4, and γ = –0.6 ± 0.3, respectively. These distributions indicate a preference for massive companions, short periods, and low eccentricities. Our analysis indicates that the binary fraction of the cluster is 44% ± 8% if all binary systems are (artificially) assumed to have P 4 years, then a plausible upper limit for bound systems, the binary fraction is ∼90% ± 10%. Of these binary (or higher order) systems, ∼45% will have companions close enough to interact during pre- or post-main-sequence evolution (semi-major axis ∼<4.7 AU). The period distribution for P < 26 days is not well reproduced by any single power law owing to an excess of systems with periods around 3-5 days (0.08-0.31 AU) and a relative shortage of systems with periods around 7-14 days (0.14-0.62 AU). We explore the idea that these longer-period systems evolved to produce the observed excess of short-period systems. The best-fitting binary parameters imply that secondaries generate, on average, ∼16% of the V-band light in young massive populations. This means that photometrically based distance measurements for young massive clusters and associations will be systematically low by ∼8% (0.16 mag in the distance modulus) if the luminous contributions of unresolved secondaries are not taken into account.

  9. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    De Mink, S. E. [Space Telescope Science Institute, Baltimore, MD (United States); Langer, N.; Izzard, R. G. [Argelander-Institut fuer Astronomie der Universitaet Bonn, D-53121 Bonn (Germany); Sana, H.; De Koter, A. [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  10. KEPLER ECLIPSING BINARY STARS. III. CLASSIFICATION OF KEPLER ECLIPSING BINARY LIGHT CURVES WITH LOCALLY LINEAR EMBEDDING

    International Nuclear Information System (INIS)

    We present an automated classification of 2165 Kepler eclipsing binary (EB) light curves that accompanied the second Kepler data release. The light curves are classified using locally linear embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used principal component analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of 'detachedness' of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classification of additional light curves runs in a negligible time and the method can therefore be used as a fully automated classifier in pipeline structures. The classifier forms a tier of the Kepler EB pipeline that pre-processes light curves for the artificial intelligence based parameter estimator.

  11. Collective properties of neutron-star X-ray binary populations of galaxies. II. Pre-low-mass X-ray binary properties, formation rates, and constraints

    International Nuclear Information System (INIS)

    We continue our exploration of the collective properties of neutron-star X-ray binaries in the stellar fields (i.e., outside globular clusters) of normal galaxies. In Paper I of this series, we considered high-mass X-ray binaries (HMXBs). In this paper (Paper II), we consider low-mass X-ray binaries (LMXBs), whose evolutionary scenario is very different from that of HMXBs. We consider the evolution of primordial binaries up to the stage where the neutron star just formed in the supernova explosion of the primary is in a binary with its low-mass, unevolved companion, and this binary has circularized tidally, producing what we call a pre-low-mass X-ray binary (pre-LMXB). We study the constraints on the formation of such pre-LMXBs in detail (since these are low-probability events), and calculate their collective properties and formation rates. To this end, we first consider the changes in the binary parameters in the various steps involved, viz., the common-envelope phase, the supernova, and the tidal evolution. This naturally leads to a clarification of the constraints. We then describe our calculation of the evolution of the distributions of primordial binary parameters into those of pre-LMXB parameters, following the standard evolutionary scenario for individual binaries. We display the latter as both bivariate and monovariate distributions, discuss their essential properties, and indicate the influences of some essential factors on these. Finally, we calculate the formation rate of these pre-LMXBs. The results of this paper will be used in a subsequent one to compute the expected X-ray luminosity function of LMXBs.

  12. Collective properties of neutron-star X-ray binary populations of galaxies. II. Pre-low-mass X-ray binary properties, formation rates, and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Bhadkamkar, H. [Astronomy and Astrophysics, Raman Research Institute, Bengaluru 560080 (India); Ghosh, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2014-04-01

    We continue our exploration of the collective properties of neutron-star X-ray binaries in the stellar fields (i.e., outside globular clusters) of normal galaxies. In Paper I of this series, we considered high-mass X-ray binaries (HMXBs). In this paper (Paper II), we consider low-mass X-ray binaries (LMXBs), whose evolutionary scenario is very different from that of HMXBs. We consider the evolution of primordial binaries up to the stage where the neutron star just formed in the supernova explosion of the primary is in a binary with its low-mass, unevolved companion, and this binary has circularized tidally, producing what we call a pre-low-mass X-ray binary (pre-LMXB). We study the constraints on the formation of such pre-LMXBs in detail (since these are low-probability events), and calculate their collective properties and formation rates. To this end, we first consider the changes in the binary parameters in the various steps involved, viz., the common-envelope phase, the supernova, and the tidal evolution. This naturally leads to a clarification of the constraints. We then describe our calculation of the evolution of the distributions of primordial binary parameters into those of pre-LMXB parameters, following the standard evolutionary scenario for individual binaries. We display the latter as both bivariate and monovariate distributions, discuss their essential properties, and indicate the influences of some essential factors on these. Finally, we calculate the formation rate of these pre-LMXBs. The results of this paper will be used in a subsequent one to compute the expected X-ray luminosity function of LMXBs.

  13. The gravitational-wave signal generated by a galactic population of double neutron-star binaries

    Science.gov (United States)

    Yu, Shenghua; Jeffery, C. Simon

    2015-04-01

    We investigate the gravitational wave (GW) signal generated by a population of double neutron-star (DNS) binaries with eccentric orbits caused by kicks during supernova collapse and binary evolution. The DNS population of a standard Milky Way-type galaxy has been studied as a function of star formation history, initial mass function (IMF) and metallicity and of the binary-star common-envelope ejection process. The model provides birthrates, merger rates and total number of DNS as a function of time. The GW signal produced by this population has been computed and expressed in terms of a hypothetical space GW detector (eLISA) by calculating the number of discrete GW signals at different confidence levels, where `signal' refers to detectable GW strain in a given frequency-resolution element. In terms of the parameter space explored, the number of DNS-originating GW signals is greatest in regions of recent star formation, and is significantly increased if metallicity is reduced from 0.02 to 0.001, consistent with Belczynski et al. Increasing the IMF power-law index (from -2.5 to -1.5) increases the number of GW signals by a large factor. This number is also much higher for models where the common-envelope ejection is treated using the α-mechanism (energy conservation) than when using the γ-mechanism (angular-momentum conservation). We have estimated the total number of detectable DNS GW signals from the Galaxy by combining contributions from thin disc, thick disc, bulge and halo. The most probable numbers for an eLISA-type experiment are 0-1600 signals per year at S/N ≥ 1, 0-900 signals per year at S/N ≥ 3, and 0-570 at S/N ≥ 5, coming from about 0-65, 0-60 and 0-50 resolved DNS, respectively.

  14. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    Energy Technology Data Exchange (ETDEWEB)

    Neugent, Kathryn F.; Massey, Philip, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2014-07-01

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in the lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.

  15. Detectability of Earth-like Planets in Circumstellar Habitable Zones of Binary Star Systems with Sun-like Components

    CERN Document Server

    Eggl, Siegfried; Pilat-Lohinger, Elke

    2012-01-01

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the Solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the alpha Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones, especially in close S-Type binary systems, can be rather inaccurate. Recent progress in this field, however, allows to identify regions around the star permitting permanent habitability. While the discovery of alpha Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogues in habitable zones. We provide analytical expressions for the maximum and RMS values of radial velocity and astrometric signals, as well as transit...

  16. The Collapse of Neutron Stars in High-Mass Binaries as the Energy Source for the Gamma-Ray Bursts

    OpenAIRE

    Qin, Bo; Wu, Xiang-Ping; Chu, Ming-Chung; Fang, Li-Zhi; Hu, Jing-Yao

    1997-01-01

    The energy source has remained to be the great mystery in understanding of the gamma-ray bursts (GRBs) if the events are placed at cosmological distances as indicated by a number of recent observations. The currently popular models include (1)the merger of two neutron stars or a neutron star and a black hole binary and (2)the hypernova scenario of the collapse of a massive member in a close binary. Since a neutron star will inevitably collapse into a black hole if its mass exceeds the limit $...

  17. Origin of the early-type R stars: a binary-merger solution to a century-old problem?

    OpenAIRE

    Izzard, R.G.; Jeffery, C. S.; Lattanzio, J. C.

    2007-01-01

    The early-R stars are carbon-rich K-type giants. They are enhanced in C12, C13 and N14, have approximately solar oxygen, magnesium isotopes, s-process and iron abundances, have the luminosity of core-helium burning stars, are not rapid rotators, are members of the Galactic thick disk and, most peculiarly of all, are all single stars. Conventional single-star stellar evolutionary models cannot explain such stars, but mergers in binary systems have been proposed to explain their origin. We have...

  18. Primordial binary populations in low-density star clusters as seen by Chandra: globular clusters versus old open clusters

    Science.gov (United States)

    van den Berg, Maureen C.

    2015-08-01

    The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.

  19. An Analytic Method to determine Habitable Zones for S-Type Planetary Orbits in Binary Star Systems

    OpenAIRE

    Eggl, Siegfried; Pilat-Lohinger, Elke; Georgakarakos, Nikolaos; Gyergyovits, Markus; Funk, Barbara

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical Habitable Zone arise. Do the radiative and gravitational perturbations of the second star influence the extent of the Habitable Zone significantly, or is it sufficient to consider the host-star only? In this article we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting ...

  20. Binary Stars "Flare" With Predictable Cycles, Analysis of Radio Observations Reveals

    Science.gov (United States)

    2002-06-01

    Astronomers have completed a 5-year campaign to monitor continuously radio flares from two groups of binary star systems. This survey is of special interest because it provides evidence that certain binary star systems have predictable activity cycles like our Sun. The survey, which ran from January 1995 to October 2000, was conducted with the National Science Foundation's (NSF) Green Bank Interferometer. The report was presented at the American Astronomical Society (AAS) meeting in Albuquerque, New Mexico, by Mercedes Richards of the University of Virginia, and her collaborators Elizabeth Waltman of the Naval Research Laboratory, and Frank Ghigo of the National Radio Astronomy Observatory (NRAO). "This long-term survey was critical to our understanding of the short- and long-term magnetic cycles of these intriguing star systems," said Richards. The survey focused on the binary star systems Beta Persei and V711 Tauri -- both are about 95 light-years from Earth. Beta Persei is the prototype of the "Algol" class of interacting binary stars. An Algol system contains a hot, blue, main sequence star, along with a cool, orange/red star that is more active than our Sun. V711 Tauri is an "RS Canum Venaticorum" binary, which contains two cool stars that behave like our Sun. "Our survey was the longest-running continuous radio flare survey of Algol or RS Canum Venaticorum binary star systems," said Richards. A flare is an enormous explosion on the surface of a star, which is accompanied by a release of magnetic energy. Flares can be detected over the full range of wavelengths from gamma rays to the radio. It is estimated that the energy release in a flare on the Sun is equivalent to a billion megatons of TNT. The strength of the magnetic field and the amount of activity it displays, like sunspots and flares, are directly related to the rotation or "spin" of the star. In Beta Persei and V711 Tauri, the cool star spins once every 3 days, compared to once every month in the

  1. High-velocity stars from the interaction of a globular cluster and a massive black hole binary

    Science.gov (United States)

    Fragione, G.; Capuzzo-Dolcetta, R.

    2016-05-01

    High-velocity stars are usually thought to be the dynamical product of the interaction of binary systems with supermassive black holes. In this paper, we investigate a particular mechanism of production of high-velocity stars as due to the close interaction between a massive and orbitally decayed globular cluster and a supermassive black hole binary. The high velocity acquired by some stars of the cluster comes from combined effect of extraction of their gravitational binding energy and from the slingshot due to the interaction with the black hole binary. After the close interaction, stars could reach a velocity sufficient to travel in the halo and even overcome the galactic potential well, while some of them are just stripped from the globular cluster and start orbiting around the galactic centre.

  2. Grid search in stellar parameters: a software for spectrum analysis of single stars and binary systems

    Science.gov (United States)

    Tkachenko, A.

    2015-09-01

    Context. The currently operating space missions, as well as those that will be launched in the near future, will deliver high-quality data for millions of stellar objects. Since the majority of stellar astrophysical applications still (at least partly) rely on spectroscopic data, an efficient tool for the analysis of medium- to high-resolution spectroscopy is needed. Aims: We aim at developing an efficient software package for the analysis of medium- to high-resolution spectroscopy of single stars and those in binary systems. The major requirements are that the code should have a high performance, represent the state-of-the-art analysis tool, and provide accurate determinations of atmospheric parameters and chemical compositions for different types of stars. Methods: We use the method of atmosphere models and spectrum synthesis, which is one of the most commonly used approaches for the analysis of stellar spectra. Our Grid Search in Stellar Parameters (gssp) code makes use of the Message Passing Interface (OpenMPI) implementation, which makes it possible to run in parallel mode. The method is first tested on the simulated data and is then applied to the spectra of real stellar objects. Results: The majority of test runs on the simulated data were successful in that we were able to recover the initially assumed sets of atmospheric parameters. We experimentally find the limits in signal-to-noise ratios of the input spectra, below which the final set of parameters is significantly affected by the noise. Application of the gssp package to the spectra of three Kepler stars, KIC 11285625, KIC 6352430, and KIC 4931738, was also largely successful. We found an overall agreement of the final sets of the fundamental parameters with the original studies. For KIC 6352430, we found that dependence of the light dilution factor on wavelength cannot be ignored, as it has a significant impact on the determination of the atmospheric parameters of this binary system. Conclusions: The

  3. The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars

    CERN Document Server

    Hansen, T T; Nordström, B; Beers, T C; Placco, V M; Yoon, J; Buchhave, L A

    2015-01-01

    The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation...

  4. Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    We report here the non-detection of gravitational waves from the merger of binary neutron star systems and neutron-star--black-hole systems during the first observing run of Advanced LIGO. In particular we searched for gravitational wave signals from binary neutron star systems with component masses $\\in [1,3] M_{\\odot}$ and component dimensionless spins $< 0.05$. We also searched for neutron-star--black-hole systems with the same neutron star parameters, black hole mass $\\in [2,99] M_{\\odot}$ and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems, and find that they could have detected the merger of binary neutron star systems with component mass distributions of $1.35\\pm0.13 M_{\\odot}$ at a volume-weighted average distance of $\\sim$ 70Mpc, and for neutron-star--black-hole systems with neutron star masses of $1.4M_\\odot$ and black hole masses of at least $5M_\\odot$, a volume-weighted average distance of at least $\\sim$ 110Mpc. From this we...

  5. STAR FORMATION HISTORY AND X-RAY BINARY POPULATIONS: THE CASE OF THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Using Chandra, XMM-Newton, and optical photometric catalogs we study the young X-ray binary (XRB) populations of the Small Magellanic Cloud. We find that the Be/X-ray binaries (Be-XRBs) are observed in regions with star formation rate bursts ∼25-60 Myr ago. The similarity of this age with the age of maximum occurrence of the Be phenomenon (∼40 Myr) indicates that the presence of a circumstellar decretion disk plays a significant role in the number of observed XRBs in the 10-100 Myr age range. We also find that regions with strong but more recent star formation (e.g., the Wing) are deficient in Be-XRBs. By correlating the number of observed Be-XRBs with the formation rate of their parent populations, we measure a Be-XRB production rate of ∼1 system per 3 x 10-3 Msun yr-1. Finally, we use the strong localization of the Be-XRB systems in order to set limits on the kicks imparted on the neutron star during the supernova explosion.

  6. Initial Data for Binary Neutron Stars with Arbitrary Spin and Orbital Eccentricity

    Science.gov (United States)

    Tsatsin, Petr; Marronetti, Pedro

    2013-04-01

    The starting point of any general relativistic numerical simulation is a solution of the Hamiltonian and momentum constraint. One characteristic of the Binary Neutron Star (BNS) initial data problem is that, unlike the case of binary black holes, there are no formalisms that permit the construction of initial data for stars with arbitrary spins. For many years, the only options available have been systems either with irrotational or corotating fluid. Ten years ago, Marronetti & Shapiro (2003) introduced an approximation that would produce such arbitrarily spinning systems. More recently, Tichy (2012) presented a new formulation to do the same. However, all these data sets are bound to have a non-zero eccentricity that results from the fact the stars' velocity have initial null radial components. We present here a new approximation for BNS initial data for systems that possess arbitrary spins and arbitrary radial and tangential velocity components. The latter allows for the construction of data sets with arbitrary orbital eccentricity. Through the fine-tuning of the radial component, we were able to reduce the eccentricity by a factor of several compared to that of standard helical symmetry data sets such as those currently used in the scientific community.

