WorldWideScience

Sample records for binary radio pulsars

  1. Formation of binary radio pulsars

    International Nuclear Information System (INIS)

    In the framework of the standard scenario of the evolution of massive binary stars a study is made of the formation of final binary systems in which at least one of the components is a neutron star. It is found that about every fortieth radio pulsar must be a member of a close binary system. This is confirmed by observations. Radio pulsars are not formed in wide binary systems, possibly because of the very slow rotation of the presupernova stars

  2. Relativistic Gravity and Binary Radio Pulsars

    OpenAIRE

    Kaspi, V. M.

    1999-01-01

    Following a summary of the basic principles of pulsar timing, we present a review of recent results from timing observations of relativistic binary pulsars. In particular, we summarize the status of timing observations of the much celebrated original binary pulsar PSR B1913+16, draw attention to the recent confirmation of strong evidence for geodetic precession in this system, review the recent measurement of multiple post-Keplerian binary parameters for PSR B1534+12, and describe the Parkes ...

  3. Relativistic Gravity and Binary Radio Pulsars

    CERN Document Server

    Kaspi, V M

    1999-01-01

    Following a summary of the basic principles of pulsar timing, we present a review of recent results from timing observations of relativistic binary pulsars. In particular, we summarize the status of timing observations of the much celebrated original binary pulsar PSR B1913+16, draw attention to the recent confirmation of strong evidence for geodetic precession in this system, review the recent measurement of multiple post-Keplerian binary parameters for PSR B1534+12, and describe the Parkes Multibeam survey, a major survey of the Galactic Plane which promises to discover new relativistic binary pulsar systems.

  4. Understanding the evolution of close binary systems with radio pulsars

    CERN Document Server

    Benvenuto, O G; Horvath, J E

    2014-01-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, evolving either to helium white dwarf (HeWD) or ultra short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in-between as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such {\\it quasi - Roche Lobe Overflow} states, r...

  5. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    International Nuclear Information System (INIS)

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of Pi < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter Pi becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M ☉). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage

  6. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  7. Binary and Millisecond Pulsars

    CERN Document Server

    Lorimer, D R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 solar masses, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e=0.44) orbit around an unevolved companion.

  8. On tests of general relativity with binary radio pulsars

    CERN Document Server

    Del Pozzo, Walter

    2016-01-01

    The timing of radio pulsars in binary systems provides a superb testing ground of general relativity. Here we propose a Bayesian approach to carry out these tests, and a relevant efficient numerical implementation, that has several conceptual and practical advantages with respect to traditional methods based on least-square-fits that have been used so far: (i) it accounts for the actual structure of the likelihood function - and it is not predicated on the Laplace approximation which is implicitly built in least-square fits that can potentially bias the inference - (ii) it provides the ratio of the evidences of any two models under consideration as the statistical quantity to compare different theories, and (iii) it allows us to put joint constraints from the monitoring of multiple systems, that can be expressed in terms of ratio of evidences or probability intervals of global (thus not system-dependent) parameters of the theory, if any exists. Our proposed approach optimally exploits the progress in timing o...

  9. Radio Pulsars

    CERN Document Server

    Beskin, V S; Gwinn, C R; Tchekhovskoy, A

    2015-01-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  10. Orbital Parameters of Binary Radio Pulsars : Revealing Their Structure, Formation, Evolution and Dynamic History

    CERN Document Server

    Bagchi, Manjari

    2010-01-01

    Orbital parameters of binary radio pulsars reveal the history of the pulsars' formation and evolution including dynamic interactions with other objects. Advanced technology has enabled us to determine these orbital parameters accurately in most of the cases. Determination of post-Keplerian parameters of double neutron star binaries (especially of the double pulsar) provide clean tests of GTR and in the future may lead us to constrain the dense matter EoS. For binary pulsars with MS or WD companions, knowledge about the values of the orbital parameters as well as of the spin periods and the masses of the pulsars and the companions might be useful to understand the evolutionary history of the systems. As accreting neutron star binaries lead to orbit circularization due to the tidal coupling during accretion, their descendants i.e. binary MSPs are expected to be in circular orbits. On the other hand, dense stellar environments inside globular clusters (GCs) cause different types of interactions of single stars w...

  11. Eclipsing Binary Pulsars

    CERN Document Server

    Freire, P C C

    2004-01-01

    The first eclipsing binary pulsar, PSR B1957+20, was discovered in 1987. Since then, 13 other eclipsing low-mass binary pulsars have been found, 12 of these are in globular clusters. In this paper we list the known eclipsing binary pulsars and their properties, with special attention to the eclipsing systems in 47 Tuc. We find that there are two fundamentally different groups of eclipsing binary pulsars; separated by their companion masses. The less massive systems (M_c ~ 0.02 M_sun) are a product of predictable stellar evolution in binary pulsars. The systems with more massive companions (M_c ~ 0.2 M_sun) were formed by exchange encounters in globular clusters, and for that reason are exclusive to those environments. This class of systems can be used to learn about the neutron star recycling fraction in the globular clusters actively forming pulsars. We suggest that most of these binary systems are undetectable at radio wavelengths.

  12. PSR J1723-2837: An Eclipsing Binary Radio Millisecond Pulsar

    CERN Document Server

    Crawford, F; Stairs, I H; Kaplan, D L; McLaughlin, M A; Freire, P C C; Burgay, M; Camilo, F; D'Amico, N; Faulkner, A; Kramer, M; Lorimer, D R; Manchester, R N; Possenti, A; Steeghs, D

    2013-01-01

    We present a study of PSR J1723-2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ~15% during the pulsar's orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsar's (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the star's association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 +/- 0.5, corresponding to a companion mass range of 0.4 to 0.7 Msun and an orbital inclination angle range of between 30 and ...

  13. On the nature of the binary radio pulsar PSR B0042-73 in the small magellanic cloud

    Science.gov (United States)

    Lipunov, V. M.; Postnov, K. A.; Prokhorov, M. E.

    1995-01-01

    The modern scenario of evolution of massive binary systems predicts the existence of a subclass of binary radio pulsars (PSRs) with black holes (BHs). Their Galactic number was evaluated as approximately 1 per 1000 single pulsars (Lipunov et al. 1994b). Distinctive properties of such binaries would be (1) mass of the unseen companion M(sub c) greater than 3-4 solar mass and (2) absence of eclipses of the pulsar radiation with no distinctive variance of the dispersion measure along the pulsar orbit. The pulsars themselves must be similar to standard isolated ones. The recently discovered binary 1 s pulsar PSR B0042-73 = PSR J0045-7319 in the Small Magellanic Cloud (SMC) with a massive companion in a highly elongated (eccentricity e =0.8) 51 day orbit (Kaspi et al. 1994) may be the first such pulsar with a BH. The paradoxical fact that the first pulsar discovered in the SMC proved to be in a binary system can be naturally understood if its companion actually is a 10-30 solar mass black hole. We illustrate this fact by the numerical calculation of evolution of radio pulsars after a star formation burst.

  14. The Unusual Binary Pulsar PSR J1744-3922: Radio Flux Variability, Near-Infrared Observation, and Evolution

    Science.gov (United States)

    Breton, R. P.; Roberts, M. S. E.; Ransom, S. M.; Kaspi, V. M.; Durant, M.; Bergeron, P.; Faulkner, A. J.

    2007-06-01

    PSR J1744-3922 is a binary pulsar exhibiting highly variable pulsed radio emission. We report on a statistical multifrequency study of the pulsed radio flux variability which suggests that this phenomenon is extrinsic to the pulsar and possibly tied to the companion, although not strongly correlated with orbital phase. The pulsar has an unusual combination of characteristics compared to typical recycled pulsars: a long spin period (172 ms); a relatively high magnetic field strength (1.7×1010 G); a very circular, compact orbit of 4.6 hr; and a low-mass companion (0.08 Msolar). These spin and orbital properties are likely inconsistent with standard evolutionary models. We find similarities between the properties of the PSR J1744-3922 system and those of several other known binary pulsar systems, motivating the identification of a new class of binary pulsars. We suggest that this new class could result from: a standard accretion scenario of a magnetar or a high magnetic field pulsar; common envelope evolution with a low-mass star and a neutron star, similar to what is expected for ultracompact X-ray binaries; or accretion induced collapse of a white dwarf. We also report the detection of a possible K'=19.30(15) infrared counterpart at the position of the pulsar, which is relatively bright if the companion is a helium white dwarf at the nominal distance, and discuss its implications for the pulsar's companion and evolutionary history.

  15. SDSS J102347.6+003841: A Millisecond Radio Pulsar Binary That Had A Hot Disk

    CERN Document Server

    Wang, Zhongxiang; Thorstensen, John R; Kaspi, Victoria M; Lorimer, Duncan R; Stairs, Ingrid; Ransom, Scott M

    2009-01-01

    The Sloan Digital Sky Survey (SDSS) source J102347.6+003841 is a binary star with a 4.75 hr orbital period. A recent radio pulsar survey showed that its primary is a millisecond pulsar (MSP). Here we analyze the SDSS spectrum of the source in detail. The spectrum was taken on 2001 February 1, when the source was in a bright state and showed broad, double-peaked hydrogen and helium lines -- dramatically different from the G-type absorption spectrum seen from 2003 onward. The lines are consistent with emission from a disk around the compact primary. We derive properties of the disk by fitting the SDSS continuum with a simple disk model, and find a temperature range of 2000--34000 K from the outer to inner edge of the disk. The disk inner and outer radii were approximately 10^9 and 5.7x10^10 cm, respectively. These results further emphasize the unique feature of the source: it is evidently a system at the beginning of its life as a recycled radio pulsar. The disk mass is estimated to have been ~10^23 g, most of ...

  16. The Unusual Binary Pulsar PSR J1744-3922: Radio Flux Variability, Near-infrared Observation and Evolution

    CERN Document Server

    Breton, R P; Ransom, S M; Kaspi, V M; Durant, M; Bergeron, P; Faulkner, A J

    2007-01-01

    PSR J1744-3922 is a binary pulsar exhibiting highly variable pulsed radio emission. We report on a statistical multi-frequency study of the pulsed radio flux variability which suggests that this phenomenon is extrinsic to the pulsar and possibly tied to the companion, although not strongly correlated with orbital phase. The pulsar has an unusual combination of characteristics compared to typical recycled pulsars: a long spin period (172 ms); a relatively high magnetic field strength (1.7x10^10 G); a very circular, compact orbit of 4.6 hours; and a low-mass companion (0.08 Msun). These spin and orbital properties are likely inconsistent with standard evolutionary models. We find similarities between the properties of the PSR J1744-3922 system and those of several other known binary pulsar systems, motivating the identification of a new class of binary pulsars. We suggest that this new class could result from either: a standard accretion scenario of a magnetar or a high-magnetic field pulsar; common envelope ev...

  17. The low-mass X-ray binary-millisecond radio pulsar birthrate problem revisited

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We investigate the birthrate problem for low-mass X-ray binaries(LMXBs) and millisecond radio pulsars(MRPs) in this paper.We consider intermediate-mass and low-mass X-ray binaries(I/LMXBs) to be the progenitors of MRPs,and calculate their evolutionary response to the cosmic star formation rate(SFR) both semi-analytically and numerically.With a typical value(1 Gyr) of the LMXB lifetime,one may expect comparable birthrates of LMXBs and MRPs,but the calculated number of LMXBs is an order of magnitude higher than that observed in the Galaxy.Instead,we suggest that the birthrate problem could be solved if most MRPs have evolved from faint to rather than bright LMXBs.The former may have a population of-104 in the Galaxy.

  18. The low-mass X-ray binary-millisecond radio pulsar birthrate problem revisited

    CERN Document Server

    Hailang, Dai

    2009-01-01

    We investigate the birthrate problem for low-mass X-ray binaries (LMXBs) and millisecond radio pulsars (MRPs) in this paper. We consider intermediate-mass and low-mss X-ray binaries (I/LMXBs) as the progenitors of MRPs, and calculate their evolutionary response to the cosmic star formation rate (SFR) both semi-analytically and numerically. With typical value (~1 Gyr) of the LMXB lifetime, one may expect comparable birthrates of LMXBs and MRPs, but the calculated number of LMXBs is an order of magnitude higher than observed in the Galaxy. Instead, we suggest that the birthrate problem could be solved if most MRPs have evolved from faint rather bright LMXBs. The former may have a population of ~ 104 in the Galaxy.

  19. The Quasi-Roche lobe overflow state in the evolution of Close Binary Systems containing a radio pulsar

    CERN Document Server

    Benvenuto, O G; Horvath, J E

    2014-01-01

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate mass donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These non-standard ingredients deeply modify the mass transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long standing mass transfer episodes, models including these effect suffer a number cycles of mass transfer and detachment. During mass transfer the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when detached they behave as a binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have a radius slightly smaller than its Roche lobe. Remarkably, these conditions are attained for orbital period and donor mass values in the range corresponding to a family of binary radio pulsars known as "redbacks". Thus, redback companions ...

  20. LMXB AND IMXB EVOLUTION: I. THE BINARY RADIO PULSAR PSR J1614-2230

    International Nuclear Information System (INIS)

    We have computed an extensive grid of binary evolution tracks to represent low- and intermediate-mass X-ray binaries (LMXBs and IMXBs). The grid includes 42,000 models which cover 60 initial donor masses over the range of 1-4 Msun and, for each of these, 700 initial orbital periods over the range of 10-250 hr. These results can be applied to understanding LMXBs and IMXBs: those that evolve analogously to cataclysmic variables, that form ultracompact binaries with Porb in the range of 6-50 minutes, and that lead to wide orbits with giant donors. We also investigate the relic binary recycled radio pulsars into which these systems evolve. To evolve the donor stars in this study, we utilized a newly developed stellar evolution code called 'MESA' that was designed, among other things, to be able to handle very low mass and degenerate donors. This first application of the results is aimed at an understanding of the newly discovered pulsar PSR J1614-2230 which has a 1.97 Msun neutron star, Porb = 8.7 days, and a companion star of 0.5 Msun. We show that (1) this system is a cousin to the LMXB Cyg X-2; (2) for neutron stars of canonical birth mass 1.4 Msun, the initial donor stars which produce the closest relatives to PSR J1614-2230 have a mass between 3.4 and 3.8 Msun; (3) neutron stars as massive as 1.97 Msun are not easy to produce in spite of the initially high mass of the donor star, unless they were already born as relatively massive neutron stars; (4) to successfully produce a system like PSR J1614-2230 requires a minimum initial neutron-star mass of at least 1.6 ± 0.1 Msun, as well as initial donor masses and Porb of ∼4.25 ± 0.10 Msun and ∼49 ± 2 hr, respectively; and (5) the current companion star is largely composed of CO, but should have a surface H abundance of ∼10%-15%.

  1. THE QUASI-ROCHE LOBE OVERFLOW STATE IN THE EVOLUTION OF CLOSE BINARY SYSTEMS CONTAINING A RADIO PULSAR

    International Nuclear Information System (INIS)

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition

  2. The Quasi-Roche Lobe Overflow State in the Evolution of Close Binary Systems Containing a Radio Pulsar

    Science.gov (United States)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.

    2015-01-01

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as "redbacks." Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.

  3. Radio pulsar death

    CERN Document Server

    Zhang, B

    2003-01-01

    Pulsar radio emission is believed to be originated from the electron-positron pairs streaming out from the polar cap region. Pair formation, an essential condition for pulsar radio emission, is believed to be sustained in active pulsars via one photon process from either the curvature radiation (CR) or the inverse Compton scattering (ICS) seed photons, or sometimes via two photon process. In pulsars with super-critical magnetic fields, some more exotic processes, such as magnetic photon splitting and bound pair formation, will also play noticeable roles. All these effects should be synthesized to discuss radio pulsar death both in the conventional long-period regime due to the turnoff of the active gap, and in the high magnetic field regime due to the possible suppression of the free pair formation. Here I briefly review some recent progress in understanding radio pulsar death.

  4. Low-Mass X-Ray Binaries, Millisecond Radio Pulsars, and the Cosmic Star Formation Rate

    CERN Document Server

    White, N E; White, Nicholas E.; Ghosh, Pranab

    1998-01-01

    We report on the implications of the peak in the cosmic star-formation rate (SFR) at redshift z ~ 1.5 for the resulting population of low-mass X-ray binaries(LMXB) and for that of their descendants, the millisecond radio pulsars (MRP). Since the evolutionary timescales of LMXBs, their progenitors, and their descendants are thought be significant fractions of the time-interval between the SFR peak and the present epoch, there is a lag in the turn-on of the LMXB population, with the peak activity occurring at z ~ 0.5 - 1.0. The peak in the MRP population is delayed further, occurring at z < 0.5. We show that the discrepancy between the birthrate of LMXBs and MRPs, found under the assumption of a stead-state SFR, can be resolved for the population as a whole when the effects of a time-variable SFR are included. A discrepancy may persist for LMXBs with short orbital periods, although a detailed population synthesis will be required to confirm this. Further, since the integrated X-ray luminosity distribution of...

  5. Spin frequency distributions of binary millisecond pulsars

    NARCIS (Netherlands)

    A. Papitto; D.F. Torres; N. Rea; T.M. Tauris

    2014-01-01

    Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a 108−109 yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between

  6. Radio efficiency of pulsars

    CERN Document Server

    Szary, Andrzej; Melikidze, George; Gil, Janusz; Xu, Ren-Xin

    2014-01-01

    We investigate radio emission efficiency $\\xi$ of pulsars and report a near linear inverse correlation between $\\xi$ and the spindown power $\\dot E$, as well as a near linear correlation between $\\xi$ and pulsar age $\\tau$. This is a consequence of very weak, if any, dependences of radio luminosity $L$ on pulsar period $P$ and period derivative $\\dot{P}$, in contrast to X-ray or $\\gamma$-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is $\\left\\approx 10^{29} \\,{\\rm erg/s}$, regardless of the position in the $P-\\dot P$ diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for a radio efficiency into Monte Carlo-based population syntheses we c...

  7. Observations of Binary and Millisecond Pulsars at Xinjiang Astronomical Observatory

    Indian Academy of Sciences (India)

    Jingbo Wang; Na Wang; Jianping Yuan; Zhiyong Liu

    2014-09-01

    We present the first results of radio timing observations of binary and millisecond pulsars in China. We have timed four binary pulsars for 9 years, using Nanshan 25-m radio telescope. The long time span has enabled us to determine their rotation and orbital parameters.

  8. Eccentric Binary Millisecond Pulsars

    CERN Document Server

    Freire, Paulo C C

    2009-01-01

    In this paper we review the recent discovery of several millisecond pulsars (MSPs) in eccentric binary systems. Timing these MSPs we were able to estimate (and in one case precisely measure) their masses. These results suggest that, as a class, MSPs have a much wider range of masses (1.3 to > 2 solar masses) than the normal and mildly recycled pulsars found in double neutron star (DNS) systems (1.25 < Mp < 1.44 solar masses). This is very likely to be due to the prolonged accretion episode that is thought to be required to form a MSP. The likely existence of massive MSPs makes them a powerful probe for understanding the behavior of matter at densities larger than that of the atomic nucleus; in particular, the precise measurement of the mass of PSR J1903+0327 ($1.67 +/- 0.01 solar masses) excludes several "soft" equations of state for dense matter.

  9. Binary and recycled pulsars: 30 years after observational discovery

    CERN Document Server

    Bisnovatyi-Kogan, G S

    2006-01-01

    Binary radio pulsars, first discovered by Hulse and Taylor in 1974 [1], are a unique tool for experimentally testing general relativity (GR), whose validity has been confirmed with a precision unavailable in laboratory experiments. In particular, indirect evidence of the existence of gravitational waves has been obtained. Radio pulsars in binary systems (which have come to be known as recycled) have completed the accretion stage, during which neutron star spins reach millisecond periods and their magnetic fields decay 2 to 4 orders of magnitude more weakly than ordinary radio pulsars. Among about a hundred known recycled pulsars, many have turned out to be single neutron stars. The high concentration of single recycled pulsars in globular clusters suggests that close stellar encounters are highly instrumental in the loss of the companion. A system of one recycled pulsar and one 'normal' one discovered in 2004 is the most compact among binaries containing recycled pulsars [2]. Together with the presence of two...

  10. An eccentric binary millisecond pulsar in the Galactic plane

    NARCIS (Netherlands)

    D.J. Champion; S.M. Ransom; P. Lazarus; F. Camilo; C. Bassa; V.M. Kaspi; D.J. Nice; P.C.C. Freire; I.H. Stairs; J. van Leeuwen; B.W. Stappers; J.M. Cordes; J.W.T. Hessels; D.R. Lorimer; Z. Arzoumanian; D.C. Backer; N.D.R. Bhat; S. Chatterjee; I. Cognard; J.S. Deneva; C.A. Faucher-Giguère; B.M. Gaensler; J. Han; F.A. Jenet; L. Kasian; V.I. Kondratiev; M. Kramer; J. Lazio; M.A. McLaughlin; A. Venkataraman; W. Vlemmings

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+ 0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric ( e = 0.44) 95- day orbit around

  11. Millisecond Pulsars in Close Binaries

    CERN Document Server

    Tauris, Thomas M

    2015-01-01

    In this Habilitationsschrift (Habilitation thesis) I present my research carried out over the last four years at the Argelander Institute for Astronomy (AIfA) and the Max Planck Institute for Radio Astronomy (MPIfR). The thesis summarizes my main findings and has been written to fulfill the requirements for the Habilitation qualification at the University of Bonn. Although my work is mainly focused on the topic of millisecond pulsars (MSPs), there is a fairly broad spread of research areas ranging from the formation of neutron stars (NSs) in various supernova (SN) events, to their evolution, for example, via accretion processes in binary and triple systems, and finally to their possible destruction in merger events. The thesis is organized in the following manner: A general introduction to neutron stars and millisecond pulsars is given in Chapter 1. A selection of key papers published in 2011-2014 are presented in Chapters 2-10, ordered within five main research areas (ultra-stripped SNe in close binaries, ma...

  12. A Search for Radio Millisecond Pulsars

    Science.gov (United States)

    Sayer, Ronald Winston

    1996-01-01

    We have built a data acquisition backend for radio pulsar search observations carried out at the NRAO 140 -foot telescope in Green Bank, West Virginia. Our system sampled 512 spectral channels over 40 MHz every 256 mus, reduced samples to one-bit precision, and wrote the resulting data stream onto magnetic tape for later, off-line processing. We have completed three surveys with this backend. In the first survey, we searched most of the Northern Hemisphere for millisecond radio pulsars. Previous surveys directed towards most of the region covered had not been as sensitive to pulsars with millisecond periods. We obtained high quality data for 15,876 deg^2 of sky. Eight new pulsars were discovered and 76 previously known pulsars were detected. Two of the eight new pulsars (PSR J1022+1001 and PSR J1518+4904) are millisecond pulsars in binary systems. PSR J1518+4904 is a 41 ms radio pulsar in an eccentric (e = 0.25) 8.6 day orbit with another stellar object, probably another neutron star. It is only the fifth double neutron star system known. The system's relativistic advance of periastron has been measured to be ˙omega = 0.0112 +/- 0.0002 ^circ yr^{-1}, implying that the total mass of the pair of stars is 2.65 +/-0.07Modot. We have searched for radio pulsar companions to 40 nearby OB runaway stars. No pulsar companions to OB runaways were discovered. One previously unknown pulsar, PSR J2044+4614, was discovered while observing towards target O star BD+45,3260. However, follow-up timing observations reveal that the pulsar is not associated with the target O star. Assuming standard models for the pulsar beaming fraction and luminosity function, we conclude that most OB runaways do not have pulsar companions. We have completed a survey for pulsed radio signals towards 27 gamma-ray sources detected by the EGRET instrument of the Compton Gamma Ray Observatory. No new pulsars were discovered.

  13. Binary and recycled pulsars: 30 years after observational discovery

    OpenAIRE

    Bisnovatyi-Kogan, G. S.

    2006-01-01

    Binary radio pulsars, first discovered by Hulse and Taylor in 1974 [1], are a unique tool for experimentally testing general relativity (GR), whose validity has been confirmed with a precision unavailable in laboratory experiments. In particular, indirect evidence of the existence of gravitational waves has been obtained. Radio pulsars in binary systems (which have come to be known as recycled) have completed the accretion stage, during which neutron star spins reach millisecond periods and t...

  14. Gravitational Radiation from Compact Binary Pulsars

    CERN Document Server

    Antoniadis, John

    2014-01-01

    An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems - if modeled properly - provide an unparalleled test ground for physically motivated alternatives to GR that deviate significantly in the strong-field regime. Recent improvements in observational techniques and advances in our understanding of WD interiors have enabled a series of precise mass measurements in such systems. These masses, combined with high-precision radio timing of the pulsars, result to stringent constraints on the radiative properties of gravity, qualitatively very different from what was available in the past.

  15. Radio pulsar disk electrodynamics

    Science.gov (United States)

    Michel, F. C.

    1983-01-01

    Macroscopic physics are discussed for the case of a disk close to an isolated, magnetized, rotating neutron star that acts as a Faraday disk dynamo, while the disk acts as both a load and a neutral sheet. This sheet allows the polar cap current to return to the neutron star, splitting a dipolar field into two monopolar halves. The dominant energy loss is from the stellar wind torque, and the next contribution is dissipation in the auroral zones, where the current returns to the star in a 5 cm-thick sheet. The disk itself may be a source of visible radiation comparable to that in pulsed radio frequency emission. As the pulsar ages, the disk expands and narrows into a ring which, it is suggested, may lead to a cessation of pulsed emission at periods of a few sec.

  16. The Velocity Distribution of Isolated Radio Pulsars

    Science.gov (United States)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  17. A Cosmic Census of Radio Pulsars with the SKA

    CERN Document Server

    Keane, E F; Kramer, M; Stappers, B W; Bates, S D; Burgay, M; Chatterjee, S; Champion, D J; Eatough, R P; Hessels, J W T; Janssen, G; Lee, K J; van Leeuwen, J; Margueron, J; Oertel, M; Possenti, A; Ransom, S; Theureau, G; Torne, P

    2015-01-01

    The Square Kilometre Array (SKA) will make ground breaking discoveries in pulsar science. In this chapter we outline the SKA surveys for new pulsars, as well as how we will perform the necessary follow-up timing observations. The SKA's wide field-of-view, high sensitivity, multi-beaming and sub-arraying capabilities, coupled with advanced pulsar search backends, will result in the discovery of a large population of pulsars. These will enable the SKA's pulsar science goals (tests of General Relativity with pulsar binary systems, investigating black hole theorems with pulsar-black hole binaries, and direct detection of gravitational waves in a pulsar timing array). Using SKA1-MID and SKA1-LOW we will survey the Milky Way to unprecedented depth, increasing the number of known pulsars by more than an order of magnitude. SKA2 will potentially find all the Galactic radio-emitting pulsars in the SKA sky which are beamed in our direction. This will give a clear picture of the birth properties of pulsars and of the gr...

  18. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    Science.gov (United States)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; Stappers, Ben W.; Cordes, James M.; Hessels, Jason W. T.; Lorimer, Duncan R.; Arzoumanian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Cognard, Ismael; Deneva, Julia S.; Faucher-Giguere, Claude-Andre; Gaensler, Bryan M.; Han, JinLin; Jenet, Fredrick A.; Kasian, Laura

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  19. Radio Pulsars: The Neutron Star Population & Fundamental Physics

    CERN Document Server

    Kaspi, Victoria M

    2016-01-01

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in obser...

  20. The Aid of Optical Studies in Understanding Millisecond Pulsar Binaries

    CERN Document Server

    Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus

    2016-01-01

    A large number of new "black widow" and "redback" energetic millisecond pulsars with irradiated stellar companions have been discovered through radio and optical searches of unidentified \\textit{Fermi} sources. Synchrotron emission, from particles accelerated up to several TeV in the intrabinary shock, exhibits modulation at the binary orbital period. Our simulated double-peaked X-ray light curves modulated at the orbital period, produced by relativistic Doppler-boosting along the intrabinary shock, are found to qualitatively match those observed in many sources. In this model, redbacks and transitional pulsar systems where the double-peaked X-ray light curve is observed at inferior conjunction have intrinsically different shock geometry than other millisecond pulsar binaries where the light curve is centered at superior conjunction. We discuss, and advocate, how current and future optical observations may aid in constraining the emission geometry, intrabinary shock and the unknown physics of pulsar winds.

  1. Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations

    CERN Document Server

    Pletsch, H J; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M -H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hartog, P R den; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Johannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Raino, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Parkinson, P M Saz; Schulz, A; Sgro, C; Silva, E do Couto e; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; 10.1126/science.1229054

    2012-01-01

    Millisecond pulsars (MSPs), old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  2. Pulsar Observations with Radio Telescope FAST

    Science.gov (United States)

    Nan, Ren-Dong; Wang, Qi-Ming; Zhu, Li-Chun; Zhu, Wen-Bai; Jin, Cheng-Jin; Gan, Heng-Qian

    2006-12-01

    FAST, Five hundred meter Aperture Spherical Telescope, is the Chinese effort for the international project SKA, Square Kilometer Array. An innovative engineering concept and design pave a new road to realizing huge single dish in the most effective way. Three outstanding features of the telescope are the unique karst depressions as the sites, the active main reflector which corrects spherical aberration on the ground to achieve full polarization and wide band without involving complex feed system, and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. Besides a general coverage of those critical technologies involved in FAST concept, the progresses in demonstrating model being constructed at the Miyun Radio Observatory of the NAOC is introduced. Being the most sensitive radio telescope, FAST will enable astronomers to jumpstart many of science goals, for example, the natural hydrogen line surveying in distant galaxies, looking for the first generation of shining objects, hearing the possible signal from other civilizations, etc. Among these subjects, the most striking one could be pulsar study. Large scale survey by FAST will not only improve the statistics of the pulsar population, but also may offer us a good fortune to pick up more of the most exotic, even unknown types like a sub-millisecond pulsar or a neutron star -- black hole binary as the telescope is put into operation.

  3. Microarcsecond VLBI pulsar astrometry with PSRPI I. Two binary millisecond pulsars with white dwarf companions

    CERN Document Server

    Deller, A T; Kaplan, D L; Goss, W M; Brisken, W F; Chatterjee, S; Cordes, J M; Janssen, G H; Lazio, T J W; Petrov, L; Stappers, B W; Lyne, A

    2016-01-01

    Model-independent distance constraints to binary millisecond pulsars (MSPs) are of great value to both the timing observations of the radio pulsars, and multiwavelength observations of their companion stars. Very Long Baseline Interferometry (VLBI) astrometry can be employed to provide these model-independent distances with very high precision via the detection of annual geometric parallax. Using the Very Long Baseline Array, we have observed two binary millisecond pulsars, PSR J1022+1001 and J2145-0750, over a two-year period and measured their distances to be 700 +14 -10 pc and 613 +16 -14 pc respectively. We use the well-calibrated distance in conjunction with revised analysis of optical photometry to tightly constrain the nature of their massive (M ~ 0.85 Msun) white dwarf companions. Finally, we show that several measurements of their parallax and proper motion obtained by pulsar timing array projects are incorrect, and investigate possible causes for the discrepancy.

  4. The Binary Pulsar: Gravity Waves Exist.

    Science.gov (United States)

    Will, Clifford

    1987-01-01

    Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)

  5. Flicker noise pulsar radio spectra

    CERN Document Server

    Krzeszowski, K; Słowikowska, A; Jessner, A

    2014-01-01

    We present new results of fitting 108 spectra of radio pulsars with the flicker noise model proposed by Loehmer et al. (2008) and compare them with the spectral indices of power-law fits published by Maron et al. (2000). The fits to the model were carried out using the Markov chain Monte Carlo (MCMC) method appropriate for the non-linear fits. Our main conclusion is that pulsar radio spectra can be statistically very well described by the flicker noise model over wide frequency range from a few tens of MHz up to tens of GHz. Moreover, our dataset allows us to conduct statistical analysis of the model parameters. As our results show, there is a strong negative correlation between the flicker noise spectrum model parameters log $S_0$ and $n$ and a strong positive relationship between n and the power-law spectral index $\\alpha$. The latter implies that their physical meaning is similar, however the flicker noise model has an advantage over broken power-law model. Not only it describes the spectra in higher frequ...

  6. On the disruption of pulsar and X-ray binaries in globular clusters

    CERN Document Server

    Verbunt, Frank

    2013-01-01

    The stellar encounter rate Gamma has been shown to be strongly correlated with the number of X-ray binaries in clusters and also to the number of radio pulsars. However, the pulsar populations in different clusters show remarkably different characteristics: in some GCs the population is dominated by binary systems, in others by single pulsars and exotic systems that result from exchange encounters. In this paper, we describe a second dynamical parameter for globular clusters, the encounter rate for a single binary, gamma. We find that this parameter provides a good characterization of the differences between the pulsar populations of different globular clusters. The higher gamma is for any particular globular cluster the more isolated pulsars and products of exchange interactions are observed. Furthermore, we also find that slow and "young" pulsars are found almost exclusively in clusters with a high gamma; this suggests that these kinds of objects are formed by the disruption of X-ray binaries, thus halting ...

  7. Radio pulsars in the Magellanic Clouds

    International Nuclear Information System (INIS)

    The Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) have been searched for radio pulsars using the 64-m Parkes radiotelescope. The search has resulted in the discovery of four pulsars. Their observed dispersion measures suggest that three lie in the Clouds (two in the LMC, one in the SMC). The fourth, which was found in the direction of the LMC, may be a foreground object belonging to the galactic pulsar population. (author)

  8. The radio-loud plasma in pulsars

    CERN Document Server

    Eilek, J A; Weatherall, J C

    2002-01-01

    The pulsar magnetosphere contains a strongly magnetized, relativistic plasma. We need to understand the physics of that plasma if we want to connect the data to the models. Our group in Socorro is mixing theory and observations in order to study the radio-loud pulsar plasma. In this paper we report on several aspects of our current work.

  9. Upper limits on gravitational wave emission from 78 radio pulsars

    CERN Document Server

    Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M; Bayer, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; D'Ambrosio, E; Dalrymple, J; Danzmann, K; Davies, G; De Bra, D; DeSalvo, R; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; Dhurandhar, S V; Di Credico, A; Dickson, J; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Díaz, M; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R E; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Gustafson, R; Günther, M; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Krämer, M; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Lyne, A G; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McWilliams, S; Meier, T; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Müller, G; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Ruet, L; Russell, P; Ryan, K; Rüdiger, A; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D W; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R; Watts, K; Weidner, A; Weinert, M; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, L; Willke, B; Wilmut, I; Winkler, W; Wipf, C C; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yunes, N; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M; Zweizig, J; zur Muhlen, H

    2007-01-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO600 gravitational wave detectors. The data from both runs have been combined coherently to maximise sensitivity. For the first time pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 3.2e-25 for PSRJ1603-7202, and the equatorial ellipticity of PSRJ2124-3358 is less than 10e-6. Furthermore, our strain upper limit for the Crab pulsar is only three times greater than the fiducial spin-down limit.

  10. Nature of microstructure in pulsar radio emission

    OpenAIRE

    Machabeli, George; Khechinashvili, David; Melikidze, George; Shapakidze, David

    2000-01-01

    We present a model for microstructure in pulsar radio emission. We propose that micropulses result from the alteration of the radio wave generation region by nearly transverse drift waves propagating across the pulsar magnetic field and encircling the bundle of the open magnetic field lines. It is demonstrated that such waves can modify significantly curvature of these dipolar field lines. This in turn affects strongly fulfillment of the resonance conditions necessary for the excitation of ra...

  11. Binary pulsars as dark-matter probes

    CERN Document Server

    Pani, Paolo

    2015-01-01

    During the motion of a binary pulsar around the galactic center, the pulsar and its companion experience a wind of dark-matter particles that can affect the orbital motion through dynamical friction. We show that this effect produces a characteristic seasonal modulation of the orbit and causes a secular change of the orbital period whose magnitude can be well within the astonishing precision of various binary-pulsar observations. Our analysis is valid for binary systems with orbital period longer than a day. By comparing this effect with pulsar-timing measurements, it is possible to derive model-independent upper bounds on the dark-matter density at different distances $D$ from the galactic center. For example, the precision timing of J1713+0747 imposes $\\rho_{\\rm DM}\\lesssim 10^5\\,{\\rm GeV/cm}^3$ at $D\\approx7\\,{\\rm kpc}$. The detection of a binary pulsar at $D\\lesssim 10\\,{\\rm pc}$ could provide stringent constraints on dark-matter halo profiles and on growth models of the central black hole. The Square Kil...

  12. Radio polarimetry of Galactic Centre pulsars

    Science.gov (United States)

    Schnitzeler, D. H. F. M.; Eatough, R. P.; Ferrière, K.; Kramer, M.; Lee, K. J.; Noutsos, A.; Shannon, R. M.

    2016-07-01

    To study the strength and structure of the magnetic field in the Galactic Centre (GC), we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A⋆. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ˜ 16 and 33 μG; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (˜12°). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths ≳100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.

  13. Radio polarimetry of Galactic centre pulsars

    Science.gov (United States)

    Schnitzeler, D. H. F. M.; Eatough, R. P.; Ferrière, K.; Kramer, M.; Lee, K. J.; Noutsos, A.; Shannon, R. M.

    2016-04-01

    To study the strength and structure of the magnetic field in the Galactic centre (GC) we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A⋆. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ˜ 16 - 33 μG; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (˜ 12°). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths ≳ 100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.

  14. On magnetic fields of radio pulsars

    CERN Document Server

    Nikitina, E B

    2016-01-01

    We used the magneto-dipole radiation mechanism for the braking of radio pulsars to calculate the new values of magnetic inductions at the surfaces of neutron stars. For this aim we estimated the angles ? between the rotation axis and the magnetic moment of the neutron star for 376 radio pulsars using three different methods. It was shown that there was the predominance of small inclinations of the magnetic axes. Using the obtained values of the angle ? we calculated the equatorial magnetic inductions for pulsars considered. These inductions are several times higher as a rule than corresponding values in the known catalogs.

  15. Gemini optical observations of binary millisecond-pulsars

    CERN Document Server

    Testa, V; Pallanca, C; Corongiu, A; Ferraro, F R

    2015-01-01

    Milli-second pulsars (MSPs) are rapidly spinning neutron stars, with spin periods P_s <= 10 ms, which have been most likely spun up after a phase of matter accretion from a companion star. In this work we present the results of the search for the companion stars of four binary milli-second pulsars, carried out with archival data from the Gemini South telescope. Based upon a very good positional coincidence with the pulsar radio coordinates, we likely identified the companion stars to three MSPs, namely PSRJ0614-3329 (g=21.95 +- 0.05), J1231-1411 (g=25.40 +-0.23), and J2017+0603 (g=24.72 +- 0.28). For the last pulsar (PSRJ0613-0200) the identification was hampered by the presence of a bright star (g=16 +- 0.03) at \\sim 2" from the pulsar radio coordinates and we could only set 3-sigma upper limits of g=25.0, r= 24.3, and i= 24.2 on the magnitudes of its companion star. The candidate companion stars to PSRJ0614-3329, J1231-1411, and J2017+0603 can be tentatively identified as He white dwarfs (WDs) on the bas...

  16. On Low Mass X-ray Binaries and Millisecond Pulsar

    CERN Document Server

    Burderi, Luciano

    2013-01-01

    The detection, in 1998, of the first Accreting Millisecond Pulsar, started an exciting season of continuing discoveries in the fashinating field of compact binary systems harbouring a neutron star. Indeed, in these last three lustres, thanks to the extraordinary performances of astronomical detectors, on ground as well as on board of satellites, mainly in the Radio, Optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond Radio Pulsar. The most intriguing phase is certainly the spin-up stage during which, because of the accretion of matter and angular momentum, the neutron star accumulates an extraordinary amount of mechanical rotational energy, up to one percent of its whole rest-mass energy. These millisecond spinning neutron stars are truly extreme physical objects: General and Special Relativity are fully in action, since their surfaces, attaining speeds close to one ...

  17. Polarization Patterns in Pulsar Radio Emission

    CERN Document Server

    McKinnon, Mark M

    2009-01-01

    A variety of intriguing polarization patterns are created when polarization observations of the single pulses from radio pulsars are displayed in a two-dimensional projection of the Poincare sphere. In many pulsars, the projections produce two clusters of data points that reside at antipodal points on the sphere. The clusters are formed by fluctuations in polarization amplitude that are parallel to the unit vectors representing the polarization states of the wave propagation modes in the pulsar magnetosphere. In other pulsars, however, the patterns are more complex, resembling annuli and bow ties or bars. The formation of these complex patterns is not understood and largely unexplored. An empirical model of pulsar polarization is used to show that these patterns arise from polarization fluctuations that are perpendicular to the mode vectors. The model also shows that the modulation index of the polarization amplitude is an indicator of polarization pattern complexity. A stochastic version of generalized Farad...

  18. The young, highly relativistic binary pulsar J1906+0746

    CERN Document Server

    Lorimer, D R; Freire, P C C; Cordes, J M; Camilo, F; Faulkner, A J; Lyne, A G; Nice, D J; Ransom, S M; Arzoumanian, Z; Manchester, R N; Champion, D J; Van Leeuwen, J; McLaughlin, M A; Ramachandran, R; Hessels, J W T; Vlemmings, W; Deshpande, A A; Bhat, N D R; Chatterjee, S; Han, J L; Gaensler, B M; Kasian, L; Deneva, J S; Reid, B; Lazio, T J W; Kaspi, V M; Crawford, F; Lommen, A N; Backer, D C; Krämer, M; Stappers, B W; Hobbs, G B; Possenti, A; D'Amico, N; Burgay, M

    2006-01-01

    We report the discovery of PSR J1906+0746, a young 144-ms pulsar in a highly relativistic 3.98-hr orbit with an eccentricity of 0.085 and expected gravitational wave coalescence time of 300 Myr. The new pulsar was found during precursor survey observations with the Arecibo 1.4-GHz feed array system and retrospectively detected in the Parkes Multibeam plane pulsar survey data. From radio follow-up observations with Arecibo, Jodrell Bank, Green Bank, and Parkes, we have measured the spin-down and binary parameters of the pulsar and its basic spectral and polarization properties. We also present evidence for pulse profile evolution, which is likely due to geodetic precession, a relativistic effect caused by the misalignment of the pulsar spin and total angular momentum vectors. Our measurements show that PSR J1906+0746 is a young object with a characteristic age of 112 kyr. From the measured rate of orbital periastron advance 7.57+/-0.03 deg/yr, we infer a total system mass of 2.61+/-0.02 Msun. While these param...

  19. Constraining Binary Stellar Evolution With Pulsar Timing

    Science.gov (United States)

    Ferdman, Robert D.; Stairs, I. H.; Backer, D. C.; Burgay, M.; Camilo, F.; D'Amico, N.; Demorest, P.; Faulkner, A.; Hobbs, G.; Kramer, M.; Lorimer, D. R.; Lyne, A. G.; Manchester, R.; McLaughlin, M.; Nice, D. J.; Possenti, A.

    2006-06-01

    The Parkes Multibeam Pulsar Survey has yielded a significant number of very interesting binary and millisecond pulsars. Two of these objects are part of an ongoing timing study at the Green Bank Telescope (GBT). PSR J1756-2251 is a double-neutron star (DNS) binary system. It is similar to the original Hulse-Taylor binary pulsar system PSR B1913+16 in its orbital properties, thus providing another important opportunity to test the validity of General Relativity, as well as the evolutionary history of DNS systems through mass measurements. PSR J1802-2124 is part of the relatively new and unstudied "intermediate-mass" class of binary system, which typically have spin periods in the tens of milliseconds, and/or relatively massive (> 0.7 solar masses) white dwarf companions. With our GBT observations, we have detected the Shapiro delay in this system, allowing us to constrain the individual masses of the neutron star and white dwarf companion, and thus the mass-transfer history, in this unusual system.

  20. Radio polarimetry of Galactic centre pulsars

    CERN Document Server

    Schnitzeler, D H F M; Ferrière, K; Kramer, M; Lee, K J; Noutsos, A; Shannon, R M

    2016-01-01

    To study the strength and structure of the magnetic field in the Galactic centre (GC) we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A*. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ~ 16-33 microgauss; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (~ 12 degrees). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsar...

  1. Radiation dosimetry of binary pulsars

    CERN Document Server

    Eichler, D; Eichler, David; Nath, Biman B

    1995-01-01

    Companion stars exposed to high energy radiation from a primary neutron star or accreting black hole can experience significant spallation of their heavy elements, so that their atmospheres would be extremely rich in lithium, beryllium, and especially boron. In this paper we note that the detection or non-detection of these elements, and their relative abundances if detected, would provide a diagnostic of the high energy output of the primary, and possibly the shock acceleration of particles at the companion's bow shock in a pulsar wind.

  2. Avalanche dynamics of radio pulsar glitches

    CERN Document Server

    Melatos, A; Wyithe, J S B

    2007-01-01

    We test statistically the hypothesis that radio pulsar glitches result from an avalanche process, in which angular momentum is transferred erratically from the flywheel-like superfluid in the star to the slowly decelerating, solid crust via spatially connected chains of local, impulsive, threshold-activated events, so that the system fluctuates around a self-organised critical state. Analysis of the glitch population (currently 285 events from 101 pulsars) demonstrates that the size distribution in individual pulsars is consistent with being scale invariant, as expected for an avalanche process. The waiting-time distribution is consistent with being exponential in seven out of nine pulsars where it can be measured reliably, after adjusting for observational limits on the minimum waiting time, as for a constant-rate Poisson process. PSR J0537$-$6910 and PSR J0835$-$4510 are the exceptions; their waiting-time distributions show evidence of quasiperiodicity. In each object, stationarity requires that the rate $\\...

  3. Binary pulsar - a test for general relativity

    International Nuclear Information System (INIS)

    The binary system of PSR1913 + 16 contains the pulsar and an, as yet unknown, companion. If this star is a compact object too, then the data can be interpreted in terms of general relativistic effects. This leads to the conclusion that the decay of the orbit must be due to the emission of gravitational waves. The nature of the unseen companion is discussed in detail

  4. High-Energy Emission at Shocks in Millisecond Pulsar Binaries

    Science.gov (United States)

    Kust Harding, Alice; Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus

    2016-04-01

    A large number of new Black Widow (BW) and Redback (RB) energetic millisecond pulsars have been discovered through radio searches of unidentified Fermi sources, increasing the known number of these systems from 4 to 28. We model the high-energy emission components from particles accelerated to several TeV in intrabinary shocks in BW and RB systems, and their predicted modulation at the binary orbital period. Synchrotron emission is expected at X-ray energies and such modulated emission has already been detected by Chandra and XMM. Inverse Compton emission from accelerated particles scattering the UV emission from the radiated companion star is expected in the Fermi and TeV bands. Detections or constraints on this emission will probe the unknown physics of pulsar winds.

  5. New mechanism of pulsar radio emission

    OpenAIRE

    Gedalin, M.; Gruman, E.; Melrose, D. B.

    2002-01-01

    It is shown that pulsar radio emission can be generated effectively through a streaming motion in the polar-cap regions of a pulsar magnetosphere causing nonresonant growth of waves that can escape directly. As in other beam models, a relatively low-energy high-density beam is required. The instability generates quasi-transverse waves in a beam mode at frequencies that can be well below the resonant frequency. As the waves propagate outward growth continues until the height at which the wave ...

  6. Nature of giant pulses in radio pulsars

    CERN Document Server

    Petrova, S A

    2006-01-01

    Formation of giant radio pulses is attributed to propagation effects in the plasma of pulsar magnetosphere. Induced scattering of radio waves by the plasma particles is found to lead to an efficient redistribution of the radio emission in frequency. With the steep spectrum of pulsar radiation, intensity transfer between the widely spaced frequencies may imply significant narrow-band amplification of the radiation. This may give rise to giant pulses. It is demonstrated that the statistics of giant pulse intensities observed can be reproduced if one take into account pulse-to-pulse fluctuations of the plasma number density and the original intensity. Polarization properties of the strongly amplified pulses, their location in the average pulse window and the origin of the nanostructure of giant pulses are discussed as well.

  7. Stokes tomography of radio pulsar magnetospheres. II. Millisecond pulsars

    CERN Document Server

    Chung, C T Y

    2011-01-01

    The radio polarization characteristics of millisecond pulsars (MSPs) differ significantly from those of non-recycled pulsars. In particular, the position angle (PA) swings of many MSPs deviate from the S-shape predicted by the rotating vector model, even after relativistic aberration is accounted for, indicating that they have non-dipolar magnetic geometries, likely due to a history of accretion. Stokes tomography uses phase portraits of the Stokes parameters as a diagnostic tool to infer a pulsar's magnetic geometry and orientation. This paper applies Stokes tomography to MSPs, generalizing the technique to handle interpulse emission. We present an atlas of look-up tables for the Stokes phase portraits and PA swings of MSPs with current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models. We compare our look-up tables to data from 15 MSPs and find that the Stokes phase portraits for a current-modified dipole approximately match several MSPs whose PA swings ...

  8. Binary pulsar evolution: unveiled links and new species

    Science.gov (United States)

    Possenti, Andrea

    2013-03-01

    In the last years a series of blind and/or targeted pulsar searches led to almost triple the number of known binary pulsars in the galactic field with respect to a decade ago. The focus will be on few outliers, which are emerging from the average properties of the enlarged binary pulsar population. Some of them may represent the long sought missing links between two kinds of neutron star binaries, while others could represent the stereotype of new groups of binaries, resulting from an evolutionary path which is more exotic than those considered until recently. In particular, a new class of binaries, which can be dubbed Ultra Low Mass Binary Pulsars (ULMBPs), is emerging from recent data.

  9. A Fan Beam Model for Radio Pulsars. I. Observational Evidence

    CERN Document Server

    Wang, Hong Guang; Zheng, Xiao Ping; Deng, Chun Lan; Wen, Sai Qin; Ye, Feng; Guan, Kai Ying; Liu, Yi; Xu, Li Qing

    2014-01-01

    We propose a novel beam model for radio pulsars based on the scenario that the broadband and coherent emission from secondary relativistic particles, as they move along a flux tube in a dipolar magnetic field, forms a radially extended sub-beam with unique properties. The whole radio beam may consist of several sub-beams, forming a fan-shaped pattern. When only one or a few flux tubes are active, the fan beam becomes very patchy. This model differs essentially from the conal beam models in the respects of beam structure and predictions on the relationship between pulse width and impact angle $\\beta$ (the angle between line of sight and magnetic pole) and the relationship between emission intensity and beam angular radius. The evidence for this model comes from the observed patchy beams of precessional binary pulsars and three statistical relationships found for a sample of 64 pulsars, of which $\\beta$ were mostly constrained by fitting polarization position angle data with the Rotation Vector Model. With appr...

  10. The radio luminosity distribution of pulsars in 47 Tucanae

    CERN Document Server

    McConnell, D; Connors, T; Ables, J G

    2004-01-01

    We have used the Australia Telescope Compact Array to seek the integrated radio flux from all the pulsars in the core of the globular cluster 47 Tucanae. We have detected an extended region of radio emission and have calibrated its flux against the flux distribution of the known pulsars in the cluster. We find the total 20-cm radio flux from the cluster's pulsars to be S = 2.0 +/- 0.3 mJy. This implies the lower limit to the radio luminosity distribution to be L_1400 = 0.4 mJy kpc^2 and the size of the observable pulsar population to be N < 30.

  11. Orbital decay of the PSR J0045-7319\\/B star binary system age of radio pulsar and initial spin of neutron star

    CERN Document Server

    Lai, D

    1996-01-01

    Recent timing observations of PSR J0045-7319 reveal that the neutron star/B star binary orbit is decaying on a time scale of |\\Porb/\\dot\\Porb|=0.5 Myr, shorter than the characteristic age (\\tau_c=3 Myr) of the pulsar (Kaspi et al.~1996a). We study mechanisms for the orbital decay. The standard weak friction theory based on static tide requires far too short a viscous time to explain the observed \\dot\\Porb. We show that dynamical tidal excitation of g-modes in the B star can be responsible for the orbital decay. However, to explain the observed short decay timescale, the B star must have some significant retrograde rotation with respect to the orbit --- The retrograde rotation brings lower-order g-modes, which couple much more strongly to the tidal potential, into closer ``resonances'' with the orbital motion, thus significantly enhancing the dynamical tide. A much less likely possibility is that the g-mode damping time is much shorter than the ordinary radiative damping time. The observed orbital decay timesc...

