WorldWideScience

Sample records for binary outcome variables

  1. Randomized trials, generalizability, and meta-analysis: Graphical insights for binary outcomes

    Directory of Open Access Journals (Sweden)

    Kramer Barnett S

    2003-06-01

    Full Text Available Abstract Background Randomized trials stochastically answer the question. "What would be the effect of treatment on outcome if one turned back the clock and switched treatments in the given population?" Generalizations to other subjects are reliable only if the particular trial is performed on a random sample of the target population. By considering an unobserved binary variable, we graphically investigate how randomized trials can also stochastically answer the question, "What would be the effect of treatment on outcome in a population with a possibly different distribution of an unobserved binary baseline variable that does not interact with treatment in its effect on outcome?" Method For three different outcome measures, absolute difference (DIF, relative risk (RR, and odds ratio (OR, we constructed a modified BK-Plot under the assumption that treatment has the same effect on outcome if either all or no subjects had a given level of the unobserved binary variable. (A BK-Plot shows the effect of an unobserved binary covariate on a binary outcome in two treatment groups; it was originally developed to explain Simpsons's paradox. Results For DIF and RR, but not OR, the BK-Plot shows that the estimated treatment effect is invariant to the fraction of subjects with an unobserved binary variable at a given level. Conclusion The BK-Plot provides a simple method to understand generalizability in randomized trials. Meta-analyses of randomized trials with a binary outcome that are based on DIF or RR, but not OR, will avoid bias from an unobserved covariate that does not interact with treatment in its effect on outcome.

  2. Confounding of three binary-variables counterfactual model

    OpenAIRE

    Liu, Jingwei; Hu, Shuang

    2011-01-01

    Confounding of three binary-variables counterfactual model is discussed in this paper. According to the effect between the control variable and the covariate variable, we investigate three counterfactual models: the control variable is independent of the covariate variable, the control variable has the effect on the covariate variable and the covariate variable affects the control variable. Using the ancillary information based on conditional independence hypotheses, the sufficient conditions...

  3. Short-timescale variability in cataclysmic binaries

    International Nuclear Information System (INIS)

    Cordova, F.A.; Mason, K.O.

    1982-01-01

    Rapid variability, including flickering and pulsations, has been detected in cataclysmic binaries at optical and x-ray frequencies. In the case of the novalike variable TT Arietis, simultaneous observations reveal that the x-ray and optical flickering activity is strongly correlated, while short period pulsations are observed that occur at the same frequencies in both wavelength bands

  4. The Effect of Latent Binary Variables on the Uncertainty of the Prediction of a Dichotomous Outcome Using Logistic Regression Based Propensity Score Matching.

    Science.gov (United States)

    Szekér, Szabolcs; Vathy-Fogarassy, Ágnes

    2018-01-01

    Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.

  5. Short-term variability of binary and non-binary Trans-Neptunian Objects

    Science.gov (United States)

    Thirouin, Audrey; Noll, K. S.; Campo Bagatin, A.; Ortiz Moreno, J. L.; Morales, N.

    2013-10-01

    Since 1992, more than 1400 Trans-Neptunian Objects (TNOs) have been discovered. Our approach to understand such objects is to study their rotations by monitoring their brightness variations. By studying the rotational properties of the TNOs a wealth of information can be obtained on their physics. So, the study of the spins and shapes of TNOs is a powerful method of gaining information on the formation and evolution of our Solar System. We have observed most of the brightest TNOs and centaurs, and compiled one of the largest lightcurves samples. The main purpose was to increase the number of objects whose short-term variability has been studied and present a homogeneous dataset trying to avoid observational biases. A dataset composed of 54 TNOs/Centaurs is reported and analyzed. Amplitudes and rotational periods have been derived for 45 of them with different degrees of reliability. For 9 objects, only an estimation of the amplitude is reported. Because most of the TNOs/Centaurs have low amplitude lightcurves, it is difficult to distinguish between single- and double-peaked lightcurves. Based on our results and the literature, following Binzel et al. (1989) study about asteroids rotational frequency distribution, we studied the TNOs spin rate distributions. We performed several Maxwellian fits to various histograms obtained considering that the lightcurves are single- or double-peaked. We tested lightcurve amplitude limits to distinguish if the lightcurve is albedo- or shape-dominated. Such a consideration introduces important changes in the distribution. We derived that an amplitude limit of 0.15mag gave a good fit to Maxwellian distribution. So, it seems that 0.15mag is a good measure of the typical variability caused by albedo. We studied the short-term variability of binary TNOs thanks to unresolved lightcurves. Based on our results and those from the literature, we come up with a sample of 32 systems with a rotational period and/or lightcurve amplitude value

  6. Causal mediation analysis with a binary outcome and multiple continuous or ordinal mediators: Simulations and application to an alcohol intervention

    OpenAIRE

    Nguyen, Trang Quynh; Webb-Vargas, Yenny; Koning, Ina M.; Stuart, Elizabeth A.

    2016-01-01

    We investigate a method to estimate the combined effect of multiple continuous/ordinal mediators on a binary outcome: 1) fit a structural equation model with probit link for the outcome and identity/probit link for continuous/ordinal mediators, 2) predict potential outcome probabilities, and 3) compute natural direct and indirect effects. Step 2 involves rescaling the latent continuous variable underlying the outcome to address residual mediator variance/covariance. We evaluate the estimation...

  7. Quantifying relative importance: Computing standardized effects in models with binary outcomes

    Science.gov (United States)

    Grace, James B.; Johnson, Darren; Lefcheck, Jonathan S.; Byrnes, Jarrett E.K.

    2018-01-01

    Scientists commonly ask questions about the relative importances of processes, and then turn to statistical models for answers. Standardized coefficients are typically used in such situations, with the goal being to compare effects on a common scale. Traditional approaches to obtaining standardized coefficients were developed with idealized Gaussian variables in mind. When responses are binary, complications arise that impact standardization methods. In this paper, we review, evaluate, and propose new methods for standardizing coefficients from models that contain binary outcomes. We first consider the interpretability of unstandardized coefficients and then examine two main approaches to standardization. One approach, which we refer to as the Latent-Theoretical or LT method, assumes that underlying binary observations there exists a latent, continuous propensity linearly related to the coefficients. A second approach, which we refer to as the Observed-Empirical or OE method, assumes responses are purely discrete and estimates error variance empirically via reference to a classical R2 estimator. We also evaluate the standard formula for calculating standardized coefficients based on standard deviations. Criticisms of this practice have been persistent, leading us to propose an alternative formula that is based on user-defined “relevant ranges”. Finally, we implement all of the above in an open-source package for the statistical software R.

  8. Orbital tidal variability in the eccentric early type binary Iota Orionis

    International Nuclear Information System (INIS)

    Stevens, I.R.

    1988-01-01

    Iota Orionis is a bright, highly eccentric, massive early type binary, which has been studied recently in UV wavelengths, for evidence of stellar wind variability caused by tidal interactions between the two stars. No gross variability was found, but small scale perturbations in the UV resonance line profiles were noted. Here, using a radiatively driven stellar wind model for eccentric binaries, the results of numerical modelling of the stellar wind of Iota Orionis are presented. These calculations suggest that increased mass-loss from the primary star will occur close to the periastron passage, but that the enhancements will be short lived, and observed probably as redshifted emission features. (author)

  9. Clustering Binary Data in the Presence of Masking Variables

    Science.gov (United States)

    Brusco, Michael J.

    2004-01-01

    A number of important applications require the clustering of binary data sets. Traditional nonhierarchical cluster analysis techniques, such as the popular K-means algorithm, can often be successfully applied to these data sets. However, the presence of masking variables in a data set can impede the ability of the K-means algorithm to recover the…

  10. Time variability of X-ray binaries: observations with INTEGRAL. Modeling

    International Nuclear Information System (INIS)

    Cabanac, Clement

    2007-01-01

    The exact origin of the observed X and Gamma ray variability in X-ray binaries is still an open debate in high energy astrophysics. Among others, these objects are showing aperiodic and quasi-periodic luminosity variations on timescales as small as the millisecond. This erratic behavior must put constraints on the proposed emission processes occurring in the vicinity of the neutrons star or the stellar mass black-hole held by these objects. We propose here to study their behavior following 3 different ways: first we examine the evolution of a particular X-ray source discovered by INTEGRAL, IGR J19140+0951. Using timing and spectral data given by different instruments, we show that the source type is plausibly consistent with a High Mass X-ray Binary hosting a neutrons star. Subsequently, we propose a new method dedicated to the study of timing data coming from coded mask aperture instruments. Using it on INTEGRAL/ISGRI real data, we detect the presence of periodic and quasi-periodic features in some pulsars and micro-quasars at energies as high as a hundred keV. Finally, we suggest a model designed to describe the low frequency variability of X-ray binaries in their hardest state. This model is based on thermal comptonization of soft photons by a warm corona in which a pressure wave is propagating in cylindrical geometry. By computing both numerical simulations and analytical solution, we show that this model should be suitable to describe some of the typical features observed in X-ray binaries power spectra in their hard state and their evolution such as aperiodic noise and low frequency quasi-periodic oscillations. (author) [fr

  11. A comparison of confidence interval methods for the intraclass correlation coefficient in community-based cluster randomization trials with a binary outcome.

    Science.gov (United States)

    Braschel, Melissa C; Svec, Ivana; Darlington, Gerarda A; Donner, Allan

    2016-04-01

    Many investigators rely on previously published point estimates of the intraclass correlation coefficient rather than on their associated confidence intervals to determine the required size of a newly planned cluster randomized trial. Although confidence interval methods for the intraclass correlation coefficient that can be applied to community-based trials have been developed for a continuous outcome variable, fewer methods exist for a binary outcome variable. The aim of this study is to evaluate confidence interval methods for the intraclass correlation coefficient applied to binary outcomes in community intervention trials enrolling a small number of large clusters. Existing methods for confidence interval construction are examined and compared to a new ad hoc approach based on dividing clusters into a large number of smaller sub-clusters and subsequently applying existing methods to the resulting data. Monte Carlo simulation is used to assess the width and coverage of confidence intervals for the intraclass correlation coefficient based on Smith's large sample approximation of the standard error of the one-way analysis of variance estimator, an inverted modified Wald test for the Fleiss-Cuzick estimator, and intervals constructed using a bootstrap-t applied to a variance-stabilizing transformation of the intraclass correlation coefficient estimate. In addition, a new approach is applied in which clusters are randomly divided into a large number of smaller sub-clusters with the same methods applied to these data (with the exception of the bootstrap-t interval, which assumes large cluster sizes). These methods are also applied to a cluster randomized trial on adolescent tobacco use for illustration. When applied to a binary outcome variable in a small number of large clusters, existing confidence interval methods for the intraclass correlation coefficient provide poor coverage. However, confidence intervals constructed using the new approach combined with Smith

  12. The mediation proportion: a structural equation approach for estimating the proportion of exposure effect on outcome explained by an intermediate variable

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Christensen, Ulla; Lynch, John

    2005-01-01

    It is often of interest to assess how much of the effect of an exposure on a response is mediated through an intermediate variable. However, systematic approaches are lacking, other than assessment of a surrogate marker for the endpoint of a clinical trial. We review a measure of "proportion...... of several intermediate variables. Binary or categorical variables can be included directly through threshold models. We call this measure the mediation proportion, that is, the part of an exposure effect on outcome explained by a third, intermediate variable. Two examples illustrate the approach. The first...... example is a randomized clinical trial of the effects of interferon-alpha on visual acuity in patients with age-related macular degeneration. In this example, the exposure, mediator and response are all binary. The second example is a common problem in social epidemiology-to find the proportion...

  13. The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

    Science.gov (United States)

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2017-04-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

  14. A Statistical Model for Misreported Binary Outcomes in Clustered RCTs of Education Interventions

    Science.gov (United States)

    Schochet, Peter Z.

    2013-01-01

    In education randomized control trials (RCTs), the misreporting of student outcome data could lead to biased estimates of average treatment effects (ATEs) and their standard errors. This article discusses a statistical model that adjusts for misreported binary outcomes for two-level, school-based RCTs, where it is assumed that misreporting could…

  15. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    Science.gov (United States)

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-07

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  16. Causal analysis of ordinal treatments and binary outcomes under truncation by death.

    Science.gov (United States)

    Wang, Linbo; Richardson, Thomas S; Zhou, Xiao-Hua

    2017-06-01

    It is common that in multi-arm randomized trials, the outcome of interest is "truncated by death," meaning that it is only observed or well-defined conditioning on an intermediate outcome. In this case, in addition to pairwise contrasts, the joint inference for all treatment arms is also of interest. Under a monotonicity assumption we present methods for both pairwise and joint causal analyses of ordinal treatments and binary outcomes in presence of truncation by death. We illustrate via examples the appropriateness of our assumptions in different scientific contexts.

  17. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.

    Science.gov (United States)

    van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B

    2016-11-24

    Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

  18. ULTRA-LOW AMPLITUDE VARIABLES IN THE LARGE MAGELLANIC CLOUD-CLASSICAL CEPHEIDS, POP. II CEPHEIDS, RV TAU STARS, AND BINARY VARIABLES

    International Nuclear Information System (INIS)

    Robert Buchler, J.; Wood, Peter R.; Soszynski, Igor

    2009-01-01

    A search for variable stars with ultra-low amplitudes (ULAs), in the millimagnitude range, has been made in the combined MACHO and OGLE databases in the broad vicinity of the Cepheid instability strip in the HR diagram. A total of 25 singly periodic and 4 multiply periodic ULA objects have been uncovered. Our analysis does not allow us to distinguish between pulsational and ellipsoidal (binary) variabilities, nor between Large Magellanic Cloud (LMC) and foreground objects. However, the objects are strongly clustered and appear to be associated with the pulsational instability strips of LMC Pop. I and II variables. When combined with the ULA variables of Buchler et al., a total of 20 objects fall close to the classical Cepheid instability strip. However, they appear to fall on parallel period-magnitude (PM) relations that are shifted to slightly higher magnitude which would confer them a different evolutionary status. Low-amplitude RV Tauri and Pop. II Cepheids have been uncovered that do not appear in the MACHO or OGLE catalogs. Interestingly, a set of binaries seem to lie on a PM relation that is essentially parallel to that of the RV Tauri/Pop. II Cepheids.

  19. Chromospheric activity of periodic variable stars (including eclipsing binaries) observed in DR2 LAMOST stellar spectral survey

    Science.gov (United States)

    Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang

    2018-05-01

    The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.

  20. Causal mediation analysis with a binary outcome and multiple continuous or ordinal mediators: Simulations and application to an alcohol intervention.

    Science.gov (United States)

    Nguyen, Trang Quynh; Webb-Vargas, Yenny; Koning, Ina M; Stuart, Elizabeth A

    We investigate a method to estimate the combined effect of multiple continuous/ordinal mediators on a binary outcome: 1) fit a structural equation model with probit link for the outcome and identity/probit link for continuous/ordinal mediators, 2) predict potential outcome probabilities, and 3) compute natural direct and indirect effects. Step 2 involves rescaling the latent continuous variable underlying the outcome to address residual mediator variance/covariance. We evaluate the estimation of risk-difference- and risk-ratio-based effects (RDs, RRs) using the ML, WLSMV and Bayes estimators in Mplus. Across most variations in path-coefficient and mediator-residual-correlation signs and strengths, and confounding situations investigated, the method performs well with all estimators, but favors ML/WLSMV for RDs with continuous mediators, and Bayes for RRs with ordinal mediators. Bayes outperforms WLSMV/ML regardless of mediator type when estimating RRs with small potential outcome probabilities and in two other special cases. An adolescent alcohol prevention study is used for illustration.

  1. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    International Nuclear Information System (INIS)

    Kalomeni, B.; Rappaport, S.; Molnar, M.; Nelson, L.; Quintin, J.; Yakut, K.

    2016-01-01

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M ⊙ ), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P orb – M don ) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb ( M wd ) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb – M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  2. Monitoring the quality of cardiac surgery based on three or more surgical outcomes using a new variable life-adjusted display.

    Science.gov (United States)

    Gan, Fah Fatt; Tang, Xu; Zhu, Yexin; Lim, Puay Weng

    2017-06-01

    The traditional variable life-adjusted display (VLAD) is a graphical display of the difference between expected and actual cumulative deaths. The VLAD assumes binary outcomes: death within 30 days of an operation or survival beyond 30 days. Full recovery and bedridden for life, for example, are considered the same outcome. This binary classification results in a great loss of information. Although there are many grades of survival, the binary outcomes are commonly used to classify surgical outcomes. Consequently, quality monitoring procedures are developed based on binary outcomes. With a more refined set of outcomes, the sensitivities of these procedures can be expected to improve. A likelihood ratio method is used to define a penalty-reward scoring system based on three or more surgical outcomes for the new VLAD. The likelihood ratio statistic W is based on testing the odds ratio of cumulative probabilities of recovery R. Two methods of implementing the new VLAD are proposed. We accumulate the statistic W-W¯R to estimate the performance of a surgeon where W¯R is the average of the W's of a historical data set. The accumulated sum will be zero based on the historical data set. This ensures that if a new VLAD is plotted for a future surgeon of performance similar to this average performance, the plot will exhibit a horizontal trend. For illustration of the new VLAD, we consider 3-outcome surgical results: death within 30 days, partial and full recoveries. In our first illustration, we show the effect of partial recoveries on surgical results of a surgeon. In our second and third illustrations, the surgical results of two surgeons are compared using both the traditional VLAD based on binary-outcome data and the new VLAD based on 3-outcome data. A reversal in relative performance of surgeons is observed when the new VLAD is used. In our final illustration, we display the surgical results of four surgeons using the new VLAD based completely on 3-outcome data. Full

  3. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Kalomeni, B.; Rappaport, S.; Molnar, M. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Nelson, L. [Department of Physics, Bishop’s University, 2600 College St., Sherbrooke, Quebec, QC J1M 1Z7 (Canada); Quintin, J. [Department of Physics, McGill University, Montréal, QC H3A 2T8 (Canada); Yakut, K., E-mail: kalomeni@mit.edu, E-mail: sar@mit.edu, E-mail: momchil.molnar@gmail.com, E-mail: belinda.kalomeni@ege.edu.tr, E-mail: kadri.yakut@ege.edu.tr, E-mail: lnelson@ubishops.ca, E-mail: jquintin@physics.mcgill.ca [Department of Astronomy and Space Sciences, Ege University, 35100, İzmir (Turkey)

    2016-12-10

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  4. The occurrence of Binary Evolution Pulsators in the classical instability strip of RR Lyrae and Cepheid variables

    OpenAIRE

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2016-01-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass 0.26 Msun RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. T...

  5. A simple method for analyzing data from a randomized trial with a missing binary outcome

    Directory of Open Access Journals (Sweden)

    Freedman Laurence S

    2003-05-01

    Full Text Available Abstract Background Many randomized trials involve missing binary outcomes. Although many previous adjustments for missing binary outcomes have been proposed, none of these makes explicit use of randomization to bound the bias when the data are not missing at random. Methods We propose a novel approach that uses the randomization distribution to compute the anticipated maximum bias when missing at random does not hold due to an unobserved binary covariate (implying that missingness depends on outcome and treatment group. The anticipated maximum bias equals the product of two factors: (a the anticipated maximum bias if there were complete confounding of the unobserved covariate with treatment group among subjects with an observed outcome and (b an upper bound factor that depends only on the fraction missing in each randomization group. If less than 15% of subjects are missing in each group, the upper bound factor is less than .18. Results We illustrated the methodology using data from the Polyp Prevention Trial. We anticipated a maximum bias under complete confounding of .25. With only 7% and 9% missing in each arm, the upper bound factor, after adjusting for age and sex, was .10. The anticipated maximum bias of .25 × .10 =.025 would not have affected the conclusion of no treatment effect. Conclusion This approach is easy to implement and is particularly informative when less than 15% of subjects are missing in each arm.

  6. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis

    Directory of Open Access Journals (Sweden)

    Maarten van Smeden

    2016-11-01

    Full Text Available Abstract Background Ten events per variable (EPV is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. Methods The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth’s correction, are compared. Results The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect (‘separation’. We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth’s correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. Conclusions The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

  7. Joint analysis of binary and quantitative traits with data sharing and outcome-dependent sampling.

    Science.gov (United States)

    Zheng, Gang; Wu, Colin O; Kwak, Minjung; Jiang, Wenhua; Joo, Jungnam; Lima, Joao A C

    2012-04-01

    We study the analysis of a joint association between a genetic marker with both binary (case-control) and quantitative (continuous) traits, where the quantitative trait values are only available for the cases due to data sharing and outcome-dependent sampling. Data sharing becomes common in genetic association studies, and the outcome-dependent sampling is the consequence of data sharing, under which a phenotype of interest is not measured for some subgroup. The trend test (or Pearson's test) and F-test are often, respectively, used to analyze the binary and quantitative traits. Because of the outcome-dependent sampling, the usual F-test can be applied using the subgroup with the observed quantitative traits. We propose a modified F-test by also incorporating the genotype frequencies of the subgroup whose traits are not observed. Further, a combination of this modified F-test and Pearson's test is proposed by Fisher's combination of their P-values as a joint analysis. Because of the correlation of the two analyses, we propose to use a Gamma (scaled chi-squared) distribution to fit the asymptotic null distribution for the joint analysis. The proposed modified F-test and the joint analysis can also be applied to test single trait association (either binary or quantitative trait). Through simulations, we identify the situations under which the proposed tests are more powerful than the existing ones. Application to a real dataset of rheumatoid arthritis is presented. © 2012 Wiley Periodicals, Inc.

