WorldWideScience

Sample records for binary radio pulsars

  1. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); De Vito, M. A. [Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  2. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  3. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  4. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  5. Models for the formation of binary and millisecond radio pulsars

    International Nuclear Information System (INIS)

    van den Heuvel, E.P.J.

    1984-01-01

    The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of: (i) decay of the surface dipole component of neutron star magnetic fields on a timescale of (2-5).10 6 yrs, in combination with: (ii) spin up of the rotation of the neutron star during a subsequent mass-transfer phase. The two observed classes of binary radio pulsars (very close and very wide systems, respectively) are expected to have been formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a fairly massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (approx. 0.3 Msub solar) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains why PSR 1953+29 has a millisecond rotation period and why PSR 0820+02 has not. Binary coalescence models for the formation of the 1.5 millisecond pulsar appear to be viable. The companion to the neutron star may have been a low-mass red dwarf, a neutron star, or a massive (> 0.7 Msub solar) white dwarf. In the red-dwarf case the progenitor system probably was a CV binary in which the white dwarf collapsed by accretion. 66 references, 6 figures, 1 table

  6. Algorithms for searching Fast radio bursts and pulsars in tight binary systems.

    Science.gov (United States)

    Zackay, Barak

    2017-01-01

    Fast radio bursts (FRB's) are an exciting, recently discovered, astrophysical transients which their origins are unknown.Currently, these bursts are believed to be coming from cosmological distances, allowing us to probe the electron content on cosmological length scales. Even though their precise localization is crucial for the determination of their origin, radio interferometers were not extensively employed in searching for them due to computational limitations.I will briefly present the Fast Dispersion Measure Transform (FDMT) algorithm,that allows to reduce the operation count in blind incoherent dedispersion by 2-3 orders of magnitude.In addition, FDMT enables to probe the unexplored domain of sub-microsecond astrophysical pulses.Pulsars in tight binary systems are among the most important astrophysical objects as they provide us our best tests of general relativity in the strong field regime.I will provide a preview to a novel algorithm that enables the detection of pulsars in short binary systems using observation times longer than an orbital period.Current pulsar search programs limit their searches for integration times shorter than a few percents of the orbital period.Until now, searching for pulsars in binary systems using observation times longer than an orbital period was considered impossible as one has to blindly enumerate all options for the Keplerian parameters, the pulsar rotation period, and the unknown DM.Using the current state of the art pulsar search techniques and all computers on the earth, such an enumeration would take longer than a Hubble time. I will demonstrate that using the new algorithm, it is possible to conduct such an enumeration on a laptop using real data of the double pulsar PSR J0737-3039.Among the other applications of this algorithm are:1) Searching for all pulsars on all sky positions in gamma ray observations of the Fermi LAT satellite.2) Blind searching for continuous gravitational wave sources emitted by pulsars with

  7. Millisecond radio pulsars in globular clusters

    Science.gov (United States)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  8. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    Science.gov (United States)

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  9. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  10. THE QUASI-ROCHE LOBE OVERFLOW STATE IN THE EVOLUTION OF CLOSE BINARY SYSTEMS CONTAINING A RADIO PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G.; De Vito, M. A. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2015-01-01

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.

  11. Black Hole/Pulsar Binaries in the Galaxy

    Science.gov (United States)

    Shao, Yong; Li, Xiang-Dong

    2018-04-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disk. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 Myr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution duo to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3 - 80 BH/pulsar binaries in the Galactic disk and around 10% of them could be detected by the Five-hundred-meter Aperture Spherical radio Telescope.

  12. Black hole/pulsar binaries in the Galaxy

    Science.gov (United States)

    Shao, Yong; Li, Xiang-Dong

    2018-06-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.

  13. The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview

    Science.gov (United States)

    Keane, E. F.; Barr, E. D.; Jameson, A.; Morello, V.; Caleb, M.; Bhandari, S.; Petroff, E.; Possenti, A.; Burgay, M.; Tiburzi, C.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C.; Jankowski, F.; Johnston, S.; Kramer, M.; Levin, L.; Ng, C.; van Straten, W.; Krishnan, V. Venkatraman

    2018-01-01

    We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.

  14. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    Science.gov (United States)

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be gravitational waves. Copyright © 2015, American Association for the Advancement of Science.

  15. Monte Carlo simulations of radio pulsars and their progenitors

    International Nuclear Information System (INIS)

    Dewey, R.J.; Cordes, J.M.

    1987-01-01

    Standard models of binary evolution were applied to a model of the main-sequence population to trace the paths by which a massive star may evolve into a neutron star. Using three different models of binary evolution, the relative number of neutron stars formed by each path was calculated. It was found that none of the models were able to reproduce both the observed velocity distribution of radio pulsars and the observed incidence of binary pulsars. 59 references

  16. Swings between rotation and accretion power in a binary millisecond pulsar.

    Science.gov (United States)

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  17. The Velocity Distribution of Isolated Radio Pulsars

    Science.gov (United States)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  18. Spin-down of radio millisecond pulsars at genesis.

    Science.gov (United States)

    Tauris, Thomas M

    2012-02-03

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  19. Binary millisecond pulsar discovery via gamma-ray pulsations.

    Science.gov (United States)

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  20. Evolution of redback radio pulsars in globular clusters

    Science.gov (United States)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.

    2017-02-01

    Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims: We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods: We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results: We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions: The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration.

  1. PSR J1755-2550: a young radio pulsar with a massive, compact companion

    Science.gov (United States)

    Ng, C.; Kruckow, M. U.; Tauris, T. M.; Lyne, A. G.; Freire, P. C. C.; Ridolfi, A.; Caiazzo, I.; Heyl, J.; Kramer, M.; Cameron, A. D.; Champion, D. J.; Stappers, B.

    2018-06-01

    Radio pulsars found in binary systems with short orbital periods are usually fast spinning as a consequence of recycling via mass transfer from their companion stars; this process is also thought to decrease the magnetic field of the neutron star being recycled. Here, we report on timing observations of the recently discovered binary PSR J1755-2550 and find that this pulsar is an exception: with a characteristic age of 2.1 Myr, it is relatively young; furthermore, with a spin period of 315 ms and a surface magnetic field strength at its poles of 0.88 × 1012 G, the pulsar shows no sign of having been recycled. Based on its timing and orbital characteristics, the pulsar either has a massive white dwarf (WD) or a neutron star (NS) companion. To distinguish between these two cases, we searched radio observations for a potential recycled pulsar companion and analysed archival optical data for a potential WD companion. Neither work returned conclusive detections. We apply population synthesis modelling and find that both solutions are roughly equally probable. Our population synthesis also predicts a minimum mass of 0.90 M⊙ for the companion star to PSR J1755-2550 and we simulate the systemic runaway velocities for the resulting WDNS systems which may merge and possibly produce Ca-rich supernovae. Whether PSR J1755-2550 hosts a WD or a NS companion star, it is certainly a member of a rare subpopulation of binary radio pulsars.

  2. Radio-quiet Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Lupin Chun-Che Lin

    2016-09-01

    Full Text Available A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400 of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on are also to specified discuss their common and specific features.

  3. GMRT Discovery of A Millisecond Pulsar in a Very Eccentric Binary System

    OpenAIRE

    Freire, Paulo C.; Gupta, Yashwant; Ransom, Scott M.; Ishwara-Chandra, C. H.

    2004-01-01

    We report the discovery of the binary millisecond pulsar J0514-4002A, which is the first known pulsar in the globular cluster NGC 1851 and the first pulsar discovered using the Giant Metrewave Radio Telescope (GMRT). The pulsar has a rotational period of 4.99 ms, an orbital period of 18.8 days, and the most eccentric pulsar orbit yet measured (e = 0.89). The companion has a minimum mass of 0.9 M_sun and its nature is presently unclear. After accreting matter from a low-mass companion star whi...

  4. New binary pulsar in a highy eccentric orbit

    International Nuclear Information System (INIS)

    Stokes, G.H.; Taylor, J.H.; Dewey, R.J.

    1985-01-01

    We report the discovery of PSR 2303+46, the fifth radio pulsar known to be in a gravitationally bound orbit around another star. The pulsar period (1.066 s) and the orbital eccentricity (0.658) are the largest amount the five binary systems, while the orbital period (12./sup d/34) lies near the middle of the range. Evolutionary considerations suggest strongly that the companion is another neutron star. The general relativistic precession of periastron should be observable within 1 or 2 yr and, when measured, will specify the total mass of the two stars

  5. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu [Institute of Theory and Computation, Center for Astrophysics, Harvard University 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-10

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The short temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.

  6. Probing the properties of the pulsar wind via studying the dispersive effects in the pulses from the pulsar companion in a double neutron-star binary system

    Science.gov (United States)

    Yi, Shu-Xu; Cheng, K.-S.

    2017-12-01

    The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.

  7. Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus [Centre for Space Research, North–West University, Potchefstroom (South Africa); Harding, Alice K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Baring, Matthew G., E-mail: zwadiasingh@gmail.com [Department of Physics and Astronomy, Rice University, Houston, TX 77251 (United States)

    2017-04-20

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  8. Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries

    Science.gov (United States)

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.

    2017-01-01

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  9. CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES

    Science.gov (United States)

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.

    2018-01-01

    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167

  10. The Highly Relativistic Binary Pulsar PSR J0737-3039A: Discovery and Implications

    OpenAIRE

    Burgay, M.; D'Amico, N.; Possenti, A.; Manchester, R. N.; Lyne, A. G.; Joshi, B. C.; McLaughlin, M. A.; Kramer, M.; Sarkissian, J. M.; Camilo, F.; Kalogera, V.; Kim, C.; Lorimer, D. R.

    2004-01-01

    PSR J0737-3039A is a millisecond pulsar with a spin period of 22.7 ms included in a double-neutron star system with an orbital period of 2.4 hrs. Its companion has also been detected as a radio pulsar, making this binary the first known double-pulsar system. Its discovery has important implications for relativistic gravity tests, gravitational wave detection and plasma physics. Here we will shortly describe the discovery of the first pulsar in this unique system and present the first results ...

  11. The Discovery of the Most Accelerated Binary Pulsar

    OpenAIRE

    Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.

    2018-01-01

    Pulsars in relativistic binary systems have emerged as fantastic natural laboratories for testing theories of gravity, the most prominent example being the double pulsar, PSR J0737$-$3039. The HTRU-South Low Latitude pulsar survey represents one of the most sensitive blind pulsar surveys taken of the southern Galactic plane to date, and its primary aim has been the discovery of new relativistic binary pulsars. Here we present our binary pulsar searching strategy and report on the survey's fla...

  12. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  13. LMXB AND IMXB EVOLUTION: I. THE BINARY RADIO PULSAR PSR J1614-2230

    International Nuclear Information System (INIS)

    Lin Jinrong; Rappaport, S.; Podsiadlowski, Ph.; Nelson, L.; Paxton, B.; Todorov, P.

    2011-01-01

    We have computed an extensive grid of binary evolution tracks to represent low- and intermediate-mass X-ray binaries (LMXBs and IMXBs). The grid includes 42,000 models which cover 60 initial donor masses over the range of 1-4 M sun and, for each of these, 700 initial orbital periods over the range of 10-250 hr. These results can be applied to understanding LMXBs and IMXBs: those that evolve analogously to cataclysmic variables, that form ultracompact binaries with P orb in the range of 6-50 minutes, and that lead to wide orbits with giant donors. We also investigate the relic binary recycled radio pulsars into which these systems evolve. To evolve the donor stars in this study, we utilized a newly developed stellar evolution code called 'MESA' that was designed, among other things, to be able to handle very low mass and degenerate donors. This first application of the results is aimed at an understanding of the newly discovered pulsar PSR J1614-2230 which has a 1.97 M sun neutron star, P orb = 8.7 days, and a companion star of 0.5 M sun . We show that (1) this system is a cousin to the LMXB Cyg X-2; (2) for neutron stars of canonical birth mass 1.4 M sun , the initial donor stars which produce the closest relatives to PSR J1614-2230 have a mass between 3.4 and 3.8 M sun ; (3) neutron stars as massive as 1.97 M sun are not easy to produce in spite of the initially high mass of the donor star, unless they were already born as relatively massive neutron stars; (4) to successfully produce a system like PSR J1614-2230 requires a minimum initial neutron-star mass of at least 1.6 ± 0.1 M sun , as well as initial donor masses and P orb of ∼4.25 ± 0.10 M sun and ∼49 ± 2 hr, respectively; and (5) the current companion star is largely composed of CO, but should have a surface H abundance of ∼10%-15%.

  14. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Langston, Glen [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  15. Giant pulses of pulsar radio emission

    OpenAIRE

    Kuzmin, A. D.

    2007-01-01

    Review report of giant pulses of pulsar radio emission, based on our detections of four new pulsars with giant pulses, and the comparative analysis of the previously known pulsars with giant pulses, including the Crab pulsar and millisecond pulsar PSR B1937+21.

  16. Population Studies of Radio and Gamma-Ray Pulsars

    Science.gov (United States)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  17. Asymmetric supernova explosions and the origin of binary pulsars

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1978-01-01

    The author investigates the effect of asymmetric supernova explosions on the orbital parameters of binary systems with a compact component. Such explosions are related to the origin of binary pulsars. The degree of asymmetry of the explosion is represented by the kick velocity gained by the exploding star due to the asymmetric mass ejection. The required kick velocity to produce the observed parameters of the binary pulsar PSR 1913 + 16 should be larger than approximately 80 km s -1 if the mass of the exploding star is larger than approximately 4 solar masses. The mean survival probability of the binary system ( ) is examined for various degrees of asymmetry in the explosion. The rare occurrence of a binary pulsar does not neccessarily imply that such a probability is low since not all pulsars have originated in a binary system. Assuming the birth rate of pulsars by Taylor and Manchester (1977), it is derived that would be as high as 0.25. Such values of can be obtained if the mass of the exploding stars is, in general, not large (< approximately 10 solar masses). (Auth.)

  18. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary.

    Science.gov (United States)

    Main, Robert; Yang, I-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions 1,2 . Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts 3-5 . As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow 7-9 . During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .

  19. A RADIO SEARCH FOR PULSAR COMPANIONS TO SLOAN DIGITAL SKY SURVEY LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Camilo, Fernando; Silvestri, Nicole M.; Anderson, Scott F.; Kleinman, S. J.; Liebert, James W.

    2009-01-01

    We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M sun ) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive white dwarf (WD) or a neutron star (NS) as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs, suggesting that the SDSS LMWDs may have NS companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al., who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as 'ordinary' WDs). We discuss the constraints our nondetections place on the probability P MSP that the companion to a given LMWD is a radio pulsar in the context of the luminosity and acceleration limits of our search; we find that P MSP +4 -2 %.

  20. THE EINSTEIN-HOME SEARCH FOR RADIO PULSARS AND PSR J2007+2722 DISCOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.; Knispel, B.; Aulbert, C.; Bock, O.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B. [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Cordes, J. M.; Brazier, A.; Chatterjee, S. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); Hessels, J. W. T. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Anderson, D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Demorest, P. B. [NRAO (National Radio Astronomy Observatory), Charlottesville, VA 22903 (United States); Gotthelf, E. V. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hammer, D. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A2T8 (Canada); Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); McLaughlin, M. A., E-mail: bruce.allen@aei.mpg.de [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); and others

    2013-08-20

    Einstein-Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein-Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least {approx}100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries.

  1. Radio spectra of pulsars. Pt. 1

    International Nuclear Information System (INIS)

    Izekova, V.A.; Kuzmin, A.D.; Malofeev, V.M.; Shitov, Yu.P.

    1981-01-01

    The results of flux pulsar radioemission measurements at meter wavelength, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value is vsub(m) = 130 +- 80 MHz. Averaged on many pulsars, the spectral index is negative in the 39-61 MHz frequency range (anti ALPHA 39 sub(-) 61 = -1.4 +- 0.4) and passes through zero at frequencies of about 100 MHz, becoming positive in the 100-400 MHz frequency range. It was noticed that the spectral index in the 100-400 MHz interval depends upon such pulsar periods as α 100 sub(-) 400 = 0.7 log p + 0.9. Using the spectra, more precise radio luminosities of pulsars have been computed. (orig.)

  2. The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array

    Science.gov (United States)

    Stappers, B. W.; Keane, E. F.; Kramer, M.; Possenti, A.; Stairs, I. H.

    2018-05-01

    Pulsars are highly magnetized and rapidly rotating neutron stars. As they spin, the lighthouse-like beam of radio emission from their magnetic poles sweeps across the Earth with a regularity approaching that of the most precise clocks known. This precision combined with the extreme environments in which they are found, often in compact orbits with other neutron stars and white dwarfs, makes them excellent tools for studying gravity. Present and near-future pulsar surveys, especially those using the new generation of telescopes, will find more extreme binary systems and pulsars that are more precise `clocks'. These telescopes will also greatly improve the precision to which we can measure the arrival times of the pulses. The Square Kilometre Array will revolutionize pulsar searches and timing precision. The increased number of sources will reveal rare sources, including possibly a pulsar-black hole binary, which can provide the most stringent tests of strong-field gravity. The improved timing precision will reveal new phenomena and also allow us to make a detection of gravitational waves in the nanohertz frequency regime. It is here where we expect to see the signature of the binary black holes that are formed as galaxies merge throughout cosmological history. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  3. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Burgay, M.; Possenti, A. [INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Esposito, P.; Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Israel, G. [INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Kerr, M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Sarkissian, J. [CSIRO Astronomy and Space Science, Parkes Observatory, P.O. Box 276, Parkes, NSW 2870 (Australia); Scholz, P., E-mail: archibald@astro.utoronto.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada)

    2017-11-10

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.

  4. The Binary Pulsar: Gravity Waves Exist.

    Science.gov (United States)

    Will, Clifford

    1987-01-01

    Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)

  5. A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    International Nuclear Information System (INIS)

    Kool, M. de; Heuvel, E.P.J. van den

    1985-01-01

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries. (U.K.)

  6. Binary and Millisecond Pulsars at the New Millennium

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2001-01-01

    Full Text Available We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.

  7. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ronaldo V.; Malheiro, M. [Departamento de Física, Instituto Tecnológico de Aeronáutica, ITA - DCTA, Vila das Acácias, São José dos Campos, 12228-900 SP (Brazil); Coelho, J. G. [INPE - Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Av. dos Astronautas 1758, São José dos Campos, 12227-010 SP (Brazil)

    2015-12-17

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  8. Reconciling Optical and Radio Observations of the Binary Millisecond Pulsar PSR J1640+2224

    Science.gov (United States)

    Vigeland, Sarah J.; Deller, Adam T.; Kaplan, David L.; Istrate, Alina G.; Stappers, Benjamin W.; Tauris, Thomas M.

    2018-03-01

    Previous optical and radio observations of the binary millisecond pulsar PSR J1640+2224 have come to inconsistent conclusions about the identity of its companion, with some observations suggesting that the companion is a low-mass helium-core (He-core) white dwarf (WD), while others indicate that it is most likely a high-mass carbon–oxygen (CO) WD. Binary evolution models predict PSR J1640+2224 most likely formed in a low-mass X-ray binary based on the pulsar’s short spin period and long-period, low-eccentricity orbit, in which case its companion should be a He-core WD with mass about 0.35–0.39 M ⊙, depending on metallicity. If instead it is a CO WD, it would suggest that the system has an unusual formation history. In this paper we present the first astrometric parallax measurement for this system from observations made with the Very Long Baseline Array (VLBA), from which we determine the distance to be {1520}-150+170 {pc}. We use this distance and a reanalysis of archival optical observations originally taken in 1995 with the Wide Field Planetary Camera 2 on the Hubble Space Telescope (HST) to measure the WD’s mass. We also incorporate improvements in calibration, extinction model, and WD cooling models. We find that the existing observations are not sufficient to tightly constrain the companion mass, but we conclude the WD mass is >0.4 M ⊙ with >90% confidence. The limiting factor in our analysis is the low signal-to-noise ratio of the original HST observations.

  9. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  10. DIFFERENCES BETWEEN RADIO-LOUD AND RADIO-QUIET γ -RAY PULSARS AS REVEALED BY FERMI

    Energy Technology Data Exchange (ETDEWEB)

    Hui, C. Y.; Lee, Jongsu [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Takata, J. [Institute of Particle physics and Astronomy, Huazhong University of Science and Technology (China); Ng, C. W.; Cheng, K. S., E-mail: cyhui@cnu.ac.kr, E-mail: takata@hust.edu.cn [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2017-01-10

    By comparing the properties of non-recycled radio-loud γ -ray pulsars and radio-quiet γ -ray pulsars, we have searched for the differences between these two populations. We found that the γ -ray spectral curvature of radio-quiet pulsars can be larger than that of radio-loud pulsars. Based on the full sample of non-recycled γ -ray pulsars, their distributions of the magnetic field strength at the light cylinder are also found to be different. We note that this might result from an observational bias. By reexamining the previously reported difference of γ -ray-to-X-ray flux ratios, we found that the significance can be hampered by their statistical uncertainties. In the context of the outer gap model, we discuss the expected properties of these two populations and compare with the possible differences that are identified in our analysis.

  11. The Parkes multibeam pulsar survey and the discovery of new energetic radio pulsars

    International Nuclear Information System (INIS)

    D'Amico, N.; Possenti, A.; Kaspi, V.M.; Manchester, R.N.; Bell, J.F.; Camilo, F.; Lyne, A.G.; Kramer, M.; Hobbs, G.; Stairs, I.H.

    2001-01-01

    The Parkes multibeam pulsar survey is a deep search of the Galactic plane for pulsars. It uses a 13-beam receiver system operating at 1.4 GHz on the 64-m Parkes radio telescope. It has much higher sensitivity than any previous similar survey and is finding large numbers of previously unknown pulsars, many of which are relatively young and energetic. On the basis of an empirical comparison of their properties with other young radio pulsars, some of the new discoveries are expected to be observable as pulsed γ-ray sources. We describe the survey motivation, the experiment characteristics and the results achieved so far

  12. Integral luminosities of radio pulsars

    Science.gov (United States)

    Malov, I.; Malov, O.

    The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period Pfalls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.

  13. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Kim, H.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Eatough, R. P.; Keane, E. F.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Anderson, D. [University of California at Berkeley, Berkeley, CA 94720 (United States); Crawford, F.; Rastawicki, D. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Hammer, D.; Papa, M. A.; Siemens, X. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Miller, R. B. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Sarkissian, J., E-mail: benjamin.knispel@aei.mpg.de [CSIRO Parkes Observatory, Parkes, NSW 2870 (Australia); and others

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  14. Radio emissions from pulsar companions: a refutable explanation for galactic transients and fast radio bursts

    Science.gov (United States)

    Mottez, F.; Zarka, P.

    2014-09-01

    Context. The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources that are of unknown origin but extremely energetic. We propose here a new explanation that does not require an extreme release of energy and involves a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. Aims: We investigate a theory of radio waves associated with such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving their properties, we compare them with the observations of various transient radio signals to determine whether they could originate from pulsar-orbiting bodies. Methods: The analysis is based on the theory of Alfvén wings: for a body immersed in a pulsar wind, a system of two stationary Alfvén waves is attached to the body, provided that the wind is highly magnetised. When they are destabilised through plasma instabilities, Alfvén wings can be the locus of strong radio sources that are convected with the pulsar wind. By assuming a cyclotron maser instability operating in the Alfvén wings, we make predictions about the shape, frequencies, and brightness of the resulting radio emissions. Results: Because of the beaming by relativistic aberration, the signal is seen only when the companion is perfectly aligned between its parent pulsar and the observer, as is the case for occultations. For pulsar winds with a high Lorentz factor (≥104), the whole duration of the radio event does not exceed a few seconds, and it is composed of one to four peaks that last a few milliseconds each and are detectable up to distances of several Mpc. The Lorimer burst, the three isolated pulses of PSR J1928+15, and the recently detected fast radio bursts are all compatible with our model. According to it, these transient signals should repeat periodically with the companion's orbital period. Conclusions: The search of pulsar-orbiting bodies could be an exploration

  15. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  16. Observational properties of pulsars.

    Science.gov (United States)

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.

  17. Radio search for pulsed emission from X-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    delli Santi, F S; Delpino, F [Bologna Univ. (Italy). Ist. di Astronomia; Inzani, P; Sironi, G [Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica Cosmica e Tecnologie Relative; Mandolesi, N; Morigi, G [Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. TESRE

    1981-05-01

    An experiment has been performed at 325 MHz, with a 10 m tracking dish, for the search of pulsed radio emission associated with X-ray pulsars. No evidence of radio pulses has been found in the four sources investigated, although the radio pulsar PSR 0329 + 54, used a testing object, has been detected successfully.

  18. Sampling the Radio Transient Universe: Studies of Pulsars and the Search for Extraterrestrial Intelligence

    Science.gov (United States)

    Chennamangalam, Jayanth

    The transient radio universe is a relatively unexplored area of astronomy, offering a variety of phenomena, from solar and Jovian bursts, to flare stars, pulsars, and bursts of Galactic and potentially even cosmological origin. Among these, perhaps the most widely studied radio transients, pulsars are fast-spinning neutron stars that emit radio beams from their magnetic poles. In spite of over 40 years of research on pulsars, we have more questions than answers on these exotic compact objects, chief among them the nature of their emission mechanism. Nevertheless, the wealth of phenomena exhibited by pulsars make them one of the most useful astrophysical tools. With their high densities, pulsars are probes of the nature of ultra-dense matter. Characterized by their high timing stability, pulsars can be used to verify the predictions of general relativity, discover planets around them, study bodies in the solar system, and even serve as an interplanetary (and possibly some day, interstellar) navigation aid. Pulsars are also used to study the nature of the interstellar medium, much like a flashlight illuminating airborne dust in a dark room. Studies of pulsars in the Galactic center can help answer questions about the massive black hole in the region and the star formation history in its vicinity. Millisecond pulsars in globular clusters are long-lived tracers of their progenitors, low-mass X-ray binaries, and can be used to study the dynamical history of those clusters. Another source of interest in radio transient astronomy is the hitherto undetected engineered signal from extraterrestrial intelligence. The Search for Extraterrestrial Intelligence (SETI) is an ongoing attempt at discovering the presence of technological life elsewhere in the Galaxy. In this work, I present my forays into two aspects of the study of the radio transient universe---pulsars and SETI. Firstly, I describe my work on the luminosity function and population size of pulsars in the globular

  19. The LOFAR pilot surveys for pulsars and fast radio transient

    NARCIS (Netherlands)

    Coenen, T.; van Leeuwen, J.; Hessels, J.W.T.; et al., [Unknown; Alexov, A.; van der Horst, A.; Law, C.; Rowlinson, A.; Swinbank, J.

    2014-01-01

    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a

  20. The LOFAR pilot surveys for pulsars and fast radio transients

    NARCIS (Netherlands)

    Coenen, T.J.; van Leeuwen, J.; Hessels, J.W.T.; Stappers, B.W.; Kondratiev, V.I.; Alexov, A.; Breton, R.P.; Bilous, A.; Cooper, S.; Falcke, H.; Fallows, R.A.; Gajjar, V.; Griessmeier, J.M.; Hassall, T.E.; Bentum, Marinus Jan

    2014-01-01

    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a

  1. Polarimetric Evidence of the First White Dwarf Pulsar: The Binary System AR Scorpii

    Directory of Open Access Journals (Sweden)

    David A.H. Buckley

    2018-01-01

    Full Text Available The binary star AR Scorpii was recently discovered to exhibit high amplitude coherent variability across the electromagnetic spectrum (ultraviolet to radio at two closely spaced ∼2 min periods, attributed to the spin period of a white dwarf and the beat period. There is strong evidence (low X-ray luminosity, lack of flickering and absense of broad emission lines that AR Sco is a detached non-accreting system whose luminosity is dominated by the spin-down power of a white dwarf, due to magnetohydrodynamical (MHD interactions with its M5 companion. Optical polarimetry has revealed highly pulsed linear polarization on the same periods, reaching a maximum of 40%, consistent with a pulsar-like dipole, with the Stokes Q and U variations reminiscent of the Crab pulsar. These observations, coupled with the spectral energy distribution (SED which is dominated by non-thermal emission, characteristic of synchrotron emission, support the notion that a strongly magnetic (∼200 MG white dwarf is behaving like a pulsar, whose magnetic field interacts with the secondary star’s photosphere and magnetosphere. Radio synchrotron emission is produced from the pumping action of the white dwarf’s magnetic field on coronal loops from the M-star companion, while emission at high frequencies (UV/optical/X-ray comes from the particle wind, driven by large electric potential, again reminiscent of processes seen in neutron star pulsars.

  2. Radio emission region exposed: courtesy of the double pulsar

    Science.gov (United States)

    Lomiashvili, David; Lyutikov, Maxim

    2014-06-01

    The double pulsar system PSR J0737-3039A/B offers exceptional possibilities for detailed probes of the structure of the pulsar magnetosphere, pulsar winds and relativistic reconnection. We numerically model the distortions of the magnetosphere of pulsar B by the magnetized wind from pulsar A, including effects of magnetic reconnection and of the geodetic precession. Geodetic precession leads to secular evolution of the geometric parameters and effectively allows a 3D view of the magnetosphere. Using the two complimentary models of pulsar B's magnetosphere, adapted from the Earth's magnetosphere models by Tsyganenko (ideal pressure confinement) and Dungey (highly resistive limit), we determine the precise location and shape of the coherent radio emission generation region within pulsar B's magnetosphere. We successfully reproduce orbital variations and secular evolution of the profile of B, as well as subpulse drift (due to reconnection between the magnetospheric and wind magnetic fields), and determine the location and the shape of the emission region. The emission region is located at about 3750 stellar radii and has a horseshoe-like shape, which is centred on the polar magnetic field lines. The best-fitting angular parameters of the emission region indicate that radio emission is generated on the field lines which, according to the theoretical models, originate close to the poles and carry the maximum current. We resolved all but one degeneracy in pulsar B's geometry. When considered together, the results of the two models converge and can explain why the modulation of B's radio emission at A's period is observed only within a certain orbital phase region. Our results imply that the wind of pulsar A has a striped structure only 1000 light-cylinder radii away. We discuss the implications of these results for pulsar magnetospheric models, mechanisms of coherent radio emission generation and reconnection rates in relativistic plasma.

  3. A transient, flat spectrum radio pulsar near the Galactic Centre

    Science.gov (United States)

    Dexter, J.; Degenaar, N.; Kerr, M.; Deller, A.; Deneva, J.; Lazarus, P.; Kramer, M.; Champion, D.; Karuppusamy, R.

    2017-06-01

    Recent studies have shown possible connections between highly magnetized neutron stars ('magnetars'), whose X-ray emission is too bright to be powered by rotational energy, and ordinary radio pulsars. In addition to the magnetar SGR J1745-2900, one of the radio pulsars in the Galactic Centre (GC) region, PSR J1746-2850, had timing properties implying a large magnetic field strength and young age, as well as a flat spectrum. All characteristics are similar to those of rare, transient, radio-loud magnetars. Using several deep non-detections from the literature and two new detections, we show that this pulsar is also transient in the radio. Both the flat spectrum and large amplitude variability are inconsistent with the light curves and spectral indices of three radio pulsars with high magnetic field strengths. We further use frequent, deep archival imaging observations of the GC in the past 15 yr to rule out a possible X-ray outburst with a luminosity exceeding the rotational spin-down rate. This source, either a transient magnetar without any detected X-ray counterpart or a young, strongly magnetized radio pulsar producing magnetar-like radio emission, further blurs the line between the two categories. We discuss the implications of this object for the radio emission mechanism in magnetars and for star and compact object formation in the GC.

  4. High-energy Emissions from the Pulsar/Be Binary System PSR J2032+4127/MT91 213

    Energy Technology Data Exchange (ETDEWEB)

    Takata, J. [School of physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tam, P. H. T. [Institute of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China); Ng, C. W.; Cheng, K. S. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Li, K. L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: takata@hust.edu.cn [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2017-02-20

    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25–50 years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR B1259–63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.

  5. Selection of radio pulsar candidates using artificial neural networks

    OpenAIRE

    Eatough, R. P.; Molkenthin, N.; Kramer, M.; Noutsos, A.; Keith, M. J.; Stappers, B. W.; Lyne, A. G.

    2010-01-01

    Radio pulsar surveys are producing many more pulsar candidates than can be inspected by human experts in a practical length of time. Here we present a technique to automatically identify credible pulsar candidates from pulsar surveys using an artificial neural network. The technique has been applied to candidates from a recent re-analysis of the Parkes multi-beam pulsar survey resulting in the discovery of a previously unidentified pulsar.

  6. Effects of gravitational lensing and companion motion on the binary pulsar timing

    International Nuclear Information System (INIS)

    Rafikov, Roman R.; Lai Dong

    2006-01-01

    The measurement of the Shapiro time delay in binary pulsar systems with highly-inclined orbit can be affected both by the motion of the pulsar's companion because of the finite time it takes a photon to cross the binary, and by the gravitational light bending if the orbit is sufficiently edge-on relative to the line of sight. Here we calculate the effect of retardation due to the companion's motion on various time delays in pulsar binaries, including the Shaipro delay, the geometric lensing delay, and the lens-induced delays associated with the pulsar rotation. Our results can be applied to systems so highly inclined that near conjunction gravitational lensing of the pulsar radiation by the companion becomes important (the recently discovered double pulsar system J0737-3039 may exemplify such a system). To the leading order, the effect of retardation is to shift all the delay curves backward in time around the orbit conjunction, without affecting the shape and amplitude of the curves. The time shift is of order the photon orbit crossing time, and ranges from a second to a few minutes for the observed binary pulsar systems. In the double pulsar system J0737-3039, the motion of the companion may also affect the interpretation of the recent correlated interstellar scintillation measurements. Finally, we show that lensing sets an upper limit on the magnitude of the frame-dragging time delay caused by the companion's spin, and makes this delay unobservable in stellar-mass binary pulsar systems

  7. 40 Years of Pulsars: The Birth and Evolution of Isolated Radio Pulsars

    OpenAIRE

    Faucher-Giguere, C. -A.; Kaspi, V. M.

    2007-01-01

    We investigate the birth and evolution of isolated radio pulsars using a population synthesis method, modeling the birth properties of the pulsars, their time evolution, and their detection in the Parkes and Swinburne Multibeam (MB) surveys. Together, the Parkes and Swinburne MB surveys have detected nearly 2/3 of the known pulsars and provide a remarkably homogeneous sample to compare with simulations. New proper motion measurements and an improved model of the distribution of free electrons...

  8. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar.

    Science.gov (United States)

    Hankins, T H; Kern, J S; Weatherall, J C; Eilek, J A

    2003-03-13

    The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.

  9. Binary Pulsars and Relativistic Gravity*

    Indian Academy of Sciences (India)

    tribpo

    1994-03-14

    Mar 14, 1994 ... new rapidly pulsating radio source, I immediately drafted a proposal, together ... I devised a computer algorithm for recognizing such periodic, dispersed .... A block diagram of equipment used for recent pulsar timing ... antenna are amplified, converted to intermediate frequency, and passed through ...

  10. A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A., E-mail: ester.aliu.fuste@gmail.com, E-mail: gtrichards@gatech.edu, E-mail: masha.chernyakova@dcu.ie, E-mail: malloryr@gmail.com [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2016-11-10

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259–63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼2 G before the disappearance of the radio pulsar and greater than ∼10 G afterward.

  11. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars

    Science.gov (United States)

    Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.

    2015-07-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.

  12. RADIO-QUIET AND RADIO-LOUD PULSARS: SIMILAR IN GAMMA-RAYS BUT DIFFERENT IN X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Mignani, R. P.; Luca, A. De; Salvetti, D. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133, Milano (Italy); Parkinson, P. M. Saz [Santa Cruz Institute for Particle Physics, Department of Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Hartog, P. R. Den [Stanford University HEPL/KIPAC, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Wolff, M. T., E-mail: marelli@iasf-milano.inaf.it [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2015-04-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet (RQ) γ-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from γ-ray pulsar timing. For PSR J2030+4415 we found evidence for a ∼10″-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. and confirm that, on average, the γ-ray-to-X-ray flux ratios (F{sub γ}/F{sub X}) of RQ pulsars are higher than for the radio-loud (RL) ones. Furthermore, while the F{sub γ}/F{sub X} distribution features a single peak for the RQ pulsars, the distribution is more dispersed for the RL ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.

  13. Strong binary pulsar constraints on Lorentz violation in gravity.

    Science.gov (United States)

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  14. Strong Binary Pulsar Constraints on Lorentz Violation in Gravity

    CERN Document Server

    Yagi, Kent; Yunes, Nicolas; Barausse, Enrico

    2014-01-01

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of General Relativity. One of these is Lorentz symmetry which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  15. Radio pulsars and transients in the Galactic center

    International Nuclear Information System (INIS)

    Lazio, Joseph; Deneva, J S; Bower, Geoffrey C; Cordes, J M; Hyman, Scott D; Backer, D C; Bhat, R; Chatterjee, S; Demorest, P; Ransom, S M; Vlemmings, W

    2006-01-01

    Radio pulsars and transients provide powerful probes of the star formation history, interstellar medium, and gravitational potential of the Galactic center. Historical radio observations of the Galactic center have not emphasized the time domain aspect of observing this region. We summarize a series of recent searches for and observations of radio transients and pulsars that make use of two advances in technology. The first is the formation of large fields of view (∼> 1 0 ) at relatively longer wavelengths (λ > 1 m), and the second is the construction of receivers and instruments capable of collecting data on microsecond time scales at relatively short wavelengths (∼ 3 cm)

  16. Arecibo PALFA survey and Einstein@Home: binary pulsar discovery by volunteer computing

    NARCIS (Netherlands)

    Knispel, B.; Lazarus, P.; Allen, B.; Anderson, D.; Aulbert, C.; Bhat, N.D.R.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Deneva, J.S.; Desvignes, G.; Fehrmann, H.; Freire, P.C.C.; Hammer, D.; Hessels, J.W.T.; Jenet, F.A.; Kaspi, V.M.; Kramer, M.; van Leeuwen, J.; Lorimer, D.R.; Lyne, A.G.; Machenschalk, B.; McLaughlin, M.A.; Messenger, C.; Nice, D.J.; Papa, M.A.; Pletsch, H.J.; Prix, R.; Ransom, S.M.; Siemens, X.; Stairs, I.H.; Stappers, B.W.; Stovall, K.; Venkataraman, A.

    2011-01-01

    We report the discovery of the 20.7 ms binary pulsar J1952+2630, made using the distributed computing project Einstein@Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular

  17. CHANDRA OBSERVATIONS OF THE HIGH-MAGNETIC-FIELD RADIO PULSAR J1718-3718

    International Nuclear Information System (INIS)

    Zhu, W. W.; Kaspi, V. M.; Ng, C.-Y.; McLaughlin, M. A.; Pavlov, G. G.; Manchester, R. N.; Gaensler, B. M.; Woods, P. M.

    2011-01-01

    High-magnetic-field pulsars represent an important class of objects for studying the relationship between magnetars and radio pulsars. Here we report on four Chandra observations of the high-magnetic-field pulsar J1718-3718 (B = 7.4 x 10 13 G) taken in 2009 as well as a reanalysis of 2002 Chandra observations of the region. We also report an improved radio position for this pulsar based on ATCA observations. We detect X-ray pulsations at the pulsar's period in the 2009 data, with a pulsed fraction of 52% ± 13% in the 0.8-2.0 keV band. We find that the X-ray pulse is aligned with the radio pulse. The data from 2002 and 2009 show consistent spectra and fluxes: a merged overall spectrum is well fit by a blackbody of temperature 186 +19 -18 eV, slightly higher than predicted by standard cooling models; however, the best-fit neutron star atmosphere model is consistent with standard cooling. We find the bolometric luminosity L ∞ bb = 4 +5 -2 x 10 32 erg s -1 ∼0.3 E-dot for a distance of 4.5 kpc. We compile measurements of the temperatures of all X-ray-detected high-B pulsars as well as those of low-B radio pulsars and find evidence for the former being hotter on average than the latter.

  18. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    Science.gov (United States)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  19. A possible mechanism for the pulsar radio emission

    International Nuclear Information System (INIS)

    Hinata, S.

    1977-01-01

    The possibility of radio emission is considered within a model which produces the beam-plasma system near the pulsar. A longitudinal instability develops near the light cylinder for a particular choice of parameters adopted in the paper. The excited wave strongly oscillates the beam particles perpendicular to its average velocity on one hand, and forms bunches of them on the other hand. Consequently, coherent radiation is expected. The frequency of the emission falls within the radio band, but the intensity turns out to be too low to explain observations. An appreciable enhancement of the beam number density over the Goldreich-Julian value (nsub(b) approximately equal to BΩ/2πec) is needed if the mechanism discussed in the present paper is responsible for the pulsar radio emission. (Auth.)

  20. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    Science.gov (United States)

    Cordova, F. A.; Middleditch, J.; Hjellming, R. M.; Mason, K. O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62 percent) and circular (19 percent) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18 percent + or - 6 percent, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar.

  1. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    International Nuclear Information System (INIS)

    Cordova, F.A.; Middleditch, J.; Hjellming, R.M.; Mason, K.O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62%) and circular (19%) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18% + or - 6%, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar. 46 refs

  2. THE BRAKING INDEX OF A RADIO-QUIET GAMMA-RAY PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. J.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Beer, C.; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Nieder, L. [Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Wu, J.; Guillemot, L.; Kramer, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Camilo, F. [SKA South Africa, Pinelands, 7405 (South Africa); Johnson, T. J. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Kerr, M., E-mail: colin.clark@aei.mpg.de [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping, NSW 1710 (Australia)

    2016-11-20

    We report the discovery and timing measurements of PSR J1208−6238, a young and highly magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-ray photon data from the Fermi Large Area Telescope (LAT) during a blind-search survey of unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home . No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope, with a flux density upper limit at 1369 MHz of 30 μ Jy. By timing this pulsar’s gamma-ray pulsations, we measure its braking index over five years of LAT observations to be n = 2.598 ± 0.001 ± 0.1, where the first uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking index has been similar since birth, the pulsar has an estimated age of around 2700 years, making it the youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet gamma-ray pulsar. Despite its young age, the pulsar is not associated with any known supernova remnant or pulsar wind nebula. The pulsar’s inferred dipolar surface magnetic field strength is 3.8 × 10{sup 13} G, almost 90% of the quantum-critical level. We investigate some potential physical causes of the braking index deviating from the simple dipole model but find that LAT data covering a longer time interval will be necessary to distinguish between these.

  3. THE BRAKING INDEX OF A RADIO-QUIET GAMMA-RAY PULSAR

    International Nuclear Information System (INIS)

    Clark, C. J.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Beer, C.; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Nieder, L.; Wu, J.; Guillemot, L.; Kramer, M.; Camilo, F.; Johnson, T. J.; Kerr, M.