  12. Pulsar Radio Emission Modulation in Relation to Rotational Instability

    OpenAIRE

    Young, Neil James

    2012-01-01

    The magnetospheric conditions responsible for radio emission in pulsars are still not clearly understood. Through studying the modulation of this emission, in relation to the rotational properties of these stars, the observer can obtain insight into the mechanism which governs the radio emission in pulsars, as well as their magnetospheric environments. Nulling pulsars are instrumental in this study due to their meta-stable configurations, which result in abrupt cessation or re-activation of t...

  13. Radio Observations of Elongated Pulsar Wind Nebulae

    Science.gov (United States)

    Ng, Stephen C.-Y.

    2015-08-01

    The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  14. Accretion, Ablation and Propeller Evolution in Close Millisecond Pulsar Binary Systems

    CERN Document Server

    Kiel, P D

    2013-01-01

    A model for the formation and evolution of binary millisecond radio pulsars in systems with low mass companions (< 0.1 Msun) is investigated using a binary population synthesis technique. Taking into account the non conservative evolution of the system due to mass loss from an accretion disk as a result of propeller action and from the companion via ablation by the pulsar, the transition from the accretion powered to rotation powered phase is investigated. It is shown that the operation of the propeller and ablation mechanisms can be responsible for the formation and evolution of black widow millisecond pulsar systems from the low mass X-ray binary phase at an orbital period of ~0.1 day. For a range of population synthesis input parameters, the results reveal that a population of black widow millisecond pulsars characterized by orbital periods as long as ~0.4 days and companion masses as low as ~0.005 Msun can be produced. The orbital periods and minimum companion mass of this radio millisecond pulsar popu...

  15. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    Science.gov (United States)

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. PMID:26404832

  16. The pulsar synchrotron: coherent radio emission

    CERN Document Server

    Contopoulos, Ioannis

    2009-01-01

    We propose a simple physical picture for the generation of coherent radio emission in the axisymmetric pulsar magnetosphere that is quite different from the canonical paradigm of radio emission coming from the magnetic polar caps. In this first paper we consider only the axisymmetric case of an aligned rotator. Our picture capitalizes on an important element of the MHD representation of the magnetosphere, namely the separatrix between the corotating closed-line region (the `dead zone') and the open field lines that originate in the polar caps. Along the separatrix flows the return current that corresponds to the main magnetospheric electric current emanating from the polar caps. Across the separatrix, both the toroidal and poloidal components of the magnetic field change discontinuously. The poloidal component discontinuity requires the presence of a significant annular electric current which has up to now been unaccounted for. We estimate the position and thickness of this annular current at the tip of the c...

  17. Pulsar Binary Birthrates with Spin-Opening Angle Correlations

    CERN Document Server

    O'Shaughnessy, Richard

    2009-01-01

    Empirical birthrate estimates for pulsar binaries depend on the fraction of sky subtended by the pulsar beam: the pulsar beaming fraction. This fraction depends on both the pulsar's opening angle and the misalignment angle between its spin and magnetic axes. Previous estimates use the average value for only two pulsars, i.e. PSRs B1913+16 and B1534+12. We explore how birthrate predictions depend on assumptions about opening angle and alignment, using empirically-motivated distributions to define an effective beaming correction factor, f_{b,eff}. For most known pulsars, we expect f_{b,eff} to be less than 6. We also calculate f_{b,eff} for PSRs J0737-3039A and J1141-6545, applying the currently available constraints for their beam geometry. Our median posterior birthrate predictions for tight PSR-NS binaries, wide PSR-NS binaries, and tight PSR-WD binaries are 89/Myr, 0.84/Myr, and 34/Myr, respectively. For pulsars with spin period between 10 ms and 100 ms, we marginalized our posterior birthrate distribution ...

  18. Are the infrared-faint radio sources pulsars?

    CERN Document Server

    Keith, A D Cameron M J; Norris, R P; Mao, M Y; Middelberg, E

    2011-01-01

    Infrared-Faint Radio Sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50% duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  19. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  20. The NANOGrav Nine-year Data Set: Mass and Geometric Measurements of Binary Millisecond Pulsars

    CERN Document Server

    Fonseca, Emmanuel; Ellis, Justin A; Stairs, Ingrid H; Nice, David J; Ransom, Scott M; Demorest, Paul B; Arzoumanian, Zaven; Crowter, Kathryn; Dolch, Timothy; Ferdman, Robert D; Gonzalez, Marjorie E; Jones, Glenn; Jones, Megan L; Lam, Michael T; Levin, Lina; McLaughlin, Maura A; Stovall, Kevin; Swiggum, Joseph K; Zhu, Weiwei

    2016-01-01

    We analyse 24 binary radio pulsars in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) nine-year data set. We made fourteen significant measurements of Shapiro delay, including new detections in four pulsar-binary systems (PSRs J0613$-$0200, J2017+0603, J2302+4442, and J2317+1439), and derive estimates of the binary-component masses and orbital inclination for these MSP-binary systems. We find a wide range of binary pulsar masses, with values as low as $m_{\\rm p} = 1.18^{+0.10}_{-0.09}\\text{ M}_{\\odot}$ for PSR J1918$-$0642 and as high as $m_{\\rm p} = 1.928^{+0.017}_{-0.017}\\text{ M}_{\\odot}$ for PSR J1614$-$2230 (both 68.3\\% confidence). We make an improved measurement of the Shapiro timing delay in the PSR J1918$-$0642 and J2043+1711 systems, measuring the pulsar mass in the latter system to be $m_{\\rm p} = 1.41^{+0.21}_{-0.18}\\text{ M}_{\\odot}$ (68.3\\% confidence) for the first time. We measure secular variations of one or more orbital elements in many systems, and use these meas...

  1. Radio Timing and Analysis of Black Widow Pulsar J2256-1024

    Science.gov (United States)

    Crowter, Kathryn; Stairs, Ingrid H.; McPhee, Christie A.; Archibald, Anne M.; Boyles, Jason; Hessels, Jason; Kaspi, Victoria M.; Kondratiev, Vlad I.; Lorimer, Duncan; Lynch, Ryan S.; McLaughlin, Maura; Pennucci, Timothy; Ransom, Scott M.; Roberts, Mallory; Stovall, Kevin; van Leeuwen, Joeri

    2015-01-01

    Pulsar J2256-1024, discovered in a 350MHz GBT drift-scan survey and subsequently detected by Fermi-LAT, is a black widow millisecond pulsar in an eclipsing binary system. Black widow pulsars have a rather interesting history. They started life in a binary system, were then spun up by their companions into millisecond pulsars but at some point started ablating those companions, slowly destroying them - thus the moniker "black widow". They are characterized by relatively short orbital periods, in this case 5.1 hours, a low companion mass and, if the inclination angle is right, eclipses. For J2256-1024 we see very clear radio eclipses. Black widow systems used to be few and far between but are now more common with at least 18 currently known. Black widows are interesting for a variety of reasons. They provide potential insight into the formation of isolated millisecond pulsars which must have formed in a binary but are now seen alone, and in eclipsing systems pulses travel through the magnetosphere of the companion providing a probe of that region. Here we present timing and polarization results for J2256-1024 based on radio observations with the GBT.

  2. Radio emissions from pulsar companions : a refutable explanation for galactic transients and fast radio bursts

    OpenAIRE

    Mottez, Fabrice; Zarka, Philippe

    2014-01-01

    The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources, of unknown origin but extremely energetic. We propose here a new explanation - not requiring an extreme release of energy - involving a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. We investigate a theory of radio waves associated to such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving...

  3. The Binary Companion of Young, Relativistic Pulsar J1906+0746

    OpenAIRE

    Leeuwen, van, JL Johan; Kasian, L.; Stairs, I. H.; Lorimer, D. R.; Camilo, F.; S Chatterjee; Cognard, I; Desvignes, G.; Freire, P. C. C.; Janssen, G.H.; Kramer, M.; Lyne, A. G.; Nice, D. J.; Ransom, S. M.; Stappers, B. W.

    2014-01-01

    International audience PSR J1906+0746 is a young pulsar in the relativistic binary with the second-shortest known orbital period, of 3.98 hours. We here present a timing study based on five years of observations, conducted with the 5 largest radio telescopes in the world, aimed at determining the companion nature. Through the measurement of three post-Keplerian orbital parameters we find the pulsar mass to be 1.291(11) M_sol, and the companion mass 1.322(11) M_sol respectively. These masse...

  4. Pulsar Binaries as Gravitational-Wave Sources: Rate predictions

    OpenAIRE

    Kim, Chunglee

    2009-01-01

    Pulsar binaries are important targets for ground-based and future space-borne gravitational-wave (GW) detectors. In order for improving detector design and assessing detector performances, it is a prerequisite to understand the astrophysics of GW sources such as the population size or merger rates. Here, we summarize recent results for Galactic merger rates of two known types of pulsar binaries: (a) double-neutron star-system (DNS) and (b) neutron star-white dwarf (NS-WD) binaries. Based on t...

  5. Radio emission physics in the Crab pulsar

    Science.gov (United States)

    Eilek, Jean A.; Hankins, Timothy H.

    2016-06-01

    > We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low Frequency Interpulse come from regions somewhere in the high-altitude emission zones (caustics) that also produce pulsed X-ray and -ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of time scales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as the source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in its dynamic spectrum. The most promising models are based on analogies with solar zebra bands, but they require unusual plasma structures which are not part of our standard picture of the magnetosphere. We argue that radio observations can reveal much about the upper magnetosphere, but work is required before the models can address all of the data.

  6. A Search for X-ray Counterparts of Radio Pulsars

    CERN Document Server

    Prinz, Tobias

    2015-01-01

    We describe a systematic search for X-ray counterparts of radio pulsars. The search was accomplished by cross-correlating the radio timing positions of all radio pulsars from the ATNF pulsar database (version 1.54) with archival XMM-Newton and Chandra observations publicly released by August 1st 2015. In total, 171 of the archival XMM-Newton observations and 215 of the archival Chandra datasets where found to have a radio pulsar serendipitously in the field of view. From the 283 radio pulsars covered by these datasets we identified 19 previously undetected X-ray counterparts. For 6 of them the statistics was sufficient to model the energy spectrum with one- or two-component models. For the remaining new detections and for those pulsars for which we determined an upper limit to their counting rate we computed the energy flux by assuming a Crab-like spectrum. Additionally, we derived upper limits on the neutron stars' surface temperature and on the non-thermal X-ray efficiency for those pulsars for which the sp...

  7. DISCOVERY OF TWO MILLISECOND PULSARS IN FERMI SOURCES WITH THE NANCAY RADIO TELESCOPE

    International Nuclear Information System (INIS)

    We report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of Fermi-Large Area Telescope sources with no previously known counterparts, using the Nancay Radio Telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days, respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated Fermi sources in which they were found. The gamma-ray light curves and spectral properties are similar to those of previously detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR J2302+4442, consistent with thermal emission from a neutron star. These discoveries along with the numerous detections of radio-loud millisecond pulsars in gamma rays suggest that many Fermi sources with no known counterpart could be unknown millisecond pulsars.

  8. The radio luminosity distribution of pulsars in 47 Tucanae

    Science.gov (United States)

    McConnell, D.; Deshpande, A. A.; Connors, T.; Ables, J. G.

    2004-03-01

    We have used the Australia Telescope Compact Array to seek the integrated radio flux from all the pulsars in the core of the globular cluster 47 Tucanae. We have detected an extended region of radio emission and have calibrated its flux against the flux distribution of the known pulsars in the cluster. We find the total 20-cm radio flux from the pulsars in the cluster to be S= 2.0 +/- 0.3 mJy. This implies the lower limit to the radio luminosity distribution to be minL1400= 0.4 mJy kpc2 and the size of the observable pulsar population to be N<~ 30.

  9. The LOFAR pilot surveys for pulsars and fast radio transients

    Science.gov (United States)

    Coenen, Thijs; van Leeuwen, Joeri; Hessels, Jason W. T.; Stappers, Ben W.; Kondratiev, Vladislav I.; Alexov, A.; Breton, R. P.; Bilous, A.; Cooper, S.; Falcke, H.; Fallows, R. A.; Gajjar, V.; Grießmeier, J.-M.; Hassall, T. E.; Karastergiou, A.; Keane, E. F.; Kramer, M.; Kuniyoshi, M.; Noutsos, A.; Osłowski, S.; Pilia, M.; Serylak, M.; Schrijvers, C.; Sobey, C.; ter Veen, S.; Verbiest, J.; Weltevrede, P.; Wijnholds, S.; Zagkouris, K.; van Amesfoort, A. S.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Corstanje, A.; Deller, A.; Duscha, S.; Eislöffel, J.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; de Gasperin, F.; de Geus, E.; Gunst, A. W.; Hamaker, J. P.; Heald, G.; Hoeft, M.; van der Horst, A.; Juette, E.; Kuper, G.; Law, C.; Mann, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Polatidis, A. G.; Reich, W.; Renting, A.; Röttgering, H.; Rowlinson, A.; Scaife, A. M. M.; Schwarz, D.; Sluman, J.; Smirnov, O.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wucknitz, O.; Zarka, P.; Zensus, A.

    2014-10-01

    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a large fraction of the northern sky, ~ 1.4 × 104 deg2, with 1 h dwell times. Each observation covered ~75 deg2 using 7 independent fields formed by incoherently summing the high-band antenna fields. The second pilot survey, the LOFAR Tied-Array Survey (LOTAS), spanned ~600 deg2, with roughly a 5-fold increase in sensitivity compared with LPPS. Using a coherent sum of the 6 LOFAR "Superterp" stations, we formed 19 tied-array beams, together covering 4 deg2 per pointing. From LPPS we derive a limit on the occurrence, at 142 MHz, of dispersed radio bursts of 107 Jy for the narrowest searched burst duration of 0.66 ms. In LPPS, we re-detected 65 previously known pulsars. LOTAS discovered two pulsars, the first with LOFAR or any digital aperture array. LOTAS also re-detected 27 previously known pulsars. These pilot studies show that LOFAR can efficiently carry out all-sky surveys for pulsars and fast transients, and they set the stage for further surveying efforts using LOFAR and the planned low-frequency component of the Square Kilometer Array. http://www.astron.nl/pulsars/lofar/surveys/lotas/

  10. Blind surveys for radio pulsars and transients

    OpenAIRE

    Lorimer, D.R.

    2010-01-01

    The main reasons for searching for pulsars are to: (i) get an accurate census of the neutron star population and its origin and evolution; (ii) connect neutron stars to other stellar populations in the Galaxy and globular clusters; (iii) study Galactic astronomy (the interstellar medium and magnetic field); (iv) find and study new interesting individual objects; (v) study pulsar phenomenology; (vi) find pulsars to add to the sensitivity of pulsar timing arrays. This review focuses on blind (i...

  11. Radio Emission Physics in the Crab Pulsar

    CERN Document Server

    Eilek, J A

    2016-01-01

    We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low-Frequency Interpulse come from regions somewhere in the high-altitude emission zones (caustics) that also produce pulsed X-ray and gamma-ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of timescales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High-Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in it...

  12. The timing behaviour of radio pulsars

    CERN Document Server

    Hobbs, G

    2009-01-01

    The purpose of this review paper is to summarise the pulsar timing method, to provide an overview of recent research into the spin-down of pulsars over decadal timescales and to highlight the science that can be achieved using high-precision timing of millisecond pulsars.

  13. THE EINSTEIN-HOME SEARCH FOR RADIO PULSARS AND PSR J2007+2722 DISCOVERY

    International Nuclear Information System (INIS)

    Einstein-Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein-Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least ∼100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries

  14. THE EINSTEIN-HOME SEARCH FOR RADIO PULSARS AND PSR J2007+2722 DISCOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.; Knispel, B.; Aulbert, C.; Bock, O.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B. [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Cordes, J. M.; Brazier, A.; Chatterjee, S. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); Hessels, J. W. T. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Anderson, D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Demorest, P. B. [NRAO (National Radio Astronomy Observatory), Charlottesville, VA 22903 (United States); Gotthelf, E. V. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hammer, D. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A2T8 (Canada); Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); McLaughlin, M. A., E-mail: bruce.allen@aei.mpg.de [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); and others

    2013-08-20

    Einstein-Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein-Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least {approx}100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries.

  15. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    F. Nagase

    2002-03-01

    Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X-ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary systems (XBPs). First, I will discuss soft excess features observed in the energy spectra of XBPs and propose that it is a common feature for various subclasses of XBPs. Next I will present some recent results of high resolution spectroscopy with ASCA and Chandra.

  16. Parkes Radio Searches of Fermi Gamma-Ray Sources and Millisecond Pulsar Discoveries

    Science.gov (United States)

    Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Sarkissian, J.; Cromartie, H. T.; Johnston, S.; Reynolds, J. E.; Wolff, M. T.; Freire, P. C. C.; Bhattacharyya, B.; Ferrara, E. C.; Keith, M.; Michelson, P. F.; Saz Parkinson, P. M.; Wood, K. S.

    2015-09-01

    In a search with the Parkes radio telescope of 56 unidentified Fermi-Large Area Telescope (LAT) gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported by Kerr et al. We did not detect radio pulsations from six other pulsars now known in these sources. We describe the completed survey, which included multiple observations of many targets conducted to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. We present timing solutions and polarimetry for five of the MSPs and gamma-ray pulsations for PSR J1903-7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are in \\gt 1 day circular orbits with 0.2-0.3 {M}⊙ presumed white dwarf companions. PSR J0955-6150, in a 24 day orbit with a ≈ 0.25 {M}⊙ companion but eccentricity of 0.11, belongs to a recently identified class of eccentric MSPs. PSR J1036-8317 is in an 8 hr binary with a \\gt 0.14 {M}⊙ companion that is probably a white dwarf. PSR J1946-5403 is in a 3 hr orbit with a \\gt 0.02 {M}⊙ companion with no evidence of radio eclipses.

  17. THE BINARY COMPANION OF YOUNG, RELATIVISTIC PULSAR J1906+0746

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, J.; Janssen, G. H. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Kasian, L.; Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Lorimer, D. R. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Camilo, F. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); Chatterjee, S. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace LPC2E CNRS-Université d' Orléans, F-45071 Orléans (France); Desvignes, G.; Freire, P. C. C.; Kramer, M. [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Ransom, S. M. [NRAO (National Radio Astronomy Observatory), Charlottesville, VA 22903 (United States); Weisberg, J. M., E-mail: leeuwen@astron.nl [Department of Physics and Astronomy, Carleton College, Northfield, MN 55057 (United States)

    2015-01-10

    PSR J1906+0746 is a young pulsar in the relativistic binary with the second-shortest known orbital period, of 3.98 hr. We here present a timing study based on five years of observations, conducted with the five largest radio telescopes in the world, aimed at determining the companion nature. Through the measurement of three post-Keplerian orbital parameters, we find the pulsar mass to be 1.291(11) M {sub ☉}, and the companion mass 1.322(11) M {sub ☉}, respectively. These masses fit well in the observed collection of double neutron stars (DNSs), but are also compatible with other systems where a young pulsar such as J1906+0746 is orbited by a white dwarf (WD). Neither radio pulsations nor dispersion-inducing outflows that could have further established the companion nature were detected. We derive an H I-absorption distance, which indicates that an optical confirmation of a WD companion is very challenging. The pulsar is fading fast due to geodetic precession, limiting future timing improvements. We conclude that the young pulsar J1906+0746 is likely part of a DNS, or is otherwise orbited by an older WD, in an exotic system formed through two stages of mass transfer.

  18. The Binary Companion of Young, Relativistic Pulsar J1906+0746

    CERN Document Server

    van Leeuwen, Joeri; Stairs, Ingrid H; Lorimer, D R; Camilo, F; Chatterjee, S; Cognard, I; Desvignes, G; Freire, P C C; Janssen, G H; Kramer, M; Lyne, A G; Nice, D J; Ransom, S M; Stappers, B W; Weisberg, J M

    2014-01-01

    PSR J1906+0746 is a young pulsar in the relativistic binary with the second-shortest known orbital period, of 3.98 hours. We here present a timing study based on five years of observations, conducted with the 5 largest radio telescopes in the world, aimed at determining the companion nature. Through the measurement of three post-Keplerian orbital parameters we find the pulsar mass to be 1.291(11) M_sol, and the companion mass 1.322(11) M_sol respectively. These masses fit well in the observed collection of double neutron stars, but are also compatible with other white dwarfs around young pulsars such as J1906+0746. Neither radio pulsations nor dispersion-inducing outflows that could have further established the companion nature were detected. We derive an HI-absorption distance, which indicates that an optical confirmation of a white dwarf companion is very challenging. The pulsar is fading fast due to geodetic precession, limiting future timing improvements. We conclude that young pulsar J1906+0746 is likely...

  19. Pulsar-Black Hole Binaries in the Galactic Center

    CERN Document Server

    Faucher-Giguere, C -A

    2010-01-01

    Binaries consisting of a pulsar and a black hole (BH) are a holy grail of astrophysics, both for their significance for stellar evolution and for their potential application as probes of strong gravity. In spite of extensive surveys of our Galaxy and its system of globular clusters, no pulsar-black hole (PSR-BH) binary has been found to date. Clues as to where such systems might exist are therefore highly desirable. We show that if the central parsec around Sgr A* harbors a cluster of ~25,000 stellar BHs (as predicted by mass segregation arguments) and if it is also rich in recycled pulsar binaries (by analogy with globular clusters), then 3-body exchange interactions should produce PSR-BHs in the Galactic center. Simple estimates of the formation rate and survival time of these binaries suggest that a few PSR-BHs should be present in the central parsec today. The proposed formation mechanism makes unique predictions for the PSR-BH properties: 1) the binary would reside within ~1 pc of Sgr A*; 2) the pulsar w...

  20. A search for radio pulsars around low-mass white dwarfs

    CERN Document Server

    Van Leeuwen, J; Meyer, S; Stairs, I; Leeuwen, Joeri van; Ferdman, Robert D.; Meyer, Sol; Stairs, Ingrid

    2006-01-01

    Low-mass white dwarfs can either be produced in low-mass X-ray binaries by stable mass transfer to a neutron star, or in a common-envelope phase with a heavier white dwarf companion. We have searched 8 low-mass white dwarf candidates recently identified in the Sloan Digital Sky Survey for radio pulsations from pulsar companions, using the Green Bank Telescope at 340MHz. We have found no pulsations down to flux densities of 0.6-0.8 mJy/kpc^2 and conclude that a given low-mass helium-core white dwarf has a probability of < 0.18+-0.05 of being in a binary with a radio pulsar.

  1. Be/X-Ray Pulsar Binary Science with LOFT

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  2. Detailed studies of the PSR B1259-63 spectrum evolution and classification of radio pulsar spectra

    CERN Document Server

    Dembska, M; Lewandowski, W

    2013-01-01

    Kijak et al. (2011a) studied the radio spectrum of PSR B1259-63 in an unique binary with Be star LS 2883 and showed that this pulsar undergoes a spectrum evolution due to orbital motion. They proposed a qualitative model which explains this evolution. They considered two mechanisms that might influence the observed radio emission: free-free absorption and cyclotron resonance. Using the same database we constructed spectra for chosen observing days and obtained different types of spectra. Comparing to current classification of pulsar spectra, there occurs a suggestion that the appearance of various spectra shapes, different from a simple power law which is typical for radio pulsars, is possibly caused by environmental conditions around neutron stars. Therefore, the case of B1259-63 can be treated as a key factor to explain not only the GPS phenomenon observed for the solitary pulsars with interesting environments and also another types of spectra (e.g. with break).

  3. Wide radio beams from gamma-ray pulsars

    CERN Document Server

    Ravi, V; Hobbs, G

    2010-01-01

    We investigate the radio and gamma-ray beaming properties of normal and millisecond pulsars by selecting two samples from the known populations. The first, Sample G, contains pulsars which are detectable in blind searches of gamma-ray data from the Fermi Large Area Telescope. The second, Sample R, contains pulsars detectable in blind radio searches which have spin-down luminosities Edot > 10^{34} erg/s. We analyse the fraction of the gamma-ray-selected Sample G which have detectable radio pulses and the fraction of the radio-selected Sample R which have detectable gamma-ray pulses. Twenty of our 35 Sample G pulsars have already observed radio pulses. This rules out low-altitude polar-cap beaming models if, as is currently believed, gamma-ray beams are generated in the outer magnetosphere and are very wide. We further find that, for the highest-Edot pulsars, the radio and gamma-ray beams have comparable beaming factors, i.e., the beams cover similar regions of the sky as the star rotates. For lower-Edot gamma-...

  4. Probing Binary Evolution Using the Pulsar Fossil Record

    Science.gov (United States)

    Ferdman, Robert D.; Stairs, I. H.; Kramer, M.; McLaughlin, M. A.; Faulkner, A.; Backer, D. C.; Demorest, P.; Nice, D. J.; Burgay, M.; Camilo, F.; D'Amico, N.; Hobbs, G.; Lorimer, D. R.; Lyne, A. G.; Manchester, R.; Possenti, A.

    2006-12-01

    The Parkes Multibeam Pulsar Survey has yielded a significant number of very interesting binary and millisecond pulsars. Two of these objects are part of an ongoing timing study at the Green Bank Telescope (GBT). PSR J1756-2251 is a double-neutron star (DNS) binary system. Its orbital properties show it to be a similar system to PSR B1913+16, the original binary pulsar system discovered by Hulse and Taylor. Mass measurements of this system thus provide another important opportunity to test the validity of General Relativity, and to study the evolutionary history of DNS systems. PSR J1802-2124 is part of the relatively new and unstudied "intermediate-mass" class of binary pulsars. These typically spin with periods in the tens of milliseconds, and often have relatively massive (> 0.7 solar masses) white dwarf companions. GBT observations over the past two years have enabled us to detect the Shapiro delay in this system. This has led to the determination of the individual masses of the neutron star and white dwarf companion, providing constraints on the mass-transfer history in this unusual system.

  5. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  6. Excitation of Alfven Waves and Pulsar Radio Emission

    OpenAIRE

    Lyutikov, Maxim

    1999-01-01

    We analyze mechanisms of the excitation of Alfv\\'{e}n wave in pulsar magnetospheres as a possible source of pulsar radio emission generation. We find that Cherenkov excitation of obliquely propagating Alfv\\'{e}n waves is inefficient, while excitation at the anomalous cyclotron resonance by the particles from the primary beam and from the tail of the bulk distribution function may have a considerable growth rate. The cyclotron instability on Alfv\\'{e}n waves occurs in the kinetic regime still ...

  7. Youngest Radio Pulsar Revealed with Green Bank Telescope

    Science.gov (United States)

    2002-04-01

    Astronomers using the National Science Foundation's (NSF) newly commissioned Robert C. Byrd Green Bank Telescope (GBT) have detected remarkably faint radio signals from an 820 year-old pulsar, making it the youngest radio-emitting pulsar known. This discovery pushes the boundaries of radio telescope sensitivity for discovering pulsars, and will enable scientists to conduct observations that could lead to a better understanding of how these stars evolve. The Robert C. Byrd Green Bank Telescope Robert C. Byrd Green Bank Telescope "Important questions about pulsars may be answered by long-term monitoring of objects such as the one we just detected," said Fernando Camilo of Columbia University in New York City. "Young pulsars are particularly rare, and being able to study such a young one at radio wavelengths provides an outstanding opportunity to learn critical facts about their evolution and workings." The results of this research, based on observations conducted on February 22-23, 2002, were accepted for publication in the Astrophysical Journal Letters. Scientists have long suspected that a pulsar - a rapidly spinning, superdense neutron star - was born when a giant star ended its life in a cataclysmic supernova explosion observed in late summer of 1181, as suggested by Japanese and Chinese historical records. For the past 20 years, astronomers have searched this supernova remnant (3C58), located 10,000 light-years away in the constellation Cassiopeia, for the telltale pulsations of a newly born pulsar. Late in 2001, data from NASA's Chandra X-ray satellite confirmed its existence, but it remained an elusive quarry for radio telescopes. "We believed from historical records and certainly knew from recent X-ray observations that this star was there," Camilo remarked, "but despite many attempts, no one had been able to find any radio pulsations from it because the signals are, it turns out, incredibly weak." For comparison, this pulsar's radio emission is some 250

  8. A RADIO SEARCH FOR PULSAR COMPANIONS TO SLOAN DIGITAL SKY SURVEY LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M sun) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive white dwarf (WD) or a neutron star (NS) as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs, suggesting that the SDSS LMWDs may have NS companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al., who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as 'ordinary' WDs). We discuss the constraints our nondetections place on the probability P MSP that the companion to a given LMWD is a radio pulsar in the context of the luminosity and acceleration limits of our search; we find that P MSP +4-2%.

  9. Swinging between rotation and accretion power in a binary millisecond pulsar

    CERN Document Server

    Papitto, A; Bozzo, E; Rea, N

    2013-01-01

    We present the discovery of IGR J18245-2452, the first millisecond pulsar observed to swing between a rotation-powered, radio pulsar state, and an accretion-powered X-ray pulsar state (Papitto et al. 2013, Nature, 501, 517). This transitional source represents the most convincing proof of the evolutionary link shared by accreting neutron stars in low mass X-ray binaries, and radio millisecond pulsars. It demonstrates that swings between these two states take place on the same time-scales of luminosity variations of X-ray transients, and are therefore most easily interpreted in terms of changes in the rate of mass in-flow. While accreting mass, the X-ray emission of IGR J18245-2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of th...

  10. A Massive Pulsar in a Compact Relativistic Binary

    CERN Document Server

    Antoniadis, John; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G; 10.1126/science.1233232

    2013-01-01

    Many physically motivated extensions to general relativity (GR) predict significant deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 +/- 0.04 solar mass pulsar in a 2.46-hr orbit with a 0.172 +/- 0.003 solar mass white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

  11. Gamma-rays from nebulae around binary systems containing energetic rotation powered pulsars

    OpenAIRE

    Bednarek, W.; Sitarek, J.

    2013-01-01

    We consider nebulae which are created around binary systems containing rotation powered pulsars and companion stars with strong stellar winds. It is proposed that the stellar and pulsar winds have to mix at some distance from the binary system, defined by the orbital period of the companion stars and the velocity of the stellar wind. The mixed pulsar-stellar wind expands with a specific velocity determined by the pulsar power and the mass loss rate of the companion star. Relativistic particle...

  12. Physics of radio emission in gamma-ray pulsars

    CERN Document Server

    Petrova, S A

    2016-01-01

    Propagation of radio emission in pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with an especial emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are outlined as well. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves ar...

  13. Fast pulsars, strange stars: An opportunity in radio astronomy

    International Nuclear Information System (INIS)

    The world's data on radio pulsars is not expected to represent the underlying pulsar population because of a search bias against detection of short periods, especially below 1 ms. Yet pulsars in increasing numbers with periods right down to this limit have been discovered suggesting that there may be even shorter ones. If pulsars with periods below 1/2 ms were found, the conclusion that the confined hadronic phase of nucleons and nuclei is only metastable would be almost inescapable. The plausible ground state in that event is the deconfined phase of (3-flavor) strange-quark-matter. From the QCD energy scale this is as likely a ground state as the confined phase. We show that strange matter as the ground state is not ruled out by any known fact, and most especially not by the fact that the universe is in the confined phase. 136 refs

  14. The LOFAR Pilot Surveys for Pulsars and Fast Radio Transients

    CERN Document Server

    Coenen, Thijs; Hessels, Jason W T; Stappers, Ben W; Kondratiev, Vladislav I; Alexov, A; Breton, R P; Bilous, A; Cooper, S; Falcke, H; Fallows, R A; Gajjar, V; Grießmeier, J -M; Hassall, T E; Karastergiou, A; Keane, E F; Kramer, M; Kuniyoshi, M; Noutsos, A; Osłowski, S; Pilia, M; Serylak, M; Schrijvers, C; Sobey, C; ter Veen, S; Verbiest, J; Weltevrede, P; Wijnholds, S; Zagkouris, K; van Amesfoort, A S; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Corstanje, A; Deller, A; Duscha, S; Eislöffel, J; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Hamaker, J P; Heald, G; Hoeft, M; van der Horst, A; Juette, E; Kuper, G; Law, C; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Munk, H; Orru, E; Paas, H; Pandey-Pommier, M; Polatidis, A G; Reich, W; Renting, A; Röttgering, H; Rowlinson, A; Scaife, A M M; Schwarz, D; Sluman, J; Smirnov, O; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Thoudam, S; Toribio, C; Vermeulen, R; Vocks, C; van Weeren, R J; Wucknitz, O; Zarka, P; Zensus, A

    2014-01-01

    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a large fraction of the northern sky, ~1.4 x 10^4 sq. deg, with 1-hr dwell times. Each observation covered ~75 sq. deg using 7 independent fields formed by incoherently summing the high-band antenna fields. The second pilot survey, the LOFAR Tied-Array Survey (LOTAS), spanned ~600 sq. deg, with roughly a 5-fold increase in sensitivity compared with LPPS. Using a coherent sum of the 6 LOFAR "Superterp" stations, we formed 19 tied-array beams, together covering 4 sq. deg per pointing. From LPPS we derive a limit on the occurrence, at 142 MHz, of dispersed radio bursts of 107 Jy for the narrowest searched burst duration of 0.66 ms. In LPPS, we re-detected 65 previously known pulsars. LOTAS discovered two pulsars, the firs...

  15. Conducting the deepest all-sky radio pulsar survey ever: The All-Sky High Time Resolution Universe Survey

    Science.gov (United States)

    Ng, Cherry

    The extreme conditions found in and around pulsars make them fantastic natural laboratories, providing insights to a rich variety of aspects of fundamental physics and astronomy. To discover more pulsars we have begun the High Time Resolution Universe (HTRU) survey; a blind survey of the northern sky with the 100-m Effelsberg radio telescope in Germany and a twin survey of the southern sky with the 64-m Parkes radio telescope in Australia. The HTRU survey uses multi-beam receivers and backends constructed with new advancements in technology, providing unprecedentedly high time and frequency resolution to probe deeper into the Galaxy than ever before. Observations from Parkes have recently been completed and it is thus a suitable moment to review the success of the survey. In my talk I will discuss the discovery highlights such as the magnetar, two “planet-pulsar” binaries and the Fast Radio Bursts (FRBs) from cosmological distances. The HTRU low-latitude data promises to provide the deepest large-scale search ever for the Galactic plane region. I will present an innovative segmented search technique which aims to increase our chances of discoveries of highly accelerated relativistic binary systems, including the potential pulsar-black-hole binaries. I will also provide an update on the survey status for the Northern survey with Effelsberg, which has led to the recent discovery of a highly eccentric binary millisecond pulsar.

  16. The induced turbulence effect on propagation of radio emission in pulsar magnetospheres

    OpenAIRE

    Luo, Qinghuan; Melrose, D. B.

    2006-01-01

    The effect of photon-beam-induced turbulence on propagation of radio emission in a pulsar magnetosphere is discussed. Beamed radio emission with a high brightness temperature can generate low-frequency plasma waves in the pulsar magnetosphere and these waves scatter the radio beam. We consider this effect on propagation of radio emission both in the open field line region and in the closed field line region. The former is applicable to most cases of pulsar radio emission where the propagation...

  17. Sampling the Radio Transient Universe: Studies of Pulsars and the Search for Extraterrestrial Intelligence

    Science.gov (United States)

    Chennamangalam, Jayanth

    The transient radio universe is a relatively unexplored area of astronomy, offering a variety of phenomena, from solar and Jovian bursts, to flare stars, pulsars, and bursts of Galactic and potentially even cosmological origin. Among these, perhaps the most widely studied radio transients, pulsars are fast-spinning neutron stars that emit radio beams from their magnetic poles. In spite of over 40 years of research on pulsars, we have more questions than answers on these exotic compact objects, chief among them the nature of their emission mechanism. Nevertheless, the wealth of phenomena exhibited by pulsars make them one of the most useful astrophysical tools. With their high densities, pulsars are probes of the nature of ultra-dense matter. Characterized by their high timing stability, pulsars can be used to verify the predictions of general relativity, discover planets around them, study bodies in the solar system, and even serve as an interplanetary (and possibly some day, interstellar) navigation aid. Pulsars are also used to study the nature of the interstellar medium, much like a flashlight illuminating airborne dust in a dark room. Studies of pulsars in the Galactic center can help answer questions about the massive black hole in the region and the star formation history in its vicinity. Millisecond pulsars in globular clusters are long-lived tracers of their progenitors, low-mass X-ray binaries, and can be used to study the dynamical history of those clusters. Another source of interest in radio transient astronomy is the hitherto undetected engineered signal from extraterrestrial intelligence. The Search for Extraterrestrial Intelligence (SETI) is an ongoing attempt at discovering the presence of technological life elsewhere in the Galaxy. In this work, I present my forays into two aspects of the study of the radio transient universe---pulsars and SETI. Firstly, I describe my work on the luminosity function and population size of pulsars in the globular

  18. A millisecond pulsar in an extremely wide binary system

    CERN Document Server

    Bassa, C G; Stappers, B W; Tauris, T M; Wevers, T; Jonker, P G; Lentati, L; Verbiest, J P W; Desvignes, G; Graikou, E; Guillemot, L; Freire, P C C; Lazarus, P; Caballero, R N; Champion, D J; Cognard, I; Jessner, A; Jordan, C; Karuppusamy, R; Kramer, M; Lazaridis, K; Lee, K J; Liu, K; Lyne, A G; McKee, J; Oslowski, S; Perrodin, D; Sanidas, S; Shaifullah, G; Smits, R; Theureau, G; Tiburzi, C; Zhu, W W

    2016-01-01

    We report on 22 yrs of radio timing observations of the millisecond pulsar J1024$-$0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869$-$0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, $\\mathrm{[M/H]}=-1.0$, $T_\\mathrm{eff}=4050\\pm50$ K) and that its position, proper motion and distance are consistent with those of PSR J1024$-$0719. We conclude that PSR J1024$-$0719 and 2MASS J10243869$-$0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives, which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main...

  19. The binary pulsar: A test for general relativity

    International Nuclear Information System (INIS)

    The binary system of PSR1913+16 contains the pulsar and an, as yet unknown, companion. If this star is a compact object too, then the data can be interpreted in terms of general relativistic effects. This leads to the conclusion that the decay of the orbit must be due to the emission of gravitational waves. The nature of the unseen companion is discussed in detail

  20. On the inverse Compton scattering model of radio pulsars

    CERN Document Server

    Qiao, G J; Liu Jian Fei; Han, J L; Zhang, B

    2000-01-01

    Some characteristics of the inverse Compton scattering (ICS) model are reviewed. At least the following properties of radio pulsars can be reproduced in the model: core or central emission beam, one or two hollow emission cones, different emission heights of these components, diverse pulse profiles at various frequencies, linear and circular polarization features of core and cones.

  1. The space velocities of radio pulsars

    Science.gov (United States)

    Loginov, A. A.; Nikitina, E. B.; Malov, I. F.

    2016-02-01

    Known models proposed to explain the high space velocities of pulsars based on asymmetry of the transport coefficients of different sorts of neutrinos or electromagnetic radiation can be efficient only in the presence of high magnetic fields (to 1016 G) or short rotation periods for the neutron stars (of the order of 1 ms). This current study shows that the observed velocities are not correlated with either the pulsar periods or their surface magnetic fields. The initial rotation periods are estimated in a model for the magnetedipolar deceleration of their spin, aßsuming that the pulsar ages are equal to their kinematic ages. The initial period distribution is bimodal, with peaks at 5 ms and 0.5 s, and similar to the current distribution of periods. It is shown that asymmetry of the pulsar electromagnetic radiation is insufficient to give rise to additional acceleration of pulsars during their evolution after the supernova explosion that gave birth to them. The observations testify to deceleration of the motion, most likely due to the influence of the interstellar medium and interactions with nearby objects. The time scale for the exponential decrease in the magnetic field τ D and in the angle between the rotation axis and magnetic moment τ ß are estimated, yielding τ β = 1.4 million years. The derived dependence of the transverse velocity of a pulsar on the angle between the line of sight and the rotation axis of the neutron star corresponds to the expected dependence for acceleration mechanisms associated with asymmetry of the radiation emitted by the two poles of the star.

  2. Parkes radio searches of Fermi gamma-ray sources and millisecond pulsar discoveries

    CERN Document Server

    Camilo, F; Ray, P S; Ransom, S M; Sarkissian, J; Cromartie, H T; Johnston, S; Reynolds, J E; Wolff, M T; Freire, P C C; Bhattacharyya, B; Ferrara, E C; Keith, M; Michelson, P F; Parkinson, P M Saz; Wood, K S

    2015-01-01

    In a search with the Parkes radio telescope of 56 unidentified Fermi-LAT gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported in Kerr et al. (2012). We did not detect radio pulsations from another six pulsars now known in these sources. We describe the completed survey, which included multiple observations of many targets done to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. We present timing solutions and polarimetry for five of the MSPs, and gamma-ray pulsations for PSR J1903-7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are in >1 d circular orbits with 0.2-0.3 Msun presumed white dwarf companions. PSR J0955-6150, in a 24 d orbit with a ~0.25 Msun companion but eccentricity of 0.11, belongs to a recentl...

  3. Radio emissions from pulsar companions : a refutable explanation for galactic transients and fast radio bursts

    CERN Document Server

    Mottez, Fabrice

    2014-01-01

    The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources, of unknown origin but extremely energetic. We propose here a new explanation - not requiring an extreme release of energy - involving a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. We investigate a theory of radio waves associated to such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving their properties, we compare them with the observations of various transient radio signals in order to see if they could originate from pulsar-orbiting bodies. The analysis is based on the theory of Alfv\\'en wings: for a body immersed in a pulsar wind, a system of two stationary Alfv\\'en waves is attached to the body, provided that the wind is highly magnetized. When destabilized through plasma instabilities, Alfv\\'en wings can be the locus of strong radio sources convected with the pulsar wind. Assuming a cyclotron mase...

  4. Long-term observations of the pulsars in 47 Tucanae. I. A study of four elusive binary systems

    CERN Document Server

    Ridolfi, A; Torne, P; Heinke, C O; Berg, M van den; Jordan, C; Kramer, M; Bassa, C G; Sarkissian, J; D'Amico, N; Lorimer, D; Camilo, F; Manchester, R N; Lyne, A

    2016-01-01

    For the past couple of decades, the Parkes radio telescope has been regularly observing the millisecond pulsars in 47 Tucanae (47 Tuc). This long-term timing program was designed to address a wide range of scientific issues related to these pulsars and the globular cluster where they are located. In this paper, the first of a series, we address one of these objectives: the characterization of four previously known binary pulsars for which no precise orbital parameters were known, namely 47 Tuc P, V, W and X (pulsars 47 Tuc R and Y are discussed elsewhere). We determined the previously unknown orbital parameters of 47 Tuc V and X and greatly improved those of 47 Tuc P and W. For pulsars W and X we obtained, for the first time, full coherent timing solutions across the whole data span, which allowed a much more detailed characterization of these systems. 47 Tuc W, a well-known tight eclipsing binary pulsar, exhibits a large orbital period variability, as expected for a system of its class. 47 Tuc X turns out to...

  5. A statistical analysis of radio pulsar timing noise

    International Nuclear Information System (INIS)

    We present an analysis of the timing observations on 27 radio pulsars, collected at Hartebeesthoek Radio Astronomy Observatory (HartRAO), which span between ∼ 9 and 14 yrs. Our results show that the observed frequency second derivative (νobs) are highly non-stationary, with magnitude and sign depending randomly on time and data span length. Statistical analysis of a complete sample of 391 (25 HartRAO and 366 Jodrell Bank Observatory) pulsars reveals no significant correlation between νobs and both the pulsar spin-down rate (P) and the characteristic age (τc). Irrespective of sign, we find ∼ 0.20 and -0.30 as the correlation coefficients between the measured braking indices and, respectively, P and τc. This result reaffirms an earlier conclusion by Chukwude (2003) that the braking indices of most radio pulsars, obtained through the standard timing technique, are strongly dominated by sustained random fluctuations in the observed pulse phase. (author)

  6. Hunting for Orphaned Central Compact Objects among Radio Pulsars

    CERN Document Server

    Luo, J; Ho, W C G; Bogdanov, S; Kaspi, V M; He, C

    2015-01-01

    Central compact objects (CCOs) are a handful of young neutron stars found at the center of supernova remnants (SNRs). They show high thermal X-ray luminosities but no radio emission. Spin-down rate measurements of the three CCOs with X-ray pulsations indicate surface dipole fields much weaker than those of typical young pulsars. To investigate if CCOs and known radio pulsars are objects at different evolutionary stages, we carried out a census of all weak-field (<1e11 G) isolated radio pulsars in the Galactic plane to search for CCO-like X-ray emission. None of the 12 candidates is detected at X-ray energies, with luminosity limits of 1e32-1e34 erg/s. We consider a scenario in which the weak surface fields of CCOs are due to rapid accretion of supernova materials and show that as the buried field diffuses back to the surface, a CCO descendant is expected to leave the P-Pdot parameter space of our candidates at a young age of a few times 10kyr. Hence, the candidates are likely to be just old ordinary pulsar...

  7. A current circuit model of pulsar radio emission

    CERN Document Server

    Kunzl, T A; Jessner, A; Kunzl, Th.

    2002-01-01

    We present the outline of a new model for the coherent radio emission of pulsars that succeeds in reproducing the energetics and brightness temperatures of the observed radio emission from the observationally deduced distances of 50-100 pulsar radii above the neutron star in a narrow region. The restrictions imposed by energy conservation, plasma dynamics of the coherent radiation process and propagation effects are used to apply the action of a plasma process like coherent inverse Compton scattering (CICS) (see Benford, 1992). In accordance with our findings (Kunzl et al. 1998a) this process requires Lorentz factors of about 10 which are lower than in most other radio emission models. This implies that no significant pair production can take place near the surface and we expect charge densities close to the Goldreich-Julian value (Goldreich & Julian (1969)). To fulfill the energetic and electrodynamic constraints the model requires constant re-acceleration in dissipation regions which can be interpreted ...

  8. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ronaldo V.; Malheiro, M. [Departamento de Física, Instituto Tecnológico de Aeronáutica, ITA - DCTA, Vila das Acácias, São José dos Campos, 12228-900 SP (Brazil); Coelho, J. G. [INPE - Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Av. dos Astronautas 1758, São José dos Campos, 12227-010 SP (Brazil)

    2015-12-17

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  9. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    International Nuclear Information System (INIS)

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 107 − 1010 G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized

  10. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    Science.gov (United States)

    Lobato, Ronaldo V.; Coelho, J. G.; Malheiro, M.

    2015-12-01

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ˜ 107 - 1010 G and rotate very fast with angular frequencies Ω ˜ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission "o2" is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  11. A search for radio emission from X-ray binaries and related objects

    International Nuclear Information System (INIS)

    5-GHz radio observations are reported of 117 X-ray binary stars and cataclysmic variable stars using the Jodrell Bank Lovell-Mk II broad-band interferometer. Sensitivity was sufficient to detect sources of 2-3 mJy. In addition to seven objects already known to be radio emitters, seven new radio sources were detected. VLA observations confirmed that two of the new radio sources are coincident with the X-ray positions, one of them probably an extragalactic radio source, and the other a pulsar. (author)

  12. Discovery of two millisecond pulsars in Fermi sources with the Nancay Radio Telescope

    CERN Document Server

    Cognard, I; Johnson, T J; Smith, D A; Venter, C; Harding, A K; Wolff, M T; Cheung, C C; Donato, D; Abdo, A A; Ballet, J; Camilo, F; Desvignes, G; Dumora, D; Ferrara, E C; Freire, P C C; Grove, J E; Keith, M; Kramer, M; Lyne, A G; Michelson, P F; Parent, D; Ransom, S M; Ray, P S; Romani, R W; Parkinson, P M Saz; Stappers, B W; Theureau, G; Thompson, D J; Weltevrede, P; Wood, K S

    2011-01-01

    We report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of \\emph{Fermi Large Area Telescope} sources with no previously known counterparts, using the Nan\\c{c}ay radio telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated \\emph{Fermi} sources in which they were found. The gamma-ray light curves and spectral properties are similar to those of previously-detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR ...

  13. Rotating Radio Transients and Their Place Among Pulsars

    Science.gov (United States)

    Burke-Spolaor, S.

    2012-01-01

    Six years ago, the discovery of Rotating Radio Transients (RRATs) marked what appeared to be a new type of sparsely-emitting pulsar. Since 2006, more than 70 of these objects have been discovered in single-pulse searches of archival and new surveys. With a continual inflow of new information about the RRAT population in the form of new discoveries, multi-frequency follow ups, coherent timing solutions, and pulse rate statistics, a view is beginning to form of the place in the pulsar population RRATs hold. Here we review the properties of neutron stars discovered through single pulse searches. We first seek to clarify the definition of the term RRAT, emphasising that "the RRAT population" encompasses several phenomenologies. A large subset of RRATs appears to represent the tail of an extended distribution of pulsar nulling fractions and activity cycles; these objects present several key open questions remaining in this field.

  14. Timing the Relativistic Binary Pulsar PSR B1913+16

    Science.gov (United States)

    Huang, Yuping; Weisberg, Joel M.

    2016-06-01

    We present results of three decades of timing data from the relativistic binary pulsar PSR B1913+16. With kinematic corrections, the measured rate of orbital decay due to gravitational wave radiation exhibits 99.69+/-0.17% agreement with the prediction of general relativity. For the first time in this system, the Shapiro delay parameters have been determined, therefore constituting two additional tests of gravity theories. We have also measured the relativistic deformation parameter of the orbit, and marginally the derivative of the semimajor axis, both of which are biased by the presence of aberration delay. We will discuss the possibility of constraining the moment of inertia of the pulsar in this system through improved measurement of the orbital semimajor axis derivative, and the determination of the aberration delay parameters from future geodetic precession modelling.

  15. Rotational Behaviors and Magnetic Field Evolution of Radio Pulsars

    CERN Document Server

    Xie, Yi

    2014-01-01

    The observed long-term spin-down evolution of isolated radio pulsars cannot be explained by the standard magnetic dipole radiation with a constant braking torque. However how and why the torque varies still remains controversial, which is an outstanding problem in our understanding of neutron stars. We have constructed a phenomenological model of the evolution of surface magnetic fields of pulsars, which contains a long-term decay modulated by short-term oscillations; a pulsar's spin is thus modified by its magnetic field evolution. The predictions of this model agree with the precisely measured spin evolutions of several individual pulsars; the derived parameters suggest that the Hall drift and Hall waves in the NS crusts are probably responsible for the long-term change and short-term quasi-periodical oscillations, respectively. Many statistical properties of the timing noise of pulsars can be well re-produced with this model, including correlations and the distributions of the observed braking indices of t...

  16. Discovery of a millisecond pulsar in the 5.4 day binary 3FGL J1417.5-4402: observing the late phase of pulsar recycling

    CERN Document Server

    Camilo, F; Ransom, S M; Halpern, J P; Bogdanov, S; Kerr, M; Ray, P S; Cordes, J M; Sarkissian, J; Barr, E D; Ferrara, E C

    2016-01-01

    In a search of the unidentified Fermi gamma-ray source 3FGL J1417.5-4402 with the Parkes radio telescope, we discovered PSR J1417-4402, a 2.66 ms pulsar having the same 5.4 day orbital period as the optical and X-ray binary identified by Strader et al. The existence of radio pulsations implies that the neutron star is currently not accreting. Substantial outflows from the companion render the radio pulsar undetectable for more than half of the orbit, and may contribute to the observed Halpha emission. Our initial pulsar observations, together with the optically inferred orbit and inclination, imply a mass ratio of 0.171+/-0.002, a companion mass of M_2=0.33+/-0.03 Msun, and a neutron star mass in the range 1.77radio dispersion measure distance of 1.6 kpc. The smaller distance would reduce the inferred Roche-lobe filling factor, increase the inferred i...