  8. Identifying decaying supermassive black hole binaries from their variable electromagnetic emission

    Energy Technology Data Exchange (ETDEWEB)

    Haiman, Zoltan; Menou, Kristen [Department of Astronomy, Columbia University, New York, NY (United States); Kocsis, Bence [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Lippai, Zoltan; Frei, Zsolt [Institute of Physics, Eoetvoes University, Budapest (Hungary)

    2009-05-07

    Supermassive black hole binaries (SMBHBs) with masses in the mass range approx(10{sup 4}-10{sup 7}) M{sub o-dot}/(1 + z), produced in galaxy mergers, are thought to complete their coalescence due to the emission of gravitational waves (GWs). The anticipated detection of the GWs by the future Laser Interferometric Space Antenna (LISA) will constitute a milestone for fundamental physics and astrophysics. While the GW signatures themselves will provide a treasure trove of information, if the source can be securely identified in electromagnetic (EM) bands, this would open up entirely new scientific opportunities, to probe fundamental physics, astrophysics and cosmology. We discuss several ideas, involving wide-field telescopes, that may be useful in locating electromagnetic counterparts to SMBHBs detected by LISA. In particular, the binary may produce a variable electromagnetic flux, such as a roughly periodic signal due to the orbital motion prior to coalescence, or a prompt transient signal caused by shocks in the circumbinary disc when the SMBHB recoils and 'shakes' the disc. We discuss whether these time-variable EM signatures may be detectable, and how they can help in identifying a unique counterpart within the localization errors provided by LISA. We also discuss a possibility of identifying a population of coalescing SMBHBs statistically, in a deep optical survey for periodically variable sources, before LISA detects the GWs directly. The discovery of such sources would confirm that gas is present in the vicinity and is being perturbed by the SMBHB-serving as a proof of concept for eventually finding actual LISA counterparts.

  9. Identifying decaying supermassive black hole binaries from their variable electromagnetic emission

    International Nuclear Information System (INIS)

    Haiman, Zoltan; Menou, Kristen; Kocsis, Bence; Lippai, Zoltan; Frei, Zsolt

    2009-01-01

    Supermassive black hole binaries (SMBHBs) with masses in the mass range ∼(10 4 -10 7 ) M o-dot /(1 + z), produced in galaxy mergers, are thought to complete their coalescence due to the emission of gravitational waves (GWs). The anticipated detection of the GWs by the future Laser Interferometric Space Antenna (LISA) will constitute a milestone for fundamental physics and astrophysics. While the GW signatures themselves will provide a treasure trove of information, if the source can be securely identified in electromagnetic (EM) bands, this would open up entirely new scientific opportunities, to probe fundamental physics, astrophysics and cosmology. We discuss several ideas, involving wide-field telescopes, that may be useful in locating electromagnetic counterparts to SMBHBs detected by LISA. In particular, the binary may produce a variable electromagnetic flux, such as a roughly periodic signal due to the orbital motion prior to coalescence, or a prompt transient signal caused by shocks in the circumbinary disc when the SMBHB recoils and 'shakes' the disc. We discuss whether these time-variable EM signatures may be detectable, and how they can help in identifying a unique counterpart within the localization errors provided by LISA. We also discuss a possibility of identifying a population of coalescing SMBHBs statistically, in a deep optical survey for periodically variable sources, before LISA detects the GWs directly. The discovery of such sources would confirm that gas is present in the vicinity and is being perturbed by the SMBHB-serving as a proof of concept for eventually finding actual LISA counterparts.

  10. A general method for handling missing binary outcome data in randomized controlled trials

    OpenAIRE

    Jackson, Dan; White, Ian R; Mason, Dan; Sutton, Stephen

    2014-01-01

    Aims The analysis of randomized controlled trials with incomplete binary outcome data is challenging. We develop a general method for exploring the impact of missing data in such trials, with a focus on abstinence outcomes. Design We propose a sensitivity analysis where standard analyses, which could include ‘missing = smoking’ and ‘last observation carried forward’, are embedded in a wider class of models. Setting We apply our general method to data from two smoking cessation trials. Partici...

  11. Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients

    International Nuclear Information System (INIS)

    Zhang Yi; Wei Wei-Wei; Cheng Teng-Fei; Song Yang

    2011-01-01

    In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients as an illustrative example, the bilinear formulism, the bilinear Bäcklund transformation and the Lax pair are obtained in a quick and natural manner. Moreover, the infinite conservation laws are also derived. (general)

  12. Accommodating Binary and Count Variables in Mediation: A Case for Conditional Indirect Effects

    Science.gov (United States)

    Geldhof, G. John; Anthony, Katherine P.; Selig, James P.; Mendez-Luck, Carolyn A.

    2018-01-01

    The existence of several accessible sources has led to a proliferation of mediation models in the applied research literature. Most of these sources assume endogenous variables (e.g., M, and Y) have normally distributed residuals, precluding models of binary and/or count data. Although a growing body of literature has expanded mediation models to…

  13. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  14. Optical Variability Signatures from Massive Black Hole Binaries

    Science.gov (United States)

    Kasliwal, Vishal P.; Frank, Koby Alexander; Lidz, Adam

    2017-01-01

    The hierarchical merging of dark matter halos and their associated galaxies should lead to a population of supermassive black hole binaries (MBHBs). We consider plausible optical variability signatures from MBHBs at sub-parsec separations and search for these using data from the Catalina Real-Time Transient Survey (CRTS). Specifically, we model the impact of relativistic Doppler beaming on the accretion disk emission from the less massive, secondary black hole. We explore whether this Doppler modulation may be separated from other sources of stochastic variability in the accretion flow around the MBHBs, which we describe as a damped random walk (DRW). In the simple case of a circular orbit, relativistic beaming leads to a series of broad peaks — located at multiples of the orbital frequency — in the fluctuation power spectrum. We extend our analysis to the case of elliptical orbits and discuss the effect of beaming on the flux power spectrum and auto-correlation function using simulations. We present a code to model an observed light curve as a stochastic DRW-type time series modulated by relativistic beaming and apply the code to CRTS data.

  15. Exact statistical results for binary mixing and reaction in variable density turbulence

    Science.gov (United States)

    Ristorcelli, J. R.

    2017-02-01

    We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ ⁣2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ ⁣2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived

  16. Putting the cart before the horse. A comment on Wagstaff on inequality measurement in the presence of binary variables

    NARCIS (Netherlands)

    G. Erreygers (Guido); T.G.M. van Ourti (Tom)

    2011-01-01

    textabstractAdam Wagstaff's (2011) recent paper sends a strong reminder that binary variables occur frequently in health inequality studies and that it is important to examine whether the standard measurement tools can be applied without any modification when the health variable happens to be

  17. Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3

    Science.gov (United States)

    Smale, Alan P.; Boyd, Patricia T.

    2012-01-01

    Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.

  18. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  19. Outcome measures based on classification performance fail to predict the intelligibility of binary-masked speech

    DEFF Research Database (Denmark)

    Kressner, Abigail Anne; May, Tobias; Rozell, Christopher J.

    2016-01-01

    To date, the most commonly used outcome measure for assessing ideal binary mask estimation algorithms is based on the difference between the hit rate and the false alarm rate (H-FA). Recently, the error distribution has been shown to substantially affect intelligibility. However, H-FA treats each...... evaluations should not be made solely on the basis of these metrics....

  20. Variable Stellar and Circumstellar Properties of the Young Binary VV CrA

    Science.gov (United States)

    Avilez, Ian; Prato, Lisa A.; Allen, Thomas; Wright-Garba, Nuria Meilani Laure; Biddle, Lauren; Muzzio, Ryan

    2017-01-01

    VV CrA is a 2 arcsecond young binary system in the Corona Australis star forming region. The NE component, fainter in the near-infrared and invisible at optical wavelengths, dominates in the thermal infrared. The system has drawn attention because of its high degree of variability, significant cicrumstellar emission, and the mysterious nature of the infrared companion. Using high-resolution H- and K-band spectroscopy taken with the NIRSPEC spectrometer at the 10 m Keck II telescope, we have for the first time determined the spectral types of both components: the optically dominant primary is an M0 and the infrared compaion is an earlier K7 type star. Both components show significant and variable levels of H-band veiling, observed over 4 to 5 epochs during a period of 4 years; at times the veiling almost completely obscures the photospheric absorption lines. Hydrogen emission lines are observed at both H (Brackett 16) and K (Brackett gamma), consistent with the high rates of mass accretion described in previous studies. We determine values of Vsin(i), effective temperature, veiling, and radial velocity for both components and describe these results in the context of models of the nature and orientation of the system proposed by Smith et al. (2009) and Scicluna et al. (2016). The geometry of the VV CrA system may present a unique opportunity to study not only young star evolution in the binary environment but also to explore cirumstellar disk structure in high detail.Support for this research was provided by an REU supplement to NSF award AST-1313399.

  1. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. II. MODELING THE CENTRAL STARS OF NGC 6026 AND NGC 6337

    International Nuclear Information System (INIS)

    Hillwig, Todd C.; Bond, Howard E.; Afsar, Melike; De Marco, Orsola

    2010-01-01

    Close-binary central stars of planetary nebulae (CSPNe) provide an opportunity to explore the evolution of PNe, their shaping, and the evolution of binary systems undergoing a common-envelope phase. Here, we present the results of time-resolved photometry of the binary central stars (CSs) of the PNe NGC 6026 and NGC 6337 as well as time-resolved spectroscopy of the CS of NGC 6026. The results of a period analysis give an orbital period of 0.528086(4) days for NGC 6026 and a photometric period of 0.1734742(5) days for NGC 6337. In the case of NGC 6337, it appears that the photometric period reflects the orbital period and that the variability is the result of the irradiated hemisphere of a cool companion. The inclination of the thin PN ring is nearly face-on. Our modeled inclination range for the close central binary includes nearly face-on alignments and provides evidence for a direct binary-nebular shaping connection. For NGC 6026, however, the radial-velocity curve shows that the orbital period is twice the photometric period. In this case, the photometric variability is due to an ellipsoidal effect in which the CS nearly fills its Roche lobe and the companion is most likely a hot white dwarf. NGC 6026 then is the third PN with a confirmed central binary where the companion is compact. Based on the data and modeling using a Wilson-Devinney code, we discuss the physical parameters of the two systems and how they relate to the known sample of close-binary CSs, which comprise 15%-20% of all PNe.

  2. Reciprocal Interaction of 24-Hour Blood Pressure Variability and Systolic Blood Pressure on Outcome in Stroke Thrombolysis.

    Science.gov (United States)

    Kellert, Lars; Hametner, Christian; Ahmed, Niaz; Rauch, Geraldine; MacLeod, Mary J; Perini, Francesco; Lees, Kennedy R; Ringleb, Peter A

    2017-07-01

    Significance and management of blood pressure (BP) changes in acute stroke care are unclear. Here, we aimed to investigate the impact of 24-hour BP variability (BPV) on outcome in patients with acute ischemic stroke treated with intravenous thrombolysis. From the Safe Implementation of Treatment in Stroke International Stroke Thrombolysis registry, 28 976 patients with documented pre-treatment systolic BP at 2 and 24 hours were analyzed. The primary measure of BP variability was successive variability. Data were preprocessed using coarsened exact matching. We assessed early neurological improvement, symptomatic intracerebral hemorrhage (SICH), and long-term functional outcome (modified Rankin Scale [mRS] at 90 days) by binary and ordinal regression analyses. Attempts to explain successive variation for analysis of BPV with patients characteristics at admission found systolic BP (5.5% variance) to be most influential, yet 92% of BPV variance remained unexplained. Independently from systolic BP, successive variation for analysis of BPV was associated with poor functional outcome mRS score of 0 to 2 (odds ratio [OR], 0.94; 95% confidence interval [CI], 0.90-0.98), disadvantage across the shift of mRS (OR, 1.04; 95% CI, 1.01-1.08), mortality (OR, 1.10; 95% CI, 1.01-1.08), SICH SITS (OR, 1.14; 95% CI, 1.06-1.23), and SICH ECASS (OR, 1.24; 95% CI, 1.10-1.40; ECASS [European Cooperative Acute Stroke Study 2]). Analyzing successive variation for analysis of BPV as a function of pre-treatment, systolic BP significantly improved the prediction of functional outcome (mRS score of 0-1, mRS score of 0-2, neurological improvement, mRS-shift: all P interaction accounting for pre-treatment BP and the acute BP course (ie, BPV) to achieve best possible outcome for the patient. © 2017 American Heart Association, Inc.

  3. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edge absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.

  4. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    Energy Technology Data Exchange (ETDEWEB)

    Hillwig, Todd C.; Schaub, S. C. [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Frew, David J. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bodman, Eva H. L., E-mail: todd.hillwig@valpo.edu [Southeastern Association for Research in Astronomy (SARA) (United States)

    2016-08-01

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilize the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.

  5. Self-declared stock ownership and association with positive trial outcome in randomized controlled trials with binary outcomes published in general medical journals: a cross-sectional study.

    Science.gov (United States)

    Falk Delgado, Alberto; Falk Delgado, Anna

    2017-07-26

    Describe the prevalence and types of conflicts of interest (COI) in published randomized controlled trials (RCTs) in general medical journals with a binary primary outcome and assess the association between conflicts of interest and favorable outcome. Parallel-group RCTs with a binary primary outcome published in three general medical journals during 2013-2015 were identified. COI type, funding source, and outcome were extracted. Binomial logistic regression model was performed to assess association between COI and funding source with outcome. A total of 509 consecutive parallel-group RCTs were included in the study. COI was reported in 74% in mixed funded RCTs and in 99% in for-profit funded RCTs. Stock ownership was reported in none of the non-profit RCTs, in 7% of mixed funded RCTs, and in 50% of for-profit funded RCTs. Mixed-funded RCTs had employees from the funding company in 11% and for-profit RCTs in 76%. Multivariable logistic regression revealed that stock ownership in the funding company among any of the authors was associated with a favorable outcome (odds ratio = 3.53; 95% confidence interval = 1.59-7.86; p < 0.01). COI in for-profit funded RCTs is extensive, because the factors related to COI are not fully independent, a multivariable analysis should be cautiously interpreted. However, after multivariable adjustment only stock ownership from the funding company among authors is associated with a favorable outcome.

  6. A variable ordering heuristic for risk monitors based on zero-suppressed binary decision diagram

    International Nuclear Information System (INIS)

    Wang Jin; Wang Fang; Wang Jiaqun; Gu Xiaohui; Yuan Run; Li Yazhou; Hu Liqin; Wu Yican; Yin Yuan; FDS Team

    2010-01-01

    The probabilistic safety assessment model using for determining the instantaneous risk in a risk monitor are much more complex than the operational model using for determining the average risk. Therefore the development of a fast calculation engine is indispensable and challengeable. the scale of zero-suppressed binary decision diagram. In this paper an optimized method of variables ordering, which fully utilized that features of operational model, was proposed.Not only the theoretical demonstration but also the applications were also brought out. (authors)

  7. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a 2/7 . Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.

  8. Editorial: Let's talk about sex - the gender binary revisited.

    Science.gov (United States)

    Oldehinkel, Albertine J

    2017-08-01

    Sex refers to biological differences and gender to socioculturally delineated masculine and feminine roles. Sex or gender are included as a covariate or effect modifier in the majority of child psychology and psychiatry studies, and differences found between boys and girls have inspired many researchers to postulate underlying mechanisms. Empirical tests of whether including these proposed explanatory variables actually reduces the variance explained by gender are lagging behind somewhat. That is a pity, because a lot can be gained from a greater focus on the active agents of specific gender differences. As opposed to biological sex as such, some of the processes explaining why a specific outcome shows gender differences may be changeable and so possible prevention targets. Moreover, while the sex binary may be reasonable adequate as a classification variable, the gender binary is far from perfect. Gender is a multidimensional, partly context-dependent factor, and the dichotomy generally used in research does not do justice to the diversity existing within boys and girls. © 2017 Association for Child and Adolescent Mental Health.

  9. Detection of variable VHE γ-ray emission from the extra-galactic γ-ray binary LMC P3

    Science.gov (United States)

    HESS Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Armand, C.; Arrieta, M.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; Drury, L. O.'C.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-03-01

    Context. Recently, the high-energy (HE, 0.1-100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods: LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Results: VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1-10 TeV energy range is (1.4 ± 0.2) × 1035 erg s-1. A luminosity of (5 ± 1) × 1035 erg s-1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. LMC P3 is the most luminous γ-ray binary known so far.

  10. Backyard Telescopes Watch an Expanding Binary

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    eclipsing binary system. Then the system must be observed regularly over a very long period of time.Though such a feat is challenging, a team of astronomers has done precisely this. The Center for Backyard Astrophysics (CBA) a group of primarily amateur astronomers located around the world has collectively observed the AM CVn star system ES Ceti using seven different telescopes over more than a decade. In total, they now have measurements of ES Cetis period spanning 20012017. Now, in a publication led by Enrique de Miguel (CBA-Huelva and University of Huelva, Spain), the group details the outcomes of their patience.Testing the ModelThis OC diagram of the timings of minimum light relative to a test ephemeris demonstrates that ES Cetis orbital period is steadily increasing over time. [de Miguel et al. 2017]De Miguel and collaborators find that ES Cetis 10.3-minute orbital period has indeed increased over time as predicted by the model at a relatively rapid rate: the timescale for change, described by P/(dP/dt), is 10 million years. This outcome is consistent with the hypothesis that the mass transfer and binary evolution of such systems is driven by gravitational radiation marking one of the first such demonstrations with a cataclysmic variable.Whats next for ES Ceti? Systems such as this one will make for interesting targets for the Laser Interferometer Space Antenna (LISA; planned for a 2034 launch). The gravitational radiation emitted by AM CVns like ES Ceti should be strong enough and in the right frequency range to be detected by LISA, providing another test of our models for how these star systems evolve.CitationEnrique de Miguel et al 2018 ApJ 852 19. doi:10.3847/1538-4357/aa9ed6

  11. Epidemiologic research using probabilistic outcome definitions.

    Science.gov (United States)

    Cai, Bing; Hennessy, Sean; Lo Re, Vincent; Small, Dylan S

    2015-01-01

    Epidemiologic studies using electronic healthcare data often define the presence or absence of binary clinical outcomes by using algorithms with imperfect specificity, sensitivity, and positive predictive value. This results in misclassification and bias in study results. We describe and evaluate a new method called probabilistic outcome definition (POD) that uses logistic regression to estimate the probability of a clinical outcome using multiple potential algorithms and then uses multiple imputation to make valid inferences about the risk ratio or other epidemiologic parameters of interest. We conducted a simulation to evaluate the performance of the POD method with two variables that can predict the true outcome and compared the POD method with the conventional method. The simulation results showed that when the true risk ratio is equal to 1.0 (null), the conventional method based on a binary outcome provides unbiased estimates. However, when the risk ratio is not equal to 1.0, the traditional method, either using one predictive variable or both predictive variables to define the outcome, is biased when the positive predictive value is value is poor (less than 0.75 in our simulation). In contrast, the POD method provides unbiased estimates of the risk ratio both when this measure of effect is equal to 1.0 and not equal to 1.0. Even when the sensitivity and positive predictive value are low, the POD method continues to provide unbiased estimates of the risk ratio. The POD method provides an improved way to define outcomes in database research. This method has a major advantage over the conventional method in that it provided unbiased estimates of risk ratios and it is easy to use. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Origin of very-short orbital-period binary systems

    International Nuclear Information System (INIS)

    Miyaji, S.

    1983-01-01

    Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both X-ray close binaries and cataclysmic variables. Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of which belongs to any globular cluster, are too abundant to be explained by the capturing mechanism of a white dwarf. Therefore it seemed to be worthwhile to present an evolutionary scenario from an original binary system which can be applied for all VSOP binaries. (Auth.)

  13. A review of instrumental variable estimators for Mendelian randomization.

    Science.gov (United States)

    Burgess, Stephen; Small, Dylan S; Thompson, Simon G

    2017-10-01

    Instrumental variable analysis is an approach for obtaining causal inferences on the effect of an exposure (risk factor) on an outcome from observational data. It has gained in popularity over the past decade with the use of genetic variants as instrumental variables, known as Mendelian randomization. An instrumental variable is associated with the exposure, but not associated with any confounder of the exposure-outcome association, nor is there any causal pathway from the instrumental variable to the outcome other than via the exposure. Under the assumption that a single instrumental variable or a set of instrumental variables for the exposure is available, the causal effect of the exposure on the outcome can be estimated. There are several methods available for instrumental variable estimation; we consider the ratio method, two-stage methods, likelihood-based methods, and semi-parametric methods. Techniques for obtaining statistical inferences and confidence intervals are presented. The statistical properties of estimates from these methods are compared, and practical advice is given about choosing a suitable analysis method. In particular, bias and coverage properties of estimators are considered, especially with weak instruments. Settings particularly relevant to Mendelian randomization are prioritized in the paper, notably the scenario of a continuous exposure and a continuous or binary outcome.

  14. Assessing Factors Related to Waist Circumference and Obesity: Application of a Latent Variable Model

    OpenAIRE

    Dalvand, Sahar; Koohpayehzadeh, Jalil; Karimlou, Masoud; Asgari, Fereshteh; Rafei, Ali; Seifi, Behjat; Niksima, Seyed Hassan; Bakhshi, Enayatollah

    2015-01-01

    Background. Because the use of BMI (Body Mass Index) alone as a measure of adiposity has been criticized, in the present study our aim was to fit a latent variable model to simultaneously examine the factors that affect waist circumference (continuous outcome) and obesity (binary outcome) among Iranian adults. Methods. Data included 18,990 Iranian individuals aged 20–65 years that are derived from the third National Survey of Noncommunicable Diseases Risk Factors in Iran. Using latent variabl...

  15. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  16. Combining clinical variables to optimize prediction of antidepressant treatment outcomes.

    Science.gov (United States)

    Iniesta, Raquel; Malki, Karim; Maier, Wolfgang; Rietschel, Marcella; Mors, Ole; Hauser, Joanna; Henigsberg, Neven; Dernovsek, Mojca Zvezdana; Souery, Daniel; Stahl, Daniel; Dobson, Richard; Aitchison, Katherine J; Farmer, Anne; Lewis, Cathryn M; McGuffin, Peter; Uher, Rudolf

    2016-07-01

    The outcome of treatment with antidepressants varies markedly across people with the same diagnosis. A clinically significant prediction of outcomes could spare the frustration of trial and error approach and improve the outcomes of major depressive disorder through individualized treatment selection. It is likely that a combination of multiple predictors is needed to achieve such prediction. We used elastic net regularized regression to optimize prediction of symptom improvement and remission during treatment with escitalopram or nortriptyline and to identify contributing predictors from a range of demographic and clinical variables in 793 adults with major depressive disorder. A combination of demographic and clinical variables, with strong contributions from symptoms of depressed mood, reduced interest, decreased activity, indecisiveness, pessimism and anxiety significantly predicted treatment outcomes, explaining 5-10% of variance in symptom improvement with escitalopram. Similar combinations of variables predicted remission with area under the curve 0.72, explaining approximately 15% of variance (pseudo R(2)) in who achieves remission, with strong contributions from body mass index, appetite, interest-activity symptom dimension and anxious-somatizing depression subtype. Escitalopram-specific outcome prediction was more accurate than generic outcome prediction, and reached effect sizes that were near or above a previously established benchmark for clinical significance. Outcome prediction on the nortriptyline arm did not significantly differ from chance. These results suggest that easily obtained demographic and clinical variables can predict therapeutic response to escitalopram with clinically meaningful accuracy, suggesting a potential for individualized prescription of this antidepressant drug. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  18. Mass loss from interacting close binary systems

    Science.gov (United States)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  19. Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach.