  7. Accretion-powered pulsations in an apparently quiescent neutron star binary

    CERN Document Server

    Archibald, Anne M; Patruno, Alessandro; Hessels, Jason W T; Deller, Adam T; Bassa, Cees; Janssen, Gemma H; Kaspi, Vicky M; Lyne, Andrew G; Stappers, Ben W; Tendulkar, Shriharsh P; D'Angelo, Caroline R; Wijnands, Rudy

    2014-01-01

    Accreting millisecond X-ray pulsars are an important subset of low-mass X-ray binaries in which coherent X-ray pulsations can be observed during occasional, bright outbursts (X-ray luminosity $L_X\\sim 10^{36}$ erg s$^{-1}$). These pulsations show that matter is being channeled onto the neutron star's magnetic poles. However, such sources spend most of their time in a low-luminosity, quiescent state ($L_X\\lesssim 10^{34}$ erg s$^{-1}$), where the nature of the accretion flow onto the neutron star (if any) is not well understood. Here we report that the millisecond pulsar/low-mass X-ray binary transition object PSR J1023+0038 intermittently shows coherent X-ray pulsations at luminosities nearly 100 times fainter than observed in any other accreting millisecond X-ray pulsar. We conclude that in spite of its low luminosity PSR J1023+0038 experiences episodes of channeled accretion, a discovery that challenges existing models for accretion onto magnetized neutron stars.

  8. High-Resolution Spectroscopy of Extremely Metal-Poor Stars from SDSS/SEGUE: II. Binary Fraction

    CERN Document Server

    Aoki, Wako; Beers, Timothy C; Honda, Satoshi

    2014-01-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor, Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] < -3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey, and observed at high spectral resolution in a previous study by Aoki et al. That survey reported three double-lined spectroscopic...

  9. Constraints on binary neutron star merger product from short GRB observations

    CERN Document Server

    Gao, He; Lü, Hou-Jun

    2015-01-01

    Binary neutron star mergers are strong gravitational wave (GW) sources and the leading candidates to interpret short duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers, we use the statistical observational properties of {\\em Swift} SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already put following tight constraints: 1) A neutron star EoS with a maximum mass close to a parameterization of $M_{\\rm max} = 2.37\\,M_\\odot (1+1.58\\times10^{-10} P^{-2.84})$ is favored; 2) The fractions for the several outcomes of NS-NS mergers are as follows: $\\sim40\\%$ prompt BHs, $\\sim30\\%$ supra-massive NSs that collapse to BHs in a range of delay time scales, and $\\sim30\\%$ stable NSs that never collapse; 3) The initial spin of the newly born supra-massive NSs should be near the breakup limit ($P_i\\s...

  10. Initial data for high-compactness black hole-neutron star binaries

    Science.gov (United States)

    Henriksson, Katherine; Foucart, François; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-05-01

    For highly compact neutron stars, constructing numerical initial data for black hole-neutron star binary evolutions is very difficult. We describe improvements to an earlier method that enable it to handle these more challenging cases. These improvements were found by invoking a general relaxation principle that may be helpful in improving robustness in other initial data solvers. We examine the case of a 6:1 mass ratio system in inspiral close to merger, where the star is governed by a polytropic {{Γ }}=2, an SLy, or an LS220 equation of state (EOS). In particular, we are able to obtain a solution with a realistic LS220 EOS for a star with compactness 0.26 and mass 1.98 M ⊙, which is representative of the highest reliably determined neutron star masses. For the SLy EOS, we can obtain solutions with a comparable compactness of 0.25, while for a family of polytropic equations of state, we obtain solutions with compactness up to 0.21, the largest compactness that is stable in this family. These compactness values are significantly higher than any previously published results.

  11. Absolute Properties of the Pre-main-sequence Eclipsing Binary Star NP Persei

    Science.gov (United States)

    Sandberg Lacy, Claud H.; Fekel, Francis C.; Pavlovski, Krešimir; Torres, Guillermo; Muterspaugh, Matthew W.

    2016-07-01

    NP Per is a well-detached, 2.2 day eclipsing binary whose components are both pre-main-sequence stars that are still contracting toward the main-sequence phase of evolution. We report extensive photometric and spectroscopic observations with which we have determined their properties accurately. Their surface temperatures are quite different: 6420 ± 90 K for the larger F5 primary star and 4540 ± 160 K for the smaller K5e star. Their masses and radii are 1.3207 ± 0.0087 solar masses and 1.372 ± 0.013 solar radii for the primary, and 1.0456 ± 0.0046 solar masses and 1.229 ± 0.013 solar radii for the secondary. The orbital period is variable over long periods of time. A comparison of the observations with current stellar evolution models from MESA indicates that the stars cannot be fit at a single age: the secondary appears significantly younger than the primary. If the stars are assumed to be coeval and to have the age of the primary (17 Myr), then the secondary is larger and cooler than predicted by current models. The Hα spectral line of the secondary component is completely filled by, presumably, chromospheric emission due to a magnetic activity cycle.

  12. Importance of Tides for Periastron Precession in Eccentric Neutron Star - White Dwarf Binaries

    CERN Document Server

    Sravan, Niharika; Kalogera, Vassiliki; Althaus, Leandro G

    2014-01-01

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational wave sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141-6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to gravitational-wave observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. We find that the contribution from tides should not be neglected when analyzing periastron precession signatures in gravitational-wave signals: not accounting for tides can produce errors as high as a factor of 80 in the WD...

  13. Testing Asteroseismology with red giants in eclipsing binary and multiple-star systems

    CERN Document Server

    Gaulme, Patrick

    2013-01-01

    Red-giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, they would provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. Gaulme et al. (2013) reported the discovery of 13 bona fide candidates (12 previously unknown) to be eclipsing binaries, one to be an non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. When ground-based support in terms of atmospheric abundance and radial velocities are completed, these red giants in eclipsing binary systems have the potential to become some of the m...

  14. The discovery and characterisation of binary central stars in planetary nebulae

    CERN Document Server

    Jones, David

    2016-01-01

    Close binary central stars of planetary nebulae are key in constraining the poorly-understood common-envelope phase of evolution, which in turn is critical in understanding the formation of a wide-range of astrophysical phenomena (including cataclysmic variables, low-mass X-ray binaries and supernovae type Ia). Here, I present the results of our on-going, targeted search for close-binaries in planetary nebulae which has led to the discovery of more than 10 new central binaries in just the last few years (almost the same as the total discovered during the 1980s and 1990s together). This success has been rooted in the targeted selection of objects for study, based on morphological features deemed typical of binarity, as well as novel observing strategies (including the employment of narrow-band filters for photometry to minimise nebular contamination), both of which are discussed. These new discoveries, coupled with the painstaking characterisation of both newly discovered systems and those from the literature,...

  15. On the possible turbulence mechanism in accretion disks in nonmagnetic binary stars

    International Nuclear Information System (INIS)

    One of the major challenges in modern astrophysics is the unexplained turbulence of gas-dynamic (nonmagnetic) accretion disks. Since they are stable, such disks should not theoretically be turbulent, but observations show they are. The search for instabilities that can develop into turbulence is one of the most intriguing problems in modern astrophysics. In 2004, we pointed to the formation of the so-called 'precessional' density wave in accretion disks of binary stars, which produces additional density and velocity gradients in the disk. A linear hydrodynamics stability analysis of an accretion disk in a binary shows that the presence in the disk of a precessional wave produced by the tidal influence of the second binary component gives rise to the instability of radial modes, whose characteristic growth times are about one tenth or one hundredth of the binary's orbital period. The immediate reason for the instability is the radial velocity gradient in the precessional wave, the destabilizing perturbations being those in which the radial velocity variation on the wavelength scale is near or greater than the speed of sound. Unstable perturbations occur in the interior of the disk and make the gas turbulent as they propagate outward. The characteristic turbulence parameters are in agreement with observations (the Shakura–Sunyaev parameter (α≲0.01). (physics of our days)

  16. Accurate evolutions of inspiralling neutron-star binaries: assessment of the truncation error

    International Nuclear Information System (INIS)

    We have recently presented an investigation in full general relativity of the dynamics and gravitational-wave emission from binary neutron stars which inspiral and merge, producing a black hole surrounded by a torus (Baiotti et al 2008 Phys. Rev. D 78 084033). We discuss here in more detail the convergence properties of the results presented in Baiotti et al (2008 Phys. Rev. D 78 084033) and, in particular, the deterioration of the convergence rate at the merger and during the survival of the merged object, when strong shocks are formed and turbulence develops. We also show that physically reasonable and numerically convergent results obtained at low resolution suffer however from large truncation errors and hence are of little physical use. We summarize our findings in an 'error budget', which includes the different sources of possible inaccuracies we have investigated and provides a first quantitative assessment of the precision in the modelling of compact fluid binaries.

  17. Binary star statistics - The mass ratio distribution for very wide systems

    Science.gov (United States)

    Trimble, V.

    Published observational data on a common-proper-motion sample (CPMS) of 326 pairs of AGK 3 stars (Halbwachs, 1986) with proper motion greater than 50 marcsec/yr and separation/proper-motion ratios less than 1000 yr are analyzed statistically to determine the frequency distribution of mass ratios (q = M2/M1). The results are presented in tables and graphs and compared with those for a sample of 798 visual binaries (VBs) studied by Worley and Heintz (1983). Both samples are found to have distributions with a peak at q = about 1, but this tendency is more pronounced in the VBs than in the CPMS. The q distribution of the VB sample, unlike that of the CPMS, cannot be explained by assuming that it is a random sample of normal initial mass functions; from this it is inferred that a binary formation mechanism which favors systems with q = about 1 may be involved.

  18. Application of fast CCD drift scanning to speckle imaging of binary stars

    CERN Document Server

    Fors, O; Nuñez, J

    2004-01-01

    A new application of a fast CCD drift scanning technique that allows us to perform speckle imaging of binary stars is presented. For each observation, an arbitrary number of speckle frames is periodically stored on a computer disk, each with an appropriate exposure time given both atmospheric and instrumental considerations. The CCD charge is shifted towards the serial register and read out sufficiently rapidly to avoid an excessive amount of interframe dead time. Four well-known binary systems (ADS 755, ADS 2616, ADS 3711 and ADS 16836) are observed in to show the feasibility of the proposed technique. Bispectral data analysis and power spectrum fitting is carried out for each observation, yielding relative astrometry and photometry. A new approach for self-calibrating this analysis is also presented and validated. The proposed scheme does not require any additional electronic or optical hardware, so it should allow most small professional observatories and advanced amateurs to enjoy the benefits of diffract...

  19. Orbital motion and mass flow in the interacting binary Be star HR 2142

    Science.gov (United States)

    Peters, G. J.

    1983-01-01

    The discovery of an unusual, periodic, two-component shell phase of short duration in the 'classical' Be star HR2142 (HD41335, MWC133) offered convincing evidence that this object is a mass-transfer binary system. A model based solely on the phase-dependent behavior of the hydrogen shell lines in this 80(d).860 binary was developed by Peters and Polidan (1973) and by Peters (1976). The present investigation is concerned with a refinement to the earlier model, taking into account the utilization of an orbital solution obtained from measurements of the wings of the broad photospheric features observed in the rapidly rotating primary. Velocities and equivalent widths from the sharp 'shell' lines, presumably formed in or near the gas stream, provide additional information on the mass flow in the Balmer-line-formation region.

  20. The binary fraction of planetary nebula central stars I. A high-precision, I-band excess search

    CERN Document Server

    De Marco, Orsola; Frew, D J; Moe, Maxwell; Jacoby, G H

    2012-01-01

    In an attempt to determine how many planetary nebulae derive from binary interactions, we have started a project to measure their unbiased binary fraction. This number, when compared to the binary fraction of the presumed parent population can give a first handle on the origin of planetary nebulae. By detecting 27 bona fide central stars in the I band we have found that 30% of our sample have an I band excess between one and a few sigmas, possibly denoting companions brighter than M3-4V and with separations smaller than approximately 1000 AU. By accounting for the undetectable companions, we determine a de-biased binary fraction of 67-78% for all companions at all separations. We compare this number to a main sequence binary fraction of (50+/-4)% determined for spectral types F6V-G2V, appropriate if the progenitors of today's PN central star population is indeed the F6V-G2V stars. The error on our estimate could be between 10 and 30%. We conclude that the central star binary fraction may be larger than expect...

  1. The Close Binary Frequency of Wolf-Rayet Stars as a Function of Metallicity in M31 and M33

    CERN Document Server

    Neugent, Kathryn F

    2014-01-01

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the "extra" WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in the lower metallicity environments of the middle and outer regions of M33. After identifying ~100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identi...

  2. The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system

    OpenAIRE

    Ramirez, I.; S.Khanal; Aleo, P.; Sobotka, A.; Liu, F.; Casagrande, L.; Melendez, J.; Yong, D.; Lambert, D. L.; Asplund, M.

    2015-01-01

    Using high-quality spectra of the twin stars in the XO-2 binary system, we have detected significant differences in the chemical composition of their photospheres. The differences correlate strongly with the elements' dust condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex and refractories are overabundant by up to 0.090 dex. On average, our error bar in relative abundance is 0.012 dex. We present an early metal-depletion scenario in which the formation of the gas g...

  3. Poetry in Motion: Asteroseismology of Delta Scuti Stars in Binaries using Kepler Data

    CERN Document Server

    Liakos, Alexios

    2016-01-01

    The results of our six year systematic observational survey on candidate eclipsing binaries with a delta Sct component are briefly presented. A new catalogue for this kind of systems as well as the properties of their delta Sct members are also presented. The comparison between the components-pulsators and the single delta Sct stars shows that both the evolution and the pulsating properties differ significantly. Finally, we introduce the new era of studying stellar pulsations using high accuracy data from Kepler mission and emphasizing the great opportunities that are now opened for a deep knowledge of the properties of stellar pulsations.

  4. The CaT strength in Seyfert nuclei revisited: analyzing young stars and non-stellar light contributions to the spectra

    OpenAIRE

    Vega, L. R.; Asari, N. V.; Fernandes, R. Cid; Garcia-Rissmann, A.; Storchi-Bergmann, T.; Delgado, R. M. Gonzalez; Schmitt, H

    2008-01-01

    In a former paper (Garcia-Rissmann et al. 2005; hereafter Paper I), we have presented spectra of 64 active, 9 normal and 5 Starburst galaxies in the region around the near-IR Calcium triplet absorption lines and the [SIII]9069 line. In the present paper we analyze the CaT strength (WCaT), and kinematical products derived in that study, namely stellar and ionized gas velocity dispersions. Our main results may be summarized as follows: (1) Seyfert 2s show no sign of dilution in WCaT with respec...

  5. The spin rates of O stars in WR + O binaries. I. Motivation, methodology and first results from SALT

    CERN Document Server

    Shara, Michael M; Vanbeveren, Dany; Moffat, Anthony F J; Zurek, David; Crause, Lisa

    2015-01-01

    The remarkable observation that many single O stars spin very rapidly can be explained if they accreted angular momentum from a mass-transferring companion before that star blew up as a supernova. To test this hypothesis we have measured the spin rates of eight O stars in Wolf-Rayet (WR) + O binaries, increasing the total sample size of such O stars' measured spins from two to ten. The average v sin i for the sample of 10 O stars in these binaries is a strongly super-synchronous rate of 237 km/s, with individual star's values ranging from 129 to 331 km/s. Polarimetric and other determinations of these systems' sin i allow us to determine an average equatorial rotation velocity of 290 km/s for these 10 O stars, with individual star's velocities ranging from 140 to 496 km/s. This is strong observational evidence that Roche lobe overflow mass transfer from a WR progenitor companion has played a critical role in the evolution of WR+OB binaries. While theory predicts that this mass transfer rapidly spins-up the O-...

  6. The $m=1$ instability \\& gravitational wave signal in binary neutron star mergers

    CERN Document Server

    Lehner, Luis; Palenzuela, Carlos; Motl, Patrick

    2016-01-01

    We examine the development and detectability of the $m=1$ instability in the remnant of binary neutron star mergers. The detection of the gravitational mode associated with the $m=1$ degree of freedom could potentially reveal details of the equation of state. We analyze the post-merger epoch of simulations of both equal and non-equal mass neutron star mergers using three, realistic, microphysical equations of state and neutrino cooling. From these evolutions, we estimate the signal to noise ratio that might be obtained for the $m=1$ mode and discuss the prospects for observing this signal with available Earth-based detectors. Because the $m=1$ occurs at roughly half the frequency of the more powerful $m=2$ signal and because it can potentially be long-lived, targeted searches could be devised to observe it.

  7. High Mass X-ray Binaries: Progenitors of double neutron star systems

    CERN Document Server

    Chaty, Sylvain

    2015-01-01

    In this review I briefly describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. A previously unknown population of HMXBs hosting supergiant stars has been revealed in the last years, with multi-wavelength campaigns including high energy (INTEGRAL, Swift, XMM, Chandra) and optical/infrared (mainly ESO) observations. This population is divided between obscured supergiant HMXBs, and supergiant fast X-ray transients (SFXTs), characterized by short and intense X-ray flares. I discuss the characteristics of these types of supergiant HMXBs, propose a scenario describing the properties of these high-energy sources, and finally show how the observations can constrain the accretion models (e.g. clumpy winds, magneto-centrifugal barrier, transitory accretion disc, etc). Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of double neutron star systems,...

