WorldWideScience

Sample records for binary quadratic operads

  1. Colored operads

    CERN Document Server

    Yau, Donald

    2016-01-01

    The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality. The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.

  2. Cohomology with coefficients for operadic coalgebras

    Indian Academy of Sciences (India)

    Corepresentations of a coalgebra over a quadratic operad are defined, and various characterizations of them are given. Cohomology of such an operadic coalgebra with coefficients in a corepresentation is then studied. Author Affiliations. Anita Majumdar1 Donald Yau2. Department of Mathematics, Indian Institute of ...

  3. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    Particle swarm optimization (PSO) is used in several combinatorial optimization problems. In this work, particle swarms are used to solve quadratic programming problems with quadratic constraints. The central idea is to use PSO to move in the direction towards optimal solution rather than searching the entire ...

  4. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    DEEPAK KUMAR

    Abstract. Particle swarm optimization (PSO) is used in several combinatorial optimization problems. In this work, particle swarms are used to solve quadratic programming problems with quadratic constraints. The cen- tral idea is to use PSO to move in the direction towards optimal solution rather than searching the entire ...

  5. Binary GCD like Algorithms for Some Complex Quadratic Rings

    DEFF Research Database (Denmark)

    Agarwal, Saurabh; Frandsen, Gudmund Skovbjerg

    2004-01-01

    binary gcd like algorithms for the ring of integers in and , one now has binary gcd like algorithms for all complex quadratic Euclidean domains. The running time of our algorithms is O(n 2) in each ring. While there exists an O(n 2) algorithm for computing the gcd in quadratic number rings by Erich...

  6. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    DEEPAK KUMAR

    Binary classification is one of the active research areas in machine learning [4, 5]. There are several ways to train a binary classifier. The features and the class labels of the training data set can be stored and retrieved during classifica- tion using the nearest neighbor approach [6]. A hyperplane is learnt for classification by ...

  7. On operads, bimodules and analytic functors

    CERN Document Server

    Gambino, Nicola

    2017-01-01

    The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory \\operatorname{OpdBim}_{\\mathcal{V}} of operad bimodules, that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.

  8. On binary quadratic forms and the Hecke groups

    OpenAIRE

    Culp-Ressler, Wendell

    1999-01-01

    We present a theory of reduction of binary quadratic forms with coefficients in Z[lambda], where lambda is the minimal translation in a Hecke group. We generalize from the modular group Gamma(1) = SL(2,Z) to the Hecke groups and make extensive use of modified negative continued fractions.

  9. Cohomology with coefficients for operadic coalgebras

    Indian Academy of Sciences (India)

    coalgebra ... 1.1 Organization. The rest of this paper is organized as follows. The following section is a preliminary section, in which definitions about operads and their .... operad of V with the obvious structure maps, dual to those in End(V ). For an ...

  10. Cohomology with coefficients for operadic coalgebras

    Indian Academy of Sciences (India)

    When P is taken to be the operads for associative, commutative, Lie or Leibniz algebras, one recovers the classical cohomology ... 1.1 Organization. The rest of this paper is organized as follows. The following section is a preliminary section, in which definitions about operads and their (co)algebras are recalled. We also fix.

  11. Operads : Hopf algebras and coloured Koszul duality

    NARCIS (Netherlands)

    van der Laan, P.P.I.

    2004-01-01

    Operads are tools designed to study not mathematical objects themselves, but operations on these. A simplified example: instead of integers, one studies multiplication. Multiplication is a map that takes two integers as input and gives one new integer as output (2*3 = 6 says that the inputs 2 and 3

  12. Type II Superstring Field Theory: Geometric Approach and Operadic Description

    CERN Document Server

    Jurco, Branislav

    2013-01-01

    We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a $\\mathcal{N}=1$ generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.

  13. Operadic quantization as a tool for discrete geometry

    Science.gov (United States)

    Paal, E.; Virkepu, J.

    2014-09-01

    The operadic Lax representations of the harmonic oscillator are used to construct the quantum counterparts of 3d real Lie algebras in the Bianchi classification. The Jacobi operators of these quantum algebras are studied. It is shown how the energy conservation is related to the Jacobi identity and how the quantization leads to an anomaly - the quantum violation of the Jacobi relations. By using the nonvanishing quantum Jacobi operators, the derivative quantum algebra for a triple of 3d real Lie algebras is defined. It is proposed that the derivative algebra is the 3d real Heisenberg algebra. From this it follows that in this model only the discrete values of the spatial coordinates are physically allowed.

  14. (Non-)Koszulness of operads for n-ary algebras, galgalim and other curiosities

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin; Remm, E.

    2015-01-01

    Roč. 10, č. 4 (2015), s. 939-969 ISSN 2193-8407 R&D Projects: GA ČR GA201/08/0397 Institutional support: RVO:67985840 Keywords : operad * Koszulness * partial and total associativity Subject RIV: BA - General Mathematics Impact factor: 0.600, year: 2015 http://link.springer.com/article/10.1007%2Fs40062-014-0090-7

  15. Homotopy of operads and Grothendieck–Teichmüller groups part 2 the applications of (rational) homotopy theory methods

    CERN Document Server

    Fresse, Benoit

    2017-01-01

    The ultimate goal of this book is to explain that the Grothendieck-Teichmüller group, as defined by Drinfeld in quantum group theory, has a topological interpretation as a group of homotopy automorphisms associated to the little 2-disc operad. To establish this result, the applications of methods of algebraic topology to operads must be developed. This volume is devoted primarily to this subject, with the main objective of developing a rational homotopy theory for operads. The book starts with a comprehensive review of the general theory of model categories and of general methods of homotopy theory. The definition of the Sullivan model for the rational homotopy of spaces is revisited, and the definition of models for the rational homotopy of operads is then explained. The applications of spectral sequence methods to compute homotopy automorphism spaces associated to operads are also explained. This approach is used to get a topological interpretation of the Grothendieck-Teichmüller group in the case of the ...

  16. Homotopy of operads and Grothendieck–Teichmüller groups part 1 the algebraic theory and its topological background

    CERN Document Server

    Fresse, Benoit

    2017-01-01

    The Grothendieck-Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck-Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of...

  17. Quadratic Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  18. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    Particle swarms help in determining the optimal hyperplane or classification boundary for a data set. Our results on the Iris, Pima, Wine, Thyroid, Balance, Bupa, Haberman, and TAE datasets show that the proposed method works better than a neural network and the performance is close to that of a support vector machine ...

  19. Isotropy of quadratic forms

    Indian Academy of Sciences (India)

    V. Suresh University Of Hyderabad Hyderabad

    2008-10-31

    Oct 31, 2008 ... Historically, the study of quadratic forms was part of number theory; Minkowski, Siegel, Hasse, Eichler, Kneser and several other mathematicians created a rich arithmetic theory of quadratic forms. V. Suresh University Of Hyderabad Hyderabad. Isotropy of quadratic forms ...

  20. Self-Replicating Quadratics

    Science.gov (United States)

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  1. Gravitation and quadratic forms

    Science.gov (United States)

    Ananth, Sudarshan; Brink, Lars; Majumdar, Sucheta; Mali, Mahendra; Shah, Nabha

    2017-03-01

    The light-cone Hamiltonians describing both pure ( N = 0) Yang-Mills and N = 4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N = 8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

  2. Gravitation and quadratic forms

    Energy Technology Data Exchange (ETDEWEB)

    Ananth, Sudarshan [Indian Institute of Science Education and Research,Pune 411008 (India); Brink, Lars [Department of Physics, Chalmers University of Technology,S-41296 Göteborg (Sweden); Institute of Advanced Studies and Department of Physics & Applied Physics,Nanyang Technological University,Singapore 637371 (Singapore); Majumdar, Sucheta [Indian Institute of Science Education and Research,Pune 411008 (India); Mali, Mahendra [School of Physics, Indian Institute of Science Education and Research,Thiruvananthapuram, Trivandrum 695016 (India); Shah, Nabha [Indian Institute of Science Education and Research,Pune 411008 (India)

    2017-03-31

    The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

  3. Elliptic Quadratic Operator Equations

    OpenAIRE

    Ganikhodjaev, Rasul; Mukhamedov, Farrukh; Saburov, Mansoor

    2017-01-01

    In the present paper is devoted to the study of elliptic quadratic operator equations over the finite dimensional Euclidean space. We provide necessary and sufficient conditions for the existence of solutions of elliptic quadratic operator equations. The iterative Newton-Kantorovich method is also presented for stable solutions.

  4. Quaternion orders, quadratic forms, and Shimura curves

    CERN Document Server

    Alsina, Montserrat

    2004-01-01

    Shimura curves are a far-reaching generalization of the classical modular curves. They lie at the crossroads of many areas, including complex analysis, hyperbolic geometry, algebraic geometry, algebra, and arithmetic. The text provides an introduction to the subject from a theoretic and algorithmic perspective. The main topics covered in it are Shimura curves defined over the rational number field, the construction of their fundamental domains, and the determination of their complex multiplication points. The study of complex multiplication points in Shimura curves leads to the study of families of binary quadratic forms with algebraic coefficients and to their classification by arithmetic Fuchsian groups. In this regard, the authors develop a theory full of new possibilities which parallels Gauss' theory on the classification of binary quadratic forms with integral coefficients by the action of the modular group. Each topic covered in the book begins with a theoretical discussion followed by carefully worked...

  5. Faithfully quadratic rings

    CERN Document Server

    Dickmann, M

    2015-01-01

    In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

  6. Rescuing Quadratic Inflation

    CERN Document Server

    Ellis, John; Sueiro, Maria

    2014-01-01

    Inflationary models based on a single scalar field $\\phi$ with a quadratic potential $V = \\frac{1}{2} m^2 \\phi^2$ are disfavoured by the recent Planck constraints on the scalar index, $n_s$, and the tensor-to-scalar ratio for cosmological density perturbations, $r_T$. In this paper we study how such a quadratic inflationary model can be rescued by postulating additional fields with quadratic potentials, such as might occur in sneutrino models, which might serve as either curvatons or supplementary inflatons. Introducing a second scalar field reduces but does not remove the pressure on quadratic inflation, but we find a sample of three-field models that are highly compatible with the Planck data on $n_s$ and $r_T$. We exhibit a specific three-sneutrino example that is also compatible with the data on neutrino mass difference and mixing angles.

  7. Separable quadratic stochastic operators

    International Nuclear Information System (INIS)

    Rozikov, U.A.; Nazir, S.

    2009-04-01

    We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)

  8. Quadratic Malcev superalgebras

    OpenAIRE

    Albuquerque, Helena; Benayadi, Saı̈d

    2004-01-01

    A quadratic Malcev superalgebra is a Malcev superalgebra with a non-degenerate supersymmetric even invariant bilinear form B; B is called an invariant scalar product on M. In this paper, we obtain the inductive classifications of quadratic Malcev algebras and of Malcev superalgebras such that is a reductive Malcev algebra and the action of the on is completely reducible. http://www.sciencedirect.com/science/article/B6V0K-49KST23-1/1/76b688f435c1b5f20f8bd222655704cb

  9. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  10. A Quadratic Spring Equation

    Science.gov (United States)

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  11. Aspects of Quadratic Gravity

    CERN Document Server

    Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio

    2016-01-01

    We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...

  12. Hidden conic quadratic representation of some nonconvex quadratic optimization problems

    NARCIS (Netherlands)

    Ben-Tal, A.; den Hertog, D.

    The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated

  13. On Characterization of Quadratic Splines

    DEFF Research Database (Denmark)

    Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong

    2005-01-01

    A quadratic spline is a differentiable piecewise quadratic function. Many problems in numerical analysis and optimization literature can be reformulated as unconstrained minimizations of quadratic splines. However, only special cases of quadratic splines are studied in the existing literature...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general......., and algorithms are developed on a case by case basis. There lacks an analytical representation of a general or even a convex quadratic spline. The current paper fills this gap by providing an analytical representation of a general quadratic spline. Furthermore, for convex quadratic spline, it is shown...

  14. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  15. Quadratic solitons as nonlocal solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole

    2003-01-01

    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...... solutions and the prediction of bound states of quadratic solitons....

  16. Quadratic ideals, indefinite quadratic forms and some specific diophantine equations

    Directory of Open Access Journals (Sweden)

    Ahmet Tekcan

    2018-07-01

    Full Text Available Let $k\\geq 1$ be an integer and let $P=k+2,Q=k$ and $D=k^{2}+4$. In this paper, we derived some algebraic properties of quadratic ideals $I_{\\gamma}$ and indefinite quadratic forms $F_{\\gamma }$ for quadratic irrationals $\\gamma$, and then we determine the set of all integer solutions of the Diophantine equation $F_{\\gamma }^{\\pm k}(x,y=\\pm Q$.

  17. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  18. Students' Understanding of Quadratic Equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  19. A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions

    International Nuclear Information System (INIS)

    Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan

    2007-01-01

    In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported

  20. Information sets as permutation cycles for quadratic residue codes

    Directory of Open Access Journals (Sweden)

    Richard A. Jenson

    1982-01-01

    Full Text Available The two cases p=7 and p=23 are the only known cases where the automorphism group of the [p+1,   (p+1/2] extended binary quadratic residue code, O(p, properly contains PSL(2,p. These codes have some of their information sets represented as permutation cycles from Aut(Q(p. Analysis proves that all information sets of Q(7 are so represented but those of Q(23 are not.

  1. An Investigation on Quadratic Equations.

    Science.gov (United States)

    Hirst, Keith

    1988-01-01

    Argues that exploring a familiar topic or examination question in a novel manner is a useful way to find topics for mathematical investigation in the classroom. The example used to illustrate the premise is a quadratic equation. (PK)

  2. Overpartitions and class numbers of binary quadratic forms.

    Science.gov (United States)

    Bringmann, Kathrin; Lovejoy, Jeremy

    2009-04-07

    We show that the Zagier-Eisenstein series shares its nonholomorphic part with certain weak Maass forms whose holomorphic parts are generating functions for overpartition rank differences. This has a number of consequences, including exact formulas, asymptotics, and congruences for the rank differences as well as q-series identities of the mock theta type.

  3. Students' understanding of quadratic equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-05-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help students achieve an understanding of quadratic equations with improved interrelation of ideas and more flexible application of solution methods. Semi-structured interviews with eight beginning undergraduate students explored which of the mental constructions conjectured in the genetic decomposition students could do, and which they had difficulty doing. Two of the mental constructions that form part of the genetic decomposition are highlighted and corresponding further data were obtained from the written work of 121 undergraduate science and engineering students taking a multivariable calculus course. The results suggest the importance of explicitly considering these two highlighted mental constructions.

  4. Smoothing quadratic and cubic splines

    OpenAIRE

    Oukropcová, Kateřina

    2014-01-01

    Title: Smoothing quadratic and cubic splines Author: Kateřina Oukropcová Department: Department of Numerical Mathematics Supervisor: RNDr. Václav Kučera, Ph.D., Department of Numerical Mathematics Abstract: The aim of this bachelor thesis is to study the topic of smoothing quadratic and cubic splines on uniform partitions. First, we define the basic con- cepts in the field of splines, next we introduce interpolating splines with a focus on their minimizing properties for odd degree and quadra...

  5. Stability in quadratic torsion theories

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)

    2017-11-15

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

  6. Stability in quadratic torsion theories

    Science.gov (United States)

    Vasilev, Teodor Borislavov; Cembranos, Jose A. R.; Valcarcel, Jorge Gigante; Martín-Moruno, Prado

    2017-11-01

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier.

  7. Quadratic prediction of factor scores

    NARCIS (Netherlands)

    Wansbeek, T

    1999-01-01

    Factor scores are naturally predicted by means of their conditional expectation given the indicators y. Under normality this expectation is linear in y but in general it is an unknown function of y. II is discussed that under nonnormality factor scores can be more precisely predicted by a quadratic

  8. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

  9. Stability of Approximate Quadratic Mappings

    Directory of Open Access Journals (Sweden)

    Kim Hark-Mahn

    2010-01-01

    Full Text Available We investigate the general solution of the quadratic functional equation , in the class of all functions between quasi- -normed spaces, and then we prove the generalized Hyers-Ulam stability of the equation by using direct method and fixed point method.

  10. Linear Quadratic Games : An Overview

    NARCIS (Netherlands)

    Engwerda, J.C.

    2006-01-01

    In this paper we review some basic results on linear quadratic differential games.We consider both the cooperative and non-cooperative case.For the non-cooperative game we consider the open-loop and (linear) feedback information structure.Furthermore the effect of adding uncertainty is

  11. On quadratic variation of martingales

    Indian Academy of Sciences (India)

    starting point for the development of stochastic calculus for continuous semimartingales without bringing in any results from general theory of processes (see [5]). The almost sure convergence of Qn t to 〈M,M〉t also gives a pathwise formula for the quadratic variation of a continuous local martingale. It also directly shows that ...

  12. On quadratic variation of martingales

    Indian Academy of Sciences (India)

    On quadratic variation of martingales. 459. The proof relied on the theory of stochastic integration. Subsequently, in Karandikar. [4], the formula was derived using only Doob's maximal inequality. Thus this could be the starting point for the development of stochastic calculus for continuous semimartingales without bringing in ...

  13. Inverse problems for difference equations with quadratic ...

    African Journals Online (AJOL)

    Inverse problems for difference equations with quadratic Eigenparameter dependent boundary conditions. Sonja Currie, Anne D. Love. Abstract. This paper inductively investigates an inverse problem for difference boundary value problems with boundary conditions that depend quadratically on the eigenparameter.

  14. On Quadratic Variation of Martingales

    Indian Academy of Sciences (India)

    where D ( [ 0 , ∞ ) , R ) denotes the class of real valued r.c.l.l. functions on [ 0 , ∞ ) such that for a locally square integrable martingale ( M t ) with r.c.l.l. paths,. Ψ ( M . ( ) ) = A . ( ). gives the quadratic variation process (written usually as [ M , M ] t ) of ( M t ) . We also show that this process ( A t ) is the unique increasing ...

  15. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  16. Stability of Approximate Quadratic Mappings

    Directory of Open Access Journals (Sweden)

    Juri Lee

    2010-01-01

    Full Text Available We investigate the general solution of the quadratic functional equation f(2x+y+3f(2x−y=4f(x−y+12f(x, in the class of all functions between quasi-β-normed spaces, and then we prove the generalized Hyers-Ulam stability of the equation by using direct method and fixed point method.

  17. Geometrical Solutions of Quadratic Equations.

    Science.gov (United States)

    Grewal, A. S.; Godloza, L.

    1999-01-01

    Demonstrates that the equation of a circle (x-h)2 + (y-k)2 = r2 with center (h; k) and radius r reduces to a quadratic equation x2-2xh + (h2 + k2 -r2) = O at the intersection with the x-axis. Illustrates how to determine the center of a circle as well as a point on a circle. (Author/ASK)

  18. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  19. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard

    2015-05-04

    ​In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport). ​

  20. Extending the Scope of Robust Quadratic Optimization

    NARCIS (Netherlands)

    Marandi, Ahmadreza; Ben-Tal, A.; den Hertog, Dick; Melenberg, Bertrand

    In this paper, we derive tractable reformulations of the robust counterparts of convex quadratic and conic quadratic constraints with concave uncertainties for a broad range of uncertainty sets. For quadratic constraints with convex uncertainty, it is well-known that the robust counterpart is, in

  1. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2014-01-01

    We evaluate a binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Prior research has shown this procedure to robustly induce risk neutrality when subjects are given a single risk task defined over objective probabilities. Drawing a sample from...... the same subject population, we find evidence that the binary lottery procedure also induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation of subjective probabilities in subjects...

  2. Factorization method of quadratic template

    Science.gov (United States)

    Kotyrba, Martin

    2017-07-01

    Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

  3. quadratic spline finite element method

    Directory of Open Access Journals (Sweden)

    A. R. Bahadir

    2002-01-01

    Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.

  4. Quadratic Variation by Markov Chains

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Horel, Guillaume

    We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...

  5. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  6. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  7. Stability investigation of quadratic systems with delay

    Directory of Open Access Journals (Sweden)

    Vladimir Davydov

    2000-01-01

    Full Text Available Systems of differential equations with quadratic right-hand sides with delay are considered in the paper. Compact matrix notation form is proposed for the systems of such type. Stability investigations are performed by Lyapunov's second method with functions of quadratic form. Stability conditions of quadratic systems with delay, uniformly by argument deviation, and with delay depending on the system's parameters are derived. A guaranteed radius of the ball of asymptotic stability region for zero solution is obtained.

  8. Quadratic Boost A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Chub, Andrii

    2016-01-01

    A novel quadratic boost A-source impedance network is proposed to realize converters that demand very high voltage gain. To satisfy the requirement, the network uses an autotransformer where the obtained gain is quadratically dependent on the duty ratio and is unmatched by any existing impedance...... source networks and normal dc-dc converters with coupled magnetics at the same duty ratio and turns ratio. The term “Quadratic Boost A-Source” indicates its quadratic varying gain in the operating principle of the converter. The proposed converter draws a continuous current from the source and suits...

  9. Geometrical and Graphical Solutions of Quadratic Equations.

    Science.gov (United States)

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  10. Joint Estimation Using Quadratic Estimating Function

    Directory of Open Access Journals (Sweden)

    Y. Liang

    2011-01-01

    of the observed process becomes available, the quadratic estimating functions are more informative. In this paper, a general framework for joint estimation of conditional mean and variance parameters in time series models using quadratic estimating functions is developed. Superiority of the approach is demonstrated by comparing the information associated with the optimal quadratic estimating function with the information associated with other estimating functions. The method is used to study the optimal quadratic estimating functions of the parameters of autoregressive conditional duration (ACD models, random coefficient autoregressive (RCA models, doubly stochastic models and regression models with ARCH errors. Closed-form expressions for the information gain are also discussed in some detail.

  11. Quadratic Lagrangians and Legendre transformation

    International Nuclear Information System (INIS)

    Magnano, G.

    1988-01-01

    In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor

  12. The Random Quadratic Assignment Problem

    Science.gov (United States)

    Paul, Gerald; Shao, Jia; Stanley, H. Eugene

    2011-11-01

    The quadratic assignment problem, QAP, is one of the most difficult of all combinatorial optimization problems. Here, we use an abbreviated application of the statistical mechanics replica method to study the asymptotic behavior of instances in which the entries of at least one of the two matrices that specify the problem are chosen from a random distribution P. Surprisingly, the QAP has not been studied before using the replica method despite the fact that the QAP was first proposed over 50 years ago and the replica method was developed over 30 years ago. We find simple forms for C min and C max , the costs of the minimal and maximum solutions respectively. Notable features of our results are the symmetry of the results for C min and C max and their dependence on P only through its mean and standard deviation, independent of the details of P.

  13. orthogonal and scaling transformations of quadratic functions

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: In this paper we present a non-singular transformation that can reduce a given quadratic function defined on n. R to another simpler quadratic function and study the impact of the transformation in relation to the problem of minimization of the function. In particular, we construct a non-singular transformation that ...

  14. Quadratic independence of coordinate functions of certain ...

    Indian Academy of Sciences (India)

    ... are `quadratically independent' in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithfully on C ( M ) such that the action leaves invariant the linear span of the above coordinate functions.

  15. Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...

    African Journals Online (AJOL)

    Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...

  16. An example in linear quadratic optimal control

    NARCIS (Netherlands)

    Weiss, George; Zwart, Heiko J.

    1998-01-01

    We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme

  17. Bound constrained quadratic programming via piecewise

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun; Pinar, M. C.

    1999-01-01

    We consider the strictly convex quadratic programming problem with bounded variables. A dual problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained, piecewise quadratic function. It involves a lower bound of lambda/sub 1/ , the smallest eigenvalue...

  18. A Note on Cooperative Linear Quadratic Control

    NARCIS (Netherlands)

    Engwerda, J.C.

    2007-01-01

    In this note we consider the cooperative linear quadratic control problem. That is, the problem where a number of players, all facing a (different) linear quadratic control problem, decide to cooperate in order to optimize their performance. It is well-known, in case the performance criteria are

  19. An Unexpected Influence on a Quadratic

    Science.gov (United States)

    Davis, Jon D.

    2013-01-01

    Using technology to explore the coefficients of a quadratic equation can lead to an unexpected result. This article describes an investigation that involves sliders and dynamically linked representations. It guides students to notice the effect that the parameter "a" has on the graphical representation of a quadratic function in the form…

  20. Quadratic Hedging of Basis Risk

    Directory of Open Access Journals (Sweden)

    Hardy Hulley

    2015-02-01

    Full Text Available This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black–Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.

  1. Seven Wonders of the Ancient and Modern Quadratic World.

    Science.gov (United States)

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2001-01-01

    Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)

  2. Quadratic Equations...Origins, Development and Use.

    Science.gov (United States)

    McQualter, J. W.