    Science.gov (United States)

    Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao

    2016-01-15

    When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach and has several attractive features compared with the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, because the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. Copyright © 2015 John Wiley & Sons, Ltd.

  20. A ROSAT Survey of Contact Binary Stars

    Science.gov (United States)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  1. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nie, J. D.; Wood, P. R.

    2014-01-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  2. Close Binaries in the 21st Century: New Opportunities and Challenges

    CERN Document Server

    Giménez, Àlvaro; Niarchos, Panagiotis; Rucinski, Slavek

    2006-01-01

    An International Conference entitled "Close Binaries in the 21st Century: New Opportunities and Challenges", was held in Syros island, Greece, from 27 to 30 June, 2005. There are many binary star systems whose components are so close together, that they interact in various ways. Stars in such systems do not pass through all stages of their evolution independently of each other; in fact their evolutionary path is significantly affected by their companions. Processes of interaction include gravitational effects, mutual irradiation, mass exchange, mass loss from the system, phenomena of extended atmospheres, semi-transparent atmospheric clouds, variable thickness disks and gas streams. The zoo of Close Binary Systems includes: Close Eclipsing Binaries (Detached, Semi-detached, Contact), High and Low-Mass X-ray Binaries, Cataclysmic Variables, RS CVn systems, Pulsar Binaries and Symbiotic Stars. The study of these binaries triggered the development of new branches of astrophysics dealing with the structure and ev...

  3. Econometrics in outcomes research: the use of instrumental variables.

    Science.gov (United States)

    Newhouse, J P; McClellan, M

    1998-01-01

    We describe an econometric technique, instrumental variables, that can be useful in estimating the effectiveness of clinical treatments in situations when a controlled trial has not or cannot be done. This technique relies upon the existence of one or more variables that induce substantial variation in the treatment variable but have no direct effect on the outcome variable of interest. We illustrate the use of the technique with an application to aggressive treatment of acute myocardial infarction in the elderly.

  4. Jet precession in binary black holes

    Science.gov (United States)

    Abraham, Zulema

    2018-06-01

    Supermassive binary black holes are thought to lie at the centres of merging galaxies. The blazar OJ 287 is the poster child of such systems, showing strong and periodic variability across the electromagnetic spectrum. A new study questions the physical origin of this variability.

  5. High Variability in Outcome Reporting Patterns in High-Impact ACL Literature.

    Science.gov (United States)

    Makhni, Eric C; Padaki, Ajay S; Petridis, Petros D; Steinhaus, Michael E; Ahmad, Christopher S; Cole, Brian J; Bach, Bernard R

    2015-09-16

    ACL (anterior cruciate ligament) reconstruction is one of the most commonly performed and studied procedures in modern sports medicine. A multitude of objective and subjective patient outcome measures exists; however, nonstandardized reporting patterns of these metrics may create challenges in objectively analyzing pooled results from different studies. The goal of this study was to document the variability in outcome reporting patterns in high-impact orthopaedic studies of ACL reconstruction. All clinical studies pertaining to ACL reconstruction in four high-impact-factor orthopaedic journals over a five-year period were reviewed. Biomechanical, basic science, and imaging studies were excluded, as were studies with fewer than fifty patients, yielding 119 studies for review. Incorporation of various objective and subjective outcomes was noted for each study. Substantial variability in reporting of both objective and subjective measures was noted in the study cohort. Although a majority of studies reported instrumented laxity findings, there was substantial variability in the type and method of laxity reporting. Most other objective outcomes, including range of motion, strength, and complications, were reported in <50% of all studies. Return to pre-injury level of activity was infrequently reported (24% of studies), as were patient satisfaction and pain assessment following surgery (8% and 13%, respectively). Of the patient-reported outcomes, the International Knee Documentation Committee (IKDC), Lysholm, and Tegner scores were most often reported (71%, 63%, and 42%, respectively). Substantial variability in outcome reporting patterns exists among high-impact studies of ACL reconstruction. Such variability may create challenges in interpreting results and pooling them across different studies. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  6. Estimation of Causal Mediation Effects for a Dichotomous Outcome in Multiple-Mediator Models using the Mediation Formula

    OpenAIRE

    Wang, Wei; Nelson, Suchitra; Albert, Jeffrey M.

    2013-01-01

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets ...

  7. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  8. Subpopulation Treatment Effect Pattern Plot (STEPP) analysis for continuous, binary, and count outcomes.

    Science.gov (United States)

    Yip, Wai-Ki; Bonetti, Marco; Cole, Bernard F; Barcella, William; Wang, Xin Victoria; Lazar, Ann; Gelber, Richard D

    2016-08-01

    For the past few decades, randomized clinical trials have provided evidence for effective treatments by comparing several competing therapies. Their successes have led to numerous new therapies to combat many diseases. However, since their conclusions are based on the entire cohort in the trial, the treatment recommendation is for everyone, and may not be the best option for an individual. Medical research is now focusing more on providing personalized care for patients, which requires investigating how patient characteristics, including novel biomarkers, modify the effect of current treatment modalities. This is known as heterogeneity of treatment effects. A better understanding of the interaction between treatment and patient-specific prognostic factors will enable practitioners to expand the availability of tailored therapies, with the ultimate goal of improving patient outcomes. The Subpopulation Treatment Effect Pattern Plot (STEPP) approach was developed to allow researchers to investigate the heterogeneity of treatment effects on survival outcomes across values of a (continuously measured) covariate, such as a biomarker measurement. Here, we extend the Subpopulation Treatment Effect Pattern Plot approach to continuous, binary, and count outcomes, which can be easily modeled using generalized linear models. With this extension of Subpopulation Treatment Effect Pattern Plot, these additional types of treatment effects within subpopulations defined with respect to a covariate of interest can be estimated, and the statistical significance of any observed heterogeneity of treatment effect can be assessed using permutation tests. The desirable feature that commonly used models are applied to well-defined patient subgroups to estimate treatment effects is retained in this extension. We describe a simulation study to confirm that the proper Type I error rate is maintained when there is no treatment heterogeneity, and a power study to show that the statistics have

  9. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M ☉ BINARIES

    International Nuclear Information System (INIS)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2013-01-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M ☉ —are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ☉ . Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ☉ binaries have systematically shorter periods than do 1 M ☉ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple

  10. A Bayesian network meta-analysis for binary outcome: how to do it.

    Science.gov (United States)

    Greco, Teresa; Landoni, Giovanni; Biondi-Zoccai, Giuseppe; D'Ascenzo, Fabrizio; Zangrillo, Alberto

    2016-10-01

    This study presents an overview of conceptual and practical issues of a network meta-analysis (NMA), particularly focusing on its application to randomised controlled trials with a binary outcome of interest. We start from general considerations on NMA to specifically appraise how to collect study data, structure the analytical network and specify the requirements for different models and parameter interpretations, with the ultimate goal of providing physicians and clinician-investigators a practical tool to understand pros and cons of NMA. Specifically, we outline the key steps, from the literature search to sensitivity analysis, necessary to perform a valid NMA of binomial data, exploiting Markov Chain Monte Carlo approaches. We also apply this analytical approach to a case study on the beneficial effects of volatile agents compared to total intravenous anaesthetics for surgery to further clarify the statistical details of the models, diagnostics and computations. Finally, datasets and models for the freeware WinBUGS package are presented for the anaesthetic agent example. © The Author(s) 2013.

  11. Unobserved Heterogeneity in the Binary Logit Model with Cross-Sectional Data and Short Panels

    DEFF Research Database (Denmark)

    Holm, Anders; Jæger, Mads Meier; Pedersen, Morten

    This paper proposes a new approach to dealing with unobserved heterogeneity in applied research using the binary logit model with cross-sectional data and short panels. Unobserved heterogeneity is particularly important in non-linear regression models such as the binary logit model because, unlike...... in linear regression models, estimates of the effects of observed independent variables are biased even when omitted independent variables are uncorrelated with the observed independent variables. We propose an extension of the binary logit model based on a finite mixture approach in which we conceptualize...

  12. Proposed experiment to test fundamentally binary theories

    Science.gov (United States)

    Kleinmann, Matthias; Vértesi, Tamás; Cabello, Adán

    2017-09-01

    Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n , quantum n -ary correlations are not fundamentally (n -1 ) -ary. For that, we introduce a family of inequalities that hold for fundamentally (n -1 ) -ary theories but are violated by quantum n -ary correlations.

  13. Nurse dose: linking staffing variables to adverse patient outcomes.

    Science.gov (United States)

    Manojlovich, Milisa; Sidani, Souraya; Covell, Christine L; Antonakos, Cathy L

    2011-01-01

    Inconsistent findings in more than 100 studies have made it difficult to explain how variation in nurse staffing affects patient outcomes. Nurse dose, defined as the level of nurses required to provide patient care in hospital settings, draws on variables used in staffing studies to describe the influence of many staffing variables on outcomes. The aim of this study was to examine the construct validity of nurse dose by determining its association with methicillin-resistant Staphylococcus aureus (MRSA) infections and reported patient falls on a sample of inpatient adult acute care units. Staffing data came from 26 units in Ontario, Canada, and Michigan. Financial and human resource data were data sources for staffing variables. Sources of data for MRSA came from infection control departments. Incident reports were the data source for patient falls. Data analysis consisted of bivariate correlations and Poisson regression. Bivariate correlations revealed that nurse dose attributes (active ingredient and intensity) were associated significantly with both outcomes. Active ingredient (education, experience, skill mix) and intensity (full-time employees, registered nurse [RN]:patient ratio, RN hours per patient day) were significant predictors of MRSA. Coefficients for both attributes were negative and almost identical. Both attributes were significant predictors of reported patient falls, and coefficients were again negative, but coefficient sizes differed. By conceptualizing nurse and staffing variables (education, experience, skill mix, full-time employees, RN:patient ratio, RN hours per patient day) as attributes of nurse dose and by including these in the same analysis, it is possible to determine their relative influence on MRSA infections and reported patient falls.

  14. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    Science.gov (United States)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  15. Flexible link functions in nonparametric binary regression with Gaussian process priors.

    Science.gov (United States)

    Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K

    2016-09-01

    In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.

  16. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  17. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    Science.gov (United States)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  18. Method of non-interacting thermodynamic calculation of binary phase diagrams containing p disordered phases with variable composition and q phases with constant composition at (p, q) ≤ 10

    International Nuclear Information System (INIS)

    Udovskij, A.L.; Karpushkin, V.N.; Nikishina, E.A.

    1991-01-01

    Method of non-interacting thermodynamic calculation of state diagram of binary systems contacting p disordered phases with variable composition and q phases with constant composition for (p, q) ≤ 10 case is developed. Determination of all possible solutions of phase equilibrium equations is realized in the method. Certain application examples of computer-realized method of T-x thermodynamic calculation using PC for Cr-W, Ni-W, Ni-Al, Ni-Re binary systems are given

  19. Glucose variability negatively impacts long-term functional outcome in patients with traumatic brain injury.

    Science.gov (United States)

    Matsushima, Kazuhide; Peng, Monica; Velasco, Carlos; Schaefer, Eric; Diaz-Arrastia, Ramon; Frankel, Heidi

    2012-04-01

    Significant glycemic excursions (so-called glucose variability) affect the outcome of generic critically ill patients but has not been well studied in patients with traumatic brain injury (TBI). The purpose of this study was to evaluate the impact of glucose variability on long-term functional outcome of patients with TBI. A noncomputerized tight glucose control protocol was used in our intensivist model surgical intensive care unit. The relationship between the glucose variability and long-term (a median of 6 months after injury) functional outcome defined by extended Glasgow Outcome Scale (GOSE) was analyzed using ordinal logistic regression models. Glucose variability was defined by SD and percentage of excursion (POE) from the preset range glucose level. A total of 109 patients with TBI under tight glucose control had long-term GOSE evaluated. In univariable analysis, there was a significant association between lower GOSE score and higher mean glucose, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL but not POE 80 to 110. After adjusting for possible confounding variables in multivariable ordinal logistic regression models, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL were significantly associated with lower GOSE score. Glucose variability was significantly associated with poorer long-term functional outcome in patients with TBI as measured by the GOSE score. Well-designed protocols to minimize glucose variability may be key in improving long-term functional outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    Science.gov (United States)

    Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.

    2017-12-01

    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed

  1. Predicting Social Trust with Binary Logistic Regression

    Science.gov (United States)

    Adwere-Boamah, Joseph; Hufstedler, Shirley

    2015-01-01

    This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…

  2. Measuring Networking as an Outcome Variable in Undergraduate Research Experiences.

    Science.gov (United States)

    Hanauer, David I; Hatfull, Graham

    2015-01-01

    The aim of this paper is to propose, present, and validate a simple survey instrument to measure student conversational networking. The tool consists of five items that cover personal and professional social networks, and its basic principle is the self-reporting of degrees of conversation, with a range of specific discussion partners. The networking instrument was validated in three studies. The basic psychometric characteristics of the scales were established by conducting a factor analysis and evaluating internal consistency using Cronbach's alpha. The second study used a known-groups comparison and involved comparing outcomes for networking scales between two different undergraduate laboratory courses (one involving a specific effort to enhance networking). The final study looked at potential relationships between specific networking items and the established psychosocial variable of project ownership through a series of binary logistic regressions. Overall, the data from the three studies indicate that the networking scales have high internal consistency (α = 0.88), consist of a unitary dimension, can significantly differentiate between research experiences with low and high networking designs, and are related to project ownership scales. The ramifications of the networking instrument for student retention, the enhancement of public scientific literacy, and the differentiation of laboratory courses are discussed. © 2015 D. I. Hanauer and G. Hatfull. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Variability in the Initial Costs of Care and One-Year Outcomes of Observation Services

    Directory of Open Access Journals (Sweden)

    Abbass, Ibrahim

    2015-05-01

    Full Text Available Introduction: The use of observation units (OUs following emergency departments (ED visits as a model of care has increased exponentially in the last decade. About one-third of U.S. hospitals now have OUs within their facilities. While their use is associated with lower costs and comparable level of care compared to inpatient units, there is a wide variation in OUs characteristics and operational procedures. The objective of this research was to explore the variability in the initial costs of care of placing patients with non-specific chest pain in observation units (OUs and the one-year outcomes. Methods: The author retrospectively investigated medical insurance claims of 22,962 privately insured patients (2009-2011 admitted to 41 OUs. Outcomes included the one-year chest pain/cardiovascular related costs and primary and secondary outcomes. Primary outcomes included myocardial infarction, congestive heart failure, stroke or cardiac arrest, while secondary outcomes included revascularization procedures, ED revisits for angina pectoris or chest pain and hospitalization due to cardiovascular diseases. The author aggregated the adjusted costs and prevalence rates of outcomes for patients over OUs, and computed the weighted coefficients of variation (WCV to compare variations across OUs. Results: There was minimal variability in the initial costs of care (WCV=2.2%, while the author noticed greater variability in the outcomes. Greater variability were associated with the adjusted cardiovascular-related costs of medical services (WCV=17.6% followed by the adjusted prevalence odds ratio of patients experiencing primary outcomes (WCV=16.3% and secondary outcomes (WCV=10%. Conclusion: Higher variability in the outcomes suggests the need for more standardization of the observation services for chest pain patients. [West J Emerg Med. 2015;16(3:395–400.

  4. The use of continuous data versus binary data in MTC models: a case study in rheumatoid arthritis.

    Science.gov (United States)

    Schmitz, Susanne; Adams, Roisin; Walsh, Cathal

    2012-11-06

    Estimates of relative efficacy between alternative treatments are crucial for decision making in health care. When sufficient head to head evidence is not available Bayesian mixed treatment comparison models provide a powerful methodology to obtain such estimates. While models can be fit to a broad range of efficacy measures, this paper illustrates the advantages of using continuous outcome measures compared to binary outcome measures. Using a case study in rheumatoid arthritis a Bayesian mixed treatment comparison model is fit to estimate the relative efficacy of five anti-TNF agents currently licensed in Europe. The model is fit for the continuous HAQ improvement outcome measure and a binary version thereof as well as for the binary ACR response measure and the underlying continuous effect. Results are compared regarding their power to detect differences between treatments. Sixteen randomized controlled trials were included for the analysis. For both analyses, based on the HAQ improvement as well as based on the ACR response, differences between treatments detected by the binary outcome measures are subsets of the differences detected by the underlying continuous effects. The information lost when transforming continuous data into a binary response measure translates into a loss of power to detect differences between treatments in mixed treatment comparison models. Binary outcome measures are therefore less sensitive to change than continuous measures. Furthermore the choice of cut-off point to construct the binary measure also impacts the relative efficacy estimates.

  5. The use of continuous data versus binary data in MTC models: A case study in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Schmitz Susanne

    2012-11-01

    Full Text Available Abstract Background Estimates of relative efficacy between alternative treatments are crucial for decision making in health care. When sufficient head to head evidence is not available Bayesian mixed treatment comparison models provide a powerful methodology to obtain such estimates. While models can be fit to a broad range of efficacy measures, this paper illustrates the advantages of using continuous outcome measures compared to binary outcome measures. Methods Using a case study in rheumatoid arthritis a Bayesian mixed treatment comparison model is fit to estimate the relative efficacy of five anti-TNF agents currently licensed in Europe. The model is fit for the continuous HAQ improvement outcome measure and a binary version thereof as well as for the binary ACR response measure and the underlying continuous effect. Results are compared regarding their power to detect differences between treatments. Results Sixteen randomized controlled trials were included for the analysis. For both analyses, based on the HAQ improvement as well as based on the ACR response, differences between treatments detected by the binary outcome measures are subsets of the differences detected by the underlying continuous effects. Conclusions The information lost when transforming continuous data into a binary response measure translates into a loss of power to detect differences between treatments in mixed treatment comparison models. Binary outcome measures are therefore less sensitive to change than continuous measures. Furthermore the choice of cut-off point to construct the binary measure also impacts the relative efficacy estimates.

  6. Non-binary Hybrid LDPC Codes: Structure, Decoding and Optimization

    OpenAIRE

    Sassatelli, Lucile; Declercq, David

    2007-01-01

    In this paper, we propose to study and optimize a very general class of LDPC codes whose variable nodes belong to finite sets with different orders. We named this class of codes Hybrid LDPC codes. Although efficient optimization techniques exist for binary LDPC codes and more recently for non-binary LDPC codes, they both exhibit drawbacks due to different reasons. Our goal is to capitalize on the advantages of both families by building codes with binary (or small finite set order) and non-bin...

  7. Magnetic braking in Solar-type close binaries

    Science.gov (United States)

    Maceroni, C.; Rucinski, S. M.

    In tidally locked binaries the angular momentum loss by magnetic braking affects the orbital period. While this effect is too small to be detected in individual systems, its signature can be seen in shape of the orbital period distribution of suitable samples. As a consequence information on the braking mechanisms can be obtained - at least in principle - from the analysis of the distributions, the main problems being the selection of a large and homogeneous sample of binaries and the appropriate treatment of the observational biases. New large databases of variable stars are becoming available as by-products of microlensing projects, which have the advantage of joining, for the first time, sample richness and homogeneity. We report the main results of the analysis of the eclipsing binaries in OGLE-I catalog, that contains several thousands variables detected in a pencil-beam search volume towards the Baade's Window. By means of an automatic filtering algorithm we extracted a sample of 74 detached, equal-mass, main-sequence binary stars with short orbital periods (i.e., in the range 0.19 braking law. The results suggest an AML braking law very close to the "saturated" one, with a very weak dependence on the period. However we are still far from constraining the precise value of the slope, because of the important role played by the observational bias.

  8. Power calculator for instrumental variable analysis in pharmacoepidemiology.

    Science.gov (United States)

    Walker, Venexia M; Davies, Neil M; Windmeijer, Frank; Burgess, Stephen; Martin, Richard M

    2017-10-01

    Instrumental variable analysis, for example with physicians' prescribing preferences as an instrument for medications issued in primary care, is an increasingly popular method in the field of pharmacoepidemiology. Existing power calculators for studies using instrumental variable analysis, such as Mendelian randomization power calculators, do not allow for the structure of research questions in this field. This is because the analysis in pharmacoepidemiology will typically have stronger instruments and detect larger causal effects than in other fields. Consequently, there is a need for dedicated power calculators for pharmacoepidemiological research. The formula for calculating the power of a study using instrumental variable analysis in the context of pharmacoepidemiology is derived before being validated by a simulation study. The formula is applicable for studies using a single binary instrument to analyse the causal effect of a binary exposure on a continuous outcome. An online calculator, as well as packages in both R and Stata, are provided for the implementation of the formula by others. The statistical power of instrumental variable analysis in pharmacoepidemiological studies to detect a clinically meaningful treatment effect is an important consideration. Research questions in this field have distinct structures that must be accounted for when calculating power. The formula presented differs from existing instrumental variable power formulae due to its parametrization, which is designed specifically for ease of use by pharmacoepidemiologists. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  9. Instrumental variable estimation of treatment effects for duration outcomes

    NARCIS (Netherlands)

    G.E. Bijwaard (Govert)

    2007-01-01

    textabstractIn this article we propose and implement an instrumental variable estimation procedure to obtain treatment effects on duration outcomes. The method can handle the typical complications that arise with duration data of time-varying treatment and censoring. The treatment effect we

  10. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  11. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: a simulation study.