  8. What is the Most Promising Electromagnetic Counterpart of a Neutron Star Binary Merger?

    CERN Document Server

    Metzger, Brian D

    2011-01-01

    The final inspiral of double neutron star and neutron star-black hole binaries are likely to be detected by advanced networks of ground-based gravitational wave (GW) interferometers. Maximizing the science returns from such a discovery will require the identification and localization of an electromagnetic (EM) counterpart. Here we critically evaluate and compare several possible counterparts, including short-duration gamma-ray bursts (SGRBs), "orphan" optical and radio afterglows, and ~day-long optical transients powered by the radioactive decay of heavy nuclei synthesized in the merger ejecta ("kilonovae"). We assess the promise of each counterpart in terms of four "Cardinal Virtues": detectability, high fraction, identifiability, and positional accuracy. Taking into account the search strategy for typical error regions of ~10s degs sq., we conclude that SGRBs are the most useful to confirm the cosmic origin of a few GW events, and to test the association with NS mergers. However, for the more ambitious goal...

  9. An Extremely Fast Halo Hot Subdwarf Star in a Wide Binary System

    Science.gov (United States)

    Németh, Péter; Ziegerer, Eva; Irrgang, Andreas; Geier, Stephan; Fürst, Felix; Kupfer, Thomas; Heber, Ulrich

    2016-04-01

    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 (V = 17.92 mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: {T}{{eff}}=30\\600+/- 500 K, {log}g=5.57+/- 0.06 cm s-2, and He abundance {log}(n{{He}}/n{{H}})=-3.0+/- 0.2. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of [{{Fe}}/{{H}}]=-1.3. The non-detection of radial velocity variations suggest the orbital period to be a few hundred days, in agreement with similar binaries observed in the disk. Using the SDSS-III flux calibrated spectrum we measured the distance to the system d=5.5+/- 0.5 {{kpc}}, which is consistent with ultraviolet, optical, and infrared photometric constraints derived from binary spectral energy distributions. Our kinematic study shows that the Galactic rest-frame velocity of the system is so high that an unbound orbit cannot be ruled out. On the other hand, a bound orbit requires a massive dark matter halo. We conclude that the binary either formed in the halo or was accreted from the tidal debris of a dwarf galaxy by the Milky Way.

  10. An Extremely Fast Halo Hot Subdwarf Star in a Wide Binary System

    Science.gov (United States)

    Németh, Péter; Ziegerer, Eva; Irrgang, Andreas; Geier, Stephan; Fürst, Felix; Kupfer, Thomas; Heber, Ulrich

    2016-04-01

    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 (V = 17.92 mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: {T}{{eff}}=30\\600+/- 500 K, {log}g=5.57+/- 0.06 cm s‑2, and He abundance {log}(n{{He}}/n{{H}})=-3.0+/- 0.2. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of [{{Fe}}/{{H}}]=-1.3. The non-detection of radial velocity variations suggest the orbital period to be a few hundred days, in agreement with similar binaries observed in the disk. Using the SDSS-III flux calibrated spectrum we measured the distance to the system d=5.5+/- 0.5 {{kpc}}, which is consistent with ultraviolet, optical, and infrared photometric constraints derived from binary spectral energy distributions. Our kinematic study shows that the Galactic rest-frame velocity of the system is so high that an unbound orbit cannot be ruled out. On the other hand, a bound orbit requires a massive dark matter halo. We conclude that the binary either formed in the halo or was accreted from the tidal debris of a dwarf galaxy by the Milky Way.

  11. A new massive double-lined spectroscopic binary system: The Wolf-Rayet star WR 68a

    CERN Document Server

    Collado, A; Barbá, R H; Morrell, N

    2015-01-01

    Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of their components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double- lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 +/- 5 Msun and 30 +/- 4 Msun , respectively. The equivalent width of the He II {\\lambda}4686 emission ...

  12. The chemical composition of donors in AM CVn stars and ultra-compact X-ray binaries: observational tests of their formation

    OpenAIRE

    Nelemans, G.A.; Yungelson, L. R.; Van Der Sluys, M. V.; Tout, C. A.

    2009-01-01

    We study the formation of ultra-compact binaries (AM CVn stars and ultra-compact X-ray binaries) with emphasis on the surface chemical abundances of the donors in these systems. Hydrogen is not convincingly detected in the spectra of these systems. Three different proposed formation scenarios involve different donor stars, white dwarfs, helium stars or evolved main-sequence stars. Using detailed evolutionary calculations we show that the abundances of helium WD donors and evolved main-sequenc...

  13. The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system

    CERN Document Server

    Ramirez, I; Aleo, P; Sobotka, A; Liu, F; Casagrande, L; Melendez, J; Yong, D; Lambert, D L; Asplund, M

    2015-01-01

    Using high-quality spectra of the twin stars in the XO-2 binary system, we have detected significant differences in the chemical composition of their photospheres. The differences correlate strongly with the elements' dust condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex and refractories are overabundant by up to 0.090 dex. On average, our error bar in relative abundance is 0.012 dex. We present an early metal-depletion scenario in which the formation of the gas giant planets known to exist around these stars is responsible for a 0.015 dex offset in the abundances of all elements while 20 M_Earth of non-detected rocky objects that formed around XO-2S explain the additional refractory-element difference. An alternative explanation involves the late accretion of at least 20 M_Earth of planet-like material by XO-2N, allegedly as a result of the migration of the hot Jupiter detected around that star. Dust cleansing by a nearby hot star as well as age or Galactic birthplace effects can...

  14. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    CERN Document Server

    Bozzo, E; Feldmeier, A; Falanga, M

    2016-01-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the non-stationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total time scale of several hours), the transition of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the non-stationary wind. Th...

  15. Asteroid flux towards circumprimary habitable zones in binary star systems: I. Statistical Overview

    CERN Document Server

    Bancelin, D; Eggl, S; Maindl, T I; Schäfer, C; Speith, R; Dvorak, R

    2015-01-01

    So far, multiple stellar systems harbor more than 130 extra solar planets. Dynamical simulations show that the outcome of planetary formation process can lead to various planetary architecture (i.e. location, size, mass and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (hereafter HZ). In this study, we make a comparison of several binary star systems and their efficiency to move icy asteroids from beyond the snow-line into orbits crossing the HZ. We modeled a belt of 10000 asteroids (remnants from the late phase of planetary formation process) beyond the snow-line. The planetesimals are placed randomly around the primary star and move under the gravitational influence of the two stars and a gas giant. As the planetesimals do not interact with each other, we divided the belt into 100 subrings ...

  16. Discovery of a stripped red giant core in a bright eclipsing binary star

    CERN Document Server

    Maxted, P F L; Burleigh, M R; Collier-Cameron, A; Heber, U; Gänsicke, B T; Geier, S; Kupfer, T; Marsh, T R; Nelemans, G; O'Toole, S J; Østensen, R H; Smalley, B; West, R G; Bloemen, S

    2012-01-01

    We report the serendipitous discovery from WASP archive photometry of a binary star in which an apparently normal A-type star (J0247-25A) eclipses a smaller, hotter subdwarf star (J0247-25B). The kinematics of J0247-25A show that it is a blue-straggler member of the Galactic thick-disk. We present follow-up photometry and spectroscopy from which we derive approximate values for the mass, radius and luminosity for J0247-25B assuming that J0247-25A has the mass appropriate for a normal thick-disk star. We find that the properties of J0247-25B are well matched by models for a red giant stripped of its outer layers and currently in a shell hydrogen-burning stage. In this scenario, J0247-25B will go on to become a low mass white dwarf (M~0.25 solar masses) composed mostly of helium. J0247-25B can be studied in much greater detail than the handful of pre helium white dwarfs (pre-He-WD) identified to-date. These results have been published by Maxted et al., 2011. We also present a preliminary analysis of more recent...

  17. Binary neutron star mergers: a jet engine for short gamma-ray burst

    CERN Document Server

    Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L

    2016-01-01

    We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of quasicircular, equal-mass, binary neutron stars that undergo merger. The initial stars are irrotational, $n=1$ polytropes and are magnetized. We explore two types of magnetic-field geometries: one where each star is endowed with a dipolar magnetic field extending from the interior into the exterior, as in a pulsar, and the other where the dipolar field is initially confined to the interior. In both cases the adopted magnetic fields are dynamically unimportant initially. The merger outcome is a hypermassive neutron star that undergoes delayed collapse to a black hole (spin parameter $a/M_{\\rm BH} \\sim 0.74$) immersed in a magnetized accretion disk. About $4000M \\sim 60(M_{\\rm NS}/1.625M_\\odot)$ ms following merger, the region above the black hole poles becomes strongly magnetized, and a collimated, mildly relativistic outflow --- an incipient jet --- is launched. The lifetime of the accretion disk, which likely equals the lifetime...

  18. X-ray Binaries and Star Clusters in the Antennae: Optical Cluster Counterparts

    CERN Document Server

    Rangelov, Blagoy; Prestwich, Andrea; Whitmore, Bradley C

    2012-01-01

    We compare the locations of 82 X-ray binaries (XRBs) detected in the merging Antennae galaxies by Zezas et al., based on observations taken with the Chandra X-Ray Observatory, with a catalog of optically selected star clusters presented by Whitmore et al., based on observations taken with the Hubble Space Telescope. Within the 2 sigma positional uncertainty of 0.58", we find 22 XRBs are coincident with star clusters, where only 2-3 chance coincidences are expected. The ages of the clusters were estimated by comparing their UBVI, Halpha colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident XRBs (64%) are hosted by star clusters with ages of 6 Myr or less. Five of the XRBs are hosted by young clusters with ages 10-100 Myr, while three are hosted by intermediate age clusters with 100-300 Myr. Based on the results from recent N-body simulations, which suggest that black holes are far more likely to be retained within their parent clusters than neutron stars, we suggest tha...

  19. Accuracy in Measuring the Neutron Star Mass in Gravitational Wave Parameter Estimation for Black Hole-Neutron Star Binaries

    CERN Document Server

    Cho, Hee-Suk

    2016-01-01

    Recently, two gravitational wave (GW) signals, named as GW150914 and GW151226, have been detected by the two LIGO detectors. Although both signals were identified as originating from merging black hole (BH) binaries, GWs from systems containing neutron stars (NSs) are also expected to be detected in the near future by the Advanced detector network. In this work, we assess the accuracy in measuring the NS mass ($M_{ns}$) for the GWs from BH-NS binaries adopting the Advanced LIGO sensitivity with a signal-to-noise ratio of 10. By using the Fisher matrix method, we calculate the measurement errors ($\\sigma$) in $M_{ns}$ assuming the NS mass of $1 \\leq M_{ns}/M_{\\odot} \\leq 2$ and low mass BHs with the range of $4 \\leq M_{bh}/M_{\\odot} \\leq 10$. We used the TaylorF2 waveform model where the spins are aligned with the orbital angular momentum, but here we only consider the BH spins. We find that the fractional errors ($\\sigma/M_{ns} \\times 100$) are in the range of $10\\% - 50\\%$ in our mass region for a given dime...

  20. Recurring millimeter flares as evidence for star-star magnetic reconnection events in the DQ Tauri PMS binary system

    CERN Document Server

    Salter, D M; Getman, K V; Hogerheijde, M R; van Kempen, T A; Carpenter, J M; Blake, G A; Wilner, D

    2010-01-01

    Observations of the T Tauri spectroscopic binary DQ Tau in April 2008 captured an unusual flare at 3 mm, which peaked at an observed max flux of 0.5 Jy (about 27x the quiescent value). Here we present follow-up mm observations that demonstrate a periodicity to the phenomenon. While monitoring 3 new periastron encounters, we detect flares within 17.5 hrs (or 4.6%) of the orbital phase of the first reported flare, and we constrain the main emitting region to a stellar height of 3.7-6.8 Rstar. The recorded activity is consistent with the proposed picture for synchrotron emission initiated by a magnetic reconnection event when the two stellar magnetospheres of the highly eccentric (e=0.556) binary are believed to collide near periastron as the stars approach a minimum separation of 8 Rstar (~13 Rsolar). The similar light curve decay profiles allow us to estimate an average flare duration of 30 hrs. Assuming one mm flare per orbit, DQ Tau could spend approximately 8% of its 15.8-d orbital period in an elevated flu...

  1. An Analytic Method to determine Habitable Zones for S-Type Planetary Orbits in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Georgakarakos, Nikolaos; Gyergyovits, Markus; Funk, Barbara

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical Habitable Zone arise. Do the radiative and gravitational perturbations of the second star influence the extent of the Habitable Zone significantly, or is it sufficient to consider the host-star only? In this article we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time independent analytical estimates and compare these to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of Habitable Zones towards the secondary in close binary systems.

  2. Gravitational Radiation Damping and Evolution of the Orbit of Compact Binary Stars (Solution by the Second Perturbation Method)

    Indian Academy of Sciences (India)

    Lin-Sen Li

    2014-06-01

    The influence of the gravitational radiation damping on the evolution of the orbital elements of compact binary stars is examined by using the method of perturbation. The perturbation equations with the true anomaly as an independent variable are given. This effect results in both the secular and periodic variation of the semi-major axis, the eccentricity, the mean longitude at the epoch and the mean longitude. However, the longitude of periastron exhibits no secular variation, but only periodic variation. The effect of secular variation of the orbit would lead to collapse of the system of binary stars. The deduced formulae are applied to the calculation of secular variation of the orbital elements for three compact binary stars: PSR 1913+16, PSR J0737-3039 and M33X-7. The results obtained are discussed.

  3. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara [Institute for Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Georgakarakos, Nikolaos, E-mail: siegfried.eggl@univie.ac.at, E-mail: elke.pilat-lohinger@univie.ac.at [128 V. Olgas str., Thessaloniki 546 45 (Greece)

    2012-06-10

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  4. Kepler Eclipsing Binary Stars. VIII. Identification of False Positive Eclipsing Binaries and Re-extraction of New Light Curves

    CERN Document Server

    Abdul-Masih, Michael; Conroy, Kyle; Bloemen, Steven; Boyajian, Tabetha; Doyle, Laurance R; Johnston, Cole; Kostov, Veselin; Latham, David W; Matijevic, Gal; Shporer, Avi; Southworth, John

    2016-01-01

    The Kepler Mission has provided unprecedented, nearly continuous photometric data of $\\sim$200,000 objects in the $\\sim$105 deg$^{2}$ field of view from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in May of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters and analytical approximation fits for every known eclipsing binary system in the Kepler Field of View. Using Target Pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e. targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separa...

  5. Velocity Curve Analysis of Spectroscopic Binary Stars AI Phe, GM Dra, HD 93917 and V502 Oph by Nonlinear Regression

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o - c). Using the measured radial velocity data of the four double lined spectroscopic binary systems,AI Phe,GM Dra,HD 93917 and V502 Oph,we derived both the orbital and combined spectroscopic elements of these systems.Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhés.

  6. Gravitational-wave cutoff frequencies of tidally disruptive neutron star-black hole binary mergers

    CERN Document Server

    Pannarale, Francesco; Kyutoku, Koutarou; Lackey, Benjamin D; Shibata, Masaru

    2015-01-01

    Tidal disruption has a dramatic impact on the outcome of neutron star-black hole mergers. The phenomenology of these systems can be divided in three classes: nondisruptive, mildly disruptive or disruptive. The cutoff frequency of the gravitational radiation produced during the merger (which is potentially measurable by interferometric detectors) is very different in each regime, and when the merger is disuptive it carries information on the neutron star equation of state. Here we use semianalytical tools to derive a formula for the critical binary mass ratio $Q=M_{\\rm BH}/M_{\\rm NS}$ below which mergers are disruptive as a function of the stellar compactness $\\mathcal{C}=M_{\\rm NS}/R_{\\rm NS}$ and the dimensionless black hole spin $\\chi$. We then employ a new gravitational waveform amplitude model, calibrated to $134$ general relativistic numerical simulations of binaries with black hole spin (anti-)aligned with the orbital angular momentum, to obtain a fit to the gravitational-wave cutoff frequency in the di...

  7. Finding binaries among Kepler pulsating stars from phase modulation of their pulsations

    CERN Document Server

    Murphy, Simon J; Shibahashi, Hiromoto; Kurtz, Donald W; Kjeldsen, Hans

    2014-01-01

    We present a method for finding binaries among pulsating stars that were observed by the Kepler Mission. We use entire four-year light curves to accurately measure the frequencies of the strongest pulsation modes, then track the pulsation phases at those frequencies in 10-d segments. This produces a series of time-delay measurements in which binarity is apparent as a periodic modulation whose amplitude gives the projected light travel time across the orbit. Fourier analysis of this time-delay curve provides the parameters of the orbit, including the period, eccentricity, angle of ascending node and time of periastron passage. Differentiating the time-delay curve yields the full radial-velocity curve directly from the Kepler photometry, without the need for spectroscopy. We show examples with $\\delta$ Scuti stars having large numbers of pulsation modes, including one system in which both components of the binary are pulsating. The method is straightforward to automate, thus radial velocity curves can be derive...

  8. The peculiar Galactic center neutron star X-ray binary XMM J174457-2850.3

    CERN Document Server

    Degenaar, N; Reynolds, M T; Miller, J M; Altamirano, D; Kennea, J; Gehrels, N; Haggard, D; Ponti, G

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary / radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ~2 hr and a radiated energy output of ~5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx~5E32 erg/s and exhibits occasional accretion outbursts during which it brightens to Lx~1E35-1E36 erg/s for a few weeks (2-10 keV). However, the source often lingers in between outburst...