    2016-01-01

    We report the discovery and timing measurements of PSR J1208−6238, a young and highly magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-ray photon data from the Fermi Large Area Telescope (LAT) during a blind-search survey of unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home . No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope, with a flux density upper limit at 1369 MHz of 30 μ Jy. By timing this pulsar’s gamma-ray pulsations, we measure its braking index over five years of LAT observations to be n = 2.598 ± 0.001 ± 0.1, where the first uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking index has been similar since birth, the pulsar has an estimated age of around 2700 years, making it the youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet gamma-ray pulsar. Despite its young age, the pulsar is not associated with any known supernova remnant or pulsar wind nebula. The pulsar’s inferred dipolar surface magnetic field strength is 3.8 × 10 13 G, almost 90% of the quantum-critical level. We investigate some potential physical causes of the braking index deviating from the simple dipole model but find that LAT data covering a longer time interval will be necessary to distinguish between these.

  4. Evolution of close binaries and the formation of pulsars

    International Nuclear Information System (INIS)

    Van Den Heuvel, E.P.J.

    1981-01-01

    The various ways in which compact objects (neutron stars and black holes) may be formed in interacting binary systems are examined. Attention is given to the final evolution of the primary star in a close binary system as a function of the time of Roche-lobe overflow relative to the onset of helium burning, and conditions on primary mass and orbital period leading to the appearance of a compact remnant are noted. Consideration of the fate of the stellar envelope in stars that directly evolve to core collapse indicates that binaries that evolve with conservation of total mass and orbital angular momentum will eventually become systems of two runaway pulsars. In cases of nonconservative evolution, the final state is expected to be a young runaway pulsar with a low- or moderate mass runaway star companion, or a low-mass population I X-ray binary with high space velocity. Compact objects may also be formed when a white dwarf of suitable chemical composition is driven over the Chandrasehkar limit by accretion, resulting in a low-mass X-ray binary

  5. Anti-correlated X-ray and Radio Variability in the Transitional Millisecond Pulsar PSR J1023+0038

    Science.gov (United States)

    Bogdanov, Slavko; Deller, Adam; Miller-Jones, James; Archibald, Anne; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D'Angelo, Caroline

    2018-01-01

    The PSR J1023+0038 binary system hosts a 1.69-ms neutron star and a low-mass, main-sequence-like star. The system underwent a transformation from a rotation-powered to a low-luminosity accreting state in 2013 June, in which it has remained since. We present an unprecedented set of strictly simultaneous Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations, which for the first time reveal a highly reproducible, anti-correlated variability pattern. Rapid declines in X-ray flux are always accompanied by a radio brightening with duration that closely matches the low X-ray flux mode intervals. We discuss these findings in the context of accretion and jet outflow physics and their implications for using the radio/X-ray luminosity plane to distinguish low-luminosity candidate black hole binary systems from accreting transitional millisecond pulsars.

  6. The High Time Resolution Universe surveys for pulsars and fast transients

    Science.gov (United States)

    Keith, Michael J.

    2013-03-01

    The High Time Resolution Universe survey for pulsars and transients is the first truly all-sky pulsar survey, taking place at the Parkes Radio Telescope in Australia and the Effelsberg Radio Telescope in Germany. Utilising multibeam receivers with custom built all-digital recorders the survey targets the fastest millisecond pulsars and radio transients on timescales of 64 μs to a few seconds. The new multibeam digital filter-bank system at has a factor of eight improvement in frequency resolution over previous Parkes multibeam surveys, allowing us to probe further into the Galactic plane for short duration signals. The survey is split into low, mid and high Galactic latitude regions. The mid-latitude portion of the southern hemisphere survey is now completed, discovering 107 previously unknown pulsars, including 26 millisecond pulsars. To date, the total number of discoveries in the combined survey is 135 and 29 MSPs These discoveries include the first magnetar to be discovered by it's radio emission, unusual low-mass binaries, gamma-ray pulsars and pulsars suitable for pulsar timing array experiments.

  7. Development of Pulsar Detection Methods for a Galactic Center Search

    Science.gov (United States)

    Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami

    2018-01-01

    Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.

  8. The Green Bank North Celestial Cap Pulsar Survey: New Pulsars and Future Prospects

    Science.gov (United States)

    Lynch, Ryan S.; Swiggum, Joe; Stovall, Kevin; Chawla, Pragya; DeCesar, Megan E.; Fonseca, Emmanuel; Levin, Lina; Cui, Bingyi; Kondratiev, Vlad; Archibald, Anne; Boyles, Jason; Hessels, Jason W. T.; Jenet, Fredrick; Kaplan, David; Karako-Argaman, Chen; Kaspi, Victoria; Martinez, Jose; McLaughlin, Maura; Ransom, Scott M.; Roberts, Mallory; Siemens, Xavier; Spiewak, Renee; Stairs, Ingrid; van Leeuwn, Joeri; Green Bank North Celestial Cap Survey Collaboration

    2018-01-01

    The Green Bank North Celestial Cap pulsar survey is the most successful low frequency pulsar survey ever. GBNCC uses the Green Bank telescope to cover the full visible sky at 350 MHz. With the survey over 70% complete, we have discovered over 150 pulsars, including 20 MSPs and 11 RRATs. I will report on the current status of the survey and plans for its completion in the coming years. I will also report on several discoveries including: timing solutions for dozens of new pulsars; new high precision MSPs and their suitability for inclusion in pulsar timing arrays; a new relativistic double neutron star system; new pulsar mass measurements; proper motion measurements for several MSPs; a new mode changing pulsar; interesting new MSP binaries; nulling fraction analyses; and possible implications of the lack of any fast radio bursts in the survey so far.

  9. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  10. Population Synthesis of Radio & Gamma-Ray Millisecond Pulsars

    Science.gov (United States)

    Frederick, Sara; Gonthier, P. L.; Harding, A. K.

    2014-01-01

    In recent years, the number of known gamma-ray millisecond pulsars (MSPs) in the Galactic disk has risen substantially thanks to confirmed detections by Fermi Gamma-ray Space Telescope (Fermi). We have developed a new population synthesis of gamma-ray and radio MSPs in the galaxy which uses Markov Chain Monte Carlo techniques to explore the large and small worlds of the model parameter space and allows for comparisons of the simulated and detected MSP distributions. The simulation employs empirical radio and gamma-ray luminosity models that are dependent upon the pulsar period and period derivative with freely varying exponents. Parameters associated with the birth distributions are also free to vary. The computer code adjusts the magnitudes of the model luminosities to reproduce the number of MSPs detected by a group of ten radio surveys, thus normalizing the simulation and predicting the MSP birth rates in the Galaxy. Computing many Markov chains leads to preferred sets of model parameters that are further explored through two statistical methods. Marginalized plots define confidence regions in the model parameter space using maximum likelihood methods. A secondary set of confidence regions is determined in parallel using Kuiper statistics calculated from comparisons of cumulative distributions. These two techniques provide feedback to affirm the results and to check for consistency. Radio flux and dispersion measure constraints have been imposed on the simulated gamma-ray distributions in order to reproduce realistic detection conditions. The simulated and detected distributions agree well for both sets of radio and gamma-ray pulsar characteristics, as evidenced by our various comparisons.

  11. Pulsar discoveries by volunteer distributed computing and the strongest continuous gravitational wave signal

    Science.gov (United States)

    Knispel, Benjamin

    2011-07-01

    Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from

  12. Arecibo pulsar survey using ALFA: probing radio pulsar intermittency and transients

    NARCIS (Netherlands)

    Deneva, J.S.; Cordes, J.M.; McLaughlin, M.A.; Nice, D.J.; Lorimer, D.R.; Crawford, F.; Bhat, N.D.R.; Camilo, F.; Champion, D.J.; Freire, P.C.C.; Edel, S.; Kondratiev, V.I.; Hessels, J.W.T.; Jenet, F.A.; Kasian, L.; Kaspi, V.M.; Kramer, M.; Lazarus, P.; Ransom, S.M.; Stairs, I.H.; Stappers, B.W.; van Leeuwen, J.; Brazier, A.; Venkataraman, A.; Zollweg, J.A.; Bogdanov, S.

    2009-01-01

    We present radio transient search algorithms, results, and statistics from the ongoing Arecibo Pulsar ALFA (PALFA) survey of the Galactic plane. We have discovered seven objects through a search for isolated dispersed pulses. All of these objects are Galactic and have measured periods between 0.4

  13. LOFAR Discovery of the Fastest-spinning Millisecond Pulsar in the Galactic Field

    Science.gov (United States)

    Bassa, C. G.; Pleunis, Z.; Hessels, J. W. T.; Ferrara, E. C.; Breton, R. P.; Gusinskaia, N. V.; Kondratiev, V. I.; Sanidas, S.; Nieder, L.; Clark, C. J.; Li, T.; van Amesfoort, A. S.; Burnett, T. H.; Camilo, F.; Michelson, P. F.; Ransom, S. M.; Ray, P. S.; Wood, K.

    2017-09-01

    We report the discovery of PSR J0952-0607, a 707 Hz binary millisecond pulsar that is now the fastest-spinning neutron star known in the Galactic field (I.e., outside of a globular cluster). PSR J0952-0607 was found using LOFAR at a central observing frequency of 135 MHz, well below the 300 MHz to 3 GHz frequencies typically used in pulsar searches. The discovery is part of an ongoing LOFAR survey targeting unassociated Fermi-Large Area Telescope γ-ray sources. PSR J0952-0607 is in a 6.42 hr orbit around a very low-mass companion ({M}{{c}}≳ 0.02 {M}⊙ ), and we identify a strongly variable optical source, modulated at the orbital period of the pulsar, as the binary companion. The light curve of the companion varies by 1.6 mag from {r}{\\prime }=22.2 at maximum to {r}{\\prime }> 23.8, indicating that it is irradiated by the pulsar wind. Swift observations place a 3σ upper limit on the 0.3-10 {keV} X-ray luminosity of {L}Xdispersion measure). Though no eclipses of the radio pulsar are observed, the properties of the system classify it as a black widow binary. The radio pulsed spectrum of PSR J0952-0607, as determined through flux density measurements at 150 and 350 MHz, is extremely steep with α ˜ -3 (where S\\propto {ν }α ). We discuss the growing evidence that the fastest-spinning radio pulsars have exceptionally steep radio spectra, as well as the prospects for finding more sources like PSR J0952-0607.

  14. On the mean profiles of radio pulsars - II. Reconstruction of complex pulsar light curves and other new propagation effects

    Science.gov (United States)

    Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.

    2017-08-01

    Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.

  15. NEW DISCOVERIES FROM THE ARECIBO 327 MHz DRIFT PULSAR SURVEY RADIO TRANSIENT SEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Stovall, K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); McLaughlin, M. A.; Bagchi, M.; Garver-Daniels, N. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Bates, S. D. [The Institute of Mathematical Sciences, Chennai, 600113 (India); Freire, P. C. C.; Martinez, J. G. [Max-Planck-Institut für Radioastronomie, Bonn (Germany); Jenet, F. [Center for Advanced Radio Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)

    2016-04-10

    We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently, isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range 23.5–86.6 pc cm{sup −3} and periods in the range 0.172–3.901 s. The new pulsars have DMs in the range 23.6–133.3 pc cm{sup −3} and periods in the range 1.249–5.012 s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of 10{sup 5} day{sup −1} for bursts with a width of 10 ms and flux density ≳83 mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models.

  16. NEW DISCOVERIES FROM THE ARECIBO 327 MHz DRIFT PULSAR SURVEY RADIO TRANSIENT SEARCH

    International Nuclear Information System (INIS)

    Deneva, J. S.; Stovall, K.; McLaughlin, M. A.; Bagchi, M.; Garver-Daniels, N.; Bates, S. D.; Freire, P. C. C.; Martinez, J. G.; Jenet, F.

    2016-01-01

    We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently, isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range 23.5–86.6 pc cm −3 and periods in the range 0.172–3.901 s. The new pulsars have DMs in the range 23.6–133.3 pc cm −3 and periods in the range 1.249–5.012 s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of 10 5  day −1 for bursts with a width of 10 ms and flux density ≳83 mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models

  17. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    International Nuclear Information System (INIS)

    Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van; Ransom, Scott; Stairs, Ingrid; Straten, Willem van; Weisberg, Joel M.

    2017-01-01

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  18. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, Joanna M.; Mitra, Dipanjan [Physics Department, University of Vermont, Burlington, VT 05405 (United States); Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Ransom, Scott [National Radio Astronomy Observatory, Charlottesville, VA 29201 (United States); Stairs, Ingrid [Physics Department, University of British Columbia, V6T 1Z4, BC (Canada); Straten, Willem van [Institute for Radio Astronomy and Space Research, Auckland University of Technology, Auckland 1142 (New Zealand); Weisberg, Joel M., E-mail: Joanna.Rankin@uvm.edu [Physics and Astronomy Department, Carleton College, Northfield, MN 55057 (United States)

    2017-08-10

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  19. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    International Nuclear Information System (INIS)

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela

    2014-01-01

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves

  20. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    Science.gov (United States)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; Guillemot, L.; Johnston, S.; Keith, M.; Kerr, M.; Kramer, M.; Pletsch, H. J.; Saz Parkinson, P. M.; Wood, K. S.

    2013-01-01

    We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  1. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  2. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    Science.gov (United States)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  3. Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    NARCIS (Netherlands)

    Breton, R.P.; van Kerkwijk, M.H.; Roberts, M.S.E.; Hessels, J.W.T.; Camilo, F.; McLaughlin, M.A.; Ransom, S.M.; Ray, P.S.; Stairs, I.H.

    2013-01-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show

  4. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    Science.gov (United States)

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  5. A massive pulsar in a compact relativistic binary.

    Science.gov (United States)

    Antoniadis, John; Freire, Paulo C C; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G

    2013-04-26

    Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

  6. Radio Observations of Elongated Pulsar Wind Nebulae

    Science.gov (United States)

    Ng, Stephen C.-Y.

    2015-08-01

    The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  7. GAMMA-RAY SIGNAL FROM THE PULSAR WIND IN THE BINARY PULSAR SYSTEM PSR B1259-63/LS 2883

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [National Research Nuclear University-MEPHI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-12-01

    Binary pulsar systems emit potentially detectable components of gamma-ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper, we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10{sup 3} or larger than 10{sup 5}. The higher luminosity of the optical star also has two important implications: (1) attenuation of gamma rays due to photon-photon pair production and (2) Compton drag of the unshocked wind. While the first effect has an impact on the light curve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.

  8. A PRECISE MASS MEASUREMENT OF THE INTERMEDIATE-MASS BINARY PULSAR PSR J1802 - 2124

    International Nuclear Information System (INIS)

    Ferdman, R. D.; Cognard, I.; Desvignes, G.; Theureau, G.; Stairs, I. H.; Kramer, M.; McLaughlin, M. A.; Lorimer, D. R.; Nice, D. J.; Manchester, R. N.; Hobbs, G.; Lyne, A. G.; Faulkner, A.; Camilo, F.; Possenti, A.; Demorest, P. B.; Backer, D. C.

    2010-01-01

    PSR J1802 - 2124 is a 12.6 ms pulsar in a 16.8 hr binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar since its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and WD mass measurements of 1.24 ± 0.11 M sun and 0.78 ± 0.04 M sun (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.

  9. DISCOVERY OF LOW DM FAST RADIO TRANSIENTS: GEMINGA PULSAR CAUGHT IN THE ACT

    International Nuclear Information System (INIS)

    Maan, Yogesh

    2015-01-01

    We report the discovery of several energetic radio bursts at 34 MHz, using the Gauribidanur radio telescope. The radio bursts exhibit two important properties associated with the propagation of astronomical signals through the interstellar medium: (i) frequency dependent dispersive delays across the observing bandwidth and (ii) Faraday rotation of the plane of linear polarization. These bursts sample a range of dispersion measures (DM; 1.4–3.6 pc cm −3 ) and show DM-variation at timescales of the order of a minute. Using groups of bursts having a consistent DM, we show that the bursts have originated from the radio-quiet gamma-ray pulsar Geminga. Detection of these bursts supports the existence of occasional radio emission from Geminga. The rare occurrence of these bursts, and the short timescale variation in their DM (if really caused by the intervening medium or the pulsar magnetosphere), might provide clues as to why the pulsar has not been detected in earlier sensitive searches. We present details of the observations and search procedure used to discover these bursts, a detailed analysis of their properties, and evidences of these bursts being associated with Geminga pulsar, and briefly discuss the possible emission mechanism of these bursts

  10. DISCOVERY OF LOW DM FAST RADIO TRANSIENTS: GEMINGA PULSAR CAUGHT IN THE ACT

    Energy Technology Data Exchange (ETDEWEB)

    Maan, Yogesh, E-mail: ymaan@ncra.tifr.res.in [National Centre for Radio Astrophysics, Pune 411007 (India)

    2015-12-20

    We report the discovery of several energetic radio bursts at 34 MHz, using the Gauribidanur radio telescope. The radio bursts exhibit two important properties associated with the propagation of astronomical signals through the interstellar medium: (i) frequency dependent dispersive delays across the observing bandwidth and (ii) Faraday rotation of the plane of linear polarization. These bursts sample a range of dispersion measures (DM; 1.4–3.6 pc cm{sup −3}) and show DM-variation at timescales of the order of a minute. Using groups of bursts having a consistent DM, we show that the bursts have originated from the radio-quiet gamma-ray pulsar Geminga. Detection of these bursts supports the existence of occasional radio emission from Geminga. The rare occurrence of these bursts, and the short timescale variation in their DM (if really caused by the intervening medium or the pulsar magnetosphere), might provide clues as to why the pulsar has not been detected in earlier sensitive searches. We present details of the observations and search procedure used to discover these bursts, a detailed analysis of their properties, and evidences of these bursts being associated with Geminga pulsar, and briefly discuss the possible emission mechanism of these bursts.

  11. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  12. A model of two-stream non-radial accretion for binary X-ray pulsars

    International Nuclear Information System (INIS)

    Lipunov, V.M.

    1982-01-01

    The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered. (orig.)

  13. Phase Evolution of the Crab Pulsar between Radio and X-Ray

    Energy Technology Data Exchange (ETDEWEB)

    Yan, L. L.; Ge, M. Y.; Zheng, S. J.; Lu, F. J.; Tuo, Y. L.; Zhang, S. N.; Lu, Y. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yuan, J. P.; Tong, H. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Han, J. L. [National Astronomical Observatory, Chinese Academy of Sciences, Jia 20 Datun Road, Beijing 100012 (China); Du, Y. J., E-mail: yanlinli@ihep.ac.cn [Qian Xuesen Laboratory of Space Technology, No. 104, Youyi Road, Haidian District, Beijing 100094 (China)

    2017-08-20

    We study the X-ray phases of the Crab pulsar utilizing the 11-year observations from the Rossi X-ray Timing Explorer , 6-year radio observations from Nanshan Telescope, and the ephemeris from Jodrell Bank Observatory. It is found that the X-ray phases in different energy bands and the radio phases from the Nanshan Telescope show similar behaviors, including long-time evolution and short-time variations. Such strong correlations between the X-ray and radio phases imply that the radio and X-ray timing noises are both generated from the pulsar spin that cannot be well described by the the monthly ephemeris from the Jodrell Bank observatory. When using the Nanshan phases as references to study the X-ray timing noise, it has a significantly smaller variation amplitude and shows no long-time evolution, with a change rate of (−1.1 ± 1.1) × 10{sup −7} periods per day. These results show that the distance of the X-ray and radio emission regions on the Crab pulsar has no detectable secular change, and it is unlikely that the timing noises resulted from any unique physical processes in the radio or X-ray emitting regions. The similar behaviors of the X-ray and radio timing noises also imply that the variation of the interstellar medium is not the origin of the Crab pulsar’s timing noises, which is consistent with the results obtained from the multi-frequency radio observations of PSR B1540−06.

  14. Population Synthesis of Radio and Y-ray Normal, Isolated Pulsars Using Markov Chain Monte Carlo

    Science.gov (United States)

    Billman, Caleb; Gonthier, P. L.; Harding, A. K.

    2013-04-01

    We present preliminary results of a population statistics study of normal pulsars (NP) from the Galactic disk using Markov Chain Monte Carlo techniques optimized according to two different methods. The first method compares the detected and simulated cumulative distributions of series of pulsar characteristics, varying the model parameters to maximize the overall agreement. The advantage of this method is that the distributions do not have to be binned. The other method varies the model parameters to maximize the log of the maximum likelihood obtained from the comparisons of four-two dimensional distributions of radio and γ-ray pulsar characteristics. The advantage of this method is that it provides a confidence region of the model parameter space. The computer code simulates neutron stars at birth using Monte Carlo procedures and evolves them to the present assuming initial spatial, kick velocity, magnetic field, and period distributions. Pulsars are spun down to the present and given radio and γ-ray emission characteristics, implementing an empirical γ-ray luminosity model. A comparison group of radio NPs detected in ten-radio surveys is used to normalize the simulation, adjusting the model radio luminosity to match a birth rate. We include the Fermi pulsars in the forthcoming second pulsar catalog. We present preliminary results comparing the simulated and detected distributions of radio and γ-ray NPs along with a confidence region in the parameter space of the assumed models. We express our gratitude for the generous support of the National Science Foundation (REU and RUI), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program.

  15. VHE gamma-rays from radio pulsars and cataclysmic variables

    International Nuclear Information System (INIS)

    De Jager, O.C.; Brink, C.; Meintjies, P.J.; Nel, H.I.; North, A.R.; Raubenheimer, B.C.; Van der Walt, D.J.

    1990-01-01

    We present the results of observations (above 1 TeV) of radio pulsars and cataclysmic variables with the Potchefstroom air Cerenkov facility. We were able to confirm our previous detection of PSR 1509-58 and the final significance is 1.7x10 -5 . A DC enhancement at the 10 -3 significance level was seen from the L 4 Lagrange position in the PSR 1957+20 system. This result was confirmed by COS-B data. We were also able to detect the 5.4 ms pulsar PSR 1855+09 at a marginal significance level of 5%. However, the best and longest observation indicates non-uniformity at the 0.005 significance level. The TeV light curve resembles the radio light curve. The latter is also reminiscent of other millisecond pulsar observed above 1 TeV. The intermediate polar AEAQR (P = 33.08s) shows a period shift which is consistent with recent model predictions. However, the present significance of this results does not allow an unambiguous claim. (orig.)

  16. Discovery of the optical counterparts to four energetic Fermi millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Breton, R. P. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Van Kerkwijk, M. H. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Roberts, M. S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, 550 West, 120th Street, New York, NY 10027 (United States); McLaughlin, M. A. [Department of Physics, White Hall, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ray, P. S. [Space Science Division, Naval Research Laboratory, Code 7655, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Stairs, I. H., E-mail: r.breton@soton.ac.uk [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)

    2013-06-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modeling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of γ-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.

  17. Simultaneous Chandra and VLA Observations of the Transitional Millisecond Pulsar PSR J1023+0038: Anti-correlated X-Ray and Radio Variability

    Science.gov (United States)

    Bogdanov, Slavko; Deller, Adam T.; Miller-Jones, James C. A.; Archibald, Anne M.; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D’Angelo, Caroline

    2018-03-01

    We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.

  18. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few days to two weeks before the radio disappearance...... and current multi-wavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp edged, flat bottomed `dips' are observed with widths between 30-1000 s and ingress and egress time-scales of 30-60 s. No change in hardness ratio was observed during the dips...

  19. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  20. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Yu, Y. W., E-mail: dzg@nju.edu.cn [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)

    2017-03-20

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  1. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Yu, Y. W.

    2017-01-01

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  2. Verification of f(R-gravity in binary pulsars

    Directory of Open Access Journals (Sweden)

    Dyadina Polina

    2016-01-01

    Full Text Available We develop the parameterized post-Keplerian approach for class of analytic f (R-gravity models. Using the double binary pulsar system PSR J0737-3039 data we obtain restrictions on the parameters of this class of f (R-models and show that f (R-gravity is not ruled out by the observations in strong field regime.

  3. Pulsar Timing Array Based Search for Supermassive Black Hole Binaries in the Square Kilometer Array Era.

    Science.gov (United States)

    Wang, Yan; Mohanty, Soumya D

    2017-04-14

    The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a pulsar timing array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing 10^{3} pulsars. We find that an all-sky search will be able to confidently detect nonevolving sources with a redshifted chirp mass of 10^{10}  M_{⊙} out to a redshift of about 28 (corresponding to a rest-frame chirp mass of 3.4×10^{8}  M_{⊙}). We discuss the important implications that the large distance reach of a SKA era PTA has on GW observations from optically identified SMBHB candidates. If no SMBHB detections occur, a highly unlikely scenario in the light of our results, the sky-averaged upper limit on strain amplitude will be improved by about 3 orders of magnitude over existing limits.

  4. VizieR Online Data Catalog: Spectral properties of 441 radio pulsars (Jankowski+, 2018)

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-03-01

    We present spectral parameters for 441 radio pulsars. These were obtained from observations centred at 728, 1382 and 3100MHz using the 10-50cm and the 20cm multibeam receiver at the Parkes radio telescope. In particular, we list the pulsar names (J2000), the calibrated, band-integrated flux densities at 728, 1382 and 3100MHz, the spectral classifications, the frequency ranges the spectral classifications were performed over, the spectral indices for pulsars with simple power-law spectra and the robust modulation indices at all three centre frequencies for pulsars of which we have at least six measurement epochs. The flux density uncertainties include scintillation and a systematic contribution, in addition to the statistical uncertainty. Upper limits are reported at the 3σ level and all other uncertainties at the 1σ level. (1 data file).

  5. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    International Nuclear Information System (INIS)

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-01-01

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7σ single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  6. Binary pulsars as probes of a Galactic dark matter disk

    Science.gov (United States)

    Caputo, Andrea; Zavala, Jesús; Blas, Diego

    2018-03-01

    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.

  7. Pulsars

    CERN Document Server

    Smith, Francis Graham

    1977-01-01

    The discovery of the pulsars ; techniques for search and for observation ; the identification with rotating neutron stars ; the X-ray pulsars ; the internal structure of neutron stars ; the magnetosphere of neutron stars ; pulse timing ; properties of the integrated radio pulses ; individual radio pulses ; the Crab nebula ; the Crab pulsar ; the interstellar medium as an indicator of pulsar distances ; the interstellar magnetic field ; interstellar scintillation ; radiation processes ; the emission mechanism I : analysis of observed particles ; the emission mechanism II : geometrical considerations ; the emission mechanism : discussion ; supernovae : the origin of the pulsars ; the distribution and the ages of pulsars ; high energies and condensed stars.

  8. Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar

    Science.gov (United States)

    Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.; hide

    2012-01-01

    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.

  9. Observations and modeling of the companions of short period binary millisecond pulsars: evidence for high-mass neutron stars

    International Nuclear Information System (INIS)

    Schroeder, Joshua; Halpern, Jules

    2014-01-01

    We present observations of fields containing eight recently discovered binary millisecond pulsars using the telescopes at MDM Observatory. Optical counterparts to four of these systems are detected, one of which, PSR J2214+3000, is a novel detection. Additionally, we present the fully phase-resolved B, V, and R light curves of the optical counterparts to two objects, PSR J1810+1744 and PSR J2215+5135 for which we employ model fitting using the eclipsing light curve (ELC) model of Orosz and Hauschildt to measure the unknown system parameters. For PSR J1810+1744, we find that the system parameters cannot be fit even assuming that 100% of the spin-down luminosity of the pulsar is irradiating the secondary, and so radial velocity measurements of this object will be required for the complete solution. However, PSR J2215+5135 exhibits light curves that are extremely well constrained using the ELC model and we find that the mass of the neutron star is constrained by these and the radio observations to be M NS > 1.75 M ☉ at the 3σ level. We also find a discrepancy between the model temperature and the measured colors of this object, which we interpret as possible evidence for an additional high-temperature source such as a quiescent disk. Given this and the fact that PSR J2215+5135 contains a relatively high mass companion (M c > 0.1 M ☉ ), we propose that similar to the binary pulsar systems PSR J1023+0038 and IGR J18245–2452, the pulsar may transition between accretion- and rotation-powered modes.

  10. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  11. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  12. Rotating Radio Transients and Their Place Among Pulsars

    Science.gov (United States)

    Burke-Spolaor, S.

    2012-01-01

    Six years ago, the discovery of Rotating Radio Transients (RRATs) marked what appeared to be a new type of sparsely-emitting pulsar. Since 2006, more than 70 of these objects have been discovered in single-pulse searches of archival and new surveys. With a continual inflow of new information about the RRAT population in the form of new discoveries, multi-frequency follow ups, coherent timing solutions, and pulse rate statistics, a view is beginning to form of the place in the pulsar population RRATs hold. Here we review the properties of neutron stars discovered through single pulse searches. We first seek to clarify the definition of the term RRAT, emphasising that "the RRAT population" encompasses several phenomenologies. A large subset of RRATs appears to represent the tail of an extended distribution of pulsar nulling fractions and activity cycles; these objects present several key open questions remaining in this field.

  13. MULTIWAVELENGTH OBSERVATIONS OF THE REDBACK MILLISECOND PULSAR J1048+2339

    Energy Technology Data Exchange (ETDEWEB)

    Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Ray, P. S.; Wood, K.; Wolff, M. T. [Naval Research Laboratory, Washington, DC 20375 (United States); Camilo, F.; Halpern, J. P. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Cromartie, H. T. [University of Virginia, Charlottesville, VA 22904 (United States); Ferrara, E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kerr, M. [CSIRO Astronomy and Space Science, Marsfield NSW 2122 (Australia); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Chambers, K. C.; Magnier, E. A. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2016-06-01

    We report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi -Large Area Telescope source 3FGL J1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6 hr binary and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 M {sub ⊙}, and we have identified a V ∼ 20 variable optical counterpart in data from several surveys. The phasing of its ∼1 mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companion’s magnetic field channeling the pulsar wind to specific locations on its surface. We also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radio ephemeris.

  14. A search for radio pulsars and fast transients in M31 using the Westerbork Synthesis Radio Telescope

    NARCIS (Netherlands)

    Rubio-Herrera, E.; Stappers, B.W.; Hessels, J.W.T.; Braun, R.

    2013-01-01

    We present the results of the most sensitive and comprehensive survey yet undertaken for radio pulsars and fast transients in the Andromeda galaxy (M31) and its satellites, using the Westerbork Synthesis Radio Telescope (WSRT) at a central frequency of 328 MHz. We used the WSRT in a special

  15. Prospects of Constraining the Dense Matter Equation of State from Timing Analysis of Pulsars in Double Neutron Star Binaries: The Cases of PSR J0737 ‒ 3039A and PSR J1757 ‒ 1854

    Directory of Open Access Journals (Sweden)

    Manjari Bagchi

    2018-02-01

    Full Text Available The Lense-Thirring effect from spinning neutron stars in double neutron star binaries contributes to the periastron advance of the orbit. This extra term involves the moment of inertia of the neutron stars. The moment of inertia, on the other hand, depends on the mass and spin of the neutron star, as well as the equation of state of the matter. If at least one member of the double neutron star binary (better the faster one is a radio pulsar, then accurate timing analysis might lead to the estimation of the contribution of the Lense-Thirring effect to the periastron advance, which will lead to the measurement of the moment of inertia of the pulsar. The combination of the knowledge on the values of the moment of inertia, the mass and the spin of the pulsar will give a new constraint on the equation of state. Pulsars in double neutron star binaries are the best for this purpose as short orbits and moderately high eccentricities make the Lense-Thirring effect substantial, whereas tidal effects are negligible (unlike pulsars with main sequence or white-dwarf binaries. The most promising pulsars are PSR J0737 − 3039A and PSR J1757 − 1854. The spin-precession of pulsars due to the misalignment between the spin and the orbital angular momentum vectors affect the contribution of the Lense-Thirring effect to the periastron advance. This effect has been explored for both PSR J0737 − 3039A and PSR J1757 − 1854, and as the misalignment angles for both of these pulsars are small, the variation in the Lense-Thirring term is not much. However, to extract the Lense-Thirring effect from the observed rate of the periastron advance, more accurate timing solutions including precise proper motion and distance measurements are essential.

  16. The Frequency Evolution of Interstellar Pulse Broadening from Radio Pulsars

    Science.gov (United States)

    Löhmer, O.; Mitra, D.; Gupta, Y.; Kramer, M.; Ahuja, A.

    2004-10-01

    Using radio pulsars as probes of the interstellar medium (ISM) we study the frequency evolution of interstellar scattering. The frequency dependence of scatter broadening times, τsc, for most of the pulsars with low and intermediate dispersion measures (DM ≲ 400 pc cm-3) is consistent with the Kolmogorov spectrum of electron density fluctuations in a turbulent medium. In contrast, the measured τsc's for highly dispersed pulsars in the central region of the Galaxy are larger than expected and show a spectrum which is flatter than the Kolmogorov law. We analyse the first measurements of spectral indices of scatter broadening over the full known DM range and discuss possible explanations for the anomalous scattering behaviour along peculiar lines of sight (LOS).

  17. A search for dispersed radio bursts in archival Parkes Multibeam Pulsar Survey data

    OpenAIRE

    Bagchi, Manjari; Nieves, Angela Cortes; McLaughlin, Maura

    2012-01-01

    A number of different classes of potentially extra-terrestrial bursts of radio emission have been observed in surveys with the Parkes 64m radio telescope, including "Rotating Radio Transients", the "Lorimer burst" and "perytons". Rotating Radio Transients are radio pulsars which are best detectable in single-pulse searches. The Lorimer burst is a highly dispersed isolated radio burst with properties suggestive of extragalactic origin. Perytons share the frequency-swept nature of the Rotating ...

  18. Higher-order relativistic periastron advances and binary pulsars

    International Nuclear Information System (INIS)

    Damour, T.; Schafer, G.

    1988-01-01

    The contributions to the periastron advance of a system of two condensed bodies coming from relativistic dynamical effects of order higher than the usual first post-Newtonian (1PN) equations of motion are investigated. The structure of the solution of the orbital second post-Newtonian (2PN) equations of motion is given in a simple parametrized form. The contributions to the secular pariastron advance, and the period, of orbital 2PN effects are then explicitly worked out by using the Hamilton-Jacobi method. The spin-orbit contribution to the secular precession of the orbit in space is rederived in a streamlined way by making full use of Hamiltonian methods. These results are then applied to the theoretical interpretation of the observational data of pulsars in close eccentric binary systems. It is shown that the higher-order relativistic contributions are already of theoretical and astophysical significance for interpreting the high-precision measurement of the secular periastron advance of PSR 1913+16 achived by Taylor and coworkers. The case of extremely fast spinning (millisecond) binary pulsars is also discussed, and shown to offer an easier ground for getting new tests of general relativity, and/or, a direct measurement of the moment of inertia of a neutron star

  19. Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey

    NARCIS (Netherlands)

    Spitler, L.G.; Cordes, J.M.; Hessels, J.W.T.; Lorimer, D.R.; McLaughlin, M.A.; Chatterjee, S.; Crawford, F.; Deneva, J.S.; Kaspi, V.M.; Wharton, R.S.; Allen, B.; Bogdanov, S.; Brazier, A.; Camilo, F.; Freire, P.C.C.; Jenet, F.A.; Karako-Argaman, C.; Knispel, B.; Lazarus, P.; Lee, K.J.; van Leeuwen, J.; Lynch, R.; Ransom, S.M.; Scholz, P.; Siemens, X.; Stairs, I.H.; Stovall, K.; Swiggum, J.K.; Venkataraman, A.; Zhu, W.W.; Aulbert, C.; Fehrmann, H.

    2014-01-01

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities

  20. Radio pulsar glitches as a state-dependent Poisson process

    Science.gov (United States)

    Fulgenzi, W.; Melatos, A.; Hughes, B. D.

    2017-10-01

    Gross-Pitaevskii simulations of vortex avalanches in a neutron star superfluid are limited computationally to ≲102 vortices and ≲102 avalanches, making it hard to study the long-term statistics of radio pulsar glitches in realistically sized systems. Here, an idealized, mean-field model of the observed Gross-Pitaevskii dynamics is presented, in which vortex unpinning is approximated as a state-dependent, compound Poisson process in a single random variable, the spatially averaged crust-superfluid lag. Both the lag-dependent Poisson rate and the conditional distribution of avalanche-driven lag decrements are inputs into the model, which is solved numerically (via Monte Carlo simulations) and analytically (via a master equation). The output statistics are controlled by two dimensionless free parameters: α, the glitch rate at a reference lag, multiplied by the critical lag for unpinning, divided by the spin-down rate; and β, the minimum fraction of the lag that can be restored by a glitch. The system evolves naturally to a self-regulated stationary state, whose properties are determined by α/αc(β), where αc(β) ≈ β-1/2 is a transition value. In the regime α ≳ αc(β), one recovers qualitatively the power-law size and exponential waiting-time distributions observed in many radio pulsars and Gross-Pitaevskii simulations. For α ≪ αc(β), the size and waiting-time distributions are both power-law-like, and a correlation emerges between size and waiting time until the next glitch, contrary to what is observed in most pulsars. Comparisons with astrophysical data are restricted by the small sample sizes available at present, with ≤35 events observed per pulsar.

  1. Pulsar searching and timing with the Parkes telescope

    Science.gov (United States)

    Ng, C. W. Y.

    2014-11-01

    Pulsars are highly magnetised, rapidly rotating neutron stars that radiate a beam of coherent radio emission from their magnetic poles. An introduction to the pulsar phenomenology is presented in Chapter 1 of this thesis. The extreme conditions found in and around such compact objects make pulsars fantastic natural laboratories, as their strong gravitational fields provide exclusive insights to a rich variety of fundamental physics and astronomy. The discovery of pulsars is therefore a gateway to new science. An overview of the standard pulsar searching technique is described in Chapter 2, as well as a discussion on notable pulsar searching efforts undertaken thus far with various telescopes. The High Time Resolution Universe (HTRU) Pulsar Survey conducted with the 64-m Parkes radio telescope in Australia forms the bulk of this PhD. In particular, the author has led the search effort of the HTRU low-latitude Galactic plane project part which is introduced in Chapter 3. We discuss the computational challenges arising from the processing of the petabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including the potential pulsar-black hole binaries. We show that under a linear acceleration approximation, a ratio of ~0.1 of data length over orbital period results in the highest effectiveness for this search algorithm. Chapter 4 presents the initial results from the HTRU low-latitude Galactic plane survey. From the 37 per cent of data processed thus far, we have re-detected 348 previously known pulsars and discovered a further 47 pulsars. Two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar (MSP) with a heavy white dwarf companion while its short spin period of 5 ms indicates

  2. The Models for Radio Emission from Pulsars – The Outstanding issues

    Indian Academy of Sciences (India)

    tribpo

    in section 4, where existing models for pulsar radio emission are also reviewed. ... pair plasma flowing outward along open magnetic field lines from the polar caps ..... A reactive instability involves an intrinsically growing, phase-coherent wave.

  3. Transitional millisecond pulsars in the low-level accretion state

    Science.gov (United States)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  4. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    Science.gov (United States)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; hide

    2013-01-01

    We report the detection of radio emission from PSR J1311.3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for less than 10% of approximately 4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nan cay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311.3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm(exp -3) provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  5. The binary nature of PSR J2032+4127

    International Nuclear Information System (INIS)

    Lyne, A. G.; Stappers, B. W.; Keith, M. J.; Ray, P. S.; Kerr, M.

    2015-01-01

    PSR J2032+4127 is a γ-ray and radio-emitting pulsar which has been regarded as a young luminous isolated neutron star. However, its recent spin-down rate has extraordinarily increased by a factor of 2. Here we present evidence that this is due to its motion as a member of a highly-eccentric binary system with an ~15–M⊙ Be star, MT91 213. Timing observations show that, not only are the positions of the two stars coincident within 0.4 arcsec, but timing models of binary motion of the pulsar fit the data much better than a model of a young isolated pulsar. MT91 213, and hence the pulsar, lie in the Cyg OB2 stellar association, which is at a distance of only 1.4–1.7 kpc. The pulsar is currently on the near side of, and accelerating towards, the Be star, with an orbital period of 20–30 yr. Finally, the next periastron is well constrained to occur in early 2018, providing an opportunity to observe enhanced high-energy emission as seen in other Be-star binary systems.

  6. DISCOVERY OF AN ULTRACOMPACT GAMMA-RAY MILLISECOND PULSAR BINARY CANDIDATE

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Albert K. H.; Jin, Ruolan; Yen, T.-C.; Tam, P. H. T.; Lin, L. C. C. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hu, C.-P. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Hui, C. Y.; Park, S. M. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Kim, C. L., E-mail: akong@phys.nthu.edu.tw [Department of Physics and Astronomy, Seoul National University (Korea, Republic of)

    2014-10-20

    We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observations, we have identified an X-ray and optical counterpart to 2FGL J1653.6-0159. The source exhibits a periodic modulation of 75 minutes in the optical and possibly also in the X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 75 minutes. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black-widow-/redback-type gamma-ray millisecond pulsar (MSP). The optical and X-ray light curve profiles show that the companion is mildly heated by the high-energy emission and that the X-rays are from intrabinary shock. Although no radio pulsation has yet been detected, we estimated that the spin period of the MSP is ∼ 2 ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.

  7. Discovery of Radio Pulsations from the X-ray Pulsar JO205+6449 in Supernova Remnant 3C58 with the Green Bank Telescope

    Science.gov (United States)

    Camilo, F.; Stairs, I. H.; Lorimer, D. R.; Backer, D. C.; Ransom, S. M.; Klein, B.; Wielebinski, R.; Kramer, M.; McLaughlin, M. A.; Arzoumanian, Z.; hide

    2002-01-01

    We report the discovery with the 100m Green Bank Telescope of 65 ms radio pulsations from the X-ray pulsar J0205+6449 at the center of supernova remnant 3C58, making this possibly the youngest radio pulsar known. From our observations at frequencies of 820 and 1375 MHz, the free electron column density to USSR J0205+6449 is found to be 140.7 +/- 0.3/cc pc. The barycentric pulsar period P and P(dot) determined from a phase-coherent timing solution are consistent with the values previously measured from X-ray observations. The averaged radio profile of USSR J0205+6449 consists of one sharp pulse of width = 3 ms = 0.05 P. The pulsar is an exceedingly weak radio source, with pulse-averaged flux density in the 1400 MHz band of approximately 45 micro-Jy and a spectral index of approximately -2.1. Its radio luminosity of approximately 0.5 may kpc(exp 2) at 1400 MHz is lower than that of approximately 99% of known pulsar and is the lowest among known young pulsars.