    1988-01-01

    There may be a social and an intellectual aspect to the process of development of mathematical knowledge. This paper describes quadratic equations as intellectual mathematics and as colloquial mathematics. Provides some historical data. (YP)

  3. Schur Stability Regions for Complex Quadratic Polynomials

    Science.gov (United States)

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  4. Cascaded quadratic soliton compression at 800 nm

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey

    2007-01-01

    We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion.......We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  5. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  6. Radiotherapy treatment planning linear-quadratic radiobiology

    CERN Document Server

    Chapman, J Donald

    2015-01-01

    Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

  7. The Factorability of Quadratics: Motivation for More Techniques

    Science.gov (United States)

    Bosse, Michael J.; Nandakumar, N. R.

    2005-01-01

    Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…

  8. Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem

    DEFF Research Database (Denmark)

    Mak, Vicky; Thomadsen, Tommy

    2006-01-01

    This paper considers the cardinality constrained quadratic knapsack problem (QKP) and the quadratic selective travelling salesman problem (QSTSP). The QKP is a generalization of the knapsack problem and the QSTSP is a generalization of the travelling salesman problem. Thus, both problems are NP...

  9. Linear-quadratic control and quadratic differential forms for multidimensional behaviors

    NARCIS (Netherlands)

    Napp, D.; Trentelman, H.L.

    2011-01-01

    This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look

  10. A CART extention using Quadratic Decision Borders

    DEFF Research Database (Denmark)

    Hartelius, Karsten

    1999-01-01

    In this article we put forward an extention to the hierarchical CART classification method which uses quadratic decision borders. The original CART applies univariate splits on individual variables as well as splits on combinations of variables to recursively partition the feature-space into subs......In this article we put forward an extention to the hierarchical CART classification method which uses quadratic decision borders. The original CART applies univariate splits on individual variables as well as splits on combinations of variables to recursively partition the feature......-space into subsets which are successively more class-homogeneous. Guided by the fact that class-distributions in feature-space are very often hyper-elliptical shaped, we give an extension to the original CART which also uses quadratic shaped decision borders which can be modelled by a mean-vector and a dispersion...

  11. Heredity in one-dimensional quadratic maps

    Science.gov (United States)

    Romera, M.; Pastor, G.; Alvarez, G.; Montoya, F.

    1998-12-01

    In an iterative process, as is the case of a one-dimensional quadratic map, heredity has never been mentioned. In this paper we show that the pattern of a superstable orbit of a one-dimensional quadratic map can be expressed as the sum of the gene of the chaotic band where the pattern is to be found, and the ancestral path that joins all its ancestors. The ancestral path holds all the needed genetic information to calculate the descendants of the pattern. The ancestral path and successive descendant generations of the pattern constitute the family tree of the pattern, which is important to study and understand the orbit's ordering.

  12. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2003-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... on the simple observation that all functions in each component need the same extra parameters and thus a transitive closure is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity...

  13. On orthogonality preserving quadratic stochastic operators

    Energy Technology Data Exchange (ETDEWEB)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd [Department of Computational and Theoretical Sciences, Faculty of Science International Islamic University Malaysia, P.O. Box 141, 25710 Kuantan, Pahang Malaysia (Malaysia)

    2015-05-15

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  14. Reaction diffusion equations and quadratic convergence

    Directory of Open Access Journals (Sweden)

    A. S. Vatsala

    1997-01-01

    Full Text Available In this paper, the method of generalized quasilinearization has been extended to reaction diffusion equations. The extension includes earlier known results as special cases. The earlier results developed are when (i the right-hand side function is the sum of a convex and concave function, and (ii the right-hand function can be made convex by adding a convex function. In our present result, if the monotone iterates are mildly nonlinear, we establish the quadratic convergence as in the quasilinearization method. If the iterates are totally linear then the iterates converge semi-quadratically.

  15. Indirect quantum tomography of quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)

    2011-01-15

    A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.

  16. Fuzzy Stability of Quadratic Functional Equations

    Directory of Open Access Journals (Sweden)

    Jang Sun-Young

    2010-01-01

    Full Text Available The fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive functional equation in fuzzy Banach spaces have been investigated by Moslehian et al. In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations and    in fuzzy Banach spaces.

  17. A Practical Approach to Quadratic Equations.

    Science.gov (United States)

    Light, Peter

    1983-01-01

    The usual methods for solving quadratic equations are noted to require either the use of numerical formula or curve plotting on graph paper. The method described here enables pupils to solve equations using only a 45 degree setsquare, graph paper, and a pencil for those which have both real roots and real coefficients. (Author/MP)

  18. Fuzzy Stability of Quadratic Functional Equations

    OpenAIRE

    Dong Yun Shin; Choonkil Park; Sun-Young Jang; Jung Rye Lee

    2010-01-01

    The fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive functional equation in fuzzy Banach spaces have been investigated by Moslehian et al. In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations and    in fuzzy Banach spaces.

  19. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families...

  20. Modulational instability in periodic quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never complete...

  1. Target manifold formation using a quadratic SDF

    Science.gov (United States)

    Hester, Charles F.; Risko, Kelly K. D.

    2013-05-01

    Synthetic Discriminant Function (SDF) formulation of correlation filters provides constraints for forming target subspaces for a target set. In this paper we extend the SDF formulation to include quadratic constraints and use this solution to form nonlinear manifolds in the target space. The theory for forming these manifolds will be developed and demonstrated with data.

  2. Quadratic independence of coordinate functions of certain ...

    Indian Academy of Sciences (India)

    It is indeed a very important and interesting problem in the theory of quantum groups and noncommutative geometry ... independence of the algebra of natural coordinate functions on a large class of homoge- neous spaces of a .... Quadratic independence and nonexistence of genuine quantum group action. Let V be a finite ...

  3. Investigating Students' Mathematical Difficulties with Quadratic Equations

    Science.gov (United States)

    O'Connor, Bronwyn Reid; Norton, Stephen

    2016-01-01

    This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

  4. STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING: A SURVEY

    Directory of Open Access Journals (Sweden)

    Damián Fernández

    2014-12-01

    Full Text Available We review the motivation for, the current state-of-the-art in convergence results, and some open questions concerning the stabilized version of the sequential quadratic programming algorithm for constrained optimization. We also discuss the tools required for its local convergence analysis, globalization challenges, and extentions of the method to the more general variational problems.

  5. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

    Directory of Open Access Journals (Sweden)

    Xue-Gang Zhou

    2014-01-01

    Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

  6. Geometric Approaches to Quadratic Equations from Other Times and Places.

    Science.gov (United States)

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  7. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda......-lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters...... on the simple observation that all functions in each component need the same extra parameters and thus a transitive closure is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity...

  8. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2003-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda......-lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters...... on the simple observation that all functions in each component need the same extra parameters and thus a transitive closure is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity...

  9. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2004-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda......-lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters...... on the simple observation that all functions in each component need the same extra parameters and thus a transitive closure is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity...

  10. Cascaded Quadratic Soliton Compression in Waveguide Structures

    DEFF Research Database (Denmark)

    Guo, Hairun

    to further push such multi-cycle pulses into few-cycle and even single-cycle. In this thesis, we investigate the high order soliton compression in quadratic nonlinear waveguide structures, which is a one-step pulse compression scheme making use of the soliton regime -- with the spontaneous cancelation...... and self-defocusing Kerr effect so that the soliton is created and the soliton self-compression happens in the normal dispersion region. Meanwhile, the chromatic dispersion in the waveguide is also tunable, understood as the dispersion engineering with structural designs. Therefore, compared to commonly...... used two-step compression scheme with e.g. hollow-core photonic crystal fibers plus a dispersion compensation component, our scheme, called the cascaded quadratic soliton compression (CQSC), provides a simpler setup with larger tunability on the nonlinearity, and could avoid the problem with the self...

  11. Lambda-lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, O.; Schultz, U.P.

    2004-01-01

    -lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters......Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...

  12. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based......Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  13. Quadratic Term Structure Models in Discrete Time

    OpenAIRE

    Marco Realdon

    2006-01-01

    This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...

  14. Stochastic Linear Quadratic Optimal Control Problems

    International Nuclear Information System (INIS)

    Chen, S.; Yong, J.

    2001-01-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

  15. Applications: Quadratic Formulas Up to NCTM's Curriculum Standards.

    Science.gov (United States)

    Nievergelt, Yves

    1992-01-01

    Discusses an alternative form of the quadratic formula to solve quadratic equations. Presents an application to chemistry to illustrate the need for quadratic formulas better suited to approximations obtained using hand-held calculators. Addresses the problems of rounding errors, accuracy of solutions, and factoring as a method of solution. (MDH)

  16. A Finite Continuation Algorithm for Bound Constrained Quadratic Programming

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa C.

    1999-01-01

    The dual of the strictly convex quadratic programming problem with unit bounds is posed as a linear $\\ell_1$ minimization problem with quadratic terms. A smooth approximation to the linear $\\ell_1$ function is used to obtain a parametric family of piecewise-quadratic approximation problems...

  17. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    Science.gov (United States)

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  18. Estimating quadratic variation using realized variance

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    This paper looks at some recent work on estimating quadratic variation using realized variance (RV) - that is, sums of M squared returns. This econometrics has been motivated by the advent of the common availability of high-frequency financial return data. When the underlying process is a semimar......This paper looks at some recent work on estimating quadratic variation using realized variance (RV) - that is, sums of M squared returns. This econometrics has been motivated by the advent of the common availability of high-frequency financial return data. When the underlying process...... is a semimartingale we recall the fundamental result that RV is a consistent (as M ) estimator of quadratic variation (QV). We express concern that without additional assumptions it seems difficult to give any measure of uncertainty of the RV in this context. The position dramatically changes when we work...... with a rather general SV model - which is a special case of the semimartingale model. Then QV is integrated variance and we can derive the asymptotic distribution of the RV and its rate of convergence. These results do not require us to specify a model for either the drift or volatility functions, although we...

  19. Quadratic tracer dynamical models tobacco growth

    International Nuclear Information System (INIS)

    Qiang Jiyi; Hua Cuncai; Wang Shaohua

    2011-01-01

    In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)

  20. Quadratic sinusoidal analysis of voltage clamped neurons.

    Science.gov (United States)

    Magnani, Christophe; Moore, Lee E

    2011-11-01

    Nonlinear biophysical properties of individual neurons are known to play a major role in the nervous system, especially those active at subthreshold membrane potentials that integrate synaptic inputs during action potential initiation. Previous electrophysiological studies have made use of a piecewise linear characterization of voltage clamped neurons, which consists of a sequence of linear admittances computed at different voltage levels. In this paper, a fundamentally new theory is developed in two stages. First, analytical equations are derived for a multi-sinusoidal voltage clamp of a Hodgkin-Huxley type model to reveal the quadratic response at the ionic channel level. Second, the resulting behavior is generalized to a novel Hermitian neural operator, which uses an algebraic formulation capturing the entire quadratic behavior of a voltage clamped neuron. In addition, this operator can also be used for a nonlinear identification analysis directly applicable to experimental measurements. In this case, a Hermitian matrix of interactions is built with paired frequency probing measurements performed at specific harmonic and interactive output frequencies. More importantly, eigenanalysis of the neural operator provides a concise signature of the voltage dependent conductances determined by their particular distribution on the dendritic and somatic membrane regions of neurons. Finally, the theory is concretely illustrated by an analysis of an experimentally measured vestibular neuron, providing a remarkably compact description of the quadratic responses involved in the nonlinear processing underlying the control of eye position during head rotation, namely the neural integrator.

  1. A Genetic-Algorithms-Based Approach for Programming Linear and Quadratic Optimization Problems with Uncertainty

    Directory of Open Access Journals (Sweden)

    Weihua Jin

    2013-01-01

    Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.

  2. Optimal Asset Allocation under Quadratic Loss Aversion

    OpenAIRE

    Fortin, Ines; Hlouskova, Jaroslava

    2012-01-01

    Abstract: We study the asset allocation of a quadratic loss-averse (QLA) investor and derive conditions under which the QLA problem is equivalent to the mean-variance (MV) and conditional value-at-risk (CVaR) problems. Then we solve analytically thetwo-asset problem of the QLA investor for a risk-free and a risky asset. We find that the optimal QLA investment in the risky asset is finite, strictly positive and is minimal with respect to the reference point for a value strictly larger than the...

  3. Quadratic stochastic operators: Results and open problems

    International Nuclear Information System (INIS)

    Ganikhodzhaev, R.N.; Rozikov, U.A.

    2009-03-01

    The history of the quadratic stochastic operators can be traced back to the work of S. Bernshtein (1924). For more than 80 years this theory has been developed and many papers were published. In recent years it has again become of interest in connection with numerous applications in many branches of mathematics, biology and physics. But most results of the theory were published in non English journals, full text of which are not accessible. In this paper we give a brief description of the results and discuss several open problems. (author)

  4. Facets for the Cardinality Constrained Quadratic Knapsack Problem and the Quadratic Selective Travelling Salesman Problem

    DEFF Research Database (Denmark)

    Mak, Vicky; Thomadsen, Tommy

    2004-01-01

    A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-collecting) TSP: In addition to the edge-costs, each node has an associated reward (denoted the node-reward) and instead of visiting all nodes, only profitable nodes are visited. The Quadratic Selective TSP...

  5. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  6. Quadratic forms and Clifford algebras on derived stacks

    OpenAIRE

    Vezzosi, Gabriele

    2013-01-01

    In this paper we present an approach to quadratic structures in derived algebraic geometry. We define derived n-shifted quadratic complexes, over derived affine stacks and over general derived stacks, and give several examples of those. We define the associated notion of derived Clifford algebra, in all these contexts, and compare it with its classical version, when they both apply. Finally, we prove three main existence results for derived shifted quadratic forms over derived stacks, define ...

  7. Steller Structure Treatment of Quadratic Gravity

    Science.gov (United States)

    Chen, Y.; Shao, C.; Chen, X.

    2001-07-01

    A scheme for considering stellar structure by taking advantage of the quadratic theory of gravitation in four-dimensions is proposed, citing the fact that the possible deviation of gravity in astrophysical systems from the Newtonian inverse square law can be explained through the use of this theory. A modified Lane-Emden equation is derived by making use of the linearized static field equation of quadratic gravity and the polytropic equation of state for a fluid. The influence on stellar structure of the additional force included in quadratic gravity is investigated. It is shown that the additional force can be treated as a perturbation of a bound system by solutions of the modified Lane-Emden equation and an order-of-magnitude analysis. %ZY. Fujii, Nature (London) 234 (1971), 5; Phys. Rev. D9 (1974), 874. D. R. Long, Phys. Rev. D 9 (1974), 850. J. O'Hanlon, Phys. Rev. Lett. 29 (1972), 137. D. R. Mikkelson and M. J. Newman, Phys. Rev. D 16 (1977), 919. R. V. Wagoner, Phys. Rev. D 1 (1970), 3209. J. Z. Xu and Y. H. Chen, Gen. Relat. Gravit. J. 23 (1991), 169. K. S. Stelle, Gen. Relat. Gravit. J. 8 (1978), 631. C. Xu and G. F. R. Ellis, Class. Quant. Grav. 8 (1991), 1747. A. Eddington, The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press, Cambridge, 1924). W. Pauli, Theory of Relativity (Pergamon Press, New York, 1921). H. A. Buchdahl, Proc. Edinburgh Math. Soc. 8 (1948), 89. J. D. Barrow and A. C. Ottewill, J. of Phys. A 16 (1983), 2757. M. B. Mijic, M. S. Morris and W. M. Suen, Phys. Rev. D 34 (1986), 2934. A. L. Berkin, Phys. Rev. D 42 (1990), 1017. N. D. Birrell and P. C. W. Davies, Quantum Field in Curved Space (Cambridge University Press, 1982). E. T. Tomboulis, Quantum Theory of Gravity, ed. S. M. Christensen (Bristol: Adam Hilger 1984). H. J. Treder, Ann. der Phys. 32 (1975), 383. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York 1972). E. N. Glass and G. Szamosi

  8. Solving a binary puzzle

    NARCIS (Netherlands)

    P.H. Utomo (Putranto); R.H. Makarim (Rusydi)

    2017-01-01

    textabstractA Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set (Formula presented.). Let (Formula presented.) be an even integer, a solved binary puzzle is an (Formula presented.) binary array that satisfies the following conditions: (1) no three consecutive ones and

  9. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  10. On Coupled Rate Equations with Quadratic Nonlinearities

    Science.gov (United States)

    Montroll, Elliott W.

    1972-01-01

    Rate equations with quadratic nonlinearities appear in many fields, such as chemical kinetics, population dynamics, transport theory, hydrodynamics, etc. Such equations, which may arise from basic principles or which may be phenomenological, are generally solved by linearization and application of perturbation theory. Here, a somewhat different strategy is emphasized. Alternative nonlinear models that can be solved exactly and whose solutions have the qualitative character expected from the original equations are first searched for. Then, the original equations are treated as perturbations of those of the solvable model. Hence, the function of the perturbation theory is to improve numerical accuracy of solutions, rather than to furnish the basic qualitative behavior of the solutions of the equations. PMID:16592013

  11. Gain scheduled linear quadratic control for quadcopter

    Science.gov (United States)

    Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.

    2017-12-01

    This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.

  12. Quadratic dynamical decoupling with nonuniform error suppression

    International Nuclear Information System (INIS)

    Quiroz, Gregory; Lidar, Daniel A.

    2011-01-01

    We analyze numerically the performance of the near-optimal quadratic dynamical decoupling (QDD) single-qubit decoherence errors suppression method [J. West et al., Phys. Rev. Lett. 104, 130501 (2010)]. The QDD sequence is formed by nesting two optimal Uhrig dynamical decoupling sequences for two orthogonal axes, comprising N 1 and N 2 pulses, respectively. Varying these numbers, we study the decoherence suppression properties of QDD directly by isolating the errors associated with each system basis operator present in the system-bath interaction Hamiltonian. Each individual error scales with the lowest order of the Dyson series, therefore immediately yielding the order of decoherence suppression. We show that the error suppression properties of QDD are dependent upon the parities of N 1 and N 2 , and near-optimal performance is achieved for general single-qubit interactions when N 1 =N 2 .

  13. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters that yields the cubic factor in the traditional formulation of lambda-lifting, which......Lambda-lifting is a program transformation used in compilers and in partial evaluators and that operates in cubic time. In this article, we show how to reduce this complexity to quadratic time. Lambda-lifting transforms a block-structured program into a set of recursive equations, one for each...... is due to Johnsson. This search is carried out by a transitive closure. Instead, we partition the call graph of the source program into strongly connected components, based on the simple observation that all functions in each component need the same extra parameters and thus a transitive cl osure...

  14. Quadratic gravity in first order formalism

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Enrique; Anero, Jesus; Gonzalez-Martin, Sergio, E-mail: enrique.alvarez@uam.es, E-mail: jesusanero@gmail.com, E-mail: sergio.gonzalez.martin@uam.es [Departamento de Física Teórica and Instituto de Física Teórica (IFT-UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid (Spain)

    2017-10-01

    We consider the most general action for gravity which is quadratic in curvature. In this case first order and second order formalisms are not equivalent. This framework is a good candidate for a unitary and renormalizable theory of the gravitational field; in particular, there are no propagators falling down faster than 1/ p {sup 2}. The drawback is of course that the parameter space of the theory is too big, so that in many cases will be far away from a theory of gravity alone. In order to analyze this issue, the interaction between external sources was examined in some detail. We find that this interaction is conveyed mainly by propagation of the three-index connection field. At any rate the theory as it stands is in the conformal invariant phase; only when Weyl invariance is broken through the coupling to matter can an Einstein-Hilbert term (and its corresponding Planck mass scale) be generated by quantum corrections.

  15. Low-rank quadratic semidefinite programming

    KAUST Repository

    Yuan, Ganzhao

    2013-04-01

    Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.

  16. Large-scale sequential quadratic programming algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  17. Existence of solutions of some quadratic integral equations

    Directory of Open Access Journals (Sweden)

    Giuseppe Anichini

    2008-01-01

    Full Text Available In this paper we study the existence of continuous solutions of quadratic integral equations. The theory of quadratic integral equations has many useful applications in mathematical physics, economics, biology, as well as in describing real world problems. The main tool used in our investigations is a fixed point result for the multivalued solution's map with acyclic values.

  18. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Power system stabilizer; linear quadratic regulator; small-signal stability; transient stability. Abstract. Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state ...

  19. Orthogonal and Scaling Transformations of Quadratic Functions with ...

    African Journals Online (AJOL)

    In this paper we present a non-singular transformation that can reduce a given quadratic function defined on Rn to another simpler quadratic function and study the impact of the transformation in relation to the problem of minimization of the function. In particular, we construct a non-singular transformation that can reduce a ...

  20. Quadratic Twists of Rigid Calabi–Yau Threefolds Over

    DEFF Research Database (Denmark)

    Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko

    2013-01-01

    of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...

  1. orthogonal and scaling transformations of quadratic functions with ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: In this paper we present a non-singular transformation that can reduce a given quadratic function defined on n. R to another simpler quadratic function and study the impact of the transformation in relation to the problem of minimization of the function. In particular, we construct a non-singular transformation that ...

  2. Divisibility of class numbers of imaginary quadratic function fields by ...

    Indian Academy of Sciences (India)

    (Math. Sci.) Vol. 123, No. 1, February 2013, pp. 1–18. c Indian Academy of Sciences. Divisibility of class numbers of imaginary quadratic function fields by a fixed ... quadratic extensions of the function field Fq(x) whose class groups have elements of ...... [15] Heegner K, Diophantische Analysis und Modulfunktionen, Math.

  3. Superconvergence for tetrahedral quadratic finite element methods for elliptic equations

    NARCIS (Netherlands)

    Brandts, J.H.; Krizek, M.

    2005-01-01

    For a model elliptic boundary value problem we will prove that on strongly regular families of uniform tetrahedral partitions of the domain, the gradient of the quadratic finite element approximation is superclose to the gradient of the quadratic Lagrange interpolant of the exact solution. This

  4. Sketching the General Quadratic Equation Using Dynamic Geometry Software

    Science.gov (United States)

    Stols, G. H.

    2005-01-01

    This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

  5. Visualising the Roots of Quadratic Equations with Complex Coefficients

    Science.gov (United States)

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  6. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

    Science.gov (United States)

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

  7. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    Science.gov (United States)

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  8. Analysis of Students' Error in Learning of Quadratic Equations

    Science.gov (United States)

    Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

    2010-01-01

    The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

  9. Period variation studies of six contact binaries in M4

    Science.gov (United States)

    Rukmini, Jagirdar; Shanti Priya, Devarapalli

    2018-04-01

    We present the first period study of six contact binaries in the closest globular cluster M4 the data collected from June 1995‑June 2009 and Oct 2012‑Sept 2013. New times of minima are determined for all the six variables and eclipse timing (O-C) diagrams along with the quadratic fit are presented. For all the variables, the study of (O-C) variations reveals changes in the periods. In addition, the fundamental parameters for four of the contact binaries obtained using the Wilson-Devinney code (v2003) are presented. Planned observations of these binaries using the 3.6-m Devasthal Optical Telescope (DOT) and the 4-m International Liquid Mirror Telescope (ILMT) operated by the Aryabhatta Research Institute of Observational Sciences (ARIES; Nainital) can throw light on their evolutionary status from long term period variation studies.

  10. Quadratic dissipation effect on the moonpool resonance

    Science.gov (United States)

    Liu, Heng-xu; Chen, Hai-long; Zhang, Liang; Zhang, Wan-chao; Liu, Ming

    2017-12-01

    This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp resonance and to measure the viscous effect, a quadratic dissipation is introduced by assuming an additional dissipative disk at the moonpool entrance. The fluid domain is divided into five cylindrical subdomains, and the velocity potential in each subdomain is obtained by meeting the Laplace equation as well as the boundary conditions. The free-surface elevation at the center of the moonpool, along with the pressure and velocity at the restricted entrance for first-order wave are evaluated. By choosing appropriate dissipation coefficients, the free-surface elevation calculated at the center of the moonpool is in coincidence with the measurements in model tests both at the peak period and amplitude at resonance. It is shown that the sharp resonance in the potential flow theory can be eliminated and the viscous effect can be estimated with a simple method in some provided hydrodynamic models.

  11. Securing Digital Audio using Complex Quadratic Map

    Science.gov (United States)

    Suryadi, MT; Satria Gunawan, Tjandra; Satria, Yudi

    2018-03-01

    In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.

  12. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  13. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  14. A revisit to quadratic programming with fuzzy parameters

    International Nuclear Information System (INIS)

    Liu, S.-T.

    2009-01-01

    Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.

  15. The algebraic and geometric theory of quadratic forms

    CERN Document Server

    Elman, Richard; Merkurjev, Alexander

    2008-01-01

    This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages

  16. Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems

    International Nuclear Information System (INIS)

    Scott, D.S.; Ward, R.C.

    1981-01-01

    Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices

  17. Quadratic integer programming for large scale banded matrices

    Science.gov (United States)

    Yan, T. Y.; Tan, H. H.

    1982-01-01

    This paper is concerned with the integer quadratic program where the variables are constrained to belong to a given set of discrete values. This quadratic integer program is shown to be equivalent to a problem of finding the shortest path in a particular directed graph called a trellis when the matrix is a positive-definite symmetric banded matrix. An efficient procedure for solving this shortest path problem is presented which allows the solution of the integer quadratic program. This method is particularly effective when the half-bandwidth of the matrix is significantly smaller than its dimension.