  9. Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars

    CERN Document Server

    Baiotti, Luca; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano

    2010-01-01

    To detect the gravitational-wave signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We have performed the longest (to date) general-relativistic simulations of binary neutron stars with different compactnesses and used them to constrain a tidal extension of the effective-one-body model so that it reproduces the numerical waveforms accurately and essentially up to the merger. The typical errors in the phase over the $\\simeq 22$ gravitational-wave cycles are $\\Delta \\phi\\simeq \\pm 0.24$ rad, thus with relative phase errors $\\Delta \\phi/\\phi \\simeq 0.2%$. We also show that with a single choice of parameters, the effective-one-body approach is able to reproduce all of the numerically-computed phase evolutions, in contrast with what found when adopting a tidally corrected post-Newtonian Taylor-T4 expansion.

  10. Binary Mergers and Growth of Black Holes in Dense Star Clusters

    CERN Document Server

    O'Leary, R M; Fregeau, J M; Ivanova, N; O'Shaughnessy, R; Leary, Ryan M. O'; Rasio, Frederic A.; Fregeau, John M.; Ivanova, Natalia; Shaughnessy, Richard O'

    2006-01-01

    We model the dynamical evolution of primordial black holes (BHs) in dense star clusters using a simplified treatment of stellar dynamics in which the BHs are assumed to remain concentrated in an inner core, completely decoupled from the background stars. Dynamical interactions involving BH binaries are computed exactly and are generated according to a Monte Carlo prescription. Recoil and ejections lead to complete evaporation of the BH core on a timescale ~10^9 yr for typical globular cluster parameters. Orbital decay driven by gravitational radiation can make binaries merge and, in some cases, successive mergers can lead to significant BH growth. Our highly simplified treatment of the cluster dynamics allows us to study a large number of models and to compute statistical distributions of outcomes, such as the probability of massive BH growth and retention in a cluster. We find that, in most models, there is a significant probability (~20-80%) of BH growth with final masses > 100 M_{\\sun}. In at least one cas...

  11. The impact of secular resonances on habitable zones in circumstellar planetary systems of known binary stars

    CERN Document Server

    Bazsó, Ákos; Eggl, Siegfried; Funk, Barbara; Bancelin, David

    2016-01-01

    We present a survey on binary star systems with stellar separations less than 100 astronomical units. For a selection of 11 binaries with a detected (giant) planet in circumstellar motion we determine the conditions that would allow additional planets to be present inside or nearby the habitable zone (HZ) of the host star. First we calculate the three-body HZ for these systems, in order to investigate the dynamics of bodies in those regions. After adding the giant planet's influence the final HZ is considerably modified in particular by mean motion and secular resonances. We apply a semi-analytical method to determine the locations of linear secular resonances, which is based on finding the apsidal precession frequencies of the massive bodies. For very close-in giant planets we also take the general relativistic precession of the pericenter into account. Our results demonstrate that there is a qualitative difference in the dynamics whether the giant planet is located exterior or interior to the HZ. An exterio...

  12. The initial period function of late-type binary stars and its variation

    CERN Document Server

    Kroupa, Pavel

    2011-01-01

    The variation of the period distribution function of late-type binaries is studied. It is shown that the Taurus--Auriga pre-main sequence population and the main sequence G dwarf sample do not stem from the same parent period distribution with better than 95 per cent confidence probability. The Lupus, Upper Scorpius A and Taurus--Auriga populations are shown to be compatible with being drawn from the same initial period function (IPF), which is inconsistent with the main sequence data. Two possible IPF forms are used to find parent distributions to various permutations of the available data which include Upper Scorpius B (UScB), Chameleon and Orion Nebula Cluster pre-main sequence samples. All the pre-main sequence samples studied here are consistent with the hypothesis that there exists a universal IPF which is modified through binary-star disruption if it forms in an embedded star cluster leading to a general decline of the observed period function with increasing period. The pre-main sequence data admit a ...

  13. TU Comae Berenices: Blazhko RR Lyrae Star in a Potential Binary System

    Science.gov (United States)

    de Ponthière, P.; Hambsch, F.-J.; Menzies, K.; Sabo, R.

    2016-06-01

    We present the results of a photometry campaign of TU Com performed over a five-year time span. The analysis showed that the possible Blazhko period of 75 days published by the General Catalogue of Variable Stars is not correct. We identified two Blazhko periods of 43.6 and 45.5 days. This finding is based on measurement of 124 light maxima. A spectral analysis of the complete light curve confirmed these two periods. Besides the Blazhko amplitude and phase modulations, another long term periodic phase variation has been identified. This long term periodic variation affects the times of maximum light only and can be attributed to a light-travel time effect due to orbital motion of a binary system. The orbital parameters have been estimated by a nonlinear least-square fit applied to the set of (O-C) values. The Levenberg-Marquart algorithm has been used to perform the nonlinear least-square fit. The tentative orbital parameters include an orbital period of 1676 days, a minimal semi-major axis of 1.55 AU and a small eccentricity of 0.22. The orbital parameter estimation also used 33 (O-C) values obtained from the SWASP survey database. Spectroscopic radial velocity measurements are needed to confirm this binarity. If confirmed, TU Com would be the first Blazhko RR Lyrae star detected in a binary system.

  14. The union of binary neutron star and equation of state of the high-density nuclear matter

    International Nuclear Information System (INIS)

    This paper introduces the progress of recent research that tries to extract information on the state equation of nuclear materials by observing the coalescence of binary neutron stars. In particular, with a focus on the gravitational wave emission and mass emission during the coalescence of binary neutron stars, this paper mentions what kind of limitations can be given to the state equation by observing them. From the viewpoint of limitations on nuclear material state equation, the advantages of observations of gravitational wave radiation from binary neutron star coalescence are particularly as follows: (1) Exploration up to a more high-density regions is possible compared with other celestial phenomena, (2) Complex models except the general theory of relativity and state equation are not required, and indefinite parameters are little, and (3) diversified information can be obtained, such as mass determination by the analysis of in-spiral gravity waves, tidal deformation rate of neutron star due to tidal field from companion star, vibration of neutron stars after coalescence, and maximum mass of neutron stars. (A.O.)

  15. Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the mass-ratio

    CERN Document Server

    Dietrich, Tim; Tichy, Wolfgang; Bernuzzi, Sebastiano; Bruegmann, Bernd

    2016-01-01

    We present new (3+1)D numerical relativity simulations of the binary neutron star (BNS) merger and postmerger phase. We focus on a previously inaccessible region of the binary parameter space spanning the binary's mass-ratio $q\\sim1.00-1.75$ for different total masses and equations of state, and up to $q\\sim2$ for a stiff BNS system. We study the mass-ratio effect on the gravitational waves (GWs) and on the possible electromagnetic emission associated to dynamical mass ejecta. We compute waveforms, spectra, and spectrograms of the GW strain including all the multipoles up to $l=4$. The mass-ratio has a specific imprint on the GW multipoles in the late-inspiral-merger signal, and it affects qualitatively the spectra of the merger remnant. The multipole effect is also studied by considering the dependency of the GW spectrograms on the source's sky location. Unequal mass BNSs produce more ejecta than equal mass systems with ejecta masses and kinetic energies depending almost linearly on $q$. We estimate luminosi...

  16. Mergers of Black Hole -- Neutron Star binaries. I. Methods and First Results

    CERN Document Server

    Rantsiou, E; Laguna, P; Rasio, F; Rantsiou, Emmanouela; Kobayashi, Shiho; Laguna, Pablo; Rasio, Frederic

    2007-01-01

    We use a 3-D relativistic SPH (Smoothed Particle Hydrodynamics) code to study mergers of black hole -- neutron star (BH--NS) binary systems with low mass ratios, adopting $M_{NS}/M_{BH} \\simeq 0.1$ as a representative case. The outcome of such mergers depends sensitively on both the magnitude of the BH spin and its obliquity (i.e., the inclination of the binary orbit with respect to the equatorial plane of the BH). In particular, only systems with sufficiently high BH spin parameter $a$ and sufficiently low orbital inclinations allow any NS matter to escape or to form a long-lived disk outside the BH horizon after disruption. Mergers of binaries with orbital inclinations above $\\sim60^o$ lead to complete prompt accretion of the entire NS by the BH, even for the case of an extreme Kerr BH. We find that the formation of a significant disk or torus of NS material around the BH always requires a near-maximal BH spin and a low initial inclination of the NS orbit just prior to merger.

  17. The separation of the stars in the binary nucleus of the planetary nebula Abell 35

    CERN Document Server

    Gatti, A A; Oudmaijer, R D; Marsh, T R; Lynas-Gray, A E

    1998-01-01

    Using the Planetary Camera on board the Hubble Space Telescope we have measured the projected separation of the binary components in the nucleus of the planetary nebula Abell 35 to be larger than 0.08 arcsecs but less than 0.14 arcsecs. The system was imaged in three filters centered at 2950, 3350 and 5785 Ang. The white dwarf primary star responsible for ionizing the nebula is half as bright as its companion in the 2950 Ang filter causing the source to be visibly elongated. The 3350 Ang setting, on the other hand, shows no elongation as a result of the more extreme flux ratio. The F300W data allows the determinination of the binary's projected separation. At the minimum distance of 160 parsec to the system, our result corresponds to 18+/-5 AU. This outcome is consistent with the wind accretion induced rapid rotation hypothesis, but cannot be reconciled with the binary having emerged from a common-envelope phase.

  18. Gravitational waves from black hole-neutron star binaries I: Classification of waveforms

    CERN Document Server

    Shibata, Masaru; Yamamoto, Tetsuro; Taniguchi, Keisuke

    2009-01-01

    Using our new numerical-relativity code SACRA, long-term simulations for inspiral and merger of black hole (BH)-neutron star (NS) binaries are performed, focusing particularly on gravitational waveforms. As the initial conditions, BH-NS binaries in a quasiequilibrium state are prepared in a modified version of the moving-puncture approach. The BH is modeled by a nonspinning moving puncture and for the NS, a polytropic equation of state with $\\Gamma=2$ and the irrotational velocity field are employed. The mass ratio of the BH to the NS, $Q=M_{\\rm BH}/M_{\\rm NS}$, is chosen in the range between 1.5 and 5. The compactness of the NS, defined by ${\\cal C}=GM_{\\rm NS}/c^2R_{\\rm NS}$, is chosen to be between 0.145 and 0.178. For a large value of $Q$ for which the NS is not tidally disrupted and is simply swallowed by the BH, gravitational waves are characterized by inspiral, merger, and ringdown waveforms. In this case, the waveforms are qualitatively the same as that from BH-BH binaries. For a sufficiently small va...

  19. Abell 41: shaping of a planetary nebula by a binary central star?

    CERN Document Server

    Jones, D; Santander-García, M; López, J A; Meaburn, J; Mitchell, D L; O'Brien, T J; Pollacco, D; Rubio-Díez, M M; Vaytet, N M H

    2010-01-01

    We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrowband imaging in the light of [NII], [OIII] and [SII], obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionisation structure of Abell 41. Longslit observations of the H-alpha and [NII] emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro M\\'artir Telescope. These spectra, combined with the narrowband imagery, were used to develop a spatio-kinematical model of [NII] emission from Abell 41. The best fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40km\\s at...

  20. Electromagnetic outflows in a class of scalar-tensor theories: Binary neutron star coalescence

    Science.gov (United States)

    Ponce, Marcelo; Palenzuela, Carlos; Barausse, Enrico; Lehner, Luis

    2015-04-01

    As we showed in previous work, the dynamics and gravitational emission of binary neutron-star systems in certain scalar-tensor theories can differ significantly from that expected from general relativity (GR) in the coalescing stage. In this work we examine whether the characteristics of the electromagnetic counterparts to these binaries—driven by magnetosphere interactions prior to the merger event—can provide an independent way to test gravity in the most strongly dynamical stages of binary mergers. We find that the electromagnetic flux emitted by binaries in these scalar-tensor theories can show deviations from the GR prediction in particular cases. These differences are quite subtle, thus requiring delicate measurements to differentiate between GR and the type of scalar-tensor theories considered in this work using electromagnetic observations alone. However, if coupled with a gravitational-wave detection, electromagnetic measurements might provide a way to increase the confidence with which GR will be confirmed (or ruled out) by gravitational observations.

  1. Circumstellar multi-planetary systems in binary stars: secular resonances and a semi-analytical approach to determine the location

    CERN Document Server

    Pilat-Lohinger, Elke; Funk, Barbara

    2016-01-01

    Binary stars are of special interest for studies of planetary motion and habitability as most of the stars in the solar neighborhood are part of such stellar systems. Since a secondary star causes gravitational perturbations the planetary motion is restricted to certain regions of the phase space depending on the binary configuration. In case a binary system hosts a giant planet it is obvious that additional perturbations will occur. These perturbations will be studied in detail in this investigation where we take into account various binary-planet configurations. We show how the dynamics of another test-planet is influenced by mean motion and secular resonances. Therefore, it is important to know the locations of these resonances. First, we study the binary system HD41004AB to visualize the perturbations on the dynamics of test-planets caused by the secondary star and the detected giant planet. Then we perform a frequency analysis of the orbits to identify of the secular resonance. And finally, we develop a ...

  2. Basic parameter estimation of binary neutron star systems by the advanced LIGO/Vigro network

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carl L.; Farr, Benjamin; Raymond, Vivien; Farr, Will M.; Littenberg, Tyson B.; Fazi, Diego; Kalogera, Vicky, E-mail: cr@u.northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2014-04-01

    Within the next five years, it is expected that the Advanced LIGO/Virgo network will have reached a sensitivity sufficient to enable the routine detection of gravitational waves. Beyond the initial detection, the scientific promise of these instruments relies on the effectiveness of our physical parameter estimation capabilities. A major part of this effort has been toward the detection and characterization of gravitational waves from compact binary coalescence, e.g., the coalescence of binary neutron stars. While several previous studies have investigated the accuracy of parameter estimation with advanced detectors, the majority have relied on approximation techniques such as the Fisher Matrix which are insensitive to the non-Gaussian nature of the gravitational wave posterior distribution function. Here we report average statistical uncertainties that will be achievable for strong detection candidates (S/N = 20) over a comprehensive sample of source parameters. We use the Markov Chain Monte Carlo based parameter estimation software developed by the LIGO/Virgo Collaboration with the goal of updating the previously quoted Fisher Matrix bounds. We find the recovery of the individual masses to be fractionally within 9% (15%) at the 68% (95%) credible intervals for equal-mass systems, and within 1.9% (3.7%) for unequal-mass systems. We also find that the Advanced LIGO/Virgo network will constrain the locations of binary neutron star mergers to a median uncertainty of 5.1 deg{sup 2} (13.5 deg{sup 2}) on the sky. This region is improved to 2.3 deg{sup 2} (6 deg{sup 2}) with the addition of the proposed LIGO India detector to the network. We also report the average uncertainties on the luminosity distances and orbital inclinations of strong detections that can be achieved by different network configurations.

  3. On the origin of the hard X-ray tail in neutron-star X-ray binaries

    OpenAIRE

    Reig, P.; Kylafis, N.

    2016-01-01

    Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exponential cutoff is observed in most systems. We have developed a jet model that explains many spectral and timing properties of black-hole binaries in the states where a jet is present. Our goal is to investigate whether our jet model can reproduc...

  4. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    International Nuclear Information System (INIS)

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the α Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of α Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the α Centauri system.

  5. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke [University of Vienna, Institute for Astrophysics, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at [Institute for Astronomy and NASA Astrobiology Institute, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  6. A new HW Vir binary from the Palomar Transient Factory: PTF1 J072455.75+125300.3 - An eclipsing subdwarf B binary with a M-star companion

    CERN Document Server

    Schindewolf, M; Heber, U; Drechsel, H; Schaffenroth, V; Kuper, T; Prince, T

    2015-01-01

    We report the discovery of an eclipsing binary -- PTF1 J072456$+$125301-- composed of a subdwarf B (sdB) star ($g'=17.2^m$) with a faint companion. Subdwarf B stars are core helium-burning stars, which can be found on the extreme horizontal branch. About half of them reside in close binary systems, but few are known to be eclipsing, for which fundamental stellar parameters can be derived.\

  7. The scenario of two families of compact stars. Pt. 1. Equations of state, mass-radius relations and binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Drago, Alessandro; Pagliara, Giuseppe [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Ferrara (Italy); Lavagno, Andrea; Pigato, Daniele [Politecnico di Torino (Italy). Dept. of Applied Science and Technology; INFN, Torino (Italy)

    2016-02-15

    We present several arguments which favor the scenario of two coexisting families of compact stars: hadronic stars and quark stars. Besides the well-known hyperon puzzle of the physics of compact stars, a similar puzzle exists also when considering delta resonances. We show that these particles appear at densities close to twice saturation density and must be therefore included in the calculations of the hadronic equation of state. Such an early appearance is strictly related to the value of the L parameter of the symmetry energy that has been found, in recent phenomenological studies, to lie in the range 40 < L < 62 MeV. We discuss also the threshold for the formation of deltas and hyperons for hot and lepton-rich hadronic matter. Similarly to the case of hyperons, also delta resonances cause a softening of the equation of state, which makes it difficult to obtain massive hadronic stars. Quark stars, on the other hand, can reach masses up to 2.75M {sub CircleDot} as predicted by perturbative QCD calculations. We then discuss the observational constraints on the masses and the radii of compact stars. The tension between the precise measurements of high masses and the indications of the existence of very compact stellar objects (with radii of the order of 10 km) is relieved when assuming that very massive compact stars are quark stars and very compact stars are hadronic stars. Finally, we discuss recent interesting measurements of the eccentricities of the orbits of millisecond pulsars in low mass X-ray binaries. The high values of the eccentricities found in some cases could be explained by assuming that the hadronic star, initially present in the binary system, converts to a quark star due to the increase of its central density. (orig.)