  8. Building X-ray pulsar timing model without the use of radio parameters

    Science.gov (United States)

    Sun, Hai-feng; Sun, Xiong; Fang, Hai-yan; Shen, Li-rong; Cong, Shao-peng; Liu, Yan-ming; Li, Xiao-ping; Bao, Wei-min

    2018-02-01

    This paper develops a timing solution for the X-ray pulsar timing model without the use of the initial radio model parameters. First, we address the problem of phase ambiguities for the pre-fit residuals in the construction of pulsar timing model. To improve the estimation accuracy of the pulse time of arrival (TOA), we have deduced the general form of test statistics in Fourier transform, and discussed their estimation performances. Meanwhile, a fast maximum likelihood (FML) technique is presented to estimate the pulse TOA, which outperforms cross correlation (CC) estimator and exhibits a performance comparable with maximum likelihood (ML) estimator in spite of a much less reduced computational complexity. Depending on the strategy of the difference minimum of pre-fit residuals, we present an effective forced phase-connected technique to achieve initial model parameters. Then, we use the observations with the Rossi X-Ray Timing Explorer (RXTE) and X-ray pulsar navigation-I (XPNAV-1) satellites for experimental studies, and discuss main differences for the root mean square (RMS) residuals calculated with the X-ray and radio ephemerides. Finally, a chi-square value (CSV) of pulse profiles is presented as a complementary indicator to the RMS residuals for evaluating the model parameters. The results show that the proposed timing solution is valid and effective, and the obtained model parameters can be a reasonable alternative to the radio ephemeris.

  9. Pulsar magnetospheres

    International Nuclear Information System (INIS)

    Kennel, C.F.; Fujimura, F.S.; Pellat, R.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetospehere depends upon the strength of its plasma source near the surface of the star. We review magnetospheric models in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strength, beyond which coherent radio emission is no longer possible. The observed distribution of pulsar spin periods and period derivates, and the distribution of pulsars with missing radio pulses, is quantitatively consistent with the pair production threshold, when its variation of neutron star radius and moment of interia with mass is taken into account. All neutron stars observed as pulsars can have relativistic magneto-hydrodynamic wind exterior magnetospheres. The properties of the wind can be directly related to those of the pair production source. Radio pulsars cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed. (orig.)

  10. The 4U 0115+63: Another energetic gamma ray binary pulsar

    Science.gov (United States)

    Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.

    1985-01-01

    Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.

  11. Radio emission from Sgr A*: pulsar transits through the accretion disc

    Science.gov (United States)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  12. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    Science.gov (United States)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  13. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    everything you ever wanted to know about pulsars but were afraid to ask. Chapter 1 begins a brief and interesting account of the discovery of pulsars, followed by an overview of the rotation-powered and accretion-powered populations. The following four chapters are fairly detailed and reasonably quantitative descriptions of neutron star interiors. This is no easy feat, given that a description of the physics of neutron stars demands a deep understanding of all major physical forces, and must include general relativity as well as detailed particle physics. The historical notes at the beginning of Chapter 2 are particularly fascinating, recounting the path to today's understanding of neutron stars in very interesting detail. Chapter 7 presents rotation-powered pulsar radio properties, and a nice description of pulsar timing, including relativistic and non-relativistic binaries and GR tests. The remaining chapters tackle a variety of topics including binary evolution, superfluidity, accretion-powered pulsar properties, magnetospheres and emission mechanisms, magnetic fields, spin evolution and strange stars. The coverage is somewhat uneven, with the strange star chapter, for example, an obvious afterthought. The utility of an encyclopedia lies in its breadth and in how up-to-date it is. Although admirable in its intentions, the Ghosh book does omit some major pulsar topics. This book leaves the impression that rotation-powered pulsars produce only radio emission; hardly (if at all) mentioned is the vast literature on their infrared, optical, and even more importantly, x-ray and gamma-ray emission, the latter being far more relevant to the pulsar 'machine' than the energetically puny radio output. Also absent are pulsar winds; this is particularly puzzling given both the lovely wind nebula that graces the book's cover, and the central role the wind plays as primary sink of the rotation power. One of the most actively pursued topics in pulsar astrophysics in

  14. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    ever wanted to know about pulsars but were afraid to ask. Chapter 1 begins a brief and interesting account of the discovery of pulsars, followed by an overview of the rotation-powered and accretion-powered populations. The following four chapters are fairly detailed and reasonably quantitative descriptions of neutron star interiors. This is no easy feat, given that a description of the physics of neutron stars demands a deep understanding of all major physical forces, and must include general relativity as well as detailed particle physics. The historical notes at the beginning of Chapter 2 are particularly fascinating, recounting the path to today's understanding of neutron stars in very interesting detail. Chapter 7 presents rotation-powered pulsar radio properties, and a nice description of pulsar timing, including relativistic and non-relativistic binaries and GR tests. The remaining chapters tackle a variety of topics including binary evolution, superfluidity, accretion-powered pulsar properties, magnetospheres and emission mechanisms, magnetic fields, spin evolution and strange stars. The coverage is somewhat uneven, with the strange star chapter, for example, an obvious afterthought. The utility of an encyclopedia lies in its breadth and in how up-to-date it is. Although admirable in its intentions, the Ghosh book does omit some major pulsar topics. This book leaves the impression that rotation-powered pulsars produce only radio emission; hardly (if at all) mentioned is the vast literature on their infrared, optical, and even more importantly, x-ray and gamma-ray emission, the latter being far more relevant to the pulsar 'machine' than the energetically puny radio output. Also absent are pulsar winds; this is particularly puzzling given both the lovely wind nebula that graces the book's cover, and the central role the wind plays as primary sink of the rotation power. One of the most actively pursued topics in pulsar astrophysics in the past decade, magnetars

  15. A search for dispersed radio bursts in archival Parkes Multibeam Pulsar Survey data

    Science.gov (United States)

    Bagchi, Manjari; Nieves, Angela Cortes; McLaughlin, Maura

    2012-10-01

    A number of different classes of potentially extra-terrestrial bursts of radio emission have been observed in surveys with the Parkes 64-m radio telescope, including 'rotating radio transients', the 'Lorimer burst' and 'perytons'. Rotating radio transients are radio pulsars which are best detectable in single-pulse searches. The Lorimer burst is a highly dispersed isolated radio burst with properties suggestive of extragalactic origin. Perytons share the frequency-swept nature of the rotating radio transients and Lorimer burst, but unlike these events appear in all 13 beams of the Parkes multibeam receiver and are probably a form of peculiar radio frequency interference. In order to constrain these and other radio source populations further, we searched the archival Parkes Multibeam Pulsar Survey data for events similar to any of these. We did not find any new rotating radio transients or bursts like the Lorimer burst. We did, however, discover four peryton-like events. Similar to the perytons, these four bursts are highly dispersed, detected in all 13 beams of the Parkes multibeam receiver, and have pulse widths between 20 and 30 ms. Unlike perytons, these bursts are not associated with atmospheric events like rain or lightning. These facts may indicate that lightning was not responsible for the peryton phenomenon. Moreover, the lack of highly dispersed celestial signals is the evidence that the Lorimer burst is unlikely to belong to a cosmological source population.

  16. Pulsar wind model for the spin-down behavior of intermittent pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Wang, N. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X., E-mail: tonghao@xao.ac.cn [School of Physics, Peking University, Beijing (China)

    2014-06-10

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  17. Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Allen, B. [Leibniz Universität, Hannover, D-30167 Hannover (Germany); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Freire, P. C. C.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H. [Max-Planck-Institut für Gravitationsphysik, Callinstr. 38, D-30167 Hannover (Germany); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Department of Astronomy and Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Cardoso, F. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Ferdman, R. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T., E-mail: benjamin.knispel@aei.mpg.de [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

    2015-06-10

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  18. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  19. Mid-UV studies of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states

    Science.gov (United States)

    Rivera Sandoval, L. E.; Hernández Santisteban, J. V.; Degenaar, N.; Wijnands, R.; Knigge, C.; Miller, J. M.; Reynolds, M.; Altamirano, D.; van den Berg, M.; Hill, A.

    2018-05-01

    We report mid-UV (MUV) observations taken with Hubble Space Telescope (HST)/WFC3, Swift/UVOT, and GALEX/NUV of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states. Both systems were detected in our images and showed MUV variability. At similar orbital phases, the MUV luminosities of both pulsars are comparable. This suggests that the emission processes involved in both objects are similar. We estimated limits on the mass ratio, companion's temperature, inclination, and distance to XSS J12270-4859 by using a Markov Chain Monte Carlo algorithm to fit published folded optical light curves. Using the resulting parameters, we modelled MUV light curves in our HST filters. The resulting models failed to fit our MUV observations. Fixing the mass ratio of XSS J12270-4859 to the value reported in other studies, we obtained a distance of ˜3.2 kpc. This is larger than the one derived from dispersion measure (˜1.4 kpc). Assuming a uniform prior for the mass ratio, the distance is similar to that from radio measurements. However, it requires an undermassive companion (˜0.01M⊙). We conclude that a direct heating model alone cannot fully explain the observations in optical and MUV. Therefore, an additional radiation source is needed. The source could be an intrabinary shock which contributes to the MUV flux and likely to the optical one as well. During the radio pulsar state, the MUV orbital variations of PSR J1023+0038 detected with GALEX, suggest the presence of an asymmetric intrabinary shock.

  20. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    Science.gov (United States)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  1. The Radio and X-ray Mode-Switching Pulsar PSR B0943+10

    Indian Academy of Sciences (India)

    Sandro Mereghetti

    2017-09-12

    Sep 12, 2017 ... discovery of X-ray variability anti-correlated with the pulsar radio intensity ... a single power law, thus ruling out the interpretation of. Hermsen et al. ..... and a detailed knowledge of its complex phenomenol- ogy. Thanks to the ...

  2. Radio Pulse Search and X-Ray Monitoring of SAX J1808.4−3658: What Causes Its Orbital Evolution?

    Energy Technology Data Exchange (ETDEWEB)

    Patruno, Alessandro; King, Andrew R. [Leiden Observatory, Leiden University, Neils Bohrweg 2, 2333 CA, Leiden (Netherlands); Jaodand, Amruta; Hessels, Jason W. T. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7900 AA, Dwingeloo (Netherlands); Kuiper, Lucien [SRON-National Institute for Space Research, Sorbonnelaan 2, NL-3584 CA, Utrecht (Netherlands); Bult, Peter; Wijnands, Rudy; Van der Klis, Michiel [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Knigge, Christian [University of Southampton, School of Physics and Astronomy, Southampton SO17 1BJ (United Kingdom)

    2017-06-01

    The accreting millisecond X-ray pulsar SAX J1808.4−3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin–orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4−3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deep radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra , Swift XRT, and INTEGRAL . In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4−3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4−3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin–orbit coupling.

  3. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    Science.gov (United States)

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.

  4. Visualization of Pulsar Search Data

    Science.gov (United States)

    Foster, R. S.; Wolszczan, A.

    1993-05-01

    The search for periodic signals from rotating neutron stars or pulsars has been a computationally taxing problem to astronomers for more than twenty-five years. Over this time interval, increases in computational capability have allowed ever more sensitive searches, covering a larger parameter space. The volume of input data and the general presence of radio frequency interference typically produce numerous spurious signals. Visualization of the search output and enhanced real-time processing of significant candidate events allow the pulsar searcher to optimally processes and search for new radio pulsars. The pulsar search algorithm and visualization system presented in this paper currently runs on serial RISC based workstations, a traditional vector based super computer, and a massively parallel computer. A description of the serial software algorithm and its modifications for massively parallel computing are describe. The results of four successive searches for millisecond period radio pulsars using the Arecibo telescope at 430 MHz have resulted in the successful detection of new long-period and millisecond period radio pulsars.

  5. Polarimetry of 600 pulsars from observations at 1.4 GHz with the Parkes radio telescope

    Science.gov (United States)

    Johnston, Simon; Kerr, Matthew

    2018-03-01

    Over the past 13 yr, the Parkes radio telescope has observed a large number of pulsars using digital filter bank backends with high time and frequency resolution and the capability for Stokes recording. Here, we use archival data to present polarimetry data at an observing frequency of 1.4 GHz for 600 pulsars with spin-periods ranging from 0.036 to 8.5 s. We comment briefly on some of the statistical implications from the data and highlight the differences between pulsars with high and low spin-down energy. The data set, images and table of properties for all 600 pulsars are made available in a public data archive maintained by the CSIRO.

  6. RELATIVISTIC MEASUREMENTS FROM TIMING THE BINARY PULSAR PSR B1913+16

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, J. M.; Huang, Y., E-mail: jweisber@carleton.edu [Department of Physics and Astronomy, Carleton College, Northfield, MN 55057 (United States)

    2016-09-20

    We present relativistic analyses of 9257 measurements of times-of-arrival from the first binary pulsar, PSR B1913+16, acquired over the last 35 years. The determination of the “Keplerian” orbital elements plus two relativistic terms completely characterizes the binary system, aside from an unknown rotation about the line of sight, leading to a determination of the masses of the pulsar and its companion: 1.438 ± 0.001 M {sub ☉} and 1.390 ± 0.001 M {sub ☉}, respectively. In addition, the complete system characterization allows for the creation of relativistic gravitation test by comparing measured and predicted sizes of various relativistic phenomena. We find that the ratio of the observed orbital period decrease caused by gravitational wave damping (corrected by a kinematic term) to the general relativistic prediction is 0.9983 ± 0.0016, thereby confirms the existence and strength of gravitational radiation as predicted by general relativity. For the first time in this system, we have also successfully measured the two parameters characterizing the Shapiro gravitational propagation delay, and found that their values are consistent with general relativistic predictions. For the first time in any system, we have also measured the relativistic shape correction to the elliptical orbit, δ {sub θ} , although its intrinsic value is obscured by currently unquantified pulsar emission beam aberration. We have also marginally measured the time derivative of the projected semimajor axis, which, when improved in combination with beam aberration modeling from geodetic precession observations, should ultimately constrain the pulsar’s moment of inertia.

  7. Binary pulsar PSR 1718-19 contains a stripped main-sequence turn-off star

    International Nuclear Information System (INIS)

    Zwitter, T.

    1993-05-01

    Lyne et al. (1993) have recently announced the discovery of a 1-second globular cluster pulsar, 1718-19, in a 6.2-hour binary system which is embedded in a cloud of material originating from the companion star. However the incident flux of the pulsar's radiation on the companion is too low to ablate it and a main sequence companion is too small to fill its Roche lobe. Here I argue that the companion is a stripped turn-off star of 0.2-0.4 solar masses (M sun ) and with approx. 0.1M sun helium core. It has approx. 1.8-times larger radius than a main sequence star of equal mass. Its position in the Hertzsprung-Russell diagram overlaps that of a ∼ 0.65M sun main-sequence star. The evolutionary state of the companion and the highly magnetized slowly rotating neutron star place the system on the verge of the low mass X-ray binary phase. (author). 19 refs, 2 figs

  8. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Roy, Jayanta; Bhattacharyya, Bhaswati

    2013-01-01

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of ±1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time (∼20× for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position (±1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  9. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati [National Centre for Radio Astrophysics, Pune 411007 (India)

    2013-03-10

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of {+-}1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time ({approx}20 Multiplication-Sign for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position ({+-}1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  10. A high-frequency survey of the southern Galactic plane for pulsars

    Science.gov (United States)

    Johnston, Simon; Lyne, A. G.; Manchester, R. N.; Kniffen, D. A.; D'Amico, N.; Lim, J.; Ashworth, M.

    1992-01-01

    Results of an HF survey designed to detect young, distant, and short-period pulsars are presented. The survey detected a total of 100 pulsars, 46 of which were previously unknown. The periods of the newly discovered pulsars range between 47 ms and 2.5 ms. One of the new discoveries, PSR 1259-63, is a member of a long-period binary system. At least three of the pulsars have ages less than 30,000 yr, bringing the total number of such pulsars to 12. The majority of the new discoveries are distant objects with high dispersion measures, which are difficult to detect at low frequencies. This demonstrates that the survey has reduced the severe selection effects of pulse scattering, high Galactic background temperature, and dispersion broadening, which hamper the detection of such pulsars at low radio frequencies. The pulsar distribution in the southern Galaxy is found to extend much further from the Galactic center than that in the north, probably due to two prominent spiral arms in the southern Galaxy.

  11. Rotational and X-ray luminosity evolution of high-B radio pulsars

    Science.gov (United States)

    Benli, Onur; Ertan, Ünal

    2018-05-01

    In continuation of our earlier work on the long-term evolution of the so-called high-B radio pulsars (HBRPs) with measured braking indices, we have investigated the long-term evolution of the remaining five HBRPs for which braking indices have not been measured yet. This completes our source-by-source analyses of HBRPs in the fallback disc model that was also applied earlier to anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), and dim isolated neutron stars (XDINs). Our results show that the X-ray luminosities and the rotational properties of these rather different neutron star populations can be acquired by neutron stars with fallback discs as a result of differences in their initial conditions, namely the initial disc mass, initial period and the dipole field strength. For the five HBRPs, unlike for AXPs, SGRs and XDINs, our results do not constrain the dipole field strengths of the sources. We obtain evolutionary paths leading to the properties of HBRPs in the propeller phase with dipole fields sufficiently strong to produce pulsed radio emission.

  12. The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up

    NARCIS (Netherlands)

    Bhandari, S.; Keane, E.F.; Barr, E.D.; Jameson, A.; Petroff, E.; Johnston, S.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Caleb, M.; Eatough, R.P.; Flynn, C.; Green, J.A.; Jankowski, F.; Kramer, M.; Krishnan, V Venkatraman; Morello, V.; Possenti, A.; Stappers, B.; Tiburzi, C.; van Straten, W.; Andreoni, I.; Butterley, T.; Chandra, P.; Cooke, J.; Corongiu, A.; Coward, D.M.; Dhillon, V.S.; Dodson, R.; Hardy, L.K.; Howell, E.J.; Jaroenjittichai, P.; Klotz, A.; Littlefair, S.P.; Marsh, T.R.; Mickaliger, M.; Muxlow, T.; Perrodin, D.; Pritchard, D.; Sawangwit, U.; Terai, T.; Tominaga, N.; Torne, P.; Totani, T.; Trois, A.; Turpin, D.; Niino, Y.; Wilson, R.W.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Avgitas, T.; Baret, B.; Barrios-Marti, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Brânzas, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sanchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schussler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzocca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major

  13. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar.

    Science.gov (United States)

    Clark, Colin J; Pletsch, Holger J; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D; Bloom, Elliott D; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H; Buson, Sara; Cameron, Rob A; Caputo, Regina; Caraveo, Patrizia A; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R; Costantin, Denise; Cutini, Sara; D'Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W; Favuzzi, Cecilia; Ferrara, Elizabeth C; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A; Green, David; Grenier, Isabelle A; Guiriec, Sylvain; Harding, Alice K; Hewitt, John W; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N; Lubrano, Pasquale; Magill, Jeffrey D; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N; McEnery, Julie E; Michelson, Peter F; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S; de Palma, Francesco; Paneque, David; Perkins, Jeremy S; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W; Saz Parkinson, Pablo M; Sgrò, Carmelo; Siskind, Eric J; Smith, David A; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B; Thompson, David J; Torres, Diego F; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-02-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.

  14. Pulsar magnetosphere-wind or wave

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review wave models of exterior pulsar magnetospheres in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strenght, beyond which coherent radio emission is no longer possible. Since the observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is consistent with the pair production threshold, those neutron stars observed as radio pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres, and cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed

  15. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119-6127 AND SUPERNOVA REMNANT G292.2-0.5

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.-Y.; Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Ho, W. C. G. [School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom); Weltevrede, P. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Shannon, R. [CSIRO Astronomy and Space Sciences, Australia Telescope National Facility, Marsfield, NSW 2210 (Australia); Gonzalez, M. E., E-mail: ncy@physics.mcgill.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2012-12-10

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 Multiplication-Sign 10{sup 13} G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 {+-} 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  16. Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope

    Science.gov (United States)

    Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.; hide

    2012-01-01

    We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 micro s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.

  17. Discovery of a young, 267 millisecond pulsar in the supernova remnant W44

    Science.gov (United States)

    Wolszczan, A.; Cordes, J. M.; Dewey, R. J.

    1991-01-01

    This paper reports the discovery of a 267 msec pulsar, PSR 1853 + 01, in the SNR W44 (G34.7 - 0.4), located south of the W44, well within its radio shell and at the outher edge of the X-ray emission region which fills the SNR interior. The PSR 1853 + 01 is separated only 20 arcmin from the PSR 1854 + 00 pulsar discovered by Mohanty (1983). Results of timing observatons of PSR 1853 + 01 are presented, and a possible relationship between the two objects is examined. It is suggested that the two pulsars may have a common origin in a binary system disrupted by the explosion that produced W44.

  18. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    Science.gov (United States)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

  19. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar

    Science.gov (United States)

    Clark, Colin J.; Pletsch, Holger J.; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J.; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A.; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D.; Bloom, Elliott D.; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J.; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H.; Buson, Sara; Cameron, Rob A.; Caputo, Regina; Caraveo, Patrizia A.; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R.; Costantin, Denise; Cutini, Sara; D’Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W.; Favuzzi, Cecilia; Ferrara, Elizabeth C.; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A.; Green, David; Grenier, Isabelle A.; Guiriec, Sylvain; Harding, Alice K.; Hewitt, John W.; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N.; Lubrano, Pasquale; Magill, Jeffrey D.; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N.; McEnery, Julie E.; Michelson, Peter F.; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V.; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S.; de Palma, Francesco; Paneque, David; Perkins, Jeremy S.; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A.; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S.; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W.; Saz Parkinson, Pablo M.; Sgrò, Carmelo; Siskind, Eric J.; Smith, David A.; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B.; Thompson, David J.; Torres, Diego F.; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-01-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population. PMID:29503868

  20. Fast radio burst discovered in the Arecibo pulsar ALFA survey

    International Nuclear Information System (INIS)

    Spitler, L. G.; Freire, P. C. C.; Lazarus, P.; Lee, K. J.; Cordes, J. M.; Chatterjee, S.; Wharton, R. S.; Brazier, A.; Hessels, J. W. T.; Lorimer, D. R.; McLaughlin, M. A.; Crawford, F.; Deneva, J. S.; Kaspi, V. M.; Karako-Argaman, C.; Allen, B.; Bogdanov, S.; Camilo, F.; Jenet, F. A.; Knispel, B.

    2014-01-01

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4 GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ± 2.0 pc cm –3 , pulse width of 3.0 ± 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = –0.°2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.

  1. Fast radio burst discovered in the Arecibo pulsar ALFA survey

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, L. G.; Freire, P. C. C.; Lazarus, P.; Lee, K. J. [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany); Cordes, J. M.; Chatterjee, S.; Wharton, R. S.; Brazier, A. [Department of Astronomy and Space Sciences, Cornell University, Ithaca, NY 14853 (United States); Hessels, J. W. T. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Lorimer, D. R.; McLaughlin, M. A. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Kaspi, V. M.; Karako-Argaman, C. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Allen, B. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Jenet, F. A. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Knispel, B., E-mail: lspitler@mpifr-bonn.mpg.de [Leibniz Universität, Hannover, D-30167 Hannover (Germany); and others

    2014-08-01

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4 GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ± 2.0 pc cm{sup –3}, pulse width of 3.0 ± 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = –0.°2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.

  2. No tension between assembly models of super massive black hole binaries and pulsar observations.

    Science.gov (United States)

    Middleton, Hannah; Chen, Siyuan; Del Pozzo, Walter; Sesana, Alberto; Vecchio, Alberto

    2018-02-08

    Pulsar timing arrays are presently the only means to search for the gravitational wave stochastic background from super massive black hole binary populations, considered to be within the grasp of current or near-future observations. The stringent upper limit from the Parkes Pulsar Timing Array has been interpreted as excluding (>90% confidence) the current paradigm of binary assembly through galaxy mergers and hardening via stellar interaction, suggesting evolution is accelerated or stalled. Using Bayesian hierarchical modelling we consider implications of this upper limit for a range of astrophysical scenarios, without invoking stalling, nor more exotic physical processes. All scenarios are fully consistent with the upper limit, but (weak) bounds on population parameters can be inferred. Recent upward revisions of the black hole-galaxy bulge mass relation are disfavoured at 1.6σ against lighter models. Once sensitivity improves by an order of magnitude, a non-detection will disfavour the most optimistic scenarios at 3.9σ.

  3. UPPER LIMITS ON PULSED RADIO EMISSION FROM THE 6.85 s X-RAY PULSAR XTE J0103-728 IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Crawford, Fronefield; Devour, Brian M.; Takacs, Brian P.; Lorimer, Duncan R.; Kondratiev, Vladislav I.

    2009-01-01

    X-ray pulsations with a 6.85 s period were recently detected in the Small Magellanic Cloud (SMC) and were subsequently identified as originating from the Be/X-ray binary system XTE J0103-728. The recent localization of the source of the X-ray emission has made a targeted search for radio pulsations from this source possible. The detection of pulsed radio emission from XTE J0103-728 would make it only the second system after PSR B1259-63 that is both a Be/X-ray binary and a radio pulsar. We observed XTE J0103-728 in 2008 February with the Parkes 64 m radio telescope soon after the identification of the source of X-ray pulsations was reported in order to search for corresponding radio pulsations. We used a continuous 6.4 hr observation with a 256 MHz bandwidth centered at 1390 MHz using the center beam of the Parkes multibeam receiver. In the subsequent data analysis, which included a folding search, a Fourier search, a fast-folding algorithm search, and a single pulse search, no pulsed signals were found for trial dispersion measures (DMs) between 0 and 800 pc cm -3 . This DM range easily encompasses the expected values for sources in the SMC. We place an upper limit of ∼45 mJy kpc 2 on the luminosity of periodic radio emission from XTE J0103-728 at the epoch of our observation, and we compare this limit to a range of luminosities measured for PSR B1259-63, the only Be/X-ray binary currently known to emit radio pulses. We also compare our limit to the radio luminosities of neutron stars having similarly long spin periods to XTE J0103-728. Since the radio pulses from PSR B1259-63 are eclipsed and undetectable during the portion of the orbit near periastron, repeated additional radio search observations of XTE J0103-728 may be valuable if it is undergoing similar eclipsing and if such observations are able to sample the orbital phase of this system well.

  4. PSR J0538+2817 As The Remnant Of The First Supernova Explosion in a Massive Binary

    Science.gov (United States)

    Gvaramadze, V. V.

    2006-08-01

    It is generally accepted that the radio pulsar PSR J0538+2817 is associated with the supernova remnant (SNR) S147. The only problem for the association is the obvious discrepancy (Kramer et al. 2003) between the kinematic age of the system of ~30 kyr (estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar's proper motion) and the characteristic age of the pulsar of ~600 kyr. To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one (Kramer et al. 2003; Romani & Ng 2003). We propose an alternative explanation of the age discrepancy based on the fact that PSR J0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age. Our proposal implies that S147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S147. We use the existing observational data on the system PSR J0538+2817/SNR S147 to suggest that the progenitor of the supernova that formed S147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  5. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  6. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  7. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  8. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  9. Population synthesis of radio and gamma-ray millisecond pulsars using Markov Chain Monte Carlo techniques

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice

    2016-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  10. A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Dumora, D.; Grondin, M.H.; Guillemot, L.; Lemoine-Goumard, M.; Lovellette, M.N.; Parent, D.; Smith, D.A.; Abdo, A.A.; Chekhtman, A.; Dermer, C.D.; Grove, J.E.; Johnson, W.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wood, K.S.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Edmonds, Y.; Focke, W.B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Panetta, J.H.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.B.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Atwood, W.B.; Dormody, M.; Johnson, R.P.; Porter, T.A.; Sadrozinski, H.F.W.; Schalk, T.L.; Thorsett, S.E.; Ziegler, M.; Axelsson, M.; Carlson, P.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Starck, J.L.

    2009-01-01

    Pulsars are born with sub-second spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface. (authors)

  11. Pulsar searches of Fermi unassociated sources with the Effelsberg telescope

    International Nuclear Information System (INIS)

    Barr, E. D.; Guillemot, L.; Champion, D. J.; Kramer, M.; Eatough, R. P.

    2012-01-01

    Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated γ-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al. 2010a). In addition, this survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, M c,min ~0.0137M⊙, indicative of ‘black widow’ type systems. A 2-yr timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection of a dual-peaked γ-ray light curve, proving that PSR J1745+1017 is the source responsible for the γ-ray emission seen in 1FGL J1745.5+1018 (2FGL J1745.6+1015; Nolan et al. 2012). We find the γ-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. Lastly, the reasons behind the seemingly low yield of discoveries are also discussed.

  12. Giant Pulse Studies of Ordinary and Recycled Pulsars with NICER

    Science.gov (United States)

    Lewandowska, Natalia; Arzoumanian, Zaven; Gendreau, Keith C.; Enoto, Teruaki; Harding, Alice; Lommen, Andrea; Ray, Paul S.; Deneva, Julia; Kerr, Matthew; Ransom, Scott M.; NICER Team

    2018-01-01

    Radio Giant Pulses are one of the earliest discovered form of anomalous single pulse emission from pulsars. Known for their non-periodical occurrence, restriction to certain phase ranges, power-law intensity distributions, pulse widths ranging from microseconds to nanoseconds and very high brightness temperatures, they stand out as an individual form of pulsar radio emission.Discovered originally in the case of the Crab pulsar, several other pulsars have been observed to emit radio giant pulses, the most promising being the recycled pulsar PSR B1937+21 and also the Vela pulsar.Although radio giant pulses are apparently the result of a coherent emission mechanism, recent studies of the Crab pulsar led to the discovery of an additional incoherent component at optical wavelengths. No such component has been identified for recycled pulsars, or Vela yet.To provide constraints on possible emission regions in their magnetospheres and to search for differences between giant pulses from ordinary and recycled pulsars, we present the progress of the correlation study of PSR B1937+21 and the Vela pulsar carried out with NICER and several radio observatories.

  13. Radio emission from symbiotic stars: a binary model

    International Nuclear Information System (INIS)

    Taylor, A.R.; Seaquist, E.R.

    1985-01-01

    The authors examine a binary model for symbiotic stars to account for their radio properties. The system is comprised of a cool, mass-losing star and a hot companion. Radio emission arises in the portion of the stellar wind photo-ionized by the hot star. Computer simulations for the case of uniform mass loss at constant velocity show that when less than half the wind is ionized, optically thick spectral indices greater than +0.6 are produced. Model fits to radio spectra allow the binary separation, wind density and ionizing photon luminosity to be calculated. They apply the model to the symbiotic star H1-36. (orig.)

  14. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119–6127 AND SUPERNOVA REMNANT G292.2–0.5

    International Nuclear Information System (INIS)

    Ng, C.-Y.; Kaspi, V. M.; Ho, W. C. G.; Weltevrede, P.; Bogdanov, S.; Shannon, R.; Gonzalez, M. E.

    2012-01-01

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119–6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 × 10 13 G, and its associated supernova remnant G292.2–0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 ± 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2–0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  15. The Green Bank Northern Celestial Cap Pulsar Survey. II. The Discovery and Timing of 10 Pulsars

    Science.gov (United States)

    Kawash, A. M.; McLaughlin, M. A.; Kaplan, D. L.; DeCesar, M. E.; Levin, L.; Lorimer, D. R.; Lynch, R. S.; Stovall, K.; Swiggum, J. K.; Fonseca, E.; Archibald, A. M.; Banaszak, S.; Biwer, C. M.; Boyles, J.; Cui, B.; Dartez, L. P.; Day, D.; Ernst, S.; Ford, A. J.; Flanigan, J.; Heatherly, S. A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Kondratiev, V. I.; Leake, S.; Lunsford, G.; Martinez, J. G.; Mata, A.; Matheny, T. D.; Mcewen, A. E.; Mingyar, M. G.; Orsini, A. L.; Ransom, S. M.; Roberts, M. S. E.; Rohr, M. D.; Siemens, X.; Spiewak, R.; Stairs, I. H.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.

    2018-04-01

    We present timing solutions for 10 pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program during an analysis of drift-scan data. Following the discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high-precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930‑2301, a pulsar with a nulling fraction lower limit of ∼30% and a nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557‑2948 is an isolated, 44 ms pulsar that has been partially recycled and is likely a former member of a binary system that was disrupted by a second supernova. The paucity of such so-called “disrupted binary pulsars” (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 ms pulsar in a 44-day orbit with a low-mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.

  16. Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields

    Science.gov (United States)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2018-05-01

    Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.

  17. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    Science.gov (United States)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  18. Pair plasma in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Asseo, Estelle

    2003-01-01

    The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able

  19. CHANDRA OBSERVATION OF THE RELATIVISTIC BINARY J1906+0746

    International Nuclear Information System (INIS)

    Kargaltsev, O.; Pavlov, G. G.

    2009-01-01

    PSR J1906+0746 is a young radio pulsar (τ = 112 kyr, P = 144 ms) in a tight binary (P orb = 3.98 hr) with a compact high-mass companion (M comp ≅ 1.36 M sun ), at the distance of about 5 kpc. We observed this unique relativistic binary with the Chandra Advanced CCD Imaging Spectrometer detector for 31.6 ks. Surprisingly, not a single photon was detected within the 3'' radius from the J1906+0746 radio position. For a plausible range of hydrogen column densities, n H = (0.5-1) x 10 22 cm -2 , the nondetection corresponds to the 90% upper limit of (3-5) x 10 30 erg s -1 on the unabsorbed 0.5-8 keV luminosity for the power-law model with Γ = 1.0-2.0, and ∼10 32 erg s -1 on the bolometric luminosity of the thermal emission from the neutrons star surface. The inferred limits are the lowest known for pulsars with spin-down properties similar to those of PSR J1906+0746. We have also tentatively detected a puzzling extended structure which looks like a tilted ring with a radius of 1.'6 centered on the pulsar. The measured 0.5-8 keV flux of the feature, ∼3.1 x 10 -14 erg cm -2 s -1 , implies an unabsorbed luminosity of 1.2 x 10 32 erg s -1 (4.5 x 10 -4 of the pulsar's E-dot) for n H = 0.7 x 10 22 cm -2 . If the ring is not a peculiar noise artifact, the pulsar wind nebula around an unusually underluminous pulsar would be the most plausible interpretation.

  20. Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations

    CERN Document Server

    Yagi, Kent; Barausse, Enrico; Yunes, Nicolás

    2014-01-01

    Binary pulsars are ideal to test the foundations of General Relativity, such as Lorentz symmetry, which requires that experiments produce the same results in all free-falling (i.e.inertial) frames. We here break this symmetry in the gravitational sector by specifying a preferred time direction, and thus a preferred frame, at each spacetime point. We then examine the consequences of this gravitational Lorentz symmetry breaking in the orbital evolution of binary pulsars, focusing on the dissipative effects. We find that Lorentz symmetry breaking modifies these effects, and thus the orbital dynamics, in two different ways. First, it generically causes the emission of dipolar radiation, which makes the orbital separation decrease faster than in General Relativity. Second, the quadrupole component of the emission is also modified. The orbital evolution depends critically on the sensitivities of the stars, which measure how their binding energies depend on the motion relative to the preferred frame. We calculate th...

  1. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y., E-mail: lilirayhk@gmail.com, E-mail: akong@phys.nthu.edu.tw, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ∼79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  2. The High Time Resolution Universe Pulsar Survey - XIII. PSR J1757-1854, the most accelerated binary pulsar

    Science.gov (United States)

    Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.; Karuppusamy, R.; Keith, M. J.; Levin, L.; Lorimer, D. R.; Lyne, A. G.; McLaughlin, M. A.; Ng, C.; Petroff, E.; Possenti, A.; Ridolfi, A.; Stappers, B. W.; van Straten, W.; Tauris, T. M.; Tiburzi, C.; Wex, N.

    2018-03-01

    We report the discovery of PSR J1757-1854, a 21.5-ms pulsar in a highly-eccentric, 4.4-h orbit with a neutron star (NS) companion. PSR J1757-1854 exhibits some of the most extreme relativistic parameters of any known pulsar, including the strongest relativistic effects due to gravitational-wave damping, with a merger time of 76 Myr. Following a 1.6-yr timing campaign, we have measured five post-Keplerian parameters, yielding the two component masses (mp = 1.3384(9) M⊙ and mc = 1.3946(9) M⊙) plus three tests of general relativity, which the theory passes. The larger mass of the NS companion provides important clues regarding the binary formation of PSR J1757-1854. With simulations suggesting 3-σ measurements of both the contribution of Lense-Thirring precession to the rate of change of the semimajor axis and the relativistic deformation of the orbit within ˜7-9 yr, PSR J1757-1854 stands out as a unique laboratory for new tests of gravitational theories.

  3. Pulsar astronomy

    International Nuclear Information System (INIS)

    Lyne, A.G.; Graham-Smith, F.

    1990-01-01

    This account of the properties of pulsars tells an exciting story of discovery in modern astronomy. Pulsars, discovered in 1967, now take their place in a very wide range of astrophysics. They are one of the endpoints of stellar evolution, in which the core of a star collapses to a rapidly spinning neutron star a few kilometres in size. This book is an introductory account for those entering the field. It introduces the circumstances of the discovery and gives an overview of pulsar astrophysics. There are chapters on search techniques, distances, pulse timing, the galactic population of pulsars, binary and millisecond pulsars, geometry and physics of the emission regions, and applications to the interstellar medium. An important feature of this book is the inclusion of an up-to-date catalogue of all known pulsars. (author)

  4. Sensitivity of Pulsar Timing Arrays

    Science.gov (United States)

    Siemens, Xavier

    2015-08-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.

  5. CORRELATION OF CHANDRA PHOTONS WITH THE RADIO GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Bilous, A. V.; McLaughlin, M. A.; Kondratiev, V. I.; Ransom, S. M.

    2012-01-01

    No apparent correlation was found between giant pulses (GPs) and X-ray photons from the Crab pulsar during 5.4 hr of simultaneous observations with the Green Bank Telescope at 1.5 GHz and Chandra X-Ray Observatory primarily in the energy range of 1.5-4.5 keV. During the Crab pulsar periods with GPs, the X-ray flux in radio emission phase windows does not change more than by ±10% for main pulse (MP) GPs and ±30% for interpulse (IP) GPs. During GPs themselves, the X-ray flux does not change by more than two times for MP GPs and five times for IP GPs. All limits quoted are compatible with 2σ fluctuations of the X-ray flux around the sets of false GPs with random arrival times. The results speak in favor of changes in plasma coherence as the origin of GPs. However, the results do not rule out variations in the rate of particle creation if the particles that emit coherent radio emission are mostly at the lowest Landau level.

  6. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  7. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    Science.gov (United States)

    Lyutikov, Maxim; Burzawa, Lukasz; Popov, Sergei B.

    2016-10-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages ˜ tens to hundreds of years) born with regular magnetic field but very short - few milliseconds - spin periods. We assume that FRBs are extra-Galactic events coming from distances d ≲ 100 Mpc and that most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell. We then predict that for a given burst the DM should decrease with time and that FRBs are not expected to be seen below ˜300 MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star-forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers dot{E} in young energetic pulsars is consistent with equal birth rate per decade of dot{E}. Accepting this injection distribution and scaling the intrinsic brightness of FRBs with dot{E}, we predict the following properties of a large sample of FRBs: (I) the brightest observed events come from a broad distribution in distances; (II) for repeating bursts brightness either remains nearly constant (if the spin-down time is longer than the age of the pulsar) or decreases with time otherwise; in the latter case DM ∝ dot{E}.

  8. A Search for Debris Disks Around Variable Pulsars

    Science.gov (United States)

    Shannon, Ryan; Cordes, J.; Lazio, J.; Kramer, M.; Lyne, A.

    2009-01-01

    After a supernova explosion, a modest amount of material will fall back and form a disk surrounding the resultant neutron star. This material can aggregate into rocky debris and the disk can be stable for the entire 10 million year lifetime of a canonical (non-recycled) radio pulsar. Previously, we developed a model that unifies the different classes of radio variability observed in many older pulsars. In this model, rocky material migrates inwards towards the neutron star and is ablated inside the pulsar magnetosphere. This material alters the electrodynamics in the magnetosphere which can cause the observed quiescent and bursting states observed in nulling pulsars, intermittent pulsars, and rotating radio transients. With this model in mind, we observed three nulling pulsars and one intermittent pulsar that are good candidates to host debris disks detectable by the Spitzer IRAC. Here we report how our IRAC observations constrain disk geometry, with particular emphasis on configurations that can provide the in-fall rate to cause the observed radio variability. We place these observations in the context of other searches for debris disks around neutron stars, which had studied either very young or very old (recycled) pulsars. By observing older canonical pulsars, all major classes of radio pulsars have been observed, and we can assess the presence of debris disks as a function of pulsar type. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  9. Evolving ONe WD+He star systems to intermediate-mass binary pulsars

    Science.gov (United States)

    Liu, D.; Wang, B.; Chen, W.; Zuo, Z.; Han, Z.

    2018-06-01

    It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 M_{⊙} WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which have short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on this work.

  10. Insights into the astrophysics of supermassive black hole binaries from pulsar timing observations

    International Nuclear Information System (INIS)

    Sesana, A

    2013-01-01

    Pulsar timing arrays (PTAs) are designed to detect the predicted gravitational wave (GW) background produced by a cosmological population of supermassive black hole (SMBH) binaries. In this contribution, I review the physics of such GW background, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. The latter is particularly relevant when it drives the binaries to extreme eccentricities (e > 0.9), which might be the case for stellar-driven systems. This causes a substantial suppression of the low-frequency signal, potentially posing a serious threat to the effectiveness of PTA observations. A future PTA detection will allow us to directly observe for the first time subparsec SMBH binaries on their way to the GW-driven coalescence, providing important answers of the outstanding questions related to the physics underlying the formation and evolution of these spectacular sources. (paper)

  11. Radio continua modulated by waves: Zebra patterns in solar and pulsar radio spectra?n in the 2001 June 15 flare

    Czech Academy of Sciences Publication Activity Database

    Karlický, Marian

    2013-01-01

    Roč. 552, April (2013), A90/1-A90/6 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103 Grant - others:EU(XE) PIRSES-GA-2011-295272 Institutional support: RVO:67985815 Keywords : Sun * radio radiation * pulsar s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  12. A Search for Millisecond-pulsar Radio Emission from the Faint Quiescent Soft X-Ray Transient 1H 1905+000

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, K.; Van Leeuwen, J. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Jonker, P. G., E-mail: K.Mikhailov@uva.nl [SRON, the Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht (Netherlands)

    2017-05-01

    Transitional millisecond pulsars (tMSPs) switch between an accretion-powered state without radio pulsations and a rotation-powered state with radio pulsations. In the former state, tMSPs are X-ray bright, while in the latter state, they are X-ray dim. Soft X-ray transients (SXTs) undergo similar switches in X-ray, between “high” states with bright X-ray outbursts and “low” states of quiescence. The upper limit on the quiescent X-ray luminosity of SXT 1H 1905+000 suggests that its luminosity might be similar to that of the known tMSPs. A detection of radio pulsations would link SXTs more strongly with tMSPs; and thus, e.g., put stricter constraints on tMSP transitional timescales through the connection with the well-known SXT periods of quiescence. A nondetection allows us, based on the telescope sensitivity, to estimate how likely these sources are to pulsate in radio. Over a 10-year span, 2006–2015, we carried out targeted radio observations at 400/800 MHz with Arecibo, and searched for radio pulsations from the quiescent SXT 1H 1905+000. None of the observations have revealed radio pulsations from the targeted SXT. For a 1 ms pulsar, our flux density upper limit is 10.3 μ Jy. At an assumed distance of 10 kpc this translates to a pseudo-luminosity upper limit of 1.0 mJy kpc{sup 2}, which makes our search complete to ∼85% of the known MSP population. Given the high sensitivity, and the generally large beaming fraction of millisecond pulsars, we conclude that SXT 1H 1905+000 is unlikely to emit in radio as a tMSP.