  17. Engulfing a radio pulsar: the case of PSR J1023+0038

    OpenAIRE

    Zelati, F. Coti; Baglio, M. C.; S. Campana; D'Avanzo, P.; Goldoni, P.; Masetti, N.; Muñoz-Darias, T.; Covino, S.; Fender, R. P.; Bailón, E. Jiménez; Otí-Floranes, H.; Palazzi, E.; F. G. Ramón-Fox

    2014-01-01

    The binary millisecond radio pulsar PSR J1023+0038 has been recently the subject of multiwavelength monitoring campaigns which revealed that an accretion disc has formed around the neutron star (since 2013 June). We present here the results of X-ray and UV observations carried out by the Swift satellite between 2013 October and 2014 May, and of optical and NIR observations performed with the REM telescope, the Liverpool Telescope, the 2.1-m telescope at the San Pedro M\\'artir Observatory and ...

  18. Elementary Wideband Timing of Radio Pulsars

    Science.gov (United States)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template "portrait," the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a "fiducial component," and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824-2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  19. A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    International Nuclear Information System (INIS)

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries. (U.K.)

  20. The Einstein@Home search for radio pulsars and PSR J2007+2722

    CERN Document Server

    Allen, B; Cordes, J M; Deneva, J S; Hessels, J W T; Anderson, D; Aulbert, C; Bock, O; Brazier, A; Chatterjee, S; Demorest, P B; Eggenstein, H B; Fehrmann, H; Gotthelf, E V; Hammer, D; Kaspi, V M; Kramer, M; Lyne, A G; Machenschalk, B; McLaughlin, M A; Messenger, C; Pletsch, H J; Ransom, S M; Stairs, I H; Stappers, B W; Bhat, N D R; Bogdanov, S; Camilo, F; Champion, D J; Crawford, F; Desvignes, G; Freire, P C C; Heald, G; Jenet, F A; Lazarus, P; Lee, K J; van Leeuwen, J; Lynch, R; Papa, M A; Prix, R; Rosen, R; Scholz, P; Siemens, X; Stovall, K; Venkataraman, A; Zhu, W

    2013-01-01

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using PALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 min. We also describe the first Einstein@Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but can not prove that PSR J2007+27...

  1. Exploring Dual and Binary AGN via Radio Emission

    Science.gov (United States)

    Burke Spolaor, Sarah; Lazio, J.

    2012-05-01

    Dual and binary supermassive black holes (SMBHs) are thought to form as a direct result of a major galaxy merger. The discovery of late-stage SMBH pairs could critically inform upcoming gravitational wave science and cosmological formation models, and could provide fascinating studies of post-merger dynamics and merger-induced SMBH growth. However, it has been notoriously difficult to identify clear electromagnetic markers for dual and binary SMBHs in late-stage merger systems. Accordingly, few definitive discoveries of paired SMBHs have yet been made, with only a handful of known systems at projected separations below 1kpc. We will review the unique contributions that radio imaging observations can make to this field: particularly in the search for new systems, the confirmation of candidate small-orbit binary systems, and the potential for multi-messenger gravitational wave science when combined with pulsar timing methods. We will also provide an update on recent radio searches for binary AGN. We acknowledge that a portion of research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  2. Curvature-drift instability fails to generate pulsar radio emission

    OpenAIRE

    Kaganovich, Alexander; Lyubarsky, Yuri

    2010-01-01

    The curvature drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing propagation of short-wave electro-magnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity therefore this mechanism is unable to generate high brightness temperature emission from initial weak fluctu...

  3. A Radio Search For Pulsar Companions To SDSS Low-Mass White Dwarfs

    CERN Document Server

    Agueros, Marcel A; Silvestri, Nicole M; Kleinman, S J; Anderson, Scott F; Liebert, James W

    2009-01-01

    We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M < 0.4 M_Sun) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive WD or a neutron star as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs (e.g., Benvenuto & De Vito 2005), suggesting that the SDSS LMWDs may have neutron star companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al. (2007), who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as "...

  4. Tests of Gravitational Symmetries with Radio Pulsars

    CERN Document Server

    Shao, Lijing

    2016-01-01

    Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.

  5. Tests of gravitational symmetries with radio pulsars

    Science.gov (United States)

    Shao, LiJing; Wex, Norbert

    2016-09-01

    Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.

  6. Do pulsar radio fluxes violate the inverse-square law?

    Science.gov (United States)

    Desai, Shantanu

    2016-04-01

    Singleton et al. (arXiv:0912.0350, 2009) have argued that the flux of pulsars measured at 1400 MHz shows an apparent violation of the inverse-square law with distance (r), and instead the flux scales as 1/r. They deduced this from the fact that the convergence error obtained in reconstructing the luminosity function of pulsars using an iterative maximum likelihood procedure is about 105 times larger for a distance exponent of two (corresponding to the inverse-square law) compared to an exponent of one. When we applied the same technique to this pulsar dataset with two different values for the trial luminosity function in the zeroth iteration, we find that neither of them can reproduce a value of 105 for the ratio of the convergence error between these distance exponents. We then reconstruct the differential pulsar luminosity function using Lynden-Bell's C- method after positing both inverse-linear and inverse-square scalings with distance. We show that this method cannot help in discerning between the two exponents. Finally, when we tried to estimate the power-law exponent with a Bayesian regression procedure, we do not get a best-fit value of one for the distance exponent. The model residuals obtained from our fitting procedure are larger for the inverse-linear law compared to the inverse-square law. Moreover, the observed pulsar flux cannot be parameterized only by power-law functions of distance, period, and period derivative. Therefore, we conclude from our analysis using multiple methods that there is no evidence that the pulsar radio flux at 1400 MHz violates the inverse-square law or that the flux scales inversely with distance.

  7. A Shapiro delay detection in the binary system hosting the millisecond pulsar PSR J1910-5959A

    CERN Document Server

    Corongiu, A; Possenti, A; Camilo, F; D'Amico, N; Lyne, A G; Manchester, R N; Sarkissian, J M; Bailes, M; Johnston, S; Kramer, M; van Straten, W

    2012-01-01

    PSR J1910-5959A is a binary pulsar with a helium white dwarf companion located about 6 arcmin from the center of the globular cluster NGC6752. Based on 12 years of observations at the Parkes radio telescope, the relativistic Shapiro delay has been detected in this system. We obtain a companion mass Mc = 0.180+/-0.018Msun (1sigma) implying that the pulsar mass lies in the range 1.1Msun <= Mp <= 1.5Msun. We compare our results with previous optical determinations of the companion mass, and examine prospects for using this new measurement for calibrating the mass-radius relation for helium white dwarfs and for investigating their evolution in a pulsar binary system. Finally we examine the set of binary systems hosting a millisecond pulsar and a low mass helium white dwarf for which the mass of both stars has been measured. We confirm that the correlation between the companion mass and the orbital period predicted by Tauris & Savonije reproduces the observed values but find that the predicted Mp - Pb co...

  8. The Probability Distribution of Binary Pulsar Coalescence Rates. I. Double Neutron Star Systems in the Galactic Field

    OpenAIRE

    Kim, C.; Kalogera, V.; Lorimer, D.R.

    2002-01-01

    Estimates of the Galactic coalescence rate (R) of close binaries with two neutron stars (NS-NS) are known to be uncertain by large factors (about two orders of magnitude) mainly due to the small number of systems detected as binary radio pulsars. We present an analysis method that allows us to estimate the Galactic NS-NS coalescence rate using the current observed sample and, importantly, to assign a statistical significance to these estimates and to calculate the allowed ranges of values at ...

  9. ARECIBO PULSAR SURVEY USING ALFA: PROBING RADIO PULSAR INTERMITTENCY AND TRANSIENTS

    International Nuclear Information System (INIS)

    We present radio transient search algorithms, results, and statistics from the ongoing Arecibo Pulsar ALFA (PALFA) survey of the Galactic plane. We have discovered seven objects through a search for isolated dispersed pulses. All of these objects are Galactic and have measured periods between 0.4 and 4.7 s. One of the new discoveries has a duty cycle of 0.01%, smaller than that of any other radio pulsar. We discuss the impact of selection effects on the detectability and classification of intermittent sources, and compare the efficiencies of periodicity and single-pulse (SP) searches for various pulsar classes. For some cases we find that the apparent intermittency is likely to be caused by off-axis detection or a short time window that selects only a few bright pulses and favors detection with our SP algorithm. In other cases, the intermittency appears to be intrinsic to the source. No transients were found with DMs large enough to require that they originate from sources outside our Galaxy. Accounting for the on-axis gain of the ALFA system, as well as the low gain but large solid-angle coverage of far-out sidelobes, we use the results of the survey so far to place limits on the amplitudes and event rates of transients of arbitrary origin.

  10. Radio evidence for binary super massive black holes

    Science.gov (United States)

    Ekers, R. D.

    2016-02-01

    I present examples of radio AGN with binary nuclei which provide the direct radio evidence for binary Super Massive Black Holes (SMBH) driving the AGN activity. There is also other evidence for distorted radio morphology and periodic variability which may indicate the presence of a second (inactive) SMBH. Finally I enumerate a number of possible radio tracers for the binary SMBH merger events.

  11. Hydrodynamics of interaction of pulsar and stellar winds and its impact on the high energy radiation of binary pulsar systems

    CERN Document Server

    Khangulyan, D V; Bogovalov, S V; Koldoba, A V; Ustyugova, G V

    2008-01-01

    The hydrodynamics of the interaction of pulsar and stellar winds in binary systems harboring a pulsar and its impact on the nonthermal radiation of the binary pulsar PSR B1259-63/SS2883 is discussed. The collision of an ultrarelativistic pulsar wind with a nonrelativistic stellar outflow results in significant bulk acceleration of the shocked material from the pulsar wind. Already at distances comparable to the size of the binary system, the Lorentz factor of the shocked flow can be as large as $\\gamma$~4. This results in significant anisotropy of the inverse Compton radiation of accelerated electrons. Because of the Doppler boosting of the produced radiation, one should expect a variable gamma-ray signal from the system. In particular, this effect may naturally explain the reported tendency of a decrease of TeV gamma-ray flux close to the periastron. The modeling of the interaction of pulsar and stellar winds allows self-consistent calculations of adiabatic losses. Our results show that adiabatic losses domi...

  12. Birth and evolution of neutron stars: Issues raised by millisecond pulsars; Proceedings of the eighth workshop, Green Bank, WV, June 6-8, 1984

    International Nuclear Information System (INIS)

    Observations of millisecond pulsars are discussed, taking into account a review of millisecond pulsars, arrival time observations of the 1.6 millisecond pulsar 1937 + 214, a 6.1 millisecond binary pulsar, polarimetry of the two fastest pulsars, an optical synchrotron nebula around the X-ray pulsar 0540-693, optical observations of the millisecond pulsars PSR 1937 + 214 and PSR 1935 + 29, and a single pulse study of the millisecond pulsar 1937 + 214. The life history of millisecond pulsars is examined, giving attention to the origin of neutron stars, models for the formation of binary and millisecond radio pulsars, isolated and binary millisecond pulsars and accretion spun-up neutron stars, the period distribution of fast pulsars, the origin of pulsar velocities, a model of radio emission of the millisecond pulsar 1937 + 214, and a study of pulsar luminosities. Other subjects investigated are related to the physics of rapidly rotating neutron stars, a summary of general theoretical issues, and searches

  13. Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey

    CERN Document Server

    Spitler, L G; Hessels, J W T; Lorimer, D R; McLaughlin, M A; Chatterjee, S; Crawford, F; Deneva, J S; Kaspi, V M; Wharton, R S; Allen, B; Bogdanov, S; Brazier, A; Camilo, F; Freire, P C C; Jenet, F A; Karako-Argaman, C; Knispel, B; Lazarus, P; Lee, K J; van Leeuwen, J; Lynch, R; Lyne, A G; Ransom, S M; Scholz, P; Siemens, X; Stairs, I H; Stovall, K; Swiggum, J K; Venkataraman, A; Zhu, W W; Aulbert, C; Fehrmann, H

    2014-01-01

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4-GHz Pulsar ALFA survey with the Arecibo Observatory with a DM = 557.4 $\\pm$ 3 pc cm$^{-3}$, pulse width of $3\\; \\pm 0.5$ ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation...

  14. Formation of black widows and redbacks -- two distinct populations of eclipsing binary millisecond pulsars

    CERN Document Server

    Chen, Hai-Liang; Tauris, Thomas M; Han, Zhanwen

    2013-01-01

    Eclipsing binary millisecond pulsars (the so-called black widows and redbacks) can provide important information about accretion history, pulsar irradiation of their companion stars and the evolutionary link between accreting X-ray pulsars and isolated millisecond pulsars. However, the formation of such systems is not well understood, nor the difference in progenitor evolution between the two populations of black widows and redbacks. Whereas both populations have orbital periods between $0.1-1.0\\;{\\rm days}$ their companion masses differ by an order of magnitude. In this paper, we investigate the formation of these systems via evolution of converging low-mass X-ray binaries by employing the MESA stellar evolution code. Our results confirm that one can explain the formation of most of these eclipsing binary millisecond pulsars using this scenario. More notably, we find that the determining factor for producing either black widows or redbacks is the efficiency of the irradiation process, such that the redbacks ...

  15. Cosmic-Lab: Optical companions to binary Millisecond Pulsars

    CERN Document Server

    Pallanca, Cristina

    2014-01-01

    Millisecond Pulsars (MSPs) are fast rotating, highly magnetized neutron stars. According to the "canonical recycling scenario", MSPs form in binary systems containing a neutron star which is spun up through mass accretion from the evolving companion. Therefore, the final stage consists of a binary made of a MSP and the core of the deeply peeled companion. In the last years, however an increasing number of systems deviating from these expectations has been discovered, thus strongly indicating that our understanding of MSPs is far to be complete. The identification of the optical companions to binary MSPs is crucial to constrain the formation and evolution of these objects. In dense environments such as Globular Clusters (GCs), it also allows us to get insights on the cluster internal dynamics. By using deep photometric data, acquired both from space and ground-based telescopes, we identified 5 new companions to MSPs. Three of them being located in GCs and two in the Galactic Field. The three new identification...

  16. Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR

    CERN Document Server

    Broderick, J W; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J -M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P

    2016-01-01

    The eclipses of certain types of binary millisecond pulsars (i.e. `black widows' and `redbacks') are often studied using high-time-resolution, `beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of 2 weeks - 6 months, we find preliminary evidence that the eclipse duration is frequency dependent ($\\propto \

  17. Formation of the Radio Profile Components of the Crab Pulsar

    CERN Document Server

    Petrova, S A

    2009-01-01

    The induced Compton scattering of radio emission off the particles of the ultrarelativistic electron-positron plasma in the open field line tube of a pulsar is considered. We examine the scattering of a bright narrow radio beam into the background over a wide solid angle and specifically study the scattering in the transverse regime, which holds in a moderately strong magnetic field. Making use of the angular distribution of the scattered intensity and taking into account the effect of rotational aberration in the scattering region, we simulate the profiles of the backscattered components as applied to the Crab pulsar. It is suggested that the interpulse (IP), the high-frequency interpulse (IP') and the pair of the so-called high-frequency components (HFC1 and HFC2) result from the backward scattering of the main pulse (MP), precursor (PR) and the low-frequency component (LFC), respectively. The components of the high-frequency profiles, the IP' and HFCs, are interpreted for the first time. The HFC1 and HFC2 ...

  18. Pulsars revived by gravitational waves

    OpenAIRE

    Lipunov, Vladimir M.; Panchenko, Ivan E.

    1996-01-01

    Binary neutron stars mergers that are expected to be the most powerful source of energy in the Universe definitely exist in nature, as is proven by the observed behavior of the Hulse-Taylor binary radio pulsar. Though most of energy in such events is radiated in gravitational waves, there probably exist several mechanisms giving also electromagnetic radiation. We propose a new one, involving a revival of the radio pulsar several orbital cycles before the merger.

  19. An eccentric binary millisecond pulsar with a helium white dwarf companion in the Galactic Field

    CERN Document Server

    Antoniadis, John; Stovall, Kevin; Freire, Paulo C; Deneva, Julia S; Koester, Detlev; Jenet, Frederick; Martinez, Jose

    2016-01-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the Universe is not yet old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant host systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of a LMWD in an eccentric (e=0.13) orbit with a millisecond pulsar, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature T_eff = 8600 +/- 190 K) and 3D systemic velocity (179.5 km\\s). We also place model-independent constraints on the WD radius (R_WD = 0.024+/- 0.004/0.002 R_sun) and surface gravity (log g = 7.11 +/- 0.08/0.16 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavour a three-body formation channel. In the case of the high eccentricity being the result of a spontaneou...

  20. Radio pulsars around intermediate mass black holes in super stellar clusters

    CERN Document Server

    Patruno, A; Faulkner, A J; Possenti, A

    2005-01-01

    We study accretion in binaries hosting an intermediate mass black hole (IMBH) of 1000 solar masses, and a donor star more massive than 15 solar masses. These systems experience an active X-ray phase characterized by luminosities varying over a wide interval, from <10^36 erg/s up to a few 10^40 erg/s typical of the ultra luminous X-ray sources (ULXs). Roche lobe overflow on the zero-age main sequence and donor masses above 20 solar masses can maintain a long-lived accretion phase at the level required to feed a ULX source. In wide systems, wind transfer rates are magnified by the focusing action of the IMBH yielding wind luminosities around 10^38 erg/s. These high mass-IMBH binaries can be identified as progenitors of IMBH-radio pulsar (PSR) binaries. We find that the formation of an IMBH-PSR binary does not necessarely require the transit through a ULX phase, but that a ULX can highlight a system that will evolve into an IMBH-PSR, if the mass of the donor star is constrained to lie within 15 to 30 solar ma...

  1. Fast radio burst discovered in the Arecibo pulsar ALFA survey

    International Nuclear Information System (INIS)

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4 GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ± 2.0 pc cm–3, pulse width of 3.0 ± 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = –0.°2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.

  2. Radio-quiet and radio-loud pulsars: similar in Gamma-rays but different in X-rays

    CERN Document Server

    Marelli, M; De Luca, A; Parkinson, P M Saz; Salvetti, D; Hartog, P R Den; Wolff, M T

    2015-01-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet Gamma-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from Gamma-ray pulsar timing. For PSR J2030+4415 we found evidence for an about 10 arcsec-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. 2011 and confirm that, on average, the Gamma-ray--to--X-ray flux ratios (Fgamma/Fx) of radio-quiet pulsars are higher than for the radio-loud ones. Furthermore, while the Fgamma/Fx distribution features a single peak for the radio-quiet pulsars, the distribution is more dispersed for the radio-loud ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.

  3. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun;

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappear...... state changes in the similar transition systems PSR J1824-2452I and XSS J1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk....

  4. On radio emission of the Geminga pulsar and RBS 1223 at the frequency of 111 MHz

    CERN Document Server

    Ershov, Alexander A

    2007-01-01

    I have searched for pulsed radio emission from the Geminga pulsar and for the nearby isolated neutron star 1RX J1308.6+2127 (RBS 1223) at the frequency of 111 MHz. No pulsed signals were detected from these sources. Upper limits for mean flux density are 0.4 - 4 mJy for the Geminga pulsar and 1.5 - 15 mJy for RBS 1223 depending on assumed duty cycle (.05 - .5) of the pulsars.

  5. Population Synthesis of Normal Radio and Gamma-ray Pulsars Using Markov Chain Monte Carlo Techniques

    CERN Document Server

    Gonthier, Peter L; Harding, Alice K

    2012-01-01

    We present preliminary results of a pulsar population synthesis of normal pulsars from the Galactic disk using a Markov Chain Monte Carlo method to better understand the parameter space of the assumed model. We use the Kuiper test, similar to the Kolmogorov-Smirnov test, to compare the cumulative distributions of chosen observables of detected radio pulsars with those simulated for various parameters. Our code simulates pulsars at birth using Monte Carlo techniques and evolves them to the present assuming initial spatial, kick velocity, magnetic field, and period distributions. Pulsars are spun down to the present, given radio and gamma-ray emission characteristics, filtered through ten selected radio surveys, and a {\\it Fermi} all-sky threshold map. Each chain begins with a different random seed and searches a ten-dimensional parameter space for regions of high probability for a total of one thousand different simulations before ending. The code investigates both the "large world" as well as the "small world...

  6. Galactic populations of radio and gamma-ray pulsars in the polar cap model

    CERN Document Server

    Gonthier, P L; Berrier, J; O'Brien, S; Harding, A K; Gonthier, Peter L.; Ouellette, Michelle S.; Berrier, Joel; Brien, Shawn O'; Harding, Alice K.

    2001-01-01

    We simulate the characteristics of the Galactic population of radio and $\\gamma$-ray pulsars using Monte Carlo techniques. At birth, neutron stars are spatially distributed in the Galactic disk, with supernova-kick velocities, and randomly dispersed in age back to $10^9$ years. They are evolved in the Galactic gravitational potential to the present time. From a radio luminosity model, the radio flux is filtered through a selected set of radio-survey parameters. $\\gamma$-ray luminosities are assigned using the features of recent polar cap acceleration models invoking space-charge-limited flow, and a pulsar death valley further attenuates the population of radio-loud pulsars. Assuming a simple emission geometry with aligned radio and $\\gamma$-ray beams of 1 steradian solid angle, our model predicts that EGRET should have seen 7 radio-loud and 1 radio-quiet, $\\gamma$-ray pulsars. With much improved sensitivity, GLAST, on the other hand, is expected to observe 76 radio-loud and 74 radio-quiet, $\\gamma$-ray pulsar...

  7. Linear-drifting sub-pulse sources in radio pulsars

    CERN Document Server

    Jones, P B

    2013-01-01

    Analysis of plasma acceleration in pulsars with positive corotational charge density has shown that any element of area on the polar cap is bi-stable: it can be in phases either of pure proton emission or of mixed ions and protons (the ion phase). Ion-phase zones are concentrated near the edge of the polar cap, and are a physical basis for the coherent radio emission observed as components within the mean pulse profile. The state of the polar cap is generally chaotic, but organized linear motion of ion zones in a peripheral band is possible and is the likely source of sub-pulse drift. It is shown that several patterns of limited movement are possible and can account for the varied phenomena observed including mirror and bi-directional drifting.

  8. The GBT350 survey of the Northern Galactic Plane for radio pulsars and transients

    NARCIS (Netherlands)

    J.W.T. Hessels; S.M. Ransom; V.M. Kaspi; M.S.E. Roberts; D.J. Champion; B.W. Stappers

    2007-01-01

    Using the Green Bank Telescope (GBT) and Pulsar Spigot at 350 MHz, we have surveyed the Northern Galactic Plane for pulsars and radio transients. This survey covers roughly 1000 square degrees of sky within 75°

  9. Shining Light on Quantum Gravity with Pulsar-Black Hole Binaries

    OpenAIRE

    Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.

    2016-01-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the SKA and eLISA, the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed reso...

  10. Gamma-rays from nebulae around binary systems containing energetic rotation powered pulsars

    CERN Document Server

    Bednarek, W

    2013-01-01

    We consider nebulae which are created around binary systems containing rotation powered pulsars and companion stars with strong stellar winds. It is proposed that the stellar and pulsar winds have to mix at some distance from the binary system, defined by the orbital period of the companion stars and the velocity of the stellar wind. The mixed pulsar-stellar wind expands with a specific velocity determined by the pulsar power and the mass loss rate of the companion star. Relativistic particles, either from the inner pulsar magnetosphere and/or accelerated at the shocks between stellar and pulsar winds, are expected to be captured and isotropized in the reference frame of the mixed wind. Therefore, they can efficiently comptonize stellar radiation producing GeV-TeV $\\gamma$-rays in the inverse Compton process. We calculate the $\\gamma$-ray spectra expected in such scenario for the two example binary systems: J1816+4510 which is the redback type millisecond binary and LS 5039 which is supposed to contain energe...

  11. Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR

    Science.gov (United States)

    Broderick, J. W.; Fender, R. P.; Breton, R. P.; Stewart, A. J.; Rowlinson, A.; Swinbank, J. D.; Hessels, J. W. T.; Staley, T. D.; van der Horst, A. J.; Bell, M. E.; Carbone, D.; Cendes, Y.; Corbel, S.; Eislöffel, J.; Falcke, H.; Grießmeier, J.-M.; Hassall, T. E.; Jonker, P.; Kramer, M.; Kuniyoshi, M.; Law, C. J.; Markoff, S.; Molenaar, G. J.; Pietka, M.; Scheers, L. H. A.; Serylak, M.; Stappers, B. W.; ter Veen, S.; van Leeuwen, J.; Wijers, R. A. M. J.; Wijnands, R.; Wise, M. W.; Zarka, P.

    2016-07-01

    The eclipses of certain types of binary millisecond pulsars (i.e. `black widows' and `redbacks') are often studied using high-time-resolution, `beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν-0.4), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.

  12. Modelling the $\\gamma$-ray and radio light curves of the double pulsar system

    CERN Document Server

    Seyffert, A S; Harding, A K; Johnson, T J

    2014-01-01

    Guillemot et al. recently reported the discovery of $\\gamma$-ray pulsations from the 22.7ms pulsar (pulsar A) in the famous double pulsar system J0737-3039A/B. The $\\gamma$-ray light curve (LC) of pulsar A has two peaks separated by approximately half a rotation, and these are non-coincident with the observed radio and X-ray peaks. This suggests that the $\\gamma$-ray emission originates in a part of the magnetosphere distinct from where the radio and X-ray radiation is generated. Thus far, three different methods have been applied to constrain the viewing geometry of pulsar A (its inclination and observer angles $\\alpha$ and $\\zeta$): geometric modelling of the radio and $\\gamma$-ray light curves, modelling of the position angle sweep in phase seen in the radio polarisation data, and independent studies of the time evolution of the radio pulse profile of pulsar A. These three independent, complementary methods have yielded consistent results: pulsar A's rotation axis is likely perpendicular to the orbital pla...

  13. The High Time Resolution Universe Pulsar Survey - VII: discovery of five millisecond pulsars and the different luminosity properties of binary and isolated recycled pulsars

    CERN Document Server

    Burgay, M; Bates, S D; Bhat, N D R; Burke-Spolaor, S; Champion, D J; Coster, P; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Levin, L; Lyne, A G; Milia, S; Ng, C; Possenti, A; Stappers, B W; Thornton, D; Tiburzi, C; van Straten, W; Bassa, C G

    2013-01-01

    This paper presents the discovery and timing parameters for five millisecond pulsars (MSPs), four in binary systems with probable white dwarf companions and one isolated, found in ongoing processing of the High Time Resolution Universe Pulsar Survey (HTRU). We also present high quality polarimetric data on four of them. These further discoveries confirm the high potential of our survey in finding pulsars with very short spin periods. At least two of these five MSPs are excellent candidates to be included in the Pulsar Timing Array projects. Thanks to the wealth of MSP discoveries in the HTRU survey, we revisit the question of whether the luminosity distributions of isolated and binary MSPs are different. Using the Cordes and Lazio distance model and our new and catalogue flux density measurements, we find that 41 of the 42 most luminous MSPs in the Galactic disk are in binaries and a statistical analysis suggests that the luminosity functions differ with 99.9% significance. We conclude that the formation proc...

  14. Radio pulsars as progenitors of AXPs and SGRs: magnetic field evolution through pulsar glitches

    OpenAIRE

    Lin, J. R.; Zhang, S.N.

    2004-01-01

    Glitches are common phenomena in pulsars. After each glitch, there is usually a permanent increase in the pulsar's spin-down rate. Therefore a pulsar's present spin-down rate may be much higher than its initial value. Thus the characteristic age of a pulsar based on its present spin-down rate and period may be shorter than a pulsar's age. At the same time, the permanent increase of its spin-down rate implies that the pulsar's surface magnetic field is increased after each glitch. Consequently...

  15. A compact pulsar wind nebula model of the gamma-ray loud binary LS I +61 303

    CERN Document Server

    Zdziarski, A A; Chernyakova, M

    2008-01-01

    We study a model of of the binary system LS I +61 303 in which its radio to TeV emission is due to interaction of a relativistic wind from a pulsar with the wind from a Be star. The fast polar wind is clumpy, which causes the two winds to mix. The relativistic electrons from the pulsar wind are retained in the clumps by magnetic field inhomogeneities, which explains the X-ray variability on time scales much shorter than the orbital period. The second stellar-wind component is a dense equatorial disc around the Be star. The energy losses of the radio and X-ray emitting relativistic electrons are dominated by Coulomb interactions within the disc, causing radio and X-ray orbital modulations. A likely mechanism of the TeV orbital modulation is an emission anisotropy, with preferred directions along the surface of equal ram pressures of the two winds. We consider two models for the observed superorbital variability of the radio emission from the system, with the period of 4-5 years. One model involves precession o...

  16. High-Precision Timing of 5 Millisecond Pulsars: Space Velocities, Binary Evolution and Equivalence Principles

    CERN Document Server

    Gonzalez, M E; Ferdman, R D; Freire, P C C; Nice, D J; Demorest, P B; Ransom, S M; Kramer, M; Camilo, F; Hobbs, G; Manchester, R N; Lyne, A G

    2011-01-01

    We present high-precision timing of five millisecond pulsars (MSPs) carried out for more than seven years; four pulsars are in binary systems and one is isolated. We are able to measure the pulsars' proper motions and derive an estimate for their space velocities. The measured two-dimensional velocities are in the range 70-210 km/s, consistent with those measured for other MSPs. We also use all the available proper motion information for isolated and binary MSPs to update the known velocity distribution for these populations. As found by earlier works, we find that the velocity distribution of binary and isolated MSPs are indistinguishable with the current data. Four of the pulsars in our observing program are highly recycled with low-mass white dwarf companions and we are able to derive accurate binary parameters for these systems. For three of these binary systems we are able to place initial constraints on the pulsar masses with best-fit values in the range 1.0-1.6 M_sun. The implications of the results pr...

  17. Polarization characteristics of the Crab pulsar's giant radio pulses at HFCs phases

    OpenAIRE

    Slowikowska, A.; Jessner, A.; Klein, B.; Kanbach, G.

    2005-01-01

    We discuss our recent discovery of the giant radio emission from the Crab pulsar at its high frequency components (HFCs) phases and show the polarization characteristic of these pulses. This leads us to a suggestion that there is no difference in the emission mechanism of the main pulse (MP), interpulse (IP) and HFCs. We briefly review the size distributions of the Crab giant radio pulses (GRPs) and discuss general characteristics of the GRP phenomenon in the Crab and other pulsars.

  18. HIGH-PRECISION TIMING OF FIVE MILLISECOND PULSARS: SPACE VELOCITIES, BINARY EVOLUTION, AND EQUIVALENCE PRINCIPLES

    International Nuclear Information System (INIS)

    We present high-precision timing of five millisecond pulsars (MSPs) carried out for more than seven years; four pulsars are in binary systems and one is isolated. We are able to measure the pulsars' proper motions and derive an estimate for their space velocities. The measured two-dimensional velocities are in the range 70-210 km s–1, consistent with those measured for other MSPs. We also use all the available proper motion information for isolated and binary MSPs to update the known velocity distribution for these populations. As found by earlier works, we find that the velocity distribution of binary and isolated MSPs are indistinguishable with the current data. Four of the pulsars in our observing program are highly recycled with low-mass white dwarf companions and we are able to derive accurate binary parameters for these systems. For three of these binary systems, we are able to place initial constraints on the pulsar masses with best-fit values in the range 1.0-1.6 M☉. The implications of the results presented here to our understanding of binary pulsar evolution are discussed. The updated parameters for the binary systems studied here, together with recently discovered similar systems, allowed us to update previous limits on the violation of the strong equivalence principle through the parameter |Δ| to 4.6 × 10–3 (95% confidence) and the violation of Lorentz invariance/momentum conservation through the parameter |α-hat3| to 5.5 × 10–20 (95% confidence).

  19. A radio pulsing white dwarf binary star

    CERN Document Server

    Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-01-01

    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...

  20. New Discoveries from the Arecibo 327 MHz Drift Pulsar Survey Radio Transient Search

    Science.gov (United States)

    Deneva, J. S.; Stovall, K.; McLaughlin, M. A.; Bagchi, M.; Bates, S. D.; Freire, P. C. C.; Martinez, J. G.; Jenet, F.; Garver-Daniels, N.

    2016-04-01

    We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently, isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range 23.5–86.6 pc cm‑3 and periods in the range 0.172–3.901 s. The new pulsars have DMs in the range 23.6–133.3 pc cm‑3 and periods in the range 1.249–5.012 s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of 105 day‑1 for bursts with a width of 10 ms and flux density ≳83 mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models.

  1. 2FGL J1653.6-0159: A New Low in Evaporating Pulsar Binary Periods

    CERN Document Server

    Romani, Roger W; Cenko, S Bradley

    2014-01-01

    We have identified an optical binary with orbital period P_b=4488s as the probable counterpart of the Fermi source 2FGL J1653.6-0159. Although pulsations have not yet been detected, the source properties are consistent with an evaporating millisecond pulsar binary; this P_b=75min is the record low for a spin-powered system. The heated side of the companion shows coherent radial velocity variations, with amplitude K=666.9+/-7.5 km/s for a large mass function of f(M)=1.60+/-0.05 M_sun. This heating suggests a pulsar luminosity ~3x10^34 erg/s. The colors and spectra show additional hard emission dominating at binary minimum. This system is similar to PSR J1311-3430, with a low mass H-depleted companion, a dense shrouding wind and, likely, a large pulsar mass.

  2. Searching for GW signals from eccentric supermassive black-hole binaries with pulsar-timing arrays

    Science.gov (United States)

    Taylor, Stephen; Gair, Jonathan; Huerta, Eliu; McWilliams, Sean

    2015-04-01

    The mergers of massive galaxies leads to the formation of supermassive black-hole binaries in the common merger remnants. Various mechanisms have been proposed to harden these binaries into the adiabatic GW inspiral regime, from interactions with circumbinary disks to stellar scattering. It may be the case that these mechanisms leave the binary with a residual eccentricity, such that the deviation to the time-of-arrival of pulsar signals induced by the emitted GW passing between the Earth and a pulsar will contain a signature of this eccentricity. Current pulsar-timing search pipelines only probe circular binary systems, but much effort is now being devoted to considering the influence of the binary environment on GW signals. We will detail our efforts in constructing a generalised GW search pipeline to constrain the eccentricity of single systems with arrays of precisely-timed pulsars, which may shed light on the influence of various supermassive black-hole binary hardening mechanisms and illuminate the importance of environmental couplings.

  3. The LOFAR search for radio pulsars and fast transients in M33, M81 & M82

    CERN Document Server

    Mikhailov, K

    2016-01-01

    The radio pulsar and rotating radio transient populations are only known in and near the Milky Way. Investigating such populations in other galaxies requires deep pulsar and transient searches. We have performed 4-h radio observations of nearby galaxies M33, M81 and M82 with LOFAR. Our main purpose was to characterise the bright end of the pulsar population in other galaxies, and compare it to that of the Milky Way. We searched for extragalactic radio pulsars through a periodic-pulse search, and for sporadic fast radio transients through a single-pulse search. We coherently combined 24 LOFAR Core High-Band Antenna (HBA) stations and covered M33, M81, and M82 in their entirety using multiple tied-array beams. No pulsating sources or single pulses were found. We therefore have established stricter limits on the extragalactic pulsar flux density at lower frequencies than those obtained in previous Arecibo and WSRT searches. We conclude that in nearby galaxies M33, M81, and M82 there are no pulsars shining toward...

  4. What can we learn from phase alignment of gamma-ray and radio pulsar light curves?

    CERN Document Server

    Venter, C; Harding, A K

    2011-01-01

    The Fermi Large Area Telescope (LAT) has revolutionized high-energy (HE) astronomy, and is making enormous contributions particularly to gamma-ray pulsar science. As a result of the many new pulsar discoveries, the gamma-ray pulsar population is now approaching 100. Some very famous millisecond pulsars (MSPs) have also been detected: J1939+2134 (B1937+21), the first MSP ever discovered, as well as J1959+2048 (B1957+20), the first black widow pulsar system. These, along with other MSPs such as PSR J0034-0534 and J2214+3000, are rare among the pulsar population in that they exhibit nearly phase-aligned radio and gamma-ray light curves (LCs). Traditionally, pulsar LCs have been modelled using standard HE models in conjunction with low-altitude conal beam radio models. However, a different approach is needed to account for phase-aligned LCs. We explored two scenarios: one where both the radio and gamma-ray emission originate in the outer magnetosphere, and one where the emission comes from near the polar caps (PC...

  5. A PRECISE MASS MEASUREMENT OF THE INTERMEDIATE-MASS BINARY PULSAR PSR J1802 - 2124

    International Nuclear Information System (INIS)

    PSR J1802 - 2124 is a 12.6 ms pulsar in a 16.8 hr binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar since its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and WD mass measurements of 1.24 ± 0.11 Msun and 0.78 ± 0.04 Msun (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.

  6. Pulsars in Globular Clusters

    CERN Document Server

    Camilo, F; Camilo, Fernando; Rasio, Frederic A.

    2005-01-01

    More than 100 radio pulsars have been detected in 24 globular clusters. The largest observed samples are in Terzan 5 and 47 Tucanae, which together contain 45 pulsars. Accurate timing solutions, including positions in the cluster, are known for many of these pulsars. Here we provide an observational overview of some properties of pulsars in globular clusters, as well as properties of the globular clusters with detected pulsars. The many recent detections also provide a new opportunity to re-examine theoretically the formation and evolution of recycled pulsars in globular clusters. Our brief review considers the most important dynamical interaction and binary evolution processes: collisions, exchange interactions, mass transfer, and common-envelope phases.

  7. ARECIBO PALFA SURVEY AND EINSTEIN-HOME: BINARY PULSAR DISCOVERY BY VOLUNTEER COMPUTING

    International Nuclear Information System (INIS)

    We report the discovery of the 20.7 ms binary pulsar J1952+2630, made using the distributed computing project Einstein-Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular orbital solution with an orbital period of 9.4 hr, a projected orbital radius of 2.8 lt-s, and a mass function of f = 0.15 Msun by analysis of spin period measurements. No evidence of orbital eccentricity is apparent; we set a 2σ upper limit e ∼-3. The orbital parameters suggest a massive white dwarf companion with a minimum mass of 0.95 Msun, assuming a pulsar mass of 1.4 Msun. Most likely, this pulsar belongs to the rare class of intermediate-mass binary pulsars. Future timing observations will aim to determine the parameters of this system further, measure relativistic effects, and elucidate the nature of the companion star.

  8. Evidence of longterm cyclic evolution of radio pulsar periods

    OpenAIRE

    Biryukov, Anton; Beskin, Gregory; Karpov, Sergey; Chmyreva, Lisa

    2007-01-01

    The measurements of pulsar frequency second derivatives have shown that they are 1e2...1e6 times larger than expected for standard pulsar spin-down law. Moreover, the second derivatives as well as braking indices are even negative for about half the pulsars. We explain these paradoxical results on the basis of the statistical analysis of the rotational parameters f0, f1 and f2 of the subset of 295 pulsars taken mostly from the ATNF database. We have found a strong correlation between f2 and f...

  9. Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies

    CERN Document Server

    Bentum, Mark J; Spallicci, Alessandro D A M

    2016-01-01

    Our understanding of the universe relies mostly on electromagnetism. As photons are the messengers, fundamental physics is concerned in testing their properties. Photon mass upper limits have been earlier set through pulsar observations, but new investigations are offered by the excess of dispersion measure (DM) sometimes observed with pulsar and magnetar data at low frequencies, or with the fast radio bursts (FRBs), of yet unknown origin. Arguments for the excess of DM do not reach a consensus, but are not mutually exclusive. Thus, we remind that for massive electromagnetism, dispersion goes as the inverse of the frequency squared. Thereby, new avenues are offered also by the recently operating ground observatories in 10-80 MHz domain and by the proposed Orbiting Low Frequency Antennas for Radio astronomy (OLFAR). The latter acts as a large aperture dish by employing a swarm of nano-satellites observing the sky for the first time in the 0.1 - 15 MHz spectrum. The swarm must be deployed sufficiently away from...

  10. Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays

    CERN Document Server

    Sesana, A; Volonteri, M

    2008-01-01

    Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >10^7 solar masses. The whole cosmic population produces a stochastic background that could be detectable with upcoming Pulsar Timing Arrays. Sources sufficiently close and/or massive generate gravitational radiation that significantly exceeds the level of the background and could be individually resolved. We consider a wide range of massive black hole binary assembly scenarios, we investigate the distribution of the main physical parameters of the sources, such as masses and redshift, and explore the consequences for Pulsar Timing Arrays observations. Depending on the specific massive black hole population model, we est...

  11. Giant Pulses -- the Main Component of the Radio Emission of the Crab Pulsar

    CERN Document Server

    Popov, M V; Kondratiev, V I; Kostyuk, S V; Ilyasov, Y P; Oreshko, V V; Ilyasov, Yu.P.

    2006-01-01

    The paper presents an analysis of dual-polarization observations of the Crab pulsar obtained on the 64-m Kalyazin radio telescope at 600 MHz with a time resolution of 250 ns. A lower limit for the intensities of giant pulses is estimated by assuming that the pulsar radio emission in the main pulse and interpulse consists entirely of giant radio pulses; this yields estimates of 100 Jy and 35 Jy for the peak flux densities of giant pulses arising in the main pulse and interpulse, respectively. This assumes that the normal radio emission of the pulse occurs in the precursor pulse. In this case, the longitudes of the giant radio pulses relative to the profile of the normal radio emission turn out to be the same for the Crab pulsar and the millisecond pulsar B1937+21, namely, the giant pulses arise at the trailing edge of the profile of the normal radio emission. Analysis of the distribution of the degree of circular polarization for the giant pulses suggests that they can consist of a random mixture of nanopulses...

  12. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    Science.gov (United States)

    Ogelman, H.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1976-01-01

    Data from the SAS-2 high-energy (above 35 MeV) gamma-ray experiment have been examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well-defined period and period-derivative information from radio observations to allow for gamma-ray periodicity searches. When gamma-ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability of less than 1 part in 10,000 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma-ray pulsars and that work in the near future should give important new information on the nature of pulsars.

  13. SAS-2 gamma-ray observations of PSR 1747-46. [radio pulsar

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.; Lamb, R. C.

    1976-01-01

    Evidence is reported for the observation of gamma-ray emission from the radio pulsar PSR 1747-46 by the gamma-ray telescope aboard SAS 2. The evidence is based on the presence of both an approximately 3-sigma enhancement of gamma rays at the pulsar's location and an approximately 4-sigma peak in the phase plot of 79 gamma-ray events whose phase was calculated from the pulsar's known period. The gamma-ray pulsation is found to appear at a phase lag of about 0.16 from that predicted by the radio observations. The pulsed gamma-ray fluxes above 35 MeV and 100 MeV are estimated, and it is shown that the gamma-ray pulse width is similar to the radio pulse width. It is concluded that PSR 1747-46 is a most likely candidate for pulsed gamma-ray emission.

  14. New Discoveries from the Arecibo 327 MHz Drift Pulsar Survey Radio Transient Search

    CERN Document Server

    Deneva, J S; McLaughlin, M A; Bagchi, M; Bates, S D; Freire, P C C; Martinez, J G; Jenet, F; Garver-Daniels, N

    2016-01-01

    We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently, isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range $23.5 - 86.6$ pc cm$^{-3}$ and periods in the range $0.172 - 3.901$ s. The new pulsars have DMs in the range $23.6 - 133.3$ pc cm$^{-3}$ and periods in the range $1.249 - 5.012$ s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of $10^5$ day$^{-1}$ for bursts with a width of 10 ms and flux density $\\gtrsim 83$ mJy. The DMs of all new discoveries are consistent with a G...

  15. A model for gamma-ray binaries, based on the effect of pair production feedback in shocked pulsar winds

    CERN Document Server

    Derishev, E

    2016-01-01

    We analyze the model of gamma-ray binaries, consisting of a massive star and a pulsar with ultrarelativistic wind. We consider radiation from energetic particles, accelerated at the pulsar wind termination shock, and feedback of this radiation on the wind through production of secondary electron-positron pairs. We show that the pair feedback limits the Lorentz factor of the pulsar wind and creates a population of very energetic pairs, whose radiation may be responsible for the observed gamma-ray signal.

  16. Properties and Evolution of the Redback Millisecond Pulsar Binary PSR J2129-0429

    Science.gov (United States)

    Bellm, Eric C.; Kaplan, David L.; Breton, Rene P.; Phinney, E. Sterl; Bhalerao, Varun B.; Camilo, Fernando; Dahal, Sumit; Djorgovski, S. G.; Drake, Andrew J.; Hessels, J. W. T.; Laher, Russ R.; Levitan, David B.; Lewis, Fraser; Mahabal, Ashish A.; Ofek, Eran O.; Prince, Thomas A.; Ransom, Scott M.; Roberts, Mallory S. E.; Russell, David M.; Sesar, Branimir; Surace, Jason A.; Tang, Sumin

    2016-01-01

    PSR J2129-0429 is a “redback” eclipsing millisecond pulsar binary with an unusually long 15.2 hr orbit. It was discovered by the Green Bank Telescope in a targeted search of unidentified Fermi gamma-ray sources. The pulsar companion is optically bright (mean mR = 16.6 mag), allowing us to construct the longest baseline photometric data set available for such a system. We present 10 years of archival and new photometry of the companion from the Lincoln Near-Earth Asteroid Research Survey, the Catalina Real-time Transient Survey, the Palomar Transient Factory, the Palomar 60 inch, and the Las Cumbres Observatory Global Telescope. Radial velocity spectroscopy using the Double-Beam Spectrograph on the Palomar 200 inch indicates that the pulsar is massive: 1.74 ± 0.18 {M}⊙ . The G-type pulsar companion has mass 0.44 ± 0.04 {M}⊙ , one of the heaviest known redback companions. It is currently 95 ± 1% Roche-lobe filling and only mildly irradiated by the pulsar. We identify a clear 13.1 mmag yr-1 secular decline in the mean magnitude of the companion as well as smaller-scale variations in the optical light curve shape. This behavior may indicate that the companion is cooling. Binary evolution calculations indicate that PSR J2129-0429 has an orbital period almost exactly at the bifurcation period between systems that converge into tighter orbits as black widows and redbacks and those that diverge into wider pulsar-white dwarf binaries. Its eventual fate may depend on whether it undergoes future episodes of mass transfer and increased irradiation.

  17. Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR

    Science.gov (United States)

    Pilia, M.; Hessels, J. W. T.; Stappers, B. W.; Kondratiev, V. I.; Kramer, M.; van Leeuwen, J.; Weltevrede, P.; Lyne, A. G.; Zagkouris, K.; Hassall, T. E.; Bilous, A. V.; Breton, R. P.; Falcke, H.; Grießmeier, J.-M.; Keane, E.; Karastergiou, A.; Kuniyoshi, M.; Noutsos, A.; Osłowski, S.; Serylak, M.; Sobey, C.; ter Veen, S.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Bîrzan, L.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Ciardi, B.; Corbel, S.; de Geus, E.; de Jong, A.; Deller, A.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Gunst, A. W.; Hamaker, J. P.; Heald, G.; Horneffer, A.; Jonker, P.; Juette, E.; Kuper, G.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Miller-Jones, J. C. A.; Nelles, A.; Paas, H.; Pandey-Pommier, M.; Pietka, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Schwarz, D.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J. D.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, M. C.; van der Horst, A. J.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnands, R.; Wijnholds, S. J.; Wucknitz, O.; Zarka, P.

    2016-02-01

    Context. LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. Aims: The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. Methods: We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: high band (120-167 MHz, 100 profiles) and low band (15-62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and 1400 MHz) to study the profile evolution. The profiles were aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR. Results: We find that the profile evolution with decreasing radio frequency does not follow a specific trend; depending on the geometry of the pulsar, new components can enter into or be hidden from view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories. We offer this catalogue of low-frequency pulsar profiles in a user friendly way via the EPN Database of Pulsar Profiles, http://www.epta.eu.org/epndb/

  18. Testing Theories of Gravitation Using 21-Year Timing of Pulsar Binary J1713+0747

    CERN Document Server

    Zhu, W W; Demorest, P B; Nice, D J; Ellis, J A; Ransom, S M; Arzoumanian, Z; Crowter, K; Dolch, T; Ferdman, R D; Fonseca, E; Gonzalez, M E; Jones, G; Jones, M; Lam, M T; Levin, L; McLaughlin, M A; Pennucci, T; Stovall, K; Swiggum, J

    2015-01-01

    We report 21-yr timing of one of the most precise pulsars: PSR J1713+0747. The pulsar's pulse times of arrival are well modeled, with residuals having WRMS of $\\sim92$ns, by a comprehensive pulsar binary model including the mass and three-dimensional orbit of its white dwarf companion and a noise model that incorporates short- and long-timescale correlated noise such as jitter and red noise. The new dataset allows us to improve previous measurements of the system properties, including the masses of the neutron star ($1.31\\pm0.11$ $M_\\odot$) and white dwarf ($0.286\\pm0.012$ $M_\\odot$) as well as their parallax distance $1.15\\pm0.03$ kpc. We measured the intrinsic change in binary orbital period, $\\dot{P}^{\\rm Int}_{\\rm b}$, is $-0.20\\pm0.17$ ps s$^{-1}$, not distinguishable from zero. This result, combined with those of other pulsar binaries, can place limits on potential changes in the gravitational constant $G$ as predicted in some alternative theories of gravitation. We found that $\\dot{G}/G$ is consistent ...

  19. Shining Light on Quantum Gravity with Pulsar-Black Hole Binaries

    CERN Document Server

    Estes, John; Lippert, Matthew; Simonetti, John H

    2016-01-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the SKA and eLISA, the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root-mean-square deviation of arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a ...

  20. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    Science.gov (United States)

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations. PMID:23002736

  1. A Search for Rapidly Spinning Pulsars and Fast Transients in Unidentified Radio Sources with the NRAO 43-Meter Telescope

    CERN Document Server

    Schmidt, Deborah; Langston, Glen; Gilpin, Claire

    2013-01-01

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey (NVSS) catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g. sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a differe...

  2. Basic physics and cosmology from pulsar timing data

    Science.gov (United States)

    Taylor, J. H.

    1991-01-01

    Radio pulsars provide unparalleled opportunities for making measurements of astrophysically interesting phenomena. The author concentrates on two particular applications of high precision timing observations of pulsars: tests of relativistic gravitation theory using the binary pulsar 1913+16, and tests of cosmological models using timing data from millisecond pulsars. New upper limits are presented for the energy density of a cosmic background of low frequency gravitational radiation.

  3. Observing Radio Pulsars in the Galactic Centre with the Square Kilometre Array

    CERN Document Server

    Eatough, R P; Casanellas, J; Chatterjee, S; Cordes, J M; Demorest, P B; Kramer, M; Lee, K J; Liu, K; Ransom, S M; Wex, N

    2015-01-01

    The discovery and timing of radio pulsars within the Galactic centre is a fundamental aspect of the SKA Science Case, responding to the topic of "Strong Field Tests of Gravity with Pulsars and Black Holes" (Kramer et al. 2004; Cordes et al. 2004). Pulsars have in many ways proven to be excellent tools for testing the General theory of Relativity and alternative gravity theories (see Wex (2014) for a recent review). Timing a pulsar in orbit around a companion, provides a unique way of probing the relativistic dynamics and spacetime of such a system. The strictest tests of gravity, in strong field conditions, are expected to come from a pulsar orbiting a black hole. In this sense, a pulsar in a close orbit ($P_{\\rm orb}$ < 1 yr) around our nearest supermassive black hole candidate, Sagittarius A* - at a distance of ~8.3 kpc in the Galactic centre (Gillessen et al. 2009a) - would be the ideal tool. Given the size of the orbit and the relativistic effects associated with it, even a slowly spinning pulsar would...