  8. The scenario of two families of compact stars. Pt. 1. Equations of state, mass-radius relations and binary systems

    International Nuclear Information System (INIS)

    We present several arguments which favor the scenario of two coexisting families of compact stars: hadronic stars and quark stars. Besides the well-known hyperon puzzle of the physics of compact stars, a similar puzzle exists also when considering delta resonances. We show that these particles appear at densities close to twice saturation density and must be therefore included in the calculations of the hadronic equation of state. Such an early appearance is strictly related to the value of the L parameter of the symmetry energy that has been found, in recent phenomenological studies, to lie in the range 40 < L < 62 MeV. We discuss also the threshold for the formation of deltas and hyperons for hot and lepton-rich hadronic matter. Similarly to the case of hyperons, also delta resonances cause a softening of the equation of state, which makes it difficult to obtain massive hadronic stars. Quark stars, on the other hand, can reach masses up to 2.75M CircleDot as predicted by perturbative QCD calculations. We then discuss the observational constraints on the masses and the radii of compact stars. The tension between the precise measurements of high masses and the indications of the existence of very compact stellar objects (with radii of the order of 10 km) is relieved when assuming that very massive compact stars are quark stars and very compact stars are hadronic stars. Finally, we discuss recent interesting measurements of the eccentricities of the orbits of millisecond pulsars in low mass X-ray binaries. The high values of the eccentricities found in some cases could be explained by assuming that the hadronic star, initially present in the binary system, converts to a quark star due to the increase of its central density. (orig.)

  9. Abundances from disentangled component spectra of close binary stars: An observational test of an earlz mixing in high-mass stars

    CERN Document Server

    Pavlovski, K; Koubsky, P; Southworth, J; Yang, S

    2005-01-01

    Recent theoretical calculations of stellar evolutionary tracks for rotating high-mass stars suggests that the chemical composition of the surface layers changes even whilst the star is evolving on the Main Sequence. The abundance analysis of binary components with precisely known fundamental stellar quantities allows a powerful comparison with theory. The observed spectra of close binary stars can be separated into the individual spectra of the component stars using the method of spectral disentangling on a time-series of spectra taken over the orbital cycle. Recently, Pavlovski & Hensberge (2005, A&A, 439, 309) have shown that, even with moderately high line-broadening, metal abundances can be derived from disentangled spectra with a precision of 0.1 dex. In a continuation of this project we have undertaken a detailed abundance analysis of the components of another two high-mass binaries, V453 Cyg, and V380 Cyg. Both binaries are well-studied systems with modern solutions. The components are close to...

  10. Chemical Abundances in the Secondary Star of the Black Hole Binary V4641 Sagittarii (SAX J1819.3-2525)

    CERN Document Server

    Sadakane, K; Aoki, W; Arimoto, N; Takada-Hidai, M; Ohnishi, T; Tajitsu, A; Beers, T C; Iwamoto, N; Tominaga, N; Umeda, H; Maeda, K; Nomoto, K; Sadakane, Kozo; Arai, Akira; Aoki, Wako; Arimoto, Nobuo; Takada-Hidai, Masahide; Ohnishi, Takashi; Tajitsu, Akito; Beers, Timothy C.; Iwamoto, Nobuyuki; Tominaga, Nozomu; Umeda, Hideyuki; Maeda, Keiichi; Nomoto, Ken'ichi

    2006-01-01

    We report on detailed spectroscopic studies performed for the secondary star in the black hole binary (micro-quasar) V4641 Sgr in order to examine its surface chemical composition and to see if its surface shows any signature of pollution by ejecta from a supernova explosion. High-resolution spectra of V4641 Sgr observed in the quiescent state in the blue-visual region are compared with those of the two bright well-studied B9 stars (14 Cyg and $\

  11. CARBON AND OXYGEN ABUNDANCES IN THE HOT JUPITER EXOPLANET HOST STAR XO-2B AND ITS BINARY COMPANION

    International Nuclear Information System (INIS)

    With the aim of connecting the compositions of stars and planets, we present the abundances of carbon and oxygen, as well as iron and nickel, for the transiting exoplanet host star XO-2N and its wide-separation binary companion XO-2S. Stellar parameters are derived from high-resolution, high signal-to-noise spectra, and the two stars are found to be similar in their Teff, log g, iron ([Fe/H]), and nickel ([Ni/H]) abundances. Their carbon ([C/H]) and oxygen ([O/H]) abundances also overlap within errors, although XO-2N may be slightly more C-rich and O-rich than XO-2S. The C/O ratios of both stars (∼0.60 ± 0.20) may also be somewhat larger than solar (C/O ∼ 0.50). The XO-2 system has a transiting hot Jupiter orbiting one binary component but not the other, allowing us to probe the potential effects planet formation might have on the host star composition. Additionally, with multiple observations of its atmosphere the transiting exoplanet XO-2b lends itself to compositional analysis, which can be compared to the natal chemical environment established by our binary star elemental abundances. This work sets the stage for determining how similar or different exoplanet and host star compositions are, and the implications for planet formation, by discussing the C/O ratio measurements in the unique environment of a visual binary system with one star hosting a transiting hot Jupiter.

  12. CARBON AND OXYGEN ABUNDANCES IN THE HOT JUPITER EXOPLANET HOST STAR XO-2B AND ITS BINARY COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Teske, Johanna K. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Schuler, Simon C. [University of Tampa, 401 W. Kennedy Blvd., Tampa, FL 33606 (United States); Cunha, Katia [Observatorio Nacional, Rua General Jose Cristino, 77, 20921-400, Sao Cristovao, Rio de Janeiro, RJ (Brazil); Smith, Verne V. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Griffith, Caitlin A., E-mail: jteske@as.arizona.edu [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-05-01

    With the aim of connecting the compositions of stars and planets, we present the abundances of carbon and oxygen, as well as iron and nickel, for the transiting exoplanet host star XO-2N and its wide-separation binary companion XO-2S. Stellar parameters are derived from high-resolution, high signal-to-noise spectra, and the two stars are found to be similar in their T{sub eff}, log g, iron ([Fe/H]), and nickel ([Ni/H]) abundances. Their carbon ([C/H]) and oxygen ([O/H]) abundances also overlap within errors, although XO-2N may be slightly more C-rich and O-rich than XO-2S. The C/O ratios of both stars ({approx}0.60 {+-} 0.20) may also be somewhat larger than solar (C/O {approx} 0.50). The XO-2 system has a transiting hot Jupiter orbiting one binary component but not the other, allowing us to probe the potential effects planet formation might have on the host star composition. Additionally, with multiple observations of its atmosphere the transiting exoplanet XO-2b lends itself to compositional analysis, which can be compared to the natal chemical environment established by our binary star elemental abundances. This work sets the stage for determining how similar or different exoplanet and host star compositions are, and the implications for planet formation, by discussing the C/O ratio measurements in the unique environment of a visual binary system with one star hosting a transiting hot Jupiter.

  13. Detection of a very low mass star in an Eclipsing Binary system

    CERN Document Server

    Chaturvedi, Priyanka; Anandarao, B G; Roy, Arpita; Mahadevan, Suvrath

    2016-01-01

    We report the detection of a very low mass star (VLMS) companion to the primary star 1SWASPJ234318.41+295556.5A (J2343+29A), using radial velocity (RV) measurements from the PARAS (PRL Advanced Radial-velocity Abu-sky Search) high resolution echelle spectrograph. The periodicity of the single-lined eclipsing binary (SB1) system, as determined from 20 sets of RV observations from PARAS and 6 supporting sets of observations from SOPHIE data, is found to be 16.953 d as against the 4.24 d period reported from SuperWasp photometry. It is likely that inadequate phase coverage of the transit with SuperWasp photometry led to the incorrect determination of the period for this system. We derive the spectral properties of the primary star from the observed stellar spectra: Teff = 5125 +/- 67 K, [Fe/H] = 0.1 +/- 0.14 and log g = 4.6 +/- 0.14, indicating a K1V primary. Applying the Torres relation to the derived stellar parameters, we estimate a primary mass 0.864 +/- 0.097 M_sun and a radius of 0.854 +/- 0.050 R_sun. We ...

  14. The White Dwarf Binary Pathways Survey I: A sample of FGK stars with white dwarf companions

    CERN Document Server

    Parsons, S G; Schreiber, M R; Gansicke, B T; Zorotovic, M; Ren, J J

    2016-01-01

    The number of white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper we identify 934 main-sequence FGK stars from the Radial Velocity Experiment (RAVE) survey in the southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey in the northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one ...

  15. Post-merger evolution of a neutron star-black hole binary with neutrino transport

    CERN Document Server

    Foucart, Francois; Roberts, Luke; Duez, Matthew D; Haas, Roland; Kidder, Lawrence E; Ott, Christian D; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela

    2015-01-01

    We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that the remnant is less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects. Over the short timescale e...

  16. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    CERN Document Server

    Gielen, C; Min, M; Waters, L B F M; Evans, T Lloyd

    2008-01-01

    Aims: We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust species. This allows for the identification of the carriers of the different emission bands. Our fits also constrain the physical properties of different dust species and grain sizes responsible for the observed emission features. Results: In all stars the dust is oxygen-rich: amorphous and crystalline silicate dust species prevail and no features of a carbon-rich component can be found, the exception being EPLyr, where a mixed chemistry of both oxygen- and carbon-rich species is found. Our full spectral fitting indicates a high degree of dust grain processing. The mineralogy of our sample stars shows that the dust is constituted of irregularly shaped and relatively large grains, with typical grain sizes larger tha...

  17. Binary neutron star merger simulations with different initial orbital frequency and equation of state

    CERN Document Server

    Maione, Francesco; Feo, Alessandra; Löffler, Frank

    2016-01-01

    We present results from three-dimensional general relativistic simulations of binary neutron star coalescences and mergers using public codes. We considered equal mass models where the baryon mass of the two Neutron Stars (NS) is $1.4M_{\\odot}$, described by four different equations of state (EOS) for the cold nuclear matter (APR4, SLy, H4, and MS1; all parametrized as piecewise polytropes). We started the simulations from four different initial interbinary distances ($40, 44.3, 50$, and $60$ km), including up to the last 16 orbits before merger. That allows to show the effects on the gravitational wave phase evolution, radiated energy and angular momentum due to: the use of different EOSs, the orbital eccentricity present in the initial data and the initial separation (in the simulation) between the two stars. Our results show that eccentricity has a major role in the discrepancy between numerical and analytical waveforms until the very last few orbits, where "tidal" effects and missing high-order post-Newto...

  18. Measurability of the tidal deformability by gravitational waves from coalescing binary neutron stars

    CERN Document Server

    Hotokezaka, Kenta; Sekiguchi, Yu-ichiro; Shibata, Masaru

    2016-01-01

    Combining new gravitational waveforms derived by long-term (14--16 orbits) numerical-relativity simulations with waveforms by an effective-one-body (EOB) formalism for coalescing binary neutron stars, we construct hybrid waveforms and estimate the measurability for the dimensionless tidal deformability of the neutron stars, $\\Lambda$, by advanced gravitational-wave detectors. We focus on the equal-mass case with the total mass $2.7M_\\odot$. We find that for an event at a hypothetical effective distance of $D_{\\rm eff}=200$ Mpc, the distinguishable difference in the dimensionless tidal deformability will be $\\approx 100$, 400, and 800 at 1-$\\sigma$, 2-$\\sigma$, and 3-$\\sigma$ levels, respectively, for advanced LIGO. If the true equation of state is stiff and the typical neutron-star radius is $R \\gtrsim 13 $ km, our analysis suggests that the radius will be constrained within $\\approx 1$ km at 2-$\\sigma$ level for an event at $D_{\\rm eff}=200$ Mpc. On the other hand, if the true equation of state is soft and t...

  19. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    Science.gov (United States)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  20. Head-on collisions of binary white dwarf-neutron stars: Simulations in full general relativity

    International Nuclear Information System (INIS)

    We simulate head-on collisions from rest at large separation of binary white dwarf-neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold-degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of neutron stars (NSs) while, at the same time, scales down the size of white dwarfs (WDs). We call these scaled-down WD models 'pseudo-WDs (pWDs)'. Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that after the collision, 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92M·), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.

  1. Kepler Eclipsing Binary Stars. VIII. Identification of False Positive Eclipsing Binaries and Re-extraction of New Light Curves

    Science.gov (United States)

    Abdul-Masih, Michael; Prša, Andrej; Conroy, Kyle; Bloemen, Steven; Boyajian, Tabetha; Doyle, Laurance R.; Johnston, Cole; Kostov, Veselin; Latham, David W.; Matijevič, Gal; Shporer, Avi; Southworth, John

    2016-04-01

    The Kepler mission has provided unprecedented, nearly continuous photometric data of ∼200,000 objects in the ∼105 deg2 field of view (FOV) from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in May of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters, and analytical approximation fits for every known eclipsing binary system in the Kepler FOV. Using target pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e., targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separate light curves for each quarter of available data by optimizing the signal-to-noise ratio, the relative percent eclipse depth, and the flux eclipse depth. We present 289 new eclipsing binaries in the Kepler FOV that were not targets for observation, and these have been added to the catalog. An online version of this catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu.

  2. Evolution of intermediate-mass X-ray binaries driven by magnetic braking of Ap/Bp stars: I. ultracompact X-ray binaries

    CERN Document Server

    Chen, Wen-Cong

    2016-01-01

    It is generally believed that Ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf or helium star where mass transfer is driven by gravitational radiation. However, the standard white-dwarf evolutionary channel cannot produce the relatively long-period ($40 - 60$\\,min) UCXBs with high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field ($100 - 10000$\\,G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the \\emph{MESA} code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency $f=10^{-5}$, the a...

  3. Determining the Age of the Kepler Open Cluster NGC 6819 With a New Triple System and Other Eclipsing Binary Stars

    CERN Document Server

    Brewer, Lauren N; Mathieu, Robert D; Milliman, Katelyn; Geller, Aaron M; Jeffries, Mark W; Orosz, Jerome A; Brogaard, Karsten; Platais, Imants; Bruntt, Hans; Grundahl, Frank; Stello, Dennis; Frandsen, Soeren

    2016-01-01

    As part of our study of the old (~2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVRcIc) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses M_B =1.090+/-0.010 Msun and M_C =1.075+/-0.013 Msun, and radii R_B =1.095+/-0.007 Rsun and R_C =1.057+/-0.008 Rsun. The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is M_A =1.251+/-0.057 Msun. A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and pl...

  4. Binary neutron-star mergers: a review of Einstein's richest laboratory

    CERN Document Server

    Baiotti, Luca

    2016-01-01

    The merger of binary neutron-stars systems combines in a single process: extreme gravity, copious emission of gravitational waves, complex microphysics, and electromagnetic processes that can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein's richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques, and results for fully general-relativistic dynamical simulations, a review is also offered on initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including: black-hole formation, torus accretion onto the merged compact object, connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.

  5. Lithium-7 surface abundance in pre-MS stars. Testing theory against clusters and binary systems

    CERN Document Server

    Tognelli, E; Moroni, P G Prada

    2012-01-01

    The disagreement between theoretical predictions and observations for surface lithium abundance in stars is a long-standing problem which indicates that the adopted physical treatment is still lacking in some points. However, thanks to the recent improvements both in models and observations, it is interesting to analyse the situation to evaluate present uncertainties. We thus present a consistent and quantitative analysis of the theoretical uncertainties affecting the current generation of models. Theoretical predictions have been tested against observational data for five open clusters, namely Ic 2602, \\alpha Per, Blanco1, Pleiades, and Ngc 2516, and four detached double-lined eclipsing binary systems. We restrict our analysis to young clusters, to avoid additional uncertainty sources such as diffusion and/or radiative levitation efficiency. By means of an up-to-date and well tested evolutionary code, i.e. FRANEC, theoretical uncertainties on surface lithium abundance predictions, during the pre-main sequenc...

  6. Orbit and spin evolution of synchronous binary stars on the main sequence

    Institute of Scientific and Technical Information of China (English)

    Lin-Sen Li

    2012-01-01

    A set of synchronous equations are derived from a set of non-synchronous equations.The analytical solutions are given by solving the set of differential equations.The results of the evolutionary trend of the spin-orbit interaction are that the semi-major axis gradually shrinks with time; the orbital eccentricity gradually decreases with time until orbital circularization occurs; the orbital period gradually shortens with time and the rotational angular velocity of the primary component gradually speeds up with time before the orbit achieves circularization.The theoretical results are applied to evolution of the orbit and spin of synchronous binary stars Algol A and B that are on the main sequence.The circularization time,lifetime and the evolutionary numerical solutions of orbit and spin when circularization time occurs are estimated for Algol A and B.