  13. Tests of general relativity from timing the double pulsar.

    Science.gov (United States)

    Kramer, M; Stairs, I H; Manchester, R N; McLaughlin, M A; Lyne, A G; Ferdman, R D; Burgay, M; Lorimer, D R; Possenti, A; D'Amico, N; Sarkissian, J M; Hobbs, G B; Reynolds, J E; Freire, P C C; Camilo, F

    2006-10-06

    The double pulsar system PSR J0737-3039A/B is unique in that both neutron stars are detectable as radio pulsars. They are also known to have much higher mean orbital velocities and accelerations than those of other binary pulsars. The system is therefore a good candidate for testing Einstein's theory of general relativity and alternative theories of gravity in the strong-field regime. We report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. These tests use the theory-independent mass ratio of the two stars. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the "post-Keplerian" parameter s agrees with the value predicted by general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the system's center of mass is extremely small. Combined with the system's location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current solar system tests. It also implies that the second-born pulsar may not have formed through the core collapse of a helium star, as is usually assumed.

  14. Possible contraction of the members of the binary pulsar PSR 1913+16 and its astrophysical consequences

    International Nuclear Information System (INIS)

    Spyrou, N.

    1983-01-01

    It is proposed that the small difference between the observed and the theoretically predicted decrease of the orbital period of the Binary Pulsar PSR 1913+16 is not due to the insufficiency of the quadrupole formula and can be attributed to a mass-energy loss due to the contraction of the binary's members. Assuming that the pair's primary is a typical, noncontracting pulsar, is in favour of a slowly contracting, neutron-star companion, thus limiting the member's radii to at most 25 km and 28 km, respectively. The primary's computed total absolute luminosity is in excellent agreement with the observed upper limit of its X-ray and optical luminosities. Moreover, the companion's slow contraction rate implies that its present total absolute luminosity presents a maximum at wavelengths characteristic of X-rays. Finally, it suggests that if the energy-loss remains constant, the duration of the contraction phase will be of the order of 10 8 y and the final radius about 25 km. (Auth.)

  15. Quasi-periodic oscillations and noise in low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Van der Klis, M.

    1989-01-01

    The phenomenology of quasi-periodic oscillations (QPOs) and noise in low-mass X-ray binaries (LMXBs) is discussed. Signal analysis aspects of QPO and noise are addressed along with the relationship between LMXBs and millisecond radio pulsars. The history and prehistory of QPOs and noise in LMXBs are examined. Universal noise components and normal and flaring branch QPOs in Z sources are described and the phenomenology of Z sources is discussed. Bright LMXBs known as atoll sources are considered, as are nonpersistently bright LMXBs accreting pulsars and black hole candidates. 162 refs

  16. GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); Stovall, K.; Martinez, J. G.; Jenet, F. [Center for Advanced Radio Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); McLaughlin, M. A.; Bates, S. D.; Bagchi, M. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Freire, P. C. C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2013-09-20

    We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of –1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsars with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°-38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.

  17. X-ray measurement of the spin-down of CalverA: A radio- and gamma-ray-quiet pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V., E-mail: jules@astro.columbia.edu [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States)

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is P-dot =(3.19± 0.08)×10{sup −15}, which corresponds to spin-down luminosity E-dot =6.1×10{sup 35} erg s{sup –1}, characteristic age τ{sub c}≡P/2 P-dot =2.9×10{sup 5} yr, and surface dipole magnetic field strength B{sub s} = 4.4 × 10{sup 11} G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 10{sup 32} erg s{sup –1}, which is less than that of any pulsar of comparable E-dot . Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  18. Handbook of pulsar astronomy

    CERN Document Server

    Lorimer, Duncan

    2005-01-01

    Radio pulsars are rapidly rotating highly magnetized neutron stars. Studies of these fascinating objects have provided applications in solid-state physics, general relativity, galactic astronomy, astrometry, planetary physics and even cosmology. Most of these applications and much of what we know about neutron stars are derived from single-dish radio observations using state-of-the-art receivers and data acquisition systems. This comprehensive 2004 book is a unique resource that brings together the key observational techniques, background information and a review of results, including the discovery of a double pulsar system. Useful software tools are provided which can be used to analyse example data, made available on a related website. This work will be of great value not only to graduate students but also to researchers wishing to carry out and interpret a wide variety of radio pulsar observations.

  19. The LOFAR Known Pulsar Data Pipeline

    NARCIS (Netherlands)

    Alexov, A.; Hessels, J.W.T.; Mol, J.D.; Stappers, B.; van Leeuwen, J.

    2010-01-01

    Abstract: Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being

  20. REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Huang, Y. F.; Wu, X. F.

    2016-01-01

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  1. REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S.; Huang, Y. F. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-09-20

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  2. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; hide

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  3. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    Science.gov (United States)

    Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.

    2013-07-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.

  4. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    NARCIS (Netherlands)

    Lee, K.J.; Stovall, K.; Jenet, F.A.; Martinez, J.; Dartez, L.P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C.M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E.D.; Bhat, N.D.R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D.J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R.D.; Freire, P.; Hessels, J.W.T.; Karuppusamy, R.; Kaspi, V.M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W.W.

    2013-01-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars.

  5. Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane

    Science.gov (United States)

    Gallo, Elena; Degenaar, Nathalie; van den Eijnden, Jakob

    2018-05-01

    Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope β = 0.59 ± 0.02, consistent with the NSs' slope (β =0.44^{+0.05}_{-0.04}) within 2.5σ. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor ˜22. This discrepancy can not be fully accounted for by the mass or bolometric correction gap, nor by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent (>3σ), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.

  6. Geriatric Pulsar Still Kicking

    Science.gov (United States)

    2009-02-01

    The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active. The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known. Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars". Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second. The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Erratic Black Hole Regulates Itself Celebrate the International Year of Astronomy Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar. "This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it

  7. The 26.3-h orbit and multiwavelength properties of the `redback' millisecond pulsar PSR J1306-40

    Science.gov (United States)

    Linares, Manuel

    2018-01-01

    We present the discovery of the variable optical and X-ray counterparts to the radio millisecond pulsar (MSP) PSR J1306-40, recently discovered by Keane et al. We find that both the optical and X-ray fluxes are modulated with the same period, which allows us to measure for the first time the orbital period Porb = 1.097 16[6] d. The optical properties are consistent with a main-sequence companion with spectral type G to mid K and, together with the X-ray luminosity (8.8 × 1031 erg s-1 in the 0.5-10 keV band, for a distance of 1.2 kpc), confirm the redback classification of this pulsar. Our results establish the binary nature of PSR J1306-40, which has the longest Porb among all known compact binary MSPs in the Galactic disc. We briefly discuss these findings in the context of irradiation and intrabinary shock emission in compact binary MSPs.

  8. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY II: DATA ANALYSIS AND THE TIMING OF 10 NEW PULSARS, INCLUDING A RELATIVISTIC BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Ryan S.; Kaspi, Victoria M.; Archibald, Anne M.; Karako-Argaman, Chen [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Boyles, Jason; Lorimer, Duncan R.; McLaughlin, Maura A.; Cardoso, Rogerio F. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Ransom, Scott M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stairs, Ingrid H.; Berndsen, Aaron; Cherry, Angus; McPhee, Christie A. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hessels, Jason W. T.; Kondratiev, Vladislav I.; Van Leeuwen, Joeri [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Epstein, Courtney R. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Pennucci, Tim [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Roberts, Mallory S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602 (United States); Stovall, Kevin, E-mail: rlynch@physics.mcgill.ca [Center for Advanced Radio Astronomy and Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)

    2013-02-15

    We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered {approx}10,300 deg{sup 2} and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, and follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources-two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.

  9. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    Science.gov (United States)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and

  10. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Baring, Matthew G.; /Rice U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of {gamma}-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The {gamma}-ray light curve shows two sharp peaks having phase separation of 0.460 {+-} 0.004, trailing the very narrow radio pulse by 0.200 {+-} 0.003 in phase, very similar to that of other known {gamma}-ray pulsars. The measured {gamma}-ray flux gives an efficiency for the pulsar of {approx}10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  11. A Search for EGRET/Radio Pulsars in the ETA Carina Region

    Science.gov (United States)

    2002-01-01

    Our analysis of EGRET data for the radio pulsar PSR B1046-58, which lies it the Eta Carina region of the Galaxy, was highly successful, resulting in the discovery of strong evidence for gamma-ray pulsations from this source. This work was published in the Astrophysical Journal. Additional support for the association was published in a companion paper in which an analysis of the X-ray counterpart to PSR B1046-58 was done, and we showed that it was the only possible counterpart to the gamma ray source within the EGRET error box.

  12. High-Energy Pulsar Models: Developments and New Questions

    Science.gov (United States)

    Venter, C.; Harding, A. K.

    2014-01-01

    The past few years have seen a major advance in observational knowledge of high-energy (HE) pulsars. The Fermi Large Area Telescope (LAT) and AGILE have increased the number of known gamma-ray pulsars by an order of magnitude, its members being divided roughly equally among millisecond pulsars (MSPs), young radio-loud pulsars, and young radio-quiet pulsars. Many new and diverse emission characteristics are being measured, while radio and X-ray follow-up observations increase the pulsar detection rate and enrich our multiwavelength picture of these extreme sources. The wealth of new data has provided impetus for further development and improvement of existing theoretical pulsar models. Geometric light curve (LC) modelling has uncovered three broad classes into which HE pulsars fall: those where the radio profile leads, is aligned with, or lags the gamma-ray profile. For example, the original MSP and original black widow system are members of the second class, requiring co-located emission regions and thereby breaking with traditional notions of radio emission origin. These models imply narrow accelerator gaps in the outer magnetosphere, indicating copious pair production even in MSP magnetospheres that were previously thought to be pair-starved. The increased quality and variety of the LCs necessitate construction of ever more sophisticated models. We will review progress in global magnetosphere solutions which specify a finite conductivity on field lines above the stellar surface, filling the gap between the standard vacuum and force-free (FF; plasma-filled) models. The possibility of deriving phase-resolved spectra for the brightest pulsars, coupled with the fact that the HE pulsar population is sizable enough to allow sampling of various pulsar geometries, will enable much more stringent testing of future radiation models. Reproduction of the observed phase-resolved behavior of this disparate group will be one of the next frontiers in pulsar science, impacting on

  13. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  14. Discovery of an Accreting Millisecond Pulsar in the Eclipsing Binary System SWIFT J1749.4-2807

    NARCIS (Netherlands)

    Altamirano, D.; Cavecchi, Y.; Patruno, A.; Watts, A.; Linares, M.; Degenaar, N.; Kalamkar, M.; van der Klis, M.; Rea, N.; Casella, P.; Padilla, M. Armas; Kaur, R.; Yang, Y. J.; Soleri, P.; Wijnands, R.

    2011-01-01

    We report on the discovery and the timing analysis of the first eclipsing accretion-powered millisecond X-ray pulsar (AMXP): SWIFT J1749.4-2807. The neutron star rotates at a frequency of similar to 517.9 Hz and is in a binary system with an orbital period of 8.8 hr and a projected semimajor axis of

  15. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  16. On the Spectral Shape of Non-recycled γ-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Chung-Yue Hui

    2016-06-01

    Full Text Available More than 100 γ−ray pulsars have been discovered by the Fermi Gamma-ray Space Telescope. With a significantly enlarged sample size, it is possible to compare the properties of different classes. Radio-quiet (RQ γ−ray pulsars form a distinct population, and various studies have shown that the properties of the RQ population can be intrinsically different from those of radio-loud (RL pulsars. Utilizing these differences, it is possible to further classify the pulsar-like unidentified γ−ray sources into sub-groups. In this study, we suggest the possibility of distinguishing RQ/RL pulsars by their spectral shape. We compute the probabilities of a pulsar to be RQ or RL for a given spectral curvature. This can provide a key to the estimation of the intrinsic fraction of radio-quietness in the γ−ray pulsar population, which can place a tight constraint on the emission geometry.

  17. Gamma-ray pulsars: Emission zones and viewing geometries

    Science.gov (United States)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  18. Pulsar velocity observations: Correlations, interpretations, and discussion

    International Nuclear Information System (INIS)

    Helfand, D.J.; Tademaru, E.

    1977-01-01

    From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution

  19. Pulsars today

    International Nuclear Information System (INIS)

    Graham-Smith, F.

    1990-01-01

    The theory concerning pulsars is reviewed, with particular attention to possible evolution, life cycle, and rejuvenation of these bodies. Quantum liquids, such as neutron superfluids, and evidence for the existence of superfluid vortices and other internal phenomena are considered with particular attention to the Crab pulsar. Rate of change of the rotation rate is measured and analyzed for the Crab pulsar and the implications of deviations in the pulse times from those of a perfect rotator are examined. Glitches, the sudden increase in rotation rate of a pulsar that has previously exhibited a steady slowdown, are discussed and it is suggested that the movement of the superfluid core relative to the crust is responsible for this phenomenon. It is noted that radio waves from pulsars can be used to determine the intensity and structure of interplanetary and interstellar gas turbulence and to provide a direct measure of the strength of the interstellar magnetic field

  20. POST-OUTBURST RADIO OBSERVATIONS OF THE HIGH MAGNETIC FIELD PULSAR PSR J1119-6127

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Walid A.; Pearlman, Aaron B.; Dobreva, Tatyana; Kocz, Jonathon; Prince, Thomas A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Horiuchi, Shinji [CSIRO Astronomy and Space Science, Canberra Deep Space Communications Complex, P.O. Box 1035, Tuggeranong, ACT 2901 (Australia); Lippuner, Jonas [TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-01-01

    We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S -band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X -band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected at S -band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior.

  1. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  2. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    Science.gov (United States)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  3. COBRA: a Bayesian approach to pulsar searching

    Science.gov (United States)

    Lentati, L.; Champion, D. J.; Kramer, M.; Barr, E.; Torne, P.

    2018-02-01

    We introduce COBRA, a GPU-accelerated Bayesian analysis package for performing pulsar searching, that uses candidates from traditional search techniques to set the prior used for the periodicity of the source, and performs a blind search in all remaining parameters. COBRA incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries, and exploits pulse phase information to combine search epochs coherently, over time, frequency or across multiple telescopes. We demonstrate the efficacy of our approach in a series of simulations that challenge typical search techniques, including highly aliased signals, and relativistic binary systems. In the most extreme case, we simulate an 8 h observation containing 24 orbits of a pulsar in a binary with a 30 M⊙ companion. Even in this scenario we show that we can build up from an initial low-significance candidate, to fully recovering the signal. We also apply the method to survey data of three pulsars from the globular cluster 47Tuc: PSRs J0024-7204D, J0023-7203J and J0024-7204R. This final pulsar is in a 1.6 h binary, the shortest of any pulsar in 47Tuc, and additionally shows significant scintillation. By allowing the amplitude of the source to vary as a function of time, however, we show that we are able to obtain optimal combinations of such noisy data. We also demonstrate the ability of COBRA to perform high-precision pulsar timing directly on the single pulse survey data, and obtain a 95 per cent upper limit on the eccentricity of PSR J0024-7204R of εb < 0.0007.

  4. An image-based search for pulsars among Fermi unassociated LAT sources

    Science.gov (United States)

    Frail, D. A.; Ray, P. S.; Mooley, K. P.; Hancock, P.; Burnett, T. H.; Jagannathan, P.; Ferrara, E. C.; Intema, H. T.; de Gasperin, F.; Demorest, P. B.; Stovall, K.; McKinnon, M. M.

    2018-03-01

    We describe an image-based method that uses two radio criteria, compactness, and spectral index, to identify promising pulsar candidates among Fermi Large Area Telescope (LAT) unassociated sources. These criteria are applied to those radio sources from the Giant Metrewave Radio Telescope all-sky survey at 150 MHz (TGSS ADR1) found within the error ellipses of unassociated sources from the 3FGL catalogue and a preliminary source list based on 7 yr of LAT data. After follow-up interferometric observations to identify extended or variable sources, a list of 16 compact, steep-spectrum candidates is generated. An ongoing search for pulsations in these candidates, in gamma rays and radio, has found 6 ms pulsars and one normal pulsar. A comparison of this method with existing selection criteria based on gamma-ray spectral and variability properties suggests that the pulsar discovery space using Fermi may be larger than previously thought. Radio imaging is a hitherto underutilized source selection method that can be used, as with other multiwavelength techniques, in the search for Fermi pulsars.

  5. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays.

    Science.gov (United States)

    Taylor, Stephen R; Simon, Joseph; Sampson, Laura

    2017-05-05

    We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.

  6. Discovery of a Second Millesecond Accreting Pulsar: XTE J1751-305

    Science.gov (United States)

    Markwardt, C. B.; Swank, J. H.; Strohmayer, T. E.; intZand, J. J. M.; Marshall, F. E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f(sub x) = (1.278 +/- 0.003) x 10 (exp -6) solar mass, yields a minimum mass for the companion of between 0.013 and 0.0017 solar mass depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30 deg-85 deg and the companion mass to be 0.013-0.035 solar mass. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.

  7. A radio-pulsing white dwarf binary star.

    Science.gov (United States)

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  8. The Einstein@Home Gamma-ray Pulsar Survey. II. Source Selection, Spectral Analysis, and Multiwavelength Follow-up

    Science.gov (United States)

    Wu, J.; Clark, C. J.; Pletsch, H. J.; Guillemot, L.; Johnson, T. J.; Torne, P.; Champion, D. J.; Deneva, J.; Ray, P. S.; Salvetti, D.; Kramer, M.; Aulbert, C.; Beer, C.; Bhattacharyya, B.; Bock, O.; Camilo, F.; Cognard, I.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Ferrara, E. C.; Kerr, M.; Machenschalk, B.; Ransom, S. M.; Sanpa-Arsa, S.; Wood, K.

    2018-02-01

    We report on the analysis of 13 gamma-ray pulsars discovered in the Einstein@Home blind search survey using Fermi Large Area Telescope (LAT) Pass 8 data. The 13 new gamma-ray pulsars were discovered by searching 118 unassociated LAT sources from the third LAT source catalog (3FGL), selected using the Gaussian Mixture Model machine-learning algorithm on the basis of their gamma-ray emission properties being suggestive of pulsar magnetospheric emission. The new gamma-ray pulsars have pulse profiles and spectral properties similar to those of previously detected young gamma-ray pulsars. Follow-up radio observations have revealed faint radio pulsations from two of the newly discovered pulsars and enabled us to derive upper limits on the radio emission from the others, demonstrating that they are likely radio-quiet gamma-ray pulsars. We also present results from modeling the gamma-ray pulse profiles and radio profiles, if available, using different geometric emission models of pulsars. The high discovery rate of this survey, despite the increasing difficulty of blind pulsar searches in gamma rays, suggests that new systematic surveys such as presented in this article should be continued when new LAT source catalogs become available.

  9. The Pulsar Luminosity Function

    OpenAIRE

    O. H. Guseinov; E. Yazgan; S. O. Tagieva

    2003-01-01

    Hemos construido y examinado la función de luminosidad para pulsares, usando una nueva lista la cual incluye datos de 1328 radio pulsares. En este trabajo, se construye por primera vez la función de luminosidad en 1400 MHz. También presentamos una función de luminosidad mejorada en 400 MHz. Se comparan las funciones de luminosidad en 400 y 1400 MHz. De igual manera se construyen las funciones de luminosidad excluyendo los pulsares binarios y los de campos magnéticos pequeños. S...

  10. SIGPROC: Pulsar Signal Processing Programs

    Science.gov (United States)

    Lorimer, D. R.

    2011-07-01

    SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).

  11. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  12. Tidal pressure induced neutrino emission as an energy dissipation mechanism in binary pulsar systems

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Ignatovich, V.K.

    1995-01-01

    We briefly review possible systematic limitations to the inferred General Relativity tests in binary pulsar systems, then propose a new mechanism whereby orbital energy can drive the electron-proton vs. neutron density away from equilibrium, and the concomitant neutrino (or antineutrino) emission represents an orbital energy dissipation. Of the total orbital energy loss rate, we estimate the fractional contribution of this mechanism as 8x10 -6 , whereas the observational accuracy is at the level of 7x10 -3 , and agrees with the predicted rate of gravitational radiation. 10 refs

  13. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    pulsars. Giant stars explode as supernovae and leave rotating pulsars which gradually slow down. However, if a pulsar has a companion star from which it can draw material, that incoming material imparts its spin, or angular momentum, to the pulsar. As a result, the pulsar spins faster. "In a dense cluster, interactions between the stars will create more binary pairs that can yield more fast-rotating pulsars," Ransom said. The great sensitivity of the giant, 100-meter diameter GBT, along with a special signal processor, called the Pulsar Spigot, made possible the discovery of so many millisecond pulsars in Terzan 5. "We think there are many more pulsars to be found in Terzan 5 and other clusters, and given that the fast ones are often hidden by eclipses, some of them may be spinning even faster than this new one," Ransom said. "We're excited about using this outstanding new telescope to answer some important questions about fundamental physics," he said. In addition to Hessels, Ransom and Stairs, the research team includes Paulo Freire of Arecibo Observatory in Puerto Rico, Victoria Kaspi, of McGill University, and Fernando Camilo, of Columbia University. Their report is being published in Science Express, the online version of the journal Science. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The pulsar research also was supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the Quebec Foundation for Research on Nature and Technology, the Canadian Institute for Advanced Research, the Canada Research Chairs Program, and the National Science Foundation..

  14. High Speed, Low Cost Telemetry Access from Space Development Update on Programmable Ultra Lightweight System Adaptable Radio (PULSAR)

    Science.gov (United States)

    Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric

    2014-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and

  15. Programmable Ultra Lightweight System Adaptable Radio (PULSAR) Low Cost Telemetry - Access from Space Advanced Technologies or Down the Middle

    Science.gov (United States)

    Sims. Herb; Varnavas, Kosta; Eberly, Eric

    2013-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.

  16. Spectra of short-period pulsars according to the hypothesis of the two types of pulsars

    International Nuclear Information System (INIS)

    Malov, I.F.

    1985-01-01

    The lack of low-frequency turnovers in the spectra of PSR 0531+21 and 1937+21 may be expl ned if the generation of radio emission in these pulsars occurs near the light cylinder. Differences of high frequency cut-offs and spectral inoices for long-period pulsars and short-period ones are discussed

  17. The Dynamic Radio Sky: An Opportunity for Discovery

    Science.gov (United States)

    2010-01-01

    giant pulses from the Crab pulsar , a small number of dedicated radio transient surveys, and the serendipitous discovery of transient radio sources...used in the discovery of over 1800 radio pulsars . In 2003, the Parkes Multibeam Survey had covered the entire Galactic plane visible from Parkes... pulsars , and confirmed the neutron star nature of these sources, dubbed Rotating Radio Transients (RRATs). Since the discovery of the original 11 RRATs

  18. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, G; Burke-Spolaor, S; Champion, D [Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710 (Australia); Archibald, A [Department of Physics, McGill University, Montreal, PQ, H3A 2T8 (Canada); Arzoumanian, Z [CRESST/USRA, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Backer, D [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Bailes, M; Bhat, N D R [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn VIC 3122 (Australia); Burgay, M [Universita di Cagliari, Dipartimento di Fisica, SP Monserrato-Sestu km 0.7, 09042 Monserrato (Canada) (Italy); Cognard, I; Desvignes, G; Ferdman, R D [Station de Radioastronomie de Nanay, Observatoire de Paris, 18330 Nancay (France); Coles, W [Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA (United States); Cordes, J [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Demorest, P [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Finn, L [Center for Gravitational Wave Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Freire, P [Max-Planck-Institut fuer Radioastronomie, Auf Dem Huegel 69, 53121, Bonn (Germany); Gonzalez, M [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hessels, J [Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Hotan, A, E-mail: george.hobbs@csiro.a [Department of Imaging and Applied Physics, Curtin University, Bentley, WA (Australia)

    2010-04-21

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (approx 10{sup -9}-10{sup -8} Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.

  19. Pulsars Magnetospheres

    Science.gov (United States)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  20. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J. [West Virginia University, White Hall, Morgantown, WV 26506 (United States); Heatherly, S. A.; Scoles, S. [NRAO, P.O. Box 2, Green Bank, WV 24944 (United States); Lynch, R. [McGill University, Rutherford Physics Building, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Kondratiev, V. I. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Ransom, S. M. [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Moniot, M. L.; Thompson, C. [James River High School, 9906 Springwood Road, Buchanan, VA 24066 (United States); Cottrill, A.; Raycraft, M. [Lincoln High School, 100 Jerry Toth Drive, Shinnston, WV 26431 (United States); Weaver, M. [Broadway High School, 269 Gobbler Drive, Broadway, VA 22815 (United States); Snider, A. [Sherando High School, 185 South Warrior Drive, Stephens City, VA 22655 (United States); Dudenhoefer, J.; Allphin, L. [Hedgesville High School, 109 Ridge Road North, Hedgesville, WV 25427 (United States); Thorley, J., E-mail: Rachel.Rosen@mail.wvu.edu [Strasburg High School, 250 Ram Drive, Strasburg, VA 22657 (United States); and others

    2013-05-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg{sup 2} of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  1. Testing the Binary Hypothesis: Pulsar Timing Constraints on Supermassive Black Hole Binary Candidates

    Science.gov (United States)

    Sesana, Alberto; Haiman, Zoltán; Kocsis, Bence; Kelley, Luke Zoltan

    2018-03-01

    The advent of time domain astronomy is revolutionizing our understanding of the universe. Programs such as the Catalina Real-time Transient Survey (CRTS) or the Palomar Transient Factory (PTF) surveyed millions of objects for several years, allowing variability studies on large statistical samples. The inspection of ≈250 k quasars in CRTS resulted in a catalog of 111 potentially periodic sources, put forward as supermassive black hole binary (SMBHB) candidates. A similar investigation on PTF data yielded 33 candidates from a sample of ≈35 k quasars. Working under the SMBHB hypothesis, we compute the implied SMBHB merger rate and we use it to construct the expected gravitational wave background (GWB) at nano-Hz frequencies, probed by pulsar timing arrays (PTAs). After correcting for incompleteness and assuming virial mass estimates, we find that the GWB implied by the CRTS sample exceeds the current most stringent PTA upper limits by almost an order of magnitude. After further correcting for the implicit bias in virial mass measurements, the implied GWB drops significantly but is still in tension with the most stringent PTA upper limits. Similar results hold for the PTF sample. Bayesian model selection shows that the null hypothesis (whereby the candidates are false positives) is preferred over the binary hypothesis at about 2.3σ and 3.6σ for the CRTS and PTF samples respectively. Although not decisive, our analysis highlights the potential of PTAs as astrophysical probes of individual SMBHB candidates and indicates that the CRTS and PTF samples are likely contaminated by several false positives.

  2. HD 193793, a radio-emitting Wolf-Rayet binary star

    International Nuclear Information System (INIS)

    Florkowski, D.R.; Gottesman, S.T.

    1977-01-01

    The Wolf-Rayet binary HD 193793 has been observed as a weak, unresolved radio source. The observed flux densities do not agree with the predictions of the constant-mass-flow model of Wright and Barlow and Panagia and Felli. A variable-mass-flow model is suggested and an observational test is proposed. A comparison with γ 2 Vel is made, and the parameters affecting radio emission from Wolf-Rayet stars are briefly discussed. (author)

  3. A 5.75-millisecond pulsar in the globular cluster 47 Tucanae

    International Nuclear Information System (INIS)

    Manchester, R.N.; Lyne, A.G.; Johnston, S.; D'Amico, N.; Lim, J.; Kniffen, D.A.

    1990-01-01

    Millisecond pulsars are generally believed to be old pulsars that have been spun up ('recycled') as a result of accretion of matter from a companion in a low-mass X-ray binary system. As there is a high incidence of such systems in globular clusters, these are good places to search for millisecond pulsars; so far, ten globular-cluster pulsars have been detected unambiguously. Using the Parkes radiotelescope in Australia, we have found a pulsar with a period of 5.75 ms and a dispersion measure of 25 cm -3 pc in the direction of 47 Tucanae. Despite its probable origin as a member of a binary system, timing measurements show that the pulsar is now single. The observed dispersion measure is consistent with the pulsar lying outside the galactic electron layer and within 47 Tucanae; but it is very different from the value of 67 cm -3 pc for the pulsars that were reported recently as being in this globular cluster, and we suggest that the latter pulsars probably do not in fact lie within 47 Tucanae. (author)

  4. Searching for millisecond pulsars: surveys, techniques and prospects

    International Nuclear Information System (INIS)

    Stovall, K; Lorimer, D R; Lynch, R S

    2013-01-01

    Searches for millisecond pulsars (which we here loosely define as those with periods < 20 ms) in the galactic field have undergone a renaissance in the past five years. New or recently refurbished radio telescopes utilizing cooled receivers and state-of-the art digital data acquisition systems are carrying out surveys of the entire sky at a variety of radio frequencies. Targeted searches for millisecond pulsars in point sources identified by the Fermi Gamma-ray Space Telescope have proved phenomenally successful, with over 50 discoveries in the past five years. The current sample of millisecond pulsars now numbers almost 200 and, for the first time in 25 years, now outnumbers their counterparts in galactic globular clusters. While many of these searches are motivated to find pulsars which form part of pulsar timing arrays, a wide variety of interesting systems are now being found. Following a brief overview of the millisecond pulsar phenomenon, we describe these searches and present some of the highlights of the new discoveries in the past decade. We conclude with predictions and prospects for ongoing and future surveys. (paper)

  5. THE PECULIAR PULSAR POPULATION OF THE CENTRAL PARSEC

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; O' Leary, Ryan M., E-mail: jdexter@berkeley.edu, E-mail: oleary@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-03-01

    Pulsars orbiting the Galactic center black hole, Sgr A*, would be potential probes of its mass, distance, and spin, and may even be used to test general relativity. Despite predictions of large populations of both ordinary and millisecond pulsars in the Galactic center, none have been detected within 25 pc by deep radio surveys. One explanation has been that hyperstrong temporal scattering prevents pulsar detections, but the recent discovery of radio pulsations from a highly magnetized neutron star (magnetar) within 0.1 pc shows that the temporal scattering is much weaker than predicted. We argue that an intrinsic deficit in the ordinary pulsar population is the most likely reason for the lack of detections to date: a ''missing pulsar problem'' in the Galactic center. In contrast, we show that the discovery of a single magnetar implies efficient magnetar formation in the region. If the massive stars in the central parsec form magnetars rather than ordinary pulsars, their short lifetimes could explain the missing pulsars. Efficient magnetar formation could be caused by strongly magnetized progenitors, or could be further evidence of a top-heavy initial mass function. Furthermore, current high-frequency surveys should already be able to detect bright millisecond pulsars, given the measured degree of temporal scattering.

  6. The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9

    Science.gov (United States)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.; hide

    2017-01-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  7. A RADIO-LOUD MAGNETAR IN X-RAY QUIESCENCE

    International Nuclear Information System (INIS)

    Levin, Lina; Bailes, Matthew; Bhat, N. D. Ramesh; Burke-Spolaor, Sarah; Van Straten, Willem; Bates, Samuel; Kramer, Michael; Stappers, Ben; Burgay, Marta; D'Amico, Nichi; Milia, Sabrina; Possenti, Andrea; Johnston, Simon; Keith, Michael; Rea, Nanda

    2010-01-01

    As part of a survey for radio pulsars with the Parkes 64 m telescope, we have discovered PSR J1622-4950, a pulsar with a 4.3 s rotation period. Follow-up observations show that the pulsar has the highest inferred surface magnetic field of the known radio pulsars (B ∼3 x 10 14 G), and it exhibits significant timing noise and appears to have an inverted spectrum. Unlike the vast majority of the known pulsar population, PSR J1622-4950 appears to switch off for many hundreds of days and even in its on-state exhibits extreme variability in its flux density. Furthermore, the integrated pulse profile changes shape with epoch. All of these properties are remarkably similar to the only two magnetars previously known to emit radio pulsations. The position of PSR J1622-4950 is coincident with an X-ray source that, unlike the other radio pulsating magnetars, was found to be in quiescence. We conclude that our newly discovered pulsar is a magnetar-the first to be discovered via its radio emission.

  8. Pulsar discovery by global volunteer computing.

    Science.gov (United States)

    Knispel, B; Allen, B; Cordes, J M; Deneva, J S; Anderson, D; Aulbert, C; Bhat, N D R; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Crawford, F; Demorest, P B; Fehrmann, H; Freire, P C C; Gonzalez, M E; Hammer, D; Hessels, J W T; Jenet, F A; Kasian, L; Kaspi, V M; Kramer, M; Lazarus, P; van Leeuwen, J; Lorimer, D R; Lyne, A G; Machenschalk, B; McLaughlin, M A; Messenger, C; Nice, D J; Papa, M A; Pletsch, H J; Prix, R; Ransom, S M; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Venkataraman, A

    2010-09-10

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

  9. Research in astrophysical processes

    Science.gov (United States)

    Ruderman, Malvin A.

    1994-01-01

    Work completed under this grant is summarized in the following areas:(1) radio pulsar turn on and evaporation of companions in very low mass x-ray binaries and in binary radio pulsar systems; (2) effects of magnetospheric pair production on the radiation from gamma-ray pulsars; (3) radiation transfer in the atmosphere of an illuminated companion star; (4) evaporation of millisecond pulsar companions;(5) formation of planets around pulsars; (6) gamma-ray bursts; (7) quasi-periodic oscillations in low mass x-ray binaries; (8) origin of high mass x-ray binaries, runaway OB stars, and the lower mass cutoff for core collapse supernovae; (9) dynamics of planetary atmospheres; (10) two point closure modeling of stationary, forced turbulence; (11) models for the general circulation of Saturn; and (12) compressible convection in stellar interiors.

  10. A millisecond pulsar in a stellar triple system.

    Science.gov (United States)

    Ransom, S M; Stairs, I H; Archibald, A M; Hessels, J W T; Kaplan, D L; van Kerkwijk, M H; Boyles, J; Deller, A T; Chatterjee, S; Schechtman-Rook, A; Berndsen, A; Lynch, R S; Lorimer, D R; Karako-Argaman, C; Kaspi, V M; Kondratiev, V I; McLaughlin, M A; van Leeuwen, J; Rosen, R; Roberts, M S E; Stovall, K

    2014-01-23

    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar M[Symbol: see text](1.4378(13), where M[Symbol: see text]is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15)M[Symbol: see text] and 0.4101(3))M[Symbol: see text], as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.

  11. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    International Nuclear Information System (INIS)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J.; Heatherly, S. A.; Scoles, S.; Lynch, R.; Kondratiev, V. I.; Ransom, S. M.; Moniot, M. L.; Thompson, C.; Cottrill, A.; Raycraft, M.; Weaver, M.; Snider, A.; Dudenhoefer, J.; Allphin, L.; Thorley, J.

    2013-01-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg 2 of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926–1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400–1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  12. Pulsar populations and their evolution

    International Nuclear Information System (INIS)

    Narayan, R.; Ostriker, J.P.

    1990-01-01

    Luminosity models are developed, and an attempt is made to answer fundamental questions regarding the statistical properties of pulsars, on the basis of a large data base encompassing the periods, period derivatives, radio luminosities, vertical Galactic heights, and transverse velocities, for a homogeneous sample of 301 pulsars. A probability is established for two pulsar subpopulations, designated F and S, which are distinguished primarily on the basis of kinematic properties. The two populations are of comparable size, with the F population having an overall birth-rate close to 1 in 200 years in the Galaxy, with the less certain S pulsar birth-rate not higher than that of the F population. 51 refs

  13. Nonlinear temporal modulation of pulsar radioemission

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1984-01-01

    A nonlinear theory is discussed for self-modulation of pulsar radio pulses. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron-positron plasma. The nonlinearities arising from wave intensity induced relativistic particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary wave forms may account for the formation of pulsar microstructures. (Author) [pt

  14. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.

  15. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping, NSW 1710 (Australia); Lentati, L. T. [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Bhat, N. D. R. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Coles, W. A. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Dempsey, J. [CSIRO Information Management and Technology, Box 225, Dickson, ACT 2602 (Australia); Keith, M. J. [Jodrell Bank Centre for Astrophysics, University of Manchester, M13 9PL (United Kingdom); Lasky, P. D.; Levin, Y. [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Ravi, V. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Spiewak, R., E-mail: ryan.shannon@csiro.au [Department of Physics, University of Wisconsin-Milwaukee, Box 413, Milwaukee, WI 53201 (United States); and others

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  16. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    International Nuclear Information System (INIS)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L.; Lentati, L. T.; Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W.; Bhat, N. D. R.; Coles, W. A.; Dempsey, J.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Ravi, V.; Spiewak, R.

    2016-01-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  17. Multifrequency radio observations of SNR J0536-6735 (N 59B with associated pulsar

    Directory of Open Access Journals (Sweden)

    Bozzetto L.M.

    2012-01-01

    Full Text Available We present a study of new Australian Telescope Compact Array (ATCA observations of supernova remnant, SNR J0536-6735. This remnant appears to follow a shell morphology with a diameter of D=36x29 pc (with 1 pc uncertainty in each direction. There is an embedded HII region on the northern limb of the remnant which made various analysis and measurements (such as flux density, spectral index and polarisation difficult. The radio-continuum emission followed the same structure as the optical emission, allowing for extent and flux density estimates at 20 cm. We estimate the surface brightness at 1 GHz of 2.55x10−21 Wm−2 Hz−1 sr−1 for the SNR. Also, we detect a distinctive radio-continuum point source which confirms the previous suggestion of this remnant being associated with pulsar wind nebula (PWN. The tail of this remnant is not seen in the radio-continuum images and is only seen in the optical and X-ray images.

  18. The low-frequency radio eclipses of the black widow pulsar J1810+1744

    Science.gov (United States)

    Polzin, E. J.; Breton, R. P.; Clarke, A. O.; Kondratiev, V. I.; Stappers, B. W.; Hessels, J. W. T.; Bassa, C. G.; Broderick, J. W.; Grießmeier, J.-M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.

    2018-05-01

    We have observed and analysed the eclipses of the black widow pulsar J1810+1744 at low radio frequencies. Using LOw-Frequency ARray (LOFAR) and Westerbork Synthesis Radio Telescope observations between 2011 and 2015, we have measured variations in flux density, dispersion measure, and scattering around eclipses. High-time resolution, simultaneous beamformed, and interferometric imaging LOFAR observations show concurrent disappearance of pulsations and total flux from the source during the eclipses, with a 3σ upper limit of 36 mJy ( duration scaling as ∝ ν-0.41 ± 0.03. The results are discussed in the context of the physical parameters of the system, and an examination of eclipse mechanisms reveals cyclotron-synchrotron absorption as the most likely primary cause, although non-linear scattering mechanisms cannot be quantitatively ruled out. The inferred mass-loss rate is a similar order of magnitude to the mean rate required to fully evaporate the companion in a Hubble time.

  19. Ghost supernova remnants : evidence for pulsar reactivation in dusty molecular clouds

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1983-01-01

    An evidence in favour of a new model for pulsar evolution is discussed, according to which pulsars may only function as regularly pulsed emitters if an accretion disc provides a sufficiently continuous return-current to the radio pulsar (neutron star). (L.C.) [pt

  20. THE GALACTIC POPULATION OF YOUNG γ-RAY PULSARS

    International Nuclear Information System (INIS)

    Watters, Kyle P.; Romani, Roger W.

    2011-01-01

    We have simulated a Galactic population of young pulsars and compared with the Fermi LAT sample, constraining the birth properties, beaming and evolution of these spin-powered objects. Using quantitative tests of agreement with the distributions of observed spin and pulse properties, we find that short birth periods P 0 ∼ 50 ms and γ-ray beams arising in the outer magnetosphere, dominated by a single pole, are strongly preferred. The modeled relative numbers of radio-detected and radio-quiet objects agrees well with the data. Although the sample is local, extrapolation to the full Galaxy implies a γ-ray pulsar birthrate 1/(59 yr). This is shown to be in good agreement with the estimated Galactic core collapse rate and with the local density of OB star progenitors. We give predictions for the numbers of expected young pulsar detections if Fermi LAT observations continue 10 years. In contrast to the potentially significant contribution of unresolved millisecond pulsars, we find that young pulsars should contribute little to the Galactic γ-ray background.

  1. The past, present and future of pulsars

    Science.gov (United States)

    Bell Burnell, Jocelyn

    2017-12-01

    On the 50th anniversary of the accidental discovery of pulsars (pulsating radio stars, also known as neutron stars) I reflect on the process of their detection and how our understanding of these stars gradually grew. Fifty years on, we have a much better (but still incomplete) understanding of these extreme objects, which I summarize here. The study of pulsars is advancing several areas of fundamental physics, including general relativity, particle physics, condensed-matter physics, and radiation processes in extreme electric and magnetic fields. New observational facilities coming online in the radio regime (such as the Five hundred meter Aperture Spherical Telescope and the Square Kilometre Array precursors) will revolutionize the search for pulsars by accessing thousands more, thus ushering in a new era of discovery for the field.

  2. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  3. SEARCH FOR A CORRELATION BETWEEN VERY-HIGH-ENERGY GAMMA RAYS AND GIANT RADIO PULSES IN THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S., E-mail: schroedter@veritas.sao.arizona.edu, E-mail: mccann@kicp.uchicago.edu, E-mail: nepomuk.otte@gmail.com [DESY, Platanenallee 6, 15738 Zeuthen (Germany); and others

    2012-12-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E {sub {gamma}} > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On {approx}8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  4. Search for a Correlation Between Very-High-Energy Gamma Rays and Giant Radio Pulses in the Crab Pulsar

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; hide

    2012-01-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ( E(sub Gamma) > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On approx. 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  5. Study of the spectral characteristics of unidentified galactic EGRET sources. Are they pulsar-like?