    Science.gov (United States)

    Chen, Wansu; Shi, Jiaxiao; Qian, Lei; Azen, Stanley P

    2014-06-26

    To estimate relative risks or risk ratios for common binary outcomes, the most popular model-based methods are the robust (also known as modified) Poisson and the log-binomial regression. Of the two methods, it is believed that the log-binomial regression yields more efficient estimators because it is maximum likelihood based, while the robust Poisson model may be less affected by outliers. Evidence to support the robustness of robust Poisson models in comparison with log-binomial models is very limited. In this study a simulation was conducted to evaluate the performance of the two methods in several scenarios where outliers existed. The findings indicate that for data coming from a population where the relationship between the outcome and the covariate was in a simple form (e.g. log-linear), the two models yielded comparable biases and mean square errors. However, if the true relationship contained a higher order term, the robust Poisson models consistently outperformed the log-binomial models even when the level of contamination is low. The robust Poisson models are more robust (or less sensitive) to outliers compared to the log-binomial models when estimating relative risks or risk ratios for common binary outcomes. Users should be aware of the limitations when choosing appropriate models to estimate relative risks or risk ratios.

  12. Pulsed Accretion in the T Tauri Binary TWA 3A

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)

    2017-06-20

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

  13. Performance of models for estimating absolute risk difference in multicenter trials with binary outcome

    Directory of Open Access Journals (Sweden)

    Claudia Pedroza

    2016-08-01

    Full Text Available Abstract Background Reporting of absolute risk difference (RD is recommended for clinical and epidemiological prospective studies. In analyses of multicenter studies, adjustment for center is necessary when randomization is stratified by center or when there is large variation in patients outcomes across centers. While regression methods are used to estimate RD adjusted for baseline predictors and clustering, no formal evaluation of their performance has been previously conducted. Methods We performed a simulation study to evaluate 6 regression methods fitted under a generalized estimating equation framework: binomial identity, Poisson identity, Normal identity, log binomial, log Poisson, and logistic regression model. We compared the model estimates to unadjusted estimates. We varied the true response function (identity or log, number of subjects per center, true risk difference, control outcome rate, effect of baseline predictor, and intracenter correlation. We compared the models in terms of convergence, absolute bias and coverage of 95 % confidence intervals for RD. Results The 6 models performed very similar to each other for the majority of scenarios. However, the log binomial model did not converge for a large portion of the scenarios including a baseline predictor. In scenarios with outcome rate close to the parameter boundary, the binomial and Poisson identity models had the best performance, but differences from other models were negligible. The unadjusted method introduced little bias to the RD estimates, but its coverage was larger than the nominal value in some scenarios with an identity response. Under the log response, coverage from the unadjusted method was well below the nominal value (<80 % for some scenarios. Conclusions We recommend the use of a binomial or Poisson GEE model with identity link to estimate RD for correlated binary outcome data. If these models fail to run, then either a logistic regression, log Poisson

  14. Period variation studies of six contact binaries in M4

    Science.gov (United States)

    Rukmini, Jagirdar; Shanti Priya, Devarapalli

    2018-04-01

    We present the first period study of six contact binaries in the closest globular cluster M4 the data collected from June 1995‑June 2009 and Oct 2012‑Sept 2013. New times of minima are determined for all the six variables and eclipse timing (O-C) diagrams along with the quadratic fit are presented. For all the variables, the study of (O-C) variations reveals changes in the periods. In addition, the fundamental parameters for four of the contact binaries obtained using the Wilson-Devinney code (v2003) are presented. Planned observations of these binaries using the 3.6-m Devasthal Optical Telescope (DOT) and the 4-m International Liquid Mirror Telescope (ILMT) operated by the Aryabhatta Research Institute of Observational Sciences (ARIES; Nainital) can throw light on their evolutionary status from long term period variation studies.

  15. Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem

    Directory of Open Access Journals (Sweden)

    Ibidun Christiana Obagbuwa

    2016-09-01

    Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.

  16. Assessment and implication of prognostic imbalance in randomized controlled trials with a binary outcome--a simulation study.

    Directory of Open Access Journals (Sweden)

    Rong Chu

    Full Text Available Chance imbalance in baseline prognosis of a randomized controlled trial can lead to over or underestimation of treatment effects, particularly in trials with small sample sizes. Our study aimed to (1 evaluate the probability of imbalance in a binary prognostic factor (PF between two treatment arms, (2 investigate the impact of prognostic imbalance on the estimation of a treatment effect, and (3 examine the effect of sample size (n in relation to the first two objectives.We simulated data from parallel-group trials evaluating a binary outcome by varying the risk of the outcome, effect of the treatment, power and prevalence of the PF, and n. Logistic regression models with and without adjustment for the PF were compared in terms of bias, standard error, coverage of confidence interval and statistical power.For a PF with a prevalence of 0.5, the probability of a difference in the frequency of the PF≥5% reaches 0.42 with 125/arm. Ignoring a strong PF (relative risk = 5 leads to underestimating the strength of a moderate treatment effect, and the underestimate is independent of n when n is >50/arm. Adjusting for such PF increases statistical power. If the PF is weak (RR = 2, adjustment makes little difference in statistical inference. Conditional on a 5% imbalance of a powerful PF, adjustment reduces the likelihood of large bias. If an absolute measure of imbalance ≥5% is deemed important, including 1000 patients/arm provides sufficient protection against such an imbalance. Two thousand patients/arm may provide an adequate control against large random deviations in treatment effect estimation in the presence of a powerful PF.The probability of prognostic imbalance in small trials can be substantial. Covariate adjustment improves estimation accuracy and statistical power, and hence should be performed when strong PFs are observed.

  17. On the dynamics of non-stationary binary stellar systems

    International Nuclear Information System (INIS)

    Bekov, A. A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2005-01-01

    The motion of test body in the external gravitational field of the binary stellar system with slowly variable some physical parameters of radiating components is considered on the base of restricted non-stationary photo-gravitational three and two bodies problem. The family of polar and coplanar solutions are obtained. These solutions give the possibility of the dynamical and structure interpretation of the binary young evolving stars and galaxies. (author)

  18. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  19. High-precision broad-band linear polarimetry of early-type binaries. II. Variable, phase-locked polarization in triple Algol-type system λ Tauri

    Science.gov (United States)

    Berdyugin, A.; Piirola, V.; Sakanoi, T.; Kagitani, M.; Yoneda, M.

    2018-03-01

    Aim. To study the binary geometry of the classic Algol-type triple system λ Tau, we have searched for polarization variations over the orbital cycle of the inner semi-detached binary, arising from light scattering in the circumstellar material formed from ongoing mass transfer. Phase-locked polarization curves provide an independent estimate for the inclination i, orientation Ω, and the direction of the rotation for the inner orbit. Methods: Linear polarization measurements of λ Tau in the B, V , and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained on the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and Tohoku 60 cm (Haleakala, Hawaii, USA) remotely controlled telescopes over 69 observing nights. Analytic and numerical modelling codes are used to interpret the data. Results: Optical polarimetry revealed small intrinsic polarization in λ Tau with 0.05% peak-to-peak variation over the orbital period of 3.95 d. The variability pattern is typical for binary systems showing strong second harmonic of the orbital period. We apply a standard analytical method and our own light scattering models to derive parameters of the inner binary orbit from the fit to the observed variability of the normalized Stokes parameters. From the analytical method, the average for three passband values of orbit inclination i = 76° + 1°/-2° and orientation Ω = 15°(195°) ± 2° are obtained. Scattering models give similar inclination values i = 72-76° and orbit orientation ranging from Ω = 16°(196°) to Ω = 19°(199°), depending on the geometry of the scattering cloud. The rotation of the inner system, as seen on the plane of the sky, is clockwise. We have found that with the scattering model the best fit is obtained for the scattering cloud located between the primary and the secondary, near the inner Lagrangian point or along the Roche lobe surface of the secondary facing the primary. The inclination i

  20. Learning to assign binary weights to binary descriptor

    Science.gov (United States)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  1. A binary logistic regression model with complex sampling design of ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Bi-variable and multi-variable binary logistic regression model with complex sampling design was fitted. .... Data was entered into STATA-12 and analyzed using. SPSS-21. .... lack of access/too far or costs too much. 35. 1.2.

  2. Two methods for studying the X-ray variability

    NARCIS (Netherlands)

    Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Wang, Na; Liu, Siming; Li, Xiang-Dong

    2016-01-01

    The X-ray aperiodic variability and quasi-periodic oscillation (QPO) are the important tools to study the structure of the accretion flow of X-ray binaries. However, the origin of the complex X-ray variability from X-ray binaries remains yet unsolved. We proposed two methods for studying the X-ray

  3. Massive Black-Hole Binary Mergers: Dynamics, Environments & Expected Detections

    Science.gov (United States)

    Kelley, Luke Zoltan

    2018-05-01

    This thesis studies the populations and dynamics of massive black-hole binaries and their mergers, and explores the implications for electromagnetic and gravitational-wave signals that will be detected in the near future. Massive black-holes (MBH) reside in the centers of galaxies, and when galaxies merge, their MBH interact and often pair together. We base our study on the populations of MBH and galaxies from the `Illustris' cosmological hydrodynamic simulations. The bulk of the binary merger dynamics, however, are unresolved in cosmological simulations. We implement a suite of comprehensive physical models for the merger process, like dynamical friction and gravitational wave emission, which are added in post-processing. Contrary to many previous studies, we find that the most massive binaries with near equal-mass companions are the most efficient at coalescing; though the process still typically takes gigayears.From the data produced by these MBH binary populations and their dynamics, we calculate the expected gravitational wave (GW) signals: both the stochastic, GW background of countless unresolved sources, and the GW foreground of individually resolvable binaries which resound above the noise. Ongoing experiments, called pulsar timing arrays, are sensitive to both of these types of signals. We find that, while the current lack of detections is unsurprising, both the background and foreground will plausibly be detected in the next decade. Unlike previous studies which have predicted the foreground to be significantly harder to detect than the background, we find their typical amplitudes are comparable.With traditional electromagnetic observations, there has also been a dearth of confirmed detections of MBH binary systems. We use our binaries, combined with models of emission from accreting MBH systems, to make predictions for the occurrence rate of systems observable using photometric, periodic-variability surveys. These variables should be detectable in

  4. Polarimetry and spectrophotometry of the massive close binary DH Cephei

    International Nuclear Information System (INIS)

    Corcoran, M.F.

    1988-01-01

    DH Cep is a massive and close binary and a member of the young open cluster NGC 7380. Spectroscopically, this system is double-lined, classified as type O6 + O6. Photometrically, the system has been known to show small light variations phase-locked to the radial-velocity variations; these light variations characterize the star as an ellipsoidal variable. Four-color linear polarimetry, archival UV spectra taken by IUE and x-ray measures obtained by the Einstein satellite provide the first detailed analysis of this important system. Polarization measures demonstrate the (largely non-phase locked) variability of the circum-binary scattering environment, identify the scattering medium as electrons and indicate a large-scale change in the intrinsic polarization of the system. UV spectral analysis is used to determine the composite photospheric temperature, the component masses and spectral classifications, the degree of mass loss, and the distribution of interstellar matter along the line of sight to the binary. Measures obtained by the Einstein satellite of the x-ray emission from the system indicate that DH Cep is a strong source of hard x-rays. A model of the binary is developed

  5. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    OpenAIRE

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this descript...

  6. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  7. An Economic Evaluation of Binary Cycle Geothermal Electricity Production

    National Research Council Canada - National Science Library

    Fitzgerald, Crissie

    2003-01-01

    .... Variables such as well flow rate, geothermal gradient and electricity prices were varied to study their influence on the economic payback period for binary cycle geothermal electricity production...

  8. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  9. Inducing Risk Neutral Preferences with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2013-01-01

    validity of any strategic equilibrium behavior, or even the customary independence axiom. We show that subjects sampled from our population are generally risk averse when lotteries are defined over monetary outcomes, and that the binary lottery procedure does indeed induce a statistically significant shift......We evaluate the binary lottery procedure for inducing risk neutral behavior. We strip the experimental implementation down to bare bones, taking care to avoid any potentially confounding assumptions about behavior having to be made. In particular, our evaluation does not rely on the assumed...... toward risk neutrality. This striking result generalizes to the case in which subjects make several lottery choices and one is selected for payment....

  10. Assessment and Implication of Prognostic Imbalance in Randomized Controlled Trials with a Binary Outcome – A Simulation Study

    Science.gov (United States)

    Chu, Rong; Walter, Stephen D.; Guyatt, Gordon; Devereaux, P. J.; Walsh, Michael; Thorlund, Kristian; Thabane, Lehana

    2012-01-01

    Background Chance imbalance in baseline prognosis of a randomized controlled trial can lead to over or underestimation of treatment effects, particularly in trials with small sample sizes. Our study aimed to (1) evaluate the probability of imbalance in a binary prognostic factor (PF) between two treatment arms, (2) investigate the impact of prognostic imbalance on the estimation of a treatment effect, and (3) examine the effect of sample size (n) in relation to the first two objectives. Methods We simulated data from parallel-group trials evaluating a binary outcome by varying the risk of the outcome, effect of the treatment, power and prevalence of the PF, and n. Logistic regression models with and without adjustment for the PF were compared in terms of bias, standard error, coverage of confidence interval and statistical power. Results For a PF with a prevalence of 0.5, the probability of a difference in the frequency of the PF≥5% reaches 0.42 with 125/arm. Ignoring a strong PF (relative risk = 5) leads to underestimating the strength of a moderate treatment effect, and the underestimate is independent of n when n is >50/arm. Adjusting for such PF increases statistical power. If the PF is weak (RR = 2), adjustment makes little difference in statistical inference. Conditional on a 5% imbalance of a powerful PF, adjustment reduces the likelihood of large bias. If an absolute measure of imbalance ≥5% is deemed important, including 1000 patients/arm provides sufficient protection against such an imbalance. Two thousand patients/arm may provide an adequate control against large random deviations in treatment effect estimation in the presence of a powerful PF. Conclusions The probability of prognostic imbalance in small trials can be substantial. Covariate adjustment improves estimation accuracy and statistical power, and hence should be performed when strong PFs are observed. PMID:22629322

  11. Cataclysmic Variables and Active Binary Stars in Omega Centauri

    Science.gov (United States)

    Arias, T.; Brochmann, M.; Dorfman, J. L.; White, M. V.; Cool, A. M.

    2004-12-01

    We report findings from our ongoing research on the globular cluster Omega Centauri (NGC 5139) using a 3x3 mosaic of Wide Field Camera pointings with the HST Advanced Camera for Surveys (ACS). The data consist of F435W (B435), F625W (R625), and F658N (Hα ) images and cover roughly 10x10 arcminutes, out to beyond the cluster's half-mass radius. Our current work is a search for cataclysmic variables (CVs) and active binaries (ABs) (e.g., RS CVn and BY Dra stars) as counterparts to X-ray point sources previously detected with Chandra. The ACS field encompasses 109 of the Chandra sources, 20-50 of which are likely to be cluster members according to our statistical estimates (the rest being primarily active galaxies). Using DAOPHOT to obtain photometry in 20x20 arcsecond patches surrounding each X-ray source, we are constructing color-magnitude diagrams to search for stars with Hα -R625 and/or B435-R625 colors indicative of CVs or ABs in ˜ 1 arcsecond Chandra error circles. With roughly half of the patches analyzed, several AB candidates and only a small number of CV candidates have emerged. Our tentative conclusion is that CVs may be significantly rarer in Omega Cen than in 47 Tuc, in contrast to the comparable numbers ( ˜100) predicted for these two clusters from tidal capture theory (Di Stefano and Rappaport 1994). Alternatively, the CVs could be strongly concentrated toward the cluster center, and thus not yet appear in our sample. To date, most of the patches we have analyzed are 3-4 arcminutes from the cluster center and thus are outside the cluster core (radius 2.6 arcminutes). Our continuing work should soon enable us to resolve this question. This work is supported by NASA grant GO-9442 from the Space Telescope Science Institute.

  12. The optical polarization of X-ray binaries

    International Nuclear Information System (INIS)

    Dolan, J.F.

    1977-01-01

    Polarimetric observations of close binaries may reveal the presence of a black-hole secondary. The Einstein photometric effect will introduce a characteristic, time-varying signature upon the interstellar polarization. For several reasons, it is concluded that the short time-scale variability in the polarization in HDE 226868 is caused by Rayleigh scattering from gas streams known to exist in the system. X Persei may have a variable polarization consistent with the predicted effectics and (Auth)

  13. Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt

    Science.gov (United States)

    Thirouin, Audrey; Noll, Keith S.; Ortiz Moreno, Jose Luis; Morales , Nicolas

    2014-11-01

    An exhaustive study about short-term variability as well as derived properties from lightcurves allowed us to draw some conclusions for the Trans-Neptunian belt binary population. Based on Maxwellian fit distributions of the spin rate, we suggested that the binary population rotates slower than the non-binary one. This slowing-down can be attributed to tidal effects between the satellite and the primary, as expected. We showed that no system in this work is tidally locked, but the primary despinning process may have already affected the primary rate (as well as the satellite rotational rate). We used the Gladman et al. (1996) formula to compute the time required to tidally lock the systems, but this formula is based on several assumptions and approximations that do not always hold. The computed times are reasonable in most cases and confirm that none of the systems is tidally locked, assuming that the satellite densities are low and have a high rigidity or have a higher dissipation than usually assumed. The rotational properties of small bodies provide information about important physical properties, such as shape, density, and cohesion (Pravec & Harris 2000; Holsapple 2001, 2004; Thirouin et al. 2010, 2012). For binaries it is also possible to derive several physical parameters of the system components, such as diameters of the primary/secondary and albedo under some assumptions. We compare our results as well as our technique for deriving this information from the lightcurve with other methods, such as: i) thermal or thermophysical modeling, ii) from the mutual orbit of the binary component, iii) from direct imaging or iv) from stellar occultation by Trans-Neptunian Objects (TNOs). Finally, by studying the specific angular momentum of the sample, we proposed possible formation models for several binary TNOs. In several cases, we obtained hints of the formation mechanism from the angular momentum, but for other cases we do not have enough information about the

  14. Estimation of causal mediation effects for a dichotomous outcome in multiple-mediator models using the mediation formula.

    Science.gov (United States)

    Wang, Wei; Nelson, Suchitra; Albert, Jeffrey M

    2013-10-30

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a nonzero total mediation effect increases as the correlation coefficient between two mediators increases, whereas power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Estimation of Causal Mediation Effects for a Dichotomous Outcome in Multiple-Mediator Models using the Mediation Formula

    Science.gov (United States)

    Nelson, Suchitra; Albert, Jeffrey M.

    2013-01-01

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a non-zero total mediation effect increases as the correlation coefficient between two mediators increases, while power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. PMID:23650048

  16. Analysis and Design of Binary Message-Passing Decoders

    DEFF Research Database (Denmark)

    Lechner, Gottfried; Pedersen, Troels; Kramer, Gerhard

    2012-01-01

    Binary message-passing decoders for low-density parity-check (LDPC) codes are studied by using extrinsic information transfer (EXIT) charts. The channel delivers hard or soft decisions and the variable node decoder performs all computations in the L-value domain. A hard decision channel results...... message-passing decoders. Finally, it is shown that errors on cycles consisting only of degree two and three variable nodes cannot be corrected and a necessary and sufficient condition for the existence of a cycle-free subgraph is derived....... in the well-know Gallager B algorithm, and increasing the output alphabet from hard decisions to two bits yields a gain of more than 1.0 dB in the required signal to noise ratio when using optimized codes. The code optimization requires adapting the mixing property of EXIT functions to the case of binary...

  17. Topology of black hole binary-single interactions

    Science.gov (United States)

    Samsing, Johan; Ilan, Teva

    2018-05-01

    We present a study on how the outcomes of binary-single interactions involving three black holes (BHs) distribute as a function of the initial conditions; a distribution we refer to as the topology. Using a N-body code that includes BH finite sizes and gravitational wave (GW) emission in the equation of motion (EOM), we perform more than a million binary-single interactions to explore the topology of both the Newtonian limit and the limit at which general relativistic (GR) effects start to become important. From these interactions, we are able to describe exactly under which conditions BH collisions and eccentric GW capture mergers form, as well as how GR in general modifies the Newtonian topology. This study is performed on both large- and microtopological scales. We further describe how the inclusion of GW emission in the EOM naturally leads to scenarios where the binary-single system undergoes two successive GW mergers.

  18. Variable importance and prediction methods for longitudinal problems with missing variables.

    Directory of Open Access Journals (Sweden)

    Iván Díaz

    Full Text Available We present prediction and variable importance (VIM methods for longitudinal data sets containing continuous and binary exposures subject to missingness. We demonstrate the use of these methods for prognosis of medical outcomes of severe trauma patients, a field in which current medical practice involves rules of thumb and scoring methods that only use a few variables and ignore the dynamic and high-dimensional nature of trauma recovery. Well-principled prediction and VIM methods can provide a tool to make care decisions informed by the high-dimensional patient's physiological and clinical history. Our VIM parameters are analogous to slope coefficients in adjusted regressions, but are not dependent on a specific statistical model, nor require a certain functional form of the prediction regression to be estimated. In addition, they can be causally interpreted under causal and statistical assumptions as the expected outcome under time-specific clinical interventions, related to changes in the mean of the outcome if each individual experiences a specified change in the variable (keeping other variables in the model fixed. Better yet, the targeted MLE used is doubly robust and locally efficient. Because the proposed VIM does not constrain the prediction model fit, we use a very flexible ensemble learner (the SuperLearner, which returns a linear combination of a list of user-given algorithms. Not only is such a prediction algorithm intuitive appealing, it has theoretical justification as being asymptotically equivalent to the oracle selector. The results of the analysis show effects whose size and significance would have been not been found using a parametric approach (such as stepwise regression or LASSO. In addition, the procedure is even more compelling as the predictor on which it is based showed significant improvements in cross-validated fit, for instance area under the curve (AUC for a receiver-operator curve (ROC. Thus, given that 1 our VIM

  19. First Hα and Revised Photometric Studies of Contact Binary ...

    Indian Academy of Sciences (India)

    In order to study such phenomena, accurate fundamental param- eters like period and mass ratio for the binary systems are required. ... Additional data were acquired from Northern Sky Variability Survey (NSVS) database observed.