  18. Technical report. The application of probability-generating functions to linear-quadratic radiation survival curves.

    Science.gov (United States)

    Kendal, W S

    2000-04-01

    To illustrate how probability-generating functions (PGFs) can be employed to derive a simple probabilistic model for clonogenic survival after exposure to ionizing irradiation. Both repairable and irreparable radiation damage to DNA were assumed to occur by independent (Poisson) processes, at intensities proportional to the irradiation dose. Also, repairable damage was assumed to be either repaired or further (lethally) injured according to a third (Bernoulli) process, with the probability of lethal conversion being directly proportional to dose. Using the algebra of PGFs, these three processes were combined to yield a composite PGF that described the distribution of lethal DNA lesions in irradiated cells. The composite PGF characterized a Poisson distribution with mean, chiD+betaD2, where D was dose and alpha and beta were radiobiological constants. This distribution yielded the conventional linear-quadratic survival equation. To test the composite model, the derived distribution was used to predict the frequencies of multiple chromosomal aberrations in irradiated human lymphocytes. The predictions agreed well with observation. This probabilistic model was consistent with single-hit mechanisms, but it was not consistent with binary misrepair mechanisms. A stochastic model for radiation survival has been constructed from elementary PGFs that exactly yields the linear-quadratic relationship. This approach can be used to investigate other simple probabilistic survival models.

  19. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...

  20. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.

    2005-01-01

    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal

  1. Accurate nonlocal theory for cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey

    2007-01-01

    We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  2. Good Numerical Technique in Chemistry: The Quadratic Equation.

    Science.gov (United States)

    Thompson, H. Bradford

    1987-01-01

    Discusses the loss of precision that normally results in solving equilibrium problems, particularly as presented through the use of quadratic formulas in most introductory college chemistry textbooks. Provides examples of demonstrations. (TW)

  3. Quadratic measurement and conditional state preparation in an optomechanical system

    DEFF Research Database (Denmark)

    A. Brawley, George; Vanner, Michael A.; Bowen, Warwick P.

    2014-01-01

    We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator....

  4. Approximate Euler-Lagrange Quadratic Mappings in Fuzzy Banach Spaces

    Directory of Open Access Journals (Sweden)

    Hark-Mahn Kim

    2013-01-01

    Full Text Available We consider general solution and the generalized Hyers-Ulam stability of an Euler-Lagrange quadratic functional equation in fuzzy Banach spaces, where , are nonzero rational numbers with , .

  5. Approximate Quartic and Quadratic Mappings in Quasi-Banach Spaces

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji

    2011-01-01

    Full Text Available we establish the general solution for a mixed type functional equation of aquartic and a quadratic mapping in linear spaces. In addition, we investigate the generalized Hyers-Ulam stability in p-Banach spaces.

  6. Projectile Motion with Quadratic Damping in a Constant ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Projectile Motion with Quadratic Damping in a Constant Gravitational Field. Chandra Das Dhiranjan Roy. General Article Volume 19 Issue 5 May 2014 pp 446-465 ...

  7. Geometric Procedures for Graphing the General Quadratic Equation.

    Science.gov (United States)

    DeTemple, Duane W.

    1984-01-01

    How tedious algebraic manipulations for simplifying general quadratic equations can be supplemented with simple geometric procedures is discussed. These procedures help students determine the type of conic and its axes and allow a graph to be sketched quickly. (MNS)

  8. The Open-Loop Linear Quadratic Differential Game Revisited

    NARCIS (Netherlands)

    Engwerda, J.C.

    2005-01-01

    In this note we reconsider the indefinite open-loop Nash linear quadratic differential game with an infinite planning horizon.In particular we derive both necessary and sufficient conditions under which the game will have a unique equilibrium.

  9. Optimal experimental designs for inverse quadratic regression models

    OpenAIRE

    Dette, Holger; Kiss, Christine

    2007-01-01

    In this paper optimal experimental designs for inverse quadratic regression models are determined. We consider two different parameterizations of the model and investigate local optimal designs with respect to the $c$-, $D$- and $E$-criteria, which reflect various aspects of the precision of the maximum likelihood estimator for the parameters in inverse quadratic regression models. In particular it is demonstrated that for a sufficiently large design space geometric allocation rules are optim...

  10. Resolving Actuator Redundancy - Control Allocation vs. Linear Quadratic Control

    OpenAIRE

    Härkegård, Ola

    2004-01-01

    When designing control laws for systems with more inputs than controlled variables, one issue to consider is how to deal with actuator redundancy. Two tools for distributing the control effort among a redundant set of actuators are control allocation and linear quadratic control design. In this paper, we investigate the relationship between these two design tools when a quadratic performance index is used for control allocation. We show that for a particular class of linear systems, they give...

  11. Critical Boundary of Cascaded Quadratic Soliton Compression in PPLN

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2012-01-01

    Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented.......Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented....

  12. On wave-packet dynamics in a decaying quadratic potential

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1997-01-01

    We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....

  13. Burgers' turbulence problem with linear or quadratic external potential

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.

    2005-01-01

    We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.......We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions....

  14. A Trust-region-based Sequential Quadratic Programming Algorithm

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....

  15. Some Fixed Points Results of Quadratic Functions in Split Quaternions

    Directory of Open Access Journals (Sweden)

    Young Chel Kwun

    2016-01-01

    Full Text Available We attempt to find fixed points of a general quadratic polynomial in the algebra of split quaternion. In some cases, we characterize fixed points in terms of the coefficients of these polynomials and also give the cardinality of these points. As a consequence, we give some simple examples to strengthen the infinitude of these points in these cases. We also find the roots of quadratic polynomials as simple consequences.

  16. BINARY MINOR PLANETS

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  17. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  18. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  19. Binary and Millisecond Pulsars

    OpenAIRE

    Lorimer, D. R.

    2005-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic b...

  20. Astrophysics of white dwarf binaries

    NARCIS (Netherlands)

    Nelemans, G.A.

    2006-01-01

    White dwarf binaries are the most common compact binaries in the Universe and are especially important for low-frequency gravitational wave detectors such as LISA. There are a number of open questions about binary evolution and the Galactic population of white dwarf binaries that can be solved using

  1. Evolution of cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.

    1981-01-01

    Cataclysmic binaries with short orbital periods have low mass secondary components. Their nuclear time scale is too long to be of evolutionary significance. Angular momentum loss from the binary drives the mass transfer between the two components. As long as the characteristic time scale is compared with the Kelvin-Helmholtz time scale of the mass losing secondary the star remains close to the main sequence, and the binary period decreases with time. If angular momentum loss is due to gravitational radiation then the mass transfer time scale becomes comparable to the Kelvin-Helmoltz time scale when the secondary's mass decreases to 0.12 Msub(sun), and the binary period is reduced to 80 minutes. Later, the mass losing secondary departs from the main sequence and gradually becomes degenerate. Now the orbital period increases with time. The observed lower limit to the orbital periods of hydrogen rich cataclysmic binaries implies that gravitational radiation is the main driving force for the evolution of those systems. It is shown that binaries emerging from a common envelope phase of evolution are well detached. They have to lose additional angular momentum to become semidetached cataclysmic variables. (author)

  2. Quasi-quadratic elements for nonlinear compressible and incompressible elasticity

    Science.gov (United States)

    Quaglino, A.; Favino, M.; Krause, R.

    2017-10-01

    This work deals with novel triangular and tetrahedral elements for nonlinear elasticity. While it is well-known that linear and quadratic elements perform, respectively, poorly and accurately in this context, their cost is very different. We construct an approximation that falls in-between these two cases, which we refer to as quasi-quadratic. We seek to satisfy the following: (1) absence of locking and pressure oscillations in the incompressible limit, (2) an exact equivalence to quadratic elements on linear problems, and (3) a computational cost comparable to linear elements on nonlinear problems. Our construction is formally based on the Hellinger-Reissner principle, where strains and displacement are interpolated linearly on nested meshes, but it can be recast in a pure displacement form via static condensation. We show that (1) and (2) are fulfilled via numerical studies on a series of benchmarks and analyze the cost of quadrature in order to show (3).

  3. The bounds of feasible space on constrained nonconvex quadratic programming

    Science.gov (United States)

    Zhu, Jinghao

    2008-03-01

    This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmingsE Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a P-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377-399] for solving a standard quadratic programming problem.

  4. Note on the rank of quadratic twists of Mordell equations

    OpenAIRE

    Chang, Sungkon

    2005-01-01

    14H52 : Elliptic curves Let E be the elliptic curve given by a Mordell equation y^2=x^3-A where A is an integer. For certain A, we use Stoll's formula to compute a lower bound for the proportion of square-free integers D up to X such that the Mordell-Weil rank of the quadratic twist by D is less than 2k, for given non-negative k. We also compute an upper bound for a certain average rank of quadratic twists of E.

  5. Quadratic α′-corrections to heterotic double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2015-10-01

    Full Text Available We investigate α′-corrections of heterotic double field theory up to quadratic order in the language of supersymmetric O(D,D+dim⁡G gauged double field theory. After introducing double-vielbein formalism with a parametrization which reproduces heterotic supergravity, we show that supersymmetry for heterotic double field theory up to leading order α′-correction is obtained from supersymmetric gauged double field theory. We discuss the necessary modifications of the symmetries defined in supersymmetric gauged double field theory. Further, we construct supersymmetric completion at quadratic order in α′.

  6. Minimal regular models of quadratic twists of genus two curves

    OpenAIRE

    Sadek, Mohammad

    2015-01-01

    Let $K$ be a complete discrete valuation field with ring of integers $R$ and residue field $k$ of characteristic $p>2$. We assume moreover that $k$ is algebraically closed. Let $C$ be a smooth projective geometrically connected curve of genus $2$. If $K(\\sqrt{D})/K$ is a quadratic field extension of $K$ with associated character $\\chi$, then $C^{\\chi}$ will denote the quadratic twist of $C$ by $\\chi$. Given the minimal regular model $\\mathcal X$ of $C$ over $R$, we determine the minimal regul...

  7. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2015-01-01

    Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

  8. Robust quadratic assignment problem with budgeted uncertain flows

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Feizollahi

    2015-12-01

    Full Text Available We consider a generalization of the classical quadratic assignment problem, where material flows between facilities are uncertain, and belong to a budgeted uncertainty set. The objective is to find a robust solution under all possible scenarios in the given uncertainty set. We present an exact quadratic formulation as a robust counterpart and develop an equivalent mixed integer programming model for it. To solve the proposed model for large-scale instances, we also develop two different heuristics based on 2-Opt local search and tabu search algorithms. We discuss performance of these methods and the quality of robust solutions through extensive computational experiments.

  9. On bent and semi-bent quadratic Boolean functions

    DEFF Research Database (Denmark)

    Charpin, P.; Pasalic, Enes; Tavernier, C.

    2005-01-01

    The maximum-length sequences, also called m-sequences, have received a lot of attention since the late 1960s. In terms of linear-feedback shift register (LFSR) synthesis they are usually generated by certain power polynomials over a finite field and in addition are characterized by a low cross...... their results to even n. We further investigate the conditions on the choice of ci for explicit definitions of new infinite families having three and four trace terms. Also, a class of nonpermutation polynomials whose composition with a quadratic function yields again a quadratic semi-bent function is specified...

  10. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  11. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  12. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  13. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  14. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The circumstances of mass exchange in close binary systems whose components have a mass < or approx. =1 M/sub sun/ are analyzed for the case where the system is losing orbital angular momentum by radiation of gravitational waves. The mass exchange rate will depend on the mass ratio of the components and on the mass of the component that is overfilling its critical Roche lobe. A comparison of the observed orbital periods, masses of the components losing material, and mass exchange rates against the theoretical values for cataclysmic binaries indicates that the evolution of the close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G61-29 may be driven by the emission of gravitational waves

  15. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  16. The Brightest Binaries

    Science.gov (United States)

    Vanbeveren, D., Van Rensbergen, W., De Loore, C.

    Massive stars are distributed all over the upper part of the Hertzsprung-Russell diagram according to their subsequent phases of stellar evolution from main sequence to supernova. Massive stars may either be single or they may be a component of a close binary. The observed single star/binary frequency is known only in a small part of the Galaxy. Whether this holds for the whole galaxy or for the whole cosmos is questionable and needs many more high quality observations. Massive star evolution depends critically on mass loss by stellar wind and this stellar wind mass loss may change dramatically when stars evolve from one phase to another. We start the book with a critical discussion of observations of the different types of massive stars, observations that are of fundamental importance in relation to stellar evolution, with special emphasis on mass loss by stellar wind. We update our knowledge of the physics that models the structure and evolution of massive single stars and we present new calculations. The conclusions resulting from a comparison between these calculations and observations are then used to study the evolution of massive binaries. This book provides our current knowledge of a great variety of massive binaries, and hence of a great variety of evolutionary phases. A large number of case studies illustrates the existence of these phases. Finally, we present the results of massive star population number synthesis, including the effect of binaries. The results indicate that neglecting them leads to a conclusion which may be far from reality. This book is written for researchers in massive star evolution. We hope that, after reading this book, university-level astrophysics students will become fascinated by the exciting world of the `Brightest Binaries'.

  17. Encounters of binaries

    International Nuclear Information System (INIS)

    Mikkola, S.

    1983-01-01

    Gravitational encounters of pairs of binaries have been studied numerically. Various cross-sections have been calculated for qualitative final results of the interaction and for energy transfer between the binding energy and the centre of mass kinetic energy. The distribution of the kinetic energies, resulting from the gravitational collision, were found to be virtually independent of the impact velocity in the case of collision of hard binaries. It was found that one out of five collisions, which are not simple fly-by's, leads to the formation of a stable three-body system. (author)

  18. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Duncan R. Lorimer

    1998-09-01

    Full Text Available Our knowledge of binary and millisecond pulsars has greatly increased in recent years. This is largely due to the success of large-area surveys which have brought the known population of such systems in the Galactic disk to around 50. As well as being interesting as a population of astronomical sources, many pulsars turn out to be superb celestial clocks. In this review we summarise the main properties of binary and millisecond pulsars and highlight some of their applications to relativistic astrophysics.

  19. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  20. Pareto optimality in infinite horizon linear quadratic differential games

    NARCIS (Netherlands)

    Reddy, P.V.; Engwerda, J.C.

    2013-01-01

    In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal

  1. Linear-quadratic stochastic pursuit-evasion games

    NARCIS (Netherlands)

    Bagchi, Arunabha; Olsder, Geert Jan

    1981-01-01

    A linear-quadratic differential game in which the system state is affected by disturbance and both players have access to different measurements is solved. The problem is first converted to an optimization problem in infinite-dimensional state space and then solved using standard techniques. For

  2. Music-Guided Video Summarization using Quadratic Assignments

    NARCIS (Netherlands)

    Mensink, T.; Jongstra, T.; Mettes, P.; Snoek, C.G.M.

    2017-01-01

    This paper aims to automatically generate a summary of an unedited video, guided by an externally provided music-track. The tempo, energy and beats in the music determine the choices and cuts in the video summarization. To solve this challenging task, we model video summarization as a quadratic

  3. A Factorization Approach to the Linear Regulator Quadratic Cost Problem

    Science.gov (United States)

    Milman, M. H.

    1985-01-01

    A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.

  4. Feedback Nash Equilibria for Linear Quadratic Descriptor Differential Games

    NARCIS (Netherlands)

    Engwerda, J.C.; Salmah, Y.

    2010-01-01

    In this note we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

  5. Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip

    2016-01-01

    We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...

  6. ON WEIGHTED GENERALIZED FUNCTIONS ASSOCIATED WITH QUADRATIC FORMS

    Directory of Open Access Journals (Sweden)

    E. L. Shishkina

    2016-12-01

    Full Text Available In this article we consider certain types of weighted generalized functions associated with nondegenerate quadratic forms. Such functions and their derivatives are used for constructing fundamental solutions of iterated ultra-hyperbolic equations with the Bessel operator and for constructing negative real powers of ultra-hyperbolic operators with the Bessel operator.

  7. Feedback nash equilibria for linear quadratic descriptor differential games

    NARCIS (Netherlands)

    Engwerda, J.C.; Salmah, S.

    2012-01-01

    In this paper, we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

  8. The strong law of large numbers for random quadratic forms

    NARCIS (Netherlands)

    Mikosch, T

    1996-01-01

    The paper establishes strong laws of large numbers for the quadratic forms [GRAPHICS] and the bilinear forms [GRAPHICS] where X = (X(n)) is a sequence of independent random variables and Y = (Y-n) is an independent copy of it. In the case of independent identically distributed symmetric p-stable

  9. A new heuristic for the quadratic assignment problem

    OpenAIRE

    Zvi Drezner

    2002-01-01

    We propose a new heuristic for the solution of the quadratic assignment problem. The heuristic combines ideas from tabu search and genetic algorithms. Run times are very short compared with other heuristic procedures. The heuristic performed very well on a set of test problems.

  10. Tuning a fuzzy controller using quadratic response surfaces

    Science.gov (United States)

    Schott, Brian; Whalen, Thomas

    1992-01-01

    Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

  11. Exact solution of the classical mechanical quadratic Zeeman effect

    Indian Academy of Sciences (India)

    The quadratic effect leads to a dilation of space–time, and a one-to-one correspondence is observed for pairs of physical quantities like energy and angular momentum, and the maximum and minimum distances from the Coulomb center for the Zeeman orbit and the corresponding pairs for the image ellipse. Thus, instead of ...

  12. Experiments on Cascaded Quadratic Soliton Compression in Unpoled LN Waveguide

    DEFF Research Database (Denmark)

    Guo, Hairun; Zhou, Binbin; Zeng, Xianglong

    2014-01-01

    Experiments on cascaded quadratic soliton compression in unpoled phasemismatched lithium niobate waveguides are presented. Pulse self-phasemodulation dominated by an overall self-defocusing nonlinearity is observed, with an variation of pump wavelength and waveguide core width. © 2014 Optical...

  13. Fuzzy Stability of Jensen-Type Quadratic Functional Equations

    Directory of Open Access Journals (Sweden)

    Sun-Young Jang

    2009-01-01

    Full Text Available We prove the generalized Hyers-Ulam stability of the following quadratic functional equations 2((+/2+2((−/2=(+( and (++(−=22(+22( in fuzzy Banach spaces for a nonzero real number with ≠±1/2.

  14. Optimization with quadratic support functions in nonconvex smooth optimization

    Science.gov (United States)

    Khamisov, O. V.

    2016-10-01

    Problem of global minimization of twice continuously differentiable function with Lipschitz second derivatives over a polytope is considered. We suggest a branch and bound method with polytopes as partition elements. Due to the Lipschitz property of the objective function we can construct a quadratic support minorant at each point of the feasible set. Global minimum of of this minorant provides a lower bound of the objective over given partition subset. The main advantage of the suggested method consists in the following. First quadratic minorants usually are nonconvex and we have to solve auxiliary global optimization problem. This problem is reduced to a mixed 0-1 linear programming problem and can be solved by an advanced 0-1 solver. Then we show that the quadratic minorants are getting convex as soon as partition elements are getting smaller in diameter. Hence, at the final steps of the branch and bound method we solve convex auxiliary quadratic problems. Therefore, the method accelerates when we are close to the global minimum of the initial problem.

  15. Divisibility of class numbers of imaginary quadratic function fields by ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 123; Issue 1. Divisibility of Class Numbers of Imaginary Quadratic Function Fields by a Fixed Odd Number. Pradipto Banerjee Srinivas Kotyada. Volume 123 Issue 1 February 2013 pp 1-18 ... http://www.ias.ac.in/article/fulltext/pmsc/123/01/0001-0018 ...

  16. A quadratic programming model for crop combinations in intercropping

    African Journals Online (AJOL)

    One particularly known problem that confronts the farmer is that of determining optimal crop combinations for an intercropping scheme. This work therefore sets out to develop a model which determines optimally a crop combination that will yield maximum profit when interactive effects are present. A quadratic programming ...

  17. Initial post dynamic buckling of a quadratic-cubic column ...

    African Journals Online (AJOL)

    In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...

  18. Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions

    Science.gov (United States)

    Leyendekkers, J. V.; Shannon, A. G.

    2004-01-01

    An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.

  19. Nearly Radical Quadratic Functional Equations in p-2-Normed Spaces

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji

    2012-01-01

    Full Text Available We establish some stability results in 2-normed spaces for the radical quadratic functional equation (∑=1(+2+(∑=1(−2=2∑=1((+( and then use subadditive functions to prove its stability in -2-normed spaces.

  20. Positivity and storage functions for quadratic differential forms

    NARCIS (Netherlands)

    Trentelman, Hendrikus; Willems, Jan C.

    1996-01-01

    Differential equations and one-variable polynomial matrices play an essential role in describing dynamics of systems. When studying functions of the dynamical variables or specifying performance criteria in optimal control, we invariably encounter quadratic expressions in the variables and their

  1. Quadratic versus Linear Rules in Predictive Discriminant Analysis.

    Science.gov (United States)

    Young, Brian

    Either linear or quadratic rules may be used to derive classification equations in discriminant analysis for the purpose of predicting group membership. Generally, the decision about which rule to use is governed by the degree to which the separate group covariance matrices are unequal. An example is presented that supports the superior internal…

  2. Projectile Motion with Quadratic Damping in a Constant ...

    Indian Academy of Sciences (India)

    IAS Admin

    The motion, with resistance proportional to vv, leads to a set of coupled equations and cannot be solved an- alytically. A number of papers including the quadratic drag have already been published [11–16]. However, these works are either numerical simulations or approx- imate analytical solution to the probelm. For exam-.

  3. Visualising the Complex Roots of Quadratic Equations with Real Coefficients

    Science.gov (United States)

    Bardell, Nicholas S.

    2012-01-01

    The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…

  4. A Result on Output Feedback Linear Quadratic Control

    NARCIS (Netherlands)

    Engwerda, J.C.; Weeren, A.J.T.M.

    2006-01-01

    In this note we consider the static output feedback linear quadratic control problem.We present both necessary and sufficient conditions under which this problem has a solution in case the involved cost depend only on the output and control variables.This result is used to present both necessary and

  5. A Unified Approach to Teaching Quadratic and Cubic Equations.

    Science.gov (United States)

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  6. Quadratic theory and feedback controllers for linear time delay systems

    International Nuclear Information System (INIS)

    Lee, E.B.

    1976-01-01

    Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)

  7. Parameter estimation of linear and quadratic chirps by employing ...

    Indian Academy of Sciences (India)

    dependent i.e. they require a priori knowledge about the nature of the chirp signal – linear or quadratic relation- ship between the time and instantaneous frequency. Most of them use techniques like Fractional. Fourier Transform (FrFT), Wigner Ville ...

  8. On misclassication probabilities of linear and quadratic classiers ...

    African Journals Online (AJOL)

    We study the theoretical misclassication probability of linear and quadratic classiers and examine the performance of these classiers under distributional variations in theory and using simulation. We derive expression for Bayes errors for some competing distributions from the same family under location shift. Keywords: ...

  9. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

  10. Viscosity solution of linear regulator quadratic for degenerate diffusions

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The paper studied a linear regulator quadratic control problem for degenerate Hamilton-Jacobi-Bellman (HJB equation. We showed the existence of viscosity properties and established a unique viscosity solution of the degenerate HJB equation associated with this problem by the technique of viscosity solutions.

  11. The Quadratic Assignment Problem is Easy for Robinsonian Matrices

    NARCIS (Netherlands)

    Laurent, M.; Seminaroti, M.

    2014-01-01

    We present a new polynomially solvable case of the Quadratic Assignment Problem in Koopmans-Beckman form QAP(A;B), by showing that the identity permutation is optimal when A and B are respectively a Robinson similarity and dissimilarity matrix and one of A or B is a Toeplitz matrix. A Robinson

  12. A bilinear programming solution to the quadratic assignment problem

    NARCIS (Netherlands)

    J.F. Kaashoek (Johan); J.H.P. Paelinck (Jean)

    1999-01-01

    textabstractThe quadratic assignment problem (QAP) or maximum acyclical graph problem is well documented (see e.g. Pardalos and Wolkowicz, 1994). One of the authors has published some material, in which it was tried, by structuring the problem additionally, to bring it as closely as possible in the

  13. The quadratic assignment problem is easy for robinsonian matrices

    NARCIS (Netherlands)

    Laurent, M.; Seminaroti, M.

    We present a new polynomially solvable case of the Quadratic Assignment Problem in Koopmans–Beckman form QAP(A,B), by showing that the identity permutation is optimal when AA and BB are respectively a Robinson similarity and dissimilarity matrix and one of AA or BB is a Toeplitz matrix. A Robinson

  14. Bandit-Inspired Memetic Algorithms for Solving Quadratic Assignment Problems

    NARCIS (Netherlands)

    Puglierin, Francesco; Drugan, Madalina M.; Wiering, Marco

    2013-01-01

    In this paper we propose a novel algorithm called the Bandit-Inspired Memetic Algorithm (BIMA) and we have applied it to solve different large instances of the Quadratic Assignment Problem (QAP). Like other memetic algorithms, BIMA makes use of local search and a population of solutions. The novelty

  15. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Abstract. Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement ...