    Science.gov (United States)

    Merck, M.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Fichtel, C. E.; Fierro, J. M.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Muecke, A.; Mukherjee, R.; Nolan, P. L.; Pohl, M.; Schneid, E.; Sreekumar, P.; Thompson, D. J.; Willis, T. D.

    1996-12-01

    A spectral study of unidentified galactic EGRET sources was performed. The derived spectra are compared to the spectra of pulsars to test the hypothesis, that a significant fraction of these sources are Geminga like radio-quiet pulsars (Yadigaroglu & Romani 1995ApJ...449..211Y). Most of the sources show significantly different spectra than expected under this hypothesis. Of those with spectra consistent with typical pulsar spectra, four are positionally consistent with young spin-powered radio pulsars leaving only very few Geminga type candidates in the sample.

  6. A Search for Pulsar Companions to OB Runaway Stars

    Science.gov (United States)

    Kaspi, V. M.

    1995-01-01

    We have searched for radio pulsar companions to 40 nearby OB runaway stars. Observations were made at 474 and 770 MHz with the NRAO 140 ft telescope. The survey was sensitive to long- period pulsars with flux densities of 1 mJy or more. One previously unknown pulsar was discovered, PSRJ2044+4614, while observing towards target O star BD+45,3260. Follow-up timing observations of the pulsar measured its position to high precision, revealing a 9' separation between the pulsar and the target star, unequivocally indicating they are not associated.

  7. Theoretical Study of Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Kwong Sang Cheng

    2016-06-01

    Full Text Available We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phaseaveraged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.

  8. X-RAY STUDIES OF THE BLACK WIDOW PULSAR PSR B1957+20

    International Nuclear Information System (INIS)

    Huang, R. H. H.; Kong, A. K. H.; Takata, J.; Cheng, K. S.; Hui, C. Y.; Lin, L. C. C.

    2012-01-01

    We report on Chandra observations of the black widow pulsar, PSR B1957+20. Evidence for a binary-phase dependence of the X-ray emission from the pulsar is found with a deep observation. The binary-phase-resolved spectral analysis reveals non-thermal X-ray emission of PSR B1957+20, confirming the results of previous studies. This suggests that the X-rays are mostly due to intra-binary shock emission, which is strongest when the pulsar wind interacts with the ablated material from the companion star. The geometry of the peak emission is determined in our study. The marginal softening of the spectrum of the non-thermal X-ray tail may indicate that particles injected at the termination shock are dominated by synchrotron cooling.

  9. Second Generation Dutch Pulsar Machine - PuMa-II

    NARCIS (Netherlands)

    Karuppusamy, Ramesh; Stappers, Ben; Slump, Cornelis H.; van der Klis, Michiel

    2004-01-01

    The Second Generation Pulsar Machine (PuMa- II) is under development for the Westerbork Synthesis Radio Telescope. This is a summary of th e system design and architecture. We show that state of the art pulsar research is possible with commercially available hardware components. This approach

  10. Southern hemisphere searches for short period pulsars

    International Nuclear Information System (INIS)

    Manchester, R.N.

    1984-01-01

    Two searches of the southern sky for short period pulsars are briefly described. The first, made using the 64-m telescope at Parkes, is sensitive to pulsars with periods greater than about 10 ms and the second, made using the Molonglo radio telescope, has sensitivity down to periods of about 1.5 ms. Four pulsars were found in the Parkes survey and none in the Molonglo survey, although analysis of the latter is as yet incomplete. 10 references, 1 figure, 2 tables

  11. PSR J1618-3921: a recycled pulsar in an eccentric orbit

    Science.gov (United States)

    Octau, F.; Cognard, I.; Guillemot, L.; Tauris, T. M.; Freire, P. C. C.; Desvignes, G.; Theureau, G.

    2018-04-01

    Context. The 11.99 ms pulsar PSR J1618-3921 orbits a He white dwarf companion of probably low mass with a period of 22.7 d. The pulsar was discovered in a survey of the intermediate Galactic latitudes at 1400 MHz that was conducted with the Parkes radio telescope in the late 1990s. Although PSR J1618-3921 was discovered more than 15 years ago, only limited information has been published about this pulsar, which has a surprisingly high orbital eccentricity (e ≃ 0.027) considering its high spin frequency and the likely low mass of the companion. Aims: The focus of this work is a precise measurement of the spin and the astrometric and orbital characteristics of PSR J1618-3921. This was done with timing observations made at the Nançay Radio Telescope from 2009 to 2017. Methods: We analyzed the timing data recorded at the Nançay Radio Telescope over several years to characterize the properties of PSR J1618-3921. A rotation ephemeris for this pulsar was obtained by analyzing the arrival times of the radio pulses at the telescope. Results: We confirm the unusual eccentricity of PSR J1618-3921 and discuss several hypotheses regarding its formation in the context of other discoveries of recycled pulsars in eccentric orbits.

  12. PSR J1740-3052: a pulsar with a massive companion

    Science.gov (United States)

    Stairs, I. H.; Manchester, R. N.; Lyne, A. G.; Kaspi, V. M.; Camilo, F.; Bell, J. F.; D'Amico, N.; Kramer, M.; Crawford, F.; Morris, D. J.; Possenti, A.; McKay, N. P. F.; Lumsden, S. L.; Tacconi-Garman, L. E.; Cannon, R. D.; Hambly, N. C.; Wood, P. R.

    2001-08-01

    We report on the discovery of a binary pulsar, PSR J1740-3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11Msolar. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045-7319.

  13. Using HAWC to discover invisible pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim; Auchettl, Katie; Bramante, Joseph; Cholis, Ilias; Fang, Ke; Hooper, Dan; Karwal, Tanvi; Li, Shirley Weishi

    2017-11-01

    Observations by HAWC and Milagro have detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars. We argue that these observations, along with a substantial population of other extended TeV sources coincident with pulsar wind nebulae, constitute a new morphological class of spatially extended TeV halos. We show that HAWCs wide field-of-view unlocks an expansive parameter space of TeV halos not observable by atmospheric Cherenkov telescopes. Under the assumption that Geminga and Monogem are typical middle-aged pulsars, we show that ten-year HAWC observations should eventually observe 37$^{+17}_{-13}$ middle-aged TeV halos that correspond to pulsars whose radio emission is not beamed towards Earth. Depending on the extrapolation of the TeV halo efficiency to young pulsars, HAWC could detect more than 100 TeV halos from mis-aligned pulsars. These pulsars have historically been difficult to detect with existing multiwavelength observations. TeV halos will constitute a significant fraction of all HAWC sources, allowing follow-up observations to efficiently find pulsar wind nebulae and thermal pulsar emission. The observation and subsequent multi-wavelength follow-up of TeV halos will have significant implications for our understanding of pulsar beam geometries, the evolution of PWN, the diffusion of cosmic-rays near energetic pulsars, and the contribution of pulsars to the cosmic-ray positron excess.

  14. Pulsar timing residuals due to individual non-evolving gravitational wave sources

    International Nuclear Information System (INIS)

    Tong Ming-Lei; Zhao Cheng-Shi; Yan Bao-Rong; Yang Ting-Gao; Gao Yu-Ping

    2014-01-01

    The pulsar timing residuals induced by gravitational waves from non-evolving single binary sources are affected by many parameters related to the relative positions of the pulsar and the gravitational wave sources. We will analyze the various effects due to different parameters. The standard deviations of the timing residuals will be calculated with a variable parameter fixing a set of other parameters. The orbits of the binary sources will be generally assumed to be elliptical. The influences of different eccentricities on the pulsar timing residuals will also be studied in detail. We find that the effects of the related parameters are quite different, and some of them display certain regularities

  15. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  16. Elementary wideband timing of radio pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Pennucci, Timothy T. [University of Virginia, Department of Astronomy, P.O. Box 400325 Charlottesville, VA 22904-4325 (United States); Demorest, Paul B.; Ransom, Scott M., E-mail: pennucci@virginia.edu, E-mail: pdemores@nrao.edu, E-mail: sransom@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  17. Testing General Relativity with Pulsar Timing

    Directory of Open Access Journals (Sweden)

    Stairs Ingrid H.

    2003-01-01

    Full Text Available Pulsars of very different types, including isolated objects and binaries (with short- and long-period orbits, and white-dwarf and neutron-star companions provide the means to test both the predictions of general relativity and the viability of alternate theories of gravity. This article presents an overview of pulsars, then discusses the current status of and future prospects for tests of equivalence-principle violations and strong-field gravitational experiments.

  18. A 110-ms pulsar, with negative period derivative, in the globular cluster M15

    Science.gov (United States)

    Wolszczan, A.; Kulkarni, S. R.; Middleditch, J.; Backer, D. C.; Fruchter, A. S.; Dewey, R. J.

    1989-01-01

    The discovery of a 110-ms pulsar, PSR2127+11, in the globular cluster M15, is reported. The results of nine months of timing measurements place the new pulsar about 2 arcsec from the center of the cluster, and indicate that it is not a member of a close binary system. The measured negative value of the period derivative is probably the result of the pulsar being bodily accelerated in our direction by the gravitational field of the collapsed core of M15. This apparently overwhelms a positive contribution to the period derivative due to magnetic braking. Although the pulsar has an unexpectedly long period, it is argued that it belongs to the class of 'recycled' pulsars, which have been spun up by accretion in a binary system. The subsequent loss of the pulsar's companion is probably due to disruption of the system by close encounters with other stars.

  19. PSR J2322-2650 - a low-luminosity millisecond pulsar with a planetary-mass companion

    Science.gov (United States)

    Spiewak, R.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Burgay, M.; Cameron, A. D.; Champion, D. J.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Kulkarni, S. R.; Levin, L.; Lyne, A. G.; Morello, V.; Ng, C.; Possenti, A.; Ravi, V.; Stappers, B. W.; van Straten, W.; Tiburzi, C.

    2018-03-01

    We present the discovery of a binary millisecond pulsar (MSP), PSR J2322-2650, found in the southern section of the High Time Resolution Universe survey. This system contains a 3.5-ms pulsar with a ˜10-3 M⊙ companion in a 7.75-h circular orbit. Follow-up observations at the Parkes and Lovell telescopes have led to precise measurements of the astrometric and spin parameters, including the period derivative, timing parallax, and proper motion. PSR J2322-2650 has a parallax of 4.4 ± 1.2 mas, and is thus at an inferred distance of 230^{+90}_{-50} pc, making this system a candidate for optical studies. We have detected a source of R ≈ 26.4 mag at the radio position in a single R-band observation with the Keck telescope, and this is consistent with the blackbody temperature we would expect from the companion if it fills its Roche lobe. The intrinsic period derivative of PSR J2322-2650 is among the lowest known, 4.4(4) × 10-22 s s-1, implying a low surface magnetic field strength, 4.0(4) × 107 G. Its mean radio flux density of 160 μJy combined with the distance implies that its radio luminosity is the lowest ever measured, 0.008(5) mJy kpc2. The inferred population of these systems in the Galaxy may be very significant, suggesting that this is a common MSP evolutionary path.

  20. Fast Radio Bursts

    Indian Academy of Sciences (India)

    Akshaya Rane

    2017-09-12

    ) which were first discovered a decade ago. Following an introduction to radio transients in general, including pulsars and rotating radio transients, we discuss the discovery of FRBs. We then discuss FRB follow-up ...

  1. Properties of Radio Sources in the FRB 121102 Field

    Science.gov (United States)

    Bower, Geoffrey C.; Chatterjee, Shami; Wharton, Robert; Law, Casey J.; Hessels, Jason; Spolaor, Sarah; Abruzzo, Matthew W.; Bassa, Cees; Butler, Bryan J.; Cordes, James M.; Demorest, Paul; Kaspi, Victoria M.; McLaughlin, Maura; Ransom, Scott M.; Scholz, Paul; Seymour, Andrew; Spitler, Laura; Tendulkar, Shriharsh P.; PALFA Survey; VLA+AO FRB121102 Simultaneous Campaign Team; EVN FRB121102 Campaign Team; Realfast Team

    2017-01-01

    Fast radio bursts are millisecond duration radio pulses of unknown origin. With dispersion measures substantially in excess of expected Galactic contributions, FRBs are inferred to originate extragalactically, implying very high luminosities. Models include a wide range of high energy systems such as magnetars, merging neutron star binaries, black holes, and strong stellar magnetic fields driving coherent radio emission. Central to the mystery of FRB origins are the absence of confirmed host objects at any wavelength. This is primarily the result of the poor localization from single dish detection of FRBs. Of the approximately 20 known examples, only one, FRB 121102, has been observed to repeat. This repetition presents an opportunity for detailed follow-up if interferometric localization to arcsecond accuracy can be obtained. The Very Large Array has previously been used to localize individual pulses from pulsars and rotating radio transients to arcsecond localizaiton. We present here the results of radio observations of the field of FRB 121102 that permit us to constrain models of possible progenitors of this bursting source. These observations can characterize active galactic nuclei, stars, and other progenitor objects.

  2. On The Origin Of Hyper-Fast Pulsars

    Science.gov (United States)

    Gvaramadze, V. V.

    2006-08-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 gave the highest (transverse) velocity (~1100 km/s) ever measured for a neutron star (Chatterjee et al. 2005). The spin-down characteristics of PSR B1508+55 (typical of non-recycled pulsars) imply that the high velocity of this pulsar cannot be solely due to disruption of a tight massive binary system. A possible way to account for the high velocity of PSR B1508+55 is to assume that at least a part of this velocity is due to a natal or post-natal kick (Chatterjee et al. 2005). We propose an alternative explanation for the origin of hyper-fast pulsars. We suggest that PSR B1508+55 could be the remnant of a (symmetric) supernova explosion of the helium core of a massive star expelled at high velocity from the dense core of a young massive stellar cluster by an intermediate-mass (binary) black hole. The maximum peculiar velocity of the helium core is limited by the parabolic velocity on its surface and could be as large as ~2000 km/s. Thus, one can account not only for the high velocity measured for PSR B1508+55, but also for the even higher velocity of ~1600 km/s inferred for the pulsar PSR B2224+65 (Guitar; Chatterjee & Cordes 2004) on the basis of its proper motion and the dispersion measure distance estimate.

  3. Radio emission from embryonic superluminous supernova remnants

    Science.gov (United States)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta

    2018-02-01

    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  4. Search for optical millisecond pulsars in globular clusters

    International Nuclear Information System (INIS)

    Middleditch, J.H.; Imamura, J.N.; Steiman-Cameron, T.Y.

    1988-01-01

    A search for millisecond optical pulsars in several bright, compact globular clusters was conducted. The sample included M28, and the X-ray clusters 47 Tuc, NGC 6441, NGC 6624, M22, and M15. The globular cluster M28 contains the recently discovered 327 Hz radio pulsar. Upper limits of 4 sigma to pulsed emission of (1-20) solar luminosities were found for the globular clusters tested, and 0.3 solar luminosity for the M28 pulsar for frequencies up to 500 Hz. 8 references

  5. Evidence for free precession in a pulsar

    Science.gov (United States)

    Stairs; Lyne; Shemar

    2000-08-03

    Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior.

  6. CORRELATION OF FERMI PHOTONS WITH HIGH-FREQUENCY RADIO GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Bilous, A. V.; Kondratiev, V. I.; McLaughlin, M. A.; Mickaliger, M.; Ransom, S. M.; Lyutikov, M.; Langston, G. I.

    2011-01-01

    To constrain the giant pulse (GP) emission mechanism and test the model of Lyutikov for GP emission, we have carried out a campaign of simultaneous observations of the Crab pulsar at γ-ray (Fermi) and radio (Green Bank Telescope) wavelengths. Over 10 hr of simultaneous observations we obtained a sample of 2.1 x 10 4 GPs, observed at a radio frequency of 9 GHz, and 77 Fermi photons, with energies between 100 MeV and 5 GeV. The majority of GPs came from the interpulse (IP) phase window. We found no change in the GP generation rate within 10-120 s windows at lags of up to ±40 minutes of observed γ-ray photons. The 95% upper limit for a γ-ray flux enhancement in pulsed emission phase window around all GPs is four times the average pulsed γ-ray flux from the Crab. For the subset of IP GPs, the enhancement upper limit, within the IP emission window, is 12 times the average pulsed γ-ray flux. These results suggest that GPs, at least high-frequency IP GPs, are due to changes in coherence of radio emission rather than an overall increase in the magnetospheric particle density.

  7. GMRT Galactic Plane Pulsar and Transient Survey and the Discovery of PSR J1838+1523

    Science.gov (United States)

    Surnis, Mayuresh P.; Joshi, Bhal Chandra; McLaughlin, Maura A.; Lorimer, Duncan R.; M A, Krishnakumar; Manoharan, P. K.; Naidu, Arun

    2018-05-01

    We report the results of a blind pulsar survey carried out with the Giant Metrewave Radio Telescope (GMRT) at 325 MHz. The survey covered about 10% of the region between Galactic longitude 45° pulsars. One of these, PSR J1838+1523, was previously unknown and has a period of 549 ms and a dispersion measure of 68 pc cm-3. We also present the timing solution of this pulsar obtained from multi-frequency timing observations carried out with the GMRT and the Ooty Radio Telescope. The measured flux density of this pulsar is 4.3±1.8 and 1.2±0.7 mJy at 325 and 610 MHz, respectively. This implies a spectral index of -2 ±0.8, thus making the expected flux density at 1.4 GHz to be about 0.2 mJy, which would be just detectable in the high frequency pulsar surveys like the Northern High Time Resolution Universe pulsar survey. This discovery underlines the importance of low frequency pulsar surveys in detecting steep spectrum pulsars, thus providing complementary coverage of the pulsar population.

  8. The SUrvey for Pulsars and Extragalactic Radio Bursts III: Polarization properties of FRBs 160102 & 151230

    Science.gov (United States)

    Caleb, M.; Keane, E. F.; van Straten, W.; Kramer, M.; Macquart, J. P.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Bhandari, S.; Burgay, M.; Farah, W.; Jameson, A.; Jankowski, F.; Johnston, S.; Petroff, E.; Possenti, A.; Stappers, B.; Tiburzi, C.; Krishnan, V. Venkatraman

    2018-05-01

    We report on the polarization properties of two fast radio bursts (FRBs): 151230 and 160102 discovered in the SUrvey for Pulsars and Extragalactic Radio Bursts (SUPERB) at the Parkes radio telescope. FRB 151230 is observed to be 6 ± 11% circularly polarized and 35 ± 13 % linearly polarized with a rotation measure (RM) consistent with zero. Conversely, FRB 160102 is observed to have a circular polarization fraction of 30 ± 11 %, linear polarization fraction of 84 ± 15 % for RM =-221(6) rad m-2 and the highest measured DM (2596.1 ± 0.3 pc cm-3) for an FRB to date. We examine possible progenitor models for FRB 160102 in extragalactic, non-cosmological and cosmological scenarios. After accounting for the Galactic foreground contribution, we estimate the intrinsic RM to be -256(9) rad m-2 in the low-redshift case and ˜-2.4 × 102 rad m-2 in the high-redshift case. We assess the relative likeliness of these scenarios and how each can be tested. We also place constraints on the scattering measure and study the impact of scattering on the signal's polarization position angle.

  9. WIDE-BAND SPECTRA OF GIANT RADIO PULSES FROM THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mikami, Ryo; Asano, Katsuaki [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Tanaka, Shuta J. [Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo, 658-8501 (Japan); Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Sekido, Mamoru; Takefuji, Kazuhiro [Kashima Space Technology Center, National Institute of Information and Communications Technology, Kashima, Ibaraki 314-8501 (Japan); Takeuchi, Hiroshi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Misawa, Hiroaki; Tsuchiya, Fuminori [Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kita, Hajime [Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Yonekura, Yoshinori [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Terasawa, Toshio, E-mail: mikami@icrr.u-tokyo.ac.jp, E-mail: asanok@icrr.u-tokyo.ac.jp [iTHES Research Group, RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-12-01

    We present the results of the simultaneous observation of giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70% or more of the GRP spectra are consistent with single power laws and their spectral indices are distributed from −4 to −1. We also find that a significant number of GRPs have such a hard spectral index (approximately −1) that the fluence at 0.3 GHz is below the detection limit (“dim-hard” GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensive studies on the GRP spectra are useful materials to verify the GRP model of fast radio bursts in future observations.

  10. WIDE-BAND SPECTRA OF GIANT RADIO PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Mikami, Ryo; Asano, Katsuaki; Tanaka, Shuta J.; Kisaka, Shota; Sekido, Mamoru; Takefuji, Kazuhiro; Takeuchi, Hiroshi; Misawa, Hiroaki; Tsuchiya, Fuminori; Kita, Hajime; Yonekura, Yoshinori; Terasawa, Toshio

    2016-01-01

    We present the results of the simultaneous observation of giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70% or more of the GRP spectra are consistent with single power laws and their spectral indices are distributed from −4 to −1. We also find that a significant number of GRPs have such a hard spectral index (approximately −1) that the fluence at 0.3 GHz is below the detection limit (“dim-hard” GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensive studies on the GRP spectra are useful materials to verify the GRP model of fast radio bursts in future observations.

  11. Coherent radiation from pulsars

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1979-01-01

    Interaction between a relativistic electrom stream and a plasma under conditions believed to exist in pulsar magnetospheres is shown to result in the simultaneous emission of coherent curvature radiation at radio wavelengths and incoherent curvature radiation at X-ray wavelengths from the same spatial volume. It is found that such a stream can propagate through a plasma parallel to a very strong magnetic field only if its length is less than a critical length L/sub asterisk/ic. Charge induced in the plasma by the stream co-moves with the stream and has the same limitation in longitudinal extent. The resultant charge bunching is sufficient to cause the relatively low energy plasma particles to radiate at radio wavelengths coherently while the relatively high energy stream particles radiate at X-ray wavelengths incoherently as the stream-plasma system moves along curved magnetic field lines. The effective number of coherently radiating particles per bunch is estimated to be approx.10 14 --10 15 for a tupical pulsar

  12. A 110-ms pulsar, with negative period derivative, in the global cluster M15

    International Nuclear Information System (INIS)

    Wolszczan, A.; Kulkarni, S.R.; Middleditch, J.; Backer, D.C.; Fruchter, A.S.; Dewey, R.J.

    1989-01-01

    We report the discovery of a 110-ms pulsar, PSR2127 + 11, in the globular cluster M15 (NGC7078). The results of nine months of timing measurements place the new pulsar about 2'' from the centre of the cluster, and indicate that it is not a member of a close binary system. The measured negative value of the period derivative, P ∼-2 x 10 -17 s s -1 , is probably the result of the pulsar being bodily accelerated in our direction by the gravitational field of the collapsed core of M15. Although PSR2127 + 11 has an unexpectedly long period, we argue that it belongs to the class of 'recycled' pulsars, which have been spun up by accretion in a binary system. (author)

  13. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    Science.gov (United States)

    Nakar, Ehud; Piran, Tsvi

    2011-09-28

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

  14. Detectability of Gravitational Waves from High-Redshift Binaries.

    Science.gov (United States)

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  15. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  16. GBM Observations of Be X-Ray Binary Outbursts

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  17. An x-ray nebula associated with the millisecond pulsar B1957+20.

    Science.gov (United States)

    Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G

    2003-02-28

    We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.

  18. Discovery of an Energetic Pulsar Associated with SNR G76.9+1.0

    Science.gov (United States)

    Arzoumanian, Zaven; Gotthelf, E. V.; Ransom, S. M.; Safi-Harb, S.; Kothes, R.; Landecker, T. L.

    2012-01-01

    We report the discovery of PSR J2022-pulsar in the supernova remnant G76.9+i.0, in observations with the Chandra X-ray telescope, the Robert C. Byrd Green Bank Radio Telescope, and the Rossi X-ray Timing Explorer (RXTE). The pulsar's spin-down rate implies a rotation-powered luminosity E = 1.2 X 10(exp 38) erg/s, a surface dipole magnetic field strength B(sub S), = 1.0 X 10(exp 12) G, and a characteristic age of 8.9 kyr. PSR J2022+3842 is thus the second-most energetic Galactic pulsar known, after the Crab, as well as the most rapidly-rotating young, radio-bright pulsar known. The radio pulsations are highly dispersed and broadened by interstellar scattering, and we find that a large (delta f/f approximates 1.9 x 10(exp -6)) spin glitch must have occurred between our discovery and confirmation observations. The X-ray pulses are narrow (0.06 cycles FWHM) and visible up to 20 keV, consistent with magnetospheric emission from a rotation-powered pulsar. The Chandra X-ray image identifies the pulsar with a hard, unresolved source at the midpoint of the double-lobed radio morphology of G76.9+ 1.0 and embedded within faint, compact X-ray nebulosity. The spatial relationship of the X-ray and radio emissions is remarkably similar to extended structure seen around the Vela pulsar. The combined Chandra and RXTE pulsar spectrum is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.3) x 10(exp 22) / sq cm and photon index Gamma = 1.0 +/- 0.2; it implies that the Chandra point-source flux is virtually 100% pulsed. For a distance of 10 kpc, the X-ray luminosity of PSR J2022+3842 is L(sub x){2-1O keV) = 7.0 x 10(exp 33) erg/s. Despite being extraordinarily energetic, PSR J2022+3842 lacks a bright X-ray wind nebula and has an unusually low conversion efficiency of spin-down power to X-ray luminosity, Lx/E = 5.9 X 10(exp-5).

  19. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    International Nuclear Information System (INIS)

    Becker, W.; Huang, H.H.

    2007-01-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  20. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W; Huang, H H [eds.

    2007-07-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  1. SEARCH FOR VERY HIGH ENERGY GAMMA-RAY EMISSION FROM PULSAR-PULSAR WIND NEBULA SYSTEMS WITH THE MAGIC TELESCOPE

    International Nuclear Information System (INIS)

    Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Bose, D.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla

    2010-01-01

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  2. Gamma-Ray Pulsars: Beaming Evolution, Statistics, and Unidentified EGRET Sources

    Science.gov (United States)

    Yadigaroglu, I.-A.; Romani, Roger W.

    1995-08-01

    We compute the variation of the beaming fraction with the efficiency of high-energy γ-ray production in the outer gap pulsar model of Romani and Yadigaroglu. This allows us to correct the fluxes observed for pulsars in the EGRET band and to derive a simple estimate of the variation of efficiency with age. Integration of this model over the population of young neutron stars gives the expected number of γ-ray pulsars along with their distributions in age and distance. This model also shows that many of the unidentified EGRET plane sources should be pulsars and predicts the γ-ray fluxes of known radio pulsars. The contribution of unresolved pulsars to the background flux in the EGRET band is found to be ˜5%.

  3. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  4. A new non-thermal galactic radio source with a possible binary system

    International Nuclear Information System (INIS)

    Fuerst, E.; Reich, W.; Reich, P.; Sofue, Y.; Handa, T.

    1985-01-01

    A galactic object [G18.95-1.1], detected recently in a galactic plane survey, may belong to a new class of non-thermal radio sources that originate in accreting binary systems. The data on integrated flux density spectral index and the polarization, proves the non-thermal nature of the source. The morphology defies any classification as a supernova remnant. The authors suggest that the object is a binary system containing a compact component. (U.K.)

  5. An algorithm for determining the rotation count of pulsars

    Science.gov (United States)

    Freire, Paulo C. C.; Ridolfi, Alessandro

    2018-06-01

    We present here a simple, systematic method for determining the correct global rotation count of a radio pulsar; an essential step for the derivation of an accurate phase-coherent ephemeris. We then build on this method by developing a new algorithm for determining the global rotational count for pulsars with sparse timing data sets. This makes it possible to obtain phase-coherent ephemerides for pulsars for which this has been impossible until now. As an example, we do this for PSR J0024-7205aa, an extremely faint Millisecond pulsar (MSP) recently discovered in the globular cluster 47 Tucanae. This algorithm has the potential to significantly reduce the number of observations and the amount of telescope time needed to follow up on new pulsar discoveries.

  6. The Pulsar Search Collaboratory

    Science.gov (United States)

    Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.

    2010-01-01

    The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…

  7. Observations of Pulsars with the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Parent, D.

    2009-11-01

    The Large Area Telescope (LAT) on Fermi, launched on 2008 June 11, is a space telescope to explore the high energy γ-ray universe. The instrument covers the energy range from 20 MeV to 300 GeV with greatly improved sensitivity and ability to localize γ-ray point sources. It detects γ-rays through conversion to electron-positron pairs and measurement of their direction in a tracker and their energy in a calorimeter. This thesis presents the γ-ray light curves and the phase-resolved spectral measurements of radio-loud gamma-ray pulsars detected by the LAT. The measurement of pulsar spectral parameters (i.e. integrated flux, spectral index, and energy cut-off) depends on the instrument response functions (IRFs). A method developed for the on-orbit validation of the effective area is presented using the Vela pulsar. The cut efficiencies between the real data and the simulated data are compared at each stage of the background rejection. The results are then propagated to the IRFs, allowing the systematic uncertainties of the spectral parameters to be estimated. The last part of this thesis presents the discoveries, using both the LAT observations and the radio and X ephemeris, of new individual γ-ray pulsars such as PSR J0205+6449, and the Vela-like pulsars J2229+6114 and J1048-5832. Timing and spectral analysis are investigated in order to constrain the γ-ray emission model. In addition, we discuss the properties of a large population of γ-ray pulsars detected by the LAT, including normal pulsars, and millisecond pulsars. (author)

  8. EINSTEIN@HOME DISCOVERY OF FOUR YOUNG GAMMA-RAY PULSARS IN FERMI LAT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Papa, M. A. [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), D-30167 Hannover (Germany); Guillemot, L.; Champion, D. J.; Karuppusamy, R.; Kramer, M.; Ng, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Anderson, D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hammer, D.; Siemens, X. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); Keith, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility (Australia); Ray, P. S., E-mail: holger.pletsch@aei.mpg.de, E-mail: lucas.guillemot@cnrs-orleans.fr [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2013-12-10

    We report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via Einstein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422–6138, J1522–5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range 6 × 10{sup 34}—10{sup 36} erg s{sup –1}. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hz spin frequency of PSR J0554+3107 is the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.

  9. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    Science.gov (United States)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  10. DISCOVERY OF HIGH-ENERGY GAMMA-RAY EMISSION FROM THE BINARY SYSTEM PSR B1259-63/LS 2883 AROUND PERIASTRON WITH FERMI

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bonamente, E.; Brigida, M.; Bruel, P.; Caliandro, G. A.

    2011-01-01

    We report on the discovery of ≥100 MeV γ-rays from the binary system PSR B1259-63/LS 2883 using the Large Area Telescope (LAT) on board Fermi. The system comprises a radio pulsar in orbit around a Be star. We report on LAT observations from near apastron to ∼128 days after the time of periastron, t p , on 2010 December 15. No γ-ray emission was detected from this source when it was far from periastron. Faint γ-ray emission appeared as the pulsar approached periastron. At ∼t p + 30 days, the ≥100 MeV γ-ray flux increased over a period of a few days to a peak flux 20-30 times that seen during the pre-periastron period, but with a softer spectrum. For the following month, it was seen to be variable on daily timescales, but remained at ∼(1-4) x 10 -6 cm -2 s -1 before starting to fade at ∼t p + 57 days. The total γ-ray luminosity observed during this period is comparable to the spin-down power of the pulsar. Simultaneous radio and X-ray observations of the source showed no corresponding dramatic changes in radio and X-ray flux between the pre-periastron and post-periastron flares. We discuss possible explanations for the observed γ-ray-only flaring of the source.

  11. Confirming the nature of the knot near the pulsar B1951+32

    Science.gov (United States)

    Zyuzin, D. A.; Shibanov, Yu A.; Pavlov, G. G.; Danilenko, A. A.

    2017-12-01

    The energetic and fast-moving radio and γ-ray pulsar B1951+32 is associated with the supernova remnant CTB 80. It powers a complex pulsar wind nebula detected in the radio, Hα and X-rays (Moon et al 2004 ApJ 610 L33). A puzzling optical knot was detected about 0″.5 from the pulsar in the optical and near-IR (Moon et al 2004 ApJ 610 L33; Hester 2000 Bulletin of the AAS 32 1542). It is reminiscent of the unique “inner optical knot” located 0″.6 from the Crab pulsar. Until now there has been no evidence that B1951+32 knot is indeed associated with the pulsar. We observed the pulsar field with the Gemini-North telescope in 2016 to check the association. We performed first near-IR high spatial resolution imaging in the K s band using the NIRI+Altair instrument and deep optical imaging in the gr bands using the GMOS instrument. Our observations showed that the current knot position is shifted by ≈ 0″.6 from the position measured with the HST in 1997. This is consistent with the known pulsar proper motion and is direct evidence of the pulsar-knot connection. We compared the spectral energy distribution of the knot emission with that of the Crab knot. Possible implications of the results are discussed.

  12. Planets around pulsars - Implications for planetary formation

    Science.gov (United States)

    Bodenheimer, Peter

    1993-01-01

    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  13. Discovery of an optical bow-shock around pulsar B0740-28

    OpenAIRE

    Jones, D.H.; Stappers, B.W.; Gaensler, B.M.

    2002-01-01

    We report the discovery of a faint H-alpha pulsar wind nebula (PWN) powered by the radio pulsar B0740-28. The characteristic bow-shock morphology of the PWN implies a direction of motion consistent with the previously measured velocity vector for the pulsar. The PWN has a flux density more than an order of magnitude lower than for the PWNe seen around other pulsars, but, for a distance 2 kpc, it is consistent with propagation through a medium of atomic density n_H ~ 0.25 cm^{-3}, and neutral ...

  14. Soft excess and orbital evolution studies of X-ray pulsars with BeppoSAX

    International Nuclear Information System (INIS)

    Paul, B.; Naik, S.; Bhatt, N.

    2004-01-01

    We present here a spectral study of two accreting binary X-ray pulsars LMC X-4 and SMC X-1 made with the BeppoSAX observatory. The energy spectrum of both the pulsars in 0.1-10.0 keV band can be described by a model consisting of a hard power-law component, a soft excess and an iron emission line at 6.4 keV. In addition, the power-law component of SMC X-1 also has an exponential cutoff at ∼ 6 keV. Pulse-phase resolved spectroscopy confirms a pulsating nature of the soft spectral component in both the pulsars, with a certain phase offset compared to the hard power-law component. A dissimilar pulse profile of the two spectral components and a phase difference between the pulsating soft and hard spectral components are evidence for their different origins. In another study of an accreting binary X-ray pulsar Her X-1, we have made accurate measurements of new mid-eclipse times from pulse arrival time delays using observations made with the BeppoSAX and RXTE observatories. The new measurements, combined with the earlier reported mid-eclipse times are used to investigate orbital evolution of the binary. The most recent observation indicates deviation from a quadratic trend coincident with an anomalous low X-ray state, observed for the second time in this pulsar

  15. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  16. On the nature of pulsars

    International Nuclear Information System (INIS)

    Radhakrishnan, V.

    1982-01-01

    Although neutron stars were predicted nearly half a century ago, their radiations have been received and studied for just over a decade. Called pulsars because of the pulsating nature of their signals, they exhibit a wide variety of periodic phenomena in their radio emission. This article begins with a historical introduction followed by a short review of their main characteristics. The major models proposed to explain these properties are then outlined. Finally, some very recent developments which promise to throw new light on the mechanism of pulsars and their relationship to supernova remnants are briefly described and discussed. (author)

  17. Pulsar scintillation patterns and strangelets

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-García, M. Ángeles, E-mail: mperezga@usal.es [Department of Fundamental Physics and IUFFyM, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: silk@iap.fr [Institut d' Astrophysique, UMR 7095, CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, 75014 Paris (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Pen, Ue-Li, E-mail: pen@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 0N M5S 3H8 (Canada)

    2013-12-18

    We propose that interstellar extreme scattering events, usually observed as pulsar scintillations, may be caused by a coherent agent rather than the usually assumed turbulence of H{sub 2} clouds. We find that the penetration of a flux of ionizing, positively charged strangelets or quark nuggets into a dense interstellar hydrogen cloud may produce ionization trails. Depending on the specific nature and energy of the incoming droplets, diffusive propagation or even capture in the cloud are possible. As a result, enhanced electron densities may form and constitute a lens-like scattering screen for radio pulsars and possibly for quasars.

  18. Binary system containing the pulsar PSR 1913 + 16 and ultra-violet and x-radiation from accreting magnetic white dwarfs

    International Nuclear Information System (INIS)

    Masters, A.R.

    1978-01-01

    Part I of the thesis deals with the binary system containing the pulsar PSR 1913 + 16. The system has been touted as a laboratory for testing relativistic theories of gravity, and is also a challenge for theories of stellar evolution. However, proposed uses of the system rely on assumptions about the nature of the pulsar's unobserved companion. Ways of determining the nature of the companion from observation of the pulsar are discussed. Geometrical constraints on the size of the pulsar's orbit and the observed slow rate of the orbit's precession require that the companion be a black hole, a neutron star, a white dwarf or a helium main-sequence star. Observable second-order relativistic effects may or may not further restrict the list of candidates. The discussion summarizes Masters and Roberts, 1975 Ap.J. (Letters), 195, L107, and Roberts, Masters and Arnett, 1976, Ap. J., 203, 196. Part II of the thesis treats ultra-violet and X-radiation from accreting magnetic white dwarfs. Matter from a companion star falling onto a white dwarf is shock-heated near the stellar surface and radiatively cooled. The post-shock region is approximated by a uniform, geometrically thin slab and determine the physical conditions behind the shock and the emitted spectrum for a range of stellar masses, magnetic fields and accretion rates. At low magnetic fields and high accretion rates, bremsstrahlung is the dominant cooling mechanism and the post-shock material is a single fluid (the electrons and ions have a common temperature). As the magnetic field increases or the accretion rate decreases, cyclotron emission becomes more important than bremsstrahlung

  19. Line features in the X-ray spectrum of the crab pulsar

    International Nuclear Information System (INIS)

    Hasinger, G.; Pietsch, W.; Reppin, C.; Truemper, J.; Voges, W.; Kendziorra, E.; Staubert, R.

    1982-01-01

    Beside the well-known synchrotron behaviour of the Crab pulsar, there may be another source of high energy emission due to a hot plasma. The similarities between this component and common accretion-fed X-ray binaries are the frame in which the present balloon observation of the Crab pulsar will be discussed. (orig./WL)

  20. GMRT DISCOVERY OF PSR J1544+4937: AN ECLIPSING BLACK-WIDOW PULSAR IDENTIFIED WITH A FERMI-LAT SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, B.; Roy, J.; Gupta, Y. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Ray, P. S.; Wolff, M. T.; Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Bhattacharya, D. [Inter-University Centre for Astronomy and Astrophysics, Pune 411 007 (India); Romani, R. W.; Den Hartog, P. R.; Kerr, M.; Michelson, P. F. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ransom, S. M. [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Ferrara, E. C.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orleans Cedex 02 (France); Johnston, S.; Keith, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping, NSW 1710 (Australia); Saz Parkinson, P. M. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Wood, D. L. [Praxis Inc., Alexandria, VA 22303 (United States)

    2013-08-10

    Using the Giant Metrewave Radio Telescope, we performed deep observations to search for radio pulsations in the directions of unidentified Fermi-Large Area Telescope {gamma}-ray sources. We report the discovery of an eclipsing black-widow millisecond pulsar, PSR J1544+4937, identified with the uncataloged {gamma}-ray source FERMI J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hr compact circular orbit with a very low mass companion (M{sub c} > 0.017M{sub Sun }). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Using the radio timing ephemeris we were able to detect {gamma}-ray pulsations from this pulsar, confirming it as the source powering the {gamma}-ray emission.

  1. Fermi LAT Pulsed Detection of PSR J0737-3039A in the Double Pulsar System

    Science.gov (United States)

    Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.; Kerr, M.

    2013-01-01

    We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination alpha and the viewing angle zeta to be close to 90 deg., which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  2. FAST RADIO BURSTS AND THEIR GAMMA-RAY OR RADIO AFTERGLOWS AS KERR–NEWMAN BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Liu, Tong; Li, Ang; Romero, Gustavo E.; Liu, Mo-Lin

    2016-01-01

    Fast radio bursts (FRBs) are radio transients lasting only about a few milliseconds. They seem to occur at cosmological distances. We propose that these events can originate in the collapse of the magnetospheres of Kerr–Newman black holes (KNBHs). We show that the closed orbits of charged particles in the magnetospheres of these objects are unstable. After examining the dependencies on the specific charge of the particle and the spin and charge of the KNBH, we conclude that the resulting timescale and radiation mechanism fit well with extant observations of FRBs. Furthermore, we argue that the merger of a KNBH binary is a plausible central engine for the potential gamma-ray or radio afterglow following certain FRBs and can also account for gravitational wave (GW) events like GW 150914. Our model leads to predictions that can be tested by combined multi-wavelength electromagnetic and GW observations.

  3. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    Science.gov (United States)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  4. Detecting pulsars in the Galactic Centre

    Science.gov (United States)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (I.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  5. An Accretion Model for Anomalous X-Ray Pulsars

    Science.gov (United States)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  6. New limits on the population of normal and millisecond pulsars in the Large and Small Magellanic Clouds

    Science.gov (United States)

    Ridley, J. P.; Lorimer, D. R.

    2010-07-01

    We model the potentially observable populations of normal and millisecond radio pulsars in the Large and Small Magellanic Clouds (LMC and SMC, respectively) where the known population currently stands at 19 normal radio pulsars. Taking into account the detection thresholds of previous surveys, and assuming optimal period and luminosity distributions based on studies of Galactic pulsars, we estimate that there are (1.79 +/- 0.20) × 104 and (1.09 +/- 0.16) × 104 normal pulsars in the LMC and SMC, respectively. When we attempt to correct for beaming effects, and the fraction of high-velocity pulsars which escape the clouds, we estimate birth rates in both the LMC and SMC to be comparable and in the range of 0.5-1 pulsars per century. Although higher than estimates for the rate of core-collapse supernovae in the clouds, these pulsar birth rates are consistent with historical supernova observations in the past 300 yr. A substantial population of active radio pulsars (of the order of a few hundred thousand) has escaped the LMC and SMC and populates the local intergalactic medium. For the millisecond pulsar (MSP) population, the lack of any detections from current surveys leads to respective upper limits (at the 95 per cent confidence level) of 15000 for the LMC and 23000 for the SMC. Several MSPs could be detected by a currently ongoing survey of the SMC with improved time and frequency resolution using the Parkes multibeam system. Giant-pulse emitting neutron stars could also be seen by this survey.