  20. Visit-to-visit cholesterol variability correlates with coronary atheroma progression and clinical outcomes.

    Science.gov (United States)

    Clark, Donald; Nicholls, Stephen J; St John, Julie; Elshazly, Mohamed B; Kapadia, Samir R; Tuzcu, E Murat; Nissen, Steven E; Puri, Rishi

    2018-04-21

    Utilizing serial intravascular ultrasonography (IVUS), we aimed to exam the association of intra-individual lipid variability, coronary atheroma progression, and clinical outcomes. We performed a post hoc patient-level analysis of nine clinical trials involving 4976 patients with coronary artery disease who underwent serial coronary IVUS in the setting of a range of medical therapies. We assessed the associations between progression in percent atheroma volume (ΔPAV), clinical outcomes, and visit-to-visit lipid variability including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), non-HDL-C, total cholesterol (TC)/HDL-C, and apolipoprotein B (ApoB). Variability of lipid parameters was measured using intra-individual standard deviation over 3, 6, 12, 18, and 24 months. Atherogenic lipoprotein variability significantly associated with ΔPAV [odds ratio (95% confidence interval; P-value), LDL-C: 1.09 (1.02, 1.17, P = 0.01); non-HDL-C: 1.10 (1.02, 1.18, P = 0.01); TC/HDL-C: 1.14 (1.06, 1.24, P = 0.001); ApoB: 1.13 (1.03, 1.24, P = 0.01)]. Survival curves revealed significant stepwise relationships between cumulative major adverse cardiovascular events and increasing quartiles of atherogenic lipoprotein variability at 24-months follow-up (log-rank P C). Stronger associations were noted between achieved lipoprotein levels and ΔPAV [LDL-C: 1.27 (1.17, 1.39; P C: 1.32 (1.21, 1.45; P C: 1.31 (1.19, 1.45; P < 0.001); ApoB: 1.20 (1.07, 1.35; P = 0.003)]. Greater visit-to-visit variability in atherogenic lipoprotein levels significantly associates with coronary atheroma progression and clinical outcomes, although the association between achieved atherogenic lipoproteins and atheroma progression appears stronger. These data highlight the importance of achieving low and consistent atherogenic lipoprotein levels to promote plaque regression and improve clinical outcomes.

  1. On Darboux's approach to R-separability of variables. Classification of conformally flat 4-dimensional binary metrics

    International Nuclear Information System (INIS)

    Szereszewski, A; Sym, A

    2015-01-01

    The standard method of separation of variables in PDEs called the Stäckel–Robertson–Eisenhart (SRE) approach originated in the papers by Robertson (1928 Math. Ann. 98 749–52) and Eisenhart (1934 Ann. Math. 35 284–305) on separability of variables in the Schrödinger equation defined on a pseudo-Riemannian space equipped with orthogonal coordinates, which in turn were based on the purely classical mechanics results by Paul Stäckel (1891, Habilitation Thesis, Halle). These still fundamental results have been further extended in diverse directions by e.g. Havas (1975 J. Math. Phys. 16 1461–8; J. Math. Phys. 16 2476–89) or Koornwinder (1980 Lecture Notes in Mathematics 810 (Berlin: Springer) pp 240–63). The involved separability is always ordinary (factor R = 1) and regular (maximum number of independent parameters in separation equations). A different approach to separation of variables was initiated by Gaston Darboux (1878 Ann. Sci. E.N.S. 7 275–348) which has been almost completely forgotten in today’s research on the subject. Darboux’s paper was devoted to the so-called R-separability of variables in the standard Laplace equation. At the outset he did not make any specific assumption about the separation equations (this is in sharp contrast to the SRE approach). After impressive calculations Darboux obtained a complete solution of the problem. He found not only eleven cases of ordinary separability Eisenhart (1934 Ann. Math. 35 284–305) but also Darboux–Moutard–cyclidic metrics (Bôcher 1894 Ueber die Reihenentwickelungen der Potentialtheorie (Leipzig: Teubner)) and non-regularly separable Dupin-cyclidic metrics as well. In our previous paper Darboux’s approach was extended to the case of the stationary Schrödinger equation on Riemannian spaces admitting orthogonal coordinates. In particular the class of isothermic metrics was defined (isothermicity of the metric is a necessary condition for its R-separability). An important sub

  2. Broad-Band Variability in Accreting Compact Objects

    Directory of Open Access Journals (Sweden)

    S. Scaringi

    2015-02-01

    Full Text Available Cataclysmic variable stars are in many ways similar to X-ray binaries. Both types of systems possess an accretion disk, which in most cases can reach the surface (or event horizon of the central compact object. The main difference is that the embedded gravitational potential well in X-ray binaries is much deeper than those found in cataclysmic variables. As a result, X-ray binaries emit most of their radiation at X-ray wavelengths, as opposed to cataclysmic variables which emit mostly at optical/ultraviolet wavelengths. Both types of systems display aperiodic broad-band variability which can be associated to the accretion disk. Here, the properties of the observed X-ray variability in XRBs are compared to those observed at optical wavelengths in CVs. In most cases the variability properties of both types of systems are qualitatively similar once the relevant timescales associated with the inner accretion disk regions have been taken into account. The similarities include the observed power spectral density shapes, the rms-flux relation as well as Fourier-dependant time lags. Here a brief overview on these similarities is given, placing them in the context of the fluctuating accretion disk model which seeks to reproduce the observed variability.

  3. Statistical constraints on binary black hole inspiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Galley, Chad R; Herrmann, Frank; Silberholz, John; Tiglio, Manuel [Department of Physics, Center for Fundamental Physics, Center for Scientific Computation and Mathematical Modeling, Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Guerberoff, Gustavo, E-mail: tiglio@umd.ed [Facultad de IngenierIa, Instituto de Matematica y EstadIstica, ' Prof. Ing. Rafael Laguardia' , Universidad de la Republica, Montevideo (Uruguay)

    2010-12-21

    We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2S-circumflex{sub 1{center_dot}}S-circumflex{sub 2} + (S-circumflex{sub 1{center_dot}}L-circumflex) (S-circumflex{sub 2{center_dot}}L-circumflex), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.

  4. Effects of tidal distortion on binary-star velocity curves and ellipsoidal variation

    International Nuclear Information System (INIS)

    Wilson, R.E.; Sofia, S.

    1976-01-01

    Radial velocity curves for the more massive components of binaries with extreme mass ratios can show a large distortion due to tides, as first recognized by Sterne. Binaries in which the effect is large should be rare because nearly all such binaries would be in the rapid phase of mass transfer. However, the optical counterparts of some X-ray binaries may show the effect, which would then serve as a new means of extracting considerable information from the observations. The essential parts of the computational procedure are given. Light curves for ellipsoidal variables with extreme mass ratios were also computed, and were found to be less sinusoidal than those with normal mass ratios

  5. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.

    1980-01-01

    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  6. Fast Solution in Sparse LDA for Binary Classification

    Science.gov (United States)

    Moghaddam, Baback

    2010-01-01

    An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic

  7. Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders.

    Science.gov (United States)

    Vanderweele, Tyler J; Arah, Onyebuchi A

    2011-01-01

    Uncontrolled confounding in observational studies gives rise to biased effect estimates. Sensitivity analysis techniques can be useful in assessing the magnitude of these biases. In this paper, we use the potential outcomes framework to derive a general class of sensitivity-analysis formulas for outcomes, treatments, and measured and unmeasured confounding variables that may be categorical or continuous. We give results for additive, risk-ratio and odds-ratio scales. We show that these results encompass a number of more specific sensitivity-analysis methods in the statistics and epidemiology literature. The applicability, usefulness, and limits of the bias-adjustment formulas are discussed. We illustrate the sensitivity-analysis techniques that follow from our results by applying them to 3 different studies. The bias formulas are particularly simple and easy to use in settings in which the unmeasured confounding variable is binary with constant effect on the outcome across treatment levels.

  8. Genders and Individual Treatment Progress in (Non-)Binary Trans Individuals.

    Science.gov (United States)

    Koehler, Andreas; Eyssel, Jana; Nieder, Timo O

    2018-01-01

    Health care for transgender and transsexual (ie, trans) individuals has long been based on a binary understanding of gender (ie, feminine vs masculine). However, the existence of non-binary or genderqueer (NBGQ) genders is increasingly recognized by academic and/or health care professionals. To gain insight into the individual health care experiences and needs of binary and NBGQ individuals to improve their health care outcomes and experience. Data were collected using an online survey study on experiences with trans health care. The non-clinical sample consisted of 415 trans individuals. An individual treatment progress score was calculated to report and compare participants' individual progress toward treatment completion and consider the individual treatment needs and definitions of completed treatment (ie, amount and types of different treatments needed to complete one's medical transition). Main outcome measures were (i) general and trans-related sociodemographic data and (ii) received and planned treatments. Participants reported binary (81.7%) and different NBGQ (18.3%) genders. The 2 groups differed significantly in basic demographic data (eg, mean age; P < .05). NBGQ participants reported significantly fewer received treatments compared with binary participants. For planned treatments, binary participants reported more treatments related to primary sex characteristics only. Binary participants required more treatments for a completed treatment than NBGQ participants (6.0 vs 4.0). There were no differences with regard to individual treatment progress score. Because traditional binary-focused treatment practice could have hindered NBGQ individuals from accessing trans health care or sufficiently articulating their needs, health care professionals are encouraged to provide a holistic and individual treatment approach and acknowledge genders outside the gender binary to address their needs appropriately. Because the study was made inclusive for non

  9. A novel asynchronous access method with binary interfaces

    Directory of Open Access Journals (Sweden)

    Torres-Solis Jorge

    2008-10-01

    Full Text Available Abstract Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches. Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel asynchronous access method that may be used to translate sporadic activations of binary interfaces into distinct outcomes for the control of devices requiring an arbitrary number of commands to be controlled. With this method, users are required to activate their interfaces only when the device under control behaves erroneously. Then, a recursive algorithm, incorporating contextual assumptions relevant to all possible outcomes, is used to obtain an informed estimate of user intention. We evaluate this method by simulating a control task requiring a series of target commands to be tracked by a model user. Results When compared to a random selection, the proposed asynchronous access method offers a significant reduction in the number of interface activations required from the user. Conclusion This novel access method offers a variety of advantages over traditionally synchronous access strategies and may be adapted to a wide variety of contexts, with primary relevance to applications involving direct object manipulation.

  10. International conference entitled Zdeněk Kopal’s Binary Star Legacy

    CERN Document Server

    Drechsel, Horst; ZDENEK KOPAL’S BINARY STAR LEGACY

    2005-01-01

    An international conference entitled "Zdenek Kopal's Binary Star Legacy" was held on the occasion of the late Professor Kopal's 90th birthday in his home town of Litomyšl/Czech Republic and dedicated to the memory of one of the leading astronomers of the 20th century. Professor Kopal, who devoted 60 years of his scientific life to the exploration of close binary systems, initiated a breakthrough in this field with his description of binary components as non-spherical stars deformed by gravity, with surfaces following Roche equipotentials. Such knowledge triggered the development of new branches of astrophysics dealing with the structure and evolution of close binaries and the interaction effects displayed by exciting objects such as cataclysmic variables, symbiotic stars or X-ray binaries. Contributions to this conference included praise of the achievements of a great astronomer and personal reminiscences brought forward by Kopal's former students and colleagues, and reflected the state of the art of the dyn...

  11. ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES

    International Nuclear Information System (INIS)

    Miller, J. M.; Cackett, E. M.; Reis, R. C.

    2009-01-01

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low-energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low-energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.

  12. Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Rekaya R

    2016-11-01

    Full Text Available Romdhane Rekaya,1–3 Shannon Smith,4 El Hamidi Hay,5 Nourhene Farhat,6 Samuel E Aggrey3,7 1Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, 2Department of Statistics, Franklin College of Arts and Sciences, 3Institute of Bioinformatics, The University of Georgia, Athens, GA, 4Zoetis, Kalamazoo, MI, 5United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 6Carolinas HealthCare System Blue Ridge, Morganton, NC, 7Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA Abstract: Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS. A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case–control were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the

  13. Preliminary study of light variations of the eclipsing binary AB Cassiopeiae

    International Nuclear Information System (INIS)

    Ando, H.; Manchester Univ.

    1980-01-01

    Preliminary study of the eclipsing binary AB Cas is presented here by using the photometric observational data. The primary component is one of the delta Sct variables with period of 0.sup(d)054, and whether the oscillation is of a radial mode or of a non-radial one is discussed. Two colour indices (B - V and U - B) data and the light curve analysis suggest that this binary system is a typical Algol type binary system, in which the primary component is near the ZAMS with about 2.3 Msub(sun) and the secondary one is a subgiant star with about 0.5 Msub(sun). (orig.)

  14. Leg pain and psychological variables predict outcome 2-3 years after lumbar fusion surgery.

    Science.gov (United States)

    Abbott, Allan D; Tyni-Lenné, Raija; Hedlund, Rune

    2011-10-01

    Prediction studies testing a thorough range of psychological variables in addition to demographic, work-related and clinical variables are lacking in lumbar fusion surgery research. This prospective cohort study aimed at examining predictions of functional disability, back pain and health-related quality of life (HRQOL) 2-3 years after lumbar fusion by regressing nonlinear relations in a multivariate predictive model of pre-surgical variables. Before and 2-3 years after lumbar fusion surgery, patients completed measures investigating demographics, work-related variables, clinical variables, functional self-efficacy, outcome expectancy, fear of movement/(re)injury, mental health and pain coping. Categorical regression with optimal scaling transformation, elastic net regularization and bootstrapping were used to investigate predictor variables and address predictive model validity. The most parsimonious and stable subset of pre-surgical predictor variables explained 41.6, 36.0 and 25.6% of the variance in functional disability, back pain intensity and HRQOL 2-3 years after lumbar fusion. Pre-surgical control over pain significantly predicted functional disability and HRQOL. Pre-surgical catastrophizing and leg pain intensity significantly predicted functional disability and back pain while the pre-surgical straight leg raise significantly predicted back pain. Post-operative psychomotor therapy also significantly predicted functional disability while pre-surgical outcome expectations significantly predicted HRQOL. For the median dichotomised classification of functional disability, back pain intensity and HRQOL levels 2-3 years post-surgery, the discriminative ability of the prediction models was of good quality. The results demonstrate the importance of pre-surgical psychological factors, leg pain intensity, straight leg raise and post-operative psychomotor therapy in the predictions of functional disability, back pain and HRQOL-related outcomes.

  15. The significance of Sampling Design on Inference: An Analysis of Binary Outcome Model of Children’s Schooling Using Indonesian Large Multi-stage Sampling Data

    OpenAIRE

    Ekki Syamsulhakim

    2008-01-01

    This paper aims to exercise a rather recent trend in applied microeconometrics, namely the effect of sampling design on statistical inference, especially on binary outcome model. Many theoretical research in econometrics have shown the inappropriateness of applying i.i.dassumed statistical analysis on non-i.i.d data. These research have provided proofs showing that applying the iid-assumed analysis on a non-iid observations would result in an inflated standard errors which could make the esti...

  16. A Binary Nature of the Marginal CP Star Sigma Sculptoris

    Science.gov (United States)

    Janík, Jan; Krtička, Jiří; Mikulášek, Zdeněk; Zverko, Juraj; Pintado, Olga; Paunzen, Ernst; Prvák, Milan; Skalický, Jan; Zejda, Miloslav; Adam, Christian

    2018-05-01

    The A2 V star σ Scl was suspected of being a low-amplitude rotating variable of the Ap-type star by several authors. Aiming to decide whether the star is a variable chemically peculiar (CP) star, we searched for the photometric and spectroscopic variability, and determined chemical abundances of σ Scl. The possible variability was tested using several types of periodograms applied to the photometry from Long-Term Photometry of Variables project (LTPV) and Hipparcos. Sixty spectrograms of high signal-to-noise (S/N) were obtained and used for chemical analysis of the stellar atmosphere and for looking for spectral variability that is symptomatic for the CP stars. We did not find any signs of the light variability or prominent chemical peculiarity, that is specific for the CP stars. The only exception is the abundance of scandium, which is significantly lower than the solar one and yttrium and barium, which are strongly overabundant. As a by-product of the analysis, and with the addition of 29 further spectra, we found that σ Scl is a single-lined spectroscopic binary with orbital period of 46.877(8) d. We argue that σ Scl is not an Ap star, but rather a marginal Am star in SB1 system. The spectral energy distribution of the binary reveals infrared excess due to circumstellar material.

  17. EXIT Chart Analysis of Binary Message-Passing Decoders

    DEFF Research Database (Denmark)

    Lechner, Gottfried; Pedersen, Troels; Kramer, Gerhard

    2007-01-01

    Binary message-passing decoders for LDPC codes are analyzed using EXIT charts. For the analysis, the variable node decoder performs all computations in the L-value domain. For the special case of a hard decision channel, this leads to the well know Gallager B algorithm, while the analysis can...... be extended to channels with larger output alphabets. By increasing the output alphabet from hard decisions to four symbols, a gain of more than 1.0 dB is achieved using optimized codes. For this code optimization, the mixing property of EXIT functions has to be modified to the case of binary message......-passing decoders....

  18. A New Orbit for the Eclipsing Binary V577 Oph

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, Elizabeth J. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Barnes, Thomas G. III; Montemayor, Thomas J. [The University of Texas at Austin, McDonald Observatory, 1 University Station, C1402, Austin, TX 78712-0259 (United States); Skillen, Ian, E-mail: ejjeffer@calpoly.edu, E-mail: tgb@astro.as.utexas.edu, E-mail: tm@astro.as.utexas.edu, E-mail: wji@ing.iac.es [Isaac Newton Group, Apartado de Correos 321, E-38700 Santa Cruz de La Palma, Canary Islands (Spain)

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  19. A New Orbit for the Eclipsing Binary V577 Oph

    Science.gov (United States)

    Jeffery, Elizabeth J.; Barnes, Thomas G., III; Skillen, Ian; Montemayor, Thomas J.

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by -2 km s-1 is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov & Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  20. Modeling AGN outbursts from supermassive black hole binaries

    Directory of Open Access Journals (Sweden)

    Tanaka T.

    2012-12-01

    Full Text Available When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN. The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humanly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.

  1. Searching for Signatures of Supermassive Black Hole Binaries

    Science.gov (United States)

    Ayers, Megan; Gezari, Suvi; Liu, Tingting

    2018-01-01

    Theoretical studies suggest that supermassive black hole binaries (SMBHBs) are an inevitable consequence of major galaxy mergers. Additionally, as SMBHBs coalesce they are expected to be sources of tremendous gravitational wave emission. Interest in these sources motivates the search for detection of the first definitive SMBHB and observational signatures to methodize the search. We present spectral energy distributions (SEDs) for a sample of candidate SMBHBs selected from quasars demonstrating optical periodic variability from the Pan-STARRS1 Medium Deep Survey. The SEDs were constructed using existing archival data spanning from radio to X-ray emission. For each candidate SMBHB, we also present models of the theoretical spectrum emitted from the circumbinary and minidisks of the SMBHB system using the predictions of Roedig et al. (2014) and inferred parameters of the candidates (combined mass, mass ratio, binary separation, accretion rate). We compare the observational SED for each source to its respective binary model as well as to the expected mean SED of a normal non-binary system quasar to look for supporting evidence of a SMBHB system. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  2. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  3. Drawing Nomograms with R: applications to categorical outcome and survival data.

    Science.gov (United States)

    Zhang, Zhongheng; Kattan, Michael W

    2017-05-01

    Outcome prediction is a major task in clinical medicine. The standard approach to this work is to collect a variety of predictors and build a model of appropriate type. The model is a mathematical equation that connects the outcome of interest with the predictors. A new patient with given clinical characteristics can be predicted for outcome with this model. However, the equation describing the relationship between predictors and outcome is often complex and the computation requires software for practical use. There is another method called nomogram which is a graphical calculating device allowing an approximate graphical computation of a mathematical function. In this article, we describe how to draw nomograms for various outcomes with nomogram() function. Binary outcome is fit by logistic regression model and the outcome of interest is the probability of the event of interest. Ordinal outcome variable is also discussed. Survival analysis can be fit with parametric model to fully describe the distributions of survival time. Statistics such as the median survival time, survival probability up to a specific time point are taken as the outcome of interest.

  4. Cataloging the Praesepe Cluster: Identifying Interlopers and Binary Systems

    Science.gov (United States)

    Lucey, Madeline R.; Gosnell, Natalie M.; Mann, Andrew; Douglas, Stephanie

    2018-01-01

    We present radial velocity measurements from an ongoing survey of the Praesepe open cluster using the WIYN 3.5m Telescope. Our target stars include 229 early-K to mid-M dwarfs with proper motion memberships that have been observed by the repurposed Kepler mission, K2. With this survey, we will provide a well-constrained membership list of the cluster. By removing interloping stars and determining the cluster binary frequency we can avoid systematic errors in our analysis of the K2 findings and more accurately determine exoplanet properties in the Praesepe cluster. Obtaining accurate exoplanet parameters in open clusters allows us to study the temporal dimension of exoplanet parameter space. We find Praesepe to have a mean radial velocity of 34.09 km/s and a velocity dispersion of 1.13 km/s, which is consistent with previous studies. We derive radial velocity membership probabilities for stars with ≥3 radial velocity measurements and compare against published membership probabilities. We also identify radial velocity variables and potential double-lined spectroscopic binaries. We plan to obtain more observations to determine the radial velocity membership of all the stars in our sample, as well as follow up on radial velocity variables to determine binary orbital solutions.