  16. Linear and quadratic in temperature resistivity from holography

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xian-Hui [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing, 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Wu, Shang-Yu [Department of Electrophysics, National Chiao Tung University,Hsinchu 300 (China); Wu, Shao-Feng [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China)

    2016-11-22

    We present a new black hole solution in the asymptotic Lifshitz spacetime with a hyperscaling violating factor. A novel computational method is introduced to compute the DC thermoelectric conductivities analytically. We find that both the linear-T and quadratic-T contributions to the resistivity can be realized, indicating that a more detailed comparison with experimental phenomenology can be performed in this scenario.

  17. Interacting binary stars

    International Nuclear Information System (INIS)

    Pringle, J.E.; Wade, R.A.

    1985-01-01

    This book reviews the theoretical and observational knowledge of interacting binary stars. The topics discussed embrace the following features of these objects: their orbits, evolution, mass transfer, angular momentum losses, X-ray emission, eclipses, variability, and other related phenomena. (U.K.)

  18. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  19. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  20. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  1. Nearly Ternary Quadratic Higher Derivations on Non-Archimedean Ternary Banach Algebras: A Fixed Point Approach

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji

    2011-01-01

    Full Text Available We investigate the stability and superstability of ternary quadratic higher derivations in non-Archimedean ternary algebras by using a version of fixed point theorem via quadratic functional equation.

  2. A polynomial bound on solutions of quadratic equations in free groups

    OpenAIRE

    Lysenok, Igor; Myasnikov, Alexei

    2011-01-01

    We provide polynomial upper bounds on the size of a shortest solution for quadratic equations in a free group. A similar bound is given for parametric solutions in the description of solutions sets of quadratic equations in a free group.

  3. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    Science.gov (United States)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  4. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

    Science.gov (United States)

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2014-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

  5. Linear Quadratic Controller with Fault Detection in Compact Disk Players

    DEFF Research Database (Denmark)

    Vidal, Enrique Sanchez; Hansen, K.G.; Andersen, R.S.

    2001-01-01

    The design of the positioning controllers in Optical Disk Drives are today subjected to a trade off between an acceptable suppression of external disturbances and an acceptable immunity against surfaces defects. In this paper an algorithm is suggested to detect defects of the disk surface combined...... with an observer and a Linear Quadratic Regulator. As a result, the mentioned trade off is minimized and the playability of the tested compact disk player is considerably enhanced....

  6. On a linear-quadratic problem with Caputo derivative

    Directory of Open Access Journals (Sweden)

    Dariusz Idczak

    2016-01-01

    Full Text Available In this paper, we study a linear-quadratic optimal control problem with a fractional control system containing a Caputo derivative of unknown function. First, we derive the formulas for the differential and gradient of the cost functional under given constraints. Next, we prove an existence result and derive a maximum principle. Finally, we describe the gradient and projection of the gradient methods for the problem under consideration.

  7. On the Distribution in Arithmetic Progressions of Reducible Quadratic Polynomials

    Science.gov (United States)

    Salerno, S.; Vitolo, A.

    1995-02-01

    By using Weil's estimate for Kloosterman sums, we obtain a result on the distribution of the sequence n(n+2), beyond the classical level, when a bilinear form with support over pairs of prime moduli is considered. We also obtain an analogous result in the case of a trilinear form, but only by using the recent results of Deshouillers-Iwaniec for sums of Kloosterman sums. Furthermore, the method is extended to general reducible quadratic polynomials.

  8. Bifurcation in Z2-symmetry quadratic polynomial systems with delay

    International Nuclear Information System (INIS)

    Zhang Chunrui; Zheng Baodong

    2009-01-01

    Z 2 -symmetry systems are considered. Firstly the general forms of Z 2 -symmetry quadratic polynomial system are given, and then a three-dimensional Z 2 equivariant system is considered, which describes the relations of two predator species for a single prey species. Finally, the explicit formulas for determining the Fold and Hopf bifurcations are obtained by using the normal form theory and center manifold argument.

  9. Local asymptotic stability for nonlinear quadratic functional integral equations

    Directory of Open Access Journals (Sweden)

    Bapurao Dhage

    2008-03-01

    Full Text Available In the present study, using the characterizations of measures of noncompactness we prove a theorem on the existence and local asymptotic stability of solutions for a quadratic functional integral equation via a fixed point theorem of Darbo. The investigations are placed in the Banach space of real functions defined, continuous and bounded on an unbounded interval. An example is indicated to demonstrate the natural realizations of abstract result presented in the paper.

  10. Generalized Stability of Euler-Lagrange Quadratic Functional Equation

    Directory of Open Access Journals (Sweden)

    Hark-Mahn Kim

    2012-01-01

    Full Text Available The main goal of this paper is the investigation of the general solution and the generalized Hyers-Ulam stability theorem of the following Euler-Lagrange type quadratic functional equation f(ax+by+af(x-by=(a+1b2f(y+a(a+1f(x, in (β,p-Banach space, where a,b are fixed rational numbers such that a≠-1,0 and b≠0.

  11. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  12. Adomian solution of a nonlinear quadratic integral equation

    Directory of Open Access Journals (Sweden)

    E.A.A. Ziada

    2013-04-01

    Full Text Available We are concerned here with a nonlinear quadratic integral equation (QIE. The existence of a unique solution will be proved. Convergence analysis of Adomian decomposition method (ADM applied to these type of equations is discussed. Convergence analysis is reliable enough to estimate the maximum absolute truncated error of Adomian’s series solution. Two methods are used to solve these type of equations; ADM and repeated trapezoidal method. The obtained results are compared.

  13. Parameter estimation of linear and quadratic chirps by employing ...

    Indian Academy of Sciences (India)

    Multiplication of the above function in u with a quadratic chirp ejψu3 . 4. Multiplication by a complex amplification factor. As in the case of LFM chirps, where we do not evaluate FrFT of all values for α but only over a restricted range given by Eq. (23), here too we evaluate FrFT for a restricted range of φ given by Equation (46) ...

  14. Design of Linear-Quadratic-Regulator for a CSTR process

    Science.gov (United States)

    Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

    2017-11-01

    This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

  15. A new genetic representation for quadratic assignment problem

    Directory of Open Access Journals (Sweden)

    Kratica Jozef

    2011-01-01

    Full Text Available In this paper, we propose a new genetic encoding for well known Quadratic Assignment Problem (QAP. The new encoding schemes are implemented with appropriate objective function and modified genetic operators. The numerical experiments were carried out on the standard QAPLIB data sets known from the literature. The presented results show that in all cases proposed genetic algorithm reached known optimal solutions in reasonable time.

  16. Developing A Combined Strategy For Solving Quadratic Assignment Problem

    Directory of Open Access Journals (Sweden)

    Faiz Ahyaningsih

    2015-08-01

    Full Text Available Abstract The quadratic assigment problem QAP is one of the most interesting and most challenging combinatorial optimization problems in existence. In this paper we propose a random point strategy to get a starting point and then we use a combination methods to get optimal solution. As a computational experience weve solved QAP 30 x 30 adopted from Nugent and backboard wiring problem 42 amp61620 42 adopted from Skorin-Kapov.

  17. A Fourier space algorithm for solving quadratic assignment problems

    OpenAIRE

    Kondor, Risi

    2010-01-01

    The quadratic assignment problem (QAP) is a central problem in combinatorial optimization. Several famous computationally hard tasks, such as graph matching, partitioning, and the traveling salesman all reduce to special cases of the QAP. In this paper we propose a new approach to the QAP based on the theory of non–commutative Fourier analysis on the symmetric group. Specifically, we present a branch–and–bound algorithm that performs both the branching and the bound...

  18. Dual mean field search for large scale linear and quadratic knapsack problems

    Science.gov (United States)

    Banda, Juan; Velasco, Jonás; Berrones, Arturo

    2017-07-01

    An implementation of mean field annealing to deal with large scale linear and non linear binary optimization problems is given. Mean field annealing is based on the analogy between combinatorial optimization and interacting physical systems at thermal equilibrium. Specifically, a mean field approximation of the Boltzmann distribution given by a Lagrangian that encompass the objective function and the constraints is calculated. The original discrete task is in this way transformed into a continuous variational problem. In our version of mean field annealing, no temperature parameter is used, but a good starting point in the dual space is given by a ;thermodynamic limit; argument. The method is tested in linear and quadratic knapsack problems with sizes that are considerably larger than those used in previous studies of mean field annealing. Dual mean field annealing is capable to find high quality solutions in running times that are orders of magnitude shorter than state of the art algorithms. Moreover, as may be expected for a mean field theory, the solutions tend to be more accurate as the number of variables grow.

  19. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to ......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances......The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  20. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to ......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances.......The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  1. A new semidefinite programming relaxation for the quadratic assignment problem and its computational perspectives

    NARCIS (Netherlands)

    de Klerk, E.; Sotirov, R.; Truetsch, U.

    2015-01-01

    Recent progress in solving quadratic assignment problems (QAPs) from the QAPLIB (Quadratic Assignment Problem Library) test set has come from mixed-integer linear or quadratic programming models that are solved in a branch-and-bound framework. Semidefinite programming (SDP) bounds for QAPs have also

  2. Design of reinforced areas of concrete column using quadratic polynomials

    Science.gov (United States)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  3. Quadratic mutual information for dimensionality reduction and classification

    Science.gov (United States)

    Gray, David M.; Principe, José C.

    2010-04-01

    A research area based on the application of information theory to machine learning has attracted considerable interest in the last few years. This research area has been coined information-theoretic learning within the community. In this paper we apply elements of information-theoretic learning to the problem of automatic target recognition (ATR). A number of researchers have previously shown the benefits of designing classifiers based on maximizing the mutual information between the class data and the class labels. Following prior research in information-theoretic learning, in the current results we show that quadratic mutual information, derived using a special case of the more general Renyi's entropy, can be used for classifier design. In this implementation, a simple subspace projection classifier is formulated to find the optimal projection weights such that the quadratic mutual information between the class data and the class labels is maximized. This subspace projection accomplishes a dimensionality reduction of the raw data set wherein information about the class membership is retained while irrelevant information is discarded. A subspace projection based on this criterion preserves as much class discriminability as possible within the subspace. For this paper, laser radar images are used to demonstrate the results. Classification performance against this data set is compared for a gradient descent MLP classifier and a quadratic mutual information MLP classifier.

  4. Nonlinear regularization path for quadratic loss support vector machines.

    Science.gov (United States)

    Karasuyama, Masayuki; Takeuchi, Ichiro

    2011-10-01

    Regularization path algorithms have been proposed to deal with model selection problem in several machine learning approaches. These algorithms allow computation of the entire path of solutions for every value of regularization parameter using the fact that their solution paths have piecewise linear form. In this paper, we extend the applicability of regularization path algorithm to a class of learning machines that have quadratic loss and quadratic penalty term. This class contains several important learning machines such as squared hinge loss support vector machine (SVM) and modified Huber loss SVM. We first show that the solution paths of this class of learning machines have piecewise nonlinear form, and piecewise segments between two breakpoints are characterized by a class of rational functions. Then we develop an algorithm that can efficiently follow the piecewise nonlinear path by solving these rational equations. To solve these rational equations, we use rational approximation technique with quadratic convergence rate, and thus, our algorithm can follow the nonlinear path much more precisely than existing approaches such as predictor-corrector type nonlinear-path approximation. We show the algorithm performance on some artificial and real data sets. © 2011 IEEE

  5. Measurement of quadratic electrogyration effect in castor oil

    Science.gov (United States)

    Izdebski, Marek; Ledzion, Rafał; Górski, Piotr

    2015-07-01

    This work presents a detailed analysis of electrogyration measurement in liquids with the usage of an optical polarimetric technique. Theoretical analysis of the optical response to an applied electric field is illustrated by experimental data for castor oil which exhibits natural optical activity, quadratic electro-optic effect and quadratic electrogyration effect. Moreover, the experimental data show that interaction of the oil with a pair of flat electrodes induces a significant dichroism and natural linear birefringence. The combination of these effects occurring at the same time complicates the procedure of measurements. It has been found that a single measurement is insufficient to separate the contribution of the electrogyration effect, but it is possible on the basis of several measurements performed with various orientations of the polarizer and the analyser. The obtained average values of the quadratic electrogyration coefficient β13 in castor oil at room temperature are from - 0.92 ×10-22 to - 1.44 ×10-22m2V-2 depending on the origin of the oil. Although this study is focused on measurements in castor oil, the presented analysis is much more general.

  6. Parametric binary dissection

    Science.gov (United States)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  7. Binary Masking & Speech Intelligibility

    OpenAIRE

    Boldt, Jesper

    2010-01-01

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined i...

  8. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    Science.gov (United States)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  9. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  10. IS NSVS 5066754 A NEAR-CONTACT OR A MARGINAL CONTACT BINARY?

    Energy Technology Data Exchange (ETDEWEB)

    Samec, Ronald G.; Nyaude, Ropafadzo [Astronomy Group, Department of Natural Sciences., Emmanuel College, 181 Springs Street, Franklin Springs, GA 30639 (United States); Caton, Daniel B. [Dark Sky Observatory, Physics and Astronomy Department, Appalachian State University, 525 Rivers Street, Boone, NC 28608-2106 (United States); Faulkner, Danny R. [University of South Carolina at Lancaster, 476 Hubbard Drive, Lancaster, SC 29720 (United States)

    2016-12-01

    BVR{sub cIc} light curves of NSVS 5066754 were taken on 2014 May at Dark Sky Observatory in North Carolina. This variable is a solar-type eclipsing binary ( T 1 ∼ 5750 K) with a period of only 0.3751689(1) days. It appeared to be one of the shortest periods in Shaw’s list of near-contact binaries. The Binary Maker fits and our Wilson–Devinney solutions show that the binary could have both semidetached and marginal contact binary configurations. Five new times of minimum light were calculated, along with two minima determined from archived All Sky Automated Survey observations. From these minima and the discovery epoch, a quadratic ephemeris was determined. Thus, a magnetic braking scenario is possible. Both semidetached and contact models were explored. A marginal contact solution had the best sum of square residuals. It gave a mass ratio of ∼0.5, and a component temperature difference of ∼360 K, albeit somewhat large for a contact binary. Two substantial cool spots were determined in this solution with 37° and 28° radii and t-factors or 0.94 and 0.78 respectively. The fill-out is very shallow, ∼106%. It may have recently achieved contact.

  11. Analysis of electroperforated materials using the quadrat counts method

    International Nuclear Information System (INIS)

    Miranda, E; Garzon, C; Garcia-Garcia, J; MartInez-Cisneros, C; Alonso, J

    2011-01-01

    The electroperforation distribution in thin porous materials is investigated using the quadrat counts method (QCM), a classical statistical technique aimed to evaluate the deviation from complete spatial randomness (CSR). Perforations are created by means of electrical discharges generated by needle-like tungsten electrodes. The objective of perforating a thin porous material is to enhance its air permeability, a critical issue in many industrial applications involving paper, plastics, textiles, etc. Using image analysis techniques and specialized statistical software it is shown that the perforation locations follow, beyond a certain length scale, a homogeneous 2D Poisson distribution.

  12. Analysis of electroperforated materials using the quadrat counts method

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E; Garzon, C; Garcia-Garcia, J [Departament d' Enginyeria Electronica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); MartInez-Cisneros, C; Alonso, J, E-mail: enrique.miranda@uab.cat [Departament de Quimica AnalItica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2011-06-23

    The electroperforation distribution in thin porous materials is investigated using the quadrat counts method (QCM), a classical statistical technique aimed to evaluate the deviation from complete spatial randomness (CSR). Perforations are created by means of electrical discharges generated by needle-like tungsten electrodes. The objective of perforating a thin porous material is to enhance its air permeability, a critical issue in many industrial applications involving paper, plastics, textiles, etc. Using image analysis techniques and specialized statistical software it is shown that the perforation locations follow, beyond a certain length scale, a homogeneous 2D Poisson distribution.

  13. Lipschitz stability of the K-quadratic functional equation | Chahbi ...

    African Journals Online (AJOL)

    Let N be the set of all positive integers, G an Abelian group with a metric d and E a normed space. For any f : G → E we define the k-quadratic difference of the function f by the formula Qk ƒ(x; y) := 2ƒ(x) + 2k2ƒ(y) - f(x + ky) - f(x - ky) for x; y ∈ G and k ∈ N. Under some assumptions about f and Qkƒ we prove that if Qkƒ is ...

  14. Nonlocal description of X waves in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole

    2006-01-01

    We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...... does not exist - one needs to use the nonlocal description, because the nonlocal response function does not converge towards a delta-function. Also, we use the nonlocal theory to show for the first time that the coupling to second harmonic is able to generate an X-shape in the fundamental field despite...

  15. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

    Science.gov (United States)

    T. Sardari, Naser

    2018-03-01

    Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

  16. Limits to compression with cascaded quadratic soliton compressors

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the group-velocity mismatch (GVM) is strong....... This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find...

  17. Soliton interaction in quadratic and cubic bulk media

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Bang, Ole

    2000-01-01

    Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...

  18. Quadratic Hamiltonians on non-symmetric Poisson structures

    International Nuclear Information System (INIS)

    Arribas, M.; Blesa, F.; Elipe, A.

    2007-01-01

    Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases

  19. Quadratic Feynman loop integrands from massless scattering equations

    Science.gov (United States)

    Gomez, Humberto

    2017-05-01

    Recently, the Cachazo-He-Yuan (CHY) approach has been extended to the loop level, but the resulting loop integrand has propagators that are linear in the loop momentum unlike Feynman's. In this paper, we present a new technique that directly produces quadratic propagators identical to Feynman's from the CHY approach. This paper focuses on the Φ3 theory, but extensions to other theories are briefly discussed. In addition, our proposal has an interesting geometric meaning; we can interpret this new formula as a unitary cut on a higher genus Riemann surface.

  20. Abelian groups and quadratic residues in weak arithmetic

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2010-01-01

    Roč. 56, č. 3 (2010), s. 262-278 ISSN 0942-5616 R&D Projects: GA AV ČR IAA1019401; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : bounded arithmetic * abelian group * Fermat's little theorem * quadratic reciprocity Subject RIV: BA - General Mathematics Impact factor: 0.361, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/malq.200910009/abstract;jsessionid=9F636FFACB84C025FD90C7E6880350DD.f03t03

  1. Quadratic inference functions in marginal models for longitudinal data.

    Science.gov (United States)

    Song, Peter X-K; Jiang, Zhichang; Park, Eunjoo; Qu, Annie

    2009-12-20

    The quadratic inference function (QIF) is a new statistical methodology developed for the estimation and inference in longitudinal data analysis using marginal models. This method is an alternative to the popular generalized estimating equations approach, and it has several useful properties such as robustness, a goodness-of-fit test and model selection. This paper presents an introductory review of the QIF, with a strong emphasis on its applications. In particular, a recently developed SAS MACRO QIF is illustrated in this paper to obtain numerical results.

  2. Sub-quadratic decoding of one-point hermitian codes

    DEFF Research Database (Denmark)

    Nielsen, Johan Sebastian Rosenkilde; Beelen, Peter

    2015-01-01

    We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power...... decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the matrix minimization algorithms from computer algebra, yielding similar asymptotic complexities....

  3. Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations

    DEFF Research Database (Denmark)

    Sørensen, Dan Erik Krarup

    1996-01-01

    We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.Polynomials...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...

  4. Quadratic controller syntheses for the steam generator water level

    Energy Technology Data Exchange (ETDEWEB)

    Arzelier, D.; Daafouz, J.; Bernussou, J.; Garcia, G

    1998-06-01

    The steam generator water level, (SGWL), control problem in the pressurized water reactor of a nuclear power plant is considered from robust control techniques point of view. The plant is a time-varying system with a non minimum phase behavior and an unstable open-loop response. The time-varying nature of the plant due to change in operating power is taken into account by including slowly time-varying uncertainty in the model. A linear Time-Invariant, (LTI) guaranteed cost quadratic stabilizing controller is designed in order to address some of the particular issues arising for such a control problem. (author) 17 refs.

  5. Restart-Based Genetic Algorithm for the Quadratic Assignment Problem

    Science.gov (United States)

    Misevicius, Alfonsas

    The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.

  6. Some insights on hard quadratic assignment problem instances

    Science.gov (United States)

    Hussin, Mohamed Saifullah

    2017-11-01

    Since the formal introduction of metaheuristics, a huge number Quadratic Assignment Problem (QAP) instances have been introduced. Those instances however are loosely-structured, and therefore made it difficult to perform any systematic analysis. The QAPLIB for example, is a library that contains a huge number of QAP benchmark instances that consists of instances with different size and structure, but with a very limited availability for every instance type. This prevents researchers from performing organized study on those instances, such as parameter tuning and testing. In this paper, we will discuss several hard instances that have been introduced over the years, and algorithms that have been used for solving them.

  7. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  8. Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations.

    Science.gov (United States)

    Cvitaš, Marko T

    2018-03-13

    The ring-polymer instanton (RPI) method is an efficient technique for calculating approximate tunneling splittings in high-dimensional molecular systems. In the RPI method, tunneling splitting is evaluated from the properties of the minimum action path (MAP) connecting the symmetric wells, whereby the extensive sampling of the full potential energy surface of the exact quantum-dynamics methods is avoided. Nevertheless, the search for the MAP is usually the most time-consuming step in the standard numerical procedures. Recently, nudged elastic band (NEB) and string methods, originaly developed for locating minimum energy paths (MEPs), were adapted for the purpose of MAP finding with great efficiency gains [ J. Chem. Theory Comput. 2016 , 12 , 787 ]. In this work, we develop a new quadratic string method for locating instantons. The Euclidean action is minimized by propagating the initial guess (a path connecting two wells) over the quadratic potential energy surface approximated by means of updated Hessians. This allows the algorithm to take many minimization steps between the potential/gradient calls with further reductions in the computational effort, exploiting the smoothness of potential energy surface. The approach is general, as it uses Cartesian coordinates, and widely applicable, with computational effort of finding the instanton usually lower than that of determining the MEP. It can be combined with expensive potential energy surfaces or on-the-fly electronic-structure methods to explore a wide variety of molecular systems.

  9. Electroweak vacuum stability and finite quadratic radiative corrections

    Energy Technology Data Exchange (ETDEWEB)

    Masina, Isabella [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Sezione di Ferrara (Italy); Southern Denmark Univ., Odense (Denmark). CP3-Origins; Southern Denmark Univ., Odense (Denmark). DIAS; Nardini, Germano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quiros, Mariano [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); IFAE-IAB, Barcelona (Spain)

    2015-07-15

    If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given perturbative Ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental parameters. If the UV mass spectrum involves several scales the cutoff is not unique and each SM sector has its own UV cutoff Λ{sub i}. We have performed this calculation assuming the Minimal Supersymmetric Standard Model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of the top quark and Higgs masses, and depending on the values of the different cutoffs Λ{sub i}, these contributions can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM point of view, the requirement of stability of the electroweak minimum under radiative corrections is incorporated into the matching conditions and provides an extra constraint on the Focus Point solution to the little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations of the Higgs sector in scenarios with heavy supersymmetric fields.

  10. On bent and semi-bent quadratic Boolean functions

    DEFF Research Database (Denmark)

    Charpin, P.; Pasalic, Enes; Tavernier, C.

    2005-01-01

    their results to even n. We further investigate the conditions on the choice of ci for explicit definitions of new infinite families having three and four trace terms. Also, a class of nonpermutation polynomials whose composition with a quadratic function yields again a quadratic semi-bent function is specified...... correlation and high nonlinearity. We say that such a sequence is generated by a semi-bent function. Some new families of such function, represented by f(x) = Sigma(i=1)(n-1/2) c(i)Tr(x(2t+1)), n odd and c(i) is an element of F-2, have recently (2002) been introduced by Khoo et al. We first generalize....... The treatment of semi-bent functions is then presented in a much wider framework. We show how bent and semi-bent functions are interlinked, that is, the concatenation of two suitably chosen semi-bent functions will yield a bent function and vice versa. Finally, this approach is generalized so...

  11. Universality of quadratic to linear magnetoresistance crossover in disordered conductors

    Science.gov (United States)

    Lara, Silvia; Ramakrishnan, Navneeth; Lai, Ying Tong; Adam, Shaffique

    Many experiments measuring Magnetoresistance (MR) showed unsaturating linear behavior at high magnetic fields and quadratic behavior at low fields. In the literature, two very different theoretical models have been used to explain this classical MR as a consequence of sample disorder. The phenomenological Random Resistor Network (RRN) model constructs a grid of four-terminal resistors each with a varying random resistance. The Effective Medium Theory (EMT) model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. In this theoretical work, we demonstrate numerically that both the RRN and EMT models belong to the same universality class, and that a single parameter (the ratio of the fluctuations in the carrier density to the average carrier density) completely determines both the magnitude of the MR and the B-field scale for the crossover from quadratic to linear MR. By considering several experimental data sets in the literature, ranging from thin films of InSb to graphene to Weyl semimetals like Na3Bi, we show that this disorder-induced mechanism for MR is in good agreement with the experiments, and that this comparison of MR with theory reveals information about the spatial carrier density inhomogeneity. This work was supported by the National Research Foundation of Singapore (NRF-NRFF2012-01).