  7. Correlation between the luminosity and spin-period changes during outbursts of 12 Be binary pulsars observed by the MAXI/GSC and the Fermi/GBM

    Science.gov (United States)

    Sugizaki, Mutsumi; Mihara, Tatehiro; Nakajima, Motoki; Makishima, Kazuo

    2017-12-01

    To study observationally the spin-period changes of accreting pulsars caused by the accretion torque, the present work analyzes X-ray light curves of 12 Be binary pulsars obtained by the MAXI Gas-Slit Camera all-sky survey and their pulse periods measured by the Fermi Gamma-ray Burst Monitor pulsar project, both covering more than six years, from 2009 August to 2016 March. The 12 objects were selected because they are accompanied by clear optical identification and accurate measurements of surface magnetic fields. The luminosity L and the spin-frequency derivatives \\dot{ν}, measured during large outbursts with L ≳ 1 × 1037 erg s-1, were found to follow approximately the theoretical relations in the accretion torque models, represented by \\dot{ν} ∝ L^{α} (α ≃ 1), and the coefficient of proportionality between \\dot{ν} and Lα agrees, within a factor of ˜3, with that proposed by Ghosh and Lamb (1979b, ApJ, 234, 296). In the course of the present study, the orbital elements of several sources were refined.

  8. The Pulsar Search Collaboratory: A Comprehensive Project for Students and Teachers

    Science.gov (United States)

    Rosen, Rachel; Heatherly, S.; McLauglin, M.; Lorimer, D.

    2009-01-01

    The National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU) have partnered to improve the quality of science education in West Virginia high schools through the Pulsar Search Collaboratory (PSC). One of the primary goals of the PSC is to engage students in STEM (science, technology, engineering, and mathematics) and related fields by using information technology to conduct current scientific research, specifically searching for new pulsars. To this end, we also are improving rural teachers' knowledge of the nature of science, the importance of information technology to scientific discovery, and methodologies for incorporating inquiry-based education into the classroom. The PSC hopes to make school science more like the practice of science and to make science fun and interesting for high school students. In 2007, an international team of astronomers received 900 hours of time on the Green Bank Telescope (GBT) during the summer shutdown to search for new pulsars. In conjunction with this group, we applied for and received 300 hours of observing time on the GBT for the PSC students. Around the same time, we were awarded an NSF iTEST grant to fund the Pulsar Search Collaboratory (PSC) project. Over the past year, we have been working with colleagues in the WVU Department of Computer Science to develop a graphical interface through which the students will analyze pulsar search plots (see psrsearch.wvu.edu). We also initiated a robust processing pipeline on a cluster in the WVU Computer Science Department. The PSC started in earnest this summer with a three week workshop in Green Bank where the teachers attended an intensive astronomy mini-course and techniques on introducing astronomy into the classroom. The students joined their teachers for the third week and participated in various activities to teach them about radio astronomy, radio frequency interference, and pulsars.

  9. Jumping the energetics queue: Modulation of pulsar signals by extraterrestrial civilizations

    Science.gov (United States)

    Chennamangalam, Jayanth; Siemion, Andrew P. V.; Lorimer, D. R.; Werthimer, Dan

    2015-01-01

    It has been speculated that technological civilizations evolve along an energy consumption scale first formulated by Kardashev, ranging from human-like civilizations that consume energy at a rate of ∼1019 erg s-1 to hypothetical highly advanced civilizations that can consume ∼1044 erg s-1. Since the transmission power of a beacon a civilization can build depends on the energy it possesses, to make it bright enough to be seen across the Galaxy would require high technological advancement. In this paper, we discuss the possibility of a civilization using naturally-occurring radio transmitters - specifically, radio pulsars - to overcome the Kardashev limit of their developmental stage and transmit super-Kardashev power. This is achieved by the use of a modulator situated around a pulsar, that modulates the pulsar signal, encoding information onto its natural emission. We discuss a simple modulation model using pulse nulling and considerations for detecting such a signal. We find that a pulsar with a nulling modulator will exhibit an excess of thermal emission peaking in the ultraviolet during its null phases, revealing the existence of a modulator.

  10. FERMI LAT PULSED DETECTION OF PSR J0737-3039A IN THE DOUBLE PULSAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Guillemot, L.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Craig, H. A.; Romani, R. W.; Kerr, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ferdman, R. D. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Stairs, I. H., E-mail: guillemo@mpifr-bonn.mpg.de [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2013-05-10

    We report the Fermi Large Area Telescope discovery of {gamma}-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in {gamma} rays. PSR J0737-3039A is a faint {gamma}-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the {gamma}-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the {gamma}-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination {alpha} and the viewing angle {zeta} to be close to 90 Degree-Sign , which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  11. DO RADIO MAGNETARS PSR J1550-5418 AND J1622-4950 HAVE GIGAHERTZ-PEAKED SPECTRA?

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Tarczewski, L.; Lewandowski, W. [Kepler Institute of Astronomy, University of Zielona Gora, Lubuska 2, 65-265 Zielona Gora (Poland); Melikidze, G., E-mail: jkijak@astro.ia.uz.zgora.pl [Also at Abastumani Astrophysical Observatory, Ilia State University, 3-5 Cholokashvili Avenue, Tbilisi 0160, Georgia. (Georgia)

    2013-07-20

    We study the radio spectra of two magnetars, PSR J1550-5418 and J1622-4950. We argue that they are good candidates for pulsars with gigahertz-peaked spectra (GPS), as their observed flux density decreases at frequencies below 7 GHz. We suggest that this behavior is due to the influence of the pulsars' environments on radio waves. Both of the magnetars are associated with supernova remnants and thus are surrounded by hot, ionized gas, which can be responsible for the free-free absorption of radio waves. We conclude that the GPS feature of both magnetars and typical pulsars are formed by similar processes in the surrounding media rather than by different radio-emission mechanisms. Thus, the radio magnetars PSR J1550-5418 and J1622-4950 can be included in the class of GPS pulsars.

  12. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  13. Search for Transient Gravitational Waves in Coincidence with Short-Duration Radio Transients During 2007-2013

    Science.gov (United States)

    Abbott, B. P.; Hughey, Brennan; Zanolin, Michele; Szczepanczyk, Marek; Gill, Kiranjyot; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; hide

    2016-01-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO (Laser Interferometer Gravitational Wave Observatory), Virgo (Variability of Solar Irradiance and Gravity Oscillations) and GEO (German-UK Interferometric Detector) interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include star quakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  14. An X-ray Pulsar with a Superstrong Magnetic Field in the Soft Gamma-Ray Repeater SGR1806-20

    Science.gov (United States)

    Kouveliotou, C.; Dieters, S.; Strohmayer, T.; vanParadijs, J.; Fishman, G. J.; Meegan, C. A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; hide

    1998-01-01

    Soft gamma-ray repeaters (SGRs) emit multiple, brief (approximately O.1 s) intense outbursts of low-energy gamma-rays. They are extremely rare; three are known in our galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from 'normal' radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806-20, with a period of 7.47 s and a spindown rate of 2.6 x 10(exp -3) s/yr. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are approximately 1500 years and 8 x 10(exp 14) gauss, respectively. Our observations demonstrate the existence of 'magnetars', neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions that SGR bursts are caused by neutron-star 'crust-quakes' produced by magnetic stresses. The 'magnetar' birth rate is about one per millenium, a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.

  15. X-RAY EMISSION FROM J1446–4701, J1311–3430, AND OTHER BLACK WIDOW PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Arumugasamy, Prakash; Pavlov, George G. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Garmire, Gordon P., E-mail: pxa151@ucs.psu.edu [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2015-12-01

    We present the results of detailed X-ray analysis of two black-widow pulsars (BWPs), J1446–4701 and J1311–3430. PSR J1446–4701 is a BWP with orbital parameters near the median values of the sample of known BWPs. Its X-ray emission that was detected by XMM-Newton is well characterized by a soft power-law (PL) spectrum (photon index Γ ≈ 3), and it shows no significant orbital modulations. In view of a lack of radio eclipses and an optical non-detection, the system most likely has a low orbital inclination. PSR J1311–3430 is an extreme BWP with a very compact orbit and the lowest minimum mass companion. Our Chandra data confirm the hard Γ ≈ 1.3 emission seen in previous observations. Through phase-restricted spectral analysis, we found a hint (∼2.6σ) of spectral hardening around pulsar inferior conjunction. We also provide a uniform analysis of the 12 BWPs observed with Chandra and compare their X-ray properties. Pulsars with soft, Γ > 2.5 emission seem to have lower than average X-ray and γ-ray luminosities. We do not, however, see any other prominent correlation between the pulsar’s X-ray emission characteristics and any of its other properties. The contribution of the intra-binary shock to the total X-ray emission, if any, is not discernible in this sample of pulsars with shallow observations.

  16. On the puzzling high-energy pulsations of the energetic radio-quiet γ-ray pulsar J1813–1246

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Pizzocaro, D.; De Luca, A.; Caraveo, P.; Salvetti, D. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Harding, A. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Saz Parkinson, P. M. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Acero, F., E-mail: marelli@lambrate.inaf.it [Laboratoire AIM, CEA-IRFU/CNRS/Universit Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France)

    2014-11-10

    We have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813–1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available Fermi ephemeris to five years. We found two glitches. The γ-ray light curve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the γ-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and γ-ray emission of J1813. The unique X-ray and γ-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.

  17. PSR J1838–0537: DISCOVERY OF A YOUNG, ENERGETIC GAMMA-RAY PULSAR

    International Nuclear Information System (INIS)

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Guillemot, L.; Kramer, M.; Baring, M. G.; Camilo, F.; Caraveo, P. A.; Marelli, M.; Grove, J. E.; Ray, P. S.; Kerr, M.; Ransom, S. M.; Saz Parkinson, P. M.

    2012-01-01

    We report the discovery of PSR J1838–0537, a gamma-ray pulsar found through a blind search of data from the Fermi Large Area Telescope (LAT). The pulsar has a spin frequency of 6.9 Hz and a frequency derivative of –2.2 × 10 –11 Hz s –1 , implying a young characteristic age of 4970 yr and a large spin-down power of 5.9 × 10 36 erg s –1 . Follow-up observations with radio telescopes detected no pulsations; thus PSR J1838–0537 appears radio-quiet as viewed from Earth. In 2009 September the pulsar suffered the largest glitch so far seen in any gamma-ray-only pulsar, causing a relative increase in spin frequency of about 5.5 × 10 –6 . After the glitch, during a putative recovery period, the timing analysis is complicated by the sparsity of the LAT photon data, the weakness of the pulsations, and the reduction in average exposure from a coincidental, contemporaneous change in LAT's sky-survey observing pattern. The pulsar's sky position is coincident with the spatially extended TeV source HESS J1841–055 detected by the High Energy Stereoscopic System (H.E.S.S.). The inferred energetics suggest that HESS J1841–055 contains a pulsar wind nebula powered by the pulsar.

  18. DETECTION OF POLARIZED QUASI-PERIODIC MICROSTRUCTURE EMISSION IN MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    De, Kishalay; Sharma, Prateek [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Gupta, Yashwant, E-mail: kde@caltech.edu [National Centre for Radio Astrophysics, TIFR, Pune University Campus, Post Bag 3, Pune 411007 (India)

    2016-12-10

    Microstructure emission, involving short timescale, often quasi-periodic, intensity fluctuations in subpulse emission, is well known in normal period pulsars. In this Letter, we present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), from Giant Metrewave Radio Telescope observations of two MSPs at 325 and 610 MHz. Similar to the characteristics of microstructure observed in normal period pulsars, we find that these features are often highly polarized and exhibit quasi-periodic behavior on top of broader subpulse emission, with periods of the order of a few μ s. By measuring their widths and periodicities from single pulse intensity profiles and their autocorrelation functions, we extend the microstructure timescale–rotation period relationship by more than an order of magnitude down to rotation periods ∼5 ms, and find it to be consistent with the relationship derived earlier for normal pulsars. The similarity of behavior is remarkable, given the significantly different physical properties of MSPs and normal period pulsars, and rules out several previous speculations about the possible different characteristics of microstructure in MSP radio emission. We discuss the possible reasons for the non-detection of these features in previous high time resolution MSP studies along with the physical implications of our results, both in terms of a geometric beam sweeping model and temporal modulation model for micropulse production.

  19. Null stream analysis of Pulsar Timing Array data: localisation of resolvable gravitational wave sources

    Science.gov (United States)

    Goldstein, Janna; Veitch, John; Sesana, Alberto; Vecchio, Alberto

    2018-04-01

    Super-massive black hole binaries are expected to produce a gravitational wave (GW) signal in the nano-Hertz frequency band which may be detected by pulsar timing arrays (PTAs) in the coming years. The signal is composed of both stochastic and individually resolvable components. Here we develop a generic Bayesian method for the analysis of resolvable sources based on the construction of `null-streams' which cancel the part of the signal held in common for each pulsar (the Earth-term). For an array of N pulsars there are N - 2 independent null-streams that cancel the GW signal from a particular sky location. This method is applied to the localisation of quasi-circular binaries undergoing adiabatic inspiral. We carry out a systematic investigation of the scaling of the localisation accuracy with signal strength and number of pulsars in the PTA. Additionally, we find that source sky localisation with the International PTA data release one is vastly superior than what is achieved by its constituent regional PTAs.

  20. Magnetic Pair Creation Transparency in Pulsars

    Science.gov (United States)

    Story, Sarah; Baring, M. G.

    2013-04-01

    The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.

  1. Gamma rays from pulsar outer gaps

    International Nuclear Information System (INIS)

    Chiang, J.; Romani, R.W.; Cheng Ho

    1993-01-01

    We describe a gamma ray pulsar code which computes the high energy photon emissivities from vacuum gaps in the outer magnetosphere, after the model outlined by Cheng, Ho and Ruderman (1986) and Ho (1989). Pair-production due to photon-photon interactions and radiation processes including curvature, synchrotron and inverse Compton processes are computed with an iterative scheme which converges to self-consistent photon and particle distributions for a sampling of locations in the outer magnetosphere. We follow the photons from these distributions as they propagate through the pulsar magnetosphere toward a distant observer. We include the effects of relativistic aberration, time-of-flight delays and reabsorption by photon-photon pair-production to determine an intensity map of the high energy pulsar emission on the sky. Using data from radio and optical observations to constrain the geometry of the magnetosphere as well as the possible observer viewing angles, we derive light curves and phase dependent spectra which can be directly compared to data from the Compton Observatory. Observations for Crab, Vela and the recently identified gamma ray pulsars Geminga, PSR1706-44 aNd PSR 1509-58 will provide important tests of our model calculations, help us to improve our picture of the relevant physics at work in pulsar magnetospheres and allow us to comment on the implications for future pulsar discoveries

  2. Polarization observations of four southern pulsars at 1560 MHz

    Science.gov (United States)

    Wu, Xin-Ji; Manchester, R. N.; Lyne, A. G.

    1991-12-01

    Some interesting results from the mean pulse polarization observations of four southern pulsars made at the Australian National Radio Astronomy Observatory, Parkes, using the 64-m telescope in June and July, 1988, are presented. The 2 x 16 x 5 MHz filter system from Jodrell Bank has proved excellent in dedispersing the pulse signals and measuring their polarization properties. Data for the four pulsars are given in some detail, and their spectral behavior is discussed.

  3. The green bank northern celestial cap pulsar survey. I. Survey description, data analysis, and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, K.; Dartez, L. P.; Ford, A. J.; Garcia, A.; Hinojosa, J.; Jenet, F. A.; Leake, S. [Center for Advanced Radio Astronomy, University of Texas at Brownsville, One West University Boulevard, Brownsville, TX 78520 (United States); Lynch, R. S.; Archibald, A. M.; Karako-Argaman, C.; Kaspi, V. M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Banaszak, S.; Biwer, C. M.; Day, D.; Flanigan, J.; Kaplan, D. L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Boyles, J. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Hessels, J. W. T.; Kondratiev, V. I., E-mail: stovall.kevin@gmail.com [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); and others

    2014-08-10

    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts, at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4096 channels every 81.92 μs. This survey will cover the entire sky visible to the Green Bank Telescope (δ > –40°, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<30 pc cm{sup –3}) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of –1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214+5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636+5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 M{sub J}). PSR J0645+5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434+7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816+4510 is an eclipsing MSP in a short-period orbit (8.7 hr) and may have recently completed its spin-up phase.

  4. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    Science.gov (United States)

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects.

  5. Searches for gravitational waves from known pulsars with Science Run 5 LIGO data

    NARCIS (Netherlands)

    Abbott, B.P.; et al., [Unknown; Hessels, J.W.T.

    2010-01-01

    We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated

  6. Separated before birth: pulsars B2020+28 and B2021+51 as the remnants of runaway stars

    OpenAIRE

    Gvaramadze, V. V.

    2007-01-01

    Astrometric data on the pulsars B2020+28 and B2021+51 suggest that they originated within several parsecs of each other in the direction of the Cyg OB2 association. It was proposed that the pulsars share their origin in a common massive binary and were separated at the birth of the second pulsar following the asymmetric supernova explosion. We consider a different scenario for the origin of the pulsar pair based on a possibility that the pulsars were separated before their birth and that they...

  7. Pulsar discovery by global volunteer computing

    NARCIS (Netherlands)

    Knispel, B.; Allen, B.; Cordes, J.M.; Deneva, J.S.; Anderson, D.; Aulbert, C.; Bhat, N.D.R.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D.J.; Chatterjee, S.; Crawford, F.; Demorest, P.B.; Fehrmann, H.; Freire, P.C.C.; Gonzalez, M.E.; Hammer, D.; Hessels, J.W.T.; Jenet, F.A.; Kasian, L.; Kaspi, V.M.; Kramer, M.; Lazarus, P.; van Leeuwen, J.; Lorimer, D.R.; Lyne, A.G.; Machenschalk, B.; McLaughlin, M.A.; Messenger, C.; Nice, D.J.; Papa, M.A.; Pletsch, H.J.; Prix, R.; Ransom, S.M.; Siemens, X.; Stairs, I.H.; Stappers, B.W.; Stovall, K.; Venkataraman, A.

    2010-01-01

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this

  8. EIGHT γ-RAY PULSARS DISCOVERED IN BLIND FREQUENCY SEARCHES OF FERMI LAT DATA

    International Nuclear Information System (INIS)

    Saz Parkinson, P. M.; Dormody, M.; Ziegler, M.; Belfiore, A.; Johnson, R. P.; Ray, P. S.; Abdo, A. A.; Grove, J. E.; Gwon, C.; Ballet, J.; Baring, M. G.; Burnett, T. H.; Caliandro, G. A.; Camilo, F.; Caraveo, P. A.; De Luca, A.; Ferrara, E. C.; Harding, A. K.; Johnson, T. J.; Freire, P. C. C.

    2010-01-01

    We report the discovery of eight γ-ray pulsars in blind frequency searches of ∼650 source positions using the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. PSRs J1023-5746, J1044-5737, J1413-5205, J1429-5911, and J1954+2836 are young (τ c 10 36 erg s -1 ), and located within the Galactic plane (|b| 0 ). The remaining three pulsars, PSRs J1846+0919, J1957+5033, and J2055+25, are less energetic, and located off the plane. Five pulsars are associated with sources included in the Fermi-LAT bright γ-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age (τ c = 4.6 kyr) and is the most energetic ( E-dot = 1.1x10 37 erg s -1 ) of all γ-ray pulsars discovered so far in blind searches. By analyzing >100 ks of publicly available archival Chandra X-ray data, we have identified the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant γ-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3σ excess reported by Milagro at a median energy of 35 TeV. PSRs J1957+5033 and J2055+25 have the largest characteristic ages (τ c ∼ 1 Myr) and are the least energetic ( E-dot ∼5x10 33 erg s -1 ) of the newly discovered pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the faintest known radio pulsars, indicating that these pulsars can be included among the growing population of radio-quiet pulsars in our Galaxy being

  9. SEXTANT X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results

    Science.gov (United States)

    Mitchell, Jason W.; Winternitz, Luke B.; Hassouneh, Munther A.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wolf, Michael T.; Kerr, Matthew; Wood, Kent S.; hide

    2018-01-01

    Millisecond pulsars (MSPs) are rapidly rotating neutron stars that appear to pulsate across the electromagnetic spectrum. Some MSPs have long-term timing stability that rivals that of atomic clocks. Pulse arrival phase can be predicted with great accuracy at any reference point in the Solar System through use of a pulsar timing model on a spacecraft. Comparing observed phase to predictions gives information that may be used in a navigation process. Why X-rays? Some stable MSPs have conveniently detectable X-ray emissions. X-rays are immune to interstellar dispersion effects thought to limit radio pulsar timing models. Highly directional compact detectors possible.

  10. Space 'beachballs' generate pulsar bursts

    CERN Multimedia

    Wasowicz, L

    2003-01-01

    Researchers have analyzed radio emissions from a pulsar at the center of the Crab Nebula and have found 'subpulses' that last around 2 nanoseconds. They speculate this means the regions in which these ultra-short pulses are generated can be no larger than about 2 feet across - the distance light travels in 2 nanoseconds (2 pages).

  11. Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    International Nuclear Information System (INIS)

    Anderson, B.; Atwood, W.B.; Dormody, M.; Johnson, R.P.; Porter, T.A.; Primack, J.R.; Sadrozinski, H.F.W.; Parkinson, P.M.S.; Ziegler, M.; Abdo, A.A.; Dermer, C.D.; Grove, J.E.; Gwon, C.; Johnson, W.N.; Lovellette, M.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wolff, M.T.; Wood, K.S.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Pierbattista, M.; Starck, J.L.

    2009-01-01

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants. (authors)

  12. Deep radio synthesis images of globular clusters

    International Nuclear Information System (INIS)

    Kulkarni, S.R.; Goss, W.M.; Wolszczan, A.; Middleditch, J.

    1990-01-01

    Results are reported from a program of high-resolution and high-sensitivity imaging of globular clusters at 20 cm. The findings indicate that there is not a large number of pulsars in compact binaries which have escaped detection in single-dish pulse searches. Such binaries have been postulated to result from tidal captures of single main-sequence stars. It is suggested that most tidal captures involving neutron stars ultimately result in the formation of a spun-up single pulsar and the complete disruption of the main-sequence star. 27 refs

  13. A search for thermal extreme ultraviolet radiation from nearby pulsars

    International Nuclear Information System (INIS)

    Greenstein, G.; Margon, B.

    1977-01-01

    We present the first extreme ultraviolet (100-1000 A) observations of radio pulsars. Using an EUV telescope carried aboard the Apollo-Soyuz mission, data were acquired on the nearby pulsars PSR 1133 + 16, 1451 - 68 and 1929 + 10. The data are interpreted to set limits on the effective temperatures of the neutron stars, yielding T 5 K in the best cases, and the limits compared with theoretical predictions. (orig./BJ) [de

  14. Real-Time RFI Mitigation in Pulsar Observations

    Science.gov (United States)

    Ramey, Emily; Joslyn, Nick; Prestage, Richard; Whitehead, Mark; Lam, Michael Timothy; Blattner, Tim; Hawkins, Luke; Viou, Cedric; Masson, Jessica

    2018-01-01

    As the use of wireless technology has increased around the world, Radio Frequency Interference (RFI) has become more and more of a problem for radio astronomers. Preventative measures exist to limit the presence of RFI, and programs exist to remove it from saved data, but the routine use of algorithms to detect and remove RFI as an observation is occurring is much less common. Such a method would be incredibly useful for observations in which the data must undergo several rounds of processing before being saved, as in pulsar timing studies. Strategies for real-time mitigation have been discussed and tested with simulated data (Buch et al., 2016), but ideally the results of any approach would be validated by a detailed comparison of the final data products - for pulsar timing, the variance in the pulse times of arrival (TOAs) - with and without mitigation applied. The goal of this project is to develop an RFI mitigation approach based on the previously suggested strategies and test this program on actual data from the observation of pulsar J1713+0747. We use a Median Absolute Deviation (MAD) filter to identify interference in the observation and replace the compromised data with random Gaussian noise to match a characteristic radio signal from space. In order to verify our results, we analyze the pulsar’s TOAs obtained both from the mitigated data and from the unmitigated data processed through offline RFI removal software. Comparing the two, our preliminary findings indicate that our program is able to improve the quality of timing results from the observation.

  15. $\\gamma$-Ray Pulsars: Emission Zones and Viewing Geometries

    OpenAIRE

    Romani, Roger W.; Yadigaroglu, I. -A.

    1994-01-01

    There are now a half dozen young pulsars detected in high energy photons by the Compton GRO, showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high energy emission on the sky in a model which posits $\\gamma$-ray production by charge depleted gaps in the outer magnetosphere. This model accounts for the radio to $\\gamma$-ray pulse offsets of the known pulsars, as well as the shape of the high energy pulse profiles. We also show that $...

  16. Magnetic field decay in black widow pulsars

    Science.gov (United States)

    Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.

    2018-04-01

    We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.

  17. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  18. FOUR HIGHLY DISPERSED MILLISECOND PULSARS DISCOVERED IN THE ARECIBO PALFA GALACTIC PLANE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Stovall, K. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Lazarus, P. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Freire, P. C. C.; Champion, D. J.; Desvignes, G. [Max-Planck-Institut fuer Radioastronomie, auf dem Huegel 69, D-53121 Bonn (Germany); Allen, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Bhat, N. D. R.; Camilo, F. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace, LPC2E, CNRS et Universite d' Orleans, and Station de radioastronomie de Nancay, Observatoire de Paris, F-18330 Nancay (France); Deneva, J. S., E-mail: fcrawfor@fandm.edu [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); and others

    2012-09-20

    We present the discovery and phase-coherent timing of four highly dispersed millisecond pulsars (MSPs) from the Arecibo PALFA Galactic plane survey: PSRs J1844+0115, J1850+0124, J1900+0308, and J1944+2236. Three of the four pulsars are in binary systems with low-mass companions, which are most likely white dwarfs, and which have orbital periods on the order of days. The fourth pulsar is isolated. All four pulsars have large dispersion measures (DM >100 pc cm{sup -3}), are distant ({approx}> 3.4 kpc), faint at 1.4 GHz ({approx}< 0.2 mJy), and are fully recycled (with spin periods P between 3.5 and 4.9 ms). The three binaries also have very small orbital eccentricities, as expected for tidally circularized, fully recycled systems with low-mass companions. These four pulsars have DM/P ratios that are among the highest values for field MSPs in the Galaxy. These discoveries bring the total number of confirmed MSPs from the PALFA survey to 15. The discovery of these MSPs illustrates the power of PALFA for finding weak, distant MSPs at low-Galactic latitudes. This is important for accurate estimates of the Galactic MSP population and for the number of MSPs that the Square Kilometer Array can be expected to detect.

  19. Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars

    International Nuclear Information System (INIS)

    Freire, Paulo C C; Kramer, Michael; Wex, Norbert

    2012-01-01

    In this paper, we review tests of the strong equivalence principle (SEP) derived from pulsar–white dwarf binary data. The extreme difference in the binding energy between both components and the precise measurement of the orbital motion provided by pulsar timing allow the only current precision SEP tests for strongly self-gravitating bodies. We start by highlighting why such tests are conceptually important. We then review previous work where limits on SEP violation are obtained with an ensemble of wide binary systems with small eccentricity orbits. Then, we propose a new SEP violation test based on the measurement of the variation of the orbital eccentricity (ė). This new method has the following advantages: (a) unlike previous methods it is not based on probabilistic considerations, (b) it can make a direct detection of SEP violation and (c) the measurement of ė is not contaminated by any known external effects, which implies that this SEP test is only restricted by the measurement precision of ė. In the final part of the review, we conceptually compare the SEP test with the test for dipolar radiation damping, a phenomenon closely related to SEP violation, and speculate on future prospects by new types of tests in globular clusters and future triple systems. (paper)

  20. Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array

    Science.gov (United States)

    2010-10-01

    radio wavelengths, there are well-known classes of transients, such as the Sun and ra- dio pulsars , as well as a long history of observ- ing transients...Rupen et al. 2002). Fur- ther, a series of observations and discoveries over the past decade have emphasized that the radio sky may be quite dynamic...Bailes 2010); intense giant pulses have been detected from the Crab pulsar (Hankins et al. 2003); and several as-yet unidentified radio transients have

  1. COHERENT NETWORK ANALYSIS FOR CONTINUOUS GRAVITATIONAL WAVE SIGNALS IN A PULSAR TIMING ARRAY: PULSAR PHASES AS EXTRINSIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [MOE Key Laboratory of Fundamental Physical Quantities Measurements, School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei Province 430074 (China); Mohanty, Soumya D.; Jenet, Fredrick A., E-mail: ywang12@hust.edu.cn [Department of Physics, University of Texas Rio Grande Valley, 1 West University Boulevard, Brownsville, TX 78520 (United States)

    2015-12-20

    Supermassive black hole binaries are one of the primary targets of gravitational wave (GW) searches using pulsar timing arrays (PTAs). GW signals from such systems are well represented by parameterized models, allowing the standard Generalized Likelihood Ratio Test (GLRT) to be used for their detection and estimation. However, there is a dichotomy in how the GLRT can be implemented for PTAs: there are two possible ways in which one can split the set of signal parameters for semi-analytical and numerical extremization. The straightforward extension of the method used for continuous signals in ground-based GW searches, where the so-called pulsar phase parameters are maximized numerically, was addressed in an earlier paper. In this paper, we report the first study of the performance of the second approach where the pulsar phases are maximized semi-analytically. This approach is scalable since the number of parameters left over for numerical optimization does not depend on the size of the PTA. Our results show that for the same array size (9 pulsars), the new method performs somewhat worse in parameter estimation, but not in detection, than the previous method where the pulsar phases were maximized numerically. The origin of the performance discrepancy is likely to be in the ill-posedness that is intrinsic to any network analysis method. However, the scalability of the new method allows the ill-posedness to be mitigated by simply adding more pulsars to the array. This is shown explicitly by taking a larger array of pulsars.

  2. The SUrvey for Pulsars and Extragalactic Radio Bursts - II. New FRB discoveries and their follow-up

    Science.gov (United States)

    Bhandari, S.; Keane, E. F.; Barr, E. D.; Jameson, A.; Petroff, E.; Johnston, S.; Bailes, M.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Caleb, M.; Eatough, R. P.; Flynn, C.; Green, J. A.; Jankowski, F.; Kramer, M.; Krishnan, V. Venkatraman; Morello, V.; Possenti, A.; Stappers, B.; Tiburzi, C.; van Straten, W.; Andreoni, I.; Butterley, T.; Chandra, P.; Cooke, J.; Corongiu, A.; Coward, D. M.; Dhillon, V. S.; Dodson, R.; Hardy, L. K.; Howell, E. J.; Jaroenjittichai, P.; Klotz, A.; Littlefair, S. P.; Marsh, T. R.; Mickaliger, M.; Muxlow, T.; Perrodin, D.; Pritchard, T.; Sawangwit, U.; Terai, T.; Tominaga, N.; Torne, P.; Totani, T.; Trois, A.; Turpin, D.; Niino, Y.; Wilson, R. W.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Moursli, R. Cherkaoui El; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Palma, I. Di; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Bojaddaini, I. El; Khayati, N. El; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Gregoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzocca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2018-04-01

    We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time-scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cut-off, and FRB 160102 has the highest dispersion measure (DM = 2596.1 ± 0.3 pc cm-3) detected to date. Three of the FRBs have high dispersion measures (DM > 1500 pc cm-3), favouring a scenario where the DM is dominated by contributions from the intergalactic medium. The slope of the Parkes FRB source counts distribution with fluences >2 Jy ms is α =-2.2^{+0.6}_{-1.2} and still consistent with a Euclidean distribution (α = -3/2). We also find that the all-sky rate is 1.7^{+1.5}_{-0.9}× 10^3FRBs/(4π sr)/day above {˜ }2{ }{Jy}{ }{ms} and there is currently no strong evidence for a latitude-dependent FRB sky rate.

  3. Propagation of microwaves in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G; Ferrari, A [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Massaglia, S [Turin Univ. (Italy). Ist. di Fisica Generale; Cambridge Univ. (UK). Inst. of Astronomy)

    1981-12-01

    We discuss the dispersion relation of linearly-polarized waves, propagating along a strong background magnetic field embedded in an electron-positron plasma. The results are then applied to the study of the propagation conditions of coherent curvature radio radiation inside neutron stars magnetospheres, as produced by electric discharges following current pulsar models.

  4. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    Lijing Shao

    2017-10-01

    Full Text Available Pulsar timing and laser-interferometer gravitational-wave (GW detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF, which predicts nonperturbative scalarization phenomena for neutron stars (NSs. First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical scalarization sets in during the early (or late stages of a binary NS (BNS evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.

  5. The peculiar galactic center neutron star X-ray binary XMM J174457-2850.3

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Reynolds, M. T.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R. [Anton Pannekoek Institute of Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Altamirano, D. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Kennea, J. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Haggard, D. [CIERA, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ponti, G., E-mail: degenaar@umich.edu [Max Planck Institute fur Extraterrestriche Physik, D-85748 Garching (Germany)

    2014-09-10

    The recent discovery of a millisecond radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary/radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ≅2 hr and a radiated energy output of ≅ 5 × 10{sup 40} erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of L {sub X} ≅ 5 × 10{sup 32}(D/6.5 kpc){sup 2} erg s{sup –1} and exhibits occasional accretion outbursts during which it brightens to L {sub X} ≅ 10{sup 35}-10{sup 36}(D/6.5 kpc){sup 2} erg s{sup –1} for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at L {sub X} ≅ 10{sup 33}-10{sup 34}(D/6.5 kpc){sup 2} erg s{sup –1}. This peculiar X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of Γ ≅ 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  6. Supermassive Black Hole Binaries: Multi-Messenger Astrophysics and Long Baselines with the Next-Generation Very Large Array

    Science.gov (United States)

    Burke-Spolaor, Sarah; Lazio, Joseph; Nyland, Kristina; Blecha, Laura; Bogdanovic, Tamara; Comerford, Julie; Liu, Xin; Taylor, Gregory; Shen, Yue; Maccarone, T. J.; Chomiuk, Laura; Reines, Amy

    2018-01-01

    Dual ( physical processes that drive both the remnant's dynamics and the inspiral of the black hole pair. A systematic census of the dual supermassive black hole population will also directly constrain the strength and distribution of objects emitting gravitational waves that will be detected by pulsar timing arrays and future space-based laser interferometers. Although the population of dual supermassive black holes in galaxy merger products is central to these topics and others, few have yet been discovered.A suite of radio, visible-infrared, and X-ray telescopes have just begun to reveal the population of kiloparsec-separation dual active nuclei. This poster will present the unique capability of radio observations to explore the dual and binary population of supermassive black hole binaries, and will highlight the observational techniques and discoveries expected for the Next-Generation Very Large Array.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The NANOGrav project receives support from NSF Physics Frontier Center award number 1430284.

  7. Dependence of spectrum on period and twist effect of the pulsars magnetic field

    International Nuclear Information System (INIS)

    Shitov, Yu.P.

    1983-01-01

    The analysis of flux depsities at 102, 408 and 2700 MHz shows that the mean spectral radio luminosity of pUlsars anti Lsub(ν) depends on their period P. The radio luminosity on the average, decreases with the increasing period at all three freqUercies. The character and power of the period dependence anti Lsub(ν)(P) are different at different freqUencies caUsing the corresponding period dependence of the mean radio spectrUm and, particularly, of the spectral index anti αsub(1-4)(102-408 MHz), anti αsub(1-4)(P) varies as Psup(1.7) for P 408 (P) varies as Psup(-1.3) in the period interval 0.3 408 and the period derivatives P, between αsub(1-4) and P. In this connection, the arthor draws the conclusion that period dependences of the spectral radio luminosity and of the spectrum of pulsars are caused by geometrical factors. Quantitative estimates show that the twist effect of magnetic field lines caused by the reaction of magnetic-dipole radiation may be such a geometrical factor, which increases the field line curvatUre (as compared to the dipole field). The twist curvature rhosub(rot)sup(-1) varies as PsUp(-3)xrsup(2) (r is the radial distance from a star) causes the observed period dependence anti Lsub(ν)(P) owing to the curvature emission mechanism. The twist effect of the magnetic field gives the possibility to estimate height levels r of the radio emission regions in a pulsar from the observed function anti Lsub(π)(P). At 408 MHz for an ''average statistic'' pulsar with P> or approximately 0.3 s the level r 408 =1x10 9 cm

  8. Millisecond Pulsar Timing Precision with NICER

    Science.gov (United States)

    Deneva, Julia; Ray, Paul S.; Ransom, Scott; Wood, Kent S.; Kerr, Matthew T.; Lommen, Andrea; Arzoumanian, Zaven; Black, Kevin; Gendreau, Keith C.; Lewandowska, Natalia; Markwardt, Craig B.; Price, Samuel; Winternitz, Luke

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an array of 56 X-ray detectors mounted on the outside of the International Space Station. It allows high-precision timing of millisecond pulsars (MSPs) without the pulse broadening effects due to dispersion and scattering by the interstellar medium that plague radio timing. We present initial timing results from four months of NICER data on the MSPs B1937+21, B1821-24, and J0218+4232, and compare them to simulations and theoretical models for X-ray times-of-arrival, and radio observations.

  9. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2017-11-01

    Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.

  10. A fast search strategy for gravitational waves from low-mass x-ray binaries

    International Nuclear Information System (INIS)

    Messenger, C; Woan, G

    2007-01-01

    We present a new type of search strategy designed specifically to find continuously emitting gravitational wave sources in known binary systems. A component of this strategy is based on the incoherent summation of frequency-modulated binary signal sidebands, a method previously employed in the detection of electromagnetic pulsar signals from radio observations. The search pipeline can be divided into three stages: the first is a wide bandwidth, F-statistic search demodulated for sky position. This is followed by a fast second stage in which areas in frequency space are identified as signal candidates through the frequency domain convolution of the F-statistic with an approximate signal template. For this second stage only precise information on the orbit period and approximate information on the orbital semi-major axis are required a priori. For the final stage we propose a fully coherent Markov chain Monte Carlo based follow-up search on the frequency subspace defined by the candidates identified by the second stage. This search is particularly suited to the low-mass x-ray binaries, for which orbital period and sky position are typically well known and additional orbital parameters and neutron star spin frequency are not. We note that for the accreting x-ray millisecond pulsars, for which spin frequency and orbital parameters are well known, the second stage can be omitted and the fully coherent search stage can be performed. We describe the search pipeline with respect to its application to a simplified phase model and derive the corresponding sensitivity of the search

  11. Optimal Frequency Ranges for Sub-Microsecond Precision Pulsar Timing

    Science.gov (United States)

    Lam, Michael Timothy; McLaughlin, Maura; Cordes, James; Chatterjee, Shami; Lazio, Joseph

    2018-01-01

    Precision pulsar timing requires optimization against measurement errors and astrophysical variance from the neutron stars themselves and the interstellar medium. We investigate optimization of arrival time precision as a function of radio frequency and bandwidth. We find that increases in bandwidth that reduce the contribution from receiver noise are countered by the strong chromatic dependence of interstellar effects and intrinsic pulse-profile evolution. The resulting optimal frequency range is therefore telescope and pulsar dependent. We demonstrate the results for five pulsars included in current pulsar timing arrays and determine that they are not optimally observed at current center frequencies. We also find that arrival-time precision can be improved by increases in total bandwidth. Wideband receivers centered at high frequencies can reduce required overall integration times and provide significant improvements in arrival time uncertainty by a factor of $\\sim$$\\sqrt{2}$ in most cases, assuming a fixed integration time. We also discuss how timing programs can be extended to pulsars with larger dispersion measures through the use of higher-frequency observations.

  12. Stedy emission from recurrent transient pulsar 0535+26

    International Nuclear Information System (INIS)

    Manchanda, R.K.; Bazzano, A.; Polcaro, V.F.; Padula, C.D.L.; Obertini, P.

    1984-01-01

    A steady hard X-ray emission between 20-100 keV was observed from the 104 sec pulsar 0535+26 during the quiescent phase of transient activity. The present observations corespond to the binary phase of 0.7 taking 110d as the binary period. The observed flux was comparable to approx.20 milli-crab and a power law spectrum with spectral index αapprox.1.2 fits the data, and significantly differs from the observed spectrum during the outburst

  13. A PROPELLER MODEL FOR THE SUB-LUMINOUS STATE OF THE TRANSITIONAL MILLISECOND PULSAR PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Papitto, A.; Torres, D. F. [Institute of Space Sciences (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193, Cerdanyola del Vallés, Barcelona (Spain)

    2015-07-01

    The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk and emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumptions that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk–magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray bands. The average emission observed from PSR J1023+0038 is modeled by a disk in-flow with a rate of 1–3 × 10{sup −11} M{sub ⊙} yr{sup −1}, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that assume that a rotation-powered pulsar is turned on, showing how the spin-down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.

  14. How young the accretion-powered pulsars could be?

    Science.gov (United States)

    Kostina, M. V.; Ikhsanov, N. R.

    2017-12-01

    A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.

  15. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  16. Detections of millisecond pulsars with the FERMI Large Area Telescope

    International Nuclear Information System (INIS)

    Guillemot, L.