  4. The hunt for new pulsars with the Green Bank Telescope

    CERN Document Server

    Lynch, Ryan S; Banaszak, Shawn; Becker, Alison; Berndsen, Aaron; Biwer, Chris; Boyles, Jason; Cardoso, Rogerio F; Cherry, Angus; Dartez, Louis P; Day, David; Epstein, Courtney R; Flanigan, Joe; Ford, Anthony; Garcia, Alejandro; Hessels, Jason W T; Jenet, Fredrick A; Kaplan, David L; Karako-Argaman, Chen; Kaspi, Victoria M; Kondratiev, Vladislav I; Lorimer, Duncan R; Lunsford, Grady; Martinez, Jose; McLaughlin, Maura A; McPhee, Christie A; Pennucci, Tim; Ransom, Scott M; Roberts, Mallory S E; Rohr, Matt; Siemens, Xavi; Stairs, Ingrid H; Stovall, Kevin; van Leeuwen, Joeri; Walker, Arielle; Wells, Brad

    2013-01-01

    The Green Bank Telescope (GBT) is the largest fully steerable radio telescope in the world and is one of our greatest tools for discovering and studying radio pulsars. Over the last decade, the GBT has successfully found over 100 new pulsars through large-area surveys. Here I discuss the two most recent---the GBT 350 MHz Drift-scan survey and the Green Bank North Celestial Cap survey. The primary science goal of both surveys is to find interesting individual pulsars, including young pulsars, rotating radio transients, exotic binary systems, and especially bright millisecond pulsars (MSPs) suitable for inclusion in Pulsar Timing Arrays, which are trying to directly detect gravitational waves. These two surveys have combined to discover 85 pulsars to date, among which are 14 MSPs and many unique and fascinating systems. I present highlights from these surveys and discuss future plans. I also discuss recent results from targeted GBT pulsar searches of globular clusters and Fermi sources.

  5. Simultaneous X-Ray and Radio Observations of the Unusual Binary LSI + 61 deg 303

    Science.gov (United States)

    Harrison, Fiona A.; Leahy, Denis A.; Waltman, Elizabeth

    1996-01-01

    We present simultaneous 0.5 - 10 keV X-ray and two-frequency radio observations at 2.25 and 8.3 GHz of the unusual binary system LSI + 61 deg. 303. This system was observed twice in a single binary orbit by the ASCA satellite, and monitored daily at two radio frequencies during the same orbital cycle with the Greenbank Interferometer. During the first ASCA observation the source was detected with a 1 - 10 keV luminosity 3.6 x 10(exp 33) (d/2.0 kpc)(exp 2) erg 1/s and during the second at a similar level with evidence for a decrease in average flux of 30%. During the first pointing the radio source was at a quiescent 8 GHz flux level of 30 mJy while during the second the radio flux was rising dramatically with an average value of 100 mJy. No variability is seen in the X-ray flux during the first pointing, but during the second the flux is variable by approx. 50% on timescales of approx. 30 minutes. No pulsations are seen in either X-ray observation with an upper limit on pulsed flux of 20%. The low X-ray luminosity and lack of observed pulsations indicate that accretion onto a neutron star surface is not the origin for the high-energy emission. Rather, the X-rays must result either from accreted matter which is stopped at the magnetosphere because the magnetospheric boundry is rotating at super-Keplerian rates or due to a shock formed in the interaction of the dense wind of the Be star companion and a moderately young pulsar. We derive a required pulsar spin down luminosity of approx. 10(exp 37) erg 1/s, and argue that the shock model more easily explains the observed X-ray radio observations.

  6. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    International Nuclear Information System (INIS)

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s–1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748–3009, the millisecond pulsar with the highest known DM (≈420 pc cm–3). We also discovered PSR J1840–0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750–2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data

  7. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Kim, H.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Eatough, R. P.; Keane, E. F.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Anderson, D. [University of California at Berkeley, Berkeley, CA 94720 (United States); Crawford, F.; Rastawicki, D. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Hammer, D.; Papa, M. A.; Siemens, X. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Miller, R. B. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Sarkissian, J., E-mail: benjamin.knispel@aei.mpg.de [CSIRO Parkes Observatory, Parkes, NSW 2870 (Australia); and others

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  8. Properties and Evolution of the Redback Millisecond Pulsar Binary PSR J2129-0429

    CERN Document Server

    Bellm, Eric C; Breton, Rene P; Phinney, E Sterl; Bhalerao, Varun B; Camilo, Fernando; Dahal, Sumit; Djorgovski, S G; Drake, Andrew J; Hessels, J W T; Laher, Russ R; Levitan, David B; Lewis, Fraser; Mahabal, Ashish A; Ofek, Eran O; Prince, Thomas A; Ransom, Scott M; Roberts, Mallory S E; Russell, David M; Sesar, Branimir; Surace, Jason A; Tang, Sumin

    2015-01-01

    PSR J2129-0429 is a "redback" eclipsing millisecond pulsar binary with an unusually long 15.2 hour orbit. It was discovered by the Green Bank Telescope in a targeted search of unidentified Fermi gamma-ray sources. The pulsar companion is optically bright (mean $m_R = 16.6$ mag), allowing us to construct the longest baseline photometric dataset available for such a system. We present ten years of archival and new photometry of the companion from LINEAR, CRTS, PTF, the Palomar 60-inch, and LCOGT. Radial velocity spectroscopy using the Double-Beam Spectrograph on the Palomar 200-inch indicates that the pulsar is massive: $1.74\\pm0.18 M_\\odot$. The G-type pulsar companion has mass $0.44\\pm0.04 M_\\odot$, one of the heaviest known redback companions. It is currently 95\\% Roche-lobe filling and only mildly irradiated by the pulsar. We identify a clear 13.1 mmag yr$^{-1}$ secular decline in the mean magnitude of the companion as well as smaller-scale variations in the optical lightcurve shape. This behavior may indic...

  9. Enhanced pulsar and single pulse detection via automated radio frequency interference detection in multipixel feeds

    Science.gov (United States)

    Kocz, J.; Bailes, M.; Barnes, D.; Burke-Spolaor, S.; Levin, L.

    2012-02-01

    Single pixel feeds on large aperture radio telescopes have the ability to detect weak (˜10 mJy) impulsive bursts of radio emission and sub-mJy radio pulsars. Unfortunately, in large-scale blind surveys, radio frequency interference (RFI) mimics both radio bursts and radio pulsars, greatly reducing the sensitivity to new discoveries as real signals of astronomical origin get lost among the millions of false candidates. In this paper a technique that takes advantage of multipixel feeds to use eigenvector decomposition of common signals is used to greatly facilitate radio burst and pulsar discovery. Since the majority of RFI occurs with zero dispersion, the method was tested on the total power present in the 13 beams of the Parkes multibeam receiver using data from archival intermediate-latitude surveys. The implementation of this method greatly reduced the number of false candidates and led to the discovery of one new rotating radio transient or RRAT, six new pulsars and five new pulses that shared the swept-frequency characteristics similar in nature to the `Lorimer burst'. These five new signals occurred within minutes of 11 previous detections of a similar type. When viewed together, they display temporal characteristics related to integer seconds, with non-random distributions and characteristic 'gaps' between them, suggesting they are not from a naturally occurring source. Despite the success in removing RFI, false candidates present in the data that are only visible after integrating in time or at non-zero dispersion remained. It is demonstrated that with some computational penalty, the method can be applied iteratively at all trial dispersions and time resolutions to remove the vast majority of spurious candidates.

  10. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    CERN Document Server

    Tendulkar, Shriharsh P; An, Hongjun; Kaspi, Victoria M; Archibald, Anne M; Bassa, Cees; Bellm, Eric; Bogdanov, Slavko; Harrison, Fiona A; Hessels, Jason W T; Janssen, Gemma H; Lyne, Andrew G; Patruno, Alessandro; Stappers, Benjamin; Stern, Daniel; Tomsick, John A; Boggs, Steven E; Chakrabarty, Deepto; Christensen, Finn E; Craig, William W; Hailey, Charles A; Zhang, William

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Gamma=1.17 +/-0.08 (at 90% confidence) with a 3-79 keV luminosity of 7.4+/-0.4 x 10^32 erg/s. Significant orbital modulation was observed with a modulation fraction of 36+/-10%. During the October 19-21 observation, the spectrum is described by a softer power law (Gamma=1.66+/-0.06) with an average luminosity of 5.8+/-0.2 x 10^33 erg/s and a peak luminosity of ~1.2 x 10^34 erg/s observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multi-wavelength observations and show the hard X-ray power law extending to 79 keV without a spectra...

  11. On the detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations

    CERN Document Server

    Huerta, E A; Gair, Jonathan R; Taylor, Stephen R

    2015-01-01

    We present a detailed analysis of the expected signal-to-noise ratios of supermassive black hole binaries on eccentric orbits observed by pulsar timing arrays. We derive several analytical relations that extend the results of Peters and Mathews [Phys. Rev. D 131, 435 (1963)] to facilitate this analysis. We show that eccentricity enhances the signal-to-noise ratio of single resolvable sources whose dominant harmonic is located in the low-frequency sensitivity regime of pulsar timing arrays for continuous wave sources, whereas the expected signal-to-noise ratio of single resolvable sources emitting in the high frequency sensitivity regime of pulsar timing arrays will be attenuated. We also show that the strain of a stochastic, isotropic gravitational wave background generated by a cosmological population of eccentric binaries will be suppressed in the frequency band of pulsar timing arrays relative to a population of circular binaries, which may pose a potential problem for their detection.

  12. Do Pulsar Radio Fluxes violate the Inverse-Square Law?

    CERN Document Server

    Desai, Shantanu

    2015-01-01

    Singleton et al (2009) have argued that the flux of pulsars measured at 1400 MHz shows an apparent violation of the inverse-square law with distance ($r$), and it is consistent with $1/r$ scaling. They deduced this from the fact that the convergence error obtained in reconstructing the luminosity function of pulsars using an iterative maximum likelihood procedure is about $10^5$ times larger for a distance exponent of two (corresponding to the inverse-square law) compared to an exponent of one. When we applied the same technique to this pulsar dataset with two different values for the trial luminosity function in the zeroth iteration, we find that neither of them can reproduce a value of $10^5$ for the ratio of the convergence error between these distance exponents. We then reconstruct the differential pulsar luminosity function using Lynden-Bell's $C^{-}$ method after positing both an inverse-linear and an inverse-square scalings with distance. We show this method cannot help in discerning between the two ex...

  13. The GBT350 Survey of the Northern Galactic Plane for Radio Pulsars and Transients

    CERN Document Server

    Hessels, J W T; Kaspi, V M; Roberts, M S E; Champion, D J; Stappers, B W

    2007-01-01

    Using the Green Bank Telescope (GBT) and Pulsar Spigot at 350MHz, we have surveyed the Northern Galactic Plane for pulsars and radio transients. This survey covers roughly 1000 square degrees of sky within 75 deg < l < 165 deg and |b| < 5.5 deg, a region of the Galactic Plane inaccessible to both the Parkes and Arecibo multibeam surveys. The large gain of the GBT along with the high time and frequency resolution provided by the Spigot make this survey more sensitive by factors of about 4 to slow pulsars and more than 10 to millisecond pulsars (MSPs), compared with previous surveys of this area. In a preliminary, reduced-resolution search of all the survey data, we have discovered 33 new pulsars, almost doubling the number of known pulsars in this part of the Galaxy. While most of these sources were discovered by normal periodicity searches, 5 of these sources were first identified through single, dispersed bursts. We discuss the interesting properties of some of these new sources. Data processing usi...

  14. Insights into the astrophysics of supermassive black hole binaries from pulsar timing observations

    International Nuclear Information System (INIS)

    Pulsar timing arrays (PTAs) are designed to detect the predicted gravitational wave (GW) background produced by a cosmological population of supermassive black hole (SMBH) binaries. In this contribution, I review the physics of such GW background, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. The latter is particularly relevant when it drives the binaries to extreme eccentricities (e > 0.9), which might be the case for stellar-driven systems. This causes a substantial suppression of the low-frequency signal, potentially posing a serious threat to the effectiveness of PTA observations. A future PTA detection will allow us to directly observe for the first time subparsec SMBH binaries on their way to the GW-driven coalescence, providing important answers of the outstanding questions related to the physics underlying the formation and evolution of these spectacular sources. (paper)

  15. Search for differences between radio-loud and radio-quiet gamma-ray pulsar populations with Fermi-LAT data

    CERN Document Server

    Sokolova, E V

    2016-01-01

    Observations by Fermi LAT enabled us to explore the population of non-recycled gamma-ray pulsars with the set of 89 objects. It was recently noted that there are apparent differences in properties of radio-quiet and radio-loud subsets. In particular, average observed radio-loud pulsar is younger than radio-quiet one and is located at smaller galactic latitude. Even so, the analysis based on the full list of pulsars may suffer from selection effects. Namely, most of radio-loud pulsars are first discovered in the radio-band, while radio-quiet ones are found using the gamma-ray data. In this work we perform a blind search for gamma-ray pulsars using the Fermi LAT data alone using all point sources from 3FGL catalog as the candidates. Unlike preceding blind search, the present catalog is constructed with novel semi-coherent method and covers the full range of characteristic ages down to 1 kyr. The search resulted in the catalog of 40 non-recycled pulsars, 26 of which are radio-quiet. There are no statistically si...

  16. On the pulse-width statistics in radio pulsars - I. Importance of the interpulse emission

    Science.gov (United States)

    Maciesiak, Krzysztof; Gil, Janusz; Ribeiro, Valério A. R. M.

    2011-06-01

    We performed Monte Carlo simulations of different properties of pulsar radio emission, such as pulsar periods, pulse widths, inclination angles and rates of occurrence of interpulse (IP) emission. We used recently available large data sets of the pulsar periods P, the pulse profile widths W and the magnetic inclination angle α. We also compiled the largest ever data base of pulsars with IP, divided into the double pole (DP-IP) and the single pole (SP-IP) cases. We identified 31 (about 2 per cent) and 13 (about 1 per cent) of the former and the latter, respectively, in the population of 1520 normal pulsars. Their distribution on the ? diagram strongly suggests a secular alignment of the magnetic axis from the originally random orientation. We derived possible parent distribution functions of important pulsar parameters by means of the Kolmogorov-Smirnov significance test using the available data sets (P, W, α and IP), different models of pulsar radio beam ρ=ρ(P) as well as different trial distribution functions of pulsar period P and the inclination angles α. The best suited parent period distribution function is the lognormal distribution, although the gamma function distribution cannot be excluded. The strongest constraint on derived model distribution functions was the requirement that the numbers of IPs generated by means of Monte Carlo simulations (both DP-IP and SP-IP cases) were exactly (within 1σ errors) at the observed level of occurrences. We found that a suitable model distribution function for the inclination angle is the complicated trigonometric function which has two local maxima, one near 0° and the other near 90°. The former and the latter imply the right rates of IP, occurrence, single pole (almost aligned rotator) and double pole (almost orthogonal rotator), respectively. It is very unlikely that the pulsar beam deviates significantly from the circular cross-section. We found that the upper limit for the average beaming factor fb

  17. A Magnetar-like Outburst from a High-B Radio Pulsar

    CERN Document Server

    Archibald, R F; Tendulkar, S P; Scholz, P

    2016-01-01

    Radio pulsars are believed to have their emission powered by the loss of rotational kinetic energy. By contrast, magnetars show intense X-ray and gamma-ray radiation whose luminosity greatly exceeds that due to spin-down and is believed to be powered by intense internal magnetic fields. A basic prediction of this picture is that radio pulsars of high magnetic field should show magnetar-like emission. Here we report on a magnetar-like X-ray outburst from the radio pulsar PSR J1119-6127, heralded by two short bright X-ray bursts on 2016 July 27 and 28 (Kennea et al. 2016; Younes et al. 2016). Using Target-of-Opportunity data from the Swift X-ray Telescope and NuSTAR, we show that this pulsar's flux has brightened by a factor of > 160 in the 0.5-10 keV band, and its previously soft X-ray spectrum has undergone a strong hardening, with strong pulsations appearing for the first time above 2.5 keV, with phase-averaged emission detectable up to 25 keV. By comparing Swift-XRT and NuSTAR timing data with a pre-outburs...

  18. Deep searches for decameter wavelength pulsed emission from radio-quiet gamma-ray pulsars

    CERN Document Server

    Maan, Yogesh

    2014-01-01

    We report the results of (a) extensive follow-up observations of the gamma-ray pulsar J1732-3131 that has been recently detected at decameter wavelengths, and (b) deep searches for counterparts of 9 other radio-quiet gamma-ray pulsars at 34 MHz, using the Gauribidanur radio telescope. No periodic signal from J1732-3131 could be detected above a detection threshold of $8\\sigma$, even with an effective integration time of more than 40 hours. However, the average profile obtained by combining data from several epochs, at a dispersion measure of 15.44 pc/cc, is found to be consistent with that from the earlier detection of this pulsar at a confidence level of 99.2 %. We present this consistency between the two profiles as an evidence that J1732-3131 is a faint radio pulsar with an average flux density of 200--400 mJy at 34 MHz. Detection sensitivity of our deep searches, despite the extremely bright sky background at such low frequencies, is generally comparable to that of higher frequency searches for these puls...

  19. Interpretation of the Low-Frequency Peculiarities in the Radio Profile Structure of the Crab Pulsar

    CERN Document Server

    Petrova, S A

    2008-01-01

    The theory of magnetized induced scattering off relativistic gyrating particles is developed. It is directly applicable to the magnetosphere of a pulsar, in which case the particles acquire gyration energies as a result of resonant absorption of radio emission. In the course of the radio beam scattering into background the scattered radiation concentrates along the ambient magnetic field. The scattering from different harmonics of the particle gyrofrequency takes place at different characteristic altitudes in the magnetosphere and, because of the rotational effect, gives rise to different components in the pulse profile. It is demonstrated that the induced scattering from the first harmonic into the state under the resonance can account for the so-called low-frequency component in the radio profile of the Crab pulsar. The precursor component is believed to result from the induced scattering between the two states well below the resonance. It is shown that these ideas are strongly supported by the polarization...

  20. Optical polarisation of the Crab pulsar: precision measurements and comparison to the radio emission

    CERN Document Server

    Słowikowska, Agnieszka; Kramer, Michael; Stefanescu, Alexander

    2009-01-01

    The linear polarisation of the Crab pulsar and its close environment was derived from observations with the high-speed photo-polarimeter OPTIMA at the 2.56-m Nordic Optical Telescope in the optical spectral range (400 - 750 nm). Time resolution as short as 11 microseconds, which corresponds to a phase interval of 1/3000 of the pulsar rotation, and high statistics allow the derivation of polarisation details never achieved before. The degree of optical polarisation and the position angle correlate in surprising details with the light curves at optical wavelengths and at radio frequencies of 610 and 1400 MHz. Our observations show that there exists a subtle connection between presumed non-coherent (optical) and coherent (radio) emissions. This finding supports previously detected correlations between the optical intensity of the Crab and the occurrence of giant radio pulses. Interpretation of our observations require more elaborate theoretical models than those currently available in the literature.

  1. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    Science.gov (United States)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; Guillemot, L.; Johnston, S.; Keith, M.; Kerr, M.; Kramer, M.; Pletsch, H. J.; Parkinson, P. M. Saz

    2013-01-01

    We report the detection of radio emission from PSR J1311.3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for less than 10% of approximately 4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nan cay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311.3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm(exp -3) provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  2. Search for the Giant Pulses Search for the Giant Pulses - an extreme phenomenon in radio pulsar emission

    CERN Document Server

    Kazantsev, A N

    2016-01-01

    Here we present results of our search for Giant Pulses(GPs) from pulsars of Northern Hemisphere. Our survey was carried out at a frequency of 111 MHz using the Large Phased Array (LPA) radio telescope. Up to now we have detected regular generation of strong pulses satisfying the criteria of GPs from 2 pulsars: B1133+16, B1237+25.

  3. Drifting subpulses and inner acceleration regions in radio pulsars

    CERN Document Server

    Gil, J; Geppert, U; Geppert, Ulrich

    2003-01-01

    The classical vacuum gap model of Ruderman & Sutherland, in which spark-associated subbeams of subpulse emission circulate around the magnetic axis due to the EB drift, provides a natural and plausible physical mechanism of the subpulse drift phenomenon. Recent progress in the analysis of drifting subpulses in pulsars has provided a strong support to this model by revealing a number of subbeams circulating around the magnetic axis in a manner compatible with theoretical predictions. However, a more detailed analysis revealed that the circulation speed in a pure vacuum gap is too high when compared with observations. Moreover, some pulsars demonstrate significant time variations of the drift rate, including a change of the apparent drift direction, which is obviously inconsistent with the EB drift scenario in a pure vacuum gap. We resolved these discrepancies by considering a partial flow of iron ions from the positively charged polar cap, coexisting with the production of outflowing electron-positron plas...

  4. Timing and Fermi LAT Analysis of Four Millisecond Pulsars Discovered in Parkes Radio Searches of Gamma-ray Sources

    Science.gov (United States)

    Ray, Paul S.; Ransom, Scott M.; Camilo, Fernando M.; Kerr, Matthew; Reynolds, John; Sarkissian, John; Freire, Paulo; Thankful Cromartie, H.; Barr, Ewan D.

    2016-01-01

    We present phase-connected timing solutions for four binary millisecond pulsars discovered in searches of Fermi LAT gamma-ray sources using the Parkes radio telescope. Follow-up timing observations of PSRs J0955-6150, J1012-4235, J1036-8317, and J1946-5403 have yielded timing models with precise orbital and astrometric parameters. For each pulsar, we also did a gamma-ray spectral analysis using LAT Pass 8 data and generated photon probabilities for use in a weighted H-test pulsation test. In all 4 cases, we detect significant gamma-ray pulsations, confirming the identification with the gamma-ray source originally targeted in the discovery observations. We describe the results of the pulse timing and gamma-ray spectral and timing analysis and the characteristics of each of the systems. The Fermi-LAT Collaboration acknowledges support for LAT development, operation and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. NRL participation was funded by NASA.

  5. The PALFA Survey: Going to great depths to find radio pulsars

    CERN Document Server

    Lazarus, P; Bhat, N D R; Bogdanov, S; Bouchard, A; Brazier, A; Camilo, F; Cardoso, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J S; Desvignes, G; Freire, P C C; Hessels, J W T; Jenet, F A; Kaspi, V M; Knispel, B; van Leeuwen, J; Lorimer, D R; Lynch, R; Lyne, A G; McLaughlin, M A; Nice, D J; Ransom, S M; Scholz, P; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Swiggum, J

    2012-01-01

    The on-going PALFA survey is searching the Galactic plane (|b| < 5 deg., 32 < l < 77 deg. and 168 < l < 214 deg.) for radio pulsars at 1.4 GHz using ALFA, the 7-beam receiver installed at the Arecibo Observatory. By the end of August 2012, the PALFA survey has discovered 100 pulsars, including 17 millisecond pulsars (P < 30 ms). Many of these discoveries are among the pulsars with the largest DM/P ratios, proving that the PALFA survey is capable of probing the Galactic plane for millisecond pulsars to a much greater depth than any previous survey. This is due to the survey's high sensitivity, relatively high observing frequency, and its high time and frequency resolution. Recently the rate of discoveries has increased, due to a new more sensitive spectrometer, two updated complementary search pipelines, the development of online collaborative tools, and access to new computing resources. Looking forward, focus has shifted to the application of artificial intelligence systems to identify puls...

  6. On the detection of eccentric supermassive black hole binaries with pulsar timing arrays

    Science.gov (United States)

    Huerta, Eliu; McWilliams, Sean; Gair, Jonathan; Taylor, Stephen

    2015-04-01

    It is believed that supermassive black holes (SMBHs) with masses between a million up to a few billion solar masses are ubiquitous in nearby galactic nuclei. Hence, the merger of a pair of galaxies hosting these compact objects may result in the formation of a compact binary that decays to small orbital separations via interactions with its stellar and gaseous environments. Recent studies suggest that these formation channels imply that SMBH binaries may have large orbital eccentricities when they become dominated by gravitational wave emission. In light of these considerations, we present a novel and comprehensive framework that we put at work to carry out an end-to-end analysis of the effect of eccentricity on the amplitude and spectrum of a stochastic, isotropic gravitational wave background from SMBH binaries and single resolvable sources that may be detected with Pulsar Timing Arrays.

  7. CONSTRAINING THE EVOLUTIONARY FATE OF CENTRAL COMPACT OBJECTS: ''OLD'' RADIO PULSARS IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Central compact objects (CCOs) constitute a population of radio-quiet, slowly spinning (≥100 ms) young neutron stars with anomalously high thermal X-ray luminosities. Their spin-down properties imply weak dipole magnetic fields (∼1010-11 G) and characteristic ages much greater than the ages of their host supernova remnants (SNRs). However, CCOs may posses strong ''hidden'' internal magnetic fields that may re-emerge on timescales of ≳10 kyr, with the neutron star possibly activating as a radio pulsar in the process. This suggests that the immediate descendants of CCOs may be masquerading as slowly spinning ''old'' radio pulsars. We present an X-ray survey of all ordinary radio pulsars within 6 kpc that are positionally coincident with Galactic SNRs in order to test the possible connection between the supposedly old but possibly very young pulsars and the SNRs. None of the targets exhibit anomalously high thermal X-ray luminosities, suggesting that they are genuine old ordinary pulsars unrelated to the superposed SNRs. This implies that CCOs are either latent radio pulsars that activate long after their SNRs dissipate or they remain permanently radio-quiet. The true descendants of CCOs remain at large

  8. Thermal X-ray Emission from Hot Polar Cap in Radio Pulsars with Drifting Subpulses

    Science.gov (United States)

    Gil, Janusz; Melikidze, George; Zhang, Bing

    2008-02-01

    We consider the problem of thermal X-ray radiation from the hot polar cap heated by the spark-associated back-flow electron bombardment, in radio pulsars showing the subpulse drift. Using the partially screened gap (PSG) model of the inner acceleration region we examine a simple relationship between the drift rate of subpulses observed in a radio-band (measured as the polar cap carousel circulation time P4, that is the time interval after which sparks complete one full revolution around the polar cap) and the heating rate (measured as thermal X-ray luminosity Lx from hot polar cap). This relationship reflects the fact that both the drift rate and the heating rate are determined by about the same value of the non-corotational component of gap electric field. The theoretical formula can be tested for pulsars in which the carousel rotation time P4, and the thermal X-ray bolometric luminosity Lx from the hot polar cap are known. There are currently four pulsars in which both these quantities and are measured or at least estimated: PSRs B0943+10, B1133+16, B0656+14 and B0628-28. They all seem to confirm the predictions of the PSG model. This model requires a very strong surface magnetic field in pulsars, exceeding 1014 G irrespective of the dipolar component determined from the spin-down data.

  9. Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars with LOFAR

    CERN Document Server

    Pilia, M; Stappers, B W; Kondratiev, V I; Kramer, M; van Leeuwen, J; Weltevrede, P; Lyne, A G; Zagkouris, K; Hassall, T E; Bilous, A V; Breton, R P; Falcke, H; Grießmeier, J -M; Keane, E; Karastergiou, A; Kuniyoshi, M; Noutsos, A; Osłowski, S; Serylak, M; Sobey, C; ter Veen, S; Alexov, A; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Ciardi, B; Corbel, S; de Geus, E; de Jong, A; Deller, A; Duscha, S; Eislöffel, J; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Gunst, A W; Hamaker, J P; Heald, G; Horneffer, A; Jonker, P; Juette, E; Kuper, G; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; Miller-Jones, J C A; Nelles, A; Paas, H; Pandey-Pommier, M; Pietka, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Rowlinson, A; Schwarz, D; Smirnov, O; Steinmetz, M; Stewart, A; Swinbank, J D; Tagger, M; Tang, Y; Tasse, C; Thoudam, S; Toribio, M C; van der Horst, A J; Vermeulen, R; Vocks, C; van Weeren, R J; Wijers, R A M J; Wijnands, R; Wijnholds, S J; Wucknitz, O; Zarka, P

    2015-01-01

    LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well-suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects: such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: High Band (120-167 MHz, 100 profiles) and Low Band (15-62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and1400 MHz) in order to study the profile evolution. The profiles are aligned in abs...

  10. High Frequency Cut-off and Changing of Radio Emission Mechanism in Pulsars

    CERN Document Server

    Kontorovich, V M

    2012-01-01

    Pulsars are the fast rotating neutron stars with strong magnetic field emitting over a wide frequency range. In spite of the efforts during 40 years after the discovery of pulsars, the mechanism of their radio emission remains to be unknown so far. We propose a new approach to solving this problem. The object of our study is a sample of pulsars with a high-frequency break of the spectrum from Pushchino catalogue. A theoretical explanation of the observed dependence of the high-frequency break from the pulsar period is given. The dependence of the break position from the magnetic field is predicted. This explanation is based on a new mechanism for electron emission in the inner polar gap. Radiation occurs when electrons are accelerated in the electric field rising from zero at the star surface. Acceleration passes through a maximum and tends to zero when the electron velocity approaches the velocity of light. The all radiated power is allocated to the radio band. The averaging over the polar cap, with some nat...

  11. New Limits on the Photon Mass with Radio Pulsars in the Magellanic Clouds

    CERN Document Server

    Wei, Jun-Jie; Zhang, Song-Bo; Wu, Xue-Feng

    2016-01-01

    A conservative constraint on the rest mass of the photon can be estimated under the assumption that the frequency dependence of dispersion from astronomical sources is mainly contributed by the nonzero photon mass effect. Photon mass limits have been earlier set through the optical emissions of the Crab Nebula pulsar, but we prove that these limits can be significantly improved with the dispersion measure (DM) measurements of radio pulsars in the Large and Small Magellanic Clouds. The combination of DM measurements of pulsars and distances of the Magellanic Clouds provide a strict upper limit on the photon mass as low as $m_{\\gamma} \\leq2.0\\times10^{-45}~\\rm{g}$, which is at least four orders of magnitude smaller than the constraint from the Crab Nebula pulsar. Although our limit is not as tight as the current best result ($\\sim10^{-47}~\\rm{g}$) from a fast radio burst (FRB 150418) at a cosmological distance, the cosmological origin of FRB 150418 remains under debate; and our limit can reach the same high pre...

  12. Very Long Baseline Interferometry Experiment on Giant Radio Pulses of Crab Pulsar toward Fast Radio Burst Detection

    CERN Document Server

    Takefuji, K; Kondo, T; Mikami, R; Takeuchi, H; Misawa, H; Tsuchiya, F; Kita, H; Sekido, M

    2016-01-01

    We report on a very long baseline interferometry (VLBI) experiment on giant radio pulses (GPs) from the Crab pulsar in the radio 1.4 to 1.7 GHz range to demonstrate a VLBI technique for searching for fast radio bursts (FRBs). We carried out the experiment on 26 July 2014 using the Kashima 34 m and Usuda 64 m radio telescopes of the Japanese VLBI Network (JVN) with a baseline of about 200 km. During the approximately 1 h observation, we could detect 35 GPs by high-time-resolution VLBI. Moreover, we determined the dispersion measure (DM) to be 56.7585 +/- 0.0025 on the basis of the mean DM of the 35 GPs detected by VLBI. We confirmed that the sensitivity of a detection of GPs using our technique is superior to that of a single-dish mode detection using the same telescope.

  13. Very Long Baseline Interferometry Experiment on Giant Radio Pulses of Crab Pulsar toward Fast Radio Burst Detection

    Science.gov (United States)

    Takefuji, K.; Terasawa, T.; Kondo, T.; Mikami, R.; Takeuchi, H.; Misawa, H.; Tsuchiya, F.; Kita, H.; Sekido, M.

    2016-08-01

    We report on a very long baseline interferometry (VLBI) experiment on giant radio pulses (GPs) from the Crab pulsar in the radio 1.4–1.7 GHz range to demonstrate a VLBI technique for searching for fast radio bursts (FRBs). We carried out the experiment on 2014 July 26 using the Kashima 34 m and Usuda 64 m radio telescopes of the Japanese VLBI Network (JVN) with a baseline of about 200 km. During the approximately 1 hr observation, we could detect 35 GPs by high-time-resolution VLBI. Moreover, we determined the dispersion measure (DM) to be 56.7585 ± 0.0025 on the basis of the mean DM of the 35 GPs detected by VLBI. We confirmed that the sensitivity of a detection of GPs using our technique is superior to that of a single-dish mode detection using the same telescope.

  14. Review of overall parameters of giant radio pulses from the Crab pulsar and B1937+21

    CERN Document Server

    Bilous, A V; Popov, M V; Soglasnov, V A

    2007-01-01

    We present a review of observed parameters of giant radio pulses, based on the observations conducted by our group during recent years. The observations cover a broad frequency range of about 3 octaves, concentrating between 600 and 4850 MHz. Giant pulses of both the Crab pulsar and the millisecond pulsar B1937+21 were studied with the 70-m Tidbinbilla, the 100-m GBT, 64-m Kalyazin and Westerbork radio telescopes. We discuss pulse energy distribution, dependence of peak flux density from the pulse width, peculiarities of radio spectra, and polarization properties of giant radio pulses.

  15. Constraining Pulsar Emission Physics through Radio/Gamma-Ray Correlation of Crab Giant Pulses

    CERN Document Server

    Bilous, A V; McLaughlin, M A; Mickaliger, M; Lorimer, D R; Ransom, S M; Lyutikov, M; Stappers, B; Langston, G I

    2009-01-01

    To constrain the giant pulse (GP) emission mechanism and test the model of Lyutikov (2007) of GP emission, we are carrying out a campaign of simultaneous observations of the Crab pulsar between gamma-rays (Fermi) and radio wavelengths. The correlation between times of arrival of radio GPs and high-energy photons, whether it exists or not, will allow us to choose between different origins of GP emission and further constrain the emission physics. Our foremost goal was testing whether radio GPs are due to changes in the coherence of the radio emission mechanism, variations in the pair creation rate in the pulsar magnetosphere, or changes in the beaming direction. Accomplishing this goal requires an enormous number of simultaneous radio GPs and gamma-photons. Thus, we organized a radio observations campaign using the 42-ft telescope at the Jodrell Bank Observatory (UK), the 140-ft telescope, and the 100-m Richard C. Byrd Green Bank Telescope (GBT) at the Green Bank Observatory (WV). While the observations with t...

  16. On the mean profiles of radio pulsars I: Theory of the propagation effects

    OpenAIRE

    Beskin, V. S.; Philippov, A. A.

    2011-01-01

    We study the influence of the propagation effects on the mean profiles of radio pulsars using the Kravtsov-Orlov method of the wave propagation in the inhomogeneous media. This approach allows us firstly to include into consideration the transition from geometrical optics to vacuum propagation, the cyclotron absorption, and the wave refraction simultaneously. In addition, arbitrary non-dipole magnetic field configuration, drift motion of plasma particles, and their realistic energy distributi...

  17. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves

    Science.gov (United States)

    Schutz, Katelin; Ma, Chung-Pei

    2016-06-01

    Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent information about the dynamical masses Mbh of supermassive black holes in specific galaxies at known distances and use this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of Mbh in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves (as a function of angular position in the sky) can already constrain the mass ratios of hypothetical black hole binaries in many galaxies in our samples. The constraints are stronger for galaxies with larger Mbh and at smaller distances. For the black holes with Mbh ≳ 5 × 109 M⊙ at the centres of NGC 1600, NGC 4889, NGC 4486 (M87), and NGC 4649 (M60), any binary companion in orbit within the PTA frequency bands would have to have a mass ratio of a few per cent or less.

  18. Detecting Eccentric Supermassive Black Hole Binaries with Pulsar Timing Arrays: Resolvable Source Strategies

    Science.gov (United States)

    Taylor, S. R.; Huerta, E. A.; Gair, J. R.; McWilliams, S. T.

    2016-01-01

    The couplings between supermassive black hole binaries (SMBHBs) and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system’s gravitational-wave (GW) signal enters the pulsar-timing array (PTA) band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric SMBHB system with PTAs. Additionally, we generalize the PTA {{ F }}{{e}}-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single GW sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study.

  19. Detecting eccentric supermassive black hole binaries with pulsar timing arrays: Resolvable source strategies

    CERN Document Server

    Taylor, S R; Gair, J R; McWilliams, S T

    2015-01-01

    The couplings between supermassive black-hole binaries and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational-waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system's gravitational-wave signal enters the pulsar-timing array band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric supermassive black-hole bi...

  20. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    CERN Document Server

    Knispel, B; Stappers, B W; Freire, P C C; Lazarus, P; Allen, B; Aulbert, C; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Cardoso, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J S; Eggenstein, H -B; Fehrmann, H; Ferdman, R; Hessels, J W T; Jenet, F A; Karako-Argaman, C; Kaspi, V M; van Leeuwen, J; Lorimer, D R; Lynch, R; Machenschalk, B; Madsen, E; McLaughlin, M A; Patel, C; Ransom, S M; Scholz, P; Siemens, X; Spitler, L G; Stairs, I H; Stovall, K; Swiggum, J K; Venkataraman, A; Wharton, R S; Zhu, W W

    2015-01-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 ($P=4.3$ ms) in a binary system with an eccentric ($e=0.08$) orbit in Pulsar ALFA survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 $M_\\odot$ and is most likely a white dwarf. Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities $e < 0.001$. However, four recently discovered binary MSPs have orbits with larger eccentricities ($0.03 < e < 0.4$); PSR J1950+2414 is only the fifth such system to be discovered. The upper limits for the the intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities of these systems are not compatible with the predictions of the standard recycling scenario: som...

  1. On the nature of the "radio quiet" black hole binaries

    OpenAIRE

    Soleri, Paolo; Fender, Rob

    2011-01-01

    The coupling between accretion processes and ejection mechanisms in accreting black holes in binary systems can be investigated by empirical relations between the X-ray/radio and X-ray/optical-infrared luminosities. These correlations are valid over several orders of magnitude and were initially thought to be universal. However, recently, many black hole binaries have been found to produce jets that, given certain accretion-powered luminosities, are fainter than expected from the earlier corr...

  2. Ain't No Crab, PWN Got A Brand New Bag: Correlated radio and X-ray Structures in Pulsar Wind Nebulae

    OpenAIRE

    Roberts, Mallory S. E.; Lyutikov, Maxim; Gaensler, Bryan M.; Brogan, Crystal; Tam, Cindy R.; Romani, Roger W.

    2004-01-01

    The traditional view of radio pulsar wind nebulae (PWN), encouraged by the Crab nebula's X-ray and radio morphologies, is that they are a result of the integrated history of their pulsars' wind. The radio emission should therefore be largely unaffected by recent pulsar activity, and hence minimally correlated with structures in the X-ray nebulae. Observations of several PWN, both stationary (sPWN) and rapidly moving (rPWN), now show clear morphological relationships between structures in the ...

  3. Population synthesis of radio and gamma-ray millisecond pulsars using Markov Chain Monte Carlo techniques

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice

    2016-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  4. Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations

    Science.gov (United States)

    Huerta, E. A.; McWilliams, Sean T.; Gair, Jonathan R.; Taylor, Stephen R.

    2015-09-01

    We present a detailed analysis of the expected signal-to-noise ratios of supermassive black hole binaries on eccentric orbits observed by pulsar timing arrays. We derive several analytical relations that extend the results of Peters and Mathews [Phys. Rev. D 131, 435 (1963)] to quantify the impact of eccentricity in the detection of single resolvable binaries in the pulsar timing array band. We present ready-to-use expressions to compute the increase/loss in signal-to-noise ratio of eccentric single resolvable sources whose dominant harmonic is located in the low/high frequency sensitivity regime of pulsar timing arrays. Building upon the work of Phinney (arXiv:astro-ph/0108028) and Enoki and Nagashima [Prog. Theor. Phys. 117, 241 (2007)], we present an analytical framework that enables the construction of rapid spectra for a stochastic gravitational-wave background generated by a cosmological population of eccentric sources. We confirm previous findings which indicate that, relative to a population of quasicircular binaries, the strain of a stochastic, isotropic gravitational-wave background generated by a cosmological population of eccentric binaries will be suppressed in the frequency band of pulsar timing arrays. We quantify this effect in terms of signal-to-noise ratios in a pulsar timing array.

  5. Fermi variability study of the candidate pulsar binary 2FGL J0523.3−2530

    OpenAIRE

    Xing, Y.; Wang, ZX; Ng, SCY

    2014-01-01

    The Fermi source 2FGL~J0523.3$-$2530 has recently been identified as a candidate millisecond pulsar binary with an orbital period of 16.5 hrs. We have carried out detailed studies of the source's emission properties by analyzing data taken with the Fermi Large Area Telescope in the 0.2--300 GeV energy range. Long-term, yearly variability from the source has been found, with a factor of 4 flux variations in 1--300 GeV. From spectral analysis, we find an extra spectral component at 2--3 GeV tha...

  6. Possible Fermi Detection of the Accreting Millisecond Pulsar Binary SAX J1808.4-3658

    OpenAIRE

    Xing, Yi; Wang, Zhongxiang; Jithesh, V.

    2015-01-01

    We report the Fermi Large Area Telescope (LAT) detection of a $\\gamma$-ray source at the position of SAX J1808.4$-$3658. This transient low-mass X-ray binary contains an accreting millisecond puslar, which is only seen during its month-long outbursts and likely switches to be rotation powered during its quiescent state. Emission from the $\\gamma$-ray source can be described by a power law with an exponential cutoff, the characteristic form for pulsar emission. Folding the source's 2.0--300 Ge...

  7. Using Pulsar Timing observations to understand the formation and evolution of supermassive black hole binaries

    Science.gov (United States)

    Cornish, Neil; Sampson, Laura; McWilliams, Sean

    2015-04-01

    The astrophysical processes that form and harden supermassive black hole binaries impart distinct features that may be observed in the gravitational-wave spectrum within the sensitive frequency range of Pulsar Timing Arrays (PTA). We investigate how well the various formation and hardening mechanisms can be constrained by applying Bayesian inference to simulated PTA data sets. We find that even without strong priors on the merger rate, any detection of the signal will place interesting constraints on the astrophysical models. Folding in priors on the merger rate allows us to place interesting constraints on the astrophysical models even before a detection is made.

  8. Spectral Properties of the X-ray Binary Pulsar LMC X-4 during Different Intensity States

    Indian Academy of Sciences (India)

    S. Naik; B. Paul

    2002-03-01

    We present spectral variations of the binary X-ray pulsar LMC X-4 observed with the RXTE/PCA during different phases of its 30.5 day long third period. Only out-of-eclipse data were used for this study. The 3–25 keV spectrum, modeled with high energy cut-off power-law and iron line emission is found to show strong dependence on the intensity state. Correlations between the Fe line emission flux and different parameters of the continuum are presented here.

  9. Tidal pressure induced neutrino emission as an energy dissipation mechanism in binary pulsar systems

    International Nuclear Information System (INIS)

    We briefly review possible systematic limitations to the inferred General Relativity tests in binary pulsar systems, then propose a new mechanism whereby orbital energy can drive the electron-proton vs. neutron density away from equilibrium, and the concomitant neutrino (or antineutrino) emission represents an orbital energy dissipation. Of the total orbital energy loss rate, we estimate the fractional contribution of this mechanism as 8x10-6, whereas the observational accuracy is at the level of 7x10-3, and agrees with the predicted rate of gravitational radiation. 10 refs

  10. Multifrequency Study of Giant Radio Pulses from the Crab Pulsar with K5 VLBI Recording Terminal

    CERN Document Server

    Popov, M V; Kondratiev, V I; Bilous, A V; Moshkina, O; Oreshko, V V; Ilyasov, Yu P; Sekido, M; Kondo, T

    2009-01-01

    Simultaneous multifrequency observations of the Crab pulsar giant pulses (GPs) were performed with the 64-m Kalyazin radio telescope at four frequencies 0.6, 1.4, 2.2 and 8.3 GHz using the K5 VLBI recording terminal. K5 terminal provided continuous recording in 16 4-MHz wide frequency channels distributed over 4 frequency bands. Several thousands of GPs were detected during about 6 hours of observations in two successive days in July 2005. Radio spectra of single GPs were analysed at separate frequencies and over whole frequency range. These spectra manifest notable modulation both on large ($\\Delta\

  11. Measuring the Size of the Vela Pulsar's Radio Emission Region

    CERN Document Server

    Gwinn, C R; Jauncey, D L; Hirabayashi, H; Kobayashi, H; Murata, Y; Edwards, P G; Carlson, B; Dougherty, S M; Britton, M C; McCulloch, P M; Lovell, J E J; Del Rizzo, D

    2000-01-01

    We describe measurements of the size of the Vela pulsar via scintillation,using both fits to the distribution of intensity and measurements of themodulation index. We briefly discuss systematic effects other than source sizethat can affect the distribution, including gain variations, self-noise,scintillation shot noise, and correlator saturation. Modulation index, a singlenumber, can be biased by all of these, whereas the distribution of intensity isaffected in different ways by different effects, providing means ofdistinguishing among them. Self-noise and gain variations are likely moreimportant at long observing wavelengths, and correlator saturation andscintillation shot noise at short wavelengths. We find a size of about 500 kmat decimeter wavelengths. Interestingly, this agrees with measurements ofmodulation index by Roberts & Ables at the same wavelength. Their results (andmore recently that reported by Macquart et al.) suggest that size decreaseswith increasing wavelength. Although consistent with ...

  12. Binary is Good: A Binary Inference Framework for Primary User Separation in Cognitive Radio Networks

    CERN Document Server

    Nguyen, Huy; Han, Zhu

    2010-01-01

    Primary users (PU) separation concerns with the issues of distinguishing and characterizing primary users in cognitive radio (CR) networks. We argue the need for PU separation in the context of collaborative spectrum sensing and monitor selection. In this paper, we model the observations of monitors as boolean OR mixtures of underlying binary latency sources for PUs, and devise a novel binary inference algorithm for PU separation. Simulation results show that without prior knowledge regarding PUs' activities, the algorithm achieves high inference accuracy. An interesting implication of the proposed algorithm is the ability to effectively represent n independent binary sources via (correlated) binary vectors of logarithmic length.

  13. Simultaneous absolute timing of the Crab pulsar at radio and optical wavelengths

    Science.gov (United States)

    Oosterbroek, T.; Cognard, I.; Golden, A.; Verhoeve, P.; Martin, D. D. E.; Erd, C.; Schulz, R.; Stüwe, J. A.; Stankov, A.; Ho, T.

    2008-09-01

    Context: The Crab pulsar emits across a large part of the electromagnetic spectrum. Determining the time delay between the emission at different wavelengths will allow to better constrain the site and mechanism of the emission. We have simultaneously observed the Crab Pulsar in the optical with S-Cam, an instrument based on Superconducting Tunneling Junctions (STJs) with μs time resolution and at 2 GHz using the Nançay radio telescope with an instrument doing coherent dedispersion and able to record giant pulses data. Aims: We have studied the delay between the radio and optical pulse using simultaneously obtained data therefore reducing possible uncertainties present in previous observations. Methods: We determined the arrival times of the (mean) optical and radio pulse and compared them using the tempo2 software package. Results: We present the most accurate value for the optical-radio lag of 255 ± 21 μs and suggest the likelihood of a spectral dependence to the excess optical emission asociated with giant radio pulses.

  14. The general relativistic problem of motion and binary pulsars

    International Nuclear Information System (INIS)

    The problem of motion in General Relativity has a long and chequered history. We shall concentrate on two particular issues. The first is the problem of deriving and describing the motion of several gravitationally condensed objects. Relativistic Astrophysics predicts the existence of such objects, namely the neutron stars and the black holes, and there are now many observational data about the motion of binary systems containing at least one such object. But, there are relatively few theoretical works about the general relativistic theory of the motion of condensed objects. One of the reasons for this situation is that there seems to exist an implicit belief that the usual post-Newtonian-type approximation methods are not only adequate to deal, both theoretically and observationally, with the motion of weakly self-gravitating extended bodies, but are even, in some sense, sufficient to deal with the motion of condensed bodies. A critical examination of this belief will constitute the first issue that we wish to discuss here. Then in the last section we shall outline what are the main ingredients that are needed, in our opinion, for providing a complete theoretical coverage of the problem of the motion of condensed bodies, putting a particular emphasis on the necessity of going beyond the usual ''coordinate motion aspect'' to obtain instead a general relativistic theory of the measurement of the motion of such bodies. (author)

  15. Detection of the new rotating radio transient pulsar PSR J2225+35

    Science.gov (United States)

    Shitov, Yu. P.; Kuzmin, A. D.; Dumskii, D. V.; Losovsky, B. Ya.

    2009-06-01

    We have detected the new pulsar PSR J2225+35, which displays the properties of the new class of radio sources “Rotating Radio Transients” (RRATs). RRATs are distinguished by isolated bursts of radio emission and long quiet periods. Throughout 45 observations with a total duration of about 3 hr, only two bursts of radio emission lasting a total of about 10 min were detected in two observations. The temporal and frequency delay of the pulses corresponds to the dispersion measure DM = 51.8 pc/cm3 and the distance d = 3.05 kpc. The period of the pulses is P = 0.94 s. The emission is polarized, with the rotation measure being RM = 49.8 rad/m2.

  16. On the possible mechanism to form the radio emission spectrum of the Crab pulsar

    CERN Document Server

    Machabeli, George

    2014-01-01

    In the present paper a self-consistent theory, explaining shape of the observed phase-averaged radio spectrum in the frequency range from 100MHz to 10GHz is presented. The radio waves are assumed to be generated near the light cylinder through the cyclotron resonance. The cyclotron instability provides excitement of the electron-positron plasma eigen-waves, which come in radio domain when the resonant particles are the most energetic primary beam electrons. It is widely accepted that the distribution function of relativistic particles is one-dimensional at the pulsar surface. The generated waves react back on the resonant particles causing their diffusion in the perpendicular direction to the magnetic field and violating the one-dimensionality, which switches on the synchrotron radiation process. The synchrotron emission of the beam electrons provides generation of high-energy $\\gamma$-rays simultaneously with the radio emission, that explains the observed pulse phase-coincidence in these energy domains. The ...

  17. Suzaku Observation of Be/X-ray Binary Pulsar EXO 2030+375

    CERN Document Server

    Naik, Sachindra

    2014-01-01

    In this paper we study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a $Suzaku$ observation on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray light curves at a barycentric period of 41.2852 s which suggests that the pulsar is spinning-up. The pulse profiles were found to be peculiar e.g. unlike that obtained from the earlier Suzaku observation on 2007 May 14. A single-peaked narrow profile at soft X-rays (0.5-10 keV range) changed to a double-peaked broad profile in 12-55 keV energy range and again reverted back to a smooth single-peaked profile at hard X-rays (55-70 keV range). The 1.0-100.0 keV broad-band spectrum of the pulsar was found to be well described by three continuum models such as (i) a partial covering high energy cut-off power-law model, (ii) a partially absorbed power-law with high-energy exponential rolloff and (iii) a partial covering Negative and Positive power law with EXponential (NPEX) continuum model. U...

  18. A search for rotating radio transients and fast radio bursts in the Parkes high-latitude pulsar survey

    CERN Document Server

    Rane, A; Bates, S D; McMann, N; McLaughlin, M A; Rajwade, K

    2015-01-01

    Discoveries of rotating radio transients and fast radio bursts (FRBs) in pulsar surveys suggest that further transient sources await discovery in archival data sets. Here we report on a single-pulse search for dispersed radio bursts over a wide range of Galactic latitudes ($|b| 0.1$ Jy to be ${\\cal R} = 3.3^{+5.0}_{-2.5} \\times 10^3$ FRBs day$^{-1}$ sky$^{-1}$, where the uncertainties represent a $99\\%$ confidence interval. While this rate is several times lower than inferred from previous studies, it is consistent with all systematic FRB searches at Parkes to date and does not require the need to postulate a dearth of FRBs at intermediate latitudes.