  12. [Quadratic Orthogonal Rotation Combination Design on Alisma orientalis of Fertilization].

    Science.gov (United States)

    Li, Yao; Chen, Xing-fu; Peng, Shi-ming; Liang, Qin; Zhang, Jun; Wu, Chun

    2015-04-01

    To study the effects of combined N, P, K and micronutrient fertilizers on the yield of Alisma orientalis tuber, and to optimize the fertilizer application rate. Four factors five levels quadratic orthogonal rotation combination design was used. A function was established on nitrogen, phosphor, potassium and microelement fertilizer application rate with the yield of Alisma orientalis tuber. The established mathematical model was of high reliability for prediction with quadratic regression equation of R2 = 0. 8980. The order of increasing Alisma orientalis tuber yield was nitrogen > micronutrient fertilizer > potassium > phosphor. The results of the frequency analysis showed that for the target yield over 8 250 kg/hm2 and the confidence interval of 95%, the optimal fertilizer application rates were as follows :nitrogen of 241. 45 - 283. 55 kg/hm2, phosphor of 81. 14 - 208. 44 kg/hm2, potassium of 95. 57 - 239. 42 kg/hm2, and zinc fertilizer of 14. 32 - 16. 18 kg/hm2, boron fertilizer of 18. 84 - 19. 86 kg/hm2, and molybdenum fertilizer of 0. 151 -0. 159 kg/hm2 in micronutrient fertilizer. Nitrogen is related to the growth of Alisma orientalis, potassium promotes tuber bulking, micronutrient fertilizer consisted of zinc, boron and molybdenum fertilizer promotes Alisma orientalis growth and the absorption of nitrogen, phosphor and potassium. Moderate application of nitrogen, phosphorus, potassium, zinc, boron and molybdenum fertilizer can promote Alisma orientalis tuber yield. The nitrogen has the best effect.

  13. On the Content Bound for Real Quadratic Field Extensions

    Directory of Open Access Journals (Sweden)

    Robert G. Underwood

    2012-12-01

    Full Text Available Let K be a finite extension of Q and let S = {ν} denote the collection of K normalized absolute values on K. Let V+K denote the additive group of adeles over K and let K ≥0   c : V + → R denote the content map defined as c({aν } = Q K   ν ∈S ν (aν for {aν } ∈ V+K A classical result of J. W. S. Cassels states that there is a constant c > 0 depending only on the field K  with the following property: if {aν } ∈ V+K with c({aν }  > c, then there exists a non-zero element b  ∈ K for which ν (b ≤ ν (aν , ∀ν  ∈ S. Let cK be the greatest lower bound of the set of all c that satisfy this property. In the case that K is a real quadratic extension there is a known upper bound for cK due to S. Lang. The purpose of this paper is to construct a new upper bound for cK in the case that K has class number one. We compare our new bound with Lang’s bound for various real quadratic extensions and find that our new bound is better than Lang’s in many instances.

  14. STRUCTURE OPTIMIZATION OF RESERVATION BY PRECISE QUADRATIC REGULARIZATION

    Directory of Open Access Journals (Sweden)

    KOSOLAP A. I.

    2015-11-01

    Full Text Available The problem of optimization of the structure of systems redundancy elements. Such problems arise in the design of complex systems. To improve the reliability of operation of such systems of its elements are duplicated. This increases system cost and improves its reliability. When optimizing these systems is maximized probability of failure of the entire system while limiting its cost or the cost is minimized for a given probability of failure-free operation. A mathematical model of the problem is a discrete backup multiextremal. To search for the global extremum of currently used methods of Lagrange multipliers, coordinate descent, dynamic programming, random search. These methods guarantee a just and local solutions are used in the backup tasks of small dimension. In the work for solving redundancy uses a new method for accurate quadratic regularization. This method allows you to convert the original discrete problem to the maximization of multi vector norm on a convex set. This means that the diversity of the tasks given to the problem of redundancy maximize vector norm on a convex set. To solve the problem, a reformed straightdual interior point methods. Currently, it is the best method for local optimization of nonlinear problems. Transformed the task includes a new auxiliary variable, which is determined by dichotomy. There have been numerous comparative numerical experiments in problems with the number of redundant subsystems to one hundred. These experiments confirm the effectiveness of the method of precise quadratic regularization for solving problems of redundancy.

  15. Contact Binary Asteroids

    Science.gov (United States)

    Rieger, Samantha

    2015-05-01

    Recent observations have found that some contact binaries are oriented such that the secondary impacts with the primary at a high inclination. This research investigates the evolution of how such contact binaries came to exist. This process begins with an asteroid pair, where the secondary lies on the Laplace plane. The Laplace plane is a plane normal to the axis about which the pole of a satellites orbit precesses, causing a near constant inclination for such an orbit. For the study of the classical Laplace plane, the secondary asteroid is in circular orbit around an oblate primary with axial tilt. This system is also orbiting the Sun. Thus, there are two perturbations on the secondarys orbit: J2 and third body Sun perturbations. The Laplace surface is defined as the group of orbits that lie on the Laplace plane at varying distances from the primary. If the secondary is very close to the primary, the inclination of the Laplace plane will be near the equator of the asteroid, while further from the primary the inclination will be similar to the asteroid-Sun plane. The secondary will lie on the Laplace plane because near the asteroid the Laplace plane is stable to large deviations in motion, causing the asteroid to come to rest in this orbit. Assuming the secondary is asymmetrical in shape and the bodys rotation is synchronous with its orbit, the secondary will experience the BYORP effect. BYORP can cause secular motion such as the semi-major axis of the secondary expanding or contracting. Assuming the secondary expands due to BYORP, the secondary will eventually reach the unstable region of the Laplace plane. The unstable region exists if the primary has an obliquity of 68.875 degrees or greater. The unstable region exists at 0.9 Laplace radius to 1.25 Laplace radius, where the Laplace radius is defined as the distance from the central body where the inclination of the Laplace plane orbit is half the obliquity. In the unstable region, the eccentricity of the orbit

  16. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  17. Phase behaviour of binary systems of lactones in carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Joao P.; Feitein, Mirian; Franceschi, Elton; Corazza, Marcos L. [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99700-000 (Brazil); Oliveira, J. Vladimir, E-mail: vladimir@uricer.edu.b [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99700-000 (Brazil)

    2010-01-15

    Experimental phase equilibrium data for binary systems involving epsilon-caprolactone, delta-hexalactone, and gamma-caprolactone with carbon dioxide have been measured applying the synthetic method using a high-pressure, variable-volume view cell over the temperature range of (303 to 343) K and pressures up to 21 MPa. For the systems investigated, (vapour + liquid) (VLE), (liquid + liquid) (LLE), and (vapour + liquid + liquid) (VLLE) equilibrium were visually recorded. It was observed that an increase in temperature or in carbon dioxide concentration led to a pronounced raise in transition pressure values. The experimental results were modelled using the Peng-Robinson equation of state with the conventional quadratic mixing rule, affording a satisfactory representation of the experimental values.

  18. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  19. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  20. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    Energy Technology Data Exchange (ETDEWEB)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of)

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.

  1. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

  2. A Quadratically Convergent O(square root of nL-Iteration Algorithm for Linear Programming

    National Research Council Canada - National Science Library

    Ye, Y; Gueler, O; Tapia, Richard A; Zhang, Y

    1991-01-01

    ...)-iteration complexity while exhibiting superlinear convergence of the duality gap to zero under the assumption that the iteration sequence converges, and quadratic convergence of the duality gap...

  3. Wind turbine power tracking using an improved multimodel quadratic approach.

    Science.gov (United States)

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Neural network for solving convex quadratic bilevel programming problems.

    Science.gov (United States)

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Dark state in a nonlinear optomechanical system with quadratic coupling

    Science.gov (United States)

    Huang, Yue-Xin; Zhou, Xiang-Fa; Guo, Guang-Can; Zhang, Yong-Sheng

    We consider a hybrid system consisting of a cavity optomechanical device with nonlinear quadratic radiation pressure coupled to an atomic ensemble. By considering the collective excitation, we show that this system supports nontrivial, nonlinear dark states. The coupling strength can be tuned via the lasers that ensure the population transfer adiabatically between the mechanical modes and the collective atomic excitations in a controlled way. In addition, we show how to detect the dark-state resonance by calculating the single-photon spectrum of the output fields and the transmission of the probe beam based on two-phonon optomechanically induced transparency. Possible application and extension of the dark states are also discussed. Supported by the National Fundamental Research Program of China (Grants No. 2011CB921200 and No. 2011CBA00200), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB01030200), and NSFC (Grants No. 61275122 and 11474266).

  6. Absence of the Gribov ambiguity in a quadratic gauge

    Energy Technology Data Exchange (ETDEWEB)

    Raval, Haresh [Indian Institute of Technology, Bombay, Department of Physics, Mumbai (India)

    2016-05-15

    The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S{sup 3}, when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)

  7. Solving Large Quadratic|Assignment Problems in Parallel

    DEFF Research Database (Denmark)

    Clausen, Jens; Perregaard, Michael

    1997-01-01

    Quadratic Assignment problems are in practice among the most difficult to solve in the class of NP-complete problems. The only successful approach hitherto has been Branch-and-Bound-based algorithms, but such algorithms are crucially dependent on good bound functions to limit the size of the space...... searched. Much work has been done to identify such functions for the QAP, but with limited success.Parallel processing has also been used in order to increase the size of problems solvable to optimality. The systems used have, however, often been systems with relatively few, but very powerful vector...... processors, and have hence not been ideally suited for computations essentially involving non-vectorizable computations on integers.In this paper we investigate the combination of one of the best bound functions for a Branch-and-Bound algorithm (the Gilmore-Lawler bound) and various testing, variable binding...

  8. Quadratic rational rotations of the torus and dual lattice maps

    CERN Document Server

    Kouptsov, K L; Vivaldi, F

    2002-01-01

    We develop a general formalism for computed-assisted proofs concerning the orbit structure of certain non ergodic piecewise affine maps of the torus, whose eigenvalues are roots of unity. For a specific class of maps, we prove that if the trace is a quadratic irrational (the simplest nontrivial case, comprising 8 maps), then the periodic orbits are organized into finitely many renormalizable families, with exponentially increasing period, plus a finite number of exceptional families. The proof is based on exact computations with algebraic numbers, where units play the role of scaling parameters. Exploiting a duality existing between these maps and lattice maps representing rounded-off planar rotations, we establish the global periodicity of the latter systems, for a set of orbits of full density.

  9. Low photon count based digital holography for quadratic phase cryptography.

    Science.gov (United States)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  10. Stable solitons of quadratic ginzburg-landau equations

    Science.gov (United States)

    Crasovan; Malomed; Mihalache; Mazilu; Lederer

    2000-07-01

    We present a physical model based on coupled Ginzburg-Landau equations that supports stable temporal solitary-wave pulses. The system consists of two parallel-coupled cores, one having a quadratic nonlinearity, the other one being effectively linear. The former core is active, with bandwidth-limited amplification built into it, while the latter core has only losses. Parameters of the model can be easily selected so that the zero background is stable. The model has nongeneric exact analytical solutions in the form of solitary pulses ("dissipative solitons"). Direct numerical simulations, using these exact solutions as initial configurations, show that they are unstable; however, the evolution initiated by the exact unstable solitons ends up with nontrivial stable localized pulses, which are very robust attractors. Direct simulations also demonstrate that the presence of group-velocity mismatch (walkoff) between the two harmonics in the active core makes the pulses move at a constant velocity, but does not destabilize them.

  11. Schwarz and multilevel methods for quadratic spline collocation

    Energy Technology Data Exchange (ETDEWEB)

    Christara, C.C. [Univ. of Toronto, Ontario (Canada); Smith, B. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31

    Smooth spline collocation methods offer an alternative to Galerkin finite element methods, as well as to Hermite spline collocation methods, for the solution of linear elliptic Partial Differential Equations (PDEs). Recently, optimal order of convergence spline collocation methods have been developed for certain degree splines. Convergence proofs for smooth spline collocation methods are generally more difficult than for Galerkin finite elements or Hermite spline collocation, and they require stronger assumptions and more restrictions. However, numerical tests indicate that spline collocation methods are applicable to a wider class of problems, than the analysis requires, and are very competitive to finite element methods, with respect to efficiency. The authors will discuss Schwarz and multilevel methods for the solution of elliptic PDEs using quadratic spline collocation, and compare these with domain decomposition methods using substructuring. Numerical tests on a variety of parallel machines will also be presented. In addition, preliminary convergence analysis using Schwarz and/or maximum principle techniques will be presented.

  12. All-optical signal processing in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær

    2002-01-01

    and the SH. Via quasi-phase-matching (QPM) the phase mismatch and hence the nonlinearity is eÙectively brought under control through periodic sign reversal of the nonlinearity. On theaverage QPM changes the quadratic nonlinearity and induces new cubic nonlinearities in the system. The engineering...... of materials with a second order nonlinearity, the so-called X(2) materials, is faster and stronger than that of more conventional materials with a cubic nonlinearity. The X(2) materials support spatial solitons consisting of two coupled components, the fundamental wave (FW) and its second harmonic (SH...... are dedicated to this part of the research. In chapter 4 the generality of the theoretical approach is emphasised with the derivation and verification of equivalent tools for media with a saturable nonlinearity. The strength of the X(2) nonlinearity strongly depends on the phase mismatch between the FW...

  13. Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers

    Science.gov (United States)

    Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan

    2018-03-01

    Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.

  14. Periodic perturbations of quadratic planar polynomial vector fields

    Directory of Open Access Journals (Sweden)

    MARCELO MESSIAS

    2002-06-01

    Full Text Available In this work are studied periodic perturbations, depending on two parameters, of quadratic planar polynomial vector fields having an infinite heteroclinic cycle, which is an unbounded solution joining two saddle points at infinity. The global study envolving infinity is performed via the Poincaré compactification. The main result obtained states that for certain types of periodic perturbations, the perturbed system has quadratic heteroclinic tangencies and transverse intersections between the local stable and unstable manifolds of the hyperbolic periodic orbits at infinity. It implies, via the Birkhoff-Smale Theorem, in a complex dynamical behavior of the solutions of the perturbed system, in a finite part of the phase plane.Neste trabalho são estudadas perturbações periódicas, dependendo de dois parâmetros, de campos vetoriais polinomiais planares que possuem um ciclo heteroclínico infinito, que consiste de uma solução ilimitada, que conecta dois pontos de sela no infinito. O estudo global do campo vetorial, envolvendo o infinito, foi elaborado utilizando-se a compactificação de Poincaré. O resultado principal estabelece que, para certo tipo de perturbação periódica, o sistema apresenta tangências heteroclínicas e intersecção transversal das variedades invariantes de órbitas periódicas no infinito, o que implica, via o Teorema de Birkhoff-Smale, em um comportamento dinâmico bastante complexo das soluções do sistema perturbado, em uma região finita do plano de fase.

  15. Determination of ventilatory threshold through quadratic regression analysis.

    Science.gov (United States)

    Gregg, Joey S; Wyatt, Frank B; Kilgore, J Lon

    2010-09-01

    Ventilatory threshold (VT) has been used to measure physiological occurrences in athletes through models via gas analysis with limited accuracy. The purpose of this study is to establish a mathematical model to more accurately detect the ventilatory threshold using the ventilatory equivalent of carbon dioxide (VE/VCO2) and the ventilatory equivalent of oxygen (VE/Vo2). The methodology is primarily a mathematical analysis of data. The raw data used were archived from the cardiorespiratory laboratory in the Department of Kinesiology at Midwestern State University. Procedures for archived data collection included breath-by-breath gas analysis averaged every 20 seconds (ParVoMedics, TrueMax 2400). A ramp protocol on a Velotron bicycle ergometer was used with increased work at 25 W.min beginning with 150 W, until volitional fatigue. The subjects consisted of 27 healthy, trained cyclists with age ranging from 18 to 50 years. All subjects signed a university approved informed consent before testing. Graphic scatterplots and statistical regression analyses were performed to establish the crossover and subsequent dissociation of VE/Vo2 to VE/VCO2. A polynomial trend line along the scatterplots for VE/VO2 and VE/VCO2 was used because of the high correlation coefficient, the coefficient of determination, and trend line. The equations derived from the scatterplots and trend lines were quadratic in nature because they have a polynomial degree of 2. A graphing calculator in conjunction with a spreadsheet was used to find the exact point of intersection of the 2 trend lines. After the quadratic regression analysis, the exact point of VE/Vo2 and VE/VCO2 crossover was established as the VT. This application will allow investigators to more accurately determine the VT in subsequent research.

  16. Content identification: binary content fingerprinting versus binary content encoding

    Science.gov (United States)

    Ferdowsi, Sohrab; Voloshynovskiy, Svyatoslav; Kostadinov, Dimche

    2014-02-01

    In this work, we address the problem of content identification. We consider content identification as a special case of multiclass classification. The conventional approach towards identification is based on content fingerprinting where a short binary content description known as a fingerprint is extracted from the content. We propose an alternative solution based on elements of machine learning theory and digital communications. Similar to binary content fingerprinting, binary content representation is generated based on a set of trained binary classifiers. We consider several training/encoding strategies and demonstrate that the proposed system can achieve the upper theoretical performance limits of content identification. The experimental results were carried out both on a synthetic dataset with different parameters and the FAMOS dataset of microstructures from consumer packages.

  17. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  18. Binary typing of staphylococcus aureus

    NARCIS (Netherlands)

    W.B. van Leeuwen (Willem)

    2002-01-01

    textabstractThis thesis describes the development. application and validation of straindifferentiating DNA probes for the characterization of Staphylococcus aureus strains in a system. that yields a binary output. By comparing the differential hybridization of these DNA probes to staphylococcal

  19. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  20. Observations and Analysis of the Extreme Mass Ratio, High Fill-out Solar Type Binary, V1695 Aquilae

    Science.gov (United States)

    Samec, R. G.; Gray, C. R.; Caton, D.; Faulkner, D. R.; Hill, R.; Hamme, W. V.

    2017-12-01

    CCD BVRcIc light curves of V1695 Aquilae were taken during the Fall 2016 season at the Cerro Tololo InterAmerican Observatory with the 0.6-meter reflector of the SARA South observatory in remote mode. It is an eclipsing binary with a period of 0.41283 d. The light curves yield a total eclipse (duration: 59 minutes) but have an amplitude of only 0.4 mag. The spectral type is G8V ( 5500 K). Four times of minimum light were calculated, all primary eclipses, from our present observations. We calculated linear and quadratic ephemerides from all available times of minimum light. A 17-year period study reveals a quadratic orbital period decrease at a high level of confidence. The orbital period is changing at a rapid rate of of dp / dt = -1.73 x 10-6 d/yr. The solution is that of an Extreme Mass Ratio Binary. The mass ratio is found to be near 0.16. Its Roche Lobe fill-out is a hefty 83%. The small component has the slightly hotter temperature of 5650 K, which makes it a W-type W UMa Binary. As expected in binaries of this spectral type, it has cool spot regions.

  1. Estimating sample size for a small-quadrat method of botanical ...

    African Journals Online (AJOL)

    ... in eight plant communities in the Nylsvley Nature Reserve. Illustrates with a table. Keywords: Botanical surveys; Grass density; Grasslands; Mixed Bushveld; Nylsvley Nature Reserve; Quadrat size species density; Small-quadrat method; Species density; Species richness; botany; sample size; method; survey; south africa

  2. Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities (vol 24, pg 2752, 2007)

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, J.; Wise, F.W.

    2010-01-01

    Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)].......Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)]....

  3. A Novel Single Switch Transformerless Quadratic DC/DC Buck-Boost Converter

    DEFF Research Database (Denmark)

    Mostaan, Ali; A. Gorji, Saman; N. Soltani, Mohsen

    2017-01-01

    A novel quadratic buck-boost DC/DC converter is presented in this study. The proposed converter utilizes only one active switch and can step-up/down the input voltage, while the existing single switch quadratic buck/boost converters can only work in step-up or step-down mode. First, the proposed ...

  4. Revealing Ozgur's Thoughts of a Quadratic Function with a Clinical Interview: Concepts and Their Underlying Reasons

    Science.gov (United States)

    Ozaltun Celik, Aytug; Bukova Guzel, Esra

    2017-01-01

    The quadratic function is an important concept for calculus but the students at high school have many difficulties related to this concept. It is important that the teaching of the quadratic function is realized considering the students' thinking. In this context, the aim of this study conducted through a qualitative case study is to reveal the…

  5. Dynamics at infinity and a Hopf bifurcation arising in a quadratic ...

    Indian Academy of Sciences (India)

    Zhen Wang

    2017-12-27

    Dec 27, 2017 ... Dynamics at infinity and a Hopf bifurcation arising in a quadratic system with coexisting attractors. ZHEN WANG1,2, ... quadratic autonomous system, we raise the question: does there exist chaotic system with no .... By computing an energy function, we see that system (8) is a Hamiltonian system, with total ...

  6. About the linear-quadratic regulator problem under a fractional Brownian perturbation and complete observation

    OpenAIRE

    Kleptsyna, Marina; Le Breton, Alain; Viot, Michel

    2002-01-01

    In this report we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous-time. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.

  7. Geometrical Solutions of Some Quadratic Equations with Non-Real Roots

    Science.gov (United States)

    Pathak, H. K.; Grewal, A. S.

    2002-01-01

    This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…

  8. An Alternating Direction Method for Convex Quadratic Second-Order Cone Programming with Bounded Constraints

    Directory of Open Access Journals (Sweden)

    Xuewen Mu

    2015-01-01

    quadratic programming over second-order cones and a bounded set. At each iteration, we only need to compute the metric projection onto the second-order cones and the projection onto the bound set. The result of convergence is given. Numerical results demonstrate that our method is efficient for the convex quadratic second-order cone programming problems with bounded constraints.

  9. The regular indefinite linear-quadratic problem with linear endpoint constraints

    NARCIS (Netherlands)

    Soethoudt, J.M.; Trentelman, H.L.

    1989-01-01

    This paper deals with the infinite horizon linear-quadratic problem with indefinite cost. Given a linear system, a quadratic cost functional and a subspace of the state space, we consider the problem of minimizing the cost functional over all inputs for which the state trajectory converges to that

  10. Exact solution for a time-dependent multi-mode coupled quadratic Bose system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiuwei; Mu Haifeng [College of Physics, Ludong University, Yantai 264025 (China); Liu Shuyan [College of Electric and Electronic Engineering, Ludong University, Yantai 264025 (China); Guo Chun, E-mail: hai-fengmu@163.co [Office of Teaching Affairs, Ludong University, Yantai 264025 (China)

    2010-11-12

    By utilizing generalized linear quantum transformation theory, the evolution operator, normal and anti-normal Wigner characteristic functions, P- and Q-representations of a multi-mode coupled quadratic Boson system are presented. The squeezing properties of a time-dependent double-mode coupled quadratic Bose system are investigated as a specific example.

  11. AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS

    Science.gov (United States)

    Lehtinen, B.

    1994-01-01

    AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user

  12. Asymptotic behavior for a quadratic nonlinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Pavel I. Naumkin

    2008-02-01

    Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.

  13. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

    Science.gov (United States)

    Orr, Jeb S.

    2012-01-01

    A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

  14. Noise-induced chaos in a quadratically nonlinear oscillator

    International Nuclear Information System (INIS)

    Gan Chunbiao

    2006-01-01

    The present paper focuses on the noise-induced chaos in a quadratically nonlinear oscillator. Simple zero points of the stochastic Melnikov integral theoretically mean the necessary rising of noise-induced chaotic response in the system based on the stochastic Melnikov method. To quantify the noise-induced chaos, the boundary of the system's safe basin is firstly studied and it is shown to be incursively fractal when chaos arises. Three cases are considered in simulating the safe basin of the system, i.e., the system is excited only by the harmonic excitation, by both the harmonic and the Gaussian white noise excitations, and only by the Gaussian white noise excitation. Secondly, the leading Lyapunov exponent by Rosenstein's algorithm is shown to quantify the chaotic nature of the sample time series of the system. The results show that the boundary of the safe basin can also be fractal even if the system is excited only by the external Gaussian white noise. Most importantly, the almost-harmonic, the noise-induced chaotic and the thoroughly random responses can be found in the system

  15. Improved quantitative analysis of mass spectrometry using quadratic equations.

    Science.gov (United States)

    Yoon, Joo Young; Lim, Kyung Young; Lee, Sunho; Park, Kunsoo; Paek, Eunok; Kang, Un-Beom; Yeom, Jeonghun; Lee, Cheolju

    2010-05-07

    Protein quantification is one of the principal computational problems in mass spectrometry (MS) based proteomics. For robust and trustworthy protein quantification, accurate peptide quantification must be preceded. In recent years, stable isotope labeling has become the most popular method for relative quantification of peptides. However, some stable isotope labeling methods may carry a critical problem, which is an overlap of isotopic clusters. If the mass difference between the light- and heavy-labeled peptides is very small, the overlap of their isotopic clusters becomes larger as the mass of original peptide increases. Here we propose a new algorithm for peptide quantification that separates overlapping isotopic clusters using quadratic equations. It can be easily applied in Trans-Proteomic Pipeline (TPP) instead of XPRESS. For the mTRAQ-labeled peptides obtained by an Orbitrap mass spectrometer, it showed more accurate ratios and better standard deviations than XPRESS. Especially, for the peptides that do not contain lysine, the ratio difference between XPRESS and our algorithm became larger as the peptide masses increased. We expect that this algorithm can also be applied to other labeling methods such as (18)O labeling and acrylamide labeling.