    2009-09-01

    The Fermi observatory was launched on June 11, 2008. It hosts the Large Area Telescope (LAT), sensitive to gamma-ray photons from 20 MeV to over 300 GeV. When the LAT began its activity, nine young and energetic pulsars were known in gamma ray range. At least several tens of pulsar detections by the LAT were predicted before launch. The LAT also allowed the study of millisecond pulsars (MSPs), never firmly detected in gamma ray range before Fermi. This thesis first presents the pulsar timing campaign for the LAT, in collaboration with large radio telescopes and X-ray telescopes, allowing for high sensitivity pulsed searches. Furthermore, it lead to quasi-homogeneous coverage of the galactic MSPs, so that the search for pulsations in LAT data for this population of stars was not affected by an a-priori bias. We present a search for pulsations from these objects in LAT data. For the first time, eight galactic MSPs have been detected as sources of pulsed gamma-ray emission over 100 MeV. In addition, a couple of good candidates for future detection are seen. A similar search for globular cluster MSPs was not successful so far. Comparison of the phase-aligned gamma-ray and radio light curves, as well as the spectral shapes, leads to the conclusion that their gamma-ray emission is similar to that of normal pulsars, and is probably produced in the outer-magnetosphere. This discovery suggests that many unresolved gamma-ray sources are unknown MSPs. (author)

  17. PSR J2030+364I: Radio Discovery and Gamma-ray Study of a Middle-aged Pulsar in the Now Identified Fermi-LAT Source 1FGL J2030.0+3641

    Science.gov (United States)

    Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Johnston, S.; Romani, R. W.; Parent, D.; Decesar, M. E.; Harding, A. K.; Donato, D.; hide

    2011-01-01

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with IFGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.28, spin-down luminosity of 3 x 10(exp 34) erg/s, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1 % that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc/cu cm. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive - PSR J2030+364 I would have been found blindly in gamma rays if only > or approx. 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  18. Black holes in massive close binaries - observational data and evolutionary status

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Cherepashchuk, A.M.; Moskovskii Gosudarstvennyi Universitet, Moscow, USSR)

    1985-01-01

    The available information on the mass of four candidate black holes in X-ray binary systems is summarized; these systems are compared with neutron star binaries with regard to the mass of their components. In mass, the relativistic objects form two distinct groups, neutron stars with masses equal to about 1-2 solar masses and black hole candidates with masses equal to about 10-60 solar masses (there seem to be no intermediate cases), but there is no correlation with the mass of the optical star. Mass exchange between the optical component of a close binary and its neutron star companion would be unlikely to produce a black hole more massive than 5-7 solar masses. Instead, the black holes having masses greater than about 10 solar masses might result from core collapse in stars of initial mass equating 20-100 solar masses through either a rise in the presupernova core mass or weakness of the magnetic field. The (10-30)-fold disparity in the incidence of black holes coupled with OB stars and with radio pulsars could indicate that black holes tend to form in pairs. 36 references

  19. On the existence of pulsars in the vicinity of the massive black hole in the galactic center

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fupeng; Lu, Youjun [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yu, Qingjuan, E-mail: zhangfupeng@pku.edu.cn, E-mail: luyj@nao.cas.cn, E-mail: yuqj@pku.edu.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2014-04-01

    Pulsars, if existing and detectable in the immediate vicinity of the massive black hole (MBH) in the Galactic center (GC), may be used as a superb tool to probe both the environment and the metric of the central MBH. The recent discovery of a magnetized pulsar in the GC suggests that many more pulsars should exist near the MBH. In this paper, we estimate the number and the orbital distribution of pulsars in the vicinity of the MBH in the GC by assuming that the pulsar progenitors, similar to the GC S-stars, were captured to orbits tightly bound to the MBH through the tidal breakup of stellar binaries. We use the current observations on both the GC S-stars and the hypervelocity stars to calibrate the injection rate(s) of and the dynamical model(s) for the stellar binaries. By including the relaxation processes, supernova kicks, and gravitational wave radiation in our simulations, we estimate that ∼97-190 (9-14) pulsars may presently orbit the central MBH with semimajor axes ≤4000 AU (≤1000 AU), which is compatible with the current observational constraints on the number of the GC pulsars. The semimajor axis and the pericenter distance of the pulsar closest to the central MBH are probably in the range of ∼120-460 AU and ∼2-230 AU, respectively. Future telescopes, such as the Square Kilometer Array, may be able to detect a significant number of pulsars with semimajor axis smaller than a few thousand AU in the GC. Long-term monitoring of these pulsars would be helpful in constraining both the environment and the metric of the central MBH. Our preferred model also results in about ten hyperfast pulsars with velocity ≳ 1500 km s{sup –1} moving away from the Milky Way.

  20. Pulsar current sheet C̆erenkov radiation

    Science.gov (United States)

    Zhang, Fan

    2018-04-01

    Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.

  1. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  2. Fastest Pulsar Speeding Out of Galaxy, Astronomers Discover

    Science.gov (United States)

    2005-08-01

    A speeding, superdense neutron star somehow got a powerful "kick" that is propelling it completely out of our Milky Way Galaxy into the cold vastness of intergalactic space. Its discovery is puzzling astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to directly measure the fastest speed yet found in a neutron star. Pulsar's Path Across Sky Over about 2.5 million years, Pulsar B1508+55 has moved across about a third of the night sky as seen from Earth. CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version 67 KB) The neutron star is the remnant of a massive star born in the constellation Cygnus that exploded about two and a half million years ago in a titanic explosion known as a supernova. Ultra-precise VLBA measurements of its distance and motion show that it is on course to inevitably leave our Galaxy. "We know that supernova explosions can give a kick to the resulting neutron star, but the tremendous speed of this object pushes the limits of our current understanding," said Shami Chatterjee, of the National Radio Astronomy Observatory (NRAO) and the Harvard-Smithsonian Center for Astrophysics. "This discovery is very difficult for the latest models of supernova core collapse to explain," he added. Chatterjee and his colleagues used the VLBA to study the pulsar B1508+55, about 7700 light-years from Earth. With the ultrasharp radio "vision" of the continent-wide VLBA, they were able to precisely measure both the distance and the speed of the pulsar, a spinning neutron star emitting powerful beams of radio waves. Plotting its motion backward pointed to a birthplace among groups of giant stars in the constellation Cygnus -- stars so massive that they inevitably explode as supernovae. "This is the first direct measurement of a neutron star's speed that exceeds 1,000 kilometers per second," said Walter Brisken, an NRAO astronomer. "Most earlier estimates of neutron-star speeds depended on educated

  3. Three Dozen Pulsars Over a Dozen+ Years in Terzan 5

    Science.gov (United States)

    Ransom, Scott M.; Stairs, Ingrid; Hessels, Jason W. T.; Freire, Paulo; Bilous, Anna; Prager, Brian; Ho, Anna; Cadelano, Mario; Wang, David; Scott Ransom

    2018-01-01

    The massive and rich globular cluster Terzan 5 contains at least 37 millisecond pulsars -- the most of any globular cluster. We have been timing these pulsars in the radio since 2004 using the Green Bank Telescope, and the individual and combined properties have provided a wealth of science. We have measured long-term accelerations and "jerks" of almost all of the pulsars, allowing a unique probe of the physical parameters of the cluster, completely independent from optical/IR measurements. We have directly measured the absolute proper motion of cluster and see evidence for internal velocity dispersion. Numerous post-Keplerian (i.e. relativistic) orbital parameters are significant, allowing measurements or constraints on the neutron star masses for nine systems. Ensemble flux density, dispersion measure, and polarization measurements constrain the pulsar luminosity function and the interstellar medium. Finally, we observe many interesting properties of and long-term variabilty from several eclipsing systems.

  4. TIMING OF 29 PULSARS DISCOVERED IN THE PALFA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophys., School of Phys. and Astr., Univ. of Manchester, Manch., M13 9PL (United Kingdom); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia Univ., New York, NY 10027 (United States); Ferdman, R. D.; Kaspi, V. M.; Lynch, R. [Dept. of Physics and McGill Space Institute, McGill Univ., Montreal, QC H3A 2T8 (Canada); Freire, P. C. C.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Knispel, B.; Allen, B. [Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Dept. of Astronomy, Cornell Univ., Ithaca, NY 14853 (United States); Camilo, F. [SKA South Africa, Pinelands, 7405 (South Africa); Cardoso, F. [Physics Dept., Univ. of Wisconsin—Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211 (United States); Crawford, F. [Dept. of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, J. W. T.; Leeuwen, J. van [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Jenet, F. A. [Center for Gravitational Wave Astronomy, Univ. Texas—Brownsville, TX 78520 (United States); and others

    2017-01-10

    We report on the discovery and timing observations of 29 distant long-period pulsars found in the ongoing Arecibo L-band Feed Array pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over several years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associated with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5−0.5, while J1925+1720 is coincident with a high-energy Fermi γ -ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199 day binary orbit with a companion having a minimum mass of 0.33 M {sub ⊙}. Several of the sources exhibit timing noise, and two, PSRs J0611+1436 and J1907+0631, have both suffered large glitches, but with very different post-glitch rotation properties. In particular, the rotational period of PSR J0611+1436 will not recover to its pre-glitch value for about 12 years, a far greater recovery timescale than seen following any other large glitches.

  5. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    Science.gov (United States)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from

  6. Pulsars in the Classroom: Suggested Exercises for Lab or Homework

    Science.gov (United States)

    Gordon, Kurtiss J.

    1978-01-01

    Exercises for introductory to intermediate level college students are proposed. Observations of pulsars can be used to illustrate the phenomena of dispersion and Faraday rotation of radio waves, and to illustrate the differential rotation of the galaxy. (BB)

  7. Discovery of Nine Gamma-Ray Pulsars in Fermi-Lat Data Using a New Blind Search Method

    Science.gov (United States)

    Celik-Tinmaz, Ozlem; Ferrara, E. C.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Kramer, M.; Barr, E. D.; Champion, D. J.; Eatough, R. P.; hide

    2011-01-01

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient, and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs Jl803-2149 and J2111+4606, are young and energetic Galactic-plane pulsars (spin-down power above 6 x 10(exp 35) ergs per second and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J010622+3749, Jl620-4927, Jl746-3239, J2028+3332,J2030+4415, J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| greater than 10 degrees). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2x 10(exp 11)G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3 x l0(exp 33) erg per second) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.

  8. Polarization of the coherent radio emission from pulsars

    International Nuclear Information System (INIS)

    Ardavan, H.

    1982-01-01

    The polarization characteristics of the radiation from a quasi-steady pulsar magnetosphere are calculated using the amplitude-modulated-noise interpretation of the data on pulse structures. The total emission consists of three incoherently mixed radiation streams. Two of the independent polarization states are elliptically polarized (modes I and II) and one is linearly polarized (mode III). In the regime where the length scale of the radial distribution of the electric current density is appreciably longer than the wavelength of the radiation, the position angles of modes I and II are orthogonal and those of modes I and III coincident. However, the senses of circular polarization of modes I and II are in general uncorrelated. The degrees of circular polarization of the 'orthogonal' modes are decreasing functions of frequency and both approach zero in the limit where the frequency of the radiation is much higher than the rotation frequency of the pulsar. Longitudinal changes in the position angle and in the sense of circular polarization of each of the elliptically polarized modes are shown to arise, together with mode transitions, in part from the stochastic fluctuations and in part from the systematic variations of the electric current density with the azimuthal angle, in a narrow emitting region adjacent to the light cylinder. (author)

  9. Is the apparent dichotomy between bursting activity of magnetars and radio pulsars real ?

    International Nuclear Information System (INIS)

    Pons, J A; Perna, R

    2012-01-01

    Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) are a class of young neutron stars (NSs) characterized by high X-ray quiescent luminosities, short X-ray bursts, and giant flares (for SGRs). They are believed to be magnetars, i.e. NSs with magnetic fields ∼ 10 14 – 10 15 G. The discovery of magnetar-like X-ray bursts from the young pulsar PSR J1846-0258 [1], with an inferred surface dipolar magnetic field of B p = 4.9 × 10 13 G, lower than the traditionally considered magnetar range, and, more recently, by the discovery of SGR 0418+5729 with an even lower B p = 7.5 × 10 12 G [2], well within the range of the rotation powered pulsars which do not display any bursting behaviour, has raised the obvious question: why some 'high-B' pulsars (PSR J1119-6127 and PSR J1814-1744, with B ∼ 4 – 5 × 10 13 G) do not display any burst, while at least one case of 'low-B' NSs (SGR 0418+5729) does, if the magnetic field is their driving force ?

  10. Proposed University of California Berkeley fast pulsar search machine

    International Nuclear Information System (INIS)

    Kulkarni, S.R.; Backer, D.C.; Werthimer, D.; Heiles, C.

    1984-01-01

    With the discovery of 1937+21 by Backer et al. (1982) there is much renewed interest in an all sky survey for fast pulsars. University of California Berkeley has designed and is in the process of building an innovative and powerful, stand-alone, real-time, digital signal-processor to conduct an all sky survey for pulsars with rotation rates as high as 2000 Hz and dispersion measures less than 120 cm -3 pc at 800 MHz. The machine is anticipated to be completed in the Fall of 1985. The search technique consists of obtaining a 2-dimensional Fourier transform of the microwave signal. The transform is effected in two stages: a 64-channel, 3-level digital autocorrelator provides the radio frequency to delay transform and a fast 128K-point array processor effects the time to intensity fluctuation frequency transform. The use of a digital correlator allows flexibility in the choice of the observing radio frequency. Besides, the bandwidth is not fixed as in a multi-channel filter bank. In the machine, bandwidths can range from less than a MHz to 40 MHz. In the transform plane, the signature of a pulsar consists of harmonically related peaks which lie on a straight line which passes through the origin. The increased computational demand of a fast pulsar survey will be met by a combination of multi-CPU processing and pipeline design which involves a fast array processor and five commercial 68,000-based micro-processors. 6 references, 3 figures

  11. Gamma-ray pulsars and Geminga

    International Nuclear Information System (INIS)

    Ruderman, M.; Halpern, J.P.; Chen, K.; Cheng, K.S.

    1992-01-01

    Observed properties of γ-ray pulsars are related to those of the accelerators which power their radiation. It is argued that the relatively slowly spinning Geminga is a strong γ-ray source only because its magnetic dipole is more inclined than that of the more rapidly spinning Vela. This would also account for special Geminga properties including 180 degrees subpulse separation, soft X-ray spectra and intensities, and suppression of radio emission

  12. Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar

    International Nuclear Information System (INIS)

    Abbott, B.; Babak, S.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Ajith, P.; Allen, B.; Aulbert, C.; Allen, G.; Amin, R.; Anderson, W. G.; Armor, P.; Arain, M. A.; Aso, Y.; Aston, S.; Aufmuth, P.; Bantilan, H.

    2008-01-01

    We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first 9 months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms.

  13. Millisecond Pulsars, TeV Halos, and Implications For The Galactic Center Gamma-Ray Excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Linden, Tim [UC, Santa Cruz, Inst. Part. Phys.

    2018-03-21

    Observations by HAWC indicate that many young pulsars (including Geminga and Monogem) are surrounded by spatially extended, multi-TeV emitting regions. It is not currently known, however, whether TeV emission is also produced by recycled, millisecond pulsars (MSPs). In this study, we perform a stacked analysis of 24 MSPs within HAWC's field-of-view, finding between 2.6-3.2 sigma evidence that these sources are, in fact, surrounded by TeV halos. The efficiency with which these MSPs produce TeV halos is similar to that exhibited by young pulsars. This result suggests that several dozen MSPs will ultimately be detectable by HAWC, including many "invisible" pulsars without radio beams oriented in our direction. The TeV halos of unresolved MSPs could also dominate the TeV-scale diffuse emission observed at high galactic latitudes. We also discuss the possibility that TeV and radio observations could be used to constrain the population of MSPs that is present in the inner Milky Way, thereby providing us with a new way to test the hypothesis that MSPs are responsible for the Galactic Center GeV excess.

  14. Separated before birth: pulsars B2020+28 and B2021+51 as the remnants of runaway stars

    Science.gov (United States)

    Gvaramadze, V. V.

    2007-08-01

    Astrometric data on the pulsars B2020+28 and B2021+51 suggest that they originated within several parsecs of each other in the direction of the Cyg OB2 association. It was proposed that the pulsars share their origin in a common massive binary and were separated at the birth of the second pulsar following the asymmetric supernova explosion. We consider a different scenario for the origin of the pulsar pair based on a possibility that the pulsars were separated before their birth and that they are the remnants of runaway stars ejected (with velocities similar to those of the pulsars) from the core of Cyg OB2 due to strong three- or four-body dynamical encounters. Our scenario does not require any asymmetry in supernova explosions.

  15. Discovery of the Orbit of the X-ray pulsar OAO 1657-415

    Science.gov (United States)

    Chakrabarty, Deepto; Grunsfeld, John M.; Prince, Thomas A.; Bildsten, Lars; Finger, Mark H.; Wilson, Robert B.; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.

    1993-01-01

    Timing observations of the 38 s accreting X-ray pulsar OAO 1657-415 made with the BATSE large-area detectors on the Compton Gamma Ray Observatory have revealed a binary orbit with an X-ray eclipse by the stellar companion. From the pulsar mass function fx(M) = 11.7 +/- 0.2 solar masses and the measured eclipse half-angle theta(e) = 29.7 +/- 1.3 deg, we infer that the stellar companion is a supergiant of spectral class B0-B6. If the companion can be identified and its orbital velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and spin-down of the pulsar were measured during our observation.

  16. On the theory of X-ray pulsar radiation

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1981-01-01

    The origin of hard X-ray spectrum (continuum and cyclotron lines) of pulsars in binary systems is discussed. A model of the polar region of a neutron star consisting of a hot spot in a dense plasma atmosphere with a quasi-homogeneous magnetic field and an extended accreting column in an inhomogeneous dipolar field is investigated. In the hot spot bremsstrahlung and Thomson scattering form continuum radiation, while bremsstrahlung and cyclotron scattering produce the absorption cyclotron lines. By the observed continuum intensity one can estimate the maximum distances to pulsars. Cyclotron scattering in gyro-resonant layers localized in the accreting column leads to a general attenuation of the radiation of a hot spot, but is unable to ensure the formation of cyclotron lines. For strong accretion the hot spot radiation becomes insignificant, the lines disappear and the pulsating component of an X-ray pulsar is produced by the accreting column bremsstrahlung transformed by Thomson scattering. (orig.)

  17. Meter-wavelength observations of pulsars using very long baseline interferometry

    International Nuclear Information System (INIS)

    Vandenberg, N.R.

    1974-07-01

    The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to approximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured. (U.S.)

  18. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Straten, W., E-mail: vanstraten.willem@gmail.com [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia)

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  19. DISCOVERY OF FIVE NEW PULSARS IN ARCHIVAL DATA

    International Nuclear Information System (INIS)

    Mickaliger, M. B.; Collins, A.; Hough, L.; Tehrani, N.; Tenney, C.; Liska, A.; Swiggum, J.; Lorimer, D. R.; McLaughlin, M. A.; Boyles, J.

    2012-01-01

    Reprocessing of the Parkes Multibeam Pulsar Survey has resulted in the discovery of five previously unknown pulsars and several as-yet-unconfirmed candidates. PSR J0922–52 has a period of 9.68 ms and a dispersion measure (DM) of 122.4 pc cm –3 . PSR J1147–66 has a period of 3.72 ms and a DM of 133.8 pc cm –3 . PSR J1227–6208 has a period of 34.53 ms, a DM of 362.6 pc cm –3 , is in a 6.7 day binary orbit, and was independently detected in an ongoing high-resolution Parkes survey by Thornton et al. and also in independent processing by Einstein-Home volunteers. PSR J1546–59 has a period of 7.80 ms and a DM of 168.3 pc cm –3 . PSR J1725–3853 is an isolated 4.79 ms pulsar with a DM of 158.2 pc cm –3 . These pulsars were likely missed in earlier processing efforts due to the fact that they have both high DMs and short periods, and also due to the large number of candidates that needed to be looked through. These discoveries suggest that further pulsars are awaiting discovery in the multibeam survey data.

  20. Fast Radio Bursts’ Emission Mechanism: Implication from Localization

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States)

    2017-03-20

    We argue that the localization of the repeating fast radio bursts (FRBs) at ∼1 Gpc excludes a rotationally powered type of radio emission (e.g., analogs of Crab’s giant pulses coming from very young energetic pulsars) as the origin of FRBs.

  1. Fast Radio Bursts’ Emission Mechanism: Implication from Localization

    International Nuclear Information System (INIS)

    Lyutikov, Maxim

    2017-01-01

    We argue that the localization of the repeating fast radio bursts (FRBs) at ∼1 Gpc excludes a rotationally powered type of radio emission (e.g., analogs of Crab’s giant pulses coming from very young energetic pulsars) as the origin of FRBs.

  2. Pulsar Wind Nebulae Created by Fast-Moving Pulsars

    OpenAIRE

    Kargaltsev, Oleg; Pavlov, George G.; Klingler, Noel; Rangelov, Blagoy

    2017-01-01

    We review multiwavelength properties of pulsar wind nebulae (PWNe) created by supersonically moving pulsars and the effects of pulsar motion on the PWN morphologies and the ambient medium. Supersonic pulsar wind nebulae (SPWNe) are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in SPWN studies have been made in deep observations with the Chandra and XMM-Newton X-ray Observatories as...

  3. DID THE CRAB PULSAR UNDERGO A SMALL GLITCH IN 2006 LATE MARCH/EARLY APRIL?

    Energy Technology Data Exchange (ETDEWEB)

    Vivekanand, M., E-mail: viv.maddali@gmail.com [No. 24, NTI Layout 1st Stage, 3rd Main, 1st Cross, Nagasettyhalli, Bangalore 560094 (India)

    2016-08-01

    On 2006 August 23 the Crab Pulsar underwent a glitch, which was reported by the Jodrell Bank and the Xinjiang radio observatories. Neither data are available to the public. However, the Jodrell group publishes monthly arrival times of the Crab Pulsar pulse (their actual observations are done daily), and using these, it is shown that about 5 months earlier the Crab Pulsar probably underwent a small glitch, which has not been reported before. Neither observatory discusses the detailed analysis of data from 2006 March to August; either they may not have detected this small glitch, or they may have attributed it to timing noise in the Crab Pulsar. The above result is verified using X-ray data from RXTE . If this is indeed true, this is probably the smallest glitch observed in the Crab Pulsar so far, whose implications are discussed. This work addresses the confusion possible between small-magnitude glitches and timing noise in pulsars.

  4. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    Science.gov (United States)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  5. TOWARD AN EMPIRICAL THEORY OF PULSAR EMISSION. X. ON THE PRECURSOR AND POSTCURSOR EMISSION

    International Nuclear Information System (INIS)

    Basu, Rahul; Mitra, Dipanjan; Rankin, Joanna M.

    2015-01-01

    Precursors and postcursors (PPCs) are rare emission components, which appear beyond the main pulse emission, in some cases far away from it, and are detected in a handful of pulsar. In this paper we attempt to characterize the PPC emission in relation to the pulsar main pulse geometry. In our analysis we find that PPC components have properties very different from that of outer conal emission. The separation of the PPC components from the main pulse center remains constant with frequency. In addition the beam opening angles corresponding to the separation of PPC components from the pulsar center are much larger than the largest encountered in conal emission. Pulsar radio emission is believed to originate within the magnetic polar flux tubes due to the growth of instabilities in the outflowing relativistic plasma. Observationally, there is strong evidence that the main pulse emission originates at altitudes of about 50 neutron star radii for a canonical pulsar. Currently, the most plausible radio emission model that can explain main pulse emission is the coherent curvature radiation mechanism, wherein relativistic charged solitons are formed in a non-stationary electron-positron-pair plasma. The wider beam opening angles of PPC require the emission to emanate from larger altitudes as compared to the main pulse, if both these components originate by the same emission mechanism. We explore this possibility and find that this emission mechanism is probably inapplicable at the height of the PPC emission. We propose that the PPC emission represents a new type of radiation from pulsars with a mechanism different from that of the main pulse

  6. Unseen cosmos the universe in radio

    CERN Document Server

    Graham-Smith, Francis

    2013-01-01

    Radio telescopes have transformed our understanding of the Universe. Pulsars, quasars, Big Bang cosmology: all are discoveries of the new science of radio astronomy. Here, Francis Graham-Smith describes the birth, development, and maturity of radio astronomy, from the first discovery of cosmic radio waves to its present role as a major part of modern astronomy. Radio is part of the electromagnetic spectrum, covering infra-red, visible light, ultraviolet, X-rays, and gamma-rays, and Graham-Smith explains why it is that radio waves give us a unique view of the Universe. Tracing the development o

  7. The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars

    Science.gov (United States)

    Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Thankful Cromartie, H.; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Ferrara, Elizabeth C.; Fonseca, Emmanuel; Garver-Daniels, Nathan; Gentile, Peter A.; Halmrast, Daniel; Huerta, E. A.; Jenet, Fredrick A.; Jessup, Cody; Jones, Glenn; Jones, Megan L.; Kaplan, David L.; Lam, Michael T.; Lazio, T. Joseph W.; Levin, Lina; Lommen, Andrea; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Madison, Dustin; Matthews, Allison M.; McLaughlin, Maura A.; McWilliams, Sean T.; Mingarelli, Chiara; Ng, Cherry; Nice, David J.; Pennucci, Timothy T.; Ransom, Scott M.; Ray, Paul S.; Siemens, Xavier; Simon, Joseph; Spiewak, Renée; Stairs, Ingrid H.; Stinebring, Daniel R.; Stovall, Kevin; Swiggum, Joseph K.; Taylor, Stephen R.; Vallisneri, Michele; van Haasteren, Rutger; Vigeland, Sarah J.; Zhu, Weiwei; The NANOGrav Collaboration

    2018-04-01

    We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background.

  8. Probing the Milky Way electron density using multi-messenger astronomy

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane

    2015-04-01

    Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.

  9. Blind Recognition of Binary BCH Codes for Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-01-01

    Full Text Available A novel algorithm of blind recognition of Bose-Chaudhuri-Hocquenghem (BCH codes is proposed to solve the problem of Adaptive Coding and Modulation (ACM in cognitive radio systems. The recognition algorithm is based on soft decision situations. The code length is firstly estimated by comparing the Log-Likelihood Ratios (LLRs of the syndromes, which are obtained according to the minimum binary parity check matrixes of different primitive polynomials. After that, by comparing the LLRs of different minimum polynomials, the code roots and generator polynomial are reconstructed. When comparing with some previous approaches, our algorithm yields better performance even on very low Signal-Noise-Ratios (SNRs with lower calculation complexity. Simulation results show the efficiency of the proposed algorithm.

  10. Evolution of the magnetic field structure of the Crab pulsar.

    Science.gov (United States)

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.

  11. Discovery of two planets around a millisecond pulsar

    Science.gov (United States)

    Wolszczan, A.

    1992-01-01

    By timing the arrival of radio signals from a rapidly spinning pulsar at the Arecibo Observatory's radio/radar telescope, the most convincing evidence so far for a planetary system outside our own has been found: two or possibly three planets that orbit the neutron star called PSR1257+12. This finding indicates that planet formation may be a more common process than previously anticipated and that the formation of disks of gas and dust that are sufficiently massive to condense into Earth-sized planets orbiting their central bodies can take place under surprisingly diverse conditions.

  12. Implications of the Occurrence of Glitches in Pulsar Free Precession Candidates.

    Science.gov (United States)

    Jones, D I; Ashton, G; Prix, R

    2017-06-30

    The timing properties of radio pulsars provide a unique probe of neutron star interiors. Recent observations have uncovered quasiperiodicities in the timing and pulse properties of some pulsars, a phenomenon that has often been attributed to free precession of the neutron star, with profound implications for the distribution of superfluidity and superconductivity in the star. We advance this program by developing consistency relations between free precession and pulsars glitches, and we show that there are difficulties in reconciling the two phenomena in some precession candidates. This indicates that the precession model used here needs to be modified or some other phenomenon is at work in producing the quasiperiodicities, or even that there is something missing in terms of our understanding of glitches.

  13. Early NICER Observations of Magnetars and Young Pulsars

    Science.gov (United States)

    Nynka, Melania

    2018-01-01

    Neutron star Interior Composition ExploreR (NICER) is an X-ray telescope attached to the International Space Station (ISS). Launched in June 2017, it is designed to precisely measure the masses and radii of neutron stars (NS) and probe NS equations of state. But its precision timing capabilities and large effective area uniquely position NICER for the study of magnetars. The NICER Magnetar & Magnetosphere (M&M) science working group focuses on studying highly-magnetized neutron stars, a diverse program that includes magnetars, high-B pulsars, rotation powered pulsars, and isolated neutron stars. Our ongoing campaign has already observed targets such as 4U 0142+61, a magnetar in outburst with coincident NuSTAR and Swift observations, the radio rotation powered Vela pulsar PSR B0833-45, and a transient magnetar XTE J1810-197. I will discuss the goals of the M&M program, spectral and temporal results from the observed targets, and an overview of upcoming observations.

  14. Pulsar Magnetospheres and Pulsar Winds

    OpenAIRE

    Beskin, Vasily S.

    2016-01-01

    Surprisingly, the chronology of nearly 50 years of the pulsar magnetosphere and pulsar wind research is quite similar to the history of our civilization. Using this analogy, I have tried to outline the main results obtained in this field. In addition to my talk, the possibility of particle acceleration due to different processes in the pulsar magnetosphere is discussed in more detail.

  15. Arecibo pulsar survey using ALFA. III. Precursor survey and population synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Swiggum, J. K.; Lorimer, D. R.; McLaughlin, M. A.; Bates, S. D.; Senty, T. R. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Champion, D. J.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Hessels, J. W. T. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Ellis, J.; Allen, B. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee WI 53211 (United States); Bhat, N. D. R. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); and others

    2014-06-01

    The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo (32° ≲ ℓ ≲ 77° and 168° ≲ ℓ ≲ 214°) close to the Galactic plane (|b| ≲ 5°) for pulsars. The PALFA survey is sensitive to sources fainter and more distant than have previously been seen because of Arecibo's unrivaled sensitivity. In this paper we detail a precursor survey of this region with PALFA, which observed a subset of the full region (slightly more restrictive in ℓ and |b| ≲ 1°) and detected 45 pulsars. Detections included 1 known millisecond pulsar and 11 previously unknown, long-period pulsars. In the surveyed part of the sky that overlaps with the Parkes Multibeam Pulsar Survey (36° ≲ ℓ ≲ 50°), PALFA is probing deeper than the Parkes survey, with four discoveries in this region. For both Galactic millisecond and normal pulsar populations, we compare the survey's detections with simulations to model these populations and, in particular, to estimate the number of observable pulsars in the Galaxy. We place 95% confidence intervals of 82,000 to 143,000 on the number of detectable normal pulsars and 9000 to 100,000 on the number of detectable millisecond pulsars in the Galactic disk. These are consistent with previous estimates. Given the most likely population size in each case (107,000 and 15,000 for normal and millisecond pulsars, respectively), we extend survey detection simulations to predict that, when complete, the full PALFA survey should have detected 1000{sub −230}{sup +330} normal pulsars and 30{sub −20}{sup +200} millisecond pulsars. Identical estimation techniques predict that 490{sub −115}{sup +160} normal pulsars and 12{sub −5}{sup +70} millisecond pulsars would be detected by the beginning of 2014; at the time, the PALFA survey had detected 283 normal pulsars and 31 millisecond pulsars, respectively. We attribute the deficiency in normal pulsar

  16. DISCOVERY OF NINE GAMMA-RAY PULSARS IN FERMI LARGE AREA TELESCOPE DATA USING A NEW BLIND SEARCH METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Guillemot, L.; Kramer, M.; Barr, E. D.; Champion, D. J.; Eatough, R. P.; Freire, P. C. C. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Ray, P. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Belfiore, A.; Dormody, M. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Caraveo, P. A. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano (Italy); Celik, Oe.; Ferrara, E. C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hessels, J. W. T. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Keith, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping NSW 1710 (Australia); Kerr, M., E-mail: holger.pletsch@aei.mpg.de, E-mail: guillemo@mpifr-bonn.mpg.de [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); and others

    2012-01-10

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative, and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs J1803-2149 and J2111+ 4606, are young and energetic Galactic-plane pulsars (spin-down power above 6 Multiplication-Sign 10{sup 35} erg s{sup -1} and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J0622+3749, J1620-4927, J1746-3239, J2028+3332, J2030+4415, and J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| > 10 Degree-Sign ). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2 Multiplication-Sign 10{sup 11} G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3 Multiplication-Sign 10{sup 33} erg s{sup -1}) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.

  17. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  18. Plasma Diagnostics of the Interstellar Medium with Radio Astronomy

    OpenAIRE

    Haverkorn, Marijke; Spangler, Steven R.

    2013-01-01

    We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The "signal generators" of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurem...

  19. Radio observations of a galactic high energy gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Giacani, E.; Rovero, A.C. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    2001-10-01

    PSR B1706-44 is one of the very few galactic pulsars that has been discovered at TeV energies. PSR B1706-44 has been also detected in the X-ray domain. It has been suggested that the high energy radiation could be due to inverse Compton radiation from a pulsar wind nebula (PWN). It was reported on VLA high-resolution observations of a region around the pulsar PSR B1706-44 at 1.4, 4.8 and 8.4 GHz. The pulsar appears embedded in a synchrotron nebula. It was proposed that this synchrotron nebula is the radio counterpart of the high energy emission powered by the spin-down energy of the pulsar.

  20. Comparison of pulsar positions from timing and very long baseline astrometry

    Science.gov (United States)

    Wang, J. B.; Coles, W. A.; Hobbs, G.; Shannon, R. M.; Manchester, R. N.; Kerr, M.; Yuan, J. P.; Wang, N.; Bailes, M.; Bhat, N. D. R.; Dai, S.; Dempsey, J.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Russell, C. J.; Spiewak, R.; van Straten, W.; Toomey, L.; Wen, L.; You, X.-P.; Zhu, X.-J.

    2017-07-01

    Pulsar positions can be measured with high precision using both pulsar timing methods and very long baseline interferometry (VLBI). Pulsar timing positions are referenced to a solar-system ephemeris, whereas VLBI positions are referenced to distant quasars. Here, we compare pulsar positions from published VLBI measurements with those obtained from pulsar timing data from the Nanshan and Parkes radio telescopes in order to relate the two reference frames. We find that the timing positions differ significantly from the VLBI positions (and also differ between different ephemerides). A statistically significant change in the obliquity of the ecliptic of 2.16 ± 0.33 mas is found for the JPL ephemeris DE405, but no significant rotation is found in subsequent JPL ephemerides. The accuracy with which we can relate the two frames is limited by the current uncertainties in the VLBI reference source positions and in matching the pulsars to their reference source. Not only do the timing positions depend on the ephemeris used in computing them, but also different segments of the timing data lead to varying position estimates. These variations are mostly common to all ephemerides, but slight changes are seen at the 10 μas level between ephemerides.

  1. Magnetic Pair Creation Attenuation Altitude Constraints in Gamma-Ray Pulsars

    Science.gov (United States)

    Baring, Matthew; Story, Sarah

    The Fermi gamma-ray pulsar database now exceeds 150 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency at and below the turnover energy. Our updated computations span both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. The altitude bounds, typically in the range of 2-5 stellar radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. However, the exceptional case of the Crab pulsar provides an altitude bound of around 20% of the light cylinder radius if pair transparency persists out to 350 GeV, the maximum energy detected by MAGIC. This is an impressive new physics-based constraint on the Crab's gamma-ray emission locale.

  2. TIMING OBSERVATIONS OF PSR J1023+0038 DURING A LOW-MASS X-RAY BINARY STATE

    Energy Technology Data Exchange (ETDEWEB)

    Jaodand, Amruta; Archibald, Anne M.; Hessels, Jason W. T.; Bassa, Cees; Deller, Adam T. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); D’Angelo, Caroline R.; Patruno, Alessandro [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands)

    2016-10-20

    Transitional millisecond pulsars (tMSPs) switch, on roughly multi-year timescales, between rotation-powered radio millisecond pulsar (RMSP) and accretion-powered low-mass X-ray binary (LMXB) states. The tMSPs have raised several questions related to the nature of accretion flow in their LMXB state and the mechanism that causes the state switch. The discovery of coherent X-ray pulsations from PSR J1023+0038 (while in the LMXB state) provides us with the first opportunity to perform timing observations and to compare the neutron star’s spin variation during this state to the measured spin-down in the RMSP state. Whereas the X-ray pulsations in the LMXB state likely indicate that some material is accreting onto the neutron star’s magnetic polar caps, radio continuum observations indicate the presence of an outflow. The fraction of the inflowing material being ejected is not clear, but it may be much larger than that reaching the neutron star’s surface. Timing observations can measure the total torque on the neutron star. We have phase-connected nine XMM-Newton observations of PSR J1023+0038 over the last 2.5 years of the LMXB state to establish a precise measurement of spin evolution. We find that the average spin-down rate as an LMXB is 26.8 ± 0.4% faster than the rate (−2.39 × 10{sup −15} Hz s{sup −1}) determined during the RMSP state. This shows that negative angular momentum contributions (dipolar magnetic braking, and outflow) exceed positive ones (accreted material), and suggests that the pulsar wind continues to operate at a largely unmodified level. We discuss implications of this tight observational constraint in the context of possible accretion models.

  3. Pinning down the superfluid and measuring masses using pulsar glitches.

    Science.gov (United States)

    Ho, Wynn C G; Espinoza, Cristóbal M; Antonopoulou, Danai; Andersson, Nils

    2015-10-01

    Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and x-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.

  4. X-RAY OBSERVATIONS OF THE YOUNG PULSAR J1357—6429 AND ITS PULSAR WIND NEBULA

    International Nuclear Information System (INIS)

    Chang, Chulhoon; Pavlov, George G.; Kargaltsev, Oleg; Shibanov, Yurii A.

    2012-01-01

    We observed the young pulsar J1357—6429 with the Chandra and XMM-Newton observatories. The pulsar spectrum fits well a combination of an absorbed power-law model (Γ = 1.7 ± 0.6) and a blackbody model (kT = 140 +60 –40 eV, R ∼ 2 km at the distance of 2.5 kpc). Strong pulsations with pulsed fraction of 42% ± 5%, apparently associated with the thermal component, were detected in 0.3-1.1 keV. Surprisingly, the pulsed fraction at higher energies, 1.1-10 keV, appears to be smaller, 23% ± 4%. The small emitting area of the thermal component either corresponds to a hotter fraction of the neutron star surface or indicates inapplicability of the simplistic blackbody description. The X-ray images also reveal a pulsar wind nebula (PWN) with complex, asymmetric morphology comprised of a brighter, compact PWN surrounded by the fainter, much more extended PWN whose spectral slopes are Γ = 1.3 ± 0.3 and Γ = 1.7 ± 0.2, respectively. The extended PWN with the observed flux of ∼7.5 × 10 –13 erg s –1 cm –2 is a factor of 10 more luminous then the compact PWN. The pulsar and its PWN are located close to the center of the extended TeV source HESS J1356-645, which strongly suggests that the very high energy emission is powered by electrons injected by the pulsar long ago. The X-ray to TeV flux ratio, ∼0.1, is similar to those of other relic PWNe. We found no other viable candidates to power the TeV source. A region of diffuse radio emission, offset from the pulsar toward the center of the TeV source, could be synchrotron emission from the same relic PWN rather than from the supernova remnant.

  5. Nasu 1.4 GHz Interferometer Transient Radio Source Survey and Improvement in Detection of Radio Sources

    International Nuclear Information System (INIS)

    Matsumura, Nobuo; Kuniyoshi, Masaya; Takefuji, Kazuhiro; Niinuma, Kotaro; Kida, Sumiko; Takeuchi, Akihiko; Asuma, Kuniyuki; Daishido, Tsuneaki

    2006-01-01

    We have surveyed 1.4GHz transient radio sources in Nasu Pulsar Observatory. To investigate such sources, both immediacy and accuracy are severely maintained. We have developed Data Transfer System and improved antenna control system. Now we have received the fringe data from transient radio source candidates. To get reliable information, we carefully analyze with Fringe Band Pass Filter software and Fringe Fitting method

  6. A 24 hr global campaign to assess precision timing of the millisecond pulsar J1713+0747

    Energy Technology Data Exchange (ETDEWEB)

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Bassa, C.; Hessels, J. W. T.; Janssen, G.; Kondratiev, V. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Bhattacharyya, B.; Jordan, C.; Keith, M. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Champion, D. J.; Karuppusamy, R.; Kramer, M.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace, LPC2E UMR 6115 CNRS, F-45071 Orléans Cedex 02, and Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay (France); Crowter, K. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, P. B. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Jenet, F. A. [Center for Advanced Radio Astronomy, University of Texas, Rio Grande Valley, Brownsville, TX 78520 (United States); Jones, G., E-mail: tdolch@astro.cornell.edu [Columbia Astrophysics Laboratory, Columbia University, NY 10027 (United States); and others

    2014-10-10

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized √N improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  7. On the adiabatic walking of plasma waves in a pulsar magnetosphere

    International Nuclear Information System (INIS)

    Melikidze, George I.; Gil, Janusz; Mitra, Dipanjan

    2014-01-01

    The pulsar radio emission is generated in the near magnetosphere of the neutron star, and it must propagate through the rest of it to emerge into the interstellar medium. An important issue is whether this propagation affects the planes of polarization of the generated radiation. Observationally, there is sufficient evidence that the emerging radiation is polarized parallel or perpendicular to the magnetic field line planes that should be associated with the ordinary (O) and extraordinary (X) plasma modes, respectively, excited by some radiative process. This strongly suggests that the excited X and O modes are not affected by the so-called adiabatic walking that causes a slow rotation of polarization vectors. In this paper, we demonstrate that the conditions for adiabatic walking are not fulfilled within the soliton model of pulsar radio emission, in which the coherent curvature radiation occurs at frequencies much lower than the characteristic plasma frequency, The X mode propagates freely and observationally represents the primary polarization mode. The O mode has difficulty escaping from the pulsar plasma; however, it is sporadically observed as a weaker secondary polarization mode. We discuss a possible scenario under which the O mode can also escape from the plasma and reach an observer.

  8. MODELING MULTI-WAVELENGTH PULSE PROFILES OF THE MILLISECOND PULSAR PSR B1821–24

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yuanjie; Shuai, Ping; Bei, Xiaomin; Chen, Shaolong; Fu, Linzhong; Huang, Liangwei; Lin, Qingqing; Meng, Jing; Wu, Yaojun; Zhang, Hengbin; Zhang, Qian; Zhang, Xinyuan [Qian Xuesen Laboratory of Space Technology, NO. 104, Youyi Road, Haidian District, Beijing 100094 (China); Qiao, Guojun, E-mail: dyj@nao.cas.cn [School of Physics, Peking University, Beijing 100871 (China)

    2015-03-10

    PSR B1821–24 is a solitary millisecond pulsar that radiates multi-wavelength pulsed photons. It has complex radio, X-ray, and γ-ray pulse profiles with distinct peak phase separations that challenge the traditional caustic emission models. Using the single-pole annular gap model with a suitable magnetic inclination angle (α = 40°) and viewing angle (ζ = 75°), we managed to reproduce its pulse profiles of three wavebands. It is found that the middle radio peak originated from the core gap region at high altitudes, and the other two radio peaks originated from the annular gap region at relatively low altitudes. Two peaks of both X-ray and γ-ray wavebands basically originated from the annular gap region, while the γ-ray emission generated from the core gap region contributes somewhat to the first γ-ray peak. Precisely reproducing the multi-wavelength pulse profiles of PSR B1821–24 enables us to understand emission regions of distinct wavebands and justify pulsar emission models.

  9. Pulsar bi-drifting: implications for polar cap geometry

    Science.gov (United States)

    Wright, Geoff; Weltevrede, Patrick

    2017-01-01

    For many years it has been considered puzzling how pulsar radio emission, supposedly created by a circulating carousel of sub-beams, can produce the drift bands demonstrated by PSR J0815+0939, and more recently PSR B1839-04, which simultaneously drifts in opposing directions. Here, we suggest that the carousels of these pulsars, and hence their beams, are not circular but elliptical with axes tilted with respect to the fiducial plane. We show that certain relatively unusual lines of sight can cause bi-drifting to be observed, and a simulation of the two known exemplars is presented. Although bi-drifting is rare, non-circular beams may be common among pulsars and reveal themselves by having profile centroids displaced from the fiducial plane identified by polarization position angle swings. They may also result in profiles with asymmetric- and frequency-dependent component evolution. It is further suggested that the carousels may change their tilt by specific amounts and later reverse them. This may occur suddenly, accompanying a mode change (e.g. PSR B0943+10), or more gradually and short lived as in `flare' pulsars (e.g. PSR B1859+07). A range of pulsar behaviour (e.g. the shifting drift patterns of PSRs B0818-41 and B0826-34) may also be the result of non-circular carousels with varying orientation. The underlying nature of these carousels - whether they are exclusively generated by polar cap physics or driven by magnetospheric effects - is briefly discussed.