  7. Jets in black-hole and neutron-star X-ray binaries

    Science.gov (United States)

    Kylafis, Nikolaos

    2016-07-01

    Jets have been observed from both neutron-star and black-hole X-ray binaries. There are many similarities between the two and a few differences. I will offer a physical explanation of the formation and destruction of jets from compact objects and I will discuss the similarities and differences in the two types. The basic concept in the physical explanation is the Cosmic Battery, the mechanism that creates the required magnetic field for the jet ejection. The Cosmic Battery operates efficiently in accretion flows consisting of an inner hot flow and an outer thin accretion disk, independently of the nature of the compact object. It is therefore natural to always expect a jet in the right part of a spectral hardness - luminosity diagram and to never expect a jet in the left part. As a consequence, most of the phenomenology of an outburst can be explained with only one parameter, the mass accretion rate.

  8. Illumination in symbiotic binary stars Non-LTE photoionization models; 2, Wind case

    CERN Document Server

    Proga, D; Raymond, J C; Proga, Daniel; Kenyon, Scott J.; Raymond, John C.

    1997-01-01

    We describe a non-LTE photoionization code to calculate the wind structure and emergent spectrum of a red giant wind illuminated by the hot component of a symbiotic binary system. We consider spherically symmetric winds with several different velocity and temperature laws and derive predicted line fluxes as a function of the red giant mass loss rate, \\mdot. Our models generally match observations of the symbiotic stars EG And and AG Peg for \\mdot about 10^{-8} wind as viewed from the hot component is a crucial parameter in these models. Winds with cross-sections of 2--3 red giant radii reproduce the observed fluxes, because the wind density is then high, about 10^9 cm^{-3}. Our models favor winds with acceleration regions that either lie far from the red giant photosphere or extend for 2--3 red giant radii.

  9. Capturing the electromagnetic counterparts of binary neutron star mergers through low latency gravitational wave triggers

    CERN Document Server

    Chu, Q; Rowlinson, A; Gao, H; Zhang, B; Tingay, S J; Boer, M; Wen, L

    2015-01-01

    We investigate the prospects for joint low-latency gravitational wave (GW) detection and prompt electromagnetic (EM) follow-up observations of coalescing binary neutron stars (BNSs). Assuming BNS mergers are associated with short duration gamma ray bursts (SGRBs), we evaluate if rapid EM follow-ups can capture the prompt emission, early engine activity or reveal any potential by-products such as magnetars or fast radio bursts. To examine the expected performance of low-latency search pipelines we simulate a population of coalescing BNSs using realistic distributions of source parameters to estimate the detectability and localisation efficiency at different times before merger. To determine what EM observations can be achieved, we consider a selection of facilities with GW follow-up agreements in place, from low-frequency radio to high energy $\\gamma$-ray; we assess the performance of each using observational SGRB flux data corrected to the range of the advanced GW interferometric detectors LIGO and Virgo. We ...

  10. Early Advanced LIGO binary neutron-star sky localization and parameter estimation

    CERN Document Server

    Berry, C P L; Farr, W M; Haster, C-J; Mandel, I; Middleton, H; Singer, L P; Urban, A L; Vecchio, A; Vitale, S; Cannon, K; Graff, P B; Hanna, C; Mohapatra, S; Pankow, C; Price, L R; Sidery, T; Veitch, J

    2016-01-01

    2015 will see the first observations of Advanced LIGO and the start of the gravitational-wave (GW) advanced-detector era. One of the most promising sources for ground-based GW detectors are binary neutron-star (BNS) coalescences. In order to use any detections for astrophysics, we must understand the capabilities of our parameter-estimation analysis. By simulating the GWs from an astrophysically motivated population of BNSs, we examine the accuracy of parameter inferences in the early advanced-detector era. We find that sky location, which is important for electromagnetic follow-up, can be determined rapidly (~5 s), but that sky areas may be hundreds of square degrees. The degeneracy between component mass and spin means there is significant uncertainty for measurements of the individual masses and spins; however, the chirp mass is well measured (typically better than 0.1%).

  11. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Mosser, B. [LESIA, CNRS, Universite Pierre et Marie Curie, Universite Denis Diderot, Observatoire de Paris, F-92195 Meudon cedex (France); Guzik, J. A., E-mail: gaulme@nmsu.edu [Los Alamos National Laboratory, XTD-2, MS T-086, Los Alamos, NM 87545-2345 (United States)

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many

  12. Observing gravitational waves from the post-merger phase of binary neutron star coalescence

    Science.gov (United States)

    Clark, J. A.; Bauswein, A.; Stergioulas, N.; Shoemaker, D.

    2016-04-01

    We present an effective, low-dimensionality frequency-domain template for the gravitational wave (GW) signal from the stellar remnants from binary neutron star (BNS) coalescence. A principal component decomposition of a suite of numerical simulations of BNS mergers is used to construct orthogonal basis functions for the amplitude and phase spectra of the waveforms for a variety of neutron star (NS) equations of state and binary mass configurations. We review the phenomenology of late merger/post-merger GW emission in BNS coalescence and demonstrate how an understanding of the dynamics during and after the merger leads to the construction of a universal spectrum. We also provide a discussion of the prospects for detecting the post-merger signal in future GW detectors as a potential contribution to the science case for third generation instruments. The template derived in our analysis achieves \\gt 90% match across a wide variety of merger waveforms and strain sensitivity spectra for current and potential GW detectors. Using a simple Monte Carlo simulation, we find a preliminary estimate of the typical uncertainty in the determination of the dominant post-merger oscillation frequency {f}{peak} of δ {f}{peak}∼ 138 {{Hz}}. Using recently derived correlations between {f}{peak} and the NS radii, this suggests potential constraints on the radius of a fiducial NS of ∼429 m. Such measurements would only be possible for nearby (∼30 Mpc) sources with advanced LIGO but become more feasible for planned upgrades to advanced LIGO and other future instruments, leading to constraints on the high density NS equation of state which are independent and complementary to those inferred from the pre-merger inspiral GW signal. We study the ability of a selection of future GW instruments to provide constraints on the NS equation of state via the postmerger phase of BNS mergers.

  13. Constraints on binary neutron star merger product from short GRB observations

    Science.gov (United States)

    Gao, He; Zhang, Bing; Lü, Hou-Jun

    2016-02-01

    Binary neutron star (NS) mergers are strong gravitational-wave (GW) sources and the leading candidates to interpret short-duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the x-ray plateau followed by a steep decay as observed in SGRB x-ray light curves marks the collapse of a supramassive neutron star to a black hole (BH), we use the statistical observational properties of Swift SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already impose the following interesting constraints. (1) A neutron star EoS with a maximum mass close to a parametrization of Mmax=2.37 M⊙(1 +1.58 ×10-10P-2.84) is favored. (2) The fractions for the several outcomes of NS-NS mergers are as follows: ˜40 % prompt BHs, ˜30 % supramassive NSs that collapse to BHs in a range of delay time scales, and ˜30 % stable NSs that never collapse. (3) The initial spin of the newly born supramassive NSs should be near the breakup limit (Pi˜1 ms ), which is consistent with the merger scenario. (4) The surface magnetic field of the merger products is typically ˜1015 G . (5) The ellipticity of the supramassive NSs is ɛ ˜(0.004 -0.007 ), so that strong GW radiation is released after the merger. (6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several 1049 to several 1052 erg , since a good fraction of the spin energy is either released in the form of GWs or falls into the black hole as the supramassive NS collapses.

  14. PG 0308 + 096 and PG 1026 + 002 - Two new short period binary stars resulting from common-envelope evolution

    Science.gov (United States)

    Saffer, Rex A.; Wade, Richard A.; Liebert, James; Green, Richard F.; Sion, Edward M.; Bechtold, J.; Foss, Diana; Kidder, K.

    1993-01-01

    Ultraviolet spectroscopy, optical spectroscopy, and spectrophotometry have been used to study the excess UV stars PG 0308 + 096 and PG 1026 + 002. Both objects are short-period binary systems, each containing a DA white dwarf star and a dM star. Orbital periods of approximately 0.284 day for PG 0308 + 096, and aproximately 0.597 day for PG 1026, have been found by spectroscopic analysis of the H-alpha emission line. Ly-alpha and Balmer line profile fitting were used to estimate the mass of white dwarf stars; mass estimates for the dM stars are based on their spectral types. The orbital inclinations are derived from these masses, the periods, and amplitudes of the H-alpha radial velocity curves. The equivalent width of the H-alpha emission line, in each binary system, varies with the orbital phase in such a manner as to imply that it arises, in large part at least, from the hemisphere of the M star that faces the white dwarf star.

  15. Low-Luminosity Seyfert Nuclei

    CERN Document Server

    Ho, L C; Sargent, W L W; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L. W.

    1996-01-01

    We describe a new sample of Seyfert nuclei discovered during the course of an optical spectroscopic survey of nearby galaxies. The majority of the objects, many recognized for the first time, have luminosities much lower than those of classical Seyferts and populate the faint end of the AGN luminosity function. A significant fraction of the nuclei emit broad H-alpha emission qualitatively similar to the broad lines seen in classical Seyfert 1 nuclei and QSOs.

  16. The First Photometric Investigation of the Neglected W-UMa-type Binary Star UZ CMi

    Science.gov (United States)

    Qian, S.-B.; Li, K.; Liao, W.-P.; Liu, L.; Zhu, L.-Y.; He, J.-J.; Wang, J.-J.; Zhao, E.-G.

    2013-04-01

    UZ CMi was a W-UMa-type binary star found more than 80 years ago. However, it has been neglected in photometric investigations. Here, the first complete light curves in the B, V, R, and I bands are presented and analyzed using the Wilson and Devinney method. It is discovered that UZ CMi is a contact binary (f = 38.4(± 2.3)%) with a mass ratio of 0.45. The derived orbital inclination (i = 87°) indicates that it is a total eclipsing binary, which suggests that the determined parameters are reliable. By using 17 new eclipse times together with those collected from the literature, we found that the general trend of the observed-calculated (O - C) curve shows an upward parabolic variation that corresponds to a long-term increase in the orbital period at a rate of \\dot{P}=+4.1× {10^{-8}} days yr-1. The continuous increase may be caused by a mass transfer from the less massive component to the more massive one. This suggests that UZ CMi is in the thermal relaxation oscillation controlled stage of the evolutionary scheme proposed by Qian. UZ CMi will oscillate around a critical mass ratio and the contact configuration cannot be broken. After the upward parabolic change was removed, the (O - C)2 curve of the photoelectric and charge-coupled device data revealed a cyclic variation with a small amplitude of 0.0026 days and a period of 21.1 yr. The cyclic change was analyzed for the light-travel time effect via the presence of an extremely cool stellar companion.

  17. THE FIRST PHOTOMETRIC INVESTIGATION OF THE NEGLECTED W-UMa-TYPE BINARY STAR UZ CMi

    International Nuclear Information System (INIS)

    UZ CMi was a W-UMa-type binary star found more than 80 years ago. However, it has been neglected in photometric investigations. Here, the first complete light curves in the B, V, R, and I bands are presented and analyzed using the Wilson and Devinney method. It is discovered that UZ CMi is a contact binary (f = 38.4(± 2.3)%) with a mass ratio of 0.45. The derived orbital inclination (i = 87°) indicates that it is a total eclipsing binary, which suggests that the determined parameters are reliable. By using 17 new eclipse times together with those collected from the literature, we found that the general trend of the observed-calculated (O – C) curve shows an upward parabolic variation that corresponds to a long-term increase in the orbital period at a rate of P-dot = +4.1 x 10-8 days yr–1. The continuous increase may be caused by a mass transfer from the less massive component to the more massive one. This suggests that UZ CMi is in the thermal relaxation oscillation controlled stage of the evolutionary scheme proposed by Qian. UZ CMi will oscillate around a critical mass ratio and the contact configuration cannot be broken. After the upward parabolic change was removed, the (O – C)2 curve of the photoelectric and charge-coupled device data revealed a cyclic variation with a small amplitude of 0.0026 days and a period of 21.1 yr. The cyclic change was analyzed for the light-travel time effect via the presence of an extremely cool stellar companion.

  18. Capturing the electromagnetic counterparts of binary neutron star mergers through low-latency gravitational wave triggers

    Science.gov (United States)

    Chu, Q.; Howell, E. J.; Rowlinson, A.; Gao, H.; Zhang, B.; Tingay, S. J.; Boër, M.; Wen, L.

    2016-06-01

    We investigate the prospects for joint low-latency gravitational wave (GW) detection and prompt electromagnetic (EM) follow-up observations of coalescing binary neutron stars (BNSs). For BNS mergers associated with short duration gamma-ray bursts (SGRBs), we for the first time evaluate the feasibility of rapid EM follow-ups to capture the prompt emission, early engine activity, or reveal any potential by-products such as magnetars or fast radio bursts. To achieve our goal, we first simulate a population of coalescing BNSs using realistic distributions of source parameters and estimate the detectability and localization efficiency at different times before merger. We then use a selection of facilities with GW follow-up agreements in place, from low-frequency radio to high-energy γ-ray to assess the prospects of prompt follow-up. We quantify our assessment using observational SGRB flux data extrapolated to be within the horizon distances of the advanced GW interferometric detectors LIGO and Virgo and to the prompt phase immediately following the binary merger. Our results illustrate that while challenging, breakthrough multimessenger science is possible with EM follow-up facilities with fast responses and wide fields-of-view. We demonstrate that the opportunity to catch the prompt stage (detector network could possibly improve the angular resolution by a factor of 2 and thereby contribute significantly to GW-EM multimessenger astronomy.

  19. An extremely fast halo hot subdwarf star in a wide binary system

    CERN Document Server

    Németh, Péter; Irrgang, Andreas; Geier, Stephan; Fürst, Felix; Kupfer, Thomas; Heber, Ulrich

    2016-01-01

    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 ($V=17.92$ mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: $T_{\\rm eff}=30\\,600\\pm500$ K, $\\log{g}=5.57\\pm0.06$ cm s$^{-2}$ and He abundance $\\log(n{\\rm He}/n{\\rm H})=-3.0\\pm0.2$. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of $[{\\rm Fe}/{\\rm H}]=-1.3$. The non-detection of radial velocity variations suggest the orbital period to be a few hundred ...

  20. An autocorrelation method to detect periodic gravitational waves from neutron stars in binary systems

    Science.gov (United States)

    Viceré, Andrea; Yvert, Michel

    2016-08-01

    Rotating, non-axisymmetric neutron stars are expected to emit continuous gravitational waves at a nearly stable frequency. Nowadays about 2500 pulsars have been detected, thanks to their beamed electromagnetic emission, and many more of these objects should exist, whose electromagnetic beam does not include Earth and cannot be detected. The gravitational emission is not beamed, and could be accessible to gravitational observatories, even though no detection as been claimed yet. About half of the pulsars predicted to possibly emit gravitational waves in the frequency range accessible to ground-based interferometers belongs to binary systems; this is an additional complication, because the frequencies of these pulsars are Doppler-shifted due to their orbital motion, and an optimal detection strategy would require a computing power far beyond the present capabilities. We present here an approach which allows searching all-sky for such sources, over a broad range of frequencies, orbital periods and binary system eccentricities, reaching sensitivities potentially good enough to provide candidates for more sophisticated hierarchical detection methods. We test this new technique using real data taken during the first science run of Virgo, and estimating the sensitivity to a set of simulated pulsar signals.

  1. A Search for Close Binaries in the Rho Ophiuchus Star-Forming Region

    CERN Document Server

    Barsony, M; Matthews, K

    2003-01-01

    We have carried out a new, near-infrared speckle imaging survey of 19 members of the young stellar population in the nearby (d=140 pc), Rho Ophiuchi cloud core. Results for four binary and one newly discovered triple system are reported. Data for all known multiple systems among the pre-main-sequence population of Rho Oph are tabulated. We define a "restricted binary fraction", Fbr, and a "restricted companion fraction", Fcr, as counting only those systems most detectable in the present and previous high-resolution near-infrared imaging surveys, having separations between 0.1-1.1 arcsec and K-band magnitude differences, Delta K < 3. Analysis of all the available multiplicity data results in updated values of Fbr=Fcr=24%+/-11% for the Ophiuchus pre-main-sequence population. These values are consistent with the values in the Taurus star-forming region, and Fcr is in excess by a factor of 2 relative to the Main Sequence at the 1-sigma level.

  2. Circumstellar Habitable Zones of Binary Star Systems in the Solar Neighborhood

    CERN Document Server

    Eggl, Siegfried; Funk, Barbara; Georgakarakos, Nikolaos; Haghighipour, Nader

    2012-01-01

    Binary and multiple systems constitute more than half of the total stellar population in the Solar neighborhood (Kiseleva-Eggleton and Eggleton 2001). Their frequent occurrence as well as the fact that more than 70 (Schneider et al. 2011) planets have already been discovered in such configurations - most noteably the telluric companion of alpha Centauri B (Dumusque et al. 2012) - make them interesting targets in the search for habitable worlds. Recent studies (Eggl et al. 2012b, Forgan 2012) have shown, that despite the variations in gravitational and radiative environment, there are indeed circumstellar regions where planets can stay within habitable insolation limits on secular dynamical timescales. In this article we provide habitable zones for 19 near S-Type binary systems from the Hipparchos and WDS catalogues with semimajor axes between 1 and 100 AU. Hereby, we accounted for the combined dynamical and radiative influence of the second star on the Earth-like planet. Out of the 19 systems presented, 17 of...