  5. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    Science.gov (United States)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  6. High glucose variability is associated with poor neurodevelopmental outcomes in neonatal hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Al Shafouri, N; Narvey, M; Srinivasan, G; Vallance, J; Hansen, G

    2015-01-01

    In neonatal hypoxic ischemic encephalopathy (HIE), hypo- and hyperglycemia have been associated with poor outcomes. However, glucose variability has not been reported in this population. To examine the association between serum glucose variability within the first 24 hours and two-year neurodevelopmental outcomes in neonates cooled for HIE. In this retrospective cohort study, glucose, clinical and demographic data were documented from 23 term newborns treated with whole body therapeutic hypothermia. Severe neurodevelopmental outcomes from planned two-year assessments were defined as the presence of any one of the following: Gross Motor Function Classification System levels 3 to 5, Bayley III Motor Standard Score neurodevelopmental outcomes from 8 of 23 patients were considered severe, and this group demonstrated a significant increase of mean absolute glucose (MAG) change (-0.28 to -0.03, 95% CI, p = 0.032). There were no significant differences between outcome groups with regards to number of patients with hyperglycemic means, one or multiple hypo- or hyperglycemic measurement(s). There were also no differences between both groups with mean glucose, although mean glucose standard deviation was approaching significance. Poor neurodevelopmental outcomes in whole body cooled HIE neonates are significantly associated with MAG changes. This information may be relevant for prognostication and potential management strategies.

  7. Short-Period Binary Stars: Observations, Analyses, and Results

    CERN Document Server

    Milone, Eugene F; Hobill, David W

    2008-01-01

    Short-period binaries run the gamut from widely separated stars to black-hole pairs; in between are systems that include neutron stars and white dwarfs, and partially evolved systems such as tidally distorted and over-contact systems. These objects represent stages of evolution of binary stars, and their degrees of separation provide critical clues to how their evolutionary paths differ from that of single stars. The widest and least distorted systems provide astronomers with the essential precise data needed to study all stars: mass and radius. The interactions of binary star components, on the other hand, provide a natural laboratory to observe how the matter in these stars behaves under different and often varying physical conditions. Thus, cataclysmic variables with and without overpoweringly strong magnetic fields, and stars with densities from that found in the Sun to the degenerate matter of white dwarfs and the ultra-compact states of neutron stars and black holes are all discussed. The extensive inde...

  8. Energetics of binary mixed culture of Pseudomonas aeruginosa and ...

    African Journals Online (AJOL)

    Bioenergetic analysis of the growth of the binary mixed culture (Pseudomonas aeruginosa and Pseudomonas fluorescence) on phenol chemostat culture was carried out. The data were checked for consistency using carbon and available electron balances. When more than the minimum number of variables are measured, ...

  9. The Moderating Role of Power Distance on the Relationship between Employee Participation and Outcome Variables.

    Science.gov (United States)

    Rafiei, Sima; Pourreza, Abolghasem

    2013-06-01

    Many organisations have realised the importance of human resource for their competitive advantage. Empowering employees is therefore essential for organisational effectiveness. This study aimed to investigate the relationship between employee participation with outcome variables such as organisational commitment, job satisfaction, perception of justice in an organisation and readiness to accept job responsibilities. It further examined the impact of power distance on the relationship between participation and four outcome variables. This was a cross sectional study with a descriptive research design conducted among employees and managers of hospitals affiliated with Tehran University of Medical Sciences, Tehran, Iran. A questionnaire as a main procedure to gather data was developed, distributed and collected. Descriptive statistics, Pearson correlation coefficient and moderated multiple regression were used to analyse the study data. Findings of the study showed that the level of power distance perceived by employees had a significant relationship with employee participation, organisational commitment, job satisfaction, perception of justice and readiness to accept job responsibilities. There was also a significant relationship between employee participation and four outcome variables. The moderated multiple regression results supported the hypothesis that power distance had a significant effect on the relationship between employee participation and four outcome variables. Organisations in which employee empowerment is practiced through diverse means such as participating them in decision making related to their field of work, appear to have more committed and satisfied employees with positive perception toward justice in the organisational interactions and readiness to accept job responsibilities.

  10. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    Science.gov (United States)

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  11. First Resolved Images of the Mira AB Symbiotic Binary at Centimeter Wavelengths

    OpenAIRE

    Matthews, Lynn D.; Karovska, Margarita

    2005-01-01

    We report the first spatially resolved radio continuum measurements of the Mira AB symbiotic binary system, based on observations obtained with the Very Large Array (VLA). This is the first time that a symbiotic binary has been resolved unambiguously at centimeter wavelengths. We describe the results of VLA monitoring of both stars over a ten month period, together with constraints on their individual spectral energy distributions, variability, and radio emission mechanisms. The emission from...

  12. The Frequency of Binary Stars in the Globular Cluster M71

    Science.gov (United States)

    Barden, S. C.; Armandroff, T. E.; Pryor, C. P.

    1994-12-01

    The frequency of binary stars is a fundamental property of a stellar population. A comparison of the frequency of binaries in globular clusters with those in the field halo and disk populations tests the similarity of star formation in those environments. Binary stars in globular clusters also act as an energy source which ``heats" the cluster through super-elastic encounters with other stars and binaries. Such encounters can not only profoundly affect the dynamical evolution of the cluster, they can disrupt the widely separated binaries and catalyze the formation of exotic objects such as blue stragglers, x-ray binaries, and milli-second pulsars. We have used the KPNO 4-m and the multi-fiber instruments Nessie and Hydra to measure radial velocities at 4 epochs over two years for a sample of 126 stars in the globular cluster M71. Velocity errors are under 1 km s(-1) for the brighter stars and under 2 km s(-1) for the majority of our data set. These velocities will be valuable for studying the kinematics of M71, but here we focus on searching for binaries. The faintest stars are at V=17, or just above the main sequence turnoff. Our sample is thus deeper than any published globular cluster binary search utilizing spectroscopic techniques. By observing smaller stars, we double the number of decades of binary periods sampled compared to previous studies and come within a factor of 4 of the shortest possible periods for turnoff stars. This wider period window has produced the largest known sample of binaries in a globular cluster. Four stars show velocity ranges larger than 20 km s(-1) , nine have ranges larger than 10 km s(-1) , and others are clearly variable. We will compare the radial distribution of these stars to that predicted by theory and derive the main-sequence binary fraction.

  13. Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation

    International Nuclear Information System (INIS)

    Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C

    2014-01-01

    The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)

  14. Variable reporting of functional outcomes and return to play in superior labrum anterior and posterior tear.

    Science.gov (United States)

    Steinhaus, Michael E; Makhni, Eric C; Lieber, Adam C; Kahlenberg, Cynthia A; Gulotta, Lawrence V; Romeo, Anthony A; Verma, Nikhil N

    2016-11-01

    Outcomes assessments after superior labrum anterior and posterior (SLAP) tear/repair are highly varied, making it difficult to draw comparisons across the literature. This study examined the inconsistency in outcomes reporting in the SLAP tear literature. We hypothesize that there is significant variability in outcomes reporting and that although most studies may report return to play, time to return reporting will be highly variable. The PubMed, Medline, Scopus, and Embase databases were systematically reviewed for studies from January 2000 to December 2014 reporting outcomes after SLAP tear/repair. Two reviewers assessed each study, and those meeting inclusion criteria were examined for pertinent data. Outcomes included objective (range of motion, strength, clinical examinations, and imaging) and subjective (patient-reported outcomes, satisfaction, activities of daily living, and return to play) measures. Of the 56 included studies, 43% documented range of motion, 14% reported strength, and 16% noted postoperative imaging. There was significant variation in use of patient-reported outcomes measures, with the 3 most commonly noted measures reported in 20% to 55% of studies. Return to play was noted in 75% of studies, and 23% reported time to return, with greater rates in elite athletes. Eleven studies (20%) did not report follow-up or noted data with <12 months of follow-up. The SLAP literature is characterized by substantial variability in outcomes reporting, with time to return to play noted in few studies. Efforts to standardize outcomes reporting would facilitate comparisons across the literature and improve our understanding of the prognosis of this injury. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Scalable data structure detection and classification for C/C++ binaries

    NARCIS (Netherlands)

    Haller, I.; Slowinska, J.M.; Bos, H.J.

    2015-01-01

    Many existing techniques for reversing data structures in C/C ++ binaries are limited to low-level programming constructs, such as individual variables or structs. Unfortunately, without detailed information about a program's pointer structures, forensics and reverse engineering are exceedingly

  16. Assessing factors related to waist circumference and obesity: application of a latent variable model.

    Science.gov (United States)

    Dalvand, Sahar; Koohpayehzadeh, Jalil; Karimlou, Masoud; Asgari, Fereshteh; Rafei, Ali; Seifi, Behjat; Niksima, Seyed Hassan; Bakhshi, Enayatollah

    2015-01-01

    Because the use of BMI (Body Mass Index) alone as a measure of adiposity has been criticized, in the present study our aim was to fit a latent variable model to simultaneously examine the factors that affect waist circumference (continuous outcome) and obesity (binary outcome) among Iranian adults. Data included 18,990 Iranian individuals aged 20-65 years that are derived from the third National Survey of Noncommunicable Diseases Risk Factors in Iran. Using latent variable model, we estimated the relation of two correlated responses (waist circumference and obesity) with independent variables including age, gender, PR (Place of Residence), PA (physical activity), smoking status, SBP (Systolic Blood Pressure), DBP (Diastolic Blood Pressure), CHOL (cholesterol), FBG (Fasting Blood Glucose), diabetes, and FHD (family history of diabetes). All variables were related to both obesity and waist circumference (WC). Older age, female sex, being an urban resident, physical inactivity, nonsmoking, hypertension, hypercholesterolemia, hyperglycemia, diabetes, and having family history of diabetes were significant risk factors that increased WC and obesity. Findings from this study of Iranian adult settings offer more insights into factors associated with high WC and high prevalence of obesity in this population.

  17. Assessing Factors Related to Waist Circumference and Obesity: Application of a Latent Variable Model

    Directory of Open Access Journals (Sweden)

    Sahar Dalvand

    2015-01-01

    Full Text Available Background. Because the use of BMI (Body Mass Index alone as a measure of adiposity has been criticized, in the present study our aim was to fit a latent variable model to simultaneously examine the factors that affect waist circumference (continuous outcome and obesity (binary outcome among Iranian adults. Methods. Data included 18,990 Iranian individuals aged 20–65 years that are derived from the third National Survey of Noncommunicable Diseases Risk Factors in Iran. Using latent variable model, we estimated the relation of two correlated responses (waist circumference and obesity with independent variables including age, gender, PR (Place of Residence, PA (physical activity, smoking status, SBP (Systolic Blood Pressure, DBP (Diastolic Blood Pressure, CHOL (cholesterol, FBG (Fasting Blood Glucose, diabetes, and FHD (family history of diabetes. Results. All variables were related to both obesity and waist circumference (WC. Older age, female sex, being an urban resident, physical inactivity, nonsmoking, hypertension, hypercholesterolemia, hyperglycemia, diabetes, and having family history of diabetes were significant risk factors that increased WC and obesity. Conclusions. Findings from this study of Iranian adult settings offer more insights into factors associated with high WC and high prevalence of obesity in this population.

  18. SWIFT X-RAY TELESCOPE STUDY OF THE BLACK HOLE BINARY MAXI J1659–152: VARIABILITY FROM A TWO COMPONENT ACCRETION FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Kalamkar, M.; Klis, M. van der; Heil, L. [Astronomical Institute, “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Homan, J., E-mail: maithili@oa-roma.inaf.it [MIT Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States)

    2015-08-01

    We present an energy dependent X-ray variability study of the 2010 outburst of the black hole X-ray binary MAXI J1659–152 with the Swift X-ray Telescope (XRT). The broadband noise components and the quasi-periodic oscillations (QPO) observed in the power spectra show a strong and varied energy dependence. Combining Swift XRT data with data from the Rossi X-ray Timing Explorer, we report, for the first time, an rms spectrum (fractional rms amplitude as a function of energy) of these components in the 0.5–30 keV energy range. We find that the strength of the low-frequency component (<0.1 Hz) decreases with energy, contrary to the higher frequency components (>0.1 Hz) whose strengths increase with energy. In the context of the propagating fluctuations model for X-ray variability, we suggest that the low-frequency component originates in the accretion disk (which dominates emission below ∼2 keV) and the higher frequency components are formed in the hot flow (which dominates emission above ∼2 keV). As the properties of the QPO suggest that it may have a different driving mechanism, we investigate the Lense–Thirring precession of the hot flow as a candidate model. We also report on the QPO coherence evolution for the first time in the energy band below 2 keV. While there are strong indications that the QPO is less coherent at energies below 2 keV than above 2 keV, the coherence increases with intensity similar to what is observed at energies above 2 keV in other black hole X-ray binaries.

  19. Trojan Binaries

    Science.gov (United States)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  20. Visit-to-Visit Variability in Blood Pressure and Kidney and Cardiovascular Outcomes in Patients With Type 2 Diabetes and Nephropathy

    DEFF Research Database (Denmark)

    McMullan, Ciaran J; Lambers Heerspink, Hiddo J; Parving, Hans-Henrik

    2014-01-01

    -to-visit variability was calculated from the SD of the systolic blood pressure from 4 visits occurring 3-12 months postrandomization. OUTCOMES: The kidney disease outcome was defined as time to confirmed doubling of serum creatinine level, end-stage renal disease, or death; the cardiovascular outcome was defined......BACKGROUND: Increased systolic blood pressure variability between outpatient visits is associated with increased incidence of cardiovascular end points. However, few studies have examined the association of visit-to-visit variability in systolic blood pressure with clinically relevant kidney...... disease outcomes. We analyzed the association of systolic blood pressure visit-to-visit variability with renal and cardiovascular morbidity and mortality among individuals with diabetes and nephropathy. STUDY DESIGN: Observational analysis of IDNT (Irbesartan Diabetic Nephropathy Trial) and the RENAAL...

  1. Binary recursive partitioning: background, methods, and application to psychology.

    Science.gov (United States)

    Merkle, Edgar C; Shaffer, Victoria A

    2011-02-01

    Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.

  2. Mendelian randomization analysis of a time-varying exposure for binary disease outcomes using functional data analysis methods.

    Science.gov (United States)

    Cao, Ying; Rajan, Suja S; Wei, Peng

    2016-12-01

    A Mendelian randomization (MR) analysis is performed to analyze the causal effect of an exposure variable on a disease outcome in observational studies, by using genetic variants that affect the disease outcome only through the exposure variable. This method has recently gained popularity among epidemiologists given the success of genetic association studies. Many exposure variables of interest in epidemiological studies are time varying, for example, body mass index (BMI). Although longitudinal data have been collected in many cohort studies, current MR studies only use one measurement of a time-varying exposure variable, which cannot adequately capture the long-term time-varying information. We propose using the functional principal component analysis method to recover the underlying individual trajectory of the time-varying exposure from the sparsely and irregularly observed longitudinal data, and then conduct MR analysis using the recovered curves. We further propose two MR analysis methods. The first assumes a cumulative effect of the time-varying exposure variable on the disease risk, while the second assumes a time-varying genetic effect and employs functional regression models. We focus on statistical testing for a causal effect. Our simulation studies mimicking the real data show that the proposed functional data analysis based methods incorporating longitudinal data have substantial power gains compared to standard MR analysis using only one measurement. We used the Framingham Heart Study data to demonstrate the promising performance of the new methods as well as inconsistent results produced by the standard MR analysis that relies on a single measurement of the exposure at some arbitrary time point. © 2016 WILEY PERIODICALS, INC.

  3. Particle acceleration in binaries

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV–85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  4. Variable stars in metal-rich globular clusters. IV. Long-period variables in NGC 6496

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohamad A. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Layden, Andrew C.; Guldenschuh, Katherine A. [Physics and Astronomy Department, Bowling Green State University, Bowling Green, OH 43403 (United States); Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Nysewander, M. C.; LaCluyze, A. P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Welch, Douglas L., E-mail: mabbas@ari.uni-heidelberg.de, E-mail: laydena@bgsu.edu [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8 S 4M1 (Canada)

    2015-02-01

    We present VI-band photometry for stars in the metal-rich globular cluster NGC 6496. Our time-series data were cadenced to search for long-period variables (LPVs) over a span of nearly two years, and our variability search yielded the discovery of 13 new variable stars, of which 6 are LPVs, 2 are suspected LPVs, and 5 are short-period eclipsing binaries. An additional star was found in the ASAS database, and we clarify its type and period. We argue that all of the eclipsing binaries are field stars, while five to six of the LPVs are members of NGC 6496. We compare the period–luminosity distribution of these LPVs with those of LPVs in the Large Magellanic Cloud and 47 Tucanae, and with theoretical pulsation models. We also present a VI color–magnitude diagram, display the evolutionary states of the variables, and match isochrones to determine a reddening of E(B−V)= 0.21±0.02 mag and apparent distance modulus of 15.60±0.15 mag.

  5. ON THE APPARENT LACK OF Be X-RAY BINARIES WITH BLACK HOLES

    International Nuclear Information System (INIS)

    Belczynski, Krzysztof; Ziolkowski, Janusz

    2009-01-01

    In our Galaxy there are 64 Be X-ray binaries known to date. Out of these, 42 host a neutron star (NS), and for the remainder the nature of the companion is unknown. None, so far, are known to host a black hole (BH). There seems to be no apparent mechanism that would prevent formation or detection of Be stars with BHs. This disparity is referred to as a missing Be-BH X-ray binary problem. We point out that current evolutionary scenarios that lead to the formation of Be X-ray binaries predict that the ratio of binaries with NSs to the ones with BHs is rather high, F NStoBH ∼ 10-50, with the more likely formation models providing the values at the high end. The ratio is a natural outcome of (1) the stellar initial mass function that produces more NSs than BHs and (2) common envelope evolution (i.e., a major mechanism involved in the formation of interacting binaries) that naturally selects progenitors of Be X-ray binaries with NSs (binaries with comparable mass components have more likely survival probabilities) over ones with BHs (which are much more likely to be common envelope mergers). A comparison of this ratio (i.e., F NStoBH ∼ 30) with the number of confirmed Be-NS X-ray binaries (42) indicates that the expected number of Be-BH X-ray binaries is of the order of only ∼0-2. This is entirely consistent with the observed Galactic sample.

  6. The Moderating Role of Power Distance on the Relationship between Employee Participation and Outcome Variables

    Science.gov (United States)

    Rafiei, Sima; Pourreza, Abolghasem

    2013-01-01

    Background: Many organisations have realised the importance of human resource for their competitive advantage. Empowering employees is therefore essential for organisational effectiveness. This study aimed to investigate the relationship between employee participation with outcome variables such as organisational commitment, job satisfaction, perception of justice in an organisation and readiness to accept job responsibilities. It further examined the impact of power distance on the relationship between participation and four outcome variables. Methods: This was a cross sectional study with a descriptive research design conducted among employees and managers of hospitals affiliated with Tehran University of Medical Sciences, Tehran, Iran. A questionnaire as a main procedure to gather data was developed, distributed and collected. Descriptive statistics, Pearson correlation coefficient and moderated multiple regression were used to analyse the study data. Results: Findings of the study showed that the level of power distance perceived by employees had a significant relationship with employee participation, organisational commitment, job satisfaction, perception of justice and readiness to accept job responsibilities. There was also a significant relationship between employee participation and four outcome variables. The moderated multiple regression results supported the hypothesis that power distance had a significant effect on the relationship between employee participation and four outcome variables. Conclusion: Organisations in which employee empowerment is practiced through diverse means such as participating them in decision making related to their field of work, appear to have more committed and satisfied employees with positive perception toward justice in the organisational interactions and readiness to accept job responsibilities. PMID:24596840

  7. The Moderating Role of Power Distance on the Relationship between Employee Participation and Outcome Variables

    Directory of Open Access Journals (Sweden)

    Abolghasem Pourreza

    2013-05-01

    Full Text Available Background Many organisations have realised the importance of human resource for their competitive advantage. Empowering employees is therefore essential for organisational effectiveness. This study aimed to investigate the relationship between employee participation with outcome variables such as organisational commitment, job satisfaction, perception of justice in an organisation and readiness to accept job responsibilities. It further examined the impact of power distance on the relationship between participation and four outcome variables. Methods This was a cross sectional study with a descriptive research design conducted among employees and managers of hospitals affiliated with Tehran University of Medical Sciences, Tehran, Iran. A questionnaire as a main procedure to gather data was developed, distributed and collected. Descriptive statistics, Pearson correlation coefficient and moderated multiple regression were used to analyse the study data. Results Findings of the study showed that the level of power distance perceived by employees had a significant relationship with employee participation, organisational commitment, job satisfaction, perception of justice and readiness to accept job responsibilities. There was also a significant relationship between employee participation and four outcome variables. The moderated multiple regression results supported the hypothesis that power distance had a significant effect on the relationship between employee participation and four outcome variables. Conclusion Organisations in which employee empowerment is practiced through diverse means such as participating them in decision making related to their field of work, appear to have more committed and satisfied employees with positive perception toward justice in the organisational interactions and readiness to accept job responsibilities.

  8. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  9. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    Science.gov (United States)

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  10. Instrumental variables estimation of exposure effects on a time-to-event endpoint using structural cumulative survival models.

    Science.gov (United States)

    Martinussen, Torben; Vansteelandt, Stijn; Tchetgen Tchetgen, Eric J; Zucker, David M

    2017-12-01

    The use of instrumental variables for estimating the effect of an exposure on an outcome is popular in econometrics, and increasingly so in epidemiology. This increasing popularity may be attributed to the natural occurrence of instrumental variables in observational studies that incorporate elements of randomization, either by design or by nature (e.g., random inheritance of genes). Instrumental variables estimation of exposure effects is well established for continuous outcomes and to some extent for binary outcomes. It is, however, largely lacking for time-to-event outcomes because of complications due to censoring and survivorship bias. In this article, we make a novel proposal under a class of structural cumulative survival models which parameterize time-varying effects of a point exposure directly on the scale of the survival function; these models are essentially equivalent with a semi-parametric variant of the instrumental variables additive hazards model. We propose a class of recursive instrumental variable estimators for these exposure effects, and derive their large sample properties along with inferential tools. We examine the performance of the proposed method in simulation studies and illustrate it in a Mendelian randomization study to evaluate the effect of diabetes on mortality using data from the Health and Retirement Study. We further use the proposed method to investigate potential benefit from breast cancer screening on subsequent breast cancer mortality based on the HIP-study. © 2017, The International Biometric Society.

  11. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  12. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  13. Low-mass X-ray binaries from black hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-06-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs, whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  14. Low-mass X-ray binaries from black-hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-03-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH-binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  15. What Can Simbol-X Do for Gamma-ray Binaries?