  19. On the role of the current loss in radio pulsar evolution

    CERN Document Server

    Beskin, V S

    2006-01-01

    The aim of this article is to draw attention to the importance of the electric current loss in the energy output of radio pulsars. We remind that even the losses attributed to the magneto-dipole radiation of a pulsar in vacuum can be written as a result of an Ampere force action of the electric currens flowing over the neutron star surface (Michel, 1991, Beskin et al., 1993). It is this force that is responsible for the transfer of angular momentum of a neutron star to an outgoing magneto-dipole wave. If a pulsar is surrounded by plasma, and there is no longitudinal current in its magnetosphere, there is no energy loss (Beskin et al., 1993, Mestel et al., 1999). It is the longitudinal current closing within the pulsar polar cap that exerts the retardation torque acting on the neutron star. This torque can be determined if the structure of longitudinal current is known. Here we remind of the solution by Beskin, Gurevitch & Istomin (1993) and discuss the validity of such an assumption. The behavior of the r...

  20. Gamma-ray and Radio Properties of Six Pulsars Detected by the Fermi Large Area Telescope

    Science.gov (United States)

    Weltevrede, P.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; Dermer, C. D.; Desvignes, G.; de Angelis, A.; de Luca, A.; de Palma, F.; Digel, S. W.; Dormody, M.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Frailis, M.; Freire, P. C. C.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hays, E.; Hobbs, G.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Keith, M.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kramer, M.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Makeev, A.; Manchester, R. N.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Ransom, S. M.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Rodriguez, A. Y.; Romani, R. W.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Vasileiou, V.; Venter, C.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wang, N.; Watters, K.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2010-01-01

    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models.

  1. Repeating Fast Radio Bursts from Highly Magnetized Pulsars Travelling through Asteroid Belts

    CERN Document Server

    Dai, Z G; Wu, X F; Huang, Y F

    2016-01-01

    Very recently Spitler et al. (2016) reported their detections of ten additional bright bursts from the direction of the fast radio burst (FRB) 121102. This repeating FRB is obviously distinct from the other non-repeating FRBs and thus challenges all of the energy source models but giant pulses from young pulsars. Here we propose a different model, in which highly magnetized pulsars travel through asteroid belts of other stars. We show that a repeating FRB could originate from this pulsar encountering with lots of asteroids in the belt. During such an impact, an electric field induced on a radially elongated, transversely compressed asteroid near the pulsar's surface is strong enough to accelerate electrons to an ultra-relativistic speed instantaneously. Subsequent movement of these electrons along the magnetic field lines not only gives rise to a current loop, but also produces coherent curvature radiation, which can well account for the properties of an FRB. While the high repetitive rate estimated is well c...

  2. GAMMA-RAY AND RADIO PROPERTIES OF SIX PULSARS DETECTED BY THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models.

  3. Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16

    CERN Document Server

    Weisberg, Joel M

    2016-01-01

    We present relativistic analyses of 9257 measurements of times-of-arrival from the first binary pulsar, PSR B1913+16, acquired over the last thirty-five years. The determination of the 'Keplerian' orbital elements plus two relativistic terms completely characterizes the binary system, aside from an unknown rotation about the line of sight; leading to a determination of the masses of the pulsar and its companion: 1.438 $\\pm$ 0.001 solar masses and 1.390 $\\pm$ 0.001 solar masses, respectively. In addition, the complete system characterization allows the creation of tests of relativistic gravitation by comparing measured and predicted sizes of various relativistic phenomena. We find that the ratio of observed orbital period decrease due to gravitational wave damping (corrected by a kinematic term) to the general relativistic prediction, is 0.9983 pm 0.0016; thereby confirming the existence and strength of gravitational radiation as predicted by general relativity. For the first time in this system, we have also ...

  4. A Radio Census of Binary Supermassive Black Holes

    CERN Document Server

    Burke-Spolaor, Sarah

    2010-01-01

    Using archival VLBI data for 3114 radio-luminous active galactic nuclei, we searched for binary supermassive black holes using a radio spectral index mapping technique which targets spatially resolved, double radio-emitting nuclei. Only one source was detected as a double nucleus. This result is compared with a cosmological merger rate model and interpreted in terms of (1) implications for post-merger timescales for centralisation of the two black holes, (2) implications for the possibility of "stalled" systems, and (3) the relationship of radio activity in nuclei to mergers. Our analysis suggests that the binary evolution of paired supermassive black holes (both of masses >= 1e8 Msun) spends less than 500 Myr in progression from the merging of galactic stellar cores to within the purported stalling radius for supermassive black hole pairs. The data show no evidence for an excess of stalled binary systems at small separations. We see circumstantial evidence that the relative state of radio emission between pa...

  5. Pulsar observations with European telescopes for testing gravity and detecting gravitational waves

    CERN Document Server

    Perrodin, D; Janssen, G H; Karuppusamy, R; Kramer, M; Lee, K; Liu, K; McKee, J; Purver, M; Sanidas, S; Smits, R; Stappers, B W; Zhu, W; Concu, R; Melis, A; Burgay, M; Casu, S; Corongiu, A; Egron, E; Iacolina, N; Pellizzoni, A; Pilia, M; Trois, A

    2016-01-01

    A background of nanohertz gravitational waves from supermassive black hole binaries could soon be detected by pulsar timing arrays, which measure the times-of-arrival of radio pulses from millisecond pulsars with very high precision. The European Pulsar Timing Array uses five large European radio telescopes to monitor high-precision millisecond pulsars, imposing in this way strong constraints on a gravitational wave background. To achieve the necessary precision needed to detect gravitational waves, the Large European Array for Pulsars (LEAP) performs simultaneous observations of pulsars with all five telescopes, which allows us to coherently add the radio pulses, maximize the signal-to-noise of pulsar signals and increase the precision of times-of-arrival. We report on the progress made and results obtained by the LEAP collaboration, and in particular on the addition of the Sardinia Radio Telescope to the LEAP observations during its scientific validation phase. In addition, we discuss how LEAP can be used t...

  6. A NuSTAR Observation of the Gamma-ray-emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4–112820

    Science.gov (United States)

    Bogdanov, Slavko

    2016-07-01

    I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4‑112820, which is associated with the high-energy γ-ray source 3FGL J1544.6‑1125. The system is detected up to ∼30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4‑112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270‑4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4‑112820 based on archival optical, ultraviolet, X-ray, and γ-ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.

  7. X-ray Spectroscopy of the High Mass X-ray Binary Pulsar Centaurus X-3 over its Binary Orbit

    CERN Document Server

    Naik, Sachindra; Ali, Zulfikar

    2011-01-01

    We present a comprehensive spectral analysis of the high mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as ~40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high energy cut-off and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by the presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2--3 with significant increase in the line...

  8. Detection of cyclotron resonance scattering feature in high-mass X-ray binary pulsar SMC X-2

    Science.gov (United States)

    Jaisawal, Gaurava K.; Naik, Sachindra

    2016-09-01

    We report broad-band spectral properties of the high-mass X-ray binary pulsar SMC X-2 by using three simultaneous Nuclear Spectroscopy Telescope Array and Swift/XRT observations during its 2015 outburst. The pulsar was significantly bright, reaching a luminosity up to as high as ˜5.5 × 1038 erg s-1 in 1-70 keV range. Spin period of the pulsar was estimated to be 2.37 s. Pulse profiles were found to be strongly luminosity dependent. The 1-70 keV energy spectrum of the pulsar was well described with three different continuum models such as (i) negative and positive power law with exponential cutoff, (ii) Fermi-Dirac cutoff power law and (iii) cutoff power-law models. Apart from the presence of an iron line at ˜6.4 keV, a model independent absorption like feature at ˜27 keV was detected in the pulsar spectrum. This feature was identified as a cyclotron absorption line and detected for the first time in this pulsar. Corresponding magnetic field of the neutron star was estimated to be ˜2.3 × 1012 G. The cyclotron line energy showed a marginal negative dependence on the luminosity. The cyclotron line parameters were found to be variable with pulse phase and interpreted as due to the effect of emission geometry or complicated structure of the pulsar magnetic field.

  9. XMM-Newton Observations of Radio Pulsars B0834+06 and B0826-34 and Implications for the Pulsar Inner Accelerator

    Science.gov (United States)

    Gil, J.; Haberl, F.; Melikidze, G.; Geppert, U.; Zhang, B.; Melikidze, G., Jr.

    2008-10-01

    We report the X-ray observations of two radio pulsars with drifting subpulses, B0834+06 and B0826-34, using XMM-Newton. PSR B0834+06 was detected with a total of 70 counts from the three EPIC instruments over 50 ks exposure time. Its spectrum is best described as that of a blackbody (BB), with temperature Ts = (2.0+ 2.0-0.9) × 106 K and bolometric luminosity Lb = (8.6+ 14.2-4.4) × 1028 erg s-1. As is typical in pulsars with BB thermal components in their X-ray spectra, the hot-spot surface area is much smaller than that of the canonical polar cap, implying a non-dipolar surface magnetic field much stronger than the dipolar component derived from the pulsar spin-down (in this case about 50 times smaller and stronger, respectively). The second pulsar, PSR B0826-34, was not detected over the 50 ks exposure time, giving an upper limit for the bolometric luminosity Lb PSG) model of the inner accelerator in pulsars. This model predicts a simple and very intuitive relationship between the polar cap thermal X-ray luminosity (Lb) and the "carousel" period (P4) for drifting subpulses detected in the radio band. The PSG model has been previously successfully tested with four radio pulsars whose Lb and P4 were both measured: PSR B0943+10, PSR B1133+16, PSR B0656+14, and PSR B0628-28. The XMM-Newton X-ray data of PSR B0834+16 reported here are also in agreement with the model prediction, and the upper limit derived from the PSR B0826-34 observation does not contradict it. We also include two other pulsars, PSR B1929+10 and B1055-52, whose Lb and/or P4 data became available just recently. These pulsars also follow the prediction of the PSG model. The clear prediction of the PSG model is now supported by all pulsars whose Lb and P4 are measured and/or estimated.

  10. Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

    CERN Document Server

    Knispel, B; Kim, H; Keane, E F; Allen, B; Anderson, D; Aulbert, C; Bock, O; Crawford, F; Eggenstein, H -B; Fehrmann, H; Hammer, D; Kramer, M; Lyne, A G; Machenschalk, B; Miller, R B; Papa, M A; Rastawicki, D; Sarkissian, J; Siemens, X; Stappers, B W

    2013-01-01

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of approximately 17 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about one PFlop/s. We discovered 24 new pulsars in our search, of which 18 were isolated pulsars, and six were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (420 pc cm^{-3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2531 li...

  11. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    International Nuclear Information System (INIS)

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm−3 associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M⊙ suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼1035 erg s−1. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering

  12. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  13. DISCOVERY OF EXTENDED AND VARIABLE RADIO STRUCTURE FROM THE GAMMA-RAY BINARY SYSTEM PSR B1259-63/LS 2883

    International Nuclear Information System (INIS)

    PSR B1259-63 is a 48 ms pulsar in a highly eccentric 3.4 year orbit around the young massive star LS 2883. During the periastron passage the system displays transient non-thermal unpulsed emission from radio to very high energy gamma rays. It is one of the three galactic binary systems clearly detected at TeV energies, together with LS 5039 and LS I +61 303. We observed PSR B1259-63 after the 2007 periastron passage with the Australian Long Baseline Array at 2.3 GHz to trace the milliarcsecond (mas) structure of the source at three different epochs. We have discovered extended and variable radio structure. The peak of the radio emission is detected outside the binary system near periastron, at projected distances of 10-20 mas (25-45 AU assuming a distance of 2.3 kpc). The total extent of the emission is ∼50 mas (∼120 AU). This is the first observational evidence that non-accreting pulsars orbiting massive stars can produce variable extended radio emission at AU scales. Similar structures are also seen in LS 5039 and LS I +61 303, in which the nature of the compact object is unknown. The discovery presented here for the young non-accreting pulsar PSR B1259-63 reinforces the link with these two sources and supports the presence of pulsars in these systems as well. A simple kinematical model considering only a spherical stellar wind can approximately trace the extended structures if the binary system orbit has a longitude of the ascending node of Ω ∼ -400 and a magnetization parameter of σ ∼ 0.005.

  14. Sifting for Fast Radio Transients in Pulsar Survey Data Using the Spectral Modulation Index

    Science.gov (United States)

    Spitler, Laura; Cordes, J.; Chatterjee, S.; Stone, J.

    2012-01-01

    Large-scale surveys for fast radio transients apply single-pulse search algorithms to high time resolution spectral data (i.e. those typical of pulsar surveys). Such surveys are often plagued by radio frequency interference (RFI), which when not properly mitigated, can confuse detection pipelines and lead to a large number of false candidates. We have developed a method to classify a candidate signal based on the modulation of its spectrum using the spectral modulation index. In brief, broadband and narrowband signals have low and high modulation indices respectively, and by choosing a modulation index cutoff, a spectrum can be automatically classified as either broad or narrowband. Our method targets broadband (continuum) transients that have have a non-zero dispersion measure, while RFI is generally broadband at low dispersion measures or narrowband. We show that the spectral modulation index is a powerful tool for identifying RFI and demonstrate the technique with Crab giant pulses and Rotating Radio Transients (RRATs). We also apply it to data taken for the Pulsar ALFA (PALFA) survey being conducted at the Arecibo Observatory and show preliminary results with an emphasis on the data collected with the new Mock spectrometers.

  15. Constraint on Pulsar Wind Properties from Induced Compton Scattering off Radio Pulses

    CERN Document Server

    Tanaka, Shuta J

    2013-01-01

    Pulsar winds have longstanding problems in energy conversion and pair cascade processes which determine the magnetization $\\sigma$, the pair multiplicity $\\kappa$ and the bulk Lorentz factor $\\gamma$ of the wind. We study induced Compton scattering by a relativistically moving cold plasma to constrain wind properties by imposing that radio pulses from the pulsar itself are not scattered by the wind as was first studied by Wilson & Rees. We find that relativistic effects cause a significant increase or decrease of the scattering coefficient depending on scattering geometry. Applying to the Crab, we consider uncertainties of an inclination angle of the wind velocity with respect to the radio beam $\\theta_{\\rm pl}$ and the emission region size $r_{\\rm e}$ which determines an opening angle of the radio beam. We obtain the lower limit $\\gamma\\gtrsim10^{1.7}r^{1/2}_{\\rm e,3}\\theta^{-1}_{\\rm pl}(1+\\sigma)^{-1/4}$ ($r_{\\rm e}=10^3r_{\\rm e,3}$ cm) at the light cylinder $r_{\\rm LC}$ for an inclined wind $\\theta_{\\r...

  16. The Electric Fields of Radio Pulsars with Asymmetric Nondipolar Magnetic Fields

    Science.gov (United States)

    Kantor, E. M.; Tsygan, A. I.

    2003-07-01

    The effect of the curvature of open magnetic field lines on the generation of electric fields in radio pulsars is considered in the framework of a Goldreich-Julian model, for both a regime with a free outflow of electrons from the neutron-star surface and the case of a small thermoemission current. An expression for the electron thermoemission current in a strong magnetic field is derived. The electric field associated with the curvature of the magnetic flux tubes is comparable to the field generated by the relativistic dragging of the inertial frames.

  17. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    CERN Document Server

    Lyutikov, Maxim; Popov, Sergei B

    2016-01-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages $\\sim$ tens to hundreds of years) born with regular magnetic field but very short -- few milliseconds -- spin periods. FRBs are extra-Galactic events coming from distances $d \\lesssim 100$ Mpc. Most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell; for a given burst the DM should decrease with time. FRBs are not expected to be seen below $\\sim 300 $ MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers $\\dot{E}$ in young energetic pulsars is consistent with equal birth rate per decade of $\\dot{E}$. Accepting this injection spectrum and scaling the intrinsic brightness of FRBs with $\\dot{E}$, we pr...

  18. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    CERN Document Server

    Shahbaz, T; Nevado, S P; Rodríguez-Gil, P; Casares, J; Dhillon, V S; Marsh, T R; Littlefair, S; Leckngam, A; Poshyachinda, S

    2015-01-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ~20 s with amplitudes of ~0.1-0.5 mag and additional large flare events on time-scales of ~5-60 min with amplitudes ~0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ~250 s and a median ingr...

  19. A Highly Eccentric 3.9-Millisecond Binary Pulsar in the Globular Cluster NGC 6652

    CERN Document Server

    DeCesar, Megan E; Kaplan, David L; Ray, Paul S; Geller, Aaron M

    2015-01-01

    We present the Robert C. Byrd Green Bank Telescope discovery of the highly eccentric binary millisecond pulsar PSR J1835$-$3259A in the Fermi Large Area Telescope-detected globular cluster NGC 6652. Timing over one orbit yields the pulse period 3.89 ms, orbital period 9.25 d, eccentricity $\\sim 0.95$, and an unusually high companion mass of $0.74\\,M_{\\odot}$ assuming a $1.4\\,M_{\\odot}$ pulsar. We caution that the lack of data near periastron prevents a precise measurement of the eccentricity, and that further timing is necessary to constrain this and the other orbital parameters. From tidal considerations, we find that the companion must be a compact object. This system likely formed through an exchange encounter in the dense cluster environment. Our initial timing results predict the measurements of at least two post-Keplerian parameters with long-term phase-connected timing: the rate of periastron advance $\\dot{\\omega} \\sim 0.1^{\\circ}\\,$yr$^{-1}$, requiring 1 yr of phase connection; and the Einstein delay ...

  20. European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries

    CERN Document Server

    Babak, Stanislav; Sesana, Alberto; Brem, Patrick; Rosado, Pablo A; Taylor, Stephen R; Lassus, Antoine; Hessels, Jason W T; Bassa, Cees G; Burgay, Marta; Caballero, R Nicolas; Champion, David J; Cognard, Ismael; Desvignes, Gregory; Gair, Jonathan R; Guillemot, Lucas; Janssen, Gemma H; Karuppusamy, Ramesh; Kramer, Michael; Lazarus, Patrick; Lee, K J; Lentati, Lindley; Liu, Kuo; Mingarelli, Chiara M F; Oslowsky, Stefan; Perrodin, Delphine; Possenti, Andrea; Purver, Mark B; Sanidas, Sotiris; Smits, Roy; Stappers, Ben; Theureau, Gilles; Tiburzi, Caterina; van Haasteren, Rutger; Vecchio, Alberto; Verbiest, Joris P W

    2015-01-01

    We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest EPTA dataset, which consists of ultra-precise timing data on 41 millisecond pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95\\% upper limit on the sky-averaged strain amplitude lies in the range $6\\times 10^{-15}10^9$M$_\\odot$ out to a distance of about 25Mpc, and with $\\cal{M}_c>10^{10}$M$_\\odot$ out to a distance of about 1Gpc ($z\\approx0.2$). We show that state-of-the-art SMBHB population models predict $<1\\%$ probability of detecting a CGW with the current EPTA dataset, consistent with the reported non-detection. We stress, however, that PTA lim...

  1. Timing the main-sequence-star binary pulsar J1740-3052

    CERN Document Server

    Madsen, E C; Kramer, M; Camilo, F; Hobbs, G B; Janssen, G H; Lyne, A G; Manchester, R N; Possenti, A; Stappers, B W

    2012-01-01

    PSR J1740-3052 is a young pulsar in orbit around a companion that is most likely a B-type main-sequence star. Since its discovery more than a decade ago, data have been taken at several frequencies with instruments at the Green Bank, Parkes, Lovell, and Westerbork telescopes. We measure scattering timescales in the pulse profiles and dispersion measure changes as a function of binary orbital phase and present evidence that both of these vary as would be expected due to a wind from the companion star. Using pulse arrival times that have been corrected for the observed periodic dispersion measure changes, we find a timing solution spanning 1997 November to 2011 March. This includes measurements of the advance of periastron and the change in the projected semimajor axis of the orbit and sets constraints on the orbital geometry. From these constraints, we estimate that the pulsar received a kick of at least ~50 km/s at birth. A quasi-periodic signal is present in the timing residuals with a period of 2.2 times th...

  2. Optical Observations of the Binary Pulsar System PSR B1718-19 Implications for Tidal Circularization

    CERN Document Server

    Van Kerkwijk, M H; Klemola, A R; Kulkarni, S R; Lyne, A G; Van Buren, D T

    2000-01-01

    We report on Keck and Hubble Space Telescope optical observations of the eclipsing binary pulsar system PSR B1718-19, in the direction of the globular cluster NGC 6342. These reveal a faint star ($m_{\\rm F702W}=25.21\\pm0.07$; Vega system) within the pulsar's 0\\farcs5 radius positional error circle. This may be the companion. If it is a main-sequence star in the cluster, it has radius by accretion or newly formed) and its companion are initially in an eccentric orbit. If so, for tidal circularization to have produced the present-day highly circular orbit, a large stellar radius is required, i.e., the star must be bloated. Using constraints on the radius and temperature from the Roche and Hayashi limits, we infer from our observations that $\\rcomp\\simlt0.44 \\rsun$ and $\\teff\\simgt3300 $K. Even for the largest radii, the required efficiency of tidal dissipation is larger than expected for some prescriptions.

  3. A characteristic observable signature of preferred frame effects in relativistic binary pulsars

    CERN Document Server

    Wex, N

    2007-01-01

    In this paper we develop a consistent, phenomenological methodology to measure preferred-frame effects (PFEs) in binary pulsars that exhibit a high rate of periastron advance. We show that in these systems the existence of a preferred frame for gravity leads to an observable characteristic `signature' in the timing data, which uniquely identifies this effect. We expand the standard Damour-Deruelle timing formula to incorporate this `signature' and show how this new PFE timing model can be used to either measure or constrain the parameters related to a violation of the local Lorentz invariance of gravity in the strong internal fields of neutron stars. In particular, we demonstrate that in the presence of PFEs we expect a set of the new timing parameters to have a unique relationship that can be measured and tested incontrovertibly. This new methodology is applied to the Double Pulsar, which turns out to be the ideal test system for this kind of experiments.The currently available dataset allows us only to stud...

  4. XMM-Newton Observations of Radio Pulsars B0834+06 and B0826-34 and Implications for Pulsar Inner Accelerator

    CERN Document Server

    Gil, J; Melikidze, G; Geppert, U; Zhang, B; Melikidze, G

    2008-01-01

    We report the X-ray observations of two radio pulsars with drifting subpulses: B0834 + 06 and B0826 - 34 using \\xmm\\. PSR B0834 + 06 was detected with a total of 70 counts from the three EPIC instruments over 50 ks exposure time. Its spectrum was best described as that of a blackbody (BB) with temperature $T_s=(2.0^{+2.0}_{-0.9}) \\times 10^6$ K and bolometric luminosity of $L_b=(8.6^{+14.2}_{-4.4}) \\times 10^{28}$ erg s$^{-1}$. As it is typical in pulsars with BB thermal components in their X-ray spectra, the hot spot surface area is much smaller than that of the canonical polar cap, implying a non-dipolar surface magnetic field much stronger than the dipolar component derived from the pulsar spin-down (in this case about 50 times smaller and stronger, respectively). The second pulsar PSR B0826 - 34 was not detected over 50 ks exposure time, giving an upper limit for the bolometric luminosity $L_b \\leq 1.4 \\times 10^{29}$ erg s$^{-1}$. We use these data as well as the radio emission data concerned with drifti...

  5. The Parkes Pulsar Timing Array

    Science.gov (United States)

    Manchester, Richard N.

    2015-08-01

    The Parkes Pulsar Timing Array (PPTA) project uses the Parkes 64-m radio telescope to observe 22 millisecond pulsars in three bands: 40cm (band centre 732 MHz), 20cm (1369 MHz) and 10cm (3100 MHz). Coherent de-dispersion systems are used for the 40cm and 20cm bands and digital polyphase filterbanks are used for the 20cm and 10cm bands. Observations are made at intervals of two to three weeks and observations times for each pulsar in each band are typically one hour. Regular PPTA observations commenced in early 2005 but earlier timing data, primarily in the 20cm band, exist for many of the pulsars back to 1994. Pipeline processing scripts are based on PSRCHIVE routines and take into account instrumental offsets. Timing analyses include modelling of dispersion variations and red and white noise in the data. The primary scientific goal of the PPTA project is the detection of gravitational waves, either a stochastic background from supermassive black-hole binary systems in distant galaxies or from individual binary systems. The PPTA data sets have many other applications including establishment of a pulsar-based timescale, improvement of solar-system ephemerides and studies of the individual pulsars. PPTA data sets have been made available to the International Pulsar Timing Array consortium and analysis of the combined data sets is progressing. Recent developments, both instrumental and science-related, will be described.

  6. Binary Inference for Primary User Separation in Cognitive Radio Networks

    CERN Document Server

    Nguyen, Huy; Han, Zhu; Zheng, Rong

    2010-01-01

    Spectrum sensing receives much attention recently in the cognitive radio (CR) network research, i.e., secondary users (SUs) constantly monitor channel condition to detect the presence of the primary users (PUs). In this paper, we go beyond spectrum sensing and introduce the PU separation problem, which concerns with the issues of distinguishing and characterizing PUs in the context of collaborative spectrum sensing and monitor selection. The observations of monitors are modeled as boolean OR mixtures of underlying binary sources for PUs. We first justify the use of the binary OR mixture model as opposed to the traditional linear mixture model through simulation studies. Then we devise a novel binary inference algorithm for PU separation. Not only PU-SU relationship are revealed, but PUs' transmission statistics and activities at each time slot can also be inferred. Simulation results show that without any prior knowledge regarding PUs' activities, the algorithm achieves high inference accuracy even in the pre...

  7. A model for distortions of polarisation-angle curves in radio pulsars

    CERN Document Server

    Dyks, J; Oslowski, S; Saha, L; Guillemot, L; Cognard, I; Rudak, B

    2016-01-01

    Some radio pulsar profiles (in particular those of millisecond pulsars contain wide emission structures which cover large intervals of pulse phase. Local distortions of an average curve of polarisation angle (PA) can be identified in such profiles, and they are often found to be associated with absorption features or narrow emission components. The features may be interpreted as a convolution of a lateral profile of an emitter with a microscopic radiation pattern of a non-negligible angular extent. We study a model which assumes that such an extended microbeam of the X-mode curvature radiation is spreading the radiation polarised at a fixed position angle within an interval of pulse phase. The model is capable of interpreting the strongly dissimilar polarisation of double notches in PSR B1821-24A (for which we present new polarisation data from the Nancay Radio Telescope) and PSR J0437-4715. It also explains a step-like change in PA observed at the bifurcated trailing component in the profile of J0437-4715. A...

  8. Probing dense matter in compact star cores with radio pulsar data

    International Nuclear Information System (INIS)

    Astrophysical observations of compact stars provide, in addition to collider experiments, the other big source of information on matter under extreme conditions. The largest and most precise data set about neutron stars is the timing data of radio pulsars. We show how this unique data can be used to learn about the ultra-dense matter in the compact star interior. The method relies on astro-seismology based on special global oscillation modes (r-modes) that emit gravitational waves. They would prohibit pulsars from spinning with their observed high frequencies, unless the damping of these modes, determined by the microscopic properties of matter, can prevent this. We show that for each form of matter there is a distinct region in a frequency/spindown-rate diagram where r-modes can be present. We find that stars containing ungapped quark matter are consistent with both the observed radio and X-ray data, whereas, even when taking into account the considerable uncertainties, neutron star models with standard viscous damping are inconsistent with both data sets and additional damping mechanisms would be required

  9. Electromagnetic counterparts of supermassive black hole binaries resolved by pulsar timing arrays

    CERN Document Server

    Tanaka, Takamitsu; Menou, Kristen

    2011-01-01

    Pulsar timing arrays (PTAs) are expected to detect gravitational waves (GWs) from individual low-redshift (z10^9 Msun) black hole (SMBH) binaries with orbital periods of approx. 0.1 - 10 yrs. Identifying the electromagnetic (EM) counterparts of these sources would provide confirmation of putative direct detections of GWs, present a rare opportunity to study the environments of compact SMBH binaries, and could enable the use of these sources as standard sirens for cosmology. Here we consider the feasibility of such an EM identification. We show that because the host galaxies of resolved PTA sources are expected to be exceptionally massive and rare, it should be possible to find unique hosts of resolved sources out to redshift z=0.2. At higher redshifts, the PTA error boxes are larger, and may contain as many as 100 massive-galaxy interlopers. The number of candidates, however, remains tractable for follow-up searches in upcoming wide-field EM surveys. We develop a toy model to characterize the dynamics and the...

  10. Space Radio Astronomy in the next 1000001 (binary) years

    CERN Document Server

    Gurvits, L I

    2012-01-01

    Radio astronomy and active exploration of space are peers: both began by efforts of enthusiasts in the 1930s and got a major technological boost in the 1940s-50s. Thus, for the sake of a brief review at this very special conference, it is fair to estimate the present age of these human endeavours as 1000001 (binary) years. These years saw a lot of challenging and fruitful concerted efforts by radio astronomers and space explorers. Among the high points one can mention several highly successful space-borne CMB observatories, three orbital VLBI missions, the first examples of radio observations at spectral windows hitherto closed for Earth-based observers and many yet to be implemented initiatives which are at various stages of their paths toward launch-pads of all major world space agencies. In this review I will give a bird-eye picture of the past achievements of space-oriented radio astronomy and zoom into several projects and ideas that will further push the presence of radio astronomy into the space agenda...

  11. A Search for Very High-Energy Gamma Rays from the Missing Link Binary Pulsar J1023+0038 with VERITAS

    CERN Document Server

    Aliu, E; Archer, A; Benbow, W; Bird, R; Biteau, J; Buchovecky, M; Buckley, J H; Bugaev, V; Byrum, K; Cardenzana, J V; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Dickinson, H J; Eisch, J D; Falcone, A; Feng, Q; Finley, J P; Fleischhack, H; Flinders, A; Fortin, P; Fortson, L; Furniss, A; Gillanders, G H; Griffin, S; Grube, J; Gyuk, G; Hütten, M; Håkansson, N; Holder, J; Humensky, T B; Johnson, C A; Kaaret, P; Kar, P; Kelley-Hoskins, N; Kertzman, M; Kieda, D; Krause, M; Lang, M J; Loo, A; Maier, G; McArthur, S; McCann, A; Meagher, K; Moriarty, P; Mukherjee, R; Nguyen, T; Nieto, D; de Bhróithe, A O'Faoláin; Ong, R A; Otte, A N; Pandel, D; Park, N; Pelassa, V; Petrashyk, A; Pohl, M; Popkow, A; Pueschel, E; Quinn, J; Ragan, K; Reynolds, P T; Richards, G T; Roache, E; Rulten, C; Santander, M; Sembroski, G H; Shahinyan, K; Smith, A W; Staszak, D; Telezhinsky, I; Tucci, J V; Tyler, J; Varlotta, A; Vincent, S; Wakely, S P; Weiner, O M; Weinstein, A; Wilhelm, A; Williams, D A; Zitzer, B; Chernyakova, M; Roberts, M

    2016-01-01

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259--63/LS 2883, making it an ideal candidate for the study of high-energy non-thermal emission. It has been the subject of multi-wavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high-energy gamma-ray observations carried out by VERITAS before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that very high-energy gamma rays are produced via an inverse-Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than $\\si...

  12. Contrasting behaviour from two Be/X-ray binary pulsars: insights into differing neutron star accretion modes

    CERN Document Server

    Townsend, L J; Hill, A B; Coe, M J; Corbet, R H D; Bird, A J

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4s and 85.4s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and ...

  13. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  14. Clumpy stellar winds and high-energy emission in high-mass binaries hosting a young pulsar

    CERN Document Server

    Bosch-Ramon, V

    2013-01-01

    High-mass binaries hosting young pulsars can be powerful gamma-ray emitters. The stellar wind of the massive star in the system is expected to be clumpy. Since the high-energy emission comes from the pulsar-star wind interaction, the presence of clumps can affect the spectrum and variability of this radiation. We look for the main effects of the clumps on the two-wind interaction region and on the non-thermal radiation. A simple analytical model for the two-wind interaction dynamics was developed accounting for the lifetime of clumps under the pulsar-wind impact. This time plays a very important role with regard to the evolution of the clump, the magnetic field in the clump-pulsar wind interaction region, and the non-radiative and radiative cooling of the non-thermal particles. We also computed the high-energy emission produced at the interaction of long-living clumps with the pulsar wind. For reasonable parameters, the clumps will induce small variability on the X-ray and gamma-ray radiation. Sporadically, l...

  15. Nature of eclipsing pulsars

    CERN Document Server

    Khechinashvili, D; Gil, J; Khechinashvili, David; Melikidze, George; Gil, Janusz

    2000-01-01

    We present a model for pulsar radio eclipses in some binary systems, and test this model for PSRs B1957+20 and J2051-0827. We suggest that in these binaries the companion stars are degenerate dwarfs with strong surface magnetic fields. The magnetospheres of these stars are permanently infused by the relativistic particles of the pulsar wind. We argue that the radio waves emitted by the pulsar split into the eigenmodes of the electron-positron plasma as they enter the companion's magnetosphere and are then strongly damped due to cyclotron resonance with the ambient plasma particles. Our model explains in a natural way the anomalous duration and behavior of radio eclipses observed in such systems. In particular, it provides stable, continuous, and frequency-dependent eclipses, in agreement with the observations. We predict a significant variation of linear polarization both at eclipse ingress and egress. In this paper we also suggest several possible mechanisms of generation of the optical and $X$-ray emission ...

  16. Millisecond and Binary Pulsars as Nature's Frequency Standards; 2, Effects of Low-Frequency Timing Noise on Residuals and Measured Parameters

    CERN Document Server

    Kopeikin, S M

    1998-01-01

    Pulsars are the most stable natural frequency standards. They can be applied to a number of principal problems of modern astronomy and time-keeping metrology. The full exploration of pulsar properties requires obtaining unbiased estimates of the spin and orbital parameters. These estimates depend essentially on the random noise component being revealed in the residuals of time of arrivals (TOA). In the present paper, the influence of low-frequency ("red") timing noise with spectral indices from 1 to 6 on TOA residuals, variances, and covariances of estimates of measured parameters of single and binary pulsars are studied. In order to determine their functional dependence on time, an analytic technique of processing of observational data in time domain is developed which takes into account both stationary and non-stationary components of noise. Our analysis includes a simplified timing model of a binary pulsar in a circular orbit and procedure of estimation of pulsar parameters and residuals under the influenc...

  17. The formation of low-mass helium white dwarfs orbiting pulsars: Evolution of low-mass X-ray binaries below the bifurcation period

    CERN Document Server

    Istrate, Alina; Langer, Norbert

    2014-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs) which have been spun up to high rotation rates via accretion of matter from a companion star in a low-mass X-ray binary (LMXB). However, many details of this recycling scenario remain to be understood. Here we investigate binary evolution in close LMXBs to study the formation of radio MSPs with low-mass helium white dwarf companions (He WDs) in tight binaries with orbital periods P_orb = 2-9 hr. In particular, we examine: i) if such observed systems can be reproduced from theoretical modelling using standard prescriptions of orbital angular momentum losses (i.e. with respect to the nature and the strength of magnetic braking), ii) if our computations of the Roche-lobe detachments can match the observed orbital periods, and iii) if the correlation between WD mass and orbital period (M_WD, P_orb) is valid for systems with P_orb < 2 days. Numerical calculations with a detailed stellar evolution code were used to trace the mass-tra...

  18. Population Synthesis of Isolated Neutron Stars with magneto-rotational evolution II: from radio-pulsars to magnetars

    CERN Document Server

    Gullón, M; Miralles, J A; Viganò, D; Rea, N; Perna, R

    2015-01-01

    Population synthesis studies constitute a powerful method to reconstruct the birth distribution of periods and magnetic fields of the pulsar population. When this method is applied to populations in different wavelengths, it can break the degeneracy in the inferred properties of initial distributions that arises from single-band studies. In this context, we extend previous works to include $X$-ray thermal emitting pulsars within the same evolutionary model as radio-pulsars. We find that the cumulative distribution of the number of X-ray pulsars can be well reproduced by several models that, simultaneously, reproduce the characteristics of the radio-pulsar distribution. However, even considering the most favourable magneto-thermal evolution models with fast field decay, log-normal distributions of the initial magnetic field over-predict the number of visible sources with periods longer than 12 s. We then show that the problem can be solved with different distributions of magnetic field, such as a truncated log...

  19. Binary black holes in nuclei of extragalactic radio sources

    CERN Document Server

    Roland, J; Caproni, A; Fromm, C; Glück, C; Zensus, A

    2013-01-01

    If we assume that nuclei of extragalactic radio sources contain binary black hole systems, the two black holes can eject VLBI components in which case two families of different VLBI trajectories will be observed. Another important consequence of a binary black hole system is that the VLBI core is associated with one black hole, and if a VLBI component is ejected by the second black hole, one expects to be able to detect the offset of the origin of the VLBI component ejected by the black hole that is not associated with the VLBI core. The ejection of VLBI components is perturbed by the precession of the accretion disk and the motion of the black holes around the center of gravity of the binary black hole system. We modeled the ejection of the component taking into account the two pertubations and present a method to fit the coordinates of a VLBI component and to deduce the characteristics of the binary black hole system. Specifically, this is the ratio Tp/Tb where Tp is the precession period of the accretion d...

  20. Radio observations of the TeV source HESS J1943+213: a new case of a pulsar wind nebula?

    CERN Document Server

    Gabanyi, K E; Giacani, E; Paragi, Z; Pidopryhora, Y; Frey, S

    2011-01-01

    Recently, the H.E.S.S. Collaboration discovered a very high energy gamma-ray point source close to the Galactic plane. They offered three possible explanations for the nature of the source: a gamma-ray binary, a pulsar wind nebula, or a BL Lac object. They concluded that the observations favoured an extreme BL Lac object interpretation. We investigated the nature of the radio source reported as the counterpart of the very high energy gamma-ray source. We performed high-resolution radio interferometric observations with the European Very Long Baseline Interferometry Network at a frequency of 1.6 GHz on 2011 May 18. We also reanalysed archival 1.4-GHz radio continuum and HI spectral line data taken with the Very Large Array. The accurate position of the radio source, as observed with EVN, is ~ 4" off from the one obtained in the NRAO VLA Sky Survey. The new position is in excellent agreement with that of the proposed X-ray counterpart of the TeV source. From HI absorption data, a distance of about 11.5 +/- 1.5 ...

  1. Pulsar Timing Residuals Induced by Gravitational Waves from Single Non-evolving Supermassive Black Hole Binaries with Elliptical Orbits

    International Nuclear Information System (INIS)

    The pulsar timing residuals induced by gravitational waves from non-evolving single binary sources with general elliptical orbits are analyzed. For different orbital eccentricities, the timing residuals present different properties. The standard deviations of the timing residuals induced by a fixed gravitational wave source are calculated for different values of the eccentricity. We also analyze the timing residuals of PSR J0437-4715 induced by one of the best known single gravitational wave sources, the supermassive black hole binary in the blazar OJ287

  2. Polarized quasiperiodic structures in pulsar radio emission reflect temporal modulations of non-stationary plasma flow

    CERN Document Server

    Mitra, Dipanjan; Rankin, Joanna M

    2015-01-01

    Bright single pulses of many radio pulsars show rapid intensity fluctuations (called microstructure) when observed with time resolutions of tens of microseconds. Here, we report an analysis of Arecibo 59.5 $\\mu$sec-resolution polarimetric observations of 11 P-band and 32 L-band pulsars with periods ranging from 150 msec to 3.7 sec. These higher frequency observations forms the most reliable basis for detailed microstructure studies. Close inspection of individual pulses reveals that most pulses exhibit quasiperiodicities with a well-defined periodicity timescale ($P_{\\mu}$). While we find some pulses with deeply modulating microstructure, most pulses show low-amplitude modulations on top of broad smooth subpulses features, thereby making it difficult to infer periodicities. We have developed a method for such low-amplitude fluctuations wherein a smooth subpulse envelope is subtracted from each de-noised subpulse; the fluctuating portion of each subpulse is then used to estimate $P_{\\mu}$ via autocorrelation a...

  3. Known Radio Pulsars Do Not Contribute to the Galactic Center Gamma-Ray Excess

    CERN Document Server

    Linden, Tim

    2015-01-01

    Observations using the Fermi Large Area Telescope (Fermi-LAT) have found a significant gamma-ray excess surrounding the center of the Milky Way (GC). One possible interpretation of this excess invokes gamma-ray emission from an undiscovered population of either young or recycled pulsars densely clustered throughout the inner kiloparsec of the Milky Way. While these systems, by construction, have individual fluxes that lie below the point source sensitivity of the Fermi-LAT, they may already be observed in multiwavelength observations. Notably the Australia Telescope National Facility (ATNF) catalog of radio pulsars includes 270 sources observed in the inner 10 degrees around the GC. We calculate the gamma-ray emission observed from these 270 sources and obtain three key results: (1) point source searches in the GC region produce a plethora of highly significant gamma-ray "hotspots", compared to searches far from the Galactic plane, (2) there is no statistical correlation between the positions of these gamma-r...

  4. Multifrequency radio observations of SNR J0536-6735 (N 59B with associated pulsar

    Directory of Open Access Journals (Sweden)

    Bozzetto L.M.

    2012-01-01

    Full Text Available We present a study of new Australian Telescope Compact Array (ATCA observations of supernova remnant, SNR J0536-6735. This remnant appears to follow a shell morphology with a diameter of D=36x29 pc (with 1 pc uncertainty in each direction. There is an embedded HII region on the northern limb of the remnant which made various analysis and measurements (such as flux density, spectral index and polarisation difficult. The radio-continuum emission followed the same structure as the optical emission, allowing for extent and flux density estimates at 20 cm. We estimate the surface brightness at 1 GHz of 2.55x10−21 Wm−2 Hz−1 sr−1 for the SNR. Also, we detect a distinctive radio-continuum point source which confirms the previous suggestion of this remnant being associated with pulsar wind nebula (PWN. The tail of this remnant is not seen in the radio-continuum images and is only seen in the optical and X-ray images.

  5. The Lower Limit for Masses of Progenitors of Supernova Remnants and Radio Pulsars

    CERN Document Server

    Tagieva, S O; Ankay, A; Tagieva, Sevinc O.; Guseinov, Oktay H.; Ankay, Askin

    2003-01-01

    We examined correlations between young radio pulsars (PSRs), Supernova remnants (SNRs) which have different surface brightness values and young star formation regions (SFRs). Angular correlation of PSRs with SFRs is reliable up to 4 kpc and considerably strong up to 3 kpc from the Sun. On average this correlation is stronger for Galactic anticenter directions compared to Galactic central directions. Angular correlation of SNRs with SFRs is weaker and depends on the surface brightness of the SNR. Spatial correlation of PSRs with SFRs is also stronger than spatial correlation of SNRs with SFRs. Dim SNRs show weak spatial correlation with SFRs. These investigations and analysis of various data show that the lower limit for masses of progenitors of PSRs is about 9 M$_{\\odot}$ and of SNRs (or supernovae) is about 7 M$_{\\odot}$.

  6. The Green Bank Telescope 350 MHz Drift-scan Survey II: Data Analysis and the Timing of 10 New Pulsars, Including a Relativistic Binary

    CERN Document Server

    Lynch, Ryan S; Ransom, Scott M; Stairs, Ingrid H; Lorimer, Duncan R; McLaughlin, Maura A; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Archibald, Anne M; Berndsen, Aaron; Cardoso, Rogerio F; Cherry, Angus; Karako-Argaman, Chen; van Leeuwen, Joeri; McPhee, Christie A; Pennucci, Tim; Roberts, Mallory S E

    2012-01-01

    We have completed a 350 MHz drift scan survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered ~10300 square degrees and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, seven of which are recycled pulsars. A companion paper by Boyles et al. (2012) describes the survey strategy, sky coverage, and instrumental set-up, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, and follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources---two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.

  7. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY II: DATA ANALYSIS AND THE TIMING OF 10 NEW PULSARS, INCLUDING A RELATIVISTIC BINARY

    International Nuclear Information System (INIS)

    We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered ∼10,300 deg2 and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, and follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources—two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.

  8. Simultaneous single-pulse observations of radio pulsars I. The polarization characteristics of PSR B0329+54

    CERN Document Server

    Karastergiou, A; Krämer, M; Lorimer, D R; Lyne, A G; Doroshenko, O E; Jessner, A; Jordan, C; Wielebinski, R

    2001-01-01

    We present the first results from a programme of multi-frequency simultaneous single pulse observations carried out as part of the European Pulsar Network. We detail the main data analysis methods and apply them to simultaneous observations of the strong pulsar B0329+54 at 1.4 and 2.7 GHz using the Jodrell Bank and Effelsberg radio telescopes respectively. The pulses at different frequencies are highly correlated in their total intensity, as seen in previous experiments, and generally show consistent position angles of the linearly polarized component. In contrast, the circularly polarized emission sometimes shows clear differences between pulses received at different frequencies. These results are unexpected and warrant further follow-up studies to interpret them in the context of the intrinsic bandwidth of pulsar radiation.

  9. Refined Neutron-Star Mass Determinations for Six Eclipsing X-Ray Pulsar Binaries

    CERN Document Server

    Rawls, Meredith L; McClintock, Jeffrey E; Torres, Manuel A P; Bailyn, Charles D; Buxton, Michelle M

    2011-01-01

    We present an improved method for determining the mass of neutron stars in eclipsing X-ray pulsar binaries and apply the method to six systems, namely Vela X-1, 4U 1538-52, SMC X-1, LMC X-4, Cen X-3, and Her X-1. In previous studies to determine neutron star mass, the X-ray eclipse duration has been approximated analytically by assuming the companion star is spherical with an effective Roche lobe radius. We use a numerical code based on Roche geometry with various optimizers to analyze the published data for these systems, which we supplement with new spectroscopic and photometric data for 4U 1538-52. This allows us to model the eclipse duration more accurately and thus calculate an improved value for the neutron star mass. The derived neutron star mass also depends on the assumed Roche lobe filling factor beta of the companion star, where beta = 1 indicates a completely filled Roche lobe. In previous work a range of beta between 0.9 and 1.0 was usually adopted. We use optical ellipsoidal lightcurve data to c...

  10. Ain't No Crab, PWN Got A Brand New Bag: Correlated radio and X-ray Structures in Pulsar Wind Nebulae

    CERN Document Server

    Roberts, M S E; Gaensler, B M; Brogan, C L; Tam, C R; Romani, R W; Roberts, Mallory S.E.; Lyutikov, Maxim; Gaensler, Bryan M.; Brogan, Crystal; Tam, Cindy R.; Romani, Roger W.

    2004-01-01

    The traditional view of radio pulsar wind nebulae (PWN), encouraged by the Crab nebula's X-ray and radio morphologies, is that they are a result of the integrated history of their pulsars' wind. The radio emission should therefore be largely unaffected by recent pulsar activity, and hence minimally correlated with structures in the X-ray nebulae. Observations of several PWN, both stationary (sPWN) and rapidly moving (rPWN), now show clear morphological relationships between structures in the radio and X-ray with radio intensity variations on the order of unity. We present high-resolution X-ray and radio images of several PWN of both types and discuss the morphological relationships between the two wavebands.

  11. Fate of the companion stars of ultra-rapid pulsars

    International Nuclear Information System (INIS)

    A millisecond pulsar that is formed by spin-up 'recycling' in a binary system will, once the mass transfer becomes temporarily interrupted, start to evaporate its companion star as a consequence of the large impinging pulsar energy flux. This evaporation is easiest if the pulsar has a short pulse period, the companion star has a relatively large radius and is therefore hydrogen-rich, and the orbital period is short. Evaporation of companion stars induced by millisecond pulsars could account for the lack of low-mass X-ray binaries with short orbital periods below the period gap of the cataclysmic variables, and for the statistics of new-born radio pulsars and their space velocities. (author)

  12. Coordinated X-ray, Ultraviolet, Optical, and Radio Observations of the PSR J1023+0038 System in a Low-mass X-ray Binary State

    CERN Document Server

    Bogdanov, Slavko; Bassa, Cees; Deller, Adam; Halpern, Jules P; Heald, George; Hessels, Jason W T; Janssen, Gemma H; Lyne, Andrew G; Moldon, Javier; Paragi, Zsolt; Patruno, Alessandro; Perera, Benetge; Stappers, Ben W; Tendulkar, Shriharsh P; D'Angelo, Caroline R; Wijnands, Rudy

    2014-01-01

    The PSR J1023+0038 binary system hosts a neutron star and a low-mass, main-sequence-like star. It switches on year timescales between states as an eclipsing radio millisecond pulsar and a low-mass X-ray binary. We present a multi-wavelength observational campaign of PSR J1023+0038 in its most recent low-mass X-ray binary state. Two long XMM-Newton observations reveal that the system spends ~70% of the time in a ~$3\\times10^{33}$ erg/s X-ray luminosity mode, which, as shown in Archibald et al. (2014), exhibits coherent X-ray pulsations. This emission is interspersed with frequent lower flux mode intervals with ~$5\\times 10^{32}$ erg/s and sporadic flares reaching up to ~$10^{34}$ erg/s, with neither mode showing significant X-ray pulsations. The switches between the three flux modes occur on timescales of order 10 s. In the UV and optical, we observe occasional intense flares coincident with those observed in X-rays. Our radio timing observations reveal no pulsations at the pulsar period during any of the thre...

  13. Discovery of extended and variable radio structure from the gamma-ray binary system PSR B1259-63/LS 2883

    OpenAIRE

    Moldon, J.; Johnston, S.; Ribo, M.; Paredes, J. M.; Deller, A. T.

    2011-01-01

    PSR B1259-63 is a 48 ms pulsar in a highly eccentric 3.4 year orbit around the young massive star LS 2883. During the periastron passage the system displays transient non-thermal unpulsed emission from radio to very high energy gamma rays. It is one of the three galactic binary systems clearly detected at TeV energies, together with LS 5039 and LS I +61 303. We observed PSR B1259-63 after the 2007 periastron passage with the Australian Long Baseline Array at 2.3 GHz to trace the milliarcsecon...

  14. The study of multi-frequency scattering of ten radio pulsars

    CERN Document Server

    Lewandowski, Wojciech; Kijak, Jaroslaw; Bhattacharyya, Bhaswati; Roy, Jayanta

    2015-01-01

    We present the results of the multi-frequency scatter time measurements for ten radio pulsars that were relatively less studied in this regard. The observations were performed using the Giant Meterwave Radio Telescope at the observing frequencies of 150, 235, 325, 610 and 1060~MHz. The data we collected, in conjunction with the results from other frequencies published earlier, allowed us to estimate the scatter time frequency scaling indices for eight of these sources. For PSR J1852$-$0635 it occurred that its profile undergoes a strong evolution with frequency, which makes the scatter time measurements difficult to perform, and for PSR J1835$-$1020 we were able to obtain reliable pulse broadening estimates at only two frequencies. We used the eight frequency scaling indices to estimate both: the electron density fluctuation strengths along the respective lines-of-sight, and the standardized amount of scattering at the frequency of 1 GHz. Combining the new data with the results published earlier by Lewandowsk...