  3. ON-SKY DEMONSTRATION OF A LINEAR BAND-LIMITED MASK WITH APPLICATION TO VISUAL BINARY STARS

    International Nuclear Information System (INIS)

    We have designed and built the first band-limited coronagraphic mask used for ground-based high-contrast imaging observations. The mask resides in the focal plane of the near-infrared camera PHARO at the Palomar Hale telescope and receives a well-corrected beam from an extreme adaptive optics system. Its performance on-sky with single stars is comparable to current state-of-the-art instruments: contrast levels of ∼10-5 or better at 0.''8 in Ks after post-processing, depending on how well non-common-path errors are calibrated. However, given the mask's linear geometry, we are able to conduct additional unique science observations. Since the mask does not suffer from pointing errors down its long axis, it can suppress the light from two different stars simultaneously, such as the individual components of a spatially resolved binary star system, and search for faint tertiary companions. In this paper, we present the design of the mask, the science motivation for targeting binary stars, and our preliminary results, including the detection of a candidate M-dwarf tertiary companion orbiting the visual binary star HIP 48337, which we are continuing to monitor with astrometry to determine its association.

  4. An M dwarf Companion to an F-type Star in a young main-sequence binary

    CERN Document Server

    Eigmüller, Ph; Csizmadia, Sz; Lehmann, H; Erikson, A; Fridlund, M; Hartmann, M; Hatzes, A; Pasternacki, Th; Rauer, H; Tkachenko, A; Voss, H

    2016-01-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectro- scopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 +- 0.073) Msun and a radius of (1.474 +- 0.040) Rsun. The companion is an M dwarf with a mass of (0.188 +- 0.014) Msun and a radius of (0.234 +- 0.009) Rsun. The orbital period is (1.35121 +- 0:00001)d. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ~250 Myrs. The mass-radius re...

  5. Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences.

    Science.gov (United States)

    Messenger, C; Read, J

    2012-03-01

    Detection of gravitational waves from the inspiral phase of binary neutron star coalescence will allow us to measure the effects of the tidal coupling in such systems. Tidal effects provide additional contributions to the phase evolution of the gravitational wave signal that break a degeneracy between the system's mass parameters and redshift and thereby allow the simultaneous measurement of both the effective distance and the redshift for individual sources. Using the population of O(10(3)-10(7)) detectable binary neutron star systems predicted for 3rd generation gravitational wave detectors, the luminosity distance-redshift relation can be probed independently of the cosmological distance ladder and independently of electromagnetic observations. We conclude that for a range of representative neutron star equations of state the redshift of such systems can be determined to an accuracy of 8%-40% for z<1 and 9%-65% for 1

  6. Red Giants in Eclipsing Binary and Multiple-Star Systems: Modeling and Asteroseismic Analysis of 70 Candidates from Kepler Data

    CERN Document Server

    Gaulme, Patrick; Rawls, Meredith L; Jackiewicz, Jason; Mosser, Benoit; Guzik, Joyce

    2013-01-01

    Red-giant stars are an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions Kepler and CoRoT as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries would provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Hitherto, only 1 case has been discovered with Kepler. We cross-correlated the detected red-giant and eclipsing-binary catalogs from Kepler data to find candidate systems. Light-curve modeling and mean asteroseismic properties are combined to yield measurements of periods, masses, radii,...

  7. Eclipsing binary stars in the Large Magellanic Cloud: results from the EROS-2, OGLE and VMC surveys

    Science.gov (United States)

    Muraveva, T.; Clementini, G.; Maceroni, C.; Evans, C. J.; Moretti, M. I.; Cioni, M.-R. L.; Marquette, J. B.; Ripepi, V.; de Grijs, R.; Groenewegen, M. A. T.; Piatti, A. E.; van Loon, J. Th.

    2014-09-01

    We present a catalogue of 1768 eclipsing binary stars (EBs) detected in the Large Magellanic Cloud (LMC) by the second generation of the EROS survey (hereinafter EROS-2); 493 of them are new discoveries located in outer regions (out of the central bar) of the LMC. These sources were originally included in a list of candidate classical Cepheids (CCs) extracted from the EROS-2 catalogue on the basis of the period (0.89 < 17.82 mag] diagram. After visual inspection of the light curves we reclassified them as eclipsing binaries. They have blue colours (BEROS - REROS < 0.2 mag) hence we classed them as hot eclipsing binaries (HEBs) containing hot massive components: main sequence (MS) stars or blue giants. We present Ks-band light curves for 999 binaries from our sample that have a counterpart in the VISTA near-infrared ESO public survey of the Magellanic Clouds system (VMC). We provide spectral classifications of 13 HEBs with existing spectroscopy. We divided our sample into contact-like binaries and detached/semi-detached systems based on both visual inspection and the parameters of the Fourier decomposition of the light curves and analysed the period-luminosity (PL) relations of the contact-like systems using the REROS and Ks magnitudes at maximum light. The contact-like binaries in our sample do not follow PL relations. We analysed the sample of contact binaries from the OGLE III catalogue and confirmed that PLI and PL_{K_s} sequences are defined only by eclipsing binaries containing a red giant component.

  8. Electromagnetic emission from long-lived binary neutron star merger remnants II: lightcurves and spectra

    CERN Document Server

    Siegel, Daniel M

    2015-01-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality with the ground-based advanced LIGO/Virgo GW detector network starting its first science run this year. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission starting from an early baryonic wind phase and resulting in a final pulsar wind nebula that is confined by the previously ejected material. Lightcurves and spectra are computed for a wide range of post-merger...

  9. Gravitational waves, neutrino emissions, and effects of hyperons in binary neutron star mergers

    CERN Document Server

    Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru

    2012-01-01

    Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that for the nucleonic and hyperonic EOS, a hyper massive neutron star (HMNS) with a long lifetime $(t_{\\rm life}\\gtrsim 10 {\\rm ms})$ is the outcome for the total mass $\\approx 2.7 M_\\odot$. For the total mass $\\approx 3 M_\\odot$, a long-lived (short-lived with $t_{\\rm life}\\approx 3 {\\rm ms}$) HMNS is the outcome for the nucleonic (hyperonic) EOS. It is shown that the typical total neutrino luminosity of the HMNS is $\\sim 3$ -- $6 \\times 10^{53} {\\rm erg /s}$ and the effective amplitude of gravitational waves from the HMNS is 1 -- $4\\times 10^{-22}$ at $f\\approx 2$ -- $3.2 {\\rm kHz}$ for a source of distance of 100 Mpc. During the HMNS phase, characteristic frequencies of gravitational waves shift to a higher frequency for the hyperonic EOS in contrast to the nucleonic EOS in which they r...

  10. Timing the main-sequence-star binary pulsar J1740-3052

    CERN Document Server

    Madsen, E C; Kramer, M; Camilo, F; Hobbs, G B; Janssen, G H; Lyne, A G; Manchester, R N; Possenti, A; Stappers, B W

    2012-01-01

    PSR J1740-3052 is a young pulsar in orbit around a companion that is most likely a B-type main-sequence star. Since its discovery more than a decade ago, data have been taken at several frequencies with instruments at the Green Bank, Parkes, Lovell, and Westerbork telescopes. We measure scattering timescales in the pulse profiles and dispersion measure changes as a function of binary orbital phase and present evidence that both of these vary as would be expected due to a wind from the companion star. Using pulse arrival times that have been corrected for the observed periodic dispersion measure changes, we find a timing solution spanning 1997 November to 2011 March. This includes measurements of the advance of periastron and the change in the projected semimajor axis of the orbit and sets constraints on the orbital geometry. From these constraints, we estimate that the pulsar received a kick of at least ~50 km/s at birth. A quasi-periodic signal is present in the timing residuals with a period of 2.2 times th...

  11. Necessary Conditions for Short Gamma-Ray Burst Production in Binary Neutron Star Mergers

    CERN Document Server

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; De Colle, Fabio; Lee, William H

    2014-01-01

    The central engine of short gamma-ray bursts (sGRBs) is hidden from direct view, operating at a scale much smaller than that probed by the emitted radiation. Thus we must infer its origin not only with respect to the formation of the trigger - the actual astrophysical configuration that is capable of powering a sGRB - but also from the consequences that follow from the various evolutionary pathways that may be involved in producing it. Considering binary neutron star mergers we critically evaluate, analytically and through numerical simulations, whether the neutrino-driven wind produced by the newly formed hyper-massive neutron star can allow the collimated relativistic outflow that follows its collapse to actually produce a sGRB or not. Upon comparison with the observed sGRB duration distribution, we find that collapse cannot be significantly delayed (<= 100 ms) before the outflow is choked, thus limiting the possibility that long-lived hyper-massive remnants can account for these events. In the case of s...

  12. On the binary helium star DY Centauri: Chemical composition and evolutionary state

    CERN Document Server

    Pandey, Gajendra; Jeffery, C Simon; Lambert, David L

    2014-01-01

    DY Cen has shown a steady fading of its visual light by about 1 magnitude in the last 40 years suggesting a secular increase in its effective temperature. We have conducted non-LTE and LTE abundance analyses to determine the star's effective temperature, surface gravity, and chemical composition using high-resolution spectra obtained over two decades. The derived stellar parameters for three epochs suggest that DY Cen has evolved at a constant luminosity and has become hotter by about 5000 K in 23 years. We show that the derived abundances remain unchanged for the three epochs. The derived abundances of the key elements, including F and Ne, are as observed for the extreme helium stars resulting from a merger of an He white dwarf with a C-O white dwarf. Thus, DY Cen by chemical composition appears to be also a product of a merger of two white dwarfs. This appearance seems to be at odds with the recent suggestion that DY Cen is a single-lined spectroscopic binary.

  13. Stacking Star Clusters in M51: Searching for Faint X-Ray Binaries

    CERN Document Server

    Vulic, N; Gallagher, S C

    2012-01-01

    The population of low-luminosity (< 10^35 erg/s) X-Ray Binaries (XRBs) has been investigated in our Galaxy and M31 but not further. To address this problem, we have used data from the Chandra X-Ray Observatory and the Hubble Space Telescope to investigate the faint population of XRBs in the grand-design spiral galaxy M51. A matching analysis found 25 star clusters coincident with 20 X-ray point sources within 1.5" (60 pc). From X-ray and optical color-color plots we determine that this population is dominated by high-mass XRBs. A stacking analysis of the X-ray data at the positions of optically-identified star clusters was completed to probe low-luminosity X-ray sources. No cluster type had a significant detection in any X-ray energy band. An average globular cluster had the largest upper limit, 9.23 x 10^34 erg/s, in the full-band (0.3 - 8 keV) while on average the complete sample of clusters had the lowest upper limit, 6.46 x 10^33 erg/s in the hard-band (2 - 8 keV). We determined average luminosities of...

  14. Modeling Equal and Unequal Mass Binary Neutron Star Mergers Using Public Codes

    CERN Document Server

    De Pietri, Roberto; Maione, Francesco; Löffler, Frank

    2015-01-01

    We present three-dimensional simulations of the dynamics of binary neutron star (BNS) mergers from the late stage of the inspiral process up to $\\sim 20$ ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH). We investigate five equal-mass models of total gravitational mass $2.207$, $2.373$, $2.537$, $2.697$ and $2.854 M_\\odot$, respectively, and four unequal mass models with $M_{\\mathrm{ADM}}\\simeq 2.53\\ M_\\odot$ and $q\\simeq 0.94$, $0.88$, $0.82$, and $0.77$ (where $q = M^{(1)}/M^{(2)}$ is the mass ratio). We use a semi-realistic equation of state (EOS) namely, the seven-segment piece-wise polytropic SLyPP with a thermal component given by $\\Gamma_{th} = 1.8$. We have also compared the resulting dynamics (for one model) using both, the BSSN-NOK and CCZ4 methods for the evolution of the gravitational sector, and also different reconstruction methods for the matter sector, namely PPM, WENO and MP5. Our results show agreement and high resolution, but sup...

  15. Electromagnetic emission from long-lived binary neutron star merger remnants I: formulation of the problem

    CERN Document Server

    Siegel, Daniel M

    2015-01-01

    Binary neutron star (BNS) mergers are the leading model to explain the phenomenology of short gamma-ray bursts (SGRBs), which are among the most luminous explosions in the universe. Recent observations of long-lasting X-ray afterglows of SGRBs challenge standard paradigms and indicate that in a large fraction of events a long-lived neutron star (NS) may be formed rather than a black hole. Understanding the mechanisms underlying these afterglows is necessary in order to address the open questions concerning the nature of SGRB central engines. However, recent theoretical progress has been hampered by the fact that the timescales of interest for the afterglow emission are inaccessible to numerical relativity simulations. Here we present a detailed model to bridge the gap between numerical simulations of the merger process and the relevant timescales for the afterglows, assuming that the merger results in a long-lived NS. This model is formulated in terms of a set of coupled differential equations that follow the...

  16. m =1 instability and gravitational wave signal in binary neutron star mergers

    Science.gov (United States)

    Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos; Motl, Patrick M.

    2016-08-01

    We examine the development and detectability of the m =1 instability in the remnant of binary neutron star mergers. The detection of the gravitational mode associated with the m =1 degree of freedom could potentially reveal details of the equation of state. We analyze the postmerger epoch of simulations of both equal- and nonequal-mass neutron star mergers using three realistic, microphysical equations of state and neutrino cooling. Our studies show such an instability develops generically and within a short dynamical time to strengths that are comparable to or stronger than the m =2 mode, which is the strongest during the early postmerger stage. We estimate the signal to noise ratio that might be obtained for the m =1 mode and discuss the prospects for observing this signal with available Earth-based detectors. Because the m =1 occurs at roughly half the frequency of the more powerful m =2 signal and because it can potentially be long lived, targeted searches could be devised to observe it. We estimate that with constant amplitude direct detection of the mode could occur up to a distance of roughly 14 Mpc, whereas a search triggered by the inspiral signal could extend this distance to roughly 100 Mpc.

  17. Grid Search in Stellar Parameters: a software for spectrum analysis of single stars and binary systems

    CERN Document Server

    Tkachenko, Andrew

    2015-01-01

    The currently operating space missions, as well as those that will be launched in the near future, (will) deliver high-quality data for millions of stellar objects. Since the majority of stellar astrophysical applications still (at least partly) rely on spectroscopic data, an efficient tool for the analysis of medium- to high-resolution spectroscopy is needed. We aim at developing an efficient software package for the analysis of medium- to high-resolution spectroscopy of single stars and those in binary systems. The major requirements are that the code has a high performance, represents the state-of-the-art analysis tool, and provides accurate determinations of atmospheric parameters and chemical compositions for different types of stars. We use the method of atmosphere models and spectrum synthesis, which is one of the most commonly used approaches for the analysis of stellar spectra. Our Grid Search in Stellar Parameters (GSSP) code makes use of the OpenMPI implementation, which makes it possible to run in...

  18. Kepler photometry of KIC 10661783: a binary star with total eclipses and delta Scuti pulsations

    CERN Document Server

    Southworth, John; Aerts, C; Bruntt, H; Lehmann, H; Kim, S -L; Kurtz, D W; Pavlovski, K; Prsa, A; Smalley, B; Gilliland, R L; Christensen-Dalsgaard, J; Kawaler, S D; Kjeldsen, H; Cote, M T; Tenenbaum, P; Twicken, J D

    2011-01-01

    We present Kepler satellite photometry of KIC 10661783, a short-period binary star system which shows total eclipses and multi-periodic delta Scuti pulsations. A frequency analysis of the eclipse-subtracted light curve reveals at least 68 frequencies of which 55 or more can be attributed to pulsation modes. The main limitation on this analysis is the frequency resolution within the 27-day short-cadence light curve. Most of the variability signal lies in the frequency range 18 to 31 c/d, with amplitudes between 0.1 and 4 mmag. One harmonic term (2.f) and a few combination frequencies (f_i+f_j) have been detected. From a plot of the residuals versus orbital phase we assign the pulsations to the primary star in the system. The pulsations were removed from the short-cadence data and the light curve was modelled using the Wilson-Devinney code. We are unable to get a perfect fit due to the residual effects of pulsations and also to the treatment of reflection and reprocessing in the light curve model. A model where...