    Science.gov (United States)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  16. What Can Simbol-X Do for Gamma-ray Binaries?

    International Nuclear Information System (INIS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-01-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ∼1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61 deg. 303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  17. A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Motl, Patrick M. [Indiana University Kokomo, School of Sciences, P.O. Box 9003, Kokomo, IN 46903-9004 (United States); Frank, Juhan; Clayton, Geoffrey C.; Tohline, Joel E. [Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States); Staff, Jan [College of Science and Math, University of Virgin Islands, St. Thomas, United States Virgin Islands 00802 (United States); Fryer, Christopher L.; Even, Wesley [Center for Theoretical Astrophysics/CCS-2, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Diehl, Steven, E-mail: pmotl@iuk.edu [TLT-Turbo GmbH, Gleiwitzstrasse 7, 66482 Zweibrücken (Germany)

    2017-04-01

    There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n  = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume “grid” code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.

  18. Education and Health Matters: School Nurse Interventions, Student Outcomes, and School Variables

    Science.gov (United States)

    Wolfe, Linda C.

    2013-01-01

    This paper presents findings from a quantitative, correlational study that examined selected school nursing services, student academic outcomes, and school demographics. Ex post facto data from the 2011-2012 school year of Delaware public schools were used in the research. The selected variables were school nurse interventions provided to students…

  19. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    Science.gov (United States)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  20. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  1. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    International Nuclear Information System (INIS)

    Kaltenegger, Lisa; Haghighipour, Nader

    2013-01-01

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886

  2. Evaluation of standardized and applied variables in predicting treatment outcomes of polytrauma patients.

    Science.gov (United States)

    Aksamija, Goran; Mulabdic, Adi; Rasic, Ismar; Muhovic, Samir; Gavric, Igor

    2011-01-01

    Polytrauma is defined as an injury where they are affected by at least two different organ systems or body, with at least one life-threatening injuries. Given the multilevel model care of polytrauma patients within KCUS are inevitable weaknesses in the management of this category of patients. To determine the dynamics of existing procedures in treatment of polytrauma patients on admission to KCUS, and based on statistical analysis of variables applied to determine and define the factors that influence the final outcome of treatment, and determine their mutual relationship, which may result in eliminating the flaws in the approach to the problem. The study was based on 263 polytrauma patients. Parametric and non-parametric statistical methods were used. Basic statistics were calculated, based on the calculated parameters for the final achievement of research objectives, multicoleration analysis, image analysis, discriminant analysis and multifactorial analysis were used. From the universe of variables for this study we selected sample of n = 25 variables, of which the first two modular, others belong to the common measurement space (n = 23) and in this paper defined as a system variable methods, procedures and assessments of polytrauma patients. After the multicoleration analysis, since the image analysis gave a reliable measurement results, we started the analysis of eigenvalues, that is defining the factors upon which they obtain information about the system solve the problem of the existing model and its correlation with treatment outcome. The study singled out the essential factors that determine the current organizational model of care, which may affect the treatment and better outcome of polytrauma patients. This analysis has shown the maximum correlative relationships between these practices and contributed to development guidelines that are defined by isolated factors.

  3. Assessing the Impact of Socioeconomic Variables on Small Area Variations in Suicide Outcomes in England

    Directory of Open Access Journals (Sweden)

    Peter Congdon

    2012-12-01

    Full Text Available Ecological studies of suicide and self-harm have established the importance of area variables (e.g., deprivation, social fragmentation in explaining variations in suicide risk. However, there are likely to be unobserved influences on risk, typically spatially clustered, which can be modeled as random effects. Regression impacts may be biased if no account is taken of spatially structured influences on risk. Furthermore a default assumption of linear effects of area variables may also misstate or understate their impact. This paper considers variations in suicide outcomes for small areas across England, and investigates the impact on them of area socio-economic variables, while also investigating potential nonlinearity in their impact and allowing for spatially clustered unobserved factors. The outcomes are self-harm hospitalisations and suicide mortality over 6,781 Middle Level Super Output Areas.

  4. Inferior outcomes for black children with high risk acute lymphoblastic leukemia and the impact of socioeconomic variables.

    Science.gov (United States)

    Walsh, Alexandra; Chewning, Joseph; Li, Xuelin; Dai, Chen; Whelan, Kimberly; Madan-Swain, Avi; Waterbor, John; Baskin, Monica L; Goldman, Frederick D

    2017-02-01

    While significant improvements have been made for children with acute lymphoblastic leukemia (ALL) in the United States over the past 20 years, black patients continue to have inferior outcomes. The full impact of socioeconomic variables on outcomes in this minority population is not entirely understood. Disease characteristics, demographic, and socioeconomic status (SES) variables were collected on black (n = 44) and white (n = 178) patients diagnosed at the University of Alabama at Birmingham. Cox proportional hazard regression was used to evaluate the influence of SES and insurance status on survival. As a cohort, 5-year overall survival (OS) was 87% (82-91%), with a median follow-up of 99 months. In univariable analysis, black race was not significantly associated with a higher risk of death or relapse and death. White and black patients with standard-risk leukemia had excellent outcomes, with 97% (91-99%) and 96% (75-99%) 5-year OS, respectively. In contrast, for high-risk disease, white patients had a statistically significant improved 5-year OS rates compared with black patients (79% [68-87%] vs. 52% [28-72%]). Black children were more likely to have public insurance, and, in multivariable analysis, this was associated with a trend toward an improved outcome. Black patients also had poorer census tract-level SES parameters, but these variables were not associated with survival. Our study demonstrates significantly inferior outcomes for black children with high-risk leukemia. These outcome disparities were not related to SES variables, including poverty or private insurance coverage, suggesting the involvement of other factors and highlighting the need for a prospective investigative analysis. © 2016 Wiley Periodicals, Inc.

  5. "I would have preferred more options": accounting for non-binary youth in health research.

    Science.gov (United States)

    Frohard-Dourlent, Hélène; Dobson, Sarah; Clark, Beth A; Doull, Marion; Saewyc, Elizabeth M

    2017-01-01

    As a research team focused on vulnerable youth, we increasingly need to find ways to acknowledge non-binary genders in health research. Youth have become more vocal about expanding notions of gender beyond traditional categories of boy/man and girl/woman. Integrating non-binary identities into established research processes is a complex undertaking in a culture that often assumes gender is a binary variable. In this article, we present the challenges at every stage of the research process and questions we have asked ourselves to consider non-binary genders in our work. As researchers, how do we interrogate the assumptions that have made non-binary lives invisible? What challenges arise when attempting to transform research practices to incorporate non-binary genders? Why is it crucial that researchers consider these questions at each step of the research process? We draw on our own research experiences to highlight points of tensions and possibilities for change. Improving access to inclusive health-care for non-binary people, and non-binary youth in particular, is part of creating a more equitable healthcare system. We argue that increased and improved access to inclusive health-care can be supported by research that acknowledges and includes people of all genders. © 2016 John Wiley & Sons Ltd.

  6. Multilevel Cross-Dependent Binary Longitudinal Data

    KAUST Repository

    Serban, Nicoleta

    2013-10-16

    We provide insights into new methodology for the analysis of multilevel binary data observed longitudinally, when the repeated longitudinal measurements are correlated. The proposed model is logistic functional regression conditioned on three latent processes describing the within- and between-variability, and describing the cross-dependence of the repeated longitudinal measurements. We estimate the model components without employing mixed-effects modeling but assuming an approximation to the logistic link function. The primary objectives of this article are to highlight the challenges in the estimation of the model components, to compare two approximations to the logistic regression function, linear and exponential, and to discuss their advantages and limitations. The linear approximation is computationally efficient whereas the exponential approximation applies for rare events functional data. Our methods are inspired by and applied to a scientific experiment on spectral backscatter from long range infrared light detection and ranging (LIDAR) data. The models are general and relevant to many new binary functional data sets, with or without dependence between repeated functional measurements.

  7. MemPick : High-level data structure detection in C/C++ binaries

    NARCIS (Netherlands)

    Haller, Istvan; Slowinska, Asia; Bos, Herbert

    2013-01-01

    Many existing techniques for reversing data structures in C/C++ binaries are limited to low-level programming constructs, such as individual variables or structs. Unfortunately, without detailed information about a program's pointer structures, forensics and reverse engineering are exceedingly hard.

  8. A Fast Optimization Method for General Binary Code Learning.

    Science.gov (United States)

    Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng

    2016-09-22

    Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.

  9. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  10. Intraindividual variability in reaction time predicts cognitive outcomes 5 years later.

    Science.gov (United States)

    Bielak, Allison A M; Hultsch, David F; Strauss, Esther; Macdonald, Stuart W S; Hunter, Michael A

    2010-11-01

    Building on results suggesting that intraindividual variability in reaction time (inconsistency) is highly sensitive to even subtle changes in cognitive ability, this study addressed the capacity of inconsistency to predict change in cognitive status (i.e., cognitive impairment, no dementia [CIND] classification) and attrition 5 years later. Two hundred twelve community-dwelling older adults, initially aged 64-92 years, remained in the study after 5 years. Inconsistency was calculated from baseline reaction time performance. Participants were assigned to groups on the basis of their fluctuations in CIND classification over time. Logistic and Cox regressions were used. Baseline inconsistency significantly distinguished among those who remained or transitioned into CIND over the 5 years and those who were consistently intact (e.g., stable intact vs. stable CIND, Wald (1) = 7.91, p < .01, Exp(β) = 1.49). Average level of inconsistency over time was also predictive of study attrition, for example, Wald (1) = 11.31, p < .01, Exp(β) = 1.24. For both outcomes, greater inconsistency was associated with a greater likelihood of being in a maladaptive group 5 years later. Variability based on moderately cognitively challenging tasks appeared to be particularly sensitive to longitudinal changes in cognitive ability. Mean rate of responding was a comparable predictor of change in most instances, but individuals were at greater relative risk of being in a maladaptive outcome group if they were more inconsistent rather than if they were slower in responding. Implications for the potential utility of intraindividual variability in reaction time as an early marker of cognitive decline are discussed. (c) 2010 APA, all rights reserved

  11. Single and simultaneous binary mergers in Wright-Fisher genealogies.

    Science.gov (United States)

    Melfi, Andrew; Viswanath, Divakar

    2018-05-01

    The Kingman coalescent is a commonly used model in genetics, which is often justified with reference to the Wright-Fisher (WF) model. Current proofs of convergence of WF and other models to the Kingman coalescent assume a constant sample size. However, sample sizes have become quite large in human genetics. Therefore, we develop a convergence theory that allows the sample size to increase with population size. If the haploid population size is N and the sample size is N 1∕3-ϵ , ϵ>0, we prove that Wright-Fisher genealogies involve at most a single binary merger in each generation with probability converging to 1 in the limit of large N. Single binary merger or no merger in each generation of the genealogy implies that the Kingman partition distribution is obtained exactly. If the sample size is N 1∕2-ϵ , Wright-Fisher genealogies may involve simultaneous binary mergers in a single generation but do not involve triple mergers in the large N limit. The asymptotic theory is verified using numerical calculations. Variable population sizes are handled algorithmically. It is found that even distant bottlenecks can increase the probability of triple mergers as well as simultaneous binary mergers in WF genealogies. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  13. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  14. LB01.06: VISIT-TO-VISIT BLOOD PRESSURE VARIABILITY AND CARDIOVASCULAR OUTCOMES IN FELODIPINE EVENT REDUCTION STUDY.

    Science.gov (United States)

    Zhang, Y; Zhang, X; Liu, L; Zanchetti, A

    2015-06-01

    Many antihypertensive outcome trials have shown that visit-to-visit blood pressure variability is correlated closely with clinical outcomes in hypertensive patients. The objective of the study was to investigate the relationship between visit-to-visit blood pressure variability (BPV) and the major cardiovascular outcomes in the Chinese hypertensive patients. Felodipine Event Reduction (FEVER) study was a double-blind, randomized trial on 9711 Chinese hypertensive patients, in whom cardiovascular outcomes were significantly reduced by more intense therapy achieving a mean of 138 mmHg SBP compared with less-intense therapy achieving a mean of 142 mmHg. Visit-to-visit BPV during the follow-up period [defined as standard deviation (SD), coefficient of variation (CV), and average real variability(ARV)] was derived from casual cuff BP measures after six months follow-up until the end of the study. Hazard ratios (HRs), for the incidence of CVD associated with SD, CV, and ARV of SBP and DBP were calculated using Cox proportional hazard models. Overall predictive power [area under receiver operating characteristic (AUC ROC) curve] of the level of blood pressure, blood pressure variability and other baseline characteristics was calculated. In FEVER study, visit-to-visit variability in SBP were significant predictors of subsequent stroke [eg, hazard ratios [HR] for ARV, SD and CV was 1.071 (95% CI: 1.025-1.118), 1.373 (95% CI: 1.159-1.626) and 0.572 (95% CI: 0.451-0,726)]. Visit-to-visit variability in DBP were also showed similar trend [eg, HR for ARV, SD and CV was 1.066 (95% CI: 0.992-1.145), 1.931 (95% CI: 1.435-2.598) and 0.558 (95% CI: 0.438-0,710)]. However, using the analysis of AUC ROC analysis, the risk importance sequence of the stroke events in this cohort was level of SBP, age, level of DBP ARV, SD, sex, CV and treatment. Visit-to-visit blood pressure variability has some effects on the cardiovascular outcomes in the Chinese hypertensive patents in the cohort in

  15. Binary classification of dyslipidemia from the waist-to-hip ratio and body mass index: a comparison of linear, logistic, and CART models

    Directory of Open Access Journals (Sweden)

    Paccaud Fred

    2004-04-01

    Full Text Available Abstract Background We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. Methods Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i linear regression; (ii logistic classification; (iii regression trees; (iv classification trees (iii and iv are collectively known as "CART". Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. Results Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60–80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. Conclusions There were no striking differences between either the algebraic (i, ii vs. non-algebraic (iii, iv, or the regression (i, iii vs. classification (ii, iv modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.

  16. What Variables are Associated with Successful Weight Loss Outcomes for Bariatric Surgery After One Year?

    Science.gov (United States)

    Robinson, Athena H.; Adler, Sarah; Stevens, Helen B.; Darcy, Alison M.; Morton, John M.; Safer, Debra L.

    2014-01-01

    Background Prior evidence indicates that predictors of weight loss outcomes after gastric bypass surgery fall within 5 domains: 1) presurgical factors; 2) postsurgical psychosocial variables (e.g., support group attendance); 3) postsurgical eating patterns; 4) postsurgical physical activity; and 5) follow-up at postsurgical clinic. However, little data exist on which specific behavioral predictors are most associated with successful outcomes (e.g., ≥50% excess weight loss) when considering the 5 domains simultaneously. Objectives Specify the behavioral variables, and their respective cutoff points, most associated with successful weight loss outcomes. Setting On-line survey. Methods Signal Detection Analysis evaluated associations between 84 pre-and postsurgical behavioral variables (within the 5 domains) and successful weight loss at ≥1 year in 274 post-gastric bypass surgery patients. Results Successful weight loss was highest (92.6%) among those reporting dietary adherence of >3 on a 9 point scale (median=5) who grazed no more than once-per-day. Among participants reporting dietary adherence <3 and grazing daily or less, success rates more than doubled when highest lifetime Body Mass Index was <53.7 kg/m2. Success rates also doubled for participants with dietary adherence =3 if attending support groups. No variables from the physical activity or postsurgical follow-up domains were significant, nor were years since surgery. The overall model’s sensitivity =.62, specificity =.92. Conclusions To our knowledge, this is the first study to simultaneously consider the relative contribution of behavioral variables within 5 domains and offer clinicians an assessment algorithm identifying cut-off points for behaviors most associated with successful postsurgical weight loss. Such data may inform prospective study designs and postsurgical interventions. PMID:24913590

  17. SINGLE-LINED SPECTROSCOPIC BINARY STAR CANDIDATES IN THE RAVE SURVEY

    International Nuclear Information System (INIS)

    Matijevic, G.; Zwitter, T.; Bienayme, O.; Siebert, A.; Watson, F. G.; Bland-Hawthorn, J.; Parker, Q. A.; Freeman, K. C.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Siviero, A.; Navarro, J. F.; Reid, W.; Seabroke, G. M.; Steinmetz, M.; Williams, M.; Wyse, R. F. G.

    2011-01-01

    Repeated spectroscopic observations of stars in the RAdial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric parameters, and other parameters for approximately a quarter of a million different stars with slightly less than 300,000 observations. In the sample of ∼20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased toward relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVE's narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with radial velocity variations of up to few tens of km s -1 . There are 26 matches between the catalog of spectroscopic binary orbits (S B 9 ) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.

  18. On the dynamics of non-stationary binary stellar system with non-isotropic mass flow

    International Nuclear Information System (INIS)

    Bekov, A.A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2006-01-01

    The motion of test body in the external gravitational field of the binary stellar systems with slowly variable some physical parameters of radiating components is considered on the base of restricted nonstationary photo-gravitational three and two bodies problem with non-isotropic mass flow. The family of polar and coplanar solutions are obtained. The solutions give the possibility of the dynamical and structure interpretation of binary young evolving stars and galaxies. (author)

  19. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  20. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  1. CLASSIFYING X-RAY BINARIES: A PROBABILISTIC APPROACH

    International Nuclear Information System (INIS)

    Gopalan, Giri; Bornn, Luke; Vrtilek, Saeqa Dil

    2015-01-01

    In X-ray binary star systems consisting of a compact object that accretes material from an orbiting secondary star, there is no straightforward means to decide whether the compact object is a black hole or a neutron star. To assist in this process, we develop a Bayesian statistical model that makes use of the fact that X-ray binary systems appear to cluster based on their compact object type when viewed from a three-dimensional coordinate system derived from X-ray spectral data where the first coordinate is the ratio of counts in the mid- to low-energy band (color 1), the second coordinate is the ratio of counts in the high- to low-energy band (color 2), and the third coordinate is the sum of counts in all three bands. We use this model to estimate the probabilities of an X-ray binary system containing a black hole, non-pulsing neutron star, or pulsing neutron star. In particular, we utilize a latent variable model in which the latent variables follow a Gaussian process prior distribution, and hence we are able to induce the spatial correlation which we believe exists between systems of the same type. The utility of this approach is demonstrated by the accurate prediction of system types using Rossi X-ray Timing Explorer All Sky Monitor data, but it is not flawless. In particular, non-pulsing neutron systems containing “bursters” that are close to the boundary demarcating systems containing black holes tend to be classified as black hole systems. As a byproduct of our analyses, we provide the astronomer with the public R code which can be used to predict the compact object type of XRBs given training data

  2. Be discs in coplanar circular binaries: Phase-locked variations of emission lines

    Science.gov (United States)

    Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo

    2018-01-01

    In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.

  3. X-ray observations of the colliding wind binary WR 25

    Science.gov (United States)

    Arora, Bharti; Pandey, Jeewan Chandra

    2018-04-01

    Using the archival data obtained from Chandra and Suzaku spanning over '8 years, we present an analysis of a WN6h+O4f Wolf-Rayet binary, WR 25. The X-ray light curves folded over a period of '208 d in the 0.3 - 10.0 keV energy band showed phase-locked variability where the count rates were found to be maximum near the periastron passage. The X-ray spectra of WR 25 were well explained by a two-temperature plasma model with temperatures of 0.64 ± 0.01 and 2.96 ± 0.05 keV and are consistent with previous results. The orbital phase dependent local hydrogen column density was found to be maximum just after the periastron passage, when the WN type star is in front of the O star. The hard (2.0 - 10.0 keV) X-ray luminosity was linearly dependent on the inverse of binary separation which confirms that WR 25 is a colliding wind binary.

  4. Stochastic learning in oxide binary synaptic device for neuromorphic computing.

    Science.gov (United States)

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

  5. UBVRc Ic ANALYSIS OF THE RECENTLY DISCOVERED TOTALLY ECLIPSING EXTREME MASS RATIO BINARY V1853 ORIONIS, AND A STATISTICAL LOOK AT 25 OTHER EXTREME MASS RATIO SOLAR-TYPE CONTACT BINARIES

    International Nuclear Information System (INIS)

    Samec, R. G.; Labadorf, C. M.; Hawkins, N. C.; Faulkner, D. R.; Van Hamme, W.

    2011-01-01

    We present precision CCD light curves, a period study, photometrically derived standard magnitudes, and a five-color simultaneous Wilson code solution of the totally eclipsing, yet shallow amplitude (A v ∼ 0.4 mag) eclipsing, binary V1853 Orionis. It is determined to be an extreme mass ratio, q = 0.20, W-type W UMa overcontact binary. From our standard star observations, we find that the variable is a late-type F spectral-type dwarf, with a secondary component of about 0.24 solar masses (stellar type M5V). Its long eclipse duration (41 minutes) as compared to its period, 0.383 days, attests to the small relative size of the secondary. Furthermore, it has reached a Roche lobe fill-out of ∼50% of its outer critical lobe as it approaches its final stages of binary star evolution, that of a fast spinning single star. Finally, a summary of about 25 extreme mass ratio solar-type binaries is given.

  6. Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingzhi; Ma, Bin; Hu, Yi; Liu, Qiang; Shang, Zhaohui [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Li, Gang; Fu, Jianning [Department of Astronomy, Beijing Normal University, Beijing, 100875 (China); Wang, Lifan; Cui, Xiangqun; Du, Fujia; Gong, Xuefei; Li, Xiaoyan; Li, Zhengyang; Yuan, Xiangyan; Zhou, Jilin [Chinese Center for Antarctic Astronomy, Nanjing 210008 (China); Ashley, Michael C. B. [School of Physics, University of New South Wales, NSW 2052 (Australia); Pennypacker, Carl R. [Center for Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); York, Donald G., E-mail: wanglingzhi@bao.ac.cn [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

    2017-03-01

    AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time-domain astronomy at Dome A, Antarctica. Here, we present the results of an i -band images survey from AST3-1 toward one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with i magnitude ≤16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, and EA), 27 pulsating variable stars ( δ Scuti, γ Doradus, δ Cephei variable, and RR Lyrae stars), and 248 other types of variables (unclassified periodic, multiperiodic, and aperiodic variable stars). Of the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another variable shows a secondary maximum after peak brightness. We also detected a complex binary system with an RS CVn-like light-curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.