  15. Cyclic evolution of radio pulsars on the time scale of hundreds of years

    OpenAIRE

    Beskin, G.; Biryukov, A.; Karpov, S.(Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia)

    2006-01-01

    The recent massive measurements of pulsar frequency second derivatives have shown that they are 100-1000 times larger than expected for standard pulsar slowdown low. Moreover, the second derivatives as well as braking indices are even negative for about half of pulsars. We explain these paradoxical results on the basis of the statistical analysis of the rotational parameters $\

  16. Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves

    International Nuclear Information System (INIS)

    The observation of massive black hole binaries with pulsar timing arrays (PTAs) is one of the goals of gravitational-wave astronomy in the coming years. Massive (> or approx. 108M·) and low-redshift (2 and the other parameters as 1/SNR. For a fiducial PTA of 100 pulsars uniformly distributed in the sky and a coherent SNR=10, we find ΔΩ≅40 deg2, a fractional error on the signal amplitude of ≅30% (which constrains only very poorly the chirp mass-luminosity distance combination M5/3/DL), and the source inclination and polarization angles are recovered at the ≅0.3 rad level. The ongoing Parkes PTA is particularly sensitive to systems located in the southern hemisphere, where at SNR=10 the source position can be determined with ΔΩ≅10 deg2, but has poorer (by an order of magnitude) performance for sources in the northern hemisphere.

  17. SKA-Japan Pulsar Science with the Square Kilometre Array

    CERN Document Server

    Takahashi, Keitaro; Iwata, Kengo; Kameya, Osamu; Kumamoto, Hiroki; Kuroyanagi, Sachiko; Mikami, Ryo; Naruko, Atsushi; Ohno, Hiroshi; Shibata, Shinpei; Terasawa, Toshio; Yonemaru, Naoyuki; Yoo, Chulmoon

    2016-01-01

    The Square Kilometre Array will revolutionize pulsar studies with its wide field-of-view, wide-band observation and high sensitivity, increasing the number of observable pulsars by more than an order of magnitude. Pulsars are of interest not only for the study of neutron stars themselves but for their usage as tools for probing fundamental physics such as general relativity, gravitational waves and nuclear interaction. In this article, we summarize the activity and interests of SKA-Japan Pulsar Science Working Group, focusing on an investigation of modified gravity theory with the supermassive black hole in the Galactic Centre, gravitational-wave detection from cosmic strings and binary supermassive black holes, a study of the physical state of plasma close to pulsars using giant radio pulses and determination of magnetic field structure of Galaxy with pulsar pairs.

  18. Dark Matter-induced Collapse of Neutron Stars: A Possible Link Between Fast Radio Bursts and the Missing Pulsar Problem

    CERN Document Server

    Fuller, Jim

    2014-01-01

    Fast radio bursts (FRBs) are an emerging class of short and bright radio transients whose sources remain enigmatic. Within the galactic center, the non-detection of pulsars within the inner $\\sim \\!10\\,{\\rm pc}$ has created a missing pulsar problem that has intensified with time. With all reserve, we advance the notion that the two problems could be linked by a common solution: the collapse of neutron stars (NS) due to capture and sedimentation of dark matter (DM) within their cores. Bramante \\& Linden (2014), Phys.\\ Rev.\\ Lett.~19, 191301 showed that certain DM properties allow for rapid NS collapse within the high DM density environments near galactic centers while permitting NS survival elsewhere. Each DM-induced collapse could generate an FRB as the NS magnetosphere is suddenly expelled. This scenario could explain several features of FRBs: their short time scales, large energies, locally produced scattering tails, and high event rates. Our scenario predicts that FRBs are localized to galactic centers...

  19. Radio Astrometry Of The Close Active Binary HR5110

    CERN Document Server

    Abbuhl, Evan; Lynch, Christene; Güedel, Manuel

    2015-01-01

    The close active binary HR 5110 was observed at six epochs over 26 days using a global VLBI array at 15.4~GHz. We used phase-referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emission model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of order 10 G and $10^5$ cm$^{-3}$ respectively in the source region.

  20. The Feasibility of Using Black Widow Pulsars in Pulsar Timing Arrays for Gravitational Wave Detection

    CERN Document Server

    Bochenek, Christopher; Demorest, Paul

    2015-01-01

    In the past five years, approximately one third of the 65 pulsars discovered by radio observations of Fermi unassociated sources are black widow pulsars (BWPs). BWPs are binary millisecond pulsars with companion masses ranging from 0.01-0.1 solar masses which often exhibit radio eclipses. The bloated companions in BWP systems exert small torques on the system causing the orbit to change on small but measurable time scales. Because adding parameters to a timing model reduces sensitivity to a gravitational wave (GW) signal, the need to fit many orbital frequency derivatives to the timing data is potentially problematic for using BWPs to detect GWs with pulsar timing arrays. Using simulated data with up to four orbital frequency derivatives, we show that fitting for orbital frequency derivatives absorbs less than 5% of the low frequency spectrum expected from a stochastic gravitational wave background signal. Furthermore, this result does not change with orbital period. Therefore, we suggest that if timing syste...

  1. Radio continua modulated by waves: Zebra patterns in solar and pulsar radio spectra?n in the 2001 June 15 flare

    Czech Academy of Sciences Publication Activity Database

    Karlický, Marian

    2013-01-01

    Roč. 552, April (2013), A90/1-A90/6. ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103 Grant ostatní: EU(XE) PIRSES-GA-2011-295272 Institutional support: RVO:67985815 Keywords : Sun * radio radiation * pulsars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  2. Formation of Binary Millisecond Pulsars by Accretion-Induced Collapse of White Dwarfs under Wind-Driven Evolution

    CERN Document Server

    Ablimit, Iminhaji

    2014-01-01

    Accretion-induced collapse of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods ($\\gtrsim 10$ days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822$-$37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled due to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with a He WD companion, with the orbital periods distributed between $\\gtrsim 0.1$ day and $\\lesssim 30$ days, while...

  3. Constraints on Black Hole/Host Galaxy Co-evolution and Binary Stalling Using Pulsar Timing Arrays

    Science.gov (United States)

    Simon, Joseph; Burke-Spolaor, Sarah

    2016-07-01

    Pulsar timing arrays are now setting increasingly tight limits on the gravitational wave background from binary supermassive black holes (SMBHs). But as upper limits grow more constraining, what can be implied about galaxy evolution? We investigate which astrophysical parameters have the largest impact on predictions of the strain spectrum and provide a simple framework to directly translate between measured values for the parameters of galaxy evolution and pulsar timing array (PTA) limits on the gravitational wave background of binary SMBHs. We find that the most influential observable is the relation between a host galaxy's central bulge and its central black hole, {M}\\bullet {--}{M}{bulge}, which has the largest effect on the mean value of the characteristic strain amplitude. However, the variance of each prediction is dominated by uncertainties in galaxy stellar mass functions. Using this framework with the best published PTA limit, we can set limits on the shape and scatter of the {M}\\bullet {--}{M}{bulge} relation. We find our limits to be in contention with strain predictions using two leading measurements of this relation. We investigate several possible reasons for this disagreement. If we take the {M}\\bullet {--}{M}{bulge} relations to be correct within a simple power-law model for the gravitational wave background, then the inconsistency is reconcilable by allowing for an additional “stalling” time between a galaxy merger and evolution of a binary SMBH to sub-parsec scales, with lower limits on this timescale of ∼1–2 Gyr.

  4. 脉冲星巡天观测进展和近邻脉冲星样本估算%Progress on Radio Pulsar Survey and Estimate the Neighbor Pulsar Population

    Institute of Scientific and Technical Information of China (English)

    张蕾; 王培; 李菂; 张洁; 岳友岭; 刘姝

    2015-01-01

    射电脉冲星巡天是探测获取更多脉冲星的重要途径.首先介绍了影响射电脉冲星巡天效率的因素,着重分析灵敏度和观测频率两个重要因素,并通过定义脉冲星探测率,简化对脉冲星巡天效率的估算.此外,总结了现有脉冲星巡天项目,利用Parkes多波束脉冲星及两次扩充巡天(Swinburne中纬度脉冲星巡天和Parkes高纬度脉冲星巡天)结果,采用包含时间演化的脉冲星分布模拟软件PsrPopPy,模拟得到脉冲星在银河系中分布的样本,并对近邻太阳系1kpc距离内的脉冲星数目进行了估算,获得了近邻脉冲星样本,可为脉冲星高能辐射对探测宇宙线正电子谱影响等研究提供可靠输入量.%Radio surveys are an important way to detect new pulsars. We first reviewed the main factors affecting sensitivities of pulsar searches in radio bands. These factors can be grouped into two categories. First, the instrumental factors include telescope size, observation frequency, observation bandwidth, integration time, sampling rate, digitization loss, and system temperature. Second, the intrinsic properties of pulsars include dispersion, period, and effective pulse width. We defined a generic detection rate (DR) that combine all these factors to be the number of pulsars detected with specific integration time per pointing. We summarized the results of all radio pulsar surveys. The most successful pulsar survey so far is Parkes multibeam pulsar survey (PKSMB), which detected 1086 normal pulsars. The PKSMB was expanded by two more surveys, namely, Parkes-Swinbume multibeam survey (PKSSW) and Parkes high-latitude multibeam pulsar survey (PKSHL), which in total detected 1377 normal pulsars. We utilized the software package PsrPopPy, which adopts a time evolution model of pulsar parameters, to simulate the Galactic pulsar distribution. The results of Parkes multi-beam pulsar survey and its two extensions were used as inputs of PsrPopPy to constrain

  5. A pilot ASKAP survey of radio transient events in the region around the intermittent pulsar PSR J1107-5907

    Science.gov (United States)

    Hobbs, G.; Heywood, I.; Bell, M. E.; Kerr, M.; Rowlinson, A.; Johnston, S.; Shannon, R. M.; Voronkov, M. A.; Ward, C.; Banyer, J.; Hancock, P. J.; Murphy, Tara; Allison, J. R.; Amy, S. W.; Ball, L.; Bannister, K.; Bock, D. C.-J.; Brodrick, D.; Brothers, M.; Brown, A. J.; Bunton, J. D.; Chapman, J.; Chippendale, A. P.; Chung, Y.; DeBoer, D.; Diamond, P.; Edwards, P. G.; Ekers, R.; Ferris, R. H.; Forsyth, R.; Gough, R.; Grancea, A.; Gupta, N.; Harvey-Smith, L.; Hay, S.; Hayman, D. B.; Hotan, A. W.; Hoyle, S.; Humphreys, B.; Indermuehle, B.; Jacka, C. E.; Jackson, C. A.; Jackson, S.; Jeganathan, K.; Joseph, J.; Kendall, R.; Kiraly, D.; Koribalski, B.; Leach, M.; Lenc, E.; MacLeod, A.; Mader, S.; Marquarding, M.; Marvil, J.; McClure-Griffiths, N.; McConnell, D.; Mirtschin, P.; Neuhold, S.; Ng, A.; Norris, R. P.; O'Sullivan, J.; Pearce, S.; Phillips, C. J.; Popping, A.; Qiao, R. Y.; Reynolds, J. E.; Roberts, P.; Sault, R. J.; Schinckel, A. E. T.; Serra, P.; Shaw, R.; Shimwell, T. W.; Storey, M.; Sweetnam, A. W.; Tzioumis, A.; Westmeier, T.; Whiting, M.; Wilson, C. D.

    2016-03-01

    We use observations from the Boolardy Engineering Test Array (BETA) of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to search for transient radio sources in the field around the intermittent pulsar PSR J1107-5907. The pulsar is thought to switch between an `off' state in which no emission is detectable, a weak state and a strong state. We ran three independent transient detection pipelines on two-minute snapshot images from a 13 h BETA observation in order to (1) study the emission from the pulsar, (2) search for other transient emission from elsewhere in the image and (3) to compare the results from the different transient detection pipelines. The pulsar was easily detected as a transient source and, over the course of the observations, it switched into the strong state three times giving a typical time-scale between the strong emission states of 3.7 h. After the first switch it remained in the strong state for almost 40 min. The other strong states lasted less than 4 min. The second state change was confirmed using observations with the Parkes radio telescope. No other transient events were found and we place constraints on the surface density of such events on these time-scales. The high sensitivity Parkes observations enabled us to detect individual bright pulses during the weak state and to study the strong state over a wide observing band. We conclude by showing that future transient surveys with ASKAP will have the potential to probe the intermittent pulsar population.

  6. Pulsar statistics: a study of pulsar luminosities

    International Nuclear Information System (INIS)

    A statistically significant correlation between pulsar luminosity at 400 MHz and both pulsar period and period derivative is found. Fitting a phenomenological power-law model L/sub model/(P,P) approx. P/sup α/P/sup β/ (where P is pulsar period, P - period derivative and L - radio luminosity) to the pulsar luminosity data, we obtain α = -1.04 +- 0.15 and β = 0.35 +- 0.06. The above values suggest that pulsar radio luminosity varies roughly as the cube root of the total loss of rotational energy. 16 references, 5 figures

  7. Known Pulsars Identified in the GMRT 150 MHz All-Sky Survey

    CERN Document Server

    Frail, D A; Mooley, K P; Intema, H T

    2016-01-01

    We have used the 150 MHz radio continuum survey (TGSS ADR) from the Giant Metrewave Radio Telescope (GMRT) to search for phase-averaged emission toward all well-localized radio pulsars north of -53deg Declination. We detect emission toward 200 pulsars with high confidence (>=5-sigma) and another 88 pulsars at fainter levels. We show that most of our identifications are likely from pulsars, except for a small number where the measured flux density is confused by an associated supernova or pulsar-wind nebula, or a globular cluster. We investigate the radio properties of the 150 MHz sample and we find an unusually high number of gamma-ray binary millisecond pulsars with very steep spectral indices. We also note a discrepancy in the measured flux densities between GMRT and LOFAR pulsar samples, suggesting that the flux density scale for the LOFAR pulsar sample may be in error by approximately a factor two. We carry out a separate search of 30 well-localized gamma-ray, radio-quiet pulsars in an effort to detect a ...

  8. Non-thermal emission from high-energy binaries through interferometric radio observations

    CERN Document Server

    Marcote, B

    2016-01-01

    High-mass binary systems involve extreme environments that produce non-thermal emission from radio to gamma rays. Only three types of these systems are known to emit persistent gamma-ray emission: colliding-wind binaries, high-mass X-ray binaries and gamma-ray binaries. This thesis is focused on the radio emission of high-mass binary systems through interferometric observations, and we have explored several of these sources with low- and high-frequency radio observations, and very high-resolution VLBI ones. We have studied two gamma-ray binaries, LS 5039 and LS I +61 303, at low frequencies. We have obtained their light-curves and spectra, and we have determined the physical properties of their radio emitting regions. We have also studied the gamma-ray binary HESS J0632+057 through VLBI observations. A new colliding wind binary, HD 93129A, has been discovered through VLBI and optical observations. Finally, we have conducted radio observations of two sources that were candidates to be gamma-ray binaries.

  9. Investigation of iron emission lines in the eclipsing high mass X-ray binary pulsar OAO 1657-415

    CERN Document Server

    Jaisawal, Gaurava K

    2016-01-01

    We present the results obtained from timing and spectral studies of high mass X-ray binary pulsar OAO 1657-415 using a Suzaku observations in 2011 September. X-ray pulsations were detected in the light curves up to $\\sim$70 keV. The continuum spectra during the high- and low-flux regions in light curves were well described by high energy cutoff power-law model along with a blackbody component and iron fluorescent lines at 6.4 keV and 7.06 keV. Time resolved spectroscopy was carried out by dividing the entire observations into 18 narrow segments. Presence of additional dense matter at various orbital phases was confirmed as the cause of low-flux regions in the observations. Presence of additional matter at several orbital phases of the pulsar was interpreted as due to the inhomogeneously distributed clumps of matter around the neutron star. Using clumpy wind hypothesis, the physical parameters of the clumps causing the high- and low-flux episodes in the pulsar light curve were estimated. The equivalent width o...

  10. A pilot ASKAP survey of radio transient events in the region around the intermittent pulsar PSR J1107-5907

    CERN Document Server

    Hobbs, G; Bell, M E; Kerr, M; Rowlinson, A; Johnston, S; Shannon, R M; Voronkov, M A; Ward, C; Banyer, J; Hancock, P J; Murphy, Tara; Allison, J R; Amy, S W; Ball, L; Bannister, K; Bock, D C -J; Brodrick, D; Brothers, M; Brown, A J; Bunton, J D; Chapman, J; Chippendale, A P; Chung, Y; DeBoer, D; Diamond, P; Edwards, P G; Ekers, R; Ferris, R H; Forsyth, R; Gough, R; Grancea, A; Gupta, N; Harvey-Smith, L; Hay, S; Hayman, D B; Hotan, A W; Hoyle, S; Humphreys, B; Indermuehle, B; Jacka, C E; Jackson, C A; Jackson, S; Jeganathan, K; Joseph, J; Kendall, R; Kiraly, D; Koribalski, B; Leach, M; Lenc, E; MacLeod, A; Mader, S; Marquarding, M; Marvil, J; McClure-Griffiths, N; McConnell, D; Mirtschin, P; Neuhold, S; Ng, A; Norris, R P; O'Sullivan, J; Pearce, S; Phillips, C J; Popping, A; Qiao, R Y; Reynolds, J E; Roberts, P; Sault, R J; Schinckel, A E T; Serra, P; Shaw, R; Shimwell, T W; Storey, M; Sweetnam, A W; Tzioumis, A; Westmeier, T; Whiting, M; Wilson, C D

    2015-01-01

    We use observations from the Boolardy Engineering Test Array (BETA) of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to search for transient radio sources in the field around the intermittent pulsar PSR J1107-5907. The pulsar is thought to switch between an "off" state in which no emission is detectable, a weak state and a strong state. We ran three independent transient detection pipelines on two-minute snapshot images from a 13 hour BETA observation in order to 1) study the emission from the pulsar, 2) search for other transient emission from elsewhere in the image and 3) to compare the results from the different transient detection pipelines. The pulsar was easily detected as a transient source and, over the course of the observations, it switched into the strong state three times giving a typical timescale between the strong emission states of 3.7 hours. After the first switch it remained in the strong state for almost 40 minutes. The other strong states lasted less than 4 minutes. Th...

  11. Instantaneous Radio Spectra of Giant Pulses from the Crab Pulsar from Decimeter to Decameter Wavelengths

    CERN Document Server

    Popov, M V; Ul'yanov, O M; Deshpande, A A; Ershov, A A; Zakharenko, V V; Kondratiev, V I; Kostyuk, S V; Losovskii, B Y; Soglasnov, V A

    2006-01-01

    The results of simultaneous multifrequency observations of giant radio pulses from the Crab pulsar, PSR B0531+21, at 23, 111, and 600 MHz are presented and analyzed. Giant pulses were detected at a frequency as low as 23 MHz for the first time. Of the 45 giant pulses detected at 23 MHz, 12 were identified with counterparts observed simultaneously at 600 MHz. Of the 128 giant pulses detected at 111 MHz, 21 were identified with counterparts observed simultaneously at 600 MHz. The spectral indices for the power-law frequency dependence of the giant-pulse energies are from -3.1 to -1.6. The mean spectral index is -2.7 +/- 0.1 and is the same for both frequency combinations (600-111 MHz and 600-23 MHz). The large scatter in the spectral indices of the individual pulses and the large number of unidentified giant pulses suggest that the spectra of the individual giant pulses do not actually follow a simple power law. The observed shapes of the giant pulses at all three frequencies are determined by scattering on int...

  12. Wide-Band Spectra of Giant Radio Pulses from the Crab Pulsar

    CERN Document Server

    Mikami, Ryo; Tanaka, Shuta J; Kisaka, Shota; Sekido, Mamoru; Takefuji, Kazuhiro; Takeuchi, Hiroshi; Misawa, Hiroaki; Tsuchiya, Fuminori; Kita, Hajime; Yonekura, Yoshinori; Terasawa, Toshio

    2016-01-01

    We present the results of the simultaneous observation of the Giant Radio Pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7 and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70\\% or more of the GRP spectra are consistent with single power-laws and the spectral indices of them are distributed from $-4$ to $-1$. We also find that a significant number of GRPs have so hard spectral index $\\sim -1$) that the fluence at 0.3 GHz is below the detection limit (``dim-hard' GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensiv...

  13. VizieR Online Data Catalog: Pulse profiles of 100 radio pulsars (Pilia+, 2016)

    Science.gov (United States)

    Pilia, M.; Hessels, J. W. T.; Stappers, B. W.; Kondratiev, V. I.; Kramer, M.; van Leeuwen, J.; Weltevrede, P.; Lyne, A. G.; Zagkouris, K.; Hassall, T. E.; Bilous, A. V.; Breton, R. P.; Falcke, H.; Griessmeier, J.-M.; Keane, E.; Karastergiou, A.; Kuniyoshi, M.; Noutsos, A.; Oslowski, S.; Serylak, M.; Sobey, C.; Ter Veen, S.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brueggen, M.; Ciardi, B.; Corbel, S.; de Geus, E.; de Jong, A.; Deller, A.; Duscha, S.; Eisloeffel, J.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Gunst, A. W.; Hamaker, J. P.; Heald, G.; Horneffer, A.; Jonker, P.; Juette, E.; Kuper, G.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Miller-Jones, J. C. A.; Nelles, A.; Paas, H.; Pandey-Pommier, M.; Pietka, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Roettgering, H.; Rowlinson, A.; Schwarz, D.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J. D.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, M. C.; van der Horst, A. J.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnands, R.; Wijnholds, S. J.; Wucknitz, O.; Zarka, P.

    2016-04-01

    The observed sample of pulsars was loosely based on a selection of the brightest objects in the LOFAR-visible sky (declination >-30°), using the ATNF Pulsar Catalog1 (Manchester et al., 2005AJ....129.1993M) for guidance. We observed 100 pulsars using the high-band antennas (HBAs) in the six central "Superterp" stations (CS002-CS007) of the LOFAR core. (3 data files).

  14. The Rest of the Story: Radio Pulsars and IR through Gamma-Ray Emission

    OpenAIRE

    Romani, Roger W.

    2002-01-01

    Recent observations have detected a number of young pulsars from the power peak in the gamma-ray band to the incoherent photon peak in the optical/IR. We have made progress on the multiwavelength phenomenology of pulsar emission and beaming, but a wide variation of light curves between different objects and different energy bands makes the full story complex. I sketch here a `Unified Model' of pulsar beaming and summarize the radiation mechanisms and their interplay in outer magnetosphere mod...

  15. Constraints on Black Hole/Host Galaxy Co-evolution and Binary Stalling Using Pulsar Timing Arrays

    CERN Document Server

    Simon, Joseph

    2016-01-01

    Pulsar timing arrays are now setting increasingly tight limits on the gravitational wave background from binary supermassive black holes. But as upper limits grow more constraining, what can be implied about galaxy evolution? We investigate which astrophysical parameters have the largest impact on strain spectrum predictions and provide a simple framework to directly translate between measured values for the parameters of galaxy evolution and PTA limits on the gravitational wave background of binary supermassive black holes. We find that the most influential observable is the relation between a host galaxy's central bulge and its central black hole, $\\mbox{$M_{\\bullet}$-$M_{\\rm bulge}$}$, which has the largest effect on the mean value of the characteristic strain amplitude. However, the variance of each prediction is dominated by uncertainties in the galaxy stellar mass function. Using this framework with the best published PTA limit, we can set limits on the shape and scatter of the $\\mbox{$M_{\\bullet}$-$M_{...

  16. Programmable Ultra Lightweight System Adaptable Radio (PULSAR) Low Cost Telemetry - Access from Space Advanced Technologies or Down the Middle

    Science.gov (United States)

    Sims. Herb; Varnavas, Kosta; Eberly, Eric

    2013-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.

  17. The Crab Pulsar Observed by RXTE: Monitoring the X-Ray to Radio Delay for 16 Years

    Science.gov (United States)

    Rots, Arnold; Jahoda, Keith

    2012-01-01

    In 2004 we published the results of monitoring the Crab Pulsar by RXTE. At that time we determined that the primary pulse of the pulsar at X-ray energies precedes its radio counterpart by about 0.01 period in phase or approximately 330 micro seconds. However, we could not establish unambiguously whether the delay is in phase or due to a difference in pathlength. At this time we have twice the time baseline we had in 2004 and we present the same analysis, but now over a period of 16 years, which will represent almost the full mission and the best that will be available from RXTE. The full dataset shows that the phase delay has been decreasing faster than the pulse frequency over the 16 year baseline and that there are variations in the delay on a variety of timescales.

  18. Radio Counterparts of Compact Binary Mergers detectable in Gravitational Waves: A Simulation for an Optimized Survey

    CERN Document Server

    Hotokezaka, Kenta; Hallinan, Gregg; Lazio, T Joseph W; Nakar, Ehud; Piran, Tsvi

    2016-01-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation of accelerated electrons in shocks formed with the circum-merger medium. We explore the detectability of these synchrotron generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (i) sub-relativistic merger ejecta and (ii) ultra-relativistic jets. The former produces radio remnants on timescales of a few years and the latter produces $\\gamma$-ray bursts in the direction of the jet and orphan radio afterglows extending over wider angles on timescales of a week to a month. The intensity and duration of these radio counterparts depend on the kinetic energies of the outflows and on circum-merger densities. We estimate the detectability of the radio counterparts ...

  19. COSMOLOGICAL FAST RADIO BURSTS FROM BINARY WHITE DWARF MERGERS

    International Nuclear Information System (INIS)

    Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ∼104 sky–1 day–1, the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs

  20. Radio Counterparts of Compact Binary Mergers detectable in Gravitational Waves: A Simulation for an Optimized Survey

    OpenAIRE

    Hotokezaka, Kenta; Nissanke, Samaya; Hallinan, Gregg; Lazio, T. Joseph W.; Nakar, Ehud; Piran, Tsvi

    2016-01-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation of accelerated electrons in shocks formed with the circum-merger medium. We explore the detectability of these synchrotron generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. W...

  1. High Speed, Low Cost Telemetry Access from Space Development Update on Programmable Ultra Lightweight System Adaptable Radio (PULSAR)

    Science.gov (United States)

    Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric

    2014-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and

  2. Chandra Observations of Black-Widow Pulsars

    CERN Document Server

    Gentile, Peter; Roberts, Mallory; Camilo, Fernando; Hessels, Jason; Kerr, Matthew; Ransom, Scott; Ray, Paul; Stairs, Ingrid

    2012-01-01

    We describe the first X-ray observations of binary millisecond pulsars PSRs J0023+0923, J1810+1744, J2215+5135, and J2256-1024. All four are Fermi gamma-ray sources and three are 'black-widow' pulsars, with companions of mass < 0.1 solar masses. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256-1024, show significant orbital variability and X-ray flux minima at the times of eclipses observed at radio wavelengths. This phenomenon is consistent with intrabinary shock emission characteristic of black-widow pulsars. The other two pulsars, PSRs J0023+0923 and J1810+1744, do not demonstrate significant variability, but are fainter than the other two sources. Spectral fits yield power-law indices that range from 1.4 to 2.3 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component (41% of counts are above 2 keV), which is additional evidence for the presence of ...

  3. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    Science.gov (United States)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  4. The European Pulsar Timing Array and the Large European Array for Pulsars

    International Nuclear Information System (INIS)

    The European Pulsar Timing Array (EPTA) and the Large European Array for Pulsars (LEAP) play crucial roles in the global effort to detect gravitational waves (GWs) with a Pulsar Timing Array (PTA) experiment. While the EPTA uses five of the world’s largest cm-radio telescopes, LEAP harvests their combined power to synthesize a 194 m equivalent dish to provide high-precision PTA data for most of the sky. The EPTA has already produced a large variety of results, including astrophysical studies of individual pulsars, tests of theories of gravity, stringent limits on a GW background produced by super-massive binary black holes or the vibration of cosmic strings. It has also undertaken the development of new analysis methods and techniques, and studies of the astrophysics and population of expected GW background sources. This review gives an overview of the EPTA and LEAP set-ups and corresponding activities. (paper)

  5. Search for Millisecond Pulsars for the Pulsar Timing Array project

    Science.gov (United States)

    Milia, S.

    2012-03-01

    Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the sub­class of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the space­time at the

  6. Formation and evolution of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  7. Star Cluster Buzzing With Pulsars

    Science.gov (United States)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is

  8. 2S1553-542: a Be/X-ray binary pulsar on the far side of the Galaxy

    CERN Document Server

    Lutovinov, Alexander A; Townsend, Lee J; Tsygankov, Sergey S; Kennea, Jamie

    2016-01-01

    We report the results of a comprehensive analysis of X-ray (Chandra and Swift observatories), optical (Southern African Large Telescope, SALT) and near-infrared (the VVV survey) observations of the Be/X-ray binary pulsar 2S1553-542. Accurate coordinates for the X-ray source are determined and are used to identify the faint optical/infrared counterpart for the first time. Using VVV and SALTICAM photometry, we have constructed the spectral energy distribution (SED) for this star and found a moderate NIR excess that is typical for Be stars and arises due to the presence of circumstellar material (disk). A comparison of the SED with those of known Be/X-ray binaries has allowed us to estimate the spectral type of the companion star as B1-2V and the distance to the system as $>15$ kpc. This distance estimation is supported by the X-ray data and makes 2S1553-542 one of the most distant X-ray binaries within the Milky Way, residing on the far side in the Scutum-Centaurus arm or even further.

  9. Suzaku view of Be/X-ray binary pulsar GX 304-1 during Type I X-ray outbursts

    CERN Document Server

    Jaisawal, Gaurava K; Epili, Prahlad

    2016-01-01

    We report the timing and spectral properties of Be/X-ray binary pulsar GX 304-1 by using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ~275 s were clearly detected in the light curves from both the observations. Pulse profiles were found to be strongly energy-dependent. During 2010 observation, prominent dips seen in soft X-ray ($\\leq$10 keV) pulse profiles were found to be absent at higher energies. However, during 2012 observation, the pulse profiles were complex due to the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies ($>$35 keV). A phase shift of $\\sim$0.3 was detected while comparing the phase of main dip in pulse profiles below and above $\\sim$35 keV. Broad-band energy spectrum of pulsar was well described by a partially absorbed Negative and Positive power-law with Exponential cutoff (NPEX) model with 6.4 keV iron line and a cyclotron absorption feature. Energy of cyclotron absorption line...

  10. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119-6127 AND SUPERNOVA REMNANT G292.2-0.5

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.-Y.; Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Ho, W. C. G. [School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom); Weltevrede, P. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Shannon, R. [CSIRO Astronomy and Space Sciences, Australia Telescope National Facility, Marsfield, NSW 2210 (Australia); Gonzalez, M. E., E-mail: ncy@physics.mcgill.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2012-12-10

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 Multiplication-Sign 10{sup 13} G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 {+-} 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  11. Search for a Correlation Between Very-High-Energy Gamma Rays and Giant Radio Pulses in the Crab Pulsar

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Dumm, J.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Perkins, J. S.

    2012-01-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ( E(sub Gamma) > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On approx. 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  12. SEARCH FOR A CORRELATION BETWEEN VERY-HIGH-ENERGY GAMMA RAYS AND GIANT RADIO PULSES IN THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S., E-mail: schroedter@veritas.sao.arizona.edu, E-mail: mccann@kicp.uchicago.edu, E-mail: nepomuk.otte@gmail.com [DESY, Platanenallee 6, 15738 Zeuthen (Germany); and others

    2012-12-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E {sub {gamma}} > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On {approx}8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  13. Soft X-Ray Properties of the Binary Millisecond Pulsar J0437-4715

    Science.gov (United States)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman, L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0.27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2 - 1.5, intervening column density N(sub H) = (5 - 8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1 - 2.4 keV band. We also use a bright EUVE/ROSAT source only 4.2 min. from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = IES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, N(sub H) less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50 - 600 m and temperature (1.0 - 3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4 - 12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma

  14. An eclipsing millisecond pulsar with a possible main-sequence companion in NGC 6397

    CERN Document Server

    D'Amico, N; Manchester, R N; Sarkissian, J M; Lyne, A G; Camilo, F M

    2001-01-01

    We present the results of one year of pulse timing observations of PSR J1740-5340, an eclipsing millisecond pulsar located in the globular cluster NGC 6397. We have obtained detailed orbital parameters and a precise position for the pulsar. The radio pulsar signal shows frequent interactions with the atmosphere of the companion, and suffers significant and strongly variable delays and intensity variations over a wide range of orbital phases. These characteristics and the binary parameters indicate that the companion may be a bloated main-sequence star or the remnant (still filling its Roche lobe) of the star that spun up the pulsar. In both cases, this would be the first binary millisecond pulsar system with such a companion.

  15. A Compact X-Ray Source in the Radio Pulsar-wind Nebula G141.2+5.0

    Science.gov (United States)

    Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2016-01-01

    We report the results of a 50 ks Chandra observation of the recently discovered radio object G141.2+5.0, presumed to be a pulsar-wind nebula. We find a moderately bright unresolved X-ray source that we designate CXOU J033712.8 615302 coincident with the central peak radio emission. An absorbed power-law fit to the 241 counts describes the data well, with absorbing column {N}H=6.7(4.0,9.7)× {10}21 cm-2 and photon index {{Γ }}=1.8(1.4,2.2). For a distance of 4 kpc, the unabsorbed luminosity between 0.5 and 8 keV is {1.7}-0.3+0.4× {10}32 erg s-1 (90% confidence intervals). Both LX and Γ are quite typical of pulsars in PWNe. No extended emission is seen; we estimate a conservative 3σ upper limit to the surface brightness of any X-ray PWN near the point source to be 3× {10}-17 erg cm-2 s-1 arcsec-2 between 0.5 and 8 keV, assuming the same spectrum as the point source; for a nebula of diameter 13\\prime\\prime , the flux limit is 6% of the flux of the point source. The steep radio spectrum of the PWN (α ˜ -0.7), if continued to the X-ray without a break, predicts {L}{{X}} {{(nebula)}}˜ 1× {10}33 erg s-1, so additional spectral steepening between radio and X-rays is required, as is true of all known PWNe. The high Galactic latitude gives a z-distance of 350 pc above the Galactic plane, quite unusual for a Population I object.

  16. A Compact X-ray Source in the Radio Pulsar-Wind Nebula G141.2+5.0

    CERN Document Server

    Reynolds, Stephen P

    2016-01-01

    We report the results of a 50 ks Chandra observation of the recently discovered radio object G141.2+5.0, presumed to be a pulsar-wind nebula. We find a moderately bright unresolved X-ray source which we designate CXOU J033712.8 615302 coincident with the central peak radio emission. An absorbed power-law fit to the 241 counts describes the data well, with absorbing column $N_H = 6.7 (4.0, 9.7) \\times 10^{21}$ cm$^{-2}$ and photon index $\\Gamma = 1.8 (1.4, 2.2)$. For a distance of 4 kpc, the unabsorbed luminosity between 0.5 and 8 keV is $ 1.7^{+0.4}_{-0.3} \\times 10^{32}$ erg s$^{-1}$ (90\\% confidence intervals). Both $L_X$ and $\\Gamma$ are quite typical of pulsars in PWNe. No extended emission is seen; we estimate a conservative $3 \\sigma$ upper limit to the surface brightness of any X-ray PWN near the point source to be $3 \\times 10^{-17}$ erg cm$^{-2}$ s$^{-1}$ arcsec$^{-2}$ between 0.5 and 8 keV, assuming the same spectrum as the point source; for a nebula of diameter $13"$, the flux limit is 6\\% of the f...

  17. Rotational Sweepback of Magnetic Field Lines in Geometrical Models of Pulsar Radio Emission

    Science.gov (United States)

    Dyks, J.; Harding, Alice K.

    2004-01-01

    We study the rotational distortions of the vacuum dipole magnetic field in the context of geometrical models of the radio emission from pulsars. We find that at low altitudes the rotation deflects the local direction of the magnetic field by at most an angle of the order of r(sup 2 sub n), where r(sub n) = r/R(sub lc), r is the radial distance and R(sub lc) is the light cylinder radius. To the lowest (i.e. second) order in r(sub n) this distortion is symmetrical with respect to the plane containing the dipole axis and the rotation axis ((Omega, mu) plane). The lowest order distortion which is asymmetrical with respect to the (Omega, mu) plane is third order in r(sub n). These results confirm the common assumption that the rotational sweepback has negligible effect on the position angle (PA) curve. We show, however, that the influence of the sweep back on the outer boundary of the open field line region (open volume) is a much larger effect, of the order of r(sup 1/2 sub n). The open volume is shifted backwards with respect to the rotation direction by an angle delta(sub o nu) approx. 0.2 sin alpha r(sup 1/2 sub n) where alpha is the dipole inclination with respect to the rotation axis. The associated phase shift of the pulse profile Delta phi(sub o nu) approx. 0.2 r(sup 1/2 sub n) can easily exceed the shift due to combined effects of aberration and propagation time delays (approx. 2r(sub n)). This strongly affects the misalignment of the center of the PA curve and the center of the pulse profile, thereby modifying the delay radius relation. Contrary to intuition, the effect of sweepback dominates over other effects when emission occurs at low altitudes. For r(sub n) < or approx. 3 x 10(exp -3) the shift becomes negative, i.e. the center of the position angle curve precedes the profile center. With the sweepback effect included, the modified delay-radius relation predicts larger emission radii and is in much better agreement with the other methods of determining r

  18. Piercing the Vainshtein screen with anomalous gravitational wave speed: Constraints on modified gravity from binary pulsars

    OpenAIRE

    Beltrán Jiménez, Jose; Piazza, Federico; Velten, Hermano

    2016-01-01

    International audience By using observations of the Hulse-Taylor pulsar we constrain the gravitational wave (GW) speed to the level of 10 −2. We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively " pierces " the Vainshtein scre...

  19. Investigation of the bi-drifting subpulses of radio pulsar B1839-04 utilising the open-source data-analysis project PSRSALSA

    CERN Document Server

    Weltevrede, Patrick

    2016-01-01

    The usefulness and versatility of the PSRSALSA open-source pulsar data-analysis project is demonstrated through an analysis of the radio pulsar B1839-04. This study focuses on the phenomenon of bi-drifting, an effect where the drift direction of subpulses is systematically different in different pulse profile components. Bi-drifting is extremely rare in the pulsar population. Various tools in PSRSALSA, including those allowing quantification of periodicities in the subpulse modulation, their flux distribution, and polarization properties, are exploited to obtain a comprehensive picture of the radio properties of PSR B1839-04. In particular, the second harmonic in the fluctuation spectra of the subpulse modulation is exploited to convincingly demonstrate the existence of bi-drifting. Bi-drifting is confirmed with a completely independent method allowing the average modulation cycle to be determined. Polarization measurements were used to obtain a robust constraint on the magnetic inclination angle of less than...

  20. High-School Teams Joining Massive Pulsar Search

    Science.gov (United States)

    2008-09-01

    to join in cutting-edge scientific research. The GBT has discovered more than 60 pulsars over the past five years, including the fastest-rotating pulsar ever found, a speedster spinning 716 times per second. At WVU, astronomers Maura McLaughlin and Duncan Lorimer are experienced pulsar specialists who use the GBT regularly for their research. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) The PSC program will include training for teachers and student leaders at Green Bank, and an annual scientific seminar at WVU where all participants can present their research. During the year, participants will share information through an online collaboration site called the "collaboratory," operated by Northwestern University. Student teams will receive parcels of data from the GBT and analyze the data to discover pulsars. To do so, they will need to learn to use analysis software and to recognize man-made radio interference that contaminates the data. Each portion of the data will be analyzed by multiple teams. Of the 1500 hours of GBT observing data in the project, taken during the summer of 2007, some 300 hours is reserved for analysis by the student teams. This reserved data set is expected to include tens of new pulsars and about 100 known pulsars. "Because multiple teams will analyze each portion of the data, every student in the project is virtually guaranteed to discover a new pulsar," Heatherly said. "This will give West Virginia high school students the chance to make groundbreaking discoveries like finding exotic pulsar binary systems, pulsars with planetary systems, or pulsars spinning faster than currently thought possible," McLaughlin said. The project will begin recruiting teachers in February of 2008. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  1. Fermi Study of 5-300 GeV emission from the high-mass pulsar binary PSR B1259-63/LS 2883

    CERN Document Server

    Xing, Yi; Takata, Jumpei

    2016-01-01

    We report the results from our detailed analysis of the Fermi Large Area Telescope (LAT) data for the pulsar binary PSR B1259-63/LS 2883. During the GeV flares that occurred when the pulsar was in the periastron passages, we have detected a 5--300 GeV component at $\\simeq 5\\sigma$ in emission from the binary. The detection verifies the presence of the component that has been marginally found in the previous studies of the binary. Furthermore, we have discovered that this component was present even in the quiescent state of the binary, specifically the mean anomaly phase 0.7--0.9. The component can be described by a power law with photon index $\\Gamma\\sim 1.4$, and the flux in the flares is approximately one order of magnitude higher than that in quiescence. We discuss the origin of this component. It likely arises from the inverse-Compton process: high-energy particles from the shock, due to the interaction between the winds from the pulsar and massive companion, scatter the seed photons from the companion to...

  2. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    ever wanted to know about pulsars but were afraid to ask. Chapter 1 begins a brief and interesting account of the discovery of pulsars, followed by an overview of the rotation-powered and accretion-powered populations. The following four chapters are fairly detailed and reasonably quantitative descriptions of neutron star interiors. This is no easy feat, given that a description of the physics of neutron stars demands a deep understanding of all major physical forces, and must include general relativity as well as detailed particle physics. The historical notes at the beginning of Chapter 2 are particularly fascinating, recounting the path to today's understanding of neutron stars in very interesting detail. Chapter 7 presents rotation-powered pulsar radio properties, and a nice description of pulsar timing, including relativistic and non-relativistic binaries and GR tests. The remaining chapters tackle a variety of topics including binary evolution, superfluidity, accretion-powered pulsar properties, magnetospheres and emission mechanisms, magnetic fields, spin evolution and strange stars. The coverage is somewhat uneven, with the strange star chapter, for example, an obvious afterthought. The utility of an encyclopedia lies in its breadth and in how up-to-date it is. Although admirable in its intentions, the Ghosh book does omit some major pulsar topics. This book leaves the impression that rotation-powered pulsars produce only radio emission; hardly (if at all) mentioned is the vast literature on their infrared, optical, and even more importantly, x-ray and gamma-ray emission, the latter being far more relevant to the pulsar 'machine' than the energetically puny radio output. Also absent are pulsar winds; this is particularly puzzling given both the lovely wind nebula that graces the book's cover, and the central role the wind plays as primary sink of the rotation power. One of the most actively pursued topics in pulsar astrophysics in the past decade, magnetars

  3. On the second derivatives of periods and braking indices in radio pulsars

    CERN Document Server

    Malov, I F

    2016-01-01

    The analysis of some braking mechanisms for neutron stars was carried out to determine the sign of the second derivative of the pulsar period. This quantity is the important parameter for calculations of the braking index n. It is shown that this derivative can be positive and lead to decreasing of n. It is necessary to correct the methods of calculations of n used this moment because they are based as a rule on the suggestion on the constancy of pulsar parameters (magnetic fields, angles between some axes and so on). The estimations of corrections to braking indices are obtained. It is shown that these corrections can be marked for pulsars with long periods and their small derivatives.

  4. A search for pulsed radio emission from anomalous X-ray pulsar 4U 0142+61 at the frequency of 111 MHz

    CERN Document Server

    Ershov, Alexander A

    2007-01-01

    We have searched for pulsed radio emission from magnetar 4U 0142+61 at the frequency of 111 MHz. No pulsed signal was detected from this source. Upper limits for mean flux density are 0.9 - 9 mJy depending on assumed duty cycle (.05 - .5) of the pulsar.

  5. X-Ray Observations of Black Widow Pulsars

    CERN Document Server

    Gentile, P; McLaughlin, M; Camilo, F; Hessels, J; Kerr, M; Ransom, S; Ray, P; Stairs, I

    2013-01-01

    We describe the first X-ray observations of five short orbital period ($P_B < 1$ day), $\\gamma$-ray emitting, binary millisecond pulsars. Four of these, PSRs J0023+0923, J1124$-$3653, J1810+1744, and J2256$-$1024 are `black-widow' pulsars, with degenerate companions of mass $\\ll0.1 M_{\\odot}$, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing `redback' with a near Roche-lobe filling $\\sim$0.2 solar mass non-degenerate companion. Data were taken using the \\textit{Chandra X-Ray Observatory} and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256$-$1024, show significant orbital variability while PSR J1124$-$3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstra...

  6. Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar

    Science.gov (United States)

    Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.; Maeda, K.; Hui, C. Y.; Tam, P. H. T.

    2012-01-01

    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.

  7. The Optimization of GBT Pulsar Data for the GBNCC Pulsar Survey

    Science.gov (United States)

    Gordon, Ashlee Nicole; Green Bank NRAO, GBNCC

    2016-01-01

    The Green Bank Telescope collects data from the Green Bank Northern Celestial Cap (GBNCC) pulsar survey in order to find new pulsars within its sensitivity and also, to confirm previously found pulsars within its sensitivity range. The collected data is then loaded into the CyberSKA website database where astronomers are tasked with rating the data sets based on its potential to be a pulsar from 0(unclassified), 1(class 1 pulsar), 2(class 2 pulsar), 3(class 3 pulsar), 4(radio frequency interference), 5(not a pulsar), 6(know pulsar), 7(harmonic of a known pulsar). This specific research done was to use previously classified pulsars to create a python script that will automatically identify the data set as a pulsar or a non-pulsar. After finding the recurring frequencies of radio frequency interference (RFI), the frequencies were then added to a pipeline to further discern pulsars from RFI.

  8. Pulsars and quark stars

    CERN Document Server

    Xu, R

    2005-01-01

    Members of the family of pulsar-like stars are distinguished by their different manifestations observed, i.e., radio pulsars, accretion-driven X-ray pulsars, X-ray bursts, anomalous X-ray pulsars/soft gamma-ray repeaters, compact center objects, and dim thermal neutron stars. Though one may conventionally think that these stars are normal neutron stars, it is still an open issue whether they are actually neutron stars or quark stars, as no convincing work, either theoretical from first principles or observational, has confirmed Baade-Zwicky's original idea that supernovae produce neutron stars. After introducing briefly the history of pulsars and quark stars, the author summarizes the recent achievements in his pulsar group, including quark matter phenomenology at low temperature, starquakes of solid pulsars, low-mass quark stars, and the pulsar magnetospheric activities.

  9. Nobel Prize in Physics 1993 "for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation" : Russell A. Hulse and Joseph H. Taylor Jr.

    CERN Multimedia

    1994-01-01

    Prof. J. H. Taylor Jr. presents "Binary pulsars and relativistic gravity" Spinning freely on their axes, and emitting radio noise detectable over interastellar distances, pulsars make extraordinarily stable natural clocks. Detailed comparisons of""pulsar time" with time kept by atomic clocks on Earth have opened the way for tests of gravity under conditions much more relativistic than found anywhere within the solar system. Among other results,these experiments have demonstrated the existence,quadrupolar nature, and propagation speed of gravitational waves.

  10. Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars.

    Science.gov (United States)

    Beltrán Jiménez, Jose; Piazza, Federico; Velten, Hermano

    2016-02-12

    By using observations of the Hulse-Taylor pulsar, we constrain the gravitational wave (GW) speed to the level of 10^{-2}. We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively "pierces" the Vainshtein screening. In specific branches of solutions, our result allows us to directly constrain the cosmological couplings in the effective field theory of dark energy formalism. PMID:26918974

  11. Swinging between rotation and accretion power in a binary millisecond pulsar

    Directory of Open Access Journals (Sweden)

    Papitto A.

    2014-01-01

    While accreting mass, the X-ray emission of IGR J18245–2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of the newly established class of transitional pulsars are also briefly discussed.

  12. The effect of vacuum birefringence on the polarization of X-ray binaries and pulsars

    Science.gov (United States)

    Novick, R.; Weisskopf, M. C.; Angel, J. R. P.; Sutherland, P. G.

    1977-01-01

    In a strong magnetic field the vacuum becomes birefringent. This effect is especially important for pulsars at X-ray wavelengths. Any polarized X-ray emission from the surface of a magnetic neutron star becomes depolarized as it propagates through the magnetic field. The soft X-ray emission from AM Her, believed to be a magnetic white dwarf, may show about one radian of phase retardation. In this case, circular polarization of the X-ray flux would be a characteristic signature of vacuum birefringence.

  13. DISCOVERY OF PULSED γ-RAYS FROM THE YOUNG RADIO PULSAR PSR J1028-5819 WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of γ-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The γ-ray light curve shows two sharp peaks having phase separation of 0.460 ± 0.004, trailing the very narrow radio pulse by 0.200 ± 0.003 in phase, very similar to that of other known γ-ray pulsars. The measured γ-ray flux gives an efficiency for the pulsar of ∼10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  14. MODELING THE FREQUENCY DEPENDENCE OF RADIO BEAMS FOR CONE-DOMINANT PULSARS

    International Nuclear Information System (INIS)

    Beam radii for cone-dominant pulsars follow a power-law relation with frequency, thetav = (ν/ν0) k + thetav0, which has not been well explained in previous works. We study this frequency dependence of beam radius (FDB) for cone-dominant pulsars by using the curvature radiation mechanism. Considering various density and energy distributions of particles in the pulsar open field-line region, we numerically simulate the emission intensity distribution across emission height and rotation phase, get integrated profiles at different frequencies, and obtain the FDB curves. For the density model of a conal-like distribution, the simulated profiles always shrink to one component at high frequencies. In the density model with two separated density patches, the profiles generally have two distinct components, and the power-law indices k are found to be in the range from –0.1 to –2.5, consistent with observational results. Energy distributions of streaming particles have significant influence on the frequency-dependence behavior. Radial energy decay of particles is desired to get proper thetav0 in models. We conclude that by using the curvature radiation mechanism, the observed FDB for the cone-dominant pulsars can only be explained by the emission model of particles in two density patches with a Gaussian energy distribution and a radial energy loss.

  15. Discovery of SXP 265, a Be/X-ray binary pulsar in the Wing of the Small Magellanic Cloud

    Science.gov (United States)

    Sturm, R.; Haberl, F.; Vasilopoulos, G.; Bartlett, E. S.; Maggi, P.; Rau, A.; Greiner, J.; Udalski, A.

    2014-11-01

    We identify a new candidate for a Be/X-ray binary in the XMM-Newton slew survey and archival Swift observations that is located in the transition region of the Wing of the Small Magellanic Cloud and the Magellanic Bridge. We investigated and classified this source with follow-up XMM-Newton and optical observations. We model the X-ray spectra and search for periodicities and variability in the X-ray observations and the Optical Gravitational Lensing Experiment I-band light curve. The optical counterpart has been classified spectroscopically, with data obtained at the South African Astronomical Observatory 1.9 m telescope, and photometrically, with data obtained using the Gamma-ray Burst Optical Near-ir Detector at the MPG 2.2 m telescope. The X-ray spectrum is typical of a high-mass X-ray binary with an accreting neutron star. We detect X-ray pulsations, which reveal a neutron-star spin period of Ps = (264.516 ± 0.014) s. The source likely shows a persistent X-ray luminosity of a few 1035 erg s-1 and in addition type-I outbursts that indicate an orbital period of ˜146 d. A periodicity of 0.867 d, found in the optical light curve, can be explained by non-radial pulsations of the Be star. We identify the optical counterpart and classify it as a B1-2II-IVe star. This confirms SXP 265 as a new Be/X-ray binary pulsar originating in the tidal structure between the Magellanic Clouds.

  16. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    OpenAIRE

    Collaboration, The Fermi-LAT

    2009-01-01

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz)in the error circle of the EGRET source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of gamma-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The gamma-ray light curve shows two sharp peaks having phase se...

  17. The imminent detection of gravitational waves from massive black-hole binaries with pulsar timing arrays

    CERN Document Server

    McWilliams, Sean T; Pretorius, Frans

    2012-01-01

    Recent observations of massive galaxies indicate that they double in mass and quintuple in size between redshift z = 1 and the present, despite undergoing very little star formation, suggesting that galaxy mergers drive the evolution. Since these galaxies will contain supermassive black holes, this suggests a larger black hole merger rate, and therefore a larger gravitational-wave signal, than previously expected. We calculate the merger-driven evolution of the mass function, and find that merger rates are 10 to 30 times higher and gravitational waves are 3 to 5 times stronger than previously estimated, so that the gravitational-wave signal may already be detectable with existing data from pulsar timing arrays. We also provide an explanation for the disagreement with past estimates that were based on dark matter halo simulations.