  16. Quadratic electromechanical strain in silicon investigated by scanning probe microscopy

    Science.gov (United States)

    Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu

    2018-04-01

    Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.

  17. GR angular momentum in the quadratic spinor Lagrangian formulation

    Science.gov (United States)

    Li, Siao-Jing

    2016-08-01

    We inquire into the question of whether the quadratic spinor Lagrangian (QSL) formulation can describe the angular momentum for a general-relativistic system. The QSL Hamiltonian has previously been shown to be able to yield an energy-momentum quasilocalization which brings a proof of the positive gravitational energy when the spinor satisfies the conformal Witten equation. After inspection, we find that, under the constraint that the spinor on the asymptotic boundary is a constant, the QSL Hamiltonian is successful in giving an angular momentum quasilocalization. We also make certain the spinor in the Hamiltonian plays the role of a gauge field, a warrant of our permission to impose constraints on the spinor. Then, by some adjustment of the QSL Hamiltonian, we gain a covariant center-of-mass moment quasilocalization only under the condition that the displacement on the asymptotic boundary is a Killing boost vector. We expect the spinor expression will bring a proof of some connection between the gravitational energy and angular momentum.

  18. Linear versus quadratic portfolio optimization model with transaction cost

    Science.gov (United States)

    Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah

    2014-06-01

    Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.

  19. Entanglement Entropy of Eigenstates of Quadratic Fermionic Hamiltonians.

    Science.gov (United States)

    Vidmar, Lev; Hackl, Lucas; Bianchi, Eugenio; Rigol, Marcos

    2017-07-14

    In a seminal paper [D. N. Page, Phys. Rev. Lett. 71, 1291 (1993)PRLTAO0031-900710.1103/PhysRevLett.71.1291], Page proved that the average entanglement entropy of subsystems of random pure states is S_{ave}≃lnD_{A}-(1/2)D_{A}^{2}/D for 1≪D_{A}≤sqrt[D], where D_{A} and D are the Hilbert space dimensions of the subsystem and the system, respectively. Hence, typical pure states are (nearly) maximally entangled. We develop tools to compute the average entanglement entropy ⟨S⟩ of all eigenstates of quadratic fermionic Hamiltonians. In particular, we derive exact bounds for the most general translationally invariant models lnD_{A}-(lnD_{A})^{2}/lnD≤⟨S⟩≤lnD_{A}-[1/(2ln2)](lnD_{A})^{2}/lnD. Consequently, we prove that (i) if the subsystem size is a finite fraction of the system size, then ⟨S⟩

  20. Asymptotic performance of regularized quadratic discriminant analysis based classifiers

    KAUST Repository

    Elkhalil, Khalil

    2017-12-13

    This paper carries out a large dimensional analysis of the standard regularized quadratic discriminant analysis (QDA) classifier designed on the assumption that data arise from a Gaussian mixture model. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that depends only on the covariances and means associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized QDA and can be used to determine the optimal regularization parameter that minimizes the misclassification error probability. Despite being valid only for Gaussian data, our theoretical findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from popular real data bases, thereby making an interesting connection between theory and practice.

  1. Evolution of universes in quadratic theories of gravity

    International Nuclear Information System (INIS)

    Barrow, John D.; Hervik, Sigbjoern

    2006-01-01

    We use a dynamical systems approach to investigate Bianchi type I and II universes in quadratic theories of gravity. Because of the complicated nature of the equations of motion we focus on the stability of exact solutions and find that there exists an isotropic Friedmann-Robertson-Walker (FRW) universe acting as a past attractor. This may indicate that there is an isotropization mechanism at early times for these kind of theories. We also discuss the Kasner universes, elucidate the associated center manifold structure, and show that there exists a set of nonzero measure which has the Kasner solutions as a past attractor. Regarding the late-time behavior, the stability shows a dependence of the parameters of the theory. We give the conditions under which the de Sitter solution is stable and also show that for certain values of the parameters there is a possible late-time behavior with phantomlike behavior. New types of anisotropic inflationary behavior are found which do not have counterparts in general relativity

  2. Separability of diagonal symmetric states: a quadratic conic optimization problem

    Directory of Open Access Journals (Sweden)

    Jordi Tura

    2018-01-01

    Full Text Available We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS states. First, we show that separability in the case of DS in $C^d\\otimes C^d$ (symmetric qudits can be reformulated as a quadratic conic optimization problem. This connection allows us to exchange concepts and ideas between quantum information and this field of mathematics. For instance, copositive matrices can be understood as indecomposable entanglement witnesses for DS states. As a consequence, we show that positivity of the partial transposition (PPT is sufficient and necessary for separability of DS states for $d \\leq 4$. Furthermore, for $d \\geq 5$, we provide analytic examples of PPT-entangled states. Second, we develop new sufficient separability conditions beyond the PPT criterion for bipartite DS states. Finally, we focus on $N$-partite DS qubits, where PPT is known to be necessary and sufficient for separability. In this case, we present a family of almost DS states that are PPT with respect to each partition but nevertheless entangled.

  3. Methods of using the quadratic assignment problem solution

    Directory of Open Access Journals (Sweden)

    Izabela Kudelska

    2012-09-01

    Full Text Available Background: Quadratic assignment problem (QAP is one of the most interesting of combinatorial optimization. Was presented by Koopman and Beckamanna in 1957, as a mathematical model of the location of indivisible tasks. This problem belongs to the class NP-hard issues. This forces the application to the solution already approximate methods for tasks with a small size (over 30. Even though it is much harder than other combinatorial optimization problems, it enjoys wide interest because it models the important class of decision problems. Material and methods: The discussion was an artificial intelligence tool that allowed to solve the problem QAP, among others are: genetic algorithms, Tabu Search, Branch and Bound. Results and conclusions: QAP did not arise directly as a model for certain actions, but he found its application in many areas. Examples of applications of the problem is: arrangement of buildings on the campus of the university, layout design of electronic components in systems with large scale integration (VLSI, design a hospital, arrangement of keys on the keyboard.

  4. Testing theory of binary evolution with interacting binary stars

    Science.gov (United States)

    Ergma, E.; Sarna, M. J.

    2002-01-01

    Of particular interest to us is the study of mass loss and its influence on the evolution of a binary systems. For this we use theoretical evolutionary models, which include: mass accretion, mass loss, novae explosion, super--efficient wind, and mixing processes. To test our theoretical prediction we proposed to determine the 12C / 13C ratio via measurements of the 12CO and 13CO bands around 2.3 micron. The available observations (Exter at al. 2001, in preparation) show good agreement with the theoretical predictions (Sarna 1992), for Algol-type binaries. Our preliminary estimates of the isotopic ratios for pre-CV's and CV's (Catalan et al. 2000, Dhillon et al. 2001) agree with the theoretical predictions from the common--envelope binary evolution models by Sarna et al. (1995). For the SXT we proposed (Ergma & Sarna 2001) similar observational test, which has not been done yet.

  5. Biclustering sparse binary genomic data.

    Science.gov (United States)

    van Uitert, Miranda; Meuleman, Wouter; Wessels, Lodewyk

    2008-12-01

    Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two algorithms have been proposed that specifically deal with binary matrices. None of the gene expression biclustering algorithms can handle the large number of zeros in sparse binary matrices. The two proposed binary algorithms failed to produce meaningful results. In this article, we present a new algorithm that is able to extract biclusters from sparse, binary datasets. A powerful feature is that biclusters with different numbers of rows and columns can be detected, varying from many rows to few columns and few rows to many columns. It allows the user to guide the search towards biclusters of specific dimensions. When applying our algorithm to an input matrix derived from TRANSFAC, we find transcription factors with distinctly dissimilar binding motifs, but a clear set of common targets that are significantly enriched for GO categories.

  6. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  7. Modular envelopes, OSFT and nonsymmetric (non-$\\sum$) modular operads

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin

    2016-01-01

    Roč. 10, č. 2 (2016), s. 775-809 ISSN 1661-6952 Institutional support: RVO:67985840 Keywords : open string * surface * modular completion Subject RIV: BA - General Mathematics Impact factor: 0.625, year: 2016 http://www.ems-ph.org/journals/show_abstract.php?issn=1661-6952&vol=10&iss=2&rank=12

  8. Quadratic adaptive algorithm for solving cardiac action potential models.

    Science.gov (United States)

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  9. Differences between quadratic equations and functions: Indonesian pre-service secondary mathematics teachers’ views

    Science.gov (United States)

    Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.

    2018-01-01

    Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.

  10. Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes

    International Nuclear Information System (INIS)

    Huang, Sumei; Agarwal, G. S.

    2011-01-01

    We describe how electromagnetically induced transparency can arise in quadratically coupled optomechanical systems. Due to quadratic coupling, the underlying optical process involves a two-phonon process in an optomechanical system, and this two-phonon process makes the mean displacement, which plays the role of atomic coherence in traditional electromagnetically induced transparency (EIT), zero. We show how the fluctuation in displacement can play a role similar to atomic coherence and can lead to EIT-like effects in quadratically coupled optomechanical systems. We show how such effects can be studied using the existing optomechanical systems.

  11. Protocols for quantum binary voting

    Science.gov (United States)

    Thapliyal, Kishore; Sharma, Rishi Dutt; Pathak, Anirban

    Two new protocols for quantum binary voting are proposed. One of the proposed protocols is designed using a standard scheme for controlled deterministic secure quantum communication (CDSQC), and the other one is designed using the idea of quantum cryptographic switch, which uses a technique known as permutation of particles. A few possible alternative approaches to accomplish the same task (quantum binary voting) have also been discussed. Security of the proposed protocols is analyzed. Further, the efficiencies of the proposed protocols are computed, and are compared with that of the existing protocols. The comparison has established that the proposed protocols are more efficient than the existing protocols.

  12. Matter in compact binary mergers

    Science.gov (United States)

    Read, Jocelyn; LIGO Scientific Collaboration, Virgo Scientific Collaboration

    2018-01-01

    Mergers of binary neutron stars or neutron-star/black-hole systems are promising targets for gravitational-wave detection. The dynamics of merging compact objects, and thus their gravitational-wave signatures, are primarily determined by the mass and spin of the components. However, the presence of matter can make an imprint on the final orbits and merger of a binary system. I will outline efforts to understand the impact of neutron-star matter on gravitational waves, using both theoretical and computational input, so that gravitational-wave observations can be used to measure the properties of source systems with neutron-star components.

  13. Mental Effort in Binary Categorization Aided by Binary Cues

    Science.gov (United States)

    Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael

    2013-01-01

    Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…

  14. Multi-task feature selection in microarray data by binary integer programming.

    Science.gov (United States)

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  15. The Uses of Binary Thinking.

    Science.gov (United States)

    Elbow, Peter

    1993-01-01

    Argues that oppositional thinking, if handled in the right way, will serve as a way to avoid the very problems that Jonathan Culler and Paul de Mann are troubled by: "purity, order, and hierarchy." Asserts that binary thinking can serve to encourage difference--indeed, encourage nondominance, nontranscendence, instability, and disorder.…

  16. Biclustering Sparse Binary Genomic Data

    NARCIS (Netherlands)

    Van Uitert, M.; Meuleman, W.; Wessels, L.F.A.

    2008-01-01

    Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two

  17. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  18. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  19. Generating Constant Weight Binary Codes

    Science.gov (United States)

    Knight, D.G.

    2008-01-01

    The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…

  20. BHMcalc: Binary Habitability Mechanism Calculator

    Science.gov (United States)

    Zuluaga, Jorge I.; Mason, Paul; Cuartas-Restrepo, Pablo A.; Clark, Joni

    2018-02-01

    BHMcalc provides renditions of the instantaneous circumbinary habital zone (CHZ) and also calculates BHM properties of the system including those related to the rotational evolution of the stellar components and the combined XUV and SW fluxes as measured at different distances from the binary. Moreover, it provides numerical results that can be further manipulated and used to calculate other properties.

  1. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  2. The Meritfactor of Binary Seqences

    DEFF Research Database (Denmark)

    Høholdt, Tom

    1999-01-01

    Binary sequences with small aperiodic correlations play an important role in many applications ranging from radar to modulation and testing of systems. Golay(1977) introduced the merit factor as a measure of the goodness of the sequence and conjectured an upper bound for this. His conjecture...

  3. Quadratic contributions of softly broken supersymmetry in the light of loop regularization

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Dong [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Wu, Yue-Liang [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China)

    2017-09-15

    Loop regularization (LORE) is a novel regularization scheme in modern quantum field theories. It makes no change to the spacetime structure and respects both gauge symmetries and supersymmetry. As a result, LORE should be useful in calculating loop corrections in supersymmetry phenomenology. To further demonstrate its power, in this article we revisit in the light of LORE the old issue of the absence of quadratic contributions (quadratic divergences) in softly broken supersymmetric field theories. It is shown explicitly by Feynman diagrammatic calculations that up to two loops the Wess-Zumino model with soft supersymmetry breaking terms (WZ' model), one of the simplest models with the explicit supersymmetry breaking, is free of quadratic contributions. All the quadratic contributions cancel with each other perfectly, which is consistent with results dictated by the supergraph techniques. (orig.)

  4. Building Students’ Understanding of Quadratic Equation Concept Using Naïve Geometry

    Directory of Open Access Journals (Sweden)

    Achmad Dhany Fachrudin

    2014-07-01

    Full Text Available The purpose of this research is to know how Naïve Geometry method can support students’ understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic equation especially on how student bring geometric solution into algebraic form. This research was conducted in SMP Negeri 1 Palembang. Design research was chosen as method used in this research that have three main phases. The results of this research showed that manipulating and reshaping the rectangle into square could stimulate students to acquire the idea of solving quadratic equations using completing perfect square method. In the end of the meeting, students are also guided to reinvent the general formula to solve quadratic equations.

  5. Solvability of a quadratic integral equation of Fredholm type in Holder spaces

    OpenAIRE

    Josefa Caballero; Mohamed Abdalla Darwish; Kishin Sadarangani

    2014-01-01

    In this article, we prove the existence of solutions of a quadratic integral equation of Fredholm type with a modified argument, in the space of functions satisfying a Holder condition. Our main tool is the classical Schauder fixed point theorem.

  6. Cost Cumulant-Based Control for a Class of Linear Quadratic Tracking Problems

    National Research Council Canada - National Science Library

    Pham, Khanh D

    2007-01-01

    .... For instance, the present paper extends the application of cost-cumulant controller design to control of a wide class of linear-quadratic tracking systems where output measurements of a tracker...

  7. Guam Community Coral Reef Monitoring Program, Benthic Quadrat Surveys at Guam in 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Guam community members gathered benthic cover data using a 0.25m2 quadrat with 6 intersecting points at each meter along a 25-meter transect. Members identified...

  8. Refined stability of additive and quadratic functional equations in modular spaces

    Directory of Open Access Journals (Sweden)

    Hark-Mahn Kim

    2017-06-01

    Full Text Available Abstract The purpose of this paper is to obtain refined stability results and alternative stability results for additive and quadratic functional equations using direct method in modular spaces.

  9. Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Martin, Corless

    2004-01-01

    We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.

  10. Integrable quadratic classical Hamiltonians on so(4) and so(3, 1)

    International Nuclear Information System (INIS)

    Sokolov, Vladimir V; Wolf, Thomas

    2006-01-01

    We investigate a special class of quadratic Hamiltonians on so(4) and so(3, 1) and describe Hamiltonians that have additional polynomial integrals. One of the main results is a new integrable case with an integral of sixth degree

  11. Using Simple Quadratic Equations to Estimate Equilibrium Concentrations of an Acid

    Science.gov (United States)

    Brilleslyper, Michael A.

    2004-01-01

    Application of quadratic equations to standard problem in chemistry like finding equilibrium concentrations of ions in an acid solution is explained. This clearly shows that pure mathematical analysis has meaningful applications in other areas as well.

  12. Maximization of Sums of Quotients of Quadratic Forms and Some Generalizations.

    Science.gov (United States)

    Kiers, Henk A. L.

    1995-01-01

    Monotonically convergent algorithms are described for maximizing sums of quotients of quadratic forms. Six (constrained) functions are investigated. The general formulation of the functions and the algorithms allow for application of the algorithms in various situations in multivariate analysis. (SLD)

  13. Use of Quadratic Time-Frequency Representations to Analyze Cetacean Mammal Sounds

    National Research Council Canada - National Science Library

    Papandreou-Suppappola, Antonia

    2001-01-01

    .... Analysis of the group delay structure of the mammalian vocal communication signals was matched to the appropriate quadratic time-frequency class for proper signal processing with minimal skewing of the results...

  14. Eigenfunction expansions of a quadratic pencil of differential operator with periodic generalized potential

    Directory of Open Access Journals (Sweden)

    Manaf Manafov

    2014-01-01

    Full Text Available In this article we obtain the eigenfunction expansions of a quadratic pencil of Sturm-Liouville operators with periodic coefficients. The important point to note here is the given potential is a first order generalized function.

  15. Fouha Bay Moving Window Analysis, Benthic Quadrat Surveys at Guam in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PIRO Fishery Biologist gathered benthic cover data using a 1m2 quadrat with 25 intersecting points every five meters along a transect running from the inner bay to...

  16. A necessary and sufficient condition for a real quadratic extension to have class number one

    International Nuclear Information System (INIS)

    Alemu, Y.

    1990-02-01

    We give a necessary and sufficient condition for a real quadratic extension to have class number one and discuss the applicability of the result to find the class number one fields with small discriminant. 9 refs, 3 tabs

  17. Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yu.S.

    1997-01-01

    We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog of the g...... of the guided-center soliton) supported by the quadratic and induced cubic nonlinearities....

  18. Exponential quadratic operators and evolution of bosonic systems coupled to a heat bath

    International Nuclear Information System (INIS)

    Ni Xiaotong; Liu Yuxi; Kwek, L. C.; Wang Xiangbin

    2010-01-01

    Using exponential quadratic operators, we present a general framework for studying the exact dynamics of system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied to the system.

  19. Analysis of a quadratic system obtained from a scalar third order differential equation

    Directory of Open Access Journals (Sweden)

    Fabio Scalco Dias

    2010-11-01

    Full Text Available In this article, we study the nonlinear dynamics of a quadratic system in the three dimensional space which can be obtained from a scalar third order differential equation. More precisely, we study the stability and bifurcations which occur in a parameter dependent quadratic system in the three dimensional space. We present an analytical study of codimension one, two and three Hopf bifurcations, generic Bogdanov-Takens and fold-Hopf bifurcations.

  20. General Solutions of Two Quadratic Functional Equations of Pexider Type on Orthogonal Vectors

    OpenAIRE

    Fochi, Margherita

    2012-01-01

    Based on the studies on the Hyers-Ulam stability and the orthogonal stability of some Pexider-quadratic functional equations, in this paper we find the general solutions of two quadratic functional equations of Pexider type. Both equations are studied in restricted domains: the first equation is studied on the restricted domain of the orthogonal vectors in the sense of Rätz, and the second equation is considered on the orthogonal vectors in the inner product spaces with the usual orthogonality.

  1. DEVELOPMENTAL PROCESS OF QUADRATIC EQUATIONS FROM PAST TO PRESENT AND REFLECTIONS ON TEACHING-LEARNING

    OpenAIRE

    GÜNER, Pınar; UYGUN, Tuğba

    2016-01-01

    Themathematical concept of quadratic equations is one of the important topics inalgebra and has deep developmental process. It is also an inseparable componentof history of mathematics and mathematics curriculum. In this study, it wasaimed to present historical development of quadratic equations through periodicexamples with reference to using history of mathematics that mayhelp students to pay attention to the subject and improve meaningfulunderstanding. Besides, the purpose of the current s...

  2. Hyperbolic variables on surfaces with non-definite quadratic forms (extension of Beltrami equation)

    International Nuclear Information System (INIS)

    Catoni, F.; Cannata, R.; Nichelatti, E.; Zampetti, P.

    2001-01-01

    Gauss showed the link between the definite quadratic differential forms and the complex functions. Beltrami, following Gauss' idea, linked the complex functions to elliptic partial differential equations. In this report it was shown how the use of hyperbolic numbers and hyperbolic functions allows to extend the same results to non definite quadratic differential forms. Using this kind of approach, one can tackle the hyperbolic partial differential equations by a different point of view [it

  3. Quadratic and nonlinear programming problems solving and analysis in fully fuzzy environment

    OpenAIRE

    Gabr, Walaa Ibrahim

    2015-01-01

    This paper presents a comprehensive methodology for solving and analyzing quadratic and nonlinear programming problems in fully fuzzy environment. The solution approach is based on the Arithmetic Fuzzy Logic-based Representations, previously founded on normalized fuzzy matrices. The suggested approach is generalized for the fully fuzzy case of the general forms of quadratic and nonlinear modeling and optimization problems of both the unconstrained and constrained fuzzy optimization problems. ...

  4. Elemental matrices for the finite element method in electromagnetics with quadratic triangular elements

    OpenAIRE

    Cojocaru, E.

    2009-01-01

    The finite element method has become a preeminent simulation technique in electromagnetics. For problems involving anisotropic media and metamaterials, proper algorithms should be developed. It has been proved that discretizing in quadratic triangular elements may lead to an improved accuracy. Here we present a collection of elemental matrices evaluated analytically for quadratic triangular elements. They could be useful for the finite element method in advanced electromagnetics.

  5. Interactions in Massive Colliding Wind Binaries

    Directory of Open Access Journals (Sweden)

    Michael F. Corcoran

    2012-03-01

    Full Text Available There are observational difficulties determining dynamical masses of binary star components in the upper HR diagram both due to the scarcity of massive binary systems and spectral and photometric contamination produced by the strong wind outflows in these systems. We discuss how variable X-ray emission in these systems produced by wind-wind collisions in massive binaries can be used to constrain the system parameters, with application to two important massive binaries, Eta Carinae and WR 140.

  6. Integrated quadratic assignment and continuous facility layout problem

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadi

    2012-10-01

    Full Text Available In this paper, an integrated layout model has been considered to incorporate intra and inter-department layout. In the proposed model, the arrangement of facilities within the departments is obtained through the QAP and from the other side the continuous layout problem is implemented to find the position and orientation of rectangular shape departments on the planar area. First, a modified version of QAP with fewer binary variables is presented. Afterward the integrated model is formulated based on the developed QAP. In order to evaluate material handling cost precisely, the actual position of machines within the departments (instead of center of departments is considered. Moreover, other design factors such as aisle distance, single or multi row intra-department layout and orientation of departments have been considered. The mathematical model is formulated as mixed-integer programming (MIP to minimize total material handling cost. Also due to the complexity of integrated model a heuristic method has been developed to solve large scale problems in a reasonable computational time. Finally, several illustrative numerical examples are selected from the literature to test the model and evaluate the heuristic.

  7. Division Unit for Binary Integer Decimals

    DEFF Research Database (Denmark)

    Lang, Tomas; Nannarelli, Alberto

    2009-01-01

    In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm and implements binary encodings (binary integer decimal or BID) for significands. Recent decimal division designs are all based on the binary coded decimal (BCD) encoding. We adapt the radix-10 digit...

  8. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  9. Gravity waves from relativistic binaries

    OpenAIRE

    Levin, Janna; O'Reilly, Rachel; Copeland, E. J.

    1999-01-01

    The stability of binary orbits can significantly shape the gravity wave signal which future Earth-based interferometers hope to detect. The inner most stable circular orbit has been of interest as it marks the transition from the late inspiral to final plunge. We consider purely relativistic orbits beyond the circular assumption. Homoclinic orbits are of particular importance to the question of stability as they lie on the boundary between dynamical stability and instability. We identify thes...

  10. Permanent vegetation quadrats on Olkiluoto island. Establishment and results from the first inventory

    International Nuclear Information System (INIS)

    Huhta, A.P.; Korpela, L.