  7. Investigation of eclipsing binary stars exhibiting calcium II emission

    International Nuclear Information System (INIS)

    Oliver, J.P.

    1974-01-01

    Three color photometry of some eclipsing binaries showing Calcium II emission is reported. A highly stable and accurate d.c. amplifier, and a new type digital averaging system are described. Past and current light curves of SS Boo, RS CVn, WY Cnc, WW Dra, UV Psc, Z Her, SS Cam, RW UMa, AR Lac, and RT Lac are discussed with particular emphasis on asymmetries in the heights of the maxima and variations in the depths of the minima. Both RS CVn and SS Boo show nearly sinusoidal variation outside eclipse. Spectra of SS Boo and RS CVn are discussed. The suggestion is made that many of these systems belong to a new category of variable eclipsing binary star. It is pointed out that most double line eclipsing binaries with late-type sub-giant secondary components fall into this group, and that many of the characteristics of this group are not easily explained on the basis of existing data and theory. Possible models are discussed and the need for future photometric and spectroscopic study is emphasized. (U.S.)

  8. Anomalous relaxation in binary mixtures: a dynamic facilitation picture

    International Nuclear Information System (INIS)

    Moreno, A J; Colmenero, J

    2007-01-01

    Recent computational investigations of polymeric and non-polymeric binary mixtures have reported anomalous relaxation features when both components exhibit very different mobilities. Anomalous relaxation is characterized by sublinear power-law behaviour for mean-squared displacements, logarithmic decay in dynamic correlators, and a striking concave-to-convex crossover in the latter by tuning the relevant control parameter, in analogy with predictions of the mode-coupling theory for state points close to higher-order transitions. We present Monte Carlo simulations on a coarse-grained model for relaxation in binary mixtures. The liquid structure is substituted by a three-dimensional array of cells. A spin variable is assigned to each cell, representing unexcited and excited local states of a mobility field. Changes in local mobility (spin flip) are permitted according to kinetic constraints determined by the mobilities of the neighbouring cells. We introduce two types of cell ('fast' and 'slow') with very different rates for spin flip. This coarse-grained model qualitatively reproduces the mentioned anomalous relaxation features observed for real binary mixtures

  9. Sensitivity of adaptive enrichment trial designs to accrual rates, time to outcome measurement, and prognostic variables

    Directory of Open Access Journals (Sweden)

    Tianchen Qian

    2017-12-01

    Full Text Available Adaptive enrichment designs involve rules for restricting enrollment to a subset of the population during the course of an ongoing trial. This can be used to target those who benefit from the experimental treatment. Trial characteristics such as the accrual rate and the prognostic value of baseline variables are typically unknown when a trial is being planned; these values are typically assumed based on information available before the trial starts. Because of the added complexity in adaptive enrichment designs compared to standard designs, it may be of special concern how sensitive the trial performance is to deviations from assumptions. Through simulation studies, we evaluate the sensitivity of Type I error, power, expected sample size, and trial duration to different design characteristics. Our simulation distributions mimic features of data from the Alzheimer's Disease Neuroimaging Initiative cohort study, and involve two subpopulations based on a genetic marker. We investigate the impact of the following design characteristics: the accrual rate, the time from enrollment to measurement of a short-term outcome and the primary outcome, and the prognostic value of baseline variables and short-term outcomes. To leverage prognostic information in baseline variables and short-term outcomes, we use a semiparametric, locally efficient estimator, and investigate its strengths and limitations compared to standard estimators. We apply information-based monitoring, and evaluate how accurately information can be estimated in an ongoing trial.

  10. Astronomical Plate Archives and Binary Blazars Studies

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2011-01-01

    Roč. 32, 1-2 (2011), s. 91-95 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * binary blazars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  11. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-01-01

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  12. Comparison of the binary logistic and skewed logistic (Scobit) models of injury severity in motor vehicle collisions.

    Science.gov (United States)

    Tay, Richard

    2016-03-01

    The binary logistic model has been extensively used to analyze traffic collision and injury data where the outcome of interest has two categories. However, the assumption of a symmetric distribution may not be a desirable property in some cases, especially when there is a significant imbalance in the two categories of outcome. This study compares the standard binary logistic model with the skewed logistic model in two cases in which the symmetry assumption is violated in one but not the other case. The differences in the estimates, and thus the marginal effects obtained, are significant when the assumption of symmetry is violated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16

    Science.gov (United States)

    Roberts, T. P.; Colbert, E. J. M.

    2003-06-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  14. EXOSAT and IUE observations of contact binaries

    International Nuclear Information System (INIS)

    Vilhu, O.; Heise, J.; Laboratorium voor Ruimteonderzoek, Utrecht, Netherlands)

    1986-01-01

    EXOSAT observations are reported of the contact binaries W UMa, VW Cep, 44t Boo, XY Leo, and V566 Oph and the detached short-period RS CVn stars ER Vul and HD 209943. Complete X-ray light curves were obtained for W UMa, VW Cep and 44t Boo. Nearly simultaneous IUE observations of VW Cep provide important comparisons of the Mg II emission, the UV continuum, and the FES light curve, pointing to extra hot gas at phase 0.75. The observations indicate that contact binaries have highly structured (in temperature and geometry) and highly variable coronae, not preferentially connected with either of the component stars. The observed dips can be interpreted as due to cool absorbing clouds above localized X-ray emitting regions. For VW Cep, 44t Boo, and XY Leo there is evidence that the neck regions are sites for X-ray-emitting hot gas. 66 references

  15. Dynamics of melanoma tumor therapy with vesicular stomatitis virus: explaining the variability in outcomes using mathematical modeling.

    Science.gov (United States)

    Rommelfanger, D M; Offord, C P; Dev, J; Bajzer, Z; Vile, R G; Dingli, D

    2012-05-01

    Tumor selective, replication competent viruses are being tested for cancer gene therapy. This approach introduces a new therapeutic paradigm due to potential replication of the therapeutic agent and induction of a tumor-specific immune response. However, the experimental outcomes are quite variable, even when studies utilize highly inbred strains of mice and the same cell line and virus. Recognizing that virotherapy is an exercise in population dynamics, we utilize mathematical modeling to understand the variable outcomes observed when B16ova malignant melanoma tumors are treated with vesicular stomatitis virus in syngeneic, fully immunocompetent mice. We show how variability in the initial tumor size and the actual amount of virus delivered to the tumor have critical roles on the outcome of therapy. Virotherapy works best when tumors are small, and a robust innate immune response can lead to superior tumor control. Strategies that reduce tumor burden without suppressing the immune response and methods that maximize the amount of virus delivered to the tumor should optimize tumor control in this model system.

  16. The Effects of Job Autonomy on Work Outcomes: Self Efficacy as an Intervening Variable

    OpenAIRE

    Susanti Saragih

    2011-01-01

    The purpose of this research was to examine the relationship between job autonomy and work outcomes (job performance, job satisfaction and job stress), self efficacy as a mediating variable. This research also investigated the impact of job satisfaction on job performance and job stress on job performance. Va-riables in this research were measured via a survey of 190 banking salespersons in D.I. Yogyakarta and Solo. Structural Equation Modeling (SEM) were used to examine the effects of job au...

  17. The fate of close encounters between binary stars and binary supermassive black holes

    Science.gov (United States)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  18. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  19. Photometric investigation of possible binary occurrence in the central stars of seventeen planetary nebulae

    International Nuclear Information System (INIS)

    Drummond, J.D. III.

    1980-01-01

    A comprehensive literature search was conducted for all possible bihary central stars in planetary nebulae. The results, which include all known and suspected visual, spectroscopic, and spectrum binaries, as well as all reported variable central stars, are presented in a series of tables. A photoelectric study was conducted in order to determine the status of short period (on the order of hours) variability of the central regions of seventeen planetary nebulae. Only the stellar appearing planetary nebula M1-2 (PK 133-8 0 1) was found to be variable. Its short (4.0002 hours) period suggests that it may be only the second eclipsing binary found among central stars to date. A method of concentric apertures was developed to determine the amount of light contributed by the central star vis-a-vis the nebula through a given aperture and filter. The procedure enabled UBV magnitudes and colors (and the errors) of central stars to be measured, including some in the sample of seventeen for which no previous values have been published. Mean nebular UBV magnitudes, surface brightnesses, and color indices were also found with the technique, and represent the first such published measurements. Various UBV two-parameter were constructed, revealing possible nebular/stellar sequences; a star-plus-nebula two-color diagram identifies three spectral classes of central stars, and two suspected binaries in the seventeen studied

  20. Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra

    Science.gov (United States)

    El-Badry, Kareem; Ting, Yuan-Sen; Rix, Hans-Walter; Quataert, Eliot; Weisz, Daniel R.; Cargile, Phillip; Conroy, Charlie; Hogg, David W.; Bergemann, Maria; Liu, Chao

    2018-05-01

    We develop a data-driven spectral model for identifying and characterizing spatially unresolved multiple-star systems and apply it to APOGEE DR13 spectra of main-sequence stars. Binaries and triples are identified as targets whose spectra can be significantly better fit by a superposition of two or three model spectra, drawn from the same isochrone, than any single-star model. From an initial sample of ˜20 000 main-sequence targets, we identify ˜2500 binaries in which both the primary and secondary stars contribute detectably to the spectrum, simultaneously fitting for the velocities and stellar parameters of both components. We additionally identify and fit ˜200 triple systems, as well as ˜700 velocity-variable systems in which the secondary does not contribute detectably to the spectrum. Our model simplifies the process of simultaneously fitting single- or multi-epoch spectra with composite models and does not depend on a velocity offset between the two components of a binary, making it sensitive to traditionally undetectable systems with periods of hundreds or thousands of years. In agreement with conventional expectations, almost all the spectrally identified binaries with measured parallaxes fall above the main sequence in the colour-magnitude diagram. We find excellent agreement between spectrally and dynamically inferred mass ratios for the ˜600 binaries in which a dynamical mass ratio can be measured from multi-epoch radial velocities. We obtain full orbital solutions for 64 systems, including 14 close binaries within hierarchical triples. We make available catalogues of stellar parameters, abundances, mass ratios, and orbital parameters.

  1. Optical eclipses and precessional effects in the X-ray binary system HD 77581=4U 0900-40

    International Nuclear Information System (INIS)

    Khruzina, T.S.; Cherepashchuk, A.M.

    1982-01-01

    The longperiod (P=93.3sup(d)) variability of the amplitude and shape of the optical light curves of the X-ray binary HD 77581 has been discovered from the analysis of all published photometric data. The 93.3-day period is presumably the period of the forced precession of the rotational axis of the optical star. It is shown that the system HD 77581 appears to be an eclipsing binary in the optical range with the amplitude of the ellipsoidal variability approximately 0sup(m).04 and the depth of the eclipse reaching approximately 0sup(m).04. The eclipses are caused by the gaseous streams and the accreting structure, the orientation of which in the binary system is varying with the precession period of the optical star. The estimates of the parameters of the system are obtained. It is shown that the parameter of the Roche Lobe filling for the optical star is μ < 1. The mass of the neutron star is Msub(x)=(1.6+-0.3) Msub(Sun), where Msub(Sun) is the solar mass. The forced precession of the optical star is connected with the non-perpendicularity of its rotational axis to the orbit plane of the binary system. This non-perpendicularity may be a result of supernova explosion in a close binary system

  2. Modeling, Control, and Numerical Simulations of a Novel Binary-Controlled Variable Stiffness Actuator (BcVSA

    Directory of Open Access Journals (Sweden)

    Irfan Hussain

    2018-06-01

    Full Text Available This research work aims at realizing a new compliant robotic actuator for safe human-robotic interaction. In this paper, we present the modeling, control, and numerical simulations of a novel Binary-Controlled Variable Stiffness Actuator (BcVSA aiming to be used for the development of a novel compliant robotic manipulator. BcVSA is the proof of concept of the active revolute joint with the variable recruitment of series-parallel elastic elements. We briefly recall the basic design principle which is based on a stiffness varying mechanism consisting of a motor, three inline clutches, and three torsional springs with stiffness values (K0, 2K0, 4K0 connected to the load shaft and the motor shaft through two planetary sun gear trains with ratios (4:1, 4:1 respectively. We present the design concept, stiffness and dynamic modeling, and control of our BcVSA. We implemented three kinds of Multiple Model Predictive Control (MPC to control our actuator. The main motivation of choosing this controller lies in the fact that working principle of multiple MPC and multiple states space representation (stiffness level of our actuator share similar interests. In particular, we implemented Multiple MPC, Multiple Explicit MPC, and Approximated Multiple Explicit MPC. Numerical simulations are performed in order to evaluate their effectiveness for the future experiments on the prototype of our actuator. The simulation results showed that the Multiple MPC, and the Multiple Explicit MPC have similar results from the robustness point of view. On the other hand, the robustness performance of Approximated Multiple Explicit MPC is not good as compared to other controllers but it works in the offline framework while having the capability to compute the sub-optimal results. We also performed the comparison of MPC based controllers with the Computed Torque Control (CTC, and Linear Quadratic Regulator (LQR. In future, we are planning to test the presented approach on the

  3. Massive Binary Black Holes in the Cosmic Landscape

    Science.gov (United States)

    Colpi, Monica; Dotti, Massimo

    2011-02-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view

  4. Corrected ROC analysis for misclassified binary outcomes.

    Science.gov (United States)

    Zawistowski, Matthew; Sussman, Jeremy B; Hofer, Timothy P; Bentley, Douglas; Hayward, Rodney A; Wiitala, Wyndy L

    2017-06-15

    Creating accurate risk prediction models from Big Data resources such as Electronic Health Records (EHRs) is a critical step toward achieving precision medicine. A major challenge in developing these tools is accounting for imperfect aspects of EHR data, particularly the potential for misclassified outcomes. Misclassification, the swapping of case and control outcome labels, is well known to bias effect size estimates for regression prediction models. In this paper, we study the effect of misclassification on accuracy assessment for risk prediction models and find that it leads to bias in the area under the curve (AUC) metric from standard ROC analysis. The extent of the bias is determined by the false positive and false negative misclassification rates as well as disease prevalence. Notably, we show that simply correcting for misclassification while building the prediction model is not sufficient to remove the bias in AUC. We therefore introduce an intuitive misclassification-adjusted ROC procedure that accounts for uncertainty in observed outcomes and produces bias-corrected estimates of the true AUC. The method requires that misclassification rates are either known or can be estimated, quantities typically required for the modeling step. The computational simplicity of our method is a key advantage, making it ideal for efficiently comparing multiple prediction models on very large datasets. Finally, we apply the correction method to a hospitalization prediction model from a cohort of over 1 million patients from the Veterans Health Administrations EHR. Implementations of the ROC correction are provided for Stata and R. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Cataclysmic Variable Stars

    Science.gov (United States)

    Hellier, Coel

    2001-01-01

    Cataclysmic variable stars are the most variable stars in the night sky, fluctuating in brightness continually on timescales from seconds to hours to weeks to years. The changes can be recorded using amateur telescopes, yet are also the subject of intensive study by professional astronomers. That study has led to an understanding of cataclysmic variables as binary stars, orbiting so closely that material transfers from one star to the other. The resulting process of accretion is one of the most important in astrophysics. This book presents the first account of cataclysmic variables at an introductory level. Assuming no previous knowledge of the field, it explains the basic principles underlying the variability, while providing an extensive compilation of cataclysmic variable light curves. Aimed at amateur astronomers, undergraduates, and researchers, the main text is accessible to those with no mathematical background, while supplementary boxes present technical details and equations.

  6. Targeted maximum likelihood estimation for a binary treatment: A tutorial.

    Science.gov (United States)

    Luque-Fernandez, Miguel Angel; Schomaker, Michael; Rachet, Bernard; Schnitzer, Mireille E

    2018-04-23

    When estimating the average effect of a binary treatment (or exposure) on an outcome, methods that incorporate propensity scores, the G-formula, or targeted maximum likelihood estimation (TMLE) are preferred over naïve regression approaches, which are biased under misspecification of a parametric outcome model. In contrast propensity score methods require the correct specification of an exposure model. Double-robust methods only require correct specification of either the outcome or the exposure model. Targeted maximum likelihood estimation is a semiparametric double-robust method that improves the chances of correct model specification by allowing for flexible estimation using (nonparametric) machine-learning methods. It therefore requires weaker assumptions than its competitors. We provide a step-by-step guided implementation of TMLE and illustrate it in a realistic scenario based on cancer epidemiology where assumptions about correct model specification and positivity (ie, when a study participant had 0 probability of receiving the treatment) are nearly violated. This article provides a concise and reproducible educational introduction to TMLE for a binary outcome and exposure. The reader should gain sufficient understanding of TMLE from this introductory tutorial to be able to apply the method in practice. Extensive R-code is provided in easy-to-read boxes throughout the article for replicability. Stata users will find a testing implementation of TMLE and additional material in the Appendix S1 and at the following GitHub repository: https://github.com/migariane/SIM-TMLE-tutorial. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  7. Coordination conversion of cobalt(II) in binary aqueous-organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Khvostova, N.O.; Karapetyan, G.O.; Yanush, O.V.

    1985-11-01

    It has been shown that the thermochromic conversions of cobalt(II) in binary solvents are influenced by a number of factors: the nature of the solvent, the strength of the complexes of octahedral symmetry formed, the outer-sphere influence of the solvent on the complexes, the form of the anion, the solvation of the participants in the reaction, and the interaction of the components of the solvent with one another. A correlation between the strength and the spectral position of the absorption bands of the complexes of the activator has been established, and a spectroscopic criterion for selecting the solvents has been proposed. The expediency of using binary solvents to create effective thermochromic media with variable phototransmission has been substantiated.

  8. Illumination normalization based on simplified local binary patterns for a face verification system

    NARCIS (Netherlands)

    Tao, Q.; Veldhuis, Raymond N.J.

    2007-01-01

    Illumination normalization is a very important step in face recognition. In this paper we propose a simple implementation of Local Binary Patterns, which effectively reduces the variability caused by illumination changes. In combination with a likelihood ratio classifier, this illumination

  9. Study on the Workspace of a 6-DOF Parallel Topology Robot Related to Binary Link Lengths

    Directory of Open Access Journals (Sweden)

    Calin-Octavian Miclosina

    2016-12-01

    Full Text Available The paper presents a study on the workspace of a parallel topology robot with the structure FP3+6•SPS+MP3. The variable parameters are the binary link lengths, from both upper and lower levels, and the driving kinematical joint strokes. The workspace boundary is determined by SolidWorks software simulations. For different binary link lengths, workspace volume is determined and sections through the workspace are presented.

  10. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  11. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  12. Spherical reconciliation for a continuous-variable quantum key distribution

    International Nuclear Information System (INIS)

    Lu Zhao; Shi Jian-Hong; Li Feng-Guang

    2017-01-01

    Information reconciliation is a significant step for a continuous-variable quantum key distribution (CV-QKD) system. We propose a reconciliation method that allows two authorized parties to extract a consistent and secure binary key in a CV-QKD protocol, which is based on Gaussian-modulated coherent states and homodyne detection. This method named spherical reconciliation is based on spherical quantization and non-binary low-density parity-check (LDPC) codes. With the suitable signal-to-noise ratio (SNR) and code rate of non-binary LDPC codes, spherical reconciliation algorithm has a high efficiency and can extend the transmission distance of CV-QKD. (paper)

  13. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    Science.gov (United States)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  14. Binary optics: Trends and limitations

    Science.gov (United States)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  15. R package to estimate intracluster correlation coefficient with confidence interval for binary data.

    Science.gov (United States)

    Chakraborty, Hrishikesh; Hossain, Akhtar

    2018-03-01

    The Intracluster Correlation Coefficient (ICC) is a major parameter of interest in cluster randomized trials that measures the degree to which responses within the same cluster are correlated. There are several types of ICC estimators and its confidence intervals (CI) suggested in the literature for binary data. Studies have compared relative weaknesses and advantages of ICC estimators as well as its CI for binary data and suggested situations where one is advantageous in practical research. The commonly used statistical computing systems currently facilitate estimation of only a very few variants of ICC and its CI. To address the limitations of current statistical packages, we developed an R package, ICCbin, to facilitate estimating ICC and its CI for binary responses using different methods. The ICCbin package is designed to provide estimates of ICC in 16 different ways including analysis of variance methods, moments based estimation, direct probabilistic methods, correlation based estimation, and resampling method. CI of ICC is estimated using 5 different methods. It also generates cluster binary data using exchangeable correlation structure. ICCbin package provides two functions for users. The function rcbin() generates cluster binary data and the function iccbin() estimates ICC and it's CI. The users can choose appropriate ICC and its CI estimate from the wide selection of estimates from the outputs. The R package ICCbin presents very flexible and easy to use ways to generate cluster binary data and to estimate ICC and it's CI for binary response using different methods. The package ICCbin is freely available for use with R from the CRAN repository (https://cran.r-project.org/package=ICCbin). We believe that this package can be a very useful tool for researchers to design cluster randomized trials with binary outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Scrub typhus in South India: clinical and laboratory manifestations, genetic variability, and outcome.

    Science.gov (United States)

    Varghese, George M; Janardhanan, Jeshina; Trowbridge, Paul; Peter, John V; Prakash, John A J; Sathyendra, Sowmya; Thomas, Kurien; David, Thambu S; Kavitha, M L; Abraham, Ooriapadickal C; Mathai, Dilip

    2013-11-01

    This study sought to document the clinical and laboratory manifestations, genetic variability, and outcomes of scrub typhus, an often severe infection caused by Orientia tsutsugamushi, in South India. Patients admitted to a large teaching hospital with IgM ELISA-confirmed scrub typhus were evaluated. Clinical examination with a thorough search for an eschar, laboratory testing, chest X-ray, and outcome were documented and analyzed. Additionally, a 410-bp region of the 56-kDa type-specific antigen gene of O. tsutsugamushi was sequenced and compared with isolates from other regions of Asia. Most of the 154 patients evaluated presented with fever and non-specific symptoms. An eschar was found in 86 (55%) patients. Mild hepatic involvement was seen in most, with other organ involvement including respiratory, cardiovascular, and renal. Multi-organ dysfunction was noted