  10. The Lovell Telescope and its role in pulsar astronomy

    Science.gov (United States)

    Lyne, Andrew; Morison, Ian

    2017-12-01

    This year marks the 60th anniversary of the commissioning of the 250-ft telescope at Jodrell Bank Observatory, and the 50th anniversary of the discovery of pulsars at Cambridge. Both events resulted in enduring astronomical researches that have become intimately entwined, and here we celebrate them with a brief historical account of their relationship. We describe how the completion of the telescope in October 1957 coincided with the launch of Sputnik 1 at the start of the space race, a timely circumstance that was the financial saviour of Bernard Lovell's ambitious project. The telescope established a vital role in space tracking and, by the time that pulsars were discovered a decade later, was supported by an infrastructure that allowed their prompt, successful observation. Technical innovations to both the telescope and its receivers since then have continued to make it a superb tool for world-leading pulsar investigations and the study of the radio Universe.

  11. Understanding the spectral and timing behaviour of a newly discovered transient X-ray pulsar Swift J0243.6+6124

    DEFF Research Database (Denmark)

    Jaisawal, Gaurava K.; Naik, Sachindra; Chenevez, Jérôme

    2018-01-01

    We present the results obtained from timing and spectral studies of the newly discovered accreting X-ray binary pulsar Swift J0243.6+6124 using Nuclear Spectroscopy Telescope Array observation in 2017 October at a flux level of ~280 mCrab. Pulsations at 9.854 23(5) s were detected in the X......-ray light curves of the pulsar. Pulse profiles of the pulsar were found to be strongly energy dependent. A broad profile at lower energies was found to evolve into a double-peaked profile in ≥ 30 keV. The 3-79 keV continuum spectrum of the pulsar was well described with a negative and positive exponential...

  12. Alteration of the magnetosphere of the Vela pulsar during a glitch.

    Science.gov (United States)

    Palfreyman, Jim; Dickey, John M; Hotan, Aidan; Ellingsen, Simon; van Straten, Willem

    2018-04-01

    As pulsars lose energy, primarily in the form of magnetic dipole radiation, their rotation slows down accordingly. For some pulsars, this spin-down is interrupted by occasional abrupt spin-up events known as glitches 1 . A glitch is hypothesized to be a catastrophic release of pinned vorticity 2 that provides an exchange of angular momentum between the superfluid outer core and the crust. This is manifested by a minute alteration in the rotation rate of the neutron star and its co-rotating magnetosphere, which is revealed by an abrupt change in the timing of observed radio pulses. Measurement of the flux density, polarization and single-pulse arrival times of the glitch with high time resolution may reveal the equation of state of the crustal superfluid, its drag-to-lift ratio and the parameters that describe its friction with the crust 3 . This has not hitherto been possible because glitch events happen unpredictably. Here we report single-pulse radio observations of a glitch in the Vela pulsar, which has a rotation frequency of 11.2 hertz. The glitch was detected on 2016 December 12 at 11:36 universal time, during continuous observations of the pulsar over a period of three years. We detected sudden changes in the pulse shape coincident with the glitch event: one pulse was unusually broad, the next pulse was missing (a 'null') and the following two pulses had unexpectedly low linear polarization. This sequence was followed by a 2.6-second interval during which pulses arrived later than usual, indicating that the glitch affects the magnetosphere.

  13. A BROADBAND RADIO STUDY OF THE AVERAGE PROFILE AND GIANT PULSES FROM PSR B1821-24A

    Energy Technology Data Exchange (ETDEWEB)

    Bilous, A. V. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Pennucci, T. T. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Demorest, P. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Ransom, S. M., E-mail: a.bilous@science.ru.nl [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2015-04-20

    We present the results of a wideband (720–2400 MHz) study of PSR B1821–24A (J1824–2452A, M28A), an energetic millisecond pulsar (MSP) visible in radio, X-rays and γ-rays. In radio, the pulsar has a complex average profile that spans ≳85% of the spin period and exhibits strong evolution with observing frequency. For the first time we measure phase-resolved polarization properties and spectral indices of radio emission throughout almost all of the on-pulse window. We synthesize our findings with high-energy information to compare M28A to other known γ-ray MSPs and to speculate that M28A’s radio emission originates in multiple regions within its magnetosphere (i.e., both in the slot or outer gaps near the light cylinder and at lower altitudes above the polar cap). M28A is one of a handful of pulsars that are known to emit giant radio pulses (GRPs)—short, bright radio pulses of unknown nature. We report a drop in the linear polarization of the average profile in both windows of GRP generation and also a “W”-shaped absorption feature (resembling a double notch), partly overlapping with one of the GRP windows. The GRPs themselves have broadband spectra consisting of multiple patches with Δν/ν ∼ 0.07. Although our time resolution was not sufficient to resolve the GRP structure on the μs scale, we argue that GRPs from this pulsar most closely resemble the GRPs from the main pulse of the Crab pulsar, which consist of a series of narrowband nanoshots.

  14. Prospects for high-precision pulsar timing with the new Effelsberg PSRIX backend

    Science.gov (United States)

    Lazarus, P.; Karuppusamy, R.; Graikou, E.; Caballero, R. N.; Champion, D. J.; Lee, K. J.; Verbiest, J. P. W.; Kramer, M.

    2016-05-01

    The PSRIX backend is the primary pulsar timing instrument of the Effelsberg 100 m radio telescope since early 2011. This new ROACH-based system enables bandwidths up to 500 MHz to be recorded, significantly more than what was possible with its predecessor, the Effelsberg-Berkeley Pulsar Processor (EBPP). We review the first four years of PSRIX timing data for 33 pulsars collected as part of the monthly European Pulsar Timing Array (EPTA) observations. We describe the automated data analysis pipeline, COASTGUARD, that we developed to reduce these observations. We also introduce TOASTER, the EPTA timing data base, used to store timing results, processing information and observation metadata. Using these new tools, we measure the phase-averaged flux densities at 1.4 GHz of all 33 pulsars. For seven of these pulsars, our flux density measurements are the first values ever reported. For the other 26 pulsars, we compare our flux density measurements with previously published values. By comparing PSRIX data with EBPP data, we find an improvement of ˜2-5 times in signal-to-noise ratio, which translates to an increase of ˜2-5 times in pulse time-of-arrival (TOA) precision. We show that such an improvement in TOA precision will improve the sensitivity to the stochastic gravitational wave background. Finally, we showcase the flexibility of the new PSRIX backend by observing several millisecond-period pulsars (MSPs) at 5 and 9 GHz. Motivated by our detections, we discuss the potential for complementing existing pulsar timing array data sets with MSP monitoring campaigns at these higher frequencies.

  15. Constraining Parameters in Pulsar Models of Repeating FRB 121102 with High-energy Follow-up Observations

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Di; Dai, Zi-Gao, E-mail: dzg@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-09-10

    Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occurs in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.

  16. Constraining Parameters in Pulsar Models of Repeating FRB 121102 with High-energy Follow-up Observations

    International Nuclear Information System (INIS)

    Xiao, Di; Dai, Zi-Gao

    2017-01-01

    Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occurs in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.

  17. Limits on the speed of gravitational waves from pulsar timing

    International Nuclear Information System (INIS)

    Baskaran, D.; Polnarev, A. G.; Pshirkov, M. S.; Postnov, K. A.

    2008-01-01

    In this work, analyzing the propagation of electromagnetic waves in the field of gravitational waves, we show the presence and significance of the so-called surfing effect for pulsar timing measurements. It is shown that, due to the transverse nature of gravitational waves, the surfing effect leads to enormous pulsar timing residuals if the speed of gravitational waves is smaller than the speed of light. This fact allows one to place significant constraints on parameter ε, which characterizes the relative deviation of the speed of gravitational waves from the speed of light. We show that the existing constraints from pulsar timing measurements already place stringent limits on ε and consequently on the mass of the graviton m g . The limits on m g -24 are 2 orders of magnitude stronger than the current constraints from Solar System tests. The current constraints also allow one to rule out massive gravitons as possible candidates for cold dark matter in the galactic halo. In the near future, the gravitational wave background from extragalactic super massive black hole binaries, along with the expected submicrosecond pulsar timing accuracy, will allow one to achieve constraints of ε < or approx. 0.4% and possibly stronger.

  18. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-01-01

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars

  19. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-05-15

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars.

  20. Physical conditions in the reconnection layer in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Uzdensky, Dmitri A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Spitkovsky, Anatoly, E-mail: uzdensky@colorado.edu, E-mail: anatoly@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-01-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet (CS) beyond the light cylinder (LC). Magnetic reconnection in this CS inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via a hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers—temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial CS, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, 10{sup 13} cm{sup –3}, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting CS can explain the observed pulsed high-energy (GeV) and very high energy (∼100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.

  1. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The 1982 model for the formation of Hulse–Taylor binary radio pulsar PSR B1913+16 is described, which since has become the 'standard model' for the formation of the double neutron stars, confirmed by the 2003 discovery of the double pulsar system PSR J0737-3039AB. A brief overview is given of the present status of ...

  2. THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Lam, M. T.; Jones, M. L.; McLaughlin, M. A.; Pennucci, T. T. [Department of Physics, West Virginia University, White Hall, Morgantown, WV 26506 (United States); Cordes, J. M.; Chatterjee, S. [Department of Astronomy and Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Arzoumanian, Z. [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Crowter, K.; Fonseca, E.; Gonzalez, M. E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, P. B. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM, 87801 (United States); Dolch, T. [Department of Physics, Hillsdale College, 33 E. College Street, Hillsdale, MI 49242 (United States); Ellis, J. A [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA, 91109 (United States); Ferdman, R. D. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); Jones, G. [Department of Physics, Columbia University, 550 W. 120th Street, New York, NY 10027 (United States); Levin, L. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Madison, D. R.; Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Shannon, R. M., E-mail: michael.lam@mail.wvu.edu [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping NSW 1710 (Australia); and others

    2017-01-01

    Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum for 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon and Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies.

  3. DISCOVERY OF X-RAY PULSATION FROM THE GEMINGA-LIKE PULSAR PSR J2021+4026

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L. C. C. [General Education Center, China Medical University, Taichung 40402, Taiwan (China); Hui, C. Y.; Seo, K. A., E-mail: cyhui@cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Hu, C. P.; Chou, Y. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Wu, J. H. K.; Huang, R. H. H. [Institute of Astronomy, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Trepl, L. [Astrophysikalisches Institut und Universitaets-Sternwarte, Universitaet Jena, Schillergaesschen 2-3, D-07745 Jena (Germany); Takata, J.; Wang, Y.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong)

    2013-06-10

    We report the discovery of an X-ray periodicity of {approx}265.3 ms from a deep XMM-Newton observation of the radio-quiet {gamma}-ray pulsar, PSR J2021+4026, located at the edge of the supernova remnant G78.2+2.1 ({gamma}-Cygni). The detected frequency is consistent with the {gamma}-ray pulsation determined by the observation of the Fermi Gamma-ray Space Telescope at the same epoch. The X-ray pulse profile resembles the modulation of a hot spot on the surface of the neutron star. The phase-averaged spectral analysis also suggests that the majority of the observed X-rays have thermal origins. This is the third member in the class of radio-quiet pulsars with significant pulsations detected from both X-ray and {gamma}-ray regimes.

  4. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    Science.gov (United States)

    Laycock, Silas

    We propose to expand the scope of our successful project providing a multi-satellite library of X-ray Pulsar observations to the community. The library provides high-level products, activity monitoring, pulse-profiles, phased event files, spectra, and a unique pulse-profile modeling interface. The library's scientific footprint will expand in 4 key directions: (1) Update, by processing all new XMM-Newton and Chandra observations (2015-2017) of X-ray Binary Pulsars in the Magellanic Clouds. (2) Expand, by including all archival Suzaku, Swift and NuStar observations, and including Galactic pulsars. (3) Improve, by offering innovative data products that provide deeper insight. (4) Advance, by implementing a new generation of physically motivated emission and pulse-profile models. The library currently includes some 2000 individual RXTE-PCA, 200 Chandra ACIS-I, and 120 XMM-PN observations of the SMC spanning 15 years, creating an unrivaled record of pulsar temporal behavior. In Phase-2, additional observations of SMC pulsars will be added: 221 Chandra (ACIS-S and ACIS-I), 22 XMM-PN, 142 XMM-MOS, 92 Suzaku, 25 NuSTAR, and >10,000 Swift; leveraging our pipeline and analysis techniques already developed. With the addition of 7 Galactic pulsars each having many hundred multisatellite observations, these datasets cover the entire range of variability timescales and accretion regimes. We will model the pulse-profiles using state of the art techniques to parameterize their morphology and obtain the distribution of offsets between magnetic and spin axes, and create samples of profiles under specific accretion modes (whether pencil-beam or fan-beam dominated). These products are needed for the next generation of advances in neutron star theory and modeling. The long-duration of the dataset and “whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X

  5. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    Science.gov (United States)

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  6. X-ray pulsar magnetosphere

    International Nuclear Information System (INIS)

    Lipunov, V.

    1981-01-01

    A pulsar consists of a close binary star system whose one component is a neutron star and the other a normal star. This supplies the neutron star with fuel in form of star wind or a gas stream. A hot plasma-like matter falls onto the neutron star, penetrates in its magnetic field and interacts with it. The matter coming from the normal star has a great rotational moment and forms a hot diamagnetic disk around the neutron star. The plasma penetrates in the internal parts of the magnetosphere where hard x radiation is formed as a result of the plasma impingement on the neutron star surface. (M.D.)

  7. Extreme scattering events towards two young pulsars

    Science.gov (United States)

    Kerr, M.; Coles, W. A.; Ward, C. A.; Johnston, S.; Tuntsov, A. V.; Shannon, R. M.

    2018-03-01

    We have measured the scintillation properties of 151 young, energetic pulsars with the Parkes radio telescope and have identified two extreme scattering events (ESEs). Towards PSR J1057-5226, we discovered a 3 yr span of strengthened scattering during which the variability in flux density and the scintillation bandwidth decreased markedly. The transverse size of the scattering region is ˜23 au, and strong flux density enhancement before and after the ESE may arise from refractive focusing. Long observations reveal scintillation arcs characteristic of interference between rays scattered at large angles, and the clearest arcs appear during the ESE. The arcs suggest scattering by a screen 100-200 pc from the Earth, perhaps ionized filamentary structure associated with the boundary of the local bubble(s). Towards PSR J1740-3015, we observed a `double dip' in the measured flux density similar to ESEs observed towards compact extragalactic radio sources. The observed shape is consistent with that produced by a many-au scale diverging plasma lens with electron density ˜500 cm-3. The continuing ESE is at least 1500 d long, making it the longest detected event to date. These detections, with materially different observational signatures, indicate that well-calibrated pulsar monitoring is a keen tool for ESE detection and interstellar medium (ISM) diagnostics. They illustrate the strong role au-scale non-Kolmogorov density fluctuations and the local ISM structure play in such events and are key to understanding both their intrinsic physics and their impact on other phenomena, particularly fast radio bursts.

  8. Observaciones en la banda de radio de los alrededores de PSR J1646-4346 y PSR J1709-4428

    Science.gov (United States)

    Giacani, E.; Vieytes, M.

    It is generally accepted that most of the rotational energy loss of pulsars appears in the form of a relativistic wind of electron-positron pairs. Under certain conditions, the interaction between this wind and its surroundings is observable in the form of a pulsar wind nebula (PWN). At radio wavelenghts, there are at least two morphological types of PWN, depending on the source of confinement for the wind, but all of them present two unmistakable properties: a) high degree of polarization (>5%) and b) flat radio spectral index (0.0 pulsar. We report on VLA high resolution observations of a region around the pulsars PSR J1645-4346 and PSR J1709-4428 at 1.4, 4.8 and 8.4 GHz. The pulsars appear surrounded by a synchrotron nebula. We argue on the basis of morphology, spectral index and polarization propierties that they are the synchrotron nebulae produced by the spin-down energy of the pulsar.

  9. Orbital Dynamics of Candidate Transitional Millisecond Pulsar 3FGL J1544.6-1125: An unusually face-on system

    Science.gov (United States)

    Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo

    2018-01-01

    We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.

  10. VHE gamma-rays from radio pulsars and cataclysmic variables. [PSR 1055-52; PSR 1509-58; PSR 1620-26; PSR 1747-46; PSR 1800-21; PSR 1818-04; PSR 1821-24; PSR 1822-09; PSR 1823-13; PSR 1855+09; PSR 1929+10; PSR 1957+20

    Energy Technology Data Exchange (ETDEWEB)

    De Jager, O.C.; Brink, C.; Meintjies, P.J.; Nel, H.I.; North, A.R.; Raubenheimer, B.C.; Van der Walt, D.J. (Potchefstroom Univ. for C.H.E. (South Africa). Dept. of Physics)

    1990-03-01

    We present the results of observations (above 1 TeV) of radio pulsars and cataclysmic variables with the Potchefstroom air Cerenkov facility. We were able to confirm our previous detection of PSR 1509-58 and the final significance is 1.7x10{sup -5}. A DC enhancement at the 10{sup -3} significance level was seen from the L{sub 4} Lagrange position in the PSR 1957+20 system. This result was confirmed by COS-B data. We were also able to detect the 5.4 ms pulsar PSR 1855+09 at a marginal significance level of 5%. However, the best and longest observation indicates non-uniformity at the 0.005 significance level. The TeV light curve resembles the radio light curve. The latter is also reminiscent of other millisecond pulsar observed above 1 TeV. The intermediate polar AEAQR (P = 33.08s) shows a period shift which is consistent with recent model predictions. However, the present significance of this results does not allow an unambiguous claim. (orig.).

  11. Resolving discrete pulsar spin-down states with current and future instrumentation

    Science.gov (United States)

    Shaw, B.; Stappers, B. W.; Weltevrede, P.

    2018-04-01

    An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates (\\dot{ν }). Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of \\dot{ν }-variable pulsars to investigate the likelihood of resolving individual \\dot{ν } transitions. We inject step changes in the value of \\dot{ν } with a wide range of amplitudes and switching time-scales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on \\dot{ν } detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programmes, we find that we are insensitive to a large region of Δ \\dot{ν } parameter space that encompasses small, short time-scale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate \\dot{ν } transition epochs can improve detectability in certain scenarios. The effects of cadence on Δ \\dot{ν } detectability are discussed, and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short time-scale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.

  12. Compact Binary Mergers and the Event Rate of Fast Radio Bursts

    Science.gov (United States)

    Cao, Xiao-Feng; Yu, Yun-Wei; Zhou, Xia

    2018-05-01

    Fast radio bursts (FRBs) are usually suggested to be associated with mergers of compact binaries consisting of white dwarfs (WDs), neutron stars (NSs), or black holes (BHs). We test these models by fitting the observational distributions in both redshift and isotropic energy of 22 Parkes FRBs, where, as usual, the rates of compact binary mergers (CBMs) are connected with cosmic star formation rates by a power-law distributed time delay. It is found that the observational distributions can well be produced by the CBM model with a characteristic delay time from several tens to several hundreds of megayears and an energy function index 1.2 ≲ γ ≲ 1.7, where a tentative fixed spectral index β = 0.8 is adopted for all FRBs. Correspondingly, the local event rate of FRBs is constrained to {(3{--}6)× {10}4{f}{{b}}-1({ \\mathcal T }/270{{s}})}-1{({ \\mathcal A }/2π )}-1 {Gpc}}-3 {yr}}-1 for an adopted minimum FRB energy of E min = 3 × 1039 erg, where f b is the beaming factor of the radiation, { \\mathcal T } is the duration of each pointing observation, and { \\mathcal A } is the sky area of the survey. This event rate, about an order of magnitude higher than the rates of NS–NS/NS–BH mergers, indicates that the most promising origin of FRBs in the CBM scenario could be mergers of WD–WD binaries. Here a massive WD could be produced since no FRB was found to be associated with an SN Ia. Alternatively, if all FRBs can repeat on a timescale much longer than the period of current observations, then they could also originate from a young active NS that forms from relatively rare NS–NS mergers and accretion-induced collapses of WD–WD binaries.

  13. RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR 5110

    Energy Technology Data Exchange (ETDEWEB)

    Abbuhl, E.; Mutel, R. L.; Lynch, C. [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, Iowa 52242 (United States); Güedel, M. [Department of Astronomy, University of Vienna, Vienna (Austria)

    2015-09-20

    The close active binary HR 5110 was observed at six epochs over 26 days using a global very long baseline interferometry array at 15.4 GHz. We used phase referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emission model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of the order of 10 G and 10{sup 5} cm{sup −3}, respectively, in the source region.

  14. A Laminar Model for the Magnetic Field Structure in Bow-Shock Pulsar Wind Nebulae

    Science.gov (United States)

    Bucciantini, N.

    2018-05-01

    Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These systems have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.

  15. Discovery of a 50 millisecond pulsar in the Large Magellanic Cloud

    Science.gov (United States)

    Seward, F. D.; Harnden, F. R., Jr.; Helfand, D. J.

    1984-01-01

    The present investigation is concerned with the discovery of a new pulsed X-ray source in the Large Magellanic Cloud (LMC) supernova remnant 0540 - 693. The SNR 0540 - 693 is one of three suspected Crab-like remnants in the LMC. The existing X-ray, optical, and radio observations of the remnant itself are discussed, and an analysis is conducted of the implications of the period, period derivative, and X-ray pulse shape of the new source. It is concluded that the pulsed X-ray source is almost certainly a young, isolated pulsar. Many of its properties are very similar to those of the Crab pulsar.

  16. The VELA-X-Pulsar Wind Nebula Revisited with Four Years of Fermi Large Area Telescope Observations

    Science.gov (United States)

    Grondin, M. -H.; Romani, R. W.; Lemoine-Goumard, M.; Guillemot, L.; Harding, Alice K.; Reposeur, T.

    2013-01-01

    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2deg × 3deg south of the pulsar and observed in the radio, X-ray, and very high energy ?-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.

  17. PROSPECTS FOR PROBING THE SPACETIME OF Sgr A* WITH PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.; Wex, N.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, M/S 138-308, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-03-01

    The discovery of radio pulsars in compact orbits around Sgr A* would allow an unprecedented and detailed investigation of the spacetime of this supermassive black hole. This paper shows that pulsar timing, including that of a single pulsar, has the potential to provide novel tests of general relativity, in particular its cosmic censorship conjecture and no-hair theorem for rotating black holes. These experiments can be performed by timing observations with 100 {mu}s precision, achievable with the Square Kilometre Array for a normal pulsar at frequency above 15 GHz. Based on the standard pulsar timing technique, we develop a method that allows the determination of the mass, spin, and quadrupole moment of Sgr A*, and provides a consistent covariance analysis of the measurement errors. Furthermore, we test this method in detailed mock data simulations. It seems likely that only for orbital periods below {approx}0.3 yr is there the possibility of having negligible external perturbations. For such orbits, we expect a {approx}10{sup -3} test of the frame dragging and a {approx}10{sup -2} test of the no-hair theorem within five years, if Sgr A* is spinning rapidly. Our method is also capable of identifying perturbations caused by distributed mass around Sgr A*, thus providing high confidence in these gravity tests. Our analysis is not affected by uncertainties in our knowledge of the distance to the Galactic center, R{sub 0}. A combination of pulsar timing with the astrometric results of stellar orbits would greatly improve the measurement precision of R{sub 0}.

  18. Relativistic plasma turbulence and its application to pulsar phenomena

    International Nuclear Information System (INIS)

    Hinata, S.

    1976-01-01

    A turbulent plasma model of pulsars which has the potential of providing a self-regulatory mechanism for producing an electron-positron plasma over the polar caps, as well as the coherency of the radio wave emission, is analyzed. Turbulent plasma properties including the kinetic and electrostatic energy densities, the wavelength of the most unstable mode, and the effective collision frequency due to the excited electric field, are obtained and applied to the pulsar situation. Since these properties depend on the momentum distribution of the plasma particles, model calculations have been carried out with simple momentum distribution functions. The radio luminosity due to turbulence (bunching or otherwise) turned out to be either insufficient or unclear at the moment for these simple momentum distributions. This indicates that a further investigation of turbulence processes with the self-consistently determined momentum distribution is needed. This is left for future analysis, because entirely different processes (e.g. trapping) are likely to dominate the physics as is demonstrated for one of the model distribution functions. In addition to the above mentioned model, we examine some wave propagation properties in a relativistic electron-positron plasma immersed in a strong magnetic field

  19. Versatile directional searches for gravitational waves with Pulsar Timing Arrays

    Science.gov (United States)

    Madison, D. R.; Zhu, X.-J.; Hobbs, G.; Coles, W.; Shannon, R. M.; Wang, J. B.; Tiburzi, C.; Manchester, R. N.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Dai, S.; Dempsey, J.; Keith, M.; Kerr, M.; Lasky, P.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D.; Rosado, P.; Spiewak, R.; van Straten, W.; Toomey, L.; Wen, L.; You, X.

    2016-02-01

    By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straightforward technique by which a PTA can be `phased-up' to form time series of the two polarization modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodelled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise.

  20. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    OpenAIRE

    Tauris, Thomas M.; Sanyal, Debashis; Yoon, Sung-Chul; Langer, Norbert

    2013-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequ...

  1. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: from Theory to Fermi Observations

    Science.gov (United States)

    Kalapotharakos, Konstantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-01-01

    We compute the patterns of gamma-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed gamma-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model gamma-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and gamma-ray emission on the gamma-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the gamma-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  2. The Breakthrough Listen Search for Intelligent Life: Data Calibration using Pulsars

    Science.gov (United States)

    Brinkman-Traverse, Casey Lynn; Gajjar, Vishal; BSRC

    2018-01-01

    The ability to distinguish ET signals requires a deep understanding of the radio telescopes with which we search; therefore, before we observe stars of interest, the Breathrough Listen scientists at Berkeley SETI Research Center first observe a Pulsar with well-documented flux and polarization properties. The process of calibrating the flux and polarization is a lengthy process by hand, so we produced a pipeline code that will automatically calibrate the pulsar in under an hour. Using PSRCHIVE the code coherently dedisperses the pulsed radio signals, and then calibrates the flux using observation files with a noise diode turning on and off. The code was developed using PSR B1937+ 21 and is primarily used on PSR B0329+54. This will expedite the process of assessing the quality of data collected from the Green Bank Telescope in West Virginia and will allow us to more efficiently find life beyond Planet Earth. Additionally, the stability of the B0329+54 calibration data will allow us to analyze data taken on FRB's with confidence of its cosmic origin.

  3. PULSAR.MAKING VISIBLE THE SOUND OF STARS

    OpenAIRE

    Lega, Ferran

    2015-01-01

    [EN] Pulsar, making visible the sound of stars is a comunication based on a sound Installation raised as a site-specific project to show the hidden abilities of sound to generate images and patterns on the matter, using the acoustic science of cymatics. The objective of this communication will show people how through abstract and intangible sounds from celestial orbs of cosmos (radio waves generated by electromagnetic pulses from the rotation of neutrón stars), we can create ar...

  4. Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, Daryl; Heinke, Craig; Hooper, Dan; Linden, Tim

    2017-05-01

    If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up to $\\sim$4-23% of the observed gamma-ray excess is likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected $\\sim$$10^3$ LMXBs from within a $10^{\\circ}$ radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.

  5. Fast radio burst search: cross spectrum vs. auto spectrum method

    Science.gov (United States)

    Liu, Lei; Zheng, Weimin; Yan, Zhen; Zhang, Juan

    2018-06-01

    The search for fast radio bursts (FRBs) is a hot topic in current radio astronomy studies. In this work, we carry out a single pulse search with a very long baseline interferometry (VLBI) pulsar observation data set using both auto spectrum and cross spectrum search methods. The cross spectrum method, first proposed in Liu et al., maximizes the signal power by fully utilizing the fringe phase information of the baseline cross spectrum. The auto spectrum search method is based on the popular pulsar software package PRESTO, which extracts single pulses from the auto spectrum of each station. According to our comparison, the cross spectrum method is able to enhance the signal power and therefore extract single pulses from data contaminated by high levels of radio frequency interference (RFI), which makes it possible to carry out a search for FRBs in regular VLBI observations when RFI is present.

  6. PSRPOPPy: an open-source package for pulsar population simulations

    Science.gov (United States)

    Bates, S. D.; Lorimer, D. R.; Rane, A.; Swiggum, J.

    2014-04-01

    We have produced a new software package for the simulation of pulsar populations, PSRPOPPY, based on the PSRPOP package. The codebase has been re-written in Python (save for some external libraries, which remain in their native Fortran), utilizing the object-oriented features of the language, and improving the modularity of the code. Pre-written scripts are provided for running the simulations in `standard' modes of operation, but the code is flexible enough to support the writing of personalised scripts. The modular structure also makes the addition of experimental features (such as new models for period or luminosity distributions) more straightforward than with the previous code. We also discuss potential additions to the modelling capabilities of the software. Finally, we demonstrate some potential applications of the code; first, using results of surveys at different observing frequencies, we find pulsar spectral indices are best fitted by a normal distribution with mean -1.4 and standard deviation 1.0. Secondly, we model pulsar spin evolution to calculate the best fit for a relationship between a pulsar's luminosity and spin parameters. We used the code to replicate the analysis of Faucher-Giguère & Kaspi, and have subsequently optimized their power-law dependence of radio luminosity, L, with period, P, and period derivative, Ṗ. We find that the underlying population is best described by L ∝ P-1.39±0.09 Ṗ0.48±0.04 and is very similar to that found for γ-ray pulsars by Perera et al. Using this relationship, we generate a model population and examine the age-luminosity relation for the entire pulsar population, which may be measurable after future large-scale surveys with the Square Kilometre Array.

  7. Pulsars at Parkes

    OpenAIRE

    Manchester, R. N.

    2012-01-01

    The first pulsar observations were made at Parkes on March 8, 1968, just 13 days after the publication of the discovery paper by Hewish and Bell. Since then, Parkes has become the world's most successful pulsar search machine, discovering nearly two thirds of the known pulsars, among them many highly significant objects. It has also led the world in pulsar polarisation and timing studies. In this talk I will review the highlights of pulsar work at Parkes from those 1968 observations to about ...

  8. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

    Directory of Open Access Journals (Sweden)

    Nicolás Yunes

    2013-11-01

    Full Text Available This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  9. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    Science.gov (United States)

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  10. Limits on the quiescent radio emission from the black hole binaries GRO J1655−40 and XTE J1550−564

    NARCIS (Netherlands)

    Calvelo, D.E.; Fender, R.P.; Russell, D.M.; Gallo, E.; Corbel, S.; Tzioumis, A.K.; Bell, M.E.; Lewis, F.; Maccarone, T.J.

    2010-01-01

    We present the results of radio observations of the black hole binaries GRO J1655−40 and XTE J1550−564 in quiescence, with the upgraded Australia Telescope Compact Array. Neither system was detected. Radio flux density upper limits (3σ) of 26 μJy (at 5.5 GHz), 47 μJy (at 9 GHz) for GRO J1655−40 and

  11. Rapidly Rising Optical Transients from the Birth of Binary Neutron Stars

    Science.gov (United States)

    Hotokezaka, Kenta; Kashiyama, Kazumi; Murase, Kohta

    2017-11-01

    We study optical counterparts of a new-born pulsar in a double neutron star system like PSR J0737-3039A/B. This system is believed to have ejected a small amount of mass of { O }(0.1 {M}⊙ ) at the second core-collapse supernova. We argue that the initial spin of the new-born pulsar can be determined by the orbital period at the time when the second supernova occurs. The spin angular momentum of the progenitor is expected to be similar to that of the He-burning core, which is tidally synchronized with the orbital motion, and then the second remnant may be born as a millisecond pulsar. If the dipole magnetic field strength of the nascent pulsar is comparable with that inferred from the current spin-down rate of PSR J0737-3039B, the initial spin-down luminosity is comparable to the luminosity of super-luminous supernovae. We consider thermal emission arising from the supernova ejecta driven by the relativistic wind from such a new-born pulsar. The resulting optical light curves have a rise time of ˜10 days and a peak luminosity of ˜1044 erg s-1. The optical emission may last for a month to several months, due to the reprocessing of X-rays and UV photons via photoelectric absorption. These features are broadly consistent with those of the rapidly rising optical transients. The high spin-down luminosity and small ejecta mass are favorable for the progenitor of the repeating fast radio burst, FRB 121102. We discuss a possible connection between new-born double pulsars and fast radio bursts.

  12. The gravitational-wave discovery space of pulsar timing arrays

    Science.gov (United States)

    Cutler, Curt; Burke-Spolaor, Sarah; Vallisneri, Michele; Lazio, Joseph; Majid, Walid

    2014-02-01

    Recent years have seen a burgeoning interest in using pulsar timing arrays (PTAs) as gravitational-wave (GW) detectors. To date, that interest has focused mainly on three particularly promising source types: supermassive black hole binaries, cosmic strings, and the stochastic background from early-Universe phase transitions. In this paper, by contrast, our aim is to investigate the PTA potential for discovering unanticipated sources. We derive significant constraints on the available discovery space based solely on energetic and statistical considerations: we show that a PTA detection of GWs at frequencies above ˜10-5 Hz would either be an extraordinary coincidence or violate "cherished beliefs;" we show that for PTAs GW memory can be more detectable than direct GWs, and that, as we consider events at ever higher redshift, the memory effect increasingly dominates an event's total signal-to-noise ratio. The paper includes also a simple analysis of the effects of pulsar red noise in PTA searches, and a demonstration that the effects of periodic GWs in the ˜10-7-10-4.5 Hz band would not be degenerate with small errors in standard pulsar parameters (except in a few narrow bands).

  13. Evolution of massive close binaries and formation of neutron stars and black holes

    International Nuclear Information System (INIS)

    Massevitch, A.G.; Tutukov, A.V.; Yungelson, L.R.

    1976-01-01

    Main results of computations of evolution for massive close binaries (10 M(Sun)+9.4 M(Sun), 16 M(Sun)+15 M(Sun), 32 M(Sun)+30 M(Sun), 64 M(Sun)+60 M(Sun)) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars - mass exchange - Wolf-Rayet star or blue supergiant plus main sequence star - explosion of the initially more massive star appearing as a supernova event - collapsed or neutron star plus Main-Sequence star, that may be observed as a 'runaway star' - mass exchange leading to X-rays emission - collapsed or neutron star plus WR-star or blue supergiant - second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars. Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries. (Auth.)

  14. X- and γ-ray pulsations of the nearby radio-faint PSR J1741–2054

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Belfiore, A.; Caraveo, P.; De Luca, A.; Salvetti, D. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Saz Parkinson, P. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Sarazin, C.; Sivakoff, G. R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Camilo, F., E-mail: marelli@lambrate.inaf.it [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States)

    2014-07-20

    We report the results of a deep XMM-Newton observation of the radio-faint γ-ray pulsar J1741–2054 and its nebula together with the analysis of five years of Fermi Large Area Telescope (LAT) data. The X-ray spectrum of the pulsar is consistent with an absorbed power law plus a blackbody, originating at least partly from the neutron star cooling. The nebular emission is consistent with that of a synchrotron pulsar wind nebula, with hints of spatial spectral variation. We extended the available Fermi LAT ephemeris and folded the γ-ray and X-ray data. We detected X-ray pulsations from the neutron star: both the thermal and non-thermal components are ∼35%-40% pulsed, with phase-aligned maxima. A sinusoid fits the thermal-folded profile well. A 10 bin phase-resolved analysis of the X-ray emission shows softening of the non-thermal spectrum during the on-pulse phases. The radio, X-ray, and γ-ray light curves are single-peaked, not phase-aligned, with the X-ray peak trailing the γ-ray peak by more than half a rotation. Spectral considerations suggest that the most probable pulsar distance is in the 0.3-1.0 kpc range, in agreement with the radio dispersion measure.

  15. X- and γ-ray pulsations of the nearby radio-faint PSR J1741–2054

    International Nuclear Information System (INIS)

    Marelli, M.; Belfiore, A.; Caraveo, P.; De Luca, A.; Salvetti, D.; Saz Parkinson, P.; Sarazin, C.; Sivakoff, G. R.; Camilo, F.

    2014-01-01

    We report the results of a deep XMM-Newton observation of the radio-faint γ-ray pulsar J1741–2054 and its nebula together with the analysis of five years of Fermi Large Area Telescope (LAT) data. The X-ray spectrum of the pulsar is consistent with an absorbed power law plus a blackbody, originating at least partly from the neutron star cooling. The nebular emission is consistent with that of a synchrotron pulsar wind nebula, with hints of spatial spectral variation. We extended the available Fermi LAT ephemeris and folded the γ-ray and X-ray data. We detected X-ray pulsations from the neutron star: both the thermal and non-thermal components are ∼35%-40% pulsed, with phase-aligned maxima. A sinusoid fits the thermal-folded profile well. A 10 bin phase-resolved analysis of the X-ray emission shows softening of the non-thermal spectrum during the on-pulse phases. The radio, X-ray, and γ-ray light curves are single-peaked, not phase-aligned, with the X-ray peak trailing the γ-ray peak by more than half a rotation. Spectral considerations suggest that the most probable pulsar distance is in the 0.3-1.0 kpc range, in agreement with the radio dispersion measure.

  16. The Origin of Runaway Stars

    Science.gov (United States)

    Hoogerwerf, R.; de Bruijne, J. H. J.; de Zeeuw, P. T.

    2000-12-01

    Milliarcsecond astrometry provided by Hipparcos and by radio observations makes it possible to retrace the orbits of some of the nearest runaway stars and pulsars to determine their site of origin. The orbits of the runaways AE Aurigae and μ Columbae and of the eccentric binary ι Orionis intersected each other ~2.5 Myr ago in the nascent Trapezium cluster, confirming that these runaways were formed in a binary-binary encounter. The path of the runaway star ζ Ophiuchi intersected that of the nearby pulsar PSR J1932+1059, ~1 Myr ago, in the young stellar group Upper Scorpius. We propose that this neutron star is the remnant of a supernova that occurred in a binary system that also contained ζ Oph and deduce that the pulsar received a kick velocity of ~350 km s-1 in the explosion. These two cases provide the first specific kinematic evidence that both mechanisms proposed for the production of runaway stars, the dynamical ejection scenario and the binary-supernova scenario, operate in nature.

  17. MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS

    International Nuclear Information System (INIS)

    Archibald, Anne M.; Kondratiev, Vladislav I.; Hessels, Jason W. T.; Stinebring, Daniel R.

    2014-01-01

    High-precision timing of millisecond pulsars (MSPs) over years to decades is a promising technique for direct detection of gravitational waves at nanohertz frequencies. Time-variable, multi-path scattering in the interstellar medium is a significant source of noise for this detector, particularly as timing precision approaches 10 ns or better for MSPs in the pulsar timing array. For many MSPs, the scattering delay above 1 GHz is at the limit of detectability; therefore, we study it at lower frequencies. Using the LOw-Frequency ARray (LOFAR) radio telescope, we have analyzed short (5-20 minutes) observations of 3 MSPs in order to estimate the scattering delay at 110-190 MHz, where the number of scintles is large and, hence, the statistical uncertainty in the scattering delay is small. We used cyclic spectroscopy, still relatively novel in radio astronomy, on baseband-sampled data to achieve unprecedented frequency resolution while retaining adequate pulse-phase resolution. We detected scintillation structure in the spectra of the MSPs PSR B1257+12, PSR J1810+1744, and PSR J2317+1439 with diffractive bandwidths of 6 ± 3, 2.0 ± 0.3, and ∼7 kHz, respectively, where the estimate for PSR J2317+1439 is reliable to about a factor of two. For the brightest of the three pulsars, PSR J1810+1744, we found that the diffractive bandwidth has a power-law behavior Δν d ∝ν α , where ν is the observing frequency and α = 4.5 ± 0.5, consistent with a Kolmogorov inhomogeneity spectrum. We conclude that this technique holds promise for monitoring the scattering delay of MSPs with LOFAR and other high-sensitivity, low-frequency arrays like the low-frequency component of the Square Kilometre Array

  18. MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, Anne M.; Kondratiev, Vladislav I.; Hessels, Jason W. T.; Stinebring, Daniel R., E-mail: archibald@astron.nl, E-mail: kondratiev@astron.nl, E-mail: hessels@astron.nl, E-mail: dan.stinebring@oberlin.edu [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands)

    2014-08-01

    High-precision timing of millisecond pulsars (MSPs) over years to decades is a promising technique for direct detection of gravitational waves at nanohertz frequencies. Time-variable, multi-path scattering in the interstellar medium is a significant source of noise for this detector, particularly as timing precision approaches 10 ns or better for MSPs in the pulsar timing array. For many MSPs, the scattering delay above 1 GHz is at the limit of detectability; therefore, we study it at lower frequencies. Using the LOw-Frequency ARray (LOFAR) radio telescope, we have analyzed short (5-20 minutes) observations of 3 MSPs in order to estimate the scattering delay at 110-190 MHz, where the number of scintles is large and, hence, the statistical uncertainty in the scattering delay is small. We used cyclic spectroscopy, still relatively novel in radio astronomy, on baseband-sampled data to achieve unprecedented frequency resolution while retaining adequate pulse-phase resolution. We detected scintillation structure in the spectra of the MSPs PSR B1257+12, PSR J1810+1744, and PSR J2317+1439 with diffractive bandwidths of 6 ± 3, 2.0 ± 0.3, and ∼7 kHz, respectively, where the estimate for PSR J2317+1439 is reliable to about a factor of two. For the brightest of the three pulsars, PSR J1810+1744, we found that the diffractive bandwidth has a power-law behavior Δν{sub d}∝ν{sup α}, where ν is the observing frequency and α = 4.5 ± 0.5, consistent with a Kolmogorov inhomogeneity spectrum. We conclude that this technique holds promise for monitoring the scattering delay of MSPs with LOFAR and other high-sensitivity, low-frequency arrays like the low-frequency component of the Square Kilometre Array.

  19. The Bursting Pulsar GRO J1744-28: the Slowest Transitional Pulsar?

    Science.gov (United States)

    Court, J. M. C.; Altamirano, D.; Sanna, A.

    2018-04-01

    GRO J1744-28 (the Bursting Pulsar) is a neutron star LMXB which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: `missing link' systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known Transitional Pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of oppurtunity to test our understanding of these systems in an entirely unexplored physical regime.

  20. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...