  18. Fast Radio Bursts and Their Gamma-Ray or Radio Afterglows as Kerr–Newman Black Hole Binaries

    Science.gov (United States)

    Liu, Tong; Romero, Gustavo E.; Liu, Mo-Lin; Li, Ang

    2016-07-01

    Fast radio bursts (FRBs) are radio transients lasting only about a few milliseconds. They seem to occur at cosmological distances. We propose that these events can originate in the collapse of the magnetospheres of Kerr–Newman black holes (KNBHs). We show that the closed orbits of charged particles in the magnetospheres of these objects are unstable. After examining the dependencies on the specific charge of the particle and the spin and charge of the KNBH, we conclude that the resulting timescale and radiation mechanism fit well with extant observations of FRBs. Furthermore, we argue that the merger of a KNBH binary is a plausible central engine for the potential gamma-ray or radio afterglow following certain FRBs and can also account for gravitational wave (GW) events like GW 150914. Our model leads to predictions that can be tested by combined multi-wavelength electromagnetic and GW observations.

  19. ON THE COMPLEMENTARITY OF PULSAR TIMING AND SPACE LASER INTERFEROMETRY FOR THE INDIVIDUAL DETECTION OF SUPERMASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Gravitational waves coming from supermassive black hole binaries (SMBHBs) are targeted by both the Pulsar Timing Array (PTA) and Space Laser Interferometry (SLI). The possibility of a single SMBHB being tracked first by PTA, through inspiral, and later by SLI, up to merger and ring-down, has been previously suggested. Although the bounding parameters are drawn by the current PTA or the upcoming Square Kilometer Array (SKA), and by the New Gravitational Observatory (NGO), derived from the Laser Interferometer Space Antenna (LISA), this paper also addresses sequential detection beyond specific project constraints. We consider PTA-SKA, which is sensitive from 10–9 to p × 10–7 Hz (p = 4, 8), and SLI, which operates from s × 10–5 up to 1 Hz (s = 1, 3). An SMBHB in the range of 2 × 108-2 × 109 M ☉ (the masses are normalized to a (1 + z) factor, the redshift lying between z = 0.2 and z = 1.5) moves from the PTA-SKA to the SLI band over a period ranging from two months to fifty years. By combining three supermassive black hole (SMBH)-host relations with three accretion prescriptions, nine astrophysical scenarios are formed. They are then related to three levels of pulsar timing residuals (50, 5, 1 ns), generating 27 cases. For residuals of 1 ns, sequential detection probability will never be better than 4.7 × 10–4 yr–2 or 3.3 × 10–6 yr–2 (per year to merger and per year of survey), according to the best and worst astrophysical scenarios, respectively; put differently this means one sequential detection every 46 or 550 years for an equivalent maximum time to merger and duration of the survey. The chances of sequential detection are further reduced by increasing values of the s parameter (they vanish for s = 10) and of the SLI noise, and by decreasing values of the remnant spin. The spread in the predictions diminishes when timing precision is improved or the SLI low-frequency cutoff is lowered. So while transit times and the SLI signal-to-noise ratio

  20. X-ray measurement of the spin-down of CalverA: A radio- and gamma-ray-quiet pulsar

    International Nuclear Information System (INIS)

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is P-dot =(3.19± 0.08)×10−15, which corresponds to spin-down luminosity E-dot =6.1×1035 erg s–1, characteristic age τc≡P/2 P-dot =2.9×105 yr, and surface dipole magnetic field strength Bs = 4.4 × 1011 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 1032 erg s–1, which is less than that of any pulsar of comparable E-dot . Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  1. Merger of a White Dwarf-Neutron Star Binary to $10^{29}$ Carat Diamonds: Origin of the Pulsar Planets

    CERN Document Server

    Margalit, Ben

    2016-01-01

    We show that the merger and tidal disruption of a C/O white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disk produced of the disrupted WD, we model its long term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disk opacity. For plausible values of the disk viscosity $\\alpha \\sim 10^{-3}-10^{-2}$ and the RIAF mass loss efficiency, we find that the disk mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon-dominated disk is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger ...

  2. Radio Polarization Observations of G319.9-0.7: A Bow-shock Nebula with an Azimuthal Magnetic Field Powered by Pulsar J1509-5850

    CERN Document Server

    Ng, C -Y; Chatterjee, S; Johnston, S

    2010-01-01

    We report radio polarization observations of G319.9-0.7 (MSC 319.9-0.7) at 3 and 6 cm obtained with the Australia Telescope Compact Array. The source shows a highly elongated morphology with the energetic pulsar J1509-5850 located at the tip. We found a flat radio spectrum of index \\alpha=-0.26 +/- 0.04 and a high degree of linear polarization. These results confirm G319.9-0.7 as a bow-shock pulsar wind nebula. The polarization maps suggest a helical magnetic field trailing the pulsar, with the symmetry axis parallel to the system's inferred direction of motion. This is the first time such a field geometry has been seen in a bow-shock nebula, and it may be the result of an alignment between the pulsar spin axis and its space velocity. Compared to other bow-shock examples, G319.9-0.7 exhibits very different properties in the field structure and surface brightness distribution, illustrating the large diversity of the population.

  3. Signs of Magnetic Accretion in the X-ray Pulsar Binary GX 301-2

    CERN Document Server

    Ikhsanov, N R

    2012-01-01

    Observations of the cyclotron resonance scattering feature in the X-ray spectrum of GX 301-2 suggest that the surface field of the neutron star is B_CRSF ~ 4 x 10^{12}G. The same value has been derived in modelling the rapid spin-up episodes in terms of the Keplerian disk accretion scenario. However, the spin-down rate observed during the spin-down trends significantly exceeds the value expected in currently used spin-evolution scenarios. This indicates that either the surface field of the star exceeds 50 x B_CRSF, or a currently used accretion scenario is incomplete. We show that the above discrepancy can be avoided if the accreting material is magnetized. The magnetic pressure in the accretion flow increases more rapidly than its ram pressure and, under certain conditions, significantly affects the accretion picture. The spin-down torque applied to the neutron star in this case is larger than that evaluated within a non-magnetized accretion scenario. We find that the observed spin evolution of the pulsar ca...

  4. Angular Momentum Transfer in the Binary X-ray Pulsar GX 1+4

    CERN Document Server

    Greenhill, J; Murray, J R

    1999-01-01

    We describe three presentations relating to the X-ray pulsar GX 1+4 at a workshop on magnetic fields and accretion at the Astrophysical Theory Centre, Australian National University on 1998, November 12-13. Optical and X-ray spectroscopy indicate that GX 1+4 is seen through a cloud of gravitationaly bound matter. We discuss an unstable negative feedback mechanism (originally proposed by Kotani et al, 1999), based on X-ray heating of this matter which controls the accretion rate when the source is in a low X-ray luminosity state. A deep minimum lasting ~6 hours occurred during observations with the RXTE satellite over 1996, July 19-21. The shape of the X-ray pulses changed remarkably from before to after the minimum. These changes may be related to the transition from neutron star spin-down to spin-up which occurred at about the same time. Smoothed particle hydrodynamic simulations of the effect of adding matter with opposite angular momentum to an existing disc, show that it is possible for a number of concen...

  5. LeRoy Apker Award: The Atmospheric Dynamics of Pulsar Companions

    Science.gov (United States)

    Jermyn, Adam

    2016-03-01

    Pulsars emit radiation over an extremely wide frequency range, from radio through gamma. Recently, systems in which this radiation significantly alters the atmospheres of low-mass pulsar companions have been discovered. These systems, ranging from ones with highly anisotropic heating to those with transient X-ray emissions, represent an exciting opportunity to investigate pulsars through the changes they induce in their companions. In this work, we present both analytic and numerical work investigating these phenomena, with a particular focus on atmospheric heat transport, transient phenomena, and the possibility of deep heating via gamma rays. We find that certain classes of binary systems may explain decadal-timescale X-ray transient phenomena, as well as the formation of so-called redback companion systems. In addition, we examine the temperature anisotropy induced by the Pulsar in its companion, and demonstrate that this may be used to infer properties of both the companion and the Pulsar wind.

  6. The LOFAR Known Pulsar Data Pipeline

    NARCIS (Netherlands)

    A. Alexov; J.W.T. Hessels; J.D. Mol; B. Stappers; J. van Leeuwen

    2010-01-01

    Abstract: Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being deve

  7. On the possible mechanism to form the radio emission spectrum of the Crab pulsar

    OpenAIRE

    Machabeli, George; Chkheidze, Nino

    2014-01-01

    In the present paper a self-consistent theory, explaining shape of the observed phase-averaged radio spectrum in the frequency range from 100MHz to 10GHz is presented. The radio waves are assumed to be generated near the light cylinder through the cyclotron resonance. The cyclotron instability provides excitement of the electron-positron plasma eigen-waves, which come in radio domain when the resonant particles are the most energetic primary beam electrons. It is widely accepted that the dist...

  8. X-ray pulsar rush in 1998

    International Nuclear Information System (INIS)

    We present recent remarkable topics about discoveries of X-ray pulsars. 1. Pulsations from two Soft Gamma-ray Repeaters: These pulsars have enormously strong magnetic field (B ∼ 1015 G), thus these are called as 'magnetar', new type of X-ray pulsars. 2. New Crab-like pulsars: These discoveries lead to suggesting universality of Crab-like pulsars. 3. An X-ray bursting millisecond pulsar: This is strong evidence for the recycle theory of generating radio millisecond pulsars. 4. X-ray pulsar rush in the SMC: This indicates the younger star formation history in the SMC. (author)

  9. Interplanetary spacecraft navigation using pulsars

    OpenAIRE

    Deng, X. P.; Hobbs, G.; You, X. P.; M. T. Li; Keith, M. J.; Shannon, R. M.; Coles, W.; Manchester, R. N.; J.H. Zheng; Yu, X. Z.; Gao, D.; Wu, X; Chen, D.

    2013-01-01

    We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journe...

  10. The Expansion and Radio Spectral Index of G21.5-0.9: Is PSR J1833-1034 the Youngest Pulsar?

    CERN Document Server

    Bietenholz, M F

    2008-01-01

    We report on new 5-GHz VLA radio observations of the pulsar-powered supernova remnant G21.5-0.9. These observations have allowed us to make a high-quality radio image of this remnant with a resolution of ~0.7". It has a filamentary structure similar to that seen in the Crab Nebula. Radio structure suggestive of the torus seen around the Crab pulsar is tentatively identified. We also compared the new image with one taken ~15 yr earlier at 1.5 GHz, both to find the expansion speed of the remnant and to make a spectral index image. Between 1991 and 2006, we find that the average expansion rate of the remnant is 0.11 +/- 0.02 %/year, corresponding, for a distance of 5 kpc, to a speed of 910 +/- 160 km/s wrt. the centre of the nebula. Assuming undecelerated expansion, this expansion speed implies that the age of G21.5-0.9 is 870 (+200,-150) yr, which makes PSR J1833-1034 one of the youngest, if not the youngest, known pulsars in the Galaxy.

  11. Radio Polarization Observations of the Snail: A Crushed Pulsar Wind Nebula in G327.1–1.1 with a Highly Ordered Magnetic Field

    Science.gov (United States)

    Ma, Y. K.; Ng, C.-Y.; Bucciantini, N.; Slane, P. O.; Gaensler, B. M.; Temim, T.

    2016-04-01

    Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the “Snail” PWN inside the supernova remnant G327.1‑1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulated PWN with a turbulence scale of about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50%–75% provides the best match to observations. This implies substantial mixing between the SN ejecta and pulsar wind material in this system.

  12. Simultaneous radio and X-ray observations of Galactic Centre low mass X-ray binaries

    OpenAIRE

    Berendsen, S.G.H.; Fender, R.; Kuulkers, E; Heise, J.; M. van der Klis(Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands)

    2000-01-01

    We have performed simultaneous X-ray and radio observations of thirteen Galactic centre low-mass X-ray binaries in 1998 April using the Wide-Field Cameras onboard BeppoSAX and the Australia Telescope Compact Array, the latter simultaneously at 4.8 and 8.64 GHz. We detect two Z sources, GX 17+2 and GX 5-1, and the unusual `hybrid' source GX 13+1. Upper limits, which are significantly deeper than previous non-detections, are placed on the radio emission from two more Z sources and seven atoll s...

  13. Discovery of a New X-ray Filled Radio Supernova Remnant Around the Pulsar Wind Nebula in 3EG J1809-2328

    OpenAIRE

    Roberts, Mallory S. E.; Brogan, Crystal L.

    2008-01-01

    We report the discovery of a partial ~2deg. diameter non-thermal radio shell coincident with Taz, the pulsar wind nebula (PWN) in the error box of the apparently variable gamma-ray source 3EG J1809-2328. We propose that this radio shell is a newly identified supernova remnant (SNR G7.5-1.7) associated with the PWN. The SNR surrounds an amorphous region of thermal X-rays detected in archival ROSAT and ASCA observations putting this system in the mixed-morphology class of supernova remnants. G7...

  14. Study of luminosity and spin-up relation in X-ray binary pulsars with long-term monitoring by MAXI/GSC and Fermi/GBM

    CERN Document Server

    Sugizaki, Mutsumi; Nakajima, Motoki; Yamaoka, Kazutaka

    2015-01-01

    We study the relation between luminosity and spin-period change in X-ray binary pulsars using long-term light curve obtained by the MAXI/GSC all-sky survey and pulse period data from the Fermi/GBM pulsar project. X-ray binaries, consisting of a highly magnetized neutron star and a stellar companion, originate X-ray emission according to the energy of the accretion matter onto the neutron star. The accretion matter also transfers the angular momentum at the Alfven radius, and then spin up the neutron star. Therefore, the X-ray luminosity and the spin-up rate are supposed to be well correlated. We analyzed the luminosity and period-change relation using the data taken by continuous monitoring of MAXI/GSC and Fermi/GBM for Be/X-ray binaries, GX 304$-$1, A 0535$+$26, GRO J1008$-$57, KS 1947$+$300, and 2S 1417$-$624, which occurred large outbursts in the last four years. We discuss the results comparing the obtained observed relation with that of the theoretical model by Ghosh \\& Lamb (1979).

  15. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    Science.gov (United States)

    Weston, Jennifer H. S.

    2016-07-01

    This dissertation uses radio observations with the Karl G. Jansky Very Large Array (VLA) to investigate the mechanisms that power and shape accreting white dwarfs (WD) and their ejecta. We test the predictions of both simple spherical and steady-state radio emission models by examining nova V1723 Aql, nova V5589 Sgr, symbiotic CH Cyg, and two small surveys of symbiotic binaries. First, we highlight classical nova V1723 Aql with three years of radio observations alongside optical and X-ray observations. We use these observations to show that multiple outflows from the system collided to create early non-thermal shocks with a brightness temperature of ≥106 K. While the late-time radio light curve is roughly consistent an expanding thermal shell of mass 2x10-4 M⊙ solar masses, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months, much like what is seen in gamma-ray producing nova V959 Mon, suggesting similar structures in the two systems. Next, we examine nova V5589 Sgr, where we find that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. We additionally find roughly 10-5 M⊙ solar masses of thermal bremsstrahlung emitting material, all at a distance of ~4 kpc. The similarities in the evolution of both V1723 Aql and V5589 Sgr to that of nova V959 Mon suggest that these systems may all have dense equatorial tori shaping faster flows at their poles. Turning our focus to symbiotic binaries, we first use our radio observations of CH Cyg to link the ejection of a collimated jet to a change of state in the accretion disk. We additionally estimate the amount of mass ejected during this period (10-7 M⊙ masses), and improve measurements of the period of jet precession (P=12013 ± 74 days). We then use our survey of eleven accretion-driven symbiotic systems to determine that the radio brightness of a symbiotic system could potentially

  16. Near-infrared observations of the Be/X-ray binary pulsar A0535+262

    Institute of Scientific and Technical Information of China (English)

    Sachindra Naik; Blesson Mathew; D. P. K. Banerjee; N. M. Ashok; Rajeev R. Jaiswal

    2012-01-01

    We present the results obtained from extensive near-infrared (IR) spectro-scopic and photometric observations of the Be/X-ray binary A0535+262/HDE 245770 at different phases of its ~ 111 d orbital period.This observation campaign is part of the monitoring program of selective Be/X-ray binary systems aimed at understanding X-ray and near-IR properties at different orbital phases,especially during the periastron passage of the neutron star.The near-IR observations presented here were carried out using the 1.2 m telescope at the Mt.Abu IR Observatory.Though the source was relatively faint for spectroscopic observations with the 1.2 m telescope,we monitored the source closely during the 2011 February-March giant X-ray outburst to primarily investigate whether any drastic changes in the near-IR JHK spectra took place at the periastron passage.Changes of such a striking nature were expected to be detectable in our spectra.Photometric observations of the Be star show a gradual and systematic fading in the JHK light curves since the onset of the X-ray outburst,which could suggest a mild evacuation/truncation of the circumstellar disk of the Be companion.Near-IR spectroscopy of the object shows that the JHK spectra are dominated by the emission lines of hydrogen Brackett and Paschen series and HeI lines at 1.0830,1.7002 and 2.0585 μm.The presence of all the hydrogen emission lines in the JHK spectra,along with the absence of any significant change in the continuum of the Be companion during X-ray quiescent and X-ray outburst phases,suggests that the near- IR line emitting regions of the disk are not significantly affected during the X-ray outburst.

  17. SXP523 = Suzaku J0102-7204 = 2XMM J010247.4-720449, a Be/X-ray binary pulsar in the SMC

    Science.gov (United States)

    Haberl, F.; Sturm, R.; Tsujimoto, M.; Wada, Q.; Ebisawa, K.; Miller, E.; Coe, M. J.; Klus, H.; Beardmore, A. P.

    2012-12-01

    After application of an attitude correction to the Suzaku observation of the supernova remnant 1E 0102.2-7219 described in ATel #4628, we derive an improved position for the X-ray pulsar Suzaku J0102-7204 of R.A. = 01:02:46.8, and Dec. = -72:04:56 (J2000, 1 sigma uncertainty of 20 arcsec). The new position is consistent with that of the Be/X-ray binary 2XMM J010247.4-720449 in the Small Magellanic Cloud seen by XMM-Newton, Swift and Chandra (ATel #3761) and most likely all detections are from the same source.

  18. Pulsar Candidates Toward Fermi Unassociated Sources

    CERN Document Server

    Frail, D A; Jagannathan, P; Intema, H T

    2016-01-01

    We report on a search for steep spectrum radio sources within the 95% confidence error ellipses of the Fermi unassociated sources from the Large Array Telescope (LAT). Using existing catalogs and the newly released GMRT all-sky survey at 150 MHz we identify compact radio sources that are bright at MHz frequencies but faint or absent at GHz frequencies. Such steep spectrum radio sources are rare and constitute a sample of pulsar candidates, selected independently of period, dispersion measure, interstellar scattering and orbital parameters. We find point-like, steep spectrum candidates toward 11 Fermi sources. Based on the gamma-ray/radio positional coincidence, the rarity of such radio sources, and the properties of the 3FGL sources themselves, we argue that many of these sources could be pulsars. They may have been missed by previous radio periodicity searches due to interstellar propagation effects or because they lie in an unusually tight binary. If this hypothesis is correct, then renewed gamma-ray and ra...

  19. Young and middle age pulsar light-curve morphology: Comparison of Fermi observations with gamma-ray and radio emission geometries

    CERN Document Server

    Pierbattista, M; Gonthier, P L; Grenier, I A

    2016-01-01

    Thanks to the huge amount of gamma-ray pulsar photons collected by the Fermi Large Area Telescope since June 2008, it is now possible to constrain gamma-ray geometrical models by comparing simulated and observed light-curve morphological characteristics. We assumed vacuum-retarded dipole pulsar magnetic field and tested simulated and observed morphological light-curve characteristics in the framework of two pole emission geometries, Polar Cap (PC), radio, and Slot Gap (SG), and Outer Gap (OG)/One Pole Caustic (OPC) emission geometries. We compared simulated and observed/estimated light-curve morphological parameters as a function of observable and non-observable pulsar parameters. The PC model gives the poorest description of the LAT pulsar light-curve morphology. The OPC best explains both the observed gamma-ray peak multiplicity and shape classes. The OPC and SG models describe the observed gamma-ray peak-separation distribution for low- and high-peak separations, respectively. This suggests that the OPC ge...

  20. ON THE FORMATION OF ECCENTRIC MILLISECOND PULSARS WITH HELIUM WHITE-DWARF COMPANIONS

    International Nuclear Information System (INIS)

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (104-105 yr) disk can result in eccentricities of e ≅ 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range

  1. On the Formation of Eccentric Millisecond Pulsars with Helium White-dwarf Companions

    Science.gov (United States)

    Antoniadis, John

    2014-12-01

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire & Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (104-105 yr) disk can result in eccentricities of e ~= 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  2. Radio detection prospects for a bulge population of millisecond pulsars as suggested by Fermi LAT observations of the inner Galaxy

    CERN Document Server

    Calore, Francesca; Donato, Fiorenza; Hessels, Jason W T; Weniger, Christoph

    2015-01-01

    Analogously to globular clusters, the dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis found support in the analysis of gamma rays from the inner Galaxy seen by the Large Area Telescope (LAT) aboard the Fermi satellite, which revealed a possible excess of diffuse GeV photons in the inner 15 deg about the Galactic center (Fermi GeV excess). The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution that strongly peaks towards the Galactic center. In order to fully establish the MSP interpretation, it is essential to find corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsation from individual bulge MSPs. Based on globular cluster observations and the gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previ...

  3. Fast radio bursts and their possible "afterglows" as Kerr-Newman black hole binaries

    CERN Document Server

    Liu, Tong; Liu, Mo-Lin; Li, Ang

    2016-01-01

    Fast radio bursts (FRBs) are radio transients lasting only about a few milliseconds. They seem to occur at cosmological distances. We propose that these events can be originated in the collapse of the magnetosphere of Kerr-Newman black holes (KNBHs). We show that the closed orbits of charged particles in the magnetosphere of these objects are unstable. After examining their dependences on the mass, charge, and angular momentum of the particle and the spin of the KNBH, we conclude that the resulting timescale and radiation mechanism fit well with the extant observations of FRBs. Furthermore, we argue that the merger of a KNBH binary is one of the plausible central engines for potential gamma-ray or radio "afterglow" following a certain FRBs, and can also account for gravitational wave (GW) events like GW 150914. Our model leads to predictions that can be tested by combined multi-wavelength electromagnetic and GW observations.

  4. Radio Flares of Compact Binary Mergers: the Effect of Non-Trivial Outflow Geometry

    CERN Document Server

    Margalit, Ben

    2015-01-01

    The next generation gravitational waves (GW) detectors are most sensitive to GW emitted by compact (neutron star/black hole) binary mergers. If one of those is a neutron star the merger will also emit electromagnetic radiation via three possible channels: Gamma-ray bursts and their (possibly orphan) afterglows (Eichler et al. 1989), Li-Paczynski Macronovae (Li & Paczynski 1998) and radio flares (Nakar & Piran 2011). This accompanying electromagnetic radiation is vitally important in confirming the GW detections (Kochanek & Piran 1993). It could also reveal a wealth of information regarding the merger and will open a window towards multi-messenger astronomy. Identifying and characterizing these counterparts is therefore of utmost importance. In this work we explore late time radio flares emitted by the dynamically ejected outflows. We build upon previous work and consider the effect of the outflow's non-trivial geometry. Using an approximate method we estimate the radio light-curves for several eje...

  5. Application of the Ghosh & Lamb Relation to the Spin-up/down Behavior in the X-ray Binary Pulsar 4U 1626-67

    CERN Document Server

    Takagi, Toshihiro; Sugizaki, Mutsumi; Makishima, Kazuo; Morii, Mikio

    2016-01-01

    We analyzed continuous MAXI/GSC data of the X-ray binary pulsar 4U 1626-67 from 2009 October to 2013 September, and determined the pulse period and the pulse-period derivative for every 60-d interval by the epoch folding method. The obtained periods are consistent with those provided by the Fermi/GBM pulsar project. In all the 60-d intervals, the pulsar was observed to spin up, with the spin-up rate positively correlated with the 2-20 keV flux. We applied the accretion torque model proposed by Ghosh & Lamb (1979, ApJ, 234, 296) to the MAXI/GSC data, as well as the past data including both spin-up and spin-down phases. The Ghosh & Lamb relation was confirmed to successfully explain the observed relation between the spin-up/down rate and the flux. By comparing the model-predicted luminosity with the observed flux, the source distance was constrained as 5-13 kpc, which is consistent with that by Chakrabarty (1998, ApJ, 492, 342). Conversely, if the source distance is assumed, the data can constrain the m...

  6. High-fidelity radio astronomical polarimetry using a millisecond pulsar as a polarized reference source

    CERN Document Server

    van Straten, W

    2012-01-01

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long time scales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semi-major axis, the precession of periastron, and the Shapiro delay; it al...

  7. XMM-Newton observations of the Small Magellanic Cloud: Be/X-ray binary pulsars active between October 2006 and June 2007

    Science.gov (United States)

    Haberl, F.; Eger, P.; Pietsch, W.

    2008-10-01

    Aims: We analysed eight XMM-Newton observations toward the Small Magellanic Cloud (SMC), performed between October 2006 and June 2007, to investigate high mass X-ray binary systems. Methods: We produced images from the European Photon Imaging Cameras (EPIC) and extracted X-ray spectra and light curves in different energy bands from sources that yielded a sufficiently high number of counts for a detailed temporal and spectral analysis. To search for periodicity we applied Fourier transformations and folding techniques and determined pulse periods using a Bayesian approach. To identify optical counterparts we produced X-ray source lists for each observation using maximum likelihood source detection techniques and correlated them with optical catalogues. The correlations were also used for astrometric boresight corrections of the X-ray source positions. Results: We found new X-ray binary pulsars with periods of 202 s (XMMU J005929.0-723703), 342 s (XMMU J005403.8-722632), 645 s (XMMU J005535.2-722906) and 325 s (XMMU J005252.1-721715), in the latter case confirming the independent discovery in Chandra data. In addition we detected sixteen known Be/X-ray binary pulsars and six ROSAT-classified candidate high mass X-ray binaries. From one of the candidates, RX J0058.2-7231, we discovered X-ray pulsations with a period of 291 s which makes it the likely counterpart of XTE J0051-727. From the known pulsars, we revise the pulse period of CXOU J010206.6-714115 to 967 s, and we detected the 18.37 s pulsar XTE J0055-727 (=XMM J004911.4-724939) in outburst, which allowed us to localise the source. The pulse profiles of the X-ray pulsars show a wide variety of shapes from smooth to highly structured patterns and differing energy dependence. For all the candidate high mass X-ray binaries, optical counterparts can be identified with magnitudes and colours consistent with Be stars. Twenty of the Be/X-ray binaries were detected with X-ray luminosities in the range 1.5 × 1035-5.5

  8. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    Science.gov (United States)

    Kaspi, V. M.

    2008-03-01

    ever wanted to know about pulsars but were afraid to ask. Chapter 1 begins a brief and interesting account of the discovery of pulsars, followed by an overview of the rotation-powered and accretion-powered populations. The following four chapters are fairly detailed and reasonably quantitative descriptions of neutron star interiors. This is no easy feat, given that a description of the physics of neutron stars demands a deep understanding of all major physical forces, and must include general relativity as well as detailed particle physics. The historical notes at the beginning of Chapter 2 are particularly fascinating, recounting the path to today's understanding of neutron stars in very interesting detail. Chapter 7 presents rotation-powered pulsar radio properties, and a nice description of pulsar timing, including relativistic and non-relativistic binaries and GR tests. The remaining chapters tackle a variety of topics including binary evolution, superfluidity, accretion-powered pulsar properties, magnetospheres and emission mechanisms, magnetic fields, spin evolution and strange stars. The coverage is somewhat uneven, with the strange star chapter, for example, an obvious afterthought. The utility of an encyclopedia lies in its breadth and in how up-to-date it is. Although admirable in its intentions, the Ghosh book does omit some major pulsar topics. This book leaves the impression that rotation-powered pulsars produce only radio emission; hardly (if at all) mentioned is the vast literature on their infrared, optical, and even more importantly, x-ray and gamma-ray emission, the latter being far more relevant to the pulsar 'machine' than the energetically puny radio output. Also absent are pulsar winds; this is particularly puzzling given both the lovely wind nebula that graces the book's cover, and the central role the wind plays as primary sink of the rotation power. One of the most actively pursued topics in pulsar astrophysics in the past decade, magnetars

  9. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W.; Huang, H.H. (eds.)

    2007-07-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  10. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    International Nuclear Information System (INIS)

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  11. Searches for Pulsars at the Center of the Galaxy

    Science.gov (United States)

    Majid, Walid

    2015-08-01

    Pulsars are highly magnetized, rapidly rotating neutron stars that emit a beam of electromagnetic radiation that could be detected at Earth, if the emission beam is pointing toward the Earth, analogous to the way a lighthouse can be seen when the light is pointed in the direction of the observer. Pulsars within the central parsec of our Galaxy is expected to make excellent probes of not only the environment of the supermassive black hole at the center of the galaxy, but also in the case of pulsar/black hole binary systems expected in this region, of their own rich environment dominated by relativistic gravity effects. In this presentation I will give an overview of why it is important to search for pulsars in the center of the galaxy, and a summary of previous and ongoing efforts to survey this region with radio telescopes. I will describe the difficulties encountered with current surveys and prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  12. Recycling Pulsars: spins, masses and ages

    CERN Document Server

    Tauris, T M; Langer, N

    2012-01-01

    Although the first millisecond pulsars (MSPs) were discovered 30 years ago we still do not understand all details of their formation process. Here, we present new results from Tauris, Langer & Kramer (2012) on the recycling scenario leading to radio MSPs with helium or carbon-oxygen white dwarf companions via evolution of low- and intermediate mass X-ray binaries (LMXBs, IMXBs). We discuss the location of the spin-up line in the (P,Pdot)-diagram and estimate the amount of accreted mass needed to obtain a given spin period and compare with observations. Finally, we constrain the true ages of observed recycled pulsars via calculated isochrones in the (P,Pdot)-diagram.

  13. Pulsar discoveries by volunteer distributed computing and the strongest continuous gravitational wave signal

    Science.gov (United States)

    Knispel, Benjamin

    2011-07-01

    Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from

  14. A COMPACT RADIO COUNTERPART TO THE ENERGETIC X-RAY PULSAR ASSOCIATED WITH THE TEV GAMMA-RAY SOURCE J1813-178

    Directory of Open Access Journals (Sweden)

    Sergio Dzib

    2010-01-01

    Full Text Available Reportamos la detección de una fuente de radio compacta y variable coinci- dente con CXOU J181335.1{174957, el pulsar de rayos-X localizado cerca del cen- tro de la remanente de supernova joven G12.82{0.02, la cual traslapa con la fuente TeV compacta HESS J1813{178. La fuente de radio compacta, que llamamos VLA J181335.1{174957, fue detectada en observaciones hechas a 4.86 GHz con el VLA en 2006. Nuevas observaciones hechas con el VLA en 2009 no detectan la fuente a un nivel 1.9+-0.7 veces (2.8o más bajo que el de 2006. Sugerimos que VLA J181335.1{ 174957 podría estar relacionada con alguna de las recientemente detectadas clases de pulsares de radio variables, pero no podemos alcanzar una conclusión más sólida.

  15. Radio Detection Prospects for a Bulge Population of Millisecond Pulsars as Suggested by Fermi-LAT Observations of the Inner Galaxy

    Science.gov (United States)

    Calore, F.; Di Mauro, M.; Donato, F.; Hessels, J. W. T.; Weniger, C.

    2016-08-01

    The dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis has found support in an analysis of gamma-rays detected using the Large Area Telescope onboard the Fermi satellite, which revealed an excess of diffuse GeV photons in the inner 15 deg about the Galactic center. The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution strongly peaked toward the Galactic center. In order to fully establish the MSP interpretation, it is essential to find corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsations from individual bulge MSPs. Based on globular cluster observations and gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previous pulsar surveys failed to identify this population, we demonstrate that upcoming large-area surveys of this region should lead to the detection of dozens of bulge MSPs. Additionally, we show that deep targeted searches of unassociated Fermi sources should be able to detect the first few MSPs in the bulge. The prospects for these deep searches are enhanced by a tentative gamma-ray/radio correlation that we infer from high-latitude gamma-ray MSPs. Such detections would constitute the first clear discoveries of field MSPs in the Galactic bulge, with far-reaching implications for gamma-ray observations, the formation history of the central Milky Way, and strategy optimization for future deep radio pulsar surveys.

  16. Origin of pulsar velocities

    International Nuclear Information System (INIS)

    Ever since pulsars were found to have significant proper motions, the origin of the velocities has been an intriguing question. The more recent finding that the velocities display a significant correlation with the derived magnetic moments of the pulsars has made the origin of the velocities appear even more mysterious. Arguments are given to show that the above correlation is not causal, but accidental. Pulsar velocities are determined by their binary histories and not governed in any way by their magnetic fields. 10 references, 4 figures

  17. A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbet, R; Cutini, S; Dermer, C D; Desvignes, G; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hobbs, G; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Manchester, R N; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; McLaughlin, M A; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ransom, S M; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Starck, J L; Striani, E; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Watters, K; Webb, N; Weltevrede, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface. PMID:19574349

  18. A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Pulsars are born with sub-second spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface. (authors)

  19. Formation of a Partially Screened Inner Acceleration Region in Radio Pulsars: Drifting Subpulses and Thermal X-Ray Emission from Polar Cap Surface

    Science.gov (United States)

    Gil, Janusz; Melikidze, George; Zhang, Bing

    2006-10-01

    The subpulse drifting phenomenon in pulsar radio emission is considered within the partially screened inner gap model, in which the sub-Goldreich-Julian thermionic flow of iron ions or electrons coexists with the spark-associated electron-positron plasma flow. We derive a simple formula that relates the thermal X-ray luminosity LX from the spark-heated polar cap and the EXB subpulse periodicity P̂3 (polar cap carousel time). For PSRs B0943+10 and B1133+16, the only two pulsars for which both P̂3 and LX are known observationally, this formula holds well. For a few other pulsars, for which only one quantity is measured observationally, we predict the value of the other quantity and propose relevant observations that can confirm or discard the model. Then we further study the detailed physical conditions that allow such partially screened inner gap to form. By means of the condition Tc/Ts>1 (where Tc is the critical temperature above which the surface delivers a thermal flow to adequately supply the corotation charge density, and Ts is the actual surface temperature), it is found that a partially screened gap (PSG) can be formed given that the near surface magnetic fields are very strong and curved. We consider both curvature radiation (CR) and resonant inverse Compton scattering (ICS) to produce seed photons for pair production, and find that the former is the main agency to produce gamma rays to discharge the PSG.

  20. On the puzzling high-energy pulsations of the energetic radio-quiet γ-ray pulsar J1813–1246

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Pizzocaro, D.; De Luca, A.; Caraveo, P.; Salvetti, D. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Harding, A. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Saz Parkinson, P. M. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Acero, F., E-mail: marelli@lambrate.inaf.it [Laboratoire AIM, CEA-IRFU/CNRS/Universit Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France)

    2014-11-10

    We have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813–1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available Fermi ephemeris to five years. We found two glitches. The γ-ray light curve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the γ-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and γ-ray emission of J1813. The unique X-ray and γ-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.

  1. Identification of HESS J1303-631 as a Pulsar Wind Nebula through gamma-ray, X-ray and radio observations

    CERN Document Server

    :,; Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker, J; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Cologna, G; Conrad, J; Couturier, C; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Gast, H; Gérard, L; Giebels, B; Glicenstein, J F; Glück, B; Göring, D; Grondin, M -H; Häffner, S; Hague, J D; Hahn, J; Hampf, D; Harris, J; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Krayzel, F; Laffon, H; Lamanna, G; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Menzler, U; Moderski, R; Mohamed, M; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2012-01-01

    The previously unidentified very high-energy (VHE; E > 100 GeV) \\gamma-ray source HESS J1303-631, discovered in 2004, is re-examined including new data from the H.E.S.S. Cherenkov telescope array. Archival data from the XMM-Newton X-ray satellite and from the PMN radio survey are also examined. Detailed morphological and spectral studies of VHE \\gamma-ray emission as well as of the XMM-Newton X-ray data are performed. Significant energy-dependent morphology of the \\gamma-ray source is detected with high-energy emission (E > 10 TeV) positionally coincident with the pulsar PSR J1301-6305 and lower energy emission (E <2 TeV) extending \\sim 0.4^{\\circ} to the South-East of the pulsar. The spectrum of the VHE source can be described with a power-law with an exponential cut-off N_{0} = (5.6 \\pm 0.5) X 10^{-12} TeV^-1 cm^-2 s^-1, \\Gamma = 1.5 \\pm 0.2) and E_{\\rm cut} = (7.7 \\pm 2.2) TeV. The PWN is also detected in X-rays, extending \\sim 2-3' from the pulsar position towards the center of the \\gamma-ray emission ...

  2. Binary Stars "Flare" With Predictable Cycles, Analysis of Radio Observations Reveals

    Science.gov (United States)

    2002-06-01

    Astronomers have completed a 5-year campaign to monitor continuously radio flares from two groups of binary star systems. This survey is of special interest because it provides evidence that certain binary star systems have predictable activity cycles like our Sun. The survey, which ran from January 1995 to October 2000, was conducted with the National Science Foundation's (NSF) Green Bank Interferometer. The report was presented at the American Astronomical Society (AAS) meeting in Albuquerque, New Mexico, by Mercedes Richards of the University of Virginia, and her collaborators Elizabeth Waltman of the Naval Research Laboratory, and Frank Ghigo of the National Radio Astronomy Observatory (NRAO). "This long-term survey was critical to our understanding of the short- and long-term magnetic cycles of these intriguing star systems," said Richards. The survey focused on the binary star systems Beta Persei and V711 Tauri -- both are about 95 light-years from Earth. Beta Persei is the prototype of the "Algol" class of interacting binary stars. An Algol system contains a hot, blue, main sequence star, along with a cool, orange/red star that is more active than our Sun. V711 Tauri is an "RS Canum Venaticorum" binary, which contains two cool stars that behave like our Sun. "Our survey was the longest-running continuous radio flare survey of Algol or RS Canum Venaticorum binary star systems," said Richards. A flare is an enormous explosion on the surface of a star, which is accompanied by a release of magnetic energy. Flares can be detected over the full range of wavelengths from gamma rays to the radio. It is estimated that the energy release in a flare on the Sun is equivalent to a billion megatons of TNT. The strength of the magnetic field and the amount of activity it displays, like sunspots and flares, are directly related to the rotation or "spin" of the star. In Beta Persei and V711 Tauri, the cool star spins once every 3 days, compared to once every month in the

  3. A state change in the low-mass X-ray binary XSS J12270-4859

    CERN Document Server

    Bassa, C G; Hessels, J W T; Keane, E F; Monard, B; Mahony, E K; Bogdanov, S; Corbel, S; Edwards, P G; Archibald, A M; Janssen, G H; Stappers, B W; Tendulkar, S

    2014-01-01

    Millisecond radio pulsars acquire their rapid rotation rates through mass and angular momentum transfer in a low-mass X-ray binary system. Recent studies of PSR J1824-2452I and PSR J1023+0038 have observationally demonstrated this link, and they have also shown that such systems can repeatedly transition back-and-forth between the radio millisecond pulsar and low-mass X-ray binary states. This also suggests that a fraction of such systems are not newly born radio millisecond pulsars but are rather suspended in a back-and-forth state switching phase, perhaps for giga-years. XSS J12270-4859 has been previously suggested to be a low-mass X-ray binary, and until recently the only such system to be seen at MeV-GeV energies. We present radio, optical and X-ray observations that offer compelling evidence that XSS J12270-4859 is a low-mass X-ray binary which transitioned to a radio millisecond pulsar state between 2012 November 14 and 2012 December 21. Though radio pulsations remain to be detected, we use optical and...

  4. Suzaku view of the Be/X-ray binary pulsar GX 304-1 during Type I X-ray outbursts

    Science.gov (United States)

    Jaisawal, Gaurava K.; Naik, Sachindra; Epili, Prahlad

    2016-04-01

    We report the timing and spectral properties of the Be/X-ray binary pulsar GX 304-1 using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ˜275 s were clearly detected in the light curves from both observations. Pulse profiles were found to be strongly energy-dependent. During the 2010 observation, the prominent dips seen in soft X-ray (≤10 keV) pulse profiles were found to be absent at higher energies. However, during the 2012 observation, the pulse profiles were complex as a result of the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies (>35 keV). A phase shift of ˜0.3 was detected while comparing the phase of the main dip in the pulse profiles below and above ˜35 keV. The broad-band energy spectrum of the pulsar was well described by a partially absorbed negative and positive power law with exponential cut-off (NPEX) model with 6.4-keV iron line and a cyclotron absorption feature. The energy of the cyclotron absorption line was found to be ˜53 and 50 keV for the 2010 and 2012 observations, respectively, indicating a marginal positive dependence on source luminosity. Based on the results obtained from phase-resolved spectroscopy, the absorption dips in the pulse profiles can be interpreted as due to the presence of additional matter at same phases. Observed positive correlation between the cyclotron line energy and luminosity, and the significant pulse-phase variation of cyclotron parameters are discussed from the perspective of theoretical models on the cyclotron absorption line in X-ray pulsars.

  5. Application of the Ghosh & Lamb relation to the spin-up/down behavior in the X-ray binary pulsar 4U 1626-67

    Science.gov (United States)

    Takagi, Toshihiro; Mihara, Tatehiro; Sugizaki, Mutsumi; Makishima, Kazuo; Morii, Mikio

    2016-06-01

    We analyzed continuous Monitor of All-sky X-ray Image/Gas Slit Camera (MAXI/GSC) data of the X-ray binary pulsar 4U 1626-67 from 2009 October to 2013 September, and determined the pulse period and the pulse-period derivative for every 60-d interval by the epoch folding method. The obtained periods are consistent with those provided by the Fermi/Gamma-ray Burst Monitor pulsar project. In all the 60-d intervals, the pulsar was observed to spin up, with the spin-up rate positively correlated with the 2-20 keV flux. We applied the accretion torque model proposed by Ghosh and Lamb (1979, ApJ, 234, 296) to the MAXI/GSC data, as well as the past data including both spin-up and spin-down phases. The "Ghosh & Lamb" relation was confirmed to successfully explain the observed relation between the spin-up/down rate and the flux. By comparing the model-predicted luminosity with the observed flux, the source distance was constrained as 5-13 kpc, which is consistent with that found by Chakrabarty (1998, ApJ, 492, 342). Conversely, if the source distance is assumed, the data can constrain the mass and radius of the neutron star, because the Ghosh & Lamb model depends on these parameters. We attempted this idea, and found that an assumed distance of, e.g., 10 kpc gives a mass in the range of 1.81-1.90 solar mass, and a radius of 11.4-11.5 km, although these results are still subject to considerable systematic uncertainties, other than distance.

  6. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119–6127 AND SUPERNOVA REMNANT G292.2–0.5

    International Nuclear Information System (INIS)

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119–6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 × 1013 G, and its associated supernova remnant G292.2–0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 ± 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2–0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  7. Identification of the High-Energy Gamma-Ray Source 3FGL J1544.6-1125 as a Transitional Millisecond Pulsar Binary in an Accreting State

    CERN Document Server

    Bogdanov, Slavko

    2015-01-01

    We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4-112820, the most probable counterpart of the unassociated Fermi LAT source 3FGL J1544.6-1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-ray data exhibit large-amplitude flux variations in the form of fast switching (within ~10 s) between two distinct flux levels that differ by a factor of $\\approx$10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar binaries PSR J1023+0038 and XSS J12270-4859, which are also associated with $\\gamma$-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4-112820 and 3FGL J1544.6-1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto a millisecond pulsar and the $\\gamma$-rays originating from an accretion-driven outflow. 1RXS J154439.4-112820 is only the fourth $\\gamma$-ray emi...

  8. A NuSTAR Observation of the Gamma-Ray-Emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4-112820

    CERN Document Server

    Bogdanov, Slavko

    2015-01-01

    I present a 40 kilosecond Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4-112820, which is associated with the high-energy gamma-ray source 3FGL J1544.6--1125. The system is detected up to ~30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4-112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270-4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosities. I also examine the long-term accretion history of 1RXS J154439.4-112820 based on archival optical, ultraviolet, X-ray, and $\\gamma$-ray light curves covering the past $\\sim$decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that ...

  9. Simultaneous Observations of Giant Pulses from the Crab Pulsar, with the Murchison Widefield Array and Parkes Radio Telescope: Implications for the Giant Pulse Emission Mechanism

    CERN Document Server

    Oronsaye, S I; Bhat, N D R; Tremblay, S E; McSweeney, S J; Tingay, S J; van Straten, W; Jameson, A; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5$\\sigma$ and 6.5$\\sigma$ respectively. We detected 51$\\%$ of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of $-3.6>\\alpha> -4.9$ ($S_{\\rm \

  10. Astrophysical Mechanisms for Pulsar Spindown

    OpenAIRE

    Addison, Eric

    2011-01-01

    Pulsars are astrophysical sources of pulsed electromagnetic radiation. The pulses have a variety of shapes in the time-domain, and the pulse energy generally peaks in the radio spectrum. The accepted models theorize that pulsars are rapidly rotating neutron stars with strong dipolar magnetic fields. Current models predict that rotational kinetic energy is extracted from the pulsar in the form of electromagnetic and gravitational radiation, causing it to slowly lose rotational speed, or “spin ...

  11. The VLT-FLAMES Tarantula Survey: The fastest rotating O-type star and shortest period LMC pulsar - remnants of a supernova disrupted binary?

    CERN Document Server

    Dufton, P L; Evans, C J; Brott, I; Cantiello, M; de Koter, A; de Mink, S E; Fraser, M; Hénault-Brunet, V; Howarth, I D; Langer, N; Lennon, D J; Markova, N; Sana, H; Taylor, W D

    2011-01-01

    We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500\\kms\\ and probably as large as 600\\kms; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40\\kms\\ from the mean for 30 Doradus, suggesting that it is a runaway. VFTS102 lies 12 pcs from the X-ray pulsar PSR J0537-6910 in the tail of its X-ray diffuse emission. We suggest that these objects originated from a binary system with the rotational and radial velocities of VFTS102 resulting from mass transfer from the progenitor of PSR J0537-691 and the supernova explosion respectively.

  12. THE VLT-FLAMES TARANTULA SURVEY: THE FASTEST ROTATING O-TYPE STAR AND SHORTEST PERIOD LMC PULSAR-REMNANTS OF A SUPERNOVA DISRUPTED BINARY?

    Energy Technology Data Exchange (ETDEWEB)

    Dufton, P. L.; Dunstall, P. R.; Fraser, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Evans, C. J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Brott, I. [University of Vienna, Department of Astronomy, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Cantiello, M.; Langer, N. [Argelander Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, 53121 Bonn (Germany); De Koter, A.; Sana, H. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); De Mink, S. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Henault-Brunet, V.; Taylor, W. D. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lennon, D. J. [ESA, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Markova, N., E-mail: p.dufton@qub.ac.uk [Institute of Astronomy with NAO, Bulgarian Academy of Sciences, P.O. Box 136, 4700 Smoljan (Bulgaria)

    2011-12-10

    We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s{sup -1} and probably as large as 600 km s{sup -1}; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 km s{sup -1} from the mean for 30 Doradus, suggesting that it is a runaway. VFTS102 lies 12 pc from the X-ray pulsar PSR J0537-6910 in the tail of its X-ray diffuse emission. We suggest that these objects originated from a binary system with the rotational and radial velocities of VFTS102 resulting from mass transfer from the progenitor of PSR J0537-691 and the supernova explosion, respectively.

  13. Pulsar wind model for the spin-down behavior of intermittent pulsars

    OpenAIRE

    Li, L.; Tong, H; Yan, W. M.; Yuan, J. P.; Xu, R. X.; Wang, N

    2013-01-01

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rate in the on state (radio-loud) than in the off state (radio-quiet). This gives the evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841-0500, and PSR J1832+0029), their magnetic field and incl...

  14. Pulsar population synthesis using palfa detections and pulsar search collaboratory discoveries including a wide DNS system and a nearby MSP

    Science.gov (United States)

    Swiggum, Joseph Karl

    Using the ensemble of detections from pulsar surveys, we can learn about the sizes and characteristics of underlying populations. In this thesis, I analyze results from the Pulsar Arecibo L-band Feed Array (PALFA) precursor and Green Bank Telescope 350 MHz Drift Scan surveys; I examine survey sensitivity to see how detections can inform pulsar population models, I look at new ways of including young scientists -- high school students -- in the discovery process and I present timing solutions for students' discoveries (including a nearby millisecond pulsar and a pulsar in a wide-orbit double neutron star system). The PALFA survey is on-going and uses the ALFA 7-beam receiver at 1400 MHz to search both inner and outer Galactic sectors visible from Arecibo (32° ?£? 77° and 168° ?£? 214°) close to the Galactic plane (|b| ? 5°) for pulsars. The PALFA precursor survey observed a subset of this region, (|b| ? 1°) and detected 45 pulsars, including one known millisecond pulsar (MSP) and 11 previously unknown, long-period (normal) pulsars. I assess the sensitivity of the PALFA precursor survey and use the number of normal pulsar and MSP detections to infer the size of each underlying Galactic population. Based on 44 normal pulsar detections and one MSP, we constrain each population size to 107,000+36,000-25,000 and 15,000 +85,000-6,000 respectively with 95% confidence. Based on these constraints, we predict yields for the full PALFA survey and find a deficiency in normal pulsar detections, possibly due to radio frequency interference and/or scintillation, neither of which are currently accounted for in population simulations. The GBT 350 MHz Drift Scan survey collected data in the summer of 2007 while the GBT was stationary, undergoing track replacement. Results discussed here come from ~20% of the survey data, which were processed and donated to the Pulsar Search Collaboratory (PSC). The PSC is a joint outreach program between WVU and NRAO, involving high school

  15. Understanding the residual patterns of timing solutions of radio pulsars with a model of magnetic field oscillation

    Science.gov (United States)

    Gao, Xu-Dong; Zhang, Shuang-Nan; Yi, Shu-Xu; Xie, Yi; Fu, Jian-Ning

    2016-06-01

    We explain some phenomena existing generally in the timing residuals: amplitude and sign of the second derivative of a pulsar's spin-frequency (ddot{ν }), some sophisticated residual patterns, which also change with the time span of data segments. The sample is taken from Hobbs et al., in which the pulsar's spin-frequency and its first derivative have been subtracted from the timing solution fitting. We first classify the timing residual patterns into different types based on the sign of ddot{ν }. Then we use the magnetic field oscillation model developed in our group to fit successfully the different kinds of timing residuals with the Markov Chain Monte Carlo method. Finally, we simulate the spin evolution over 20 years for a pulsar with typical parameters and analyse the data with the conventional timing solution fitting. By choosing different segments of the simulated data, we find that most of the observed residual patterns can be reproduced successfully. This is the first time that the observed residual patterns are fitted by a model and reproduced by simulations with very few parameters. From the distribution of the different residual patterns in the P-dot{P} diagram, we argue that (1) a single magnetic field oscillation mode exists commonly in all pulsars throughout their lifetimes; (2) there may be a transition period over the lifetimes of pulsars, in which multiple magnetic field oscillation modes exist.

  16. Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    CERN Document Server

    Breton, R P; Roberts, M S E; Hessels, J W T; Camilo, F; McLaughlin, M A; Ransom, S M; Ray, P S; Stairs, I H

    2013-01-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified gamma-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modelling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irra...