    2006-05-01

    This report describes in detail the vegetation quadrats established inside the permanent, follow-up sample plots (Forest Extensive High-level monitoring plots, FEH) on Olkiluoto Island. During summer 2005 a total of 94 sample plots (a 30 m 2 ), each containing eight quadrats (a 1m 2 ), were investigated. The total number of sampled quadrats was 752. Seventy of the 94 plots represent coniferous stands: 57 Norway spruce-dominated and 13 Scots pine-dominated stands. Ten of the plots represent deciduous, birch-dominated (Betula spp.) stands, 7 plots common alder-dominated (Alnus glutinosa) stands, and seven plots are mires. The majority of the coniferous tree stands were growing on sites representing various succession stages of the Myrtillus, Vaccinium-Myrtillus and Deschampsia-Myrtillus forest site types. The pine-dominated stands growing on exposed bedrock clearly differed from the other coniferous stands: the vegetation was characterised by the Cladina, Calluna-Cladina and Empetrum-Vaccinium vitis-idaea/Vaccinium Myrtillus forest site types. The deciduous stands were characterized by tall grasses, especially Calamagrostis epigejos, C. purpurea and Deschampsia flexuosa. The vegetation of the deciduous stands dominated by common alder represented grove-like sites and seashore groves. Typical species for mires included Calamagrostis purpurea, Calla palustris, Equisetum sylvaticum, and especially white mosses (Sphagnum spp.). A total of 184 vascular plant species were found growing within the quadrats. Due to the high number of quadrats in these forests, the spruce stands had the highest total number of species, but the birch and alder-dominated forests had the highest average number of species per quadrat. This basic inventory of the permanent vegetation quadrats on Olkiluoto Island provides a sound starting point for future vegetation surveys. Guidelines for future inventories and supplementary sampling are given in the discussion part of this report. (orig.)

  11. Permanent vegetation quadrats on Olkiluoto island. Establishment and results from the first inventory

    Energy Technology Data Exchange (ETDEWEB)

    Huhta, A.P.; Korpela, L. [Finnish Forest Research Institute, Helsinki (Finland)

    2006-05-15

    This report describes in detail the vegetation quadrats established inside the permanent, follow-up sample plots (Forest Extensive High-level monitoring plots, FEH) on Olkiluoto Island. During summer 2005 a total of 94 sample plots (a 30 m{sup 2}), each containing eight quadrats (a 1m{sup 2}), were investigated. The total number of sampled quadrats was 752. Seventy of the 94 plots represent coniferous stands: 57 Norway spruce-dominated and 13 Scots pine-dominated stands. Ten of the plots represent deciduous, birch-dominated (Betula spp.) stands, 7 plots common alder-dominated (Alnus glutinosa) stands, and seven plots are mires. The majority of the coniferous tree stands were growing on sites representing various succession stages of the Myrtillus, Vaccinium-Myrtillus and Deschampsia-Myrtillus forest site types. The pine-dominated stands growing on exposed bedrock clearly differed from the other coniferous stands: the vegetation was characterised by the Cladina, Calluna-Cladina and Empetrum-Vaccinium vitis-idaea/Vaccinium Myrtillus forest site types. The deciduous stands were characterized by tall grasses, especially Calamagrostis epigejos, C. purpurea and Deschampsia flexuosa. The vegetation of the deciduous stands dominated by common alder represented grove-like sites and seashore groves. Typical species for mires included Calamagrostis purpurea, Calla palustris, Equisetum sylvaticum, and especially white mosses (Sphagnum spp.). A total of 184 vascular plant species were found growing within the quadrats. Due to the high number of quadrats in these forests, the spruce stands had the highest total number of species, but the birch and alder-dominated forests had the highest average number of species per quadrat. This basic inventory of the permanent vegetation quadrats on Olkiluoto Island provides a sound starting point for future vegetation surveys. Guidelines for future inventories and supplementary sampling are given in the discussion part of this report. (orig.)

  12. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  13. Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras

    Science.gov (United States)

    Escobar-Ruiz, Mauricio A.; Kalnins, Ernest G.; Miller, Willar, Jr.; Subag, Eyal

    2017-03-01

    Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra {so}(4,C) to itself. In this paper we give a precise definition of Bôcher contractions and show how they can be classified. They subsume well known contractions of {e}(2,C) and {so}(3,C) and have important physical and geometric meanings, such as the derivation of the Askey scheme for obtaining all hypergeometric orthogonal polynomials as limits of Racah/Wilson polynomials. We also classify abstract nondegenerate quadratic algebras in terms of an invariant that we call a canonical form. We describe an algorithm for finding the canonical form of such algebras. We calculate explicitly all canonical forms arising from quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces. We further discuss contraction of quadratic algebras, focusing on those coming from superintegrable systems.

  14. Classification of the quantum two dimensional superintegrable systems with quadratic integrals and the Stackel transforms

    International Nuclear Information System (INIS)

    Dakaloyannis, C.

    2006-01-01

    Full text: (author)The two dimensional quantum superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems with quadratic integrals are classified as special cases of these six general classes. The coefficients of the quadratic associative algebra of integrals are calculated and they are compared to the coefficients of the corresponding coefficients of the Poisson quadratic algebra of the classical systems. The quantum coefficients are similar as the classical ones multiplied by a quantum coefficient -n 2 plus a quantum deformation of order n 4 and n 6 . The systems inside the classes are transformed using Stackel transforms in the quantum case as in the classical case and general form is discussed. The idea of the Jacobi Hamiltonian corresponding to the Jacobi metric in the classical case is discussed

  15. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  16. A wavelet bicoherence-based quadratic nonlinearity feature for translational axis condition monitoring.

    Science.gov (United States)

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-27

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  17. BUILDING STUDENTS’ UNDERSTANDING OF QUADRATIC EQUATION CONCEPT USING NAÏVE GEOMETRY

    Directory of Open Access Journals (Sweden)

    Achmad Dhany Fachrudin

    2014-07-01

    Full Text Available The purpose of this research is to know how Naïve Geometry method can support students’ understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic equation especially on how student bring geometric solution into algebraic form. This research was conducted in SMP Negeri 1 Palembang. Design research was chosen as method used in this research that have three main phases. The results of this research showed that manipulating and reshaping the rectangle into square could stimulate students to acquire the idea of solving quadratic equations using completing perfect square method. In the end of the meeting, students are also guided to reinvent the general formula to solve quadratic equations.Keywords: Quadratic Equations, Design Research, Naïve Geometry, PMRI DOI: http://dx.doi.org/10.22342/jme.5.2.1502.191-202

  18. Newton's method for solving a quadratic matrix equation with special coefficient matrices

    International Nuclear Information System (INIS)

    Seo, Sang-Hyup; Seo, Jong Hyun; Kim, Hyun-Min

    2014-01-01

    We consider the iterative method for solving a quadratic matrix equation with special coefficient matrices which arises in the quasi-birth-death problem. In this paper, we show that the elementwise minimal positive solvents to quadratic matrix equations can be obtained using Newton's method. We also prove that the convergence rate of the Newton iteration is quadratic if the Fréchet derivative at the elementwise minimal positive solvent is nonsingular. However, if the Fréchet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.(This is summarized a paper which is to appear in Honam Mathematical Journal.)

  19. Geometric Methods in the Algebraic Theory of Quadratic Forms : Summer School

    CERN Document Server

    2004-01-01

    The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the renewal of the theory by Pfister in the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes - an introduction to motives of quadrics by Alexander Vishik, with various applications, notably to the splitting patterns of quadratic forms under base field extensions; - papers by Oleg Izhboldin and Nikita Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields which carry anisotropic quadratic forms of dimension 9, but none of higher dimension; - a contribution in French by Bruno Kahn which lays out a general fra...

  20. Resurrecting Quadratic Inflation in No-Scale Supergravity in Light of BICEP2

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V; Olive, Keith A

    2014-01-01

    The magnitude of primordial tensor perturbations reported by the BICEP2 experiment is consistent with simple models of chaotic inflation driven by a single scalar field with a power-law potential \\propto \\phi^n: n \\simeq 2, in contrast to the WMAP and Planck results, which favored models resembling the Starobinsky R + R^2 model if running of the scalar spectral index could be neglected. While models of inflation with a quadratic potential may be constructed in simple N=1 supergravity, these constructions are more challenging in no-scale supergravity. We discuss here how quadratic inflation can be accommodated within supergravity, focussing primarily on the no-scale case. We also argue that the quadratic inflaton may be identified with the supersymmetric partner of a singlet (right-handed) neutrino, whose subsequent decay could have generated the baryon asymmetry via leptogenesis.

  1. Numerical Methods for Solution of the Extended Linear Quadratic Control Problem

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog

    2012-01-01

    In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....

  2. Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras

    Directory of Open Access Journals (Sweden)

    Madjid Eshaghi Gordji

    2012-01-01

    Full Text Available Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai=D(a1a22⋯an2+a12D(a2a32⋯an2+⋯+a12a22⋯an−12D(an for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by using the Banach fixed point theorem.

  3. On the Analyticity for the Generalized Quadratic Derivative Complex Ginzburg-Landau Equation

    Directory of Open Access Journals (Sweden)

    Chunyan Huang

    2014-01-01

    Full Text Available We study the analytic property of the (generalized quadratic derivative Ginzburg-Landau equation (1/2⩽α⩽1 in any spatial dimension n⩾1 with rough initial data. For 1/2<α⩽1, we prove the analyticity of local solutions to the (generalized quadratic derivative Ginzburg-Landau equation with large rough initial data in modulation spaces Mp,11-2α(1⩽p⩽∞. For α=1/2, we obtain the analytic regularity of global solutions to the fractional quadratic derivative Ginzburg-Landau equation with small initial data in B˙∞,10(ℝn∩M∞,10(ℝn. The strategy is to develop uniform and dyadic exponential decay estimates for the generalized Ginzburg-Landau semigroup e-a+it-Δα to overcome the derivative in the nonlinear term.

  4. Fast parallel DNA-based algorithms for molecular computation: quadratic congruence and factoring integers.

    Science.gov (United States)

    Chang, Weng-Long

    2012-03-01

    Assume that n is a positive integer. If there is an integer such that M (2) ≡ C (mod n), i.e., the congruence has a solution, then C is said to be a quadratic congruence (mod n). If the congruence does not have a solution, then C is said to be a quadratic noncongruence (mod n). The task of solving the problem is central to many important applications, the most obvious being cryptography. In this article, we describe a DNA-based algorithm for solving quadratic congruence and factoring integers. In additional to this novel contribution, we also show the utility of our encoding scheme, and of the algorithm's submodules. We demonstrate how a variety of arithmetic, shifted and comparative operations, namely bitwise and full addition, subtraction, left shifter and comparison perhaps are performed using strands of DNA.

  5. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    Science.gov (United States)

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  7. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  8. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  9. Tomographic reconstruction of binary fields

    International Nuclear Information System (INIS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-01-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  10. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  11. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    Science.gov (United States)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  12. An Extended Quadratic Frobenius Primality Test with Average and Worst Case Error Estimates

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg

    2003-01-01

    We present an Extended Quadratic Frobenius Primality Test (EQFT), which is related to an extends the Miller-Rabin test and the Quadratic Frobenius test (QFT) by Grantham. EQFT takes time about equivalent to 2 Miller-Rabin tests, but has much smaller error probability, namely 256/331776t for t......-Rabin tests, while only taking time equivalent to about 2 such tests. We also give bounds for the error in case a prime is sought by incremental search from a random starting point....

  13. Rational quadratic trigonometric Bézier curve based on new basis with exponential functions

    Directory of Open Access Journals (Sweden)

    Wu Beibei

    2017-06-01

    Full Text Available We construct a rational quadratic trigonometric Bézier curve with four shape parameters by introducing two exponential functions into the trigonometric basis functions in this paper. It has the similar properties as the rational quadratic Bézier curve. For given control points, the shape of the curve can be flexibly adjusted by changing the shape parameters and the weight. Some conics can be exactly represented when the control points, the shape parameters and the weight are chosen appropriately. The C0, C1 and C2 continuous conditions for joining two constructed curves are discussed. Some examples are given.

  14. Inelastic scattering in a local polaron model with quadratic coupling to bosons

    DEFF Research Database (Denmark)

    Olsen, Thomas

    2009-01-01

    We calculate the inelastic scattering probabilities in the wide band limit of a local polaron model with quadratic coupling to bosons. The central object is a two-particle Green's function which is calculated exactly using a purely algebraic approach. Compared with the usual linear interaction term...... a quadratic interaction term gives higher probabilities for inelastic scattering involving a large number of bosons. As an application we consider the problem hot-electron-mediated energy transfer at surfaces and use the delta self-consistent field extension of density-functional theory to calculate...

  15. Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps

    Directory of Open Access Journals (Sweden)

    Minsong Zhang

    2014-01-01

    Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.

  16. Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs; Loveridge, Fleur

    2018-01-01

    This paper investigates the applicability of currently available analytical, empirical and numerical heat flow models for interpreting thermal response tests (TRT) of quadratic cross section precast pile heat exchangers. A 3D finite element model (FEM) is utilised for interpreting five TRTs...... by inverse modelling. The calibrated estimates of soil and concrete thermal conductivity are consistent with independent laboratory measurements. Due to the computational cost of inverting the 3D model, simpler models are utilised in additional calibrations. Interpretations based on semi-empirical pile G-functions...... the potential of applying TRTs for sizing quadratic, precast pile heat exchanger foundations....

  17. An application of nonlinear programming to the design of regulators of a linear-quadratic formulation

    Science.gov (United States)

    Fleming, P.

    1983-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.

  18. Classification of ξ(s)-Quadratic Stochastic Operators on 2D simplex

    International Nuclear Information System (INIS)

    Mukhamedov, Farrukh; Saburov, Mansoor; Qaralleh, Izzat

    2013-01-01

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some QSO has been studied by Lotka and Volterra. The general problem in the nonlinear operator theory is to study the behavior of operators. This problem was not fully finished even for the quadratic stochastic operators. To study this problem it was investigated several classes of such QSO. In this paper we study ξ (s) -QSO class of operators. We study such kind of operators on 2D simplex. We first classify these ξ (s) -QSO into 20 classes. Further, we investigate the dynamics of one class of such operators.

  19. Cascaded quadratic soliton compression of high-power femtosecond fiber lasers in Lithium Niobate crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Wise, Frank W.

    2008-01-01

    The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....

  20. Soliton compression to ultra-short pulses using cascaded quadratic nonlinearities in silica photonic crystal fibers

    DEFF Research Database (Denmark)

    Bache, Morten; Lægsgaard, Jesper; Bang, Ole

    2007-01-01

    We investigate the possibility of using poled silica photonic crystal fibers for self-defocusing soliton compression with cascaded quadratic nonlinearities. Such a configuration has promise due to the desirable possibility of reducing the group-velocity mismatch. However, this unfortunately leads...... to increased phase mismatch, and the dispersion is often anomalous. All this reduces the design parameter space where soliton compression is possible, and poses strong requirements on the poling efficiency. We propose to use quasi-phase matching in order to reach realistic requirements on the quadratic...

  1. An Extension to a Filter Implementation of Local Quadratic Surface for Image Noise Estimation

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    1999-01-01

    Based on regression analysis this paper gives a description for simple image filter design. Specifically 3x3 filter implementations of a quadratic surface, residuals from this surface, gradients and the Laplacian are given. For the residual a 5x5 filter is given also. It is shown that the 3x3......) it is concluded that if striping is to be considered as a part of the noise, the residual from a 3x3 median filter seems best. If we are interested in a salt-and-pepper noise estimator the proposed extension to the 3x3 filter for the residual from a quadratic surface seems best. Simple statistics...

  2. Approximating positive solutions of nonlinear first order ordinary quadratic differential equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2015-12-01

    Full Text Available In this paper, the authors prove the existence as well as approximations of the positive solutions for an initial value problem of first-order ordinary nonlinear quadratic differential equations. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations converges monotonically to the positive solution of related quadratic differential equations under some suitable mixed hybrid conditions. We base our results on the Dhage iteration method embodied in a recent hybrid fixed-point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

  3. Dhage Iteration Method for Approximating Positive Solutions of PBVPs of Nonlinear Quadratic Differential Equations with Maxima

    Directory of Open Access Journals (Sweden)

    Shyam B. Dhage

    2016-03-01

    Full Text Available In this paper authors prove the existence as well as approximation of the positive solutions for a periodic boundary value problem of first order ordinary nonlinear quadratic differential equations with maxima. An algorithm for the solutions is developed and it is shown that certain sequence of successive approximations converges monotonically to the positive solution of considered quadratic differential equations under some suitable mixed hybrid conditions. Our results rely on the Dhage iteration principle embodied in a recent hybrid fixed point theorem of Dhage (2014. A numerical example is also provided to illustrate the hypotheses and abstract theory developed in this paper.

  4. Inverse Problems for the Quadratic Pencil of the Sturm-Liouville Equations with Impulse

    Directory of Open Access Journals (Sweden)

    Rauf Kh. Amırov

    2013-01-01

    Full Text Available In this study some inverse problems for a boundary value problem generated with a quadratic pencil of Sturm-Liouville equations with impulse on a finite interval are considered. Some useful integral representations for the linearly independent solutions of a quadratic pencil of Sturm-Liouville equation have been derived and using these, important spectral properties of the boundary value problem are investigated; the asymptotic formulas for eigenvalues, eigenfunctions, and normalizing numbers are obtained. The uniqueness theorems for the inverse problems of reconstruction of the boundary value problem from the Weyl function, from the spectral data, and from two spectra are proved.

  5. General Solutions of Two Quadratic Functional Equations of Pexider Type on Orthogonal Vectors

    Directory of Open Access Journals (Sweden)

    Margherita Fochi

    2012-01-01

    Full Text Available Based on the studies on the Hyers-Ulam stability and the orthogonal stability of some Pexider-quadratic functional equations, in this paper we find the general solutions of two quadratic functional equations of Pexider type. Both equations are studied in restricted domains: the first equation is studied on the restricted domain of the orthogonal vectors in the sense of Rätz, and the second equation is considered on the orthogonal vectors in the inner product spaces with the usual orthogonality.

  6. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography.

    Science.gov (United States)

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2011-08-01

    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.

  7. Inference for the jump part of quadratic variation of Itô semimartingales

    DEFF Research Database (Denmark)

    Veraart, Almut

    Recent research has focused on modelling asset prices by Itô semimartingales. In such a modelling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference...... part of the asymptotic variance of the estimation bias. Eventually, this leads to a feasible asymptotic theory which is applicable in practice. Finally, Monte Carlo studies reveal a good finite sample performance of the proposed feasible limit theory....

  8. Inference for the jump part of quadratic variation of Itô semimartingales

    DEFF Research Database (Denmark)

    Veraart, Almut

    2010-01-01

    Recent research has focused on modeling asset prices by Itô semimartingales. In such a modeling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference...... part of the asymptotic variance of the estimation bias. Eventually, this leads to a feasible asymptotic theory that is applicable in practice. Finally, Monte Carlo studies reveal a good finite sample performance of the proposed feasible limit theory....

  9. OPTIMAL SHRINKAGE ESTIMATION OF MEAN PARAMETERS IN FAMILY OF DISTRIBUTIONS WITH QUADRATIC VARIANCE.

    Science.gov (United States)

    Xie, Xianchao; Kou, S C; Brown, Lawrence

    2016-03-01

    This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semi-parametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results.

  10. Newton equation for canonical, Lie-algebraic, and quadratic deformation of classical space

    International Nuclear Information System (INIS)

    Daszkiewicz, Marcin; Walczyk, Cezary J.

    2008-01-01

    The Newton equation describing particle motion in a constant external field force on canonical, Lie-algebraic, and quadratic space-time is investigated. We show that for canonical deformation of space-time the dynamical effects are absent, while in the case of Lie-algebraic noncommutativity, when spatial coordinates commute to the time variable, the additional acceleration of the particle is generated. We also indicate that in the case of spatial coordinates commuting in a Lie-algebraic way, as well as for quadratic deformation, there appear additional velocity and position-dependent forces

  11. Design of variable-weight quadratic congruence code for optical CDMA

    Science.gov (United States)

    Feng, Gang; Cheng, Wen-Qing; Chen, Fu-Jun

    2015-09-01

    A variable-weight code family referred to as variable-weight quadratic congruence code (VWQCC) is constructed by algebraic transformation for incoherent synchronous optical code division multiple access (OCDMA) systems. Compared with quadratic congruence code (QCC), VWQCC doubles the code cardinality and provides the multiple code-sets with variable code-weight. Moreover, the bit-error rate (BER) performance of VWQCC is superior to those of conventional variable-weight codes by removing or padding pulses under the same chip power assumption. The experiment results show that VWQCC can be well applied to the OCDMA with quality of service (QoS) requirements.

  12. Mixmaster cosmological model in theories of gravity with a quadratic Lagrangian

    International Nuclear Information System (INIS)

    Barrow, J.D.; Sirousse-Zia, H.

    1989-01-01

    We use the method of matched asymptotic expansions to examine the behavior of the vacuum Bianchi type-IX mixmaster universe in a gravity theory derived from a purely quadratic gravitational Lagrangian. The chaotic behavior characteristic of the general-relativistic mixmaster model disappears and the asymptotic behavior is of the monotonic, nonchaotic form found in the exactly soluble Bianchi type-I models of the quadratic theory. The asymptotic behavior far from the singularity is also found to be of monotonic nonchaotic type

  13. Survival of planets around shrinking stellar binaries

    Science.gov (United States)

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  14. Speech perception of noise with binary gains

    DEFF Research Database (Denmark)

    Wang, DeLiang; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by comparing speech energy and noise energy within local time-frequency units. It is observed that listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed...... by the ideal binary mask. Only 16 filter channels and a frame rate of 100 Hz are sufficient for high intelligibility. The results show that, despite a dramatic reduction of speech information, a pattern of binary gains provides an adequate basis for speech perception....

  15. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  16. Method of all-optical frequency encoded decimal to binary and binary coded decimal, binary to gray, and gray to binary data conversion using semiconductor optical amplifiers.

    Science.gov (United States)

    Garai, Sisir Kumar

    2011-07-20

    Conversion of optical data from decimal to binary format is very important in optical computing and optical signal processing. There are many binary code systems to represent decimal numbers, the most common being the binary coded decimal (BCD) and gray code system. There are a wide choice of BCD codes, one of which is a natural BCD having a weighted code of 8421, by means of which it is possible to represent a decimal number from 0 to 9 with a combination of 4 bit binary digits. The reflected binary code, also known as the Gray code, is a binary numeral system where two successive values differ in only 1 bit. The Gray code is very important in digital optical communication as it is used to prevent spurious output from optical switches as well as to facilitate error correction in digital communications in an optical domain. Here in this communication, the author proposes an all-optical frequency encoded method of ":decimal to binary, BCD," "binary to gray," and "gray to binary" data conversion using the high-speed switching actions of semiconductor optical amplifiers. To convert decimal numbers to a binary form, a frequency encoding technique is adopted to represent two binary bits, 0 and 1. The frequency encoding technique offers advantages over conventional encoding techniques in terms of less probability of bit errors and greater reliability. Here the author has exploited the polarization switch made of a semiconductor optical amplifier (SOA) and a property of nonlinear rotation of the state of polarization of the probe beam in SOA for frequency conversion to develop the method of frequency encoded data conversion. © 2011 Optical Society of America

  17. Optimal linear-quadratic missile guidance laws with penalty on command variability

    NARCIS (Netherlands)

    Weiss, M.; Shima, T.

    2015-01-01

    This paper proposes a new approach to the derivation of homing guidance laws for interceptor missiles that makes use of linear-quadratic optimal control in a different manner than the traditional approaches. Instead of looking only for the minimization of the miss distance and the integral square of

  18. Little rip cosmological models with quadratic equation of state with time dependent parameters

    Science.gov (United States)

    Shelote, R. D.; Khadekar, G. S.

    2018-02-01

    We have studied flat FRW cosmological model of the universe filled with an ideal fluid with quadratic equation of state (EOS) with time dependent parameters ω(t) and Λ(t). We found the equation of the state parameter ω(t) is less than -1 and also found Little Rip (LR) and Pseudo Rip (PR) behavior for dark energy.

  19. Analysis of a monetary union enlargement in the framework of linear-quadratic differential games

    NARCIS (Netherlands)

    Plasmans, J.E.J.; Engwerda, J.C.; van Aarle, B.; Michalak, T.

    2009-01-01

    "This paper studies the effects of a monetary union enlargement using the techniques and outcomes from an extensive research project on macroeconomic policy coordination in the EMU. Our approach is characterized by two main pillars: (i) linear-quadratic differential games to capture externalities,

  20. On the Computation of Optimal Monotone Mean-Variance Portfolios via Truncated Quadratic Utility

    OpenAIRE

    Ales Cerný; Fabio Maccheroni; Massimo Marinacci; Aldo Rustichini

    2008-01-01

    We report a surprising link between optimal portfolios generated by a special type of variational preferences called divergence preferences (cf. [8]) and optimal portfolios generated by classical expected utility. As a special case we connect optimization of truncated quadratic utility (cf. [2]) to the optimal monotone mean-variance portfolios (cf. [9]), thus simplifying the computation of the latter.

  1. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch

    DEFF Research Database (Denmark)

    Bache, Morten; Nielsen, Hanne; Lægsgaard, Jesper

    2006-01-01

    We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780...