  19. Binary neutron stars with generic spin, eccentricity, mass ratio, and compactness: Quasi-equilibrium sequences and first evolutions

    Science.gov (United States)

    Dietrich, Tim; Moldenhauer, Niclas; Johnson-McDaniel, Nathan K.; Bernuzzi, Sebastiano; Markakis, Charalampos M.; Brügmann, Bernd; Tichy, Wolfgang

    2015-12-01

    Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasiequilibrium configurations and dynamical evolutions. In this article, we construct quasiequilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the sgrid code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity-reduced data; we present the possibility of computing data for significantly unequal-mass binaries with mass ratios q ≃2 ; and we create equal-mass binaries with individual compactness up to C ≃0.23 . As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a q =2.06 mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. We find that mass transfer from the companion star sets in a few revolutions before merger and a rest mass of ˜10-2M⊙ is transferred between the two stars. This amount of mass accretion corresponds to ˜1051 ergs of accretion energy. This configuration also ejects a large amount of material during merger (˜7.6 ×1 0-2M⊙), imparting a substantial kick to the remnant neutron star. Second, we simulate the first merger of a precessing binary neutron star. We present the dominant modes of the gravitational waves for the precessing simulation, where a clear imprint of the precession is visible in the (2,1) mode. Finally, we quantify the effect of an eccentricity-reduction procedure on the gravitational waveform. The procedure improves the waveform quality and should be employed in future precision studies. However, one also needs to reduce other errors in the waveforms, notably truncation errors, in order for the improvement due to

  20. Binary neutron star merger simulations with different initial orbital frequency and equation of state

    Science.gov (United States)

    Maione, F.; De Pietri, R.; Feo, A.; Löffler, F.

    2016-09-01

    We present results from three-dimensional general relativistic simulations of binary neutron star coalescences and mergers using public codes. We considered equal mass models where the baryon mass of the two neutron stars is 1.4{M}ȯ , described by four different equations of state (EOS) for the cold nuclear matter (APR4, SLy, H4, and MS1; all parametrized as piecewise polytropes). We started the simulations from four different initial interbinary distances (40,44.3,50, and 60 km), including up to the last 16 orbits before merger. That allows us to show the effects on the gravitational wave (GW) phase evolution, radiated energy and angular momentum due to: the use of different EOS, the orbital eccentricity present in the initial data and the initial separation (in the simulation) between the two stars. Our results show that eccentricity has a major role in the discrepancy between numerical and analytical waveforms until the very last few orbits, where ‘tidal’ effects and missing high-order post-Newtonian coefficients also play a significant role. We test different methods for extrapolating the GW signal extracted at finite radii to null infinity. We show that an effective procedure for integrating the Newman–Penrose {\\psi }4 signal to obtain the GW strain h is to apply a simple high-pass digital filter to h after a time domain integration, where only the two physical motivated integration constants are introduced. That should be preferred to the more common procedures of introducing additional integration constants, integrating in the frequency domain or filtering {\\psi }4 before integration.

  1. Adiabatic Mass Loss in Binary Stars. II. From Zero-Age Main Sequence to the Base of the Giant Branch

    CERN Document Server

    Ge, Hongwei; Chen, Xuefei; Han, Zhanwen

    2015-01-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars of mass 0.10 Msun to 100 Msun from the zero age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal time scale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among inte...

  2. Star-formation history and X-ray binary populations: the case of the Large Magellanic Cloud

    CERN Document Server

    Antoniou, Vallia

    2016-01-01

    In the present work we investigate the link between high-mass X-ray binaries (HMXBs) and star formation in the Large Magellanic Cloud (LMC), our nearest star-forming galaxy. Using optical photometric data, we identify the most likely counterpart of 44 X-ray sources. Among the 40 HMXBs classified in this work, we find 33 Be/X-ray binaries, and 4 supergiant XRBs. Using this census and the published spatially resolved star-formation history map of the LMC, we find that the HMXBs (and as expected the X-ray pulsars) are present in regions with star-formation bursts $\\sim$6-25 Myr ago, in contrast to the Small Magellanic Cloud (SMC), for which this population peaks at later ages ($\\sim$25-60 Myr ago). We also estimate the HMXB production rate to be equal to 1 system per $\\sim23.0_{-4.1}^{+4.4}\\times10^{-3}$ Mo/yr, or 1 system per $\\sim$143 Mo of stars formed during the associated star-formation episode. Therefore, the formation efficiency of HMXBs in the LMC is $\\sim$17 times lower than that in the SMC. We attribut...

  3. An Observational Study of Tidal Synchronization in Solar-Type Binary Stars in the Open Clusters M35 and M34

    OpenAIRE

    Meibom, Soren; Mathieu, Robert D.; Stassun, Keivan G.

    2006-01-01

    We present rotation periods for the solar-type primary stars in 13 close (a~< 5 AU) single-lined spectroscopic binaries with known orbital periods (P) and eccentricities (e). All binaries are members of the open clusters M35 (150Myr) and M34 (250Myr). The binary orbital parameters and the rotation periods of the primary stars were determined from time-series spectroscopy and time-series photometry, respectively. Knowledge of the ages, orbital periods, and eccentricities of these binaries comb...

  4. An Observational Study of Tidal Synchronization in Solar-Type Binary Stars in the Open Clusters M35 and M34

    CERN Document Server

    Meibom, S; Stassun, K G; Meibom, Soren; Mathieu, Robert D.; Stassun, Keivan G.

    2006-01-01

    We present rotation periods for the solar-type primary stars in 13 close (a \\~0) with the orbital motion. Of the six closest binaries two with circular orbits are not synchronized, one being subsynchronous and one being supersynchronous, and the primary stars in two binaries with eccentric orbits are rotating more slowly than pseudosynchronism. The remaining two binaries have reached the equilibrium state of both a circularized orbit and synchronized rotation. As a set, the six binaries present a challenging case study for tidal evolution theory, which in particular does not predict subsynchronous rotation in such close systems.

  5. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  6. Main parameters of neutron stars from quasi-periodic oscillations in low mass X-ray binaries

    CERN Document Server

    Boshkayev, Kuantay; Muccino, Marco

    2016-01-01

    We investigate the kilohertz quasi-periodic oscillations of low-mass X-ray binaries within the Hartle-Thorne spacetime. On the basis the relativistic precession model we extract the total mass $M$, angular momentum $J$, and quadrupole moment $Q$ of a compact object in a low-mass X-ray binary by analyzing the data of the Z -source GX 5-1. In view of the recent neutron star model we compute the radius, angular velocity and other parameters of this source by imposing the observational and theoretical constraints on the mass-radius relation.

  7. The Probability Distribution of Binary Pulsar Coalescence Rates. I. Double Neutron Star Systems in the Galactic Field

    OpenAIRE

    Kim, C.; Kalogera, V.; Lorimer, D.R.

    2002-01-01

    Estimates of the Galactic coalescence rate (R) of close binaries with two neutron stars (NS-NS) are known to be uncertain by large factors (about two orders of magnitude) mainly due to the small number of systems detected as binary radio pulsars. We present an analysis method that allows us to estimate the Galactic NS-NS coalescence rate using the current observed sample and, importantly, to assign a statistical significance to these estimates and to calculate the allowed ranges of values at ...

  8. Compact Binary Assembly in the First Nuclear Star Clusters and r-Process Synthesis in the Early Universe

    CERN Document Server

    Ramirez-Ruiz, Enrico; Roberts, Luke F; Lee, William H; Saladino-Rosas, Martha I

    2014-01-01

    Investigations of element abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-material in CEMP stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP stars.

  9. Rotten Egg nebula: the magnetic field of a binary evolved star

    Science.gov (United States)

    Leal-Ferreira, M. L.; Vlemmings, W. H. T.; Diamond, P. J.; Kemball, A.; Amiri, N.; Desmurs, J.-F.

    2012-04-01

    Context. Most of the planetary nebulae (PNe) observed are not spherical. The loss of spherical symmetry occurs somewhere between the asymptotic giant branch (AGB) phase and the PNe phase. The cause of this change of morphology is not yet well understood, but magnetic fields are one of the possible agents. The origin of the magnetic field remains to be determined, and potentially requires the presence of a massive companion to the AGB star. Therefore, further detections of the magnetic field around evolved stars, and in particular those thought to be part of a binary system, are crucial to improve our understanding of the origin and role of magnetism during the late stages of stellar evolution. One such binary is the pre-PN OH231.8+4.2, around which a magnetic field has previously been detected in the OH maser region of the outer circumstellar envelope. Aims: We aim to detect and infer the properties of the magnetic field of the pre-PN OH231.8+4.2 in the H2O maser region that probes the region close to the central star. This source is a confirmed binary with collimated outflows and an envelope containing several maser species. Methods: In this work we observed the 61,6-52,3 H2O maser rotational transition to determine its linear and circular polarization. As a result of Zeeman splitting, the properties of the magnetic field can be derived from maser polarization analysis. The H2O maser emissions of OH231.8+4.2 are located within the inner regions of the source (at a few tens of AU). Results: We detected 30 H2O maser features around OH231.8+4.2. The masers occur in two distinct regions that are moving apart with a velocity on the sky of 2.3 mas/year. Taking into account the inclination angle of the source with the line of sight, this corresponds to an average separation velocity of 21 km s-1. Based on the velocity gradient of the maser emission, the masers appear to be dragged along the direction of the nebula jet. Linear polarization is present in three of the

  10. Kepler Eclipsing Binary Stars. VI. Identification of Eclipsing Binaries in the K2 Campaign 0 Data-set

    CERN Document Server

    LaCourse, Daryll M; Jacobs, Thomas L; Winarski, Troy; Boyajian, Tabetha S; Rappaport, Saul A; Sanchis-Ojeda, Roberto; Conroy, Kyle E; Nelson, Lorne; Barclay, Tom; Fischer, Debra A; Schmitt, Joseph R; Wang, Ji; Prša, Andrej; Stassun, Keivan G; Pepper, Joshua; Coughlin, Jeffrey L; Shporer, Avi

    2015-01-01

    The original Kepler mission observed and characterized over 2400 eclipsing binaries in addition to its prolific exoplanet detections. Despite the mechanical malfunction and subsequent non-recovery of two reaction wheels used to stabilize the instrument, the Kepler satellite continues collecting data in its repurposed K2 mission surveying a series of fields along the ecliptic plane. Here we present an analysis of the first full baseline K2 data release: the Campaign 0 data-set. In the 7761 light curves, we have identified a total of 207 eclipsing binaries. Of these, 97 are new discoveries that were not previously identified. Our pixel level analysis of these objects has also resulted in identification of several false positive eclipsing binaries and the serendipitous discovery of three short period exoplanet candidates. We provide catalog cross-matched source identifications, orbital periods, morphologies and ephemerides for these eclipsing systems. We also describe the incorporation of the sample into the Kep...

  11. Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the SMC

    CERN Document Server

    Klus, H; Coe, M J; Corbet, R H D; Townsend, L J

    2013-01-01

    We report on the long term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use this data to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 seconds, have magnetic fields over the quantum critical level of 4.4x10^13 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, on the order of 10^6-10^10 G, comparable to the fields of neutron stars in low mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.

  12. Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the SMC

    Science.gov (United States)

    Klus, H.; Ho, W. C. G.; Coe, M. J.; Corbet, R. H. D.; Townsend, L. J.

    2014-01-01

    We report on the long term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use this data to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 seconds, have magnetic fields over the quantum critical level of 4.4×1013 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, on the order of 106-1010 G, comparable to the fields of neutron stars in low mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.

  13. Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the SMC

    Directory of Open Access Journals (Sweden)

    Klus H.

    2014-01-01

    Full Text Available We report on the long term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use this data to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 seconds, have magnetic fields over the quantum critical level of 4.4×1013 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, on the order of 106-1010 G, comparable to the fields of neutron stars in low mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.

  14. V2368 Ophiuchi: an eclipsing and double-lined spectroscopic binary used as a photometric comparison star for U Ophiuchi

    Czech Academy of Sciences Publication Activity Database

    Harmanec, P.; Božic, H.; Mayer, P.; Eenens, P.; Brož, M.; Wolf, M.; Yang, S.; Šlechta, Miroslav; Ruždjak, D.; Sudar, D.; Ak, H.

    2011-01-01

    Roč. 531, July (2011), A49/1-A49/10. ISSN 0004-6361 R&D Projects: GA ČR GD205/08/H005; GA ČR GAP209/10/0967 Grant ostatní: GA ČR(CZ) GA205/06/0304 Institutional research plan: CEZ:AV0Z10030501 Keywords : early-type stars * close binaries stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  15. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun;

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappear...... state changes in the similar transition systems PSR J1824-2452I and XSS J1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk....

  16. Asteroseismic probing of internal rotation in hot B subdwarf stars: Testing spin-orbit synchronism in two close binary systems

    International Nuclear Information System (INIS)

    We present internal rotation profiles derived from asteroseismology for the hot pulsating B subdwarf stars PG 1336-018 and Feige 48. These two pulsators are primaries of close binary systems of known orbital period and, therefore, provide laboratories to test, for the first time, spin-orbit synchronization as a function of depth. We show that PG 1336-018 and Feige 48 clearly rotate as solid bodies with periods equal to their orbital periods from the surface down to at least ∼ 0.5 and ∼ 0.3 their radius, respectively. Deep tidal locking has therefore developed within the relatively short lifetime of these stars (∼ 108 yr).

  17. The Benchmark Eclipsing Binary V530 Ori: A Critical Test of Magnetic Evolution Models for Low-Mass Stars

    CERN Document Server

    Torres, Guillermo; Pavlovski, Kresimir; Feiden, Gregory A; Sabby, Jeffrey A; Bruntt, Hans; Clausen, Jens Viggo

    2015-01-01

    We report accurate measurements of the physical properties (mass, radius, temperature) of components of the G+M eclipsing binary V530 Ori. The M-type secondary shows a larger radius and a cooler temperature than predicted by standard stellar evolution models, as has been found for many other low-mass stars and ascribed to the effects of magnetic activity and/or spots. We show that models from the Dartmouth series that incorporate magnetic fields are able to match the observations with plausible field strengths of 1-2 kG, consistent with a rough estimate we derive for that star.

  18. Analytical model of strange star in the low-mass X-ray binary 4U 1820-30

    OpenAIRE

    Kalam, Mehedi; Rahaman, Farook; Molla, Sajahan; Jafry, Md. Abdul Kayum(Department of Physics, Shibpur Dinobundhoo Institution (College), 711102, Howrah , West Bengal, India); Hossein, Sk. Monowar

    2014-01-01

    In this article, we propose a model for a realistic strange star under Tolman VII metric (Tolman, Phys Rev 55:364, 1939 ). Here the field equations are reduced to a system of three algebraic equations for anisotropic pressure. Mass, central density and surface density of strange star in the low-mass X-ray binary 4U 1820-30 are matched with the observational data according to our model. Strange materials clearly satisfy the stability condition (i.e. sound velocities < 1) and TOV equation. H...

  19. Modeling equal and unequal mass binary neutron star mergers using public codes

    Science.gov (United States)

    De Pietri, Roberto; Feo, Alessandra; Maione, Francesco; Löffler, Frank

    2016-03-01

    We present three-dimensional simulations of the dynamics of binary neutron star mergers from the late stage of the inspiral process up to ˜20 ms after the system has merged, either to form a hypermassive neutron star or a rotating black hole. We investigate five equal mass models of total gravitational mass 2.207, 2.373, 2.537, 2.697, and 2.854 M⊙, respectively, and four unequal mass models with MADM≃2.53 M⊙ and q ≃0.94 , 0.88, 0.83, and 0.77 (where q =M(1 )/M(2 ) is the mass ratio). We use a semirealistic equation of state, namely, the seven-segment piecewise polytropic SLyPP with a thermal component given by Γth=1.8 . We have also compared the resulting dynamics (for one model) using both the BSSN-NOK and CCZ4 methods for the evolution of the gravitational sector and also different reconstruction methods for the matter sector, namely, PPM, WENO, and MP5. Our results show agreement at high resolution, but superiority of BSSN-NOK supplemented by WENO reconstruction at lower resolutions. One of the important characteristics of the present investigation is that for the first time it has been done using only publicly available open source software: the Einstein Toolkit code, deployed for the dynamical evolution, and the LORENE code, for the generation of the initial models. All of the source code and parameters used for the simulations have been made publicly available. This not only makes it possible to rerun and reanalyze our data but also enables others to directly build upon this work for future research.

  20. Electromagnetic Emission from Long-lived Binary Neutron Star Merger Remnants. I. Formulation of the Problem

    Science.gov (United States)

    Siegel, Daniel M.; Ciolfi, Riccardo

    2016-03-01

    Binary neutron star (BNS) mergers are the leading model to explain the phenomenology of short gamma-ray bursts (SGRBs). Recent observations of long-lasting X-ray afterglows of SGRBs challenge standard paradigms and indicate that in a large fraction of events a long-lived neutron star (NS) may be formed rather than a black hole. Understanding the mechanisms underlying these afterglows is necessary in order to address the open questions concerning the nature of SGRB central engines. However, recent theoretical progress has been hampered by the fact that the timescales of interest for the afterglow emission are inaccessible to numerical relativity simulations. Here we present a detailed model to bridge the gap between numerical simulations of the merger process and the relevant timescales for the afterglows, assuming that the merger results in a long-lived NS. This model is formulated in terms of a set of coupled differential equations that follow the evolution of the post-merger system and predict its electromagnetic (EM) emission in a self-consistent way, starting from initial data that can be extracted from BNS merger simulations. The model presented here also allows us to search for suitable EM counterparts for multimessenger astronomy, which is expected to become reality within the next few years thanks to ground-based GW detectors such as advanced LIGO and Virgo. This paper discusses the formulation and implementation of the model. In a companion paper, we employ this model to predict the EM emission from ∼ {10}-2 to ∼ {10}7 {{s}} after a BNS merger and discuss the implications in the context of SGRBs and multimessenger astronomy.