  17. Recycled Pulsars: Spins, Masses and Ages

    CERN Document Server

    Tauris, Thomas M

    2016-01-01

    Recycled pulsars are mainly characterized by their spin periods, B-fields and masses. All these quantities are affected by previous interactions with a companion star in a binary system. Therefore, we can use these quantities as fossil records and learn about binary evolution. Here, I briefly review the distribution of these observed quantities and summarize our current understanding of the pulsar recycling process.

  18. Turn-over in pulsar spectra above 1 GHz

    OpenAIRE

    Kijak, J.; Gupta, Y; Krzeszowski, K.

    2007-01-01

    We present the first direct evidence for turn-over in pulsar radio spectra at high frequencies. Two pulsars are now shown to have a turn-over frequency > 1GHz. We also find some evidence that the peak frequency of turn-over in pulsar spectra appears to depend on dispersion measure and pulsar age.

  19. Wind-wind collision in the Carinae binary system II: Constrains to the binary orbital parameters from radio emission near periastron passage

    OpenAIRE

    Abraham, Z.; Falceta-Goncalves, D.; Dominici, T. P.; A. Caproni; Jatenco-Pereira, V.

    2005-01-01

    In this paper we use the 7 mm and 1.3 mm light curves obtained during the 2003.5 low excitation phase of the eta Carinae system to constrain the possible parameters of the binary orbit. To do that we assumed that the mm wave emission is produced in a dense disk surrounding the binary system; during the low excitation phase, which occurs close to periastron, the number of ionizing photons decreases, producing the dip in the radio emission. On the other hand, due to the large eccentricity, the ...

  20. The Pulsar Search Collaboratory

    CERN Document Server

    Rosen, Rachel; McLaughlin, Maura A; Lynch, Ryan; Kondratiev, Vlad I; Boyles, Jason R; Wilson, M Terry; Lorimer, Duncan R; Ransom, Scott; 10.3847/AER2010004

    2010-01-01

    The Pulsar Search Collaboratory [PSC, NSF #0737641] is a joint project between the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU) designed to interest high school students in science, technology, engineering, and mathematics [STEM] related career paths by helping them to conduct authentic scientific research. The 3- year PSC program, which began in summer 2008, teaches students to analyze astronomical radio data acquired with the 100-m Robert C. Byrd Green Bank Telescope for the purpose of discovering new pulsars. We present the results of the first complete year of the PSC, which includes two astronomical discoveries.

  1. Tests of general relativity from timing the double pulsar.

    Science.gov (United States)

    Kramer, M; Stairs, I H; Manchester, R N; McLaughlin, M A; Lyne, A G; Ferdman, R D; Burgay, M; Lorimer, D R; Possenti, A; D'Amico, N; Sarkissian, J M; Hobbs, G B; Reynolds, J E; Freire, P C C; Camilo, F

    2006-10-01

    The double pulsar system PSR J0737-3039A/B is unique in that both neutron stars are detectable as radio pulsars. They are also known to have much higher mean orbital velocities and accelerations than those of other binary pulsars. The system is therefore a good candidate for testing Einstein's theory of general relativity and alternative theories of gravity in the strong-field regime. We report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. These tests use the theory-independent mass ratio of the two stars. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the "post-Keplerian" parameter s agrees with the value predicted by general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the system's center of mass is extremely small. Combined with the system's location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current solar system tests. It also implies that the second-born pulsar may not have formed through the core collapse of a helium star, as is usually assumed. PMID:16973838

  2. Regimes of Pulsar Pair Formation and Particle Energetics

    CERN Document Server

    Harding, A K; Muslimov, A G; Harding, Alice K.; Zhang, Alexander G. Muslimov & Bing

    2002-01-01

    We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond pulsar population. We also find that two-ph...

  3. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane;

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...

  4. Pulsar searching and timing with the Parkes telescope

    Science.gov (United States)

    Ng, C. W. Y.

    2014-11-01

    Pulsars are highly magnetised, rapidly rotating neutron stars that radiate a beam of coherent radio emission from their magnetic poles. An introduction to the pulsar phenomenology is presented in Chapter 1 of this thesis. The extreme conditions found in and around such compact objects make pulsars fantastic natural laboratories, as their strong gravitational fields provide exclusive insights to a rich variety of fundamental physics and astronomy. The discovery of pulsars is therefore a gateway to new science. An overview of the standard pulsar searching technique is described in Chapter 2, as well as a discussion on notable pulsar searching efforts undertaken thus far with various telescopes. The High Time Resolution Universe (HTRU) Pulsar Survey conducted with the 64-m Parkes radio telescope in Australia forms the bulk of this PhD. In particular, the author has led the search effort of the HTRU low-latitude Galactic plane project part which is introduced in Chapter 3. We discuss the computational challenges arising from the processing of the petabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including the potential pulsar-black hole binaries. We show that under a linear acceleration approximation, a ratio of ~0.1 of data length over orbital period results in the highest effectiveness for this search algorithm. Chapter 4 presents the initial results from the HTRU low-latitude Galactic plane survey. From the 37 per cent of data processed thus far, we have re-detected 348 previously known pulsars and discovered a further 47 pulsars. Two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar (MSP) with a heavy white dwarf companion while its short spin period of 5 ms indicates

  5. Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC

    CERN Document Server

    Vasilopoulos, G; Delvaux, C; Sturm, R; Udalski, A

    2016-01-01

    We report on the results of a $\\sim$40 d multi-wavelength monitoring of the Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the system was monitored in the X-rays using the Swift telescope and in the optical with multiple instruments. When the X-ray luminosity exceeded $10^{36}$ erg/s we triggered an XMM-Newton ToO observation. Timing analysis of the photon events collected during the XMM-Newton observation reveals coherent X-ray pulsations with a period of 38.551(3) s (1 {\\sigma}), making it the 17$^{th}$ known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray spectrum is fitted best with a model composed of an absorbed power law ($\\Gamma =0.63$) plus a high-temperature black-body (kT $\\sim$ 2 keV) component. By analysing $\\sim$12 yr of available OGLE optical data we derived a 30.776(5) d optical period, confirming the previously reported X-ray period of the system as its orbital period. During our X-ray monitoring the system showed limited optical variability wh...

  6. Gamma-ray observations of the Be/pulsar binary 1A 0535+262 during a giant X-ray outburst

    CERN Document Server

    Acciari, V A; Araya, M; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Collins-Hughes, E; Cui, W; Dickherber, R; Duke, C; Falcone, A; Finley, J P; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hughes, G; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Kertzman, M; Krawczynski, H; Krennrich, F; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Park, N; Perkins, J S; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Saxon, D B; Sembroski, G H; Senturk, G Demet; Smith, A W; Tešić, G; Theiling, M; Thibadeau, S; Varlotta, A; Vincent, S; Vivier, M; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Weng, S; Williams, D A; Wood, M; Zitzer, B

    2011-01-01

    Giant X-ray outbursts, with luminosities of about $ 10^{37}$ erg s$^{-1}$, are observed roughly every 5 years from the nearby Be/pulsar binary 1A 0535+262. In this article, we present observations of the source with VERITAS at very-high energies (VHE; E$>$100 GeV) triggered by the X-ray outburst in December 2009. The observations started shortly after the onset of the outburst, and they provided comprehensive coverage of the episode, as well as the 111-day binary orbit. No VHE emission is evident at any time. We also examined data from the contemporaneous observations of 1A 0535+262 with the Fermi/LAT at high energy photons (HE; E$>$0.1 GeV) and failed to detect the source at GeV energies. The X-ray continua measured with the Swift/XRT and the RXTE/PCA can be well described by the combination of blackbody and Comptonized emission from thermal electrons. Therefore, the gamma-ray and X-ray observations suggest the absence of a significant population of non-thermal particles in the system. This distinguishes 1A~...

  7. The Double Pulsar System J0737-3039: Modulation of the radio emission from B by radiation from A

    CERN Document Server

    McLaughlin, M A; Lyne, A G; Lorimer, D R; Stairs, I H; Possenti, A; Manchester, R N; Freire, P C C; Joshi, B C; Burgay, M; D'Amico, N

    2004-01-01

    We have analyzed single pulses from PSR J0737-3039B, the 2.8-s pulsar in the recently discovered double pulsar system, using data taken with the Green Bank Telescope at 820 and 1400 MHz. We report the detection of features similar to drifting subpulses, detectable over only a fraction of the pulse window, with a fluctuation frequency of 0.196 cycles/period. This is exactly the beat frequency between the periods of the two pulsars. In addition, the drifting features have a separation within a given pulse of 23 ms, equal to the pulse period of A. These features are therefore due to the direct influence of PSR J0737-3039A's 44-Hz electromagnetic radiation on PSR J0737-3039B's magnetosphere. We only detect them over a small range of orbital phases, when the radiation from the recycled pulsar PSR J0737-3039A meets our line of sight to PSR J0737-3039B from the side.

  8. Double-double radio galaxies: remnants of merger of supermassive binary black holes

    CERN Document Server

    Liu, F K; Cao, S L; Wu, Xue-Bing

    2003-01-01

    The activity of active galaxy may be triggered by the merge of galaxies and present-day galaxies are probably the product of successive minor mergers. The frequent galactic merges at high redshift imply that active galaxy harbors supermassive unequal-mass binary black holes in its center at least once during its life time. In this paper, we showed that the recently discovered double-lobed FR II radio galaxies are the remnants of such supermassive binary black holes. The inspiraling secondary black hole opens a gap in the accretion disk and removes the inner accretion disk when it merges into the primary black hole, leaving a big hole of about several hundreds of Schwarzschild radius in the vicinity of the post-merged supermassive black hole and leading to an interruption of jet formation. When the outer accretion disk slowly refills the big hole on a viscous time scale, the jet formation restarts and the interaction of the recurrent jets and the inter-galactic medium forms a secondary pair of lobes. We applie...

  9. Multi-wavelength studies of pulsars and their companions

    Science.gov (United States)

    Antoniadis, John Ioannis

    2013-09-01

    Neutron stars are the degenerate relic cores of massive stars formed in the aftermath of a supernova explosion. Matter in their centes is believed to be condensed at densities as high as ten times that found in atomic nuclei. Thus, observational access to their properties provides the means to study the behavior of physical laws in extreme conditions, beyond the reach of terrestrial experiments. Rapidly rotating, highly magnetized neutron stars emit a narrow intense beam of radio emission from their magnetospheric poles. When this pulse happens to intersect our line of sight, it gives rise to the pulsar phenomenon. Regular radio-timing of pulse arrival times on earth, results in some of the most precise measurements in astrophysics. This thesis deals with the study of binary millisecond pulsars with white dwarf companions and is divided in 7 Chapters. Chapters 1 & 2 give a brief introduction to neutron stars, pulsars, and binary pulsars. Chapter 3 describes spectroscopic and optical observations of the low mass white dwarf companion to PSR J1909-3744. For this system, radio observations have yielded a precise mass measurement as well as distance information. Combined with the optical data, these provide the first observational test for theoretical white-dwarf cooling models and spectra. The latter, if reliable, can be used to infer theory-independent masses for similar systems. In Chapter 4, I discuss the measurement of the component masses in the short-orbit PSR J1738+0333 system based on spectroscopy of its white-dwarf companion. This system is particularly important for understanding the physics of pulsar recycling and binary evolution. Moreover, combined with the measurement of the orbital decay from radio-timing, the masses pose the most stringent constraints on Scalar-Tensor gravity. Chapter 5 describes radio and optical observations of PSR J0348+0432, a compact pulsar-white dwarf binary discovered recently with the 100-m Green-Bank Radio Telescope. Spectral

  10. On the formation of eccentric millisecond pulsars with helium white-dwarf companions

    CERN Document Server

    Antoniadis, John

    2014-01-01

    Millisecond pulsars (MSPs) orbiting helium white-dwarfs (WD) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris (2014) recently proposed that these binary MSPs may instead form from the rotationally-delayed accretion-induced collapse of a massive WD. This scenario predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities -- in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10^4-10^5 yrs disk can result to eccentricities of e ~ 0.01-0.15 for orbital per...

  11. Sensitivity of Pulsar Timing Arrays

    Science.gov (United States)

    Siemens, Xavier

    2015-08-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.

  12. Newly Commissioned Green Bank Telescope Bags New Pulsars

    Science.gov (United States)

    2002-01-01

    clusters are breeding grounds for unusual binary star systems, like the ones detected by the researchers. All three pulsars are known as "millisecond pulsars" because they make one complete rotation in only a few thousandths of a second. One of these newly discovered pulsars spins at approximately 440 rotations per second, and the other two both spin about 300 times per second. All are orbited by white dwarfs with orbital periods ranging from 4 to 27 hours. "This discovery demonstrates the remarkable sensitivity of the Green Bank Telescope," said Phil Jewell, site director for the National Radio Astronomy Observatory in Green Bank, W.Va. "The fact that these pulsars were never before detected in this highly studied area of the Galaxy shows that the GBT has outstanding capabilities and will be an important tool for astronomers to make very precise, very sensitive observations of the Universe. The GBT is the world's largest fully steerable radio telescope. It was dedicated on August 25, 2000, after nearly 10 years of construction. Since that time, engineers and scientists at the NRAO in Green Bank have been testing the telescope and outfitting it with the sensitive receivers and electronics that will make it one of the world's premier astronomical instruments. "As a graduate student," said Jacoby "this discovery was particularly satisfying, and I feel privileged to be part of the history of the Green Bank Telescope." Shrinivas Kulkarni, the Caltech faculty advisor for this project, remarked, "it is very satisfying to see such discoveries being made by young people. GBT is poised to play a significant role in the education of young astronomers." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. On the puzzling high-energy pulsations of the energetic radio-quiet $\\gamma$-ray pulsar J1813$-$1246

    CERN Document Server

    Marelli, M; Pizzocaro, D; De Luca, A; Wood, K S; Caraveo, P; Salvetti, D; Parkinson, P M Saz; Acero, F

    2014-01-01

    We have analyzed the new deep {\\it XMM-Newton} and {\\it Chandra} observations of the energetic radio-quiet pulsar J1813$-$1246. The X-ray spectrum is non-thermal, very hard and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available {\\it Fermi} ephemeris to five years. We found two glitches. The $\\gamma$-ray lightcurve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardenning towards the bridge. The X-ray peaks lag the $\\gamma$-ray ones by 0.25 in phase. We found a hint of detection in the 30-500 keV band with {\\it INTEGRAL} IBIS/ISGRI, that is consistent with the extrapolation of bo...

  14. An optical & X-ray study of the counterpart to the SMC X-ray binary pulsar system SXP327

    CERN Document Server

    Coe, M J; Corbet, R H D; Galache, J; McBride, V A; Townsend, L J; Udalski, A

    2008-01-01

    Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud. The data reveal many previously unknown X-ray detections of this system and clear evidence for a 49.995d binary period. In addition, the optical photometry show recurring outburst features at the binary period which may well be indicative of the neutron star interacting with a circumstellar disk around a Be star.

  15. Radio Polarization Observations of the Snail: A Crushed Pulsar Wind Nebula in G327.1-1.1 with a Highly Ordered Magnetic Field

    CERN Document Server

    Ma, Y K; Bucciantini, N; Slane, P O; Gaensler, B M; Temim, T

    2016-01-01

    Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the "Snail" PWN inside the supernova remnant G327.1-1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulat...

  16. "Missing Link" Revealing Fast-Spinning Pulsar Mysteries

    Science.gov (United States)

    2009-05-01

    Astronomers have discovered a unique double-star system that represents a "missing link" stage in what they believe is the birth process of the most rapidly-spinning stars in the Universe -- millisecond pulsars. "We've thought for some time that we knew how these pulsars get 'spun up' to rotate so swiftly, and this system looks like it's showing us the process in action," said Anne Archibald, of McGill University in Montreal, Canada. Pulsar and Companion Neutron star with accretion disk (left) drawing material from companion star (right). CREDIT:Bill Saxton, NRAO/AUI/NSF Animations of this system and its evolution. Pulsars are superdense neutron stars, the remnants left after massive stars have exploded as supernovae. Their powerful magnetic fields generate lighthouse-like beams of light and radio waves that sweep around as the star rotates. Most rotate a few to tens of times a second, slowing down over thousands of years. However, some, dubbed millisecond pulsars, rotate hundreds of times a second. Astronomers believe the fast rotation is caused by a companion star dumping material onto the neutron star and spinning it up. The material from the companion would form a flat, spinning disk around the neutron star, and during this period, the radio waves characteristic of a pulsar would not be seen coming from the system. As the amount of matter falling onto the neutron star decreased and stopped, the radio waves could emerge, and the object would be recognized as a pulsar. This sequence of events is apparently what happened with a binary-star system some 4000 light-years from Earth. The millisecond pulsar in this system, called J1023, was discovered by the National Science Foundation's (NSF) Robert C. Byrd Green Bank Telescope (GBT) in West Virginia in 2007 in a survey led by astronomers at West Virginia University and the National Radio Astronomy Observatory (NRAO). The astronomers then found that the object had been detected by NSF's Very Large Array (VLA) radio

  17. X-shaped radio galaxies as observational evidence for the interaction of supermassive binary black holes and accretion disk at pc scale

    CERN Document Server

    Liu, F K

    2004-01-01

    A supermassive black hole binary may form during galaxy mergering. we investigate the interaction of the supermassive binary black holes (SMBBHs) and an accretion disk and show that the detected X-shaped structure in some FRII radio galaxies may be due to the interaction-realignment of inclined binary and accretion disk occurred within the pc scale of the galaxy center. We compare in detail the model and observations and show that the configuration is consistent very well with the observations of X-shaped radio sources. X-shaped radio feature form only in FRII radio sources due to the strong interaction between the binary and a standard disk, while the absence of X-shaped FRI radio galaxies is due to that the interaction between the binary and the radiatively inefficient accretion flow in FRI radio sources is negligible. It is suggested that the binary would keep misaligned with the outer disk for most of the life time of FRII radio galaxies and the orientation of jet in most FRII radio galaxies distributes r...

  18. The Pulsar Search Collaboratory

    OpenAIRE

    Rosen, Rachel; Heatherly, Sue Ann; McLaughlin, Maura A.; Lynch, Ryan; Kondratiev, Vlad I.; Boyles, Jason R.; Wilson, M. Terry; Lorimer, Duncan R.; Ransom, Scott

    2010-01-01

    The Pulsar Search Collaboratory [PSC, NSF #0737641] is a joint project between the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU) designed to interest high school students in science, technology, engineering, and mathematics [STEM] related career paths by helping them to conduct authentic scientific research. The 3- year PSC program, which began in summer 2008, teaches students to analyze astronomical radio data acquired with the 100-m Robert C. Byrd Green Bank...

  19. The Pulsar Search Collaboratory

    Science.gov (United States)

    Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.

    2010-01-01

    The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…

  20. Investigation of the bi-drifting subpulses of radio pulsar B1839-04 utilising the open-source data-analysis project PSRSALSA

    Science.gov (United States)

    Weltevrede, P.

    2016-05-01

    Aims: The usefulness and versatility of the PSRSALSA open-source pulsar data-analysis project is demonstrated through an analysis of the radio pulsar B1839-04. This study focuses on the phenomenon of bi-drifting, an effect where the drift direction of subpulses is systematically different in different pulse profile components. Bi-drifting is extremely rare in the pulsar population, and the theoretical implications are discussed after comparing B1839-04 with the only other known bi-drifter. Methods: Various tools in PSRSALSA, including those allowing quantification of periodicities in the subpulse modulation, their flux distribution, and polarization properties, are exploited to obtain a comprehensive picture of the radio properties of PSR B1839-04. In particular, the second harmonic in the fluctuation spectra of the subpulse modulation is exploited to convincingly demonstrate the existence of bi-drifting in B1839-04. Bi-drifting is confirmed with a completely independent method allowing the average modulation cycle to be determined. Polarization measurements were used to obtain a robust constraint on the magnetic inclination angle. Results: The angle between the rotation and magnetic axis is found to be smaller than 35°. Two distinct emission modes are discovered to be operating, with periodic subpulse modulation being present only during the weaker mode. Despite the variability of the modulation cycle and interruption by mode-changes, the modulation pattern responsible for the bi-drifting is strictly phase locked over a timescale of years such that the variability is identical in the different components. Conclusions: The phase locking implies that a single physical origin is responsible for both drift directions. Phase locking is hard to explain for many models, including those specifically proposed in the literature to explain bi-drifting, and they are therefore shown to be implausible. It is argued that within the framework of circulating beamlets, bi

  1. X-ray Measurement of the Spin-Down of Calvera: a Radio- and Gamma-ray-Quiet Pulsar

    CERN Document Server

    Halpern, J P; Gotthelf, E V

    2013-01-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is P-dot = (3.19+/-0.08)e-15, which corresponds to spin-down luminosity E-dot = 6.1e35 erg/s, characteristic age tau_c = P/2P-dot = 2.9e5 yr, and surface dipole magnetic field strength B_s = 4.4e11 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy gamma-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a gamma-ray luminosity limit of < 3.3e32 erg/s, which is less than that of any pulsar of comparable E-dot. Calvera sha...

  2. The LOFAR Pulsar Data Pipeline

    Science.gov (United States)

    Alexov, A.; Hessels, J.; Mol, J. D.; Stappers, B.; van Leeuwen, J.

    2010-12-01

    The LOw Frequency ARray (LOFAR) for radio astronomy is being built in the Netherlands by ASTRON, with extensions throughout Europe. LOFAR operates at radio frequencies below 250 MHz. The project is an interferometric array of radio antennas grouped into stations that are distributed over an area of hundreds of kilometers. LOFAR will revolutionise low-frequency radio astronomy. Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group has been developing the LOFAR Pulsar Data Pipeline to both study known pulsars as well as search for new ones. The pipeline is being developed for the Blue Gene/P (BG/P) supercomputer and a large Linux cluster in order to utilize enormous amounts of computation capabilities (˜ 50 Tflops) and data streams of up to 23TB/hour. The LOFAR pipeline output will be using the Hierarchical Data Format 5 (HDF5) to efficiently store large amounts of numerical data, and to manage complex data encompassing a variety of data types, across distributed storage and processing architectures. We present the LOFAR Pulsar Data Pipeline overview, the pulsar beam-formed data format, the status of the pipeline processing as well as our future plans for developing additional transient pipelines.

  3. Luminosity Dependent Study of the High Mass X-ray Binary Pulsar 4U 0114 + 65 with ASCA

    Indian Academy of Sciences (India)

    U. Mukherjee; B. Paul

    2006-03-01

    Here we report the spectral characteristics of the high and low states of the pulsar 4U 0114+65 and examine the change in the parameters of the spectral model. A power lawand a photoelectric absorption by material along the line of sight together with a high energy cut-off suffice to describe the continuum spectrum in both the states. A fluorescence iron line at ∼ 6.4 keV is present in the high as well as in the low state, though it is less intense in the latter. The photon index, cut-off energy and e-folding energy values hardly show any discernible change over the states. We compare these spectral characteristics as observed with ASCA with those of other satellites. We also compare the spectral characteristics of 4U 0114 + 650 with other X-ray sources which show intensity variation at different time scales.

  4. Equilibrium spin pulsars unite neutron star populations

    Science.gov (United States)

    Ho, Wynn; Klus, Helen; Coe, Malcolm; Andersson, Nils

    2015-08-01

    We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.

  5. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    Science.gov (United States)

    Desvignes, G.; Caballero, R. N.; Lentati, L.; Verbiest, J. P. W.; Champion, D. J.; Stappers, B. W.; Janssen, G. H.; Lazarus, P.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Mingarelli, C. M. F.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.

    2016-05-01

    We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 yr. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TEMPONEST yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semimajor axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler. However, we measure an average uncertainty of 80 per cent (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600-3053 and J1918-0642, implying pulsar and companion masses m_p=1.22_{-0.35}^{+0.5} M_{⊙}, m_c = 0.21_{-0.04}^{+0.06} M_{⊙} and m_p=1.25_{-0.4}^{+0.6} M_{⊙}, m_c = 0.23_{-0.05}^{+0.07} M_{⊙}, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909-3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600-3053 and J1909-3744.

  6. Implications of PSR J0737-3039B for the Galactic NS-NS Binary Merger Rate

    CERN Document Server

    Kim, Chunglee; McLaughlin, Maura A

    2013-01-01

    The Double Pulsar (PSR J0737-3039) is the only neutron star - neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of six. In this work, we model the second-born, non-recycled pulsar (PSR J0737-3039B, or B) and estimate the contribution from the Double Pulsar on R_g based on both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (~2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} per Myr at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wa...

  7. Pair plasma in pulsar magnetospheres

    International Nuclear Information System (INIS)

    The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able

  8. The optical companion to the intermediate mass millisecond pulsar J1439-5501 in the Galactic field

    OpenAIRE

    Pallanca C.; Lanzoni B.; Dalessandro E.; Ferraro F. R.; Possenti A.; Salaris M.; Burgay M.

    2013-01-01

    We present the identification of the companion star to the intermediate mass binary pulsar J1439-5501 obtained by means of ground-based deep images in the B, V and I bands, acquired with FORS2 mounted at the ESO-VLT. The companion is a massive white dwarf (WD) with B=23.57+-0.02, V=23.21+-0.01 and I=22.96+-0.01, located at only ~0.05" from the pulsar radio position. Comparing the WD location in the (B, B-V) and (V, V-I) Color-Magnitude diagrams with theoretical cooling sequences we derived a ...

  9. The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity

    CERN Document Server

    Freire, Paulo C C; Esposito-Farèse, Gilles; Verbiest, Joris P W; Bailes, Matthew; Jacoby, Bryan A; Kramer, Michael; Stairs, Ingrid H; Antoniadis, John; Janssen, Gemma H

    2012-01-01

    (abridged) We report the results of a 10-year timing campaign on PSR J1738+0333, a 5.85-ms pulsar in a low-eccentricity 8.5-hour orbit with a low-mass white dwarf companion (...) The measurements of proper motion and parallax allow for a precise subtraction of the kinematic contribution to the observed orbital decay; this results in a significant measurement of the intrinsic orbital decay: (-25.9 +/- 3.2) \\times 10^{-15} s/s. This is consistent with the orbital decay from the emission of gravitational waves predicted by general relativity, (-27.7 +1.5/-1.9) \\times 10^{-15} s/s (...). This agreement introduces a tight upper limit on dipolar gravitational wave emission, a prediction of most alternative theories of gravity for asymmetric binary systems such as this. We use this limit to derive the most stringent constraints ever on a wide class of gravity theories, where gravity involves a scalar field contribution. When considering general scalar-tensor theories of gravity, our new bounds are more stringent tha...

  10. The Square Kilometer Array: cosmology, pulsars and other physics with the SKA

    CERN Document Server

    Combes, Francoise

    2015-01-01

    SKA is a new technology radio-telescope array, about two orders of magnitude more sensitive and rapid in sky surveys than present instruments. It will probe the dark age of the universe, just afer recombination, and during the epoch of reionisation (z=6-15); it will be the unique instrument to map the atomic gas in high redshift galaxies, and determine the amount and distribution of dark matter in the early universe. Not only it will detect and measure the redshifts of billions of galaxies up to z=2, but also it will discover and monitor around 20 000 pulsars in our milky Way. The timing of pulsars will trace the stretching of space, able to detect gravitational waves. Binary pulsars will help to test gravity in strong fields, and probe general relativity. These exciting perspectives will become real beyond 2020.

  11. The Square Kilometer Array: cosmology, pulsars and other physics with the SKA

    International Nuclear Information System (INIS)

    SKA is a new technology radio-telescope array, about two orders of magnitude more sensitive and rapid in sky surveys than present instruments. It will probe the dark age of the universe, just afer recombination, and during the epoch of reionisation (z=6−15); it will be the unique instrument to map the atomic gas in high redshift galaxies, and determine the amount and distribution of dark matter in the early universe. Not only it will detect and measure the redshifts of billions of galaxies up to z=2, but also it will discover and monitor around 20 000 pulsars in our Milky Way. The timing of pulsars will trace the stretching of space, able to detect gravitational waves. Binary pulsars will help to test gravity in strong fields, and probe general relativity. These exciting perspectives will become real beyond 2020

  12. Non-thermal radio emission from colliding-wind binaries: modelling Cyg OB2 No. 8A and No. 9

    OpenAIRE

    Volpi, Delia; Blomme, Ronny; De Becker, Michael; Rauw, Gregor

    2010-01-01

    Some OB stars show variable non-thermal radio emission. The non-thermal emission is due to synchrotron radiation that is emitted by electrons accelerated to high energies. The electron acceleration occurs at strong shocks created by the collision of radiatively-driven stellar winds in binary systems. Here we present results of our modelling of two colliding wind systems: Cyg OB2 No. 8A and Cyg OB2 No. 9.

  13. Observing pulsars and fast transients with LOFAR

    CERN Document Server

    Stappers, B W; Alexov, A; Anderson, K; Coenen, T; Hassall, T; Karastergiou, A; Kondratiev, V I; Kramer, M; van Leeuwen, J; Mol, J D; Noutsos, A; Romein, J W; Weltevrede, P; Fender, R; Wijers, R A M J; Bähren, L; Bell, M E; Broderick, J; Daw, E J; Dhillon, V S; Eislöffel, J; Falcke, H; Griessmeier, J; Law, C; Markoff, S; Miller-Jones, J C A; Scheers, B; Spreeuw, H; Swinbank, J; ter Veen, S; Wise, M W; Wucknitz, O; Zarka, P; Anderson, J; Asgekar, A; Avruch, I M; Beck, R; Bennema, P; Bentum, M J; Best, P; Bregman, J; Brentjens, M; van de Brink, R H; Broekema, P C; Brouw, W N; Brüggen, M; de Bruyn, A G; Butcher, H R; Ciardi, B; Conway, J; Dettmar, R -J; van Duin, A; van Enst, J; Garrett, M; Gerbers, M; Grit, T; Gunst, A; van Haarlem, M P; Hamaker, J P; Heald, G; Hoeft, M; Holties, H; Horneffer, A; Koopmans, L V E; Kuper, G; Loose, M; Maat, P; McKay-Bukowski, D; McKean, J P; Miley, G; Morganti, R; Nijboer, R; Noordam, J E; Norden, M; Olofsson, H; Pandey-Pommier, M; Polatidis, A; Reich, W; Röttgering, H; Schoenmakers, A; Sluman, J; Smirnov, O; Steinmetz, M; Sterks, C G M; Tagger, M; Tang, Y; Vermeulen, R; Vermaas, N; Vogt, C; de Vos, M; Wijnholds, S J; Yatawatta, S; Zensus, A

    2011-01-01

    Low frequency radio waves, while challenging to observe, are a rich source of information about pulsars. The LOw Frequency ARray (LOFAR) is a new radio interferometer operating in the lowest 4 octaves of the ionospheric "radio window": 10-240MHz, that will greatly facilitate observing pulsars at low radio frequencies. Through the huge collecting area, long baselines, and flexible digital hardware, it is expected that LOFAR will revolutionize radio astronomy at the lowest frequencies visible from Earth. LOFAR is a next-generation radio telescope and a pathfinder to the Square Kilometre Array (SKA), in that it incorporates advanced multi-beaming techniques between thousands of individual elements. We discuss the motivation for low-frequency pulsar observations in general and the potential of LOFAR in addressing these science goals. We present LOFAR as it is designed to perform high-time-resolution observations of pulsars and other fast transients, and outline the various relevant observing modes and data reduct...

  14. Orbital Phase-Resolved X-ray Observations of the Black-Widow Pulsar J1446-4701

    Science.gov (United States)

    Arumugasamy, Prakash; Pavlov, G. G.

    2014-01-01

    PSR J1446--4701 is a recently discovered radio and gamma-ray recycled pulsar in a tight binary (binary period P_b = 6.6 hr, a sin i = 1.7 R_⊙). The relativistic pulsar wind at such close proximity is expected to evaporate the low mass companion (M_{min}= 0.019 M_⊙), which should lead to an orbital phase dependence of the multiwavelength emission of this Black Widow pulsar (BWP) system. We observed the system with XMM-Newton EPIC (0.3--10 keV) and Optical Monitor (B,V) for 60 ks, covering about 2.5 binary orbits, to look for the orbital variability of its flux and spectrum. The EPIC data do not show a significant orbital variability of the flux, perhaps due to a low orbital inclination. However, the orbital phase-resolved spectral analysis allowed us to separate two spectral components: thermal pulsar polar-cap emission (kT=0.18±0.02 keV, R=216±60 m), detected throughout the orbit, and a hard power-law component (Γ = 1.4±0.6), detected only for the half-orbit around superior conjunction of the pulsar. We infer the hard non-thermal component to be the intra-binary shock emission. We did not detect an optical counterpart with the optical monitor, which sets some strong constraints on the companion. In the context of similar BWPs, we discuss the pulsar's high energy emission characteristics and intra-binary shock energetics.

  15. A Neutron Star–White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    Science.gov (United States)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-06-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  16. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    CERN Document Server

    Gu, Wei-Min; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-01-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche lobe overflow mechanism can be responsible for the observed repeating b...

  17. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  18. Pulsars in FIRST Observations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We identify 16 pulsars from the Survey of Faint Images of the Radio Sky at Twenty-cm (FIRST) at 1.4 GHz. Their positions and total flux densities are extracted from the FIRST catalog. By comparing the source positions with those in the PSR catalog, we obtain better determined positions of PSR J1022+1001,J1518+4904, J1652+2651, and proper motion upper limits of PSR J0751+1807,J1012+5307, and J1640+2224. The proper motions of the other ten pulsars are consistent with the catalog values.

  19. The nature of the X-ray pulsar in M31: an intermediate mass X-ray binary?

    CERN Document Server

    Karino, Shigeyuki

    2016-01-01

    Recently the first finding of a spin period of an accreting neutron star in M31 is reported. The observed spin period is 1.2 s and it shows 1.27 d modulations due to orbital motion. From the orbital information, the mass donor could not be a giant massive star. On the other hand, the observed properties are quite odd for typical low mass X-ray binaries. In this study, we compare observed binary parameters with theoretical models given by a stellar evolution track and make a restriction on the possible mass range of the donor. According to the standard stellar evolution model, the donor star should be larger than 1.5 solar mass, and this suggests that this system is a new member of a rare category, intermediate mass X-ray binary. The magnetic field strength of the neutron star suggested by spin-up/down tendency in this system supports the possibility of intermediate mass donor.

  20. A prompt radio transient associated with a gamma-ray superflare from the young M dwarf binary DG CVn

    CERN Document Server

    Fender, R P; Osten, R; Staley, T; Rumsey, C; Grainge, K; Saunders, R D E

    2014-01-01

    On 2014 April 23, the Swift satellite detected a gamma-ray superflare from the nearby star system DG CVn. This system comprises a M-dwarf binary with extreme properties: it is very young and at least one of the components is a very rapid rotator. The gamma-ray superflare is one of only a handful detected by Swift in a decade. As part of our AMI-LA Rapid Response Mode, ALARRM, we automatically slewed to this target, were taking data at 15 GHz within six minutes of the burst, and detected a bright (~100 mJy) radio flare. This is the earliest detection of bright, prompt, radio emission from a high energy transient ever made with a radio telescope, and is possibly the most luminous incoherent radio flare ever observed from a red dwarf star. An additional bright radio flare, peaking at around 90 mJy, occurred around one day later, and there may have been further events between 0.1-1 days when we had no radio coverage. The source subsequently returned to a quiescent level of 2-3 mJy on a timescale of about 4 days. ...

  1. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    CERN Document Server

    Desvignes, G; Lentati, L; Verbiest, J P W; Champion, D J; Stappers, B W; Janssen, G H; Lazarus, P; Osłowski, S; Babak, S; Bassa, C G; Brem, P; Burgay, M; Cognard, I; Gair, J R; Graikou, E; Guillemot, L; Hessels, J W T; Jessner, A; Jordan, C; Karuppusamy, R; Kramer, M; Lassus, A; Lazaridis, K; Lee, K J; Liu, K; Lyne, A G; McKee, J; Mingarelli, C M F; Perrodin, D; Petiteau, A; Possenti, A; Purver, M B; Rosado, P A; Sanidas, S; Sesana, A; Shaifullah, G; Smits, R; Taylor, S R; Theureau, G; Tiburzi, C; van Haasteren, R; Vecchio, A

    2016-01-01

    We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80\\% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 bina...

  2. The Galactic centre pulsar population

    CERN Document Server

    Chennamangalam, Jayanth

    2013-01-01

    The recent discovery of a magnetar in the Galactic centre region has allowed Spitler et al. to characterize the interstellar scattering in that direction. They find that the temporal broadening of the pulse profile of the magnetar is substantially less than that predicted by models of the electron density of that region. This raises the question of what the plausible limits for the number of potentially observable pulsars - i.e., the number of pulsars beaming towards the Earth - in the Galactic centre region are. In this paper, using realistic assumptions, we show that the potentially observable population of pulsars in the inner parsec has a conservative upper limit of $\\sim$950, and that it is premature to conclude that the number of pulsars in this region is small. We also show that the observational results so far are consistent with this number and make predictions for future radio pulsar surveys of the Galactic centre.

  3. Multiwavelength Observations of the Redback Millisecond Pulsar J1048+2339

    Science.gov (United States)

    Deneva, J. S.; Ray, P. S.; Camilo, F.; Halpern, J. P.; Wood, K.; Cromartie, H. T.; Ferrara, E.; Kerr, M.; Ransom, S. M.; Wolff, M. T.; Chambers, K. C.; Magnier, E. A.

    2016-06-01

    We report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi-Large Area Telescope source 3FGL J1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6 hr binary and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 M ⊙, and we have identified a V ∼ 20 variable optical counterpart in data from several surveys. The phasing of its ∼1 mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companion’s magnetic field channeling the pulsar wind to specific locations on its surface. We also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radio ephemeris.

  4. Discovery of SXP265, a Be/X-ray binary pulsar in the Wing of the Small Magellanic Cloud

    CERN Document Server

    Sturm, R; Vasilopoulos, G; Bartlett, E S; Maggi, P; Rau, A; Greiner, J; Udalski, A

    2014-01-01

    We identify a new candidate for a Be/X-ray binary in the XMM-Newton slew survey and archival Swift observations that is located in the transition region of the Wing of the Small Magellanic Cloud and the Magellanic Bridge. We investigated and classified this source with follow-up XMM-Newton and optical observations. We model the X-ray spectra and search for periodicities and variability in the X-ray observations and the OGLE I-band light curve. The optical counterpart has been classified spectroscopically, with data obtained at the SAAO 1.9 m telescope, and photometrically, with data obtained using GROND at the MPG 2.2 m telescope. The X-ray spectrum is typical of a high-mass X-ray binary with an accreting neutron star. We detect X-ray pulsations, which reveal a neutron-star spin period of P = (264.516+-0.014) s. The source likely shows a persistent X-ray luminosity of a few 10^35 erg/s and in addition type-I outbursts that indicate an orbital period of ~146 d. A periodicity of 0.867 d, found in the optical li...

  5. Testing Gravity with Pulsars in the SKA Era

    CERN Document Server

    Shao, Lijing; Antoniadis, John; Deller, Adam T; Freire, Paulo C C; Hessels, Jason W T; Janssen, Gemma H; Kramer, Michael; Kunz, Jutta; Lämmerzahl, Claus; Perlick, Volker; Possenti, Andrea; Ransom, Scott; Stappers, Benjamin W; van Straten, Willem

    2015-01-01

    The Square Kilometre Array (SKA) will use pulsars to enable precise measurements of strong gravity effects in pulsar systems, which yield tests of gravitational theories that cannot be carried out anywhere else. The Galactic census of pulsars will discover dozens of relativistic pulsar systems, possibly including pulsar -- black hole binaries which can be used to test the "cosmic censorship conjecture" and the "no-hair theorem". Also, the SKA's remarkable sensitivity will vastly improve the timing precision of millisecond pulsars, allowing probes of potential deviations from general relativity (GR). Aspects of gravitation to be explored include tests of strong equivalence principles, gravitational dipole radiation, extra field components of gravitation, gravitomagnetism, and spacetime symmetries.

  6. PSR J1024-0719: A Millisecond Pulsar in an Unusual Long-Period Orbit

    CERN Document Server

    Kaplan, D L; Nice, D J; Irrgang, A; Heber, U; Arzoumanian, Z; Beklen, E; Crowter, K; DeCesar, M E; Demorest, P B; Dolch, T; Lynch, R S; McLaughlin, M A; Miller, A A; Ng, C; Pennucci, T T; Ellis, J A; Ferdman, R D; Ferrara, E C; Fonseca, E; Gentile, P A; Jones, G; Jones, M L; Kreuzer, S; Lam, M T; Levin, L; Lorimer, D R; Prince, T A; Ransom, S M; Ray, P S; Spiewak, R; Stairs, I H; Stovall, K; Swiggum, J; Zhu, W

    2016-01-01

    PSR J1024$-$0719 is a millisecond pulsar that was long thought to be isolated. However, puzzling results concerning its velocity, distance, and low rotational period derivative have led to reexamination of its properties. We present updated radio timing observations along with new and archival optical data that show PSR J1024$-$0719 is most likely in a long period (2$-$20 kyr) binary system with a low-mass ($\\approx 0.4\\,M_\\odot$) low-metallicity ($Z \\approx -0.9\\,$ dex) main sequence star. Such a system can explain most of the anomalous properties of this pulsar. We suggest that this system formed through a dynamical exchange in a globular cluster that ejected it into a halo orbit, consistent with the low observed metallicity for the stellar companion. Further astrometric and radio timing observations such as measurement of the third period derivative could strongly constrain the range of orbital parameters.

  7. Identification of the Periodic Hard X-Ray Transient GRO J1849-03 with the X-Ray Pulsar GS 1843-02 = X1845-024 - a New Be/X-Ray Binary

    OpenAIRE

    Soffitta, P.; Tomsick, J. A.; Harmon, B.A.; Costa, E.; Ford, E. C.; M. Tavani(IASF of Rome/INAF); Zhang, S.N.; Kaaret, P.

    1997-01-01

    We identify the periodic transient hard X-ray source GRO J1849-03 with the transient x-ray pulsar GS 1843-02 = X1845-024 based on the detection of x-ray outbursts from X1845-024 coincident with hard x-ray outbursts of GRO J1849--03. Based on its spin period of 94.8 s and its orbital period of 241 days, we classify the system as a Be/X-ray binary.

  8. Student Discovers New Pulsar

    Science.gov (United States)

    2010-01-01

    A West Virginia high-school student has discovered a new pulsar, using data from the giant Robert C. Byrd Green Bank Telescope (GBT). Shay Bloxton, 15, a participant in a project in which students analyze data from the radio telescope, spotted evidence of the pulsar on October 15. Bloxton, along with NRAO astronomers observed the object again one month later. The new observation confirmed that the object is a pulsar, a rotating, superdense neutron star. Bloxton is a sophomore at Nicholas County High School in Summersville, West Virginia. "I was very excited when I found out I had actually made a discovery," Bloxton said. She went to Green Bank in November to participate in the follow-up observation. She termed that visit "a great experience." "It also helped me learn a lot about how observations with the GBT are actually done," she added. The project in which she participated, called the Pulsar Search Collaboratory (PSC), is a joint project of the National Radio Astronomy Observatory (NRAO) and West Virginia University, funded by a grant from the National Science Foundation. Pulsars are known for their lighthouse-like beams of radio waves that sweep through space as the neutron star rotates, creating a pulse as the beam sweeps by the Earth. First discovered in 1967, pulsars serve as valuable natural "laboratories" for physicists studying exotic states of matter, quantum mechanics and General Relativity. The GBT, dedicated in 2000, has become one of the world's leading tools for discovering and studying pulsars. The PSC, led by NRAO Education Officer Sue Ann Heatherly and Project Director Rachel Rosen, includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from 1500 hours of observing with the GBT. The 120 terabytes of data were produced by 70,000 individual pointings of the giant, 17-million-pound telescope. Some 300 hours of the

  9. Formation of a partially-screened inner acceleration region in radio pulsars: drifting subpulses and thermal X-ray emission from polar cap surface

    CERN Document Server

    Gil, J; Zhang, B; Gil, Janusz; Melikidze, George; Zhang, Bing

    2006-01-01

    Formation of a partially-screened inner acceleration region in 102 pulsars with drifting subpulses is considered. This is motivated by that spark discharges leading to drifting subpulses cannot be produced in a steady polar cap flow and thus the inner accelerator should be intermittent in nature, that the traditional pure vacuum gap model predicts too fast a sub-pulse drifting rate, and that recent X-ray observations as well as the radio drifting data are both consistent with the inner gap being partially screened. By means of the condition $T_{\\rm c}/T_{\\rm s}>1$ (where $T_{\\rm c}$ is the critical temperature above which the surface delivers a thermal flow to adequately supply the corotation charge density, and $T_{\\rm s}$ is the actual surface temperature), it is found that a partially-screened acceleration region can be formed given that the near surface magnetic fields are very strong and curved. We consider both curvature radiation (CR) and resonant inverse Compton scattering (ICS) to produce seed photon...

  10. Time-domain Implementation of the Optimal Cross-Correlation Statistic for Stochastic Gravitational-Wave Background Searches in Pulsar Timing Data

    OpenAIRE

    Chamberlin, Sydney J.; Creighton, Jolien D. E.; Demorest, Paul B.; Ellis, Justin; Price, Larry R.; Romano, Joseph D.; Siemens, Xavier

    2014-01-01

    Supermassive black hole binaries, cosmic strings, relic gravitational waves from inflation, and first-order phase transitions in the early Universe are expected to contribute to a stochastic background of gravitational waves in the 10^(−9) –10^(−7)  Hz frequency band. Pulsar timing arrays (PTAs) exploit the high-precision timing of radio pulsars to detect signals at such frequencies. Here we present a time-domain implementation of the optimal cross-correlation statistic for stochastic backgr...

  11. GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY

    International Nuclear Information System (INIS)

    We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of –1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsars with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°-38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz

  12. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs

  13. SDSS J0159+0105: A Radio-Quiet Quasar with a Centi-Parsec Supermassive Black Hole Binary Candidate

    CERN Document Server

    Zheng, Zhen-Ya; Shen, Yue; Jiang, Linhua; Wang, Jun-Xian; Chen, Xian; Cuadra, Jorge

    2015-01-01

    We report a candidate centi-parsec supermassive black hole binary (SMBHB) in the radio-quiet quasar SDSS J0159+0105 at z=0.217. The 8.1-year Catalina V-band light curve for this quasar reveals two significant (at P>99%) periodic signals at ~741 day and ~1500 day. The period ratio, which is close to 1:2, is typical of a black-hole binary system with a mass ratio of 0.05binary. SDSS J0159+0105 also has two SDSS spectroscopic observations separated by ~10 years. There is a significant change in the broad H-beta profile between the two epochs, which can be explained by a single broad-line region (BLR) around the binary system illuminated by the aforementioned mini-disks, or a stream of gas flowing from the c...

  14. Searching for gravitational waves from known pulsars

    CERN Document Server

    Pitkin, M; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Díaz, M; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Abbott, R; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J; Pitkin, Matthew

    2005-01-01

    We present upper limits on the amplitude of gravitational waves from 28 isolated pulsars using data from the second science run of LIGO. The results are also expressed as a constraint on the pulsars' equatorial ellipticities. We discuss a new way of presenting such ellipticity upper limits that takes account of the uncertainties of the pulsar moment of inertia. We also extend our previous method to search for known pulsars in binary systems, of which there are about 80 in the sensitive frequency range of LIGO and GEO 600.

  15. Ion-proton pulsars

    OpenAIRE

    Jones, P. B.

    2016-01-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been publi...

  16. The Appearance of a Radio-Pulsar Magnetosphere from a Vacuum with a Strong Magnetic Field. Accumulation of Particles

    CERN Document Server

    Istomin, Ya N; 10.1134/S1063772910040074

    2010-01-01

    The accumulation of electrons and positrons in the vacuum magnetosphere of a neutron star with a surface magnetic field of B~10^12 G is considered. It is shown that particles created in the magnetosphere or falling into the magnetosphere from outside undergo ultra-relativistic oscillations with a frequency of 10-100 MHz. These oscillations decay due to energy losses to curvature radiation and bremsstrahlung, with their frequencies reaching 1-10 GHz. Simultaneously, the particles undergo regular motion along the force-free surface along closed trajectories. This leads to the gradual accumulation of particles at the force-free surface and the formation of a fully charge-separated plasma layer with a density of the order of the Goldreich-Julian density. The presence of a constant source of electron-positron pairs in the magnetosphere due to the absorption of energetic cosmic gamma-rays leads to the growth of this layer, bringing about a rapid filling of the pulsar magnetosphere with electron-positron plasma if t...

  17. Broad-band spectroscopy of the transient X-ray binary pulsar KS 1947+300 during 2013 giant outburst: Detection of pulsating soft X-ray excess component

    CERN Document Server

    Epili, Prahlad; Jaisawal, Gaurava K

    2016-01-01

    We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs i.e. on 2013 October 22 (close to the peak of the outburst) and 2013 November 22. X-ray pulsations at $\\sim$18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to $\\sim$10 keV beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to $\\sim$70 keV. The 1-110 keV broad-band spectroscopy of both observations revealed that the best-fit model comprised of a partially absorbed Negative and Positive power law with EXponential cutoff (NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 keV for emission line...

  18. A Radio-Selected Black Hole X-ray Binary Candidate in the Milky Way Globular Cluster M62

    CERN Document Server

    Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Heinke, Craig; Noyola, Eva; Seth, Anil C; Ransom, Scott

    2013-01-01

    We report the discovery of a candidate stellar-mass black hole in the Milky Way globular cluster M62. We detected the black hole candidate, which we term M62-VLA1, in the core of the cluster using deep radio continuum imaging from the Karl G. Jansky Very Large Array. M62-VLA1 is a faint source, with a flux density of 18.7 +/- 1.9 microJy at 6.2 GHz and a flat radio spectrum (alpha=-0.24 +/- 0.42, for S_nu = nu^alpha). M62 is the second Milky Way cluster with a candidate stellar-mass black hole; unlike the two candidate black holes previously found in the cluster M22, M62-VLA1 is associated with a Chandra X-ray source, supporting its identification as a black hole X-ray binary. Measurements of its radio and X-ray luminosity, while not simultaneous, place M62-VLA1 squarely on the well-established radio--X-ray correlation for stellar-mass black holes. In archival Hubble Space Telescope imaging, M62-VLA1 is coincident with a star near the lower red giant branch. This possible optical counterpart shows a blue exce...

  19. Multiwavelength Observations of the Redback Millisecond Pulsar J1048+2339

    CERN Document Server

    Deneva, J S; Camilo, F; Halpern, J P; Wood, K; Cromartie, H T; Ferrara, E; Kerr, M; Ransom, S M; Wolff, M T; Chambers, K C; Magnier, E A

    2016-01-01

    We report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi-LAT source 3FGLJ1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6-hour binary, and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 solar masses, and we have identified a $V \\sim 20$ variable optical counterpart in data from several surveys. The phasing of its $\\sim 1$~mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companion's magnetic field channeling the pulsar wind to specific locations on its surface. We also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radi...

  20. Detecting Pulsars with Interstellar Scintillation in Variance Images

    CERN Document Server

    Dai, S; Bell, M E; Coles, W A; Hobbs, G; Ekers, R D; Lenc, E

    2016-01-01

    Pulsars are the only cosmic radio sources known to be sufficiently compact to show diffractive interstellar scintillations. Images of the variance of radio signals in both time and frequency can be used to detect pulsars in large-scale continuum surveys using the next generation of synthesis radio telescopes. This technique allows a search over the full field of view while avoiding the need for expensive pixel-by-pixel high time resolution searches. We investigate the sensitivity of detecting pulsars in variance images. We show that variance images are most sensitive to pulsars whose scintillation time-scales and bandwidths are close to the subintegration time and channel bandwidth. Therefore, in order to maximise the detection of pulsars for a given radio continuum survey, it is essential to retain a high time and frequency resolution, allowing us to make variance images sensitive to pulsars with different scintillation properties. We demonstrate the technique with Murchision Widefield Array data and show th...