  2. Development of C++ Application Program for Solving Quadratic Equation in Elementary School in Nigeria

    Science.gov (United States)

    Bandele, Samuel Oye; Adekunle, Adeyemi Suraju

    2015-01-01

    The study was conducted to design, develop and test a c++ application program CAP-QUAD for solving quadratic equation in elementary school in Nigeria. The package was developed in c++ using object-oriented programming language, other computer program that were also utilized during the development process is DevC++ compiler, it was used for…

  3. Solution to Projectile Motion with Quadratic Drag and Graphing the Trajectory in Spreadsheets

    Science.gov (United States)

    Benacka, Jan

    2010-01-01

    This note gives the analytical solution to projectile motion with quadratic drag by decomposing the velocity vector to "x," "y" coordinate directions. The solution is given by definite integrals. First, the impact angle is estimated from above, then the projectile coordinates are computed, and the trajectory is graphed at various launch angles and…

  4. Nonclassicality and entanglement criteria for bipartite optical fields characterized by quadratic detectors

    Czech Academy of Sciences Publication Activity Database

    Peřina Jr., J.; Arkhipov, I.I.; Michálek, Václav; Haderka, Ondřej

    2017-01-01

    Roč. 96, č. 4 (2017), s. 1-15, č. článku 043845. ISSN 2469-9926 Institutional support: RVO:68378271 Keywords : parametric down-conversion * photon statistic * bipartite optical fields * quadratic detectors Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.925, year: 2016

  5. Study of new chaotic flows on a family of 3-dimensional systems with quadratic nonlinearities

    International Nuclear Information System (INIS)

    Moreno, S Carrillo; Casas-García, K; Flores-Godoy, J J; Valencia, F Vázquez; Fernández-Anaya, G

    2015-01-01

    Based on a wider systematic search on a family of 3-dimensional systems with quadratic nonlinearities, three new simple chaotic systems were found. One of them has the unusual feature of having a stable equilibrium point, and it is the simplest one of other chaotic flows with this property. The others have some interesting special properties

  6. On solutions of stochastic oscillatory quadratic nonlinear equations using different techniques, a comparison study

    International Nuclear Information System (INIS)

    El-Tawil, M A; Al-Jihany, A S

    2008-01-01

    In this paper, nonlinear oscillators under quadratic nonlinearity with stochastic inputs are considered. Different methods are used to obtain first order approximations, namely, the WHEP technique, the perturbation method, the Pickard approximations, the Adomian decompositions and the homotopy perturbation method (HPM). Some statistical moments are computed for the different methods using mathematica 5. Comparisons are illustrated through figures for different case-studies

  7. Slab albedo for linearly and quadratically anisotropic scattering kernel with modified F{sub N} method

    Energy Technology Data Exchange (ETDEWEB)

    Tuereci, R. Goekhan [Kirikkale Univ. (Turkey). Kirikkale Vocational School; Tuereci, D. [Ministry of Education, Ankara (Turkey). 75th year Anatolia High School

    2017-11-15

    One speed, time independent and homogeneous medium neutron transport equation is solved with the anisotropic scattering which includes both the linearly and the quadratically anisotropic scattering kernel. Having written Case's eigenfunctions and the orthogonality relations among of these eigenfunctions, slab albedo problem is investigated as numerically by using Modified F{sub N} method. Selected numerical results are presented in tables.

  8. Afrika Statistika ISSN 2316-090X Quadratic loss estimation of a ...

    African Journals Online (AJOL)

    vector X is normally distributed with mean θ and of covariance matrix the identity Ip. In this setting, the random vectors X and U are independent then the situation becomes the same as when just the vector X is available, so here, we do not consider the residual vector. U. So in the first step, we study the quadratic loss ...

  9. On the dynamic Stability of a quadratic-cubic elastic model structure ...

    African Journals Online (AJOL)

    The main substance of this investigation is the determination of the dynamic buckling load of an imperfect quadratic-cubic elastic model structure , which ,in itself, is a Mathematical generalization of some of the many physical structures normally encountered in engineering practice and allied fields. The load function in ...

  10. Quadratic maximization on the unit simplex: structure, stability, genericity and application in biology

    NARCIS (Netherlands)

    Still, Georg J.; Ahmed, F.

    The paper deals with the simple but important problem of maximizing a (nonconvex) quadratic function on the unit simplex. This program is directly related to the concept of evolutionarily stable strategies (ESS) in biology. We discuss this relation and study optimality conditions, stability and

  11. Stability of Pexiderized Quadratic Functional Equation in Random 2-Normed Spaces

    Directory of Open Access Journals (Sweden)

    Mohammed A. Alghamdi

    2015-01-01

    Full Text Available The aim of this paper is to investigate the stability of Hyers-Ulam-Rassias type theorems by considering the pexiderized quadratic functional equation in the setting of random 2-normed spaces (RTNS, while the concept of random 2-normed space has been recently studied by Goleţ (2005.

  12. Solvability of a quadratic integral equation of Fredholm type in Holder spaces

    Directory of Open Access Journals (Sweden)

    Josefa Caballero

    2014-01-01

    Full Text Available In this article, we prove the existence of solutions of a quadratic integral equation of Fredholm type with a modified argument, in the space of functions satisfying a Holder condition. Our main tool is the classical Schauder fixed point theorem.

  13. On the time evolution operator for time-dependent quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Fernandez, F.M.

    1989-01-01

    The Schroedinger equation with a time-dependent quadratic Hamiltonian is investigated. The time-evolution operator is written as a product of exponential operators determined by the Heisenberg equations of motion. This product operator is shown to be global in the occupation number representation when the Hamiltonian is Hermitian. The success of some physical applications of the product-form representation is explained

  14. An Extended Quadratic Frobenius Primality Test with Average- and Worst-Case Error Estimate

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg

    2006-01-01

    We present an Extended Quadratic Frobenius Primality Test (EQFT), which is related to an extends the Miller-Rabin test and the Quadratic Frobenius test (QFT) by Grantham. EQFT takes time about equivalent to 2 Miller-Rabin tests, but has much smaller error probability, namely 256/331776t for t ite......-Rabin tests, while only taking time equivalent to about 2 such tests. We also give bounds for the error in case a prime is sought by incremental search from a random starting point.......We present an Extended Quadratic Frobenius Primality Test (EQFT), which is related to an extends the Miller-Rabin test and the Quadratic Frobenius test (QFT) by Grantham. EQFT takes time about equivalent to 2 Miller-Rabin tests, but has much smaller error probability, namely 256/331776t for t...... for the error probability of this algorithm as well as a general closed expression bounding the error. For instance, it is at most 2-143 for k = 500, t = 2. Compared to earlier similar results for the Miller-Rabin test, the results indicates that our test in the average case has the effect of 9 Miller...

  15. An Extended Quadratic Frobenius Primality Test with Average Case Error Estimates

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg

    2001-01-01

    We present an Extended Quadratic Frobenius Primality Test (EQFT), which is related to an extends the Miller-Rabin test and the Quadratic Frobenius test (QFT) by Grantham. EQFT takes time about equivalent to 2 Miller-Rabin tests, but has much smaller error probability, namely 256/331776t for t ite......-Rabin tests, while only taking time equivalent to about 2 such tests. We also give bounds for the error in case a prime is sought by incremental search from a random starting point.......We present an Extended Quadratic Frobenius Primality Test (EQFT), which is related to an extends the Miller-Rabin test and the Quadratic Frobenius test (QFT) by Grantham. EQFT takes time about equivalent to 2 Miller-Rabin tests, but has much smaller error probability, namely 256/331776t for t...... for the error probability of this algorithm as well as a general closed expression bounding the error. For instance, it is at most 2-143 for k = 500, t = 2. Compared to earlier similar results for the Miller-Rabin test, the results indicates that our test in the average case has the effect of 9 Miller...

  16. Quadratic vs cubic spline-wavelets for image representations and compression

    NARCIS (Netherlands)

    P.C. Marais; E.H. Blake; A.A.M. Kuijk (Fons)

    1997-01-01

    textabstractThe Wavelet Transform generates a sparse multi-scale signal representation which may be readily compressed. To implement such a scheme in hardware, one must have a computationally cheap method of computing the necessary transform data. The use of semi-orthogonal quadratic spline wavelets

  17. Quadratic vs cubic spline-wavelets for image representation and compression

    NARCIS (Netherlands)

    P.C. Marais; E.H. Blake; A.A.M. Kuijk (Fons)

    1994-01-01

    htmlabstractThe Wavelet Transform generates a sparse multi-scale signal representation which may be readily compressed. To implement such a scheme in hardware, one must have a computationally cheap method of computing the necessary ransform data. The use of semi-orthogonal quadratic spline wavelets

  18. Soliton compression to few-cycle pulses by cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Bang, Ole

    2007-01-01

    Theoretical and numerical investigation of pulse-compression in a nonlinear crystal is presented. SHG soliton number is introduced and show that compression only takes place when it is larger than the "usual" Kerr soliton number. Pulse compression with cascaded quadratic nonlinearities requires...... that the ratio of the SHG and Kerr soliton numbers N>1....

  19. An Analysis and Design for Nonlinear Quadratic Systems Subject to Nested Saturation

    Directory of Open Access Journals (Sweden)

    Minsong Zhang

    2013-01-01

    Full Text Available This paper considers the stability problem for nonlinear quadratic systems with nested saturation input. The interesting treatment method proposed to nested saturation here is put into use a well-established linear differential control tool. And the new conclusions include the existing conclusion on this issue and have less conservatism than before. Simulation example illustrates the effectiveness of the established methodologies.

  20. Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping

    Directory of Open Access Journals (Sweden)

    Hassan Azadi Kenary

    2012-01-01

    Full Text Available Using fixed point method and direct method, we prove the Hyers-Ulam stability of the following additive-quadratic functional equation 2((++/+2((−+/+2((+−/+2((−++/=4(+4(+4(, where is a positive real number, in non-Archimedean normed spaces.

  1. Stability of Quadratic Functional Equations via the Fixed Point and Direct Method

    Directory of Open Access Journals (Sweden)

    Son Eunyoung

    2010-01-01

    Full Text Available Cădariu and Radu applied the fixed point theorem to prove the stability theorem of Cauchy and Jensen functional equations. In this paper, we prove the generalized Hyers-Ulam stability via the fixed point method and investigate new theorems via direct method concerning the stability of a general quadratic functional equation.

  2. On Quadratic Integral Equations of Urysohn Type in Fréchet Spaces

    OpenAIRE

    M. A. Darwish; M Benchohra

    2010-01-01

    In this paper, we investigate the existence of a unique solution on a semiinfinite interval for a quadratic integral equation of Urysohn type in Fréchet spaces using a nonlinear alternative of Leray-Schauder type for contractive maps.

  3. Hyers-Ulam Stability for a Class of Quadratic Functional Equations via a Typical Form

    Directory of Open Access Journals (Sweden)

    Chang Il Kim

    2013-01-01

    Full Text Available We investigate the following typical form of a certain class of quadratic functional equations: . Furthermore, we provide a systematic program to prove the generalized Hyers-Ulam stability for the class of functional equations via the stability for the typical form.

  4. A Method for Selecting between Linear and Quadratic Classification Models in Discriminant Analysis.

    Science.gov (United States)

    Meshbane, Alice; Morris, John D.

    1995-01-01

    A method for comparing the cross-validated classification accuracies of linear and quadratic classification rules is presented under varying data conditions for the "k"-group classification problem. Separate-group and total-group proportions of correct classifications can be compared for the two rules, as is illustrated. (Author/SLD)

  5. Failures and Inabilities of High School Students about Quadratic Equations and Functions

    Science.gov (United States)

    Memnun, Dilek Sezgin; Aydin, Bünyamin; Dinç, Emre; Çoban, Merve; Sevindik, Fatma

    2015-01-01

    In this research study, it was aimed to examine failures and inabilities of eleventh grade students about quadratic equations and functions. For this purpose, these students were asked ten open-ended questions. The analysis of the answers given by the students to these questions indicated that a significant part of these students had failures and…

  6. Latent Variable Regression: A Technique for Estimating Interaction and Quadratic Coefficients.

    Science.gov (United States)

    Ping, Robert A., Jr.

    1996-01-01

    A technique is proposed to estimate regression coefficients for interaction and quadratic latent variables that combines regression analysis with the measurement model portion of structural equation analysis. The proposed technique will provide coefficient estimates for regression models involving existing measures or new measures for which a…

  7. Analysis of Cognitive Structure Using the Linear Logistic Test Model and Quadratic Assignment.

    Science.gov (United States)

    Medina-Diaz, Maria

    1993-01-01

    The cognitive structure of an algebra test was defined and validated using the linear logistic test model (LLTM) and quadratic assignment (QA). A 29-item test was administered to 235 ninth graders. Results suggest the benefits of applying both LLTM and QA to test construction and analysis. (SLD)

  8. Quadratically converging iterative schemes for nonlinear Volterra integral equations and an application

    Directory of Open Access Journals (Sweden)

    Sudhakar G. Pandit

    1997-01-01

    Full Text Available A generalized quasilinear technique is employed to derive iterative schemes for nonlinear Volterra integral equations under various monotonicity and convexity (concavity conditions on the kernels. The iterates in the schemes are linear, and converge monotonically, uniformly and quadratically to the unique solution. An application to a boundary-layer theory problem and examples illustrating the results are presented.

  9. Backward stochastic differential equations with two distinct reflecting barriers and quadratic growth generator

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We show the existence of a solution for the double-barrier reflected BSDE when the barriers are completely separate and the generator is continuous with quadratic growth. As an application, we solve the risk-sensitive mixed zero-sum stochastic differential game. In addition we deal with recallable options under Knightian uncertainty.

  10. Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach

    Directory of Open Access Journals (Sweden)

    Choonkil Park

    2008-03-01

    Full Text Available Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation f(2x+y=4f(x+f(y+f(x+y−f(x−y in Banach spaces.

  11. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    Science.gov (United States)

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  12. An integral quadratic constraint approach to the robust performance estimation problem of guidance loops

    NARCIS (Netherlands)

    Weiss, M.

    2010-01-01

    The problem of evaluating the performance of an uncertain guidance loop system is considered, when the uncertainty is described in terms of an integral quadratic constraint. The idea of the approach proposed in this paper is to determine the set of all possible state vector values at the end of the

  13. A Fixed Point Approach to the Stability of Quadratic Functional Equation with Involution

    Directory of Open Access Journals (Sweden)

    Lee Zoon-Hee

    2008-01-01

    Full Text Available Abstract Cădariu and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we will adopt the idea of Cădariu and Radu to prove the Hyers-Ulam-Rassias stability of the quadratic functional equation with involution.

  14. Backward stochastic differential equations with two distinct reflecting barriers and quadratic growth generator

    OpenAIRE

    S. Hamadène; I. Hdhiri

    2006-01-01

    We show the existence of a solution for the double-barrier reflected BSDE when the barriers are completely separate and the generator is continuous with quadratic growth. As an application, we solve the risk-sensitive mixed zero-sum stochastic differential game. In addition we deal with recallable options under Knightian uncertainty.

  15. Backward stochastic differential equations with two distinct reflecting barriers and quadratic growth generator

    Directory of Open Access Journals (Sweden)

    I. Hdhiri

    2006-02-01

    Full Text Available We show the existence of a solution for the double-barrier reflected BSDE when the barriers are completely separate and the generator is continuous with quadratic growth. As an application, we solve the risk-sensitive mixed zero-sum stochastic differential game. In addition we deal with recallable options under Knightian uncertainty.

  16. A Fixed Point Approach to the Stability of Quadratic Functional Equation with Involution

    Directory of Open Access Journals (Sweden)

    Zoon-Hee Lee

    2008-06-01

    Full Text Available Cădariu and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we will adopt the idea of Cădariu and Radu to prove the Hyers-Ulam-Rassias stability of the quadratic functional equation with involution.

  17. Graphical Representation of Complex Solutions of the Quadratic Equation in the "xy" Plane

    Science.gov (United States)

    McDonald, Todd

    2006-01-01

    This paper presents a visual representation of complex solutions of quadratic equations in the xy plane. Rather than moving to the complex plane, students are able to experience a geometric interpretation of the solutions in the xy plane. I am also working on these types of representations with higher order polynomials with some success.

  18. Necessary and Sufficient Conditions for Feedback Nash Equilibria for the Affine Quadratic Differential

    NARCIS (Netherlands)

    Engwerda, J.C.; Salmah, Y.

    2010-01-01

    In this note we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon. The performance function is assumed to be indefinite and the underlying system affine. We derive both necessary and sufficient conditions under which this game has a Nash

  19. Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems

    NARCIS (Netherlands)

    Opmeer, MR; Curtain, RF

    2004-01-01

    In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show

  20. Uniqueness Conditions for the Infinite-Planning Horizon Open-Loop Linear Quadratic Differential Game

    NARCIS (Netherlands)

    Engwerda, J.C.

    2005-01-01

    In this note we consider the open-loop Nash linear quadratic differential game with an infinite planning horizon.The performance function is assumed to be indefinite and the underlying system affine.We derive both necessary and sufficient conditions under which this game has a unique Nash

  1. Performance and Difficulties of Students in Formulating and Solving Quadratic Equations with One Unknown

    Science.gov (United States)

    Didis, Makbule Gozde; Erbas, Ayhan Kursat

    2015-01-01

    This study attempts to investigate the performance of tenth-grade students in solving quadratic equations with one unknown, using symbolic equation and word-problem representations. The participants were 217 tenth-grade students, from three different public high schools. Data was collected through an open-ended questionnaire comprising eight…

  2. Differentiated Learning Environment--A Classroom for Quadratic Equation, Function and Graphs

    Science.gov (United States)

    Dinç, Emre

    2017-01-01

    This paper will cover the design of a learning environment as a classroom regarding the Quadratic Equations, Functions and Graphs. The goal of the learning environment offered in the paper is to design a classroom where students will enjoy the process, use their skills they already have during the learning process, control and plan their learning…

  3. A numerical algorithm to find all feedback Nash equilibria in scalar affine quadratic differential games

    NARCIS (Netherlands)

    Engwerda, Jacob

    2015-01-01

    This note deals with solving scalar coupled algebraic Riccati equations. These equations arise in finding linear feedback Nash equilibria of the scalar N-player affine quadratic differential game. A numerical procedure is provided to compute all the stabilizing solutions. The main idea is to

  4. Building Students' Understanding of Quadratic Equation Concept Using Naïve Geometry

    Science.gov (United States)

    Fachrudin, Achmad Dhany; Putri, Ratu Ilma Indra; Darmawijoyo

    2014-01-01

    The purpose of this research is to know how Naïve Geometry method can support students' understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic…

  5. A New GCD Algorithm for Quadratic Number Rings with Unique Factorization

    DEFF Research Database (Denmark)

    Agarwal, Saurabh; Frandsen, Gudmund Skovbjerg

    2006-01-01

    We present an algorithm to compute a greatest common divisor of two integers in a quadratic number ring that is a unique factorization domain. The algorithm uses bit operations in a ring of discriminant Δ. This appears to be the first gcd algorithm of complexity o(n 2) for any fixed non-Euclidean...

  6. Effectiveness of quadrat sampling on terrestrial cave fauna survey - a case study in a Neotropical cave

    Directory of Open Access Journals (Sweden)

    Maria Elina Bichuette

    2015-07-01

    Full Text Available Quadrat sampling is a method used for a long time in plant ecology studies but only recently it has been used with focus on fauna. For the cave fauna samplings, there are rare works applying this methodology. The present study compared the methods of quadrat sampling with direct search qualitative for terrestrial cave fauna. For this, we conducted five sampling collections in a limestone cave in central Brazil. Quadrat sampling contributed with 121 exclusive species and 716 specimens and direct search qualitative method contributed with 91 exclusive species and 355 specimens. Mann-Whitney test evidenced significant differences between the two methods. We demonstrated that quadrat sampling method was slightly more efficient to analyze the species richness and much more effective to assess the abundance than the use of only direct search qualitative method, mainly considering tiny and/or cryptobiotic invertebrates (e.g., earth worms, symphylans, psocopterans, trichopterans, dipterans, small spiders, and small isopods. We recommend the association of different methods to test patterns in cave fauna, since incomplete sampling may lead to erroneous estimates and equivocated decisions about management, impact studies and cave conservation.

  7. An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...

  8. Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses

    DEFF Research Database (Denmark)

    Bache, Morten

    2009-01-01

    The dispersion of index-guiding microstructured polymer optical fibers is calculated for second-harmonic generation. The quadratic nonlinearity is assumed to come from poling of the polymer, which in this study is chosen to be the cyclic olefin copolymer Topas. We found a very large phase mismatch...

  9. First report of soybean pest, Euschistus quadrator (Hempitera: pentatomidae) in Mississippi

    Science.gov (United States)

    Here we report on the first state and county record of Euschistus quadrator Ralston (Hemiptera: Pentatomidae) in Washington County, Mississippi. The species has been documented from Honduras to Virginia primarily on soybeans, cotton, various row crops, fruit, and non-crop hosts. The local impact...

  10. Quadratic head loss approximations for optimisation problems in water supply networks

    NARCIS (Netherlands)

    Pecci, Filippo; Abraham, E.; I, Stoianov

    2017-01-01

    This paper presents a novel analysis of the accuracy of quadratic approximations for the Hazen–Williams (HW) head loss formula, which enables the control of constraint violations in optimisation problems for water supply networks. The two smooth polynomial approximations considered here minimise the

  11. A note on the construction of Numerov method through a quadratic ...

    African Journals Online (AJOL)

    This note presents a construction of Numerov method from a quadratic continuous polynomial solution (degree two continuous polynomial solutions). In contrast with [1, 3, 5] that was hitherto obtained from a degree four polynomial, the discrete Numerov method as a special case. This process lead to the block method ...

  12. A semidefinite programming based branch-and-bound framework for the quadratic assignment problem

    NARCIS (Netherlands)

    Truetsch, U.

    2014-01-01

    The practical approach to calculate an exact solution for a quadratic assignment problem (QAP) via a branch-and-bound framework depends strongly on a "smart" choice of different strategies within the framework, for example the branching strategy, heuristics for the upper bound or relaxations for the

  13. Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry

    NARCIS (Netherlands)

    de Klerk, E.; Sotirov, R.

    2012-01-01

    Semidefinite programming (SDP) bounds for the quadratic assignment problem (QAP) were introduced in Zhao et al. (J Comb Optim 2:71–109, 1998). Empirically, these bounds are often quite good in practice, but computationally demanding, even for relatively small instances. For QAP instances where the

  14. A dual framework for lower bounds of the quadratic assignment|problem based on linearization

    DEFF Research Database (Denmark)

    Karisch, Stefan E.; Cela, E.; Clausen, Jens

    1999-01-01

    A dual framework allowing the comparison of various bounds for the quadratic assignment problem (QAP) based on linearization, e.g. the bounds of Adams and Johnson, Carraresi and Malucelli, and Hahn and Grant, is presented. We discuss the differences of these bounds and propose a new and more...

  15. The quadratic assignment problem is easy for Robinsonian matrices with Toeplitz structure

    NARCIS (Netherlands)

    M. Laurent (Monique); M. Seminaroti (Matteo)

    2014-01-01

    htmlabstractWe present a new polynomially solvable case of the Quadratic Assignment Problem in Koopmans-Beckman form QAP(A,B), by showing that the identity permutation is optimal when A and B are respectively a Robinson similarity and dissimilarity matrix and one of A or B is a Toeplitz matrix. A

  16. A contiguous-quadrat sampling exercise in a shrub-invaded ...

    African Journals Online (AJOL)

    In each quadrat, we recorded the species present and counted the number of woody alien plants. Chromolaena diminished under annual burning. Species richness and turnover increased in all transects over time. The 25m transect was as efficient as the 30m transect; however, the latter was influenced by an edge effect, ...

  17. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

    Science.gov (United States)

    Kiselev, Aleksei P; Plachenov, Alexandr B

    2016-04-01

    The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given.

  18. Item Pool Construction Using Mixed Integer Quadratic Programming (MIQP). GMAC® Research Report RR-14-01

    Science.gov (United States)

    Han, Kyung T.; Rudner, Lawrence M.

    2014-01-01

    This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…

  19. Robust Ellipse Fitting via Half-Quadratic and Semidefinite Relaxation Optimization.

    Science.gov (United States)

    Liang, Junli; Wang, Yunlong; Zeng, Xianju

    2015-11-01

    Ellipse fitting is widely applied in the fields of computer vision and automatic manufacture. However, the introduced edge point errors (especially outliers) from image edge detection will cause severe performance degradation of the subsequent ellipse fitting procedure. To alleviate the influence of outliers, we develop a robust ellipse fitting method in this paper. The main contributions of this paper are as follows. First, to be robust against the outliers, we introduce the maximum correntropy criterion into the constrained least-square (CLS) ellipse fitting method, and apply the half-quadratic optimization algorithm to solve the nonlinear and nonconvex problem in an alternate manner. Second, to ensure that the obtained solution is related to an ellipse, we introduce a special quadratic equality constraint into the aforementioned CLS model, which results in the nonconvex quadratically constrained quadratic programming problem. Finally, we derive the semidefinite relaxation version of the aforementioned problem in terms of the trace operator and thus determine the ellipse parameters using semidefinite programming. Some simulated and experimental examples are presented to illustrate the effectiveness of the proposed ellipse fitting approach.

  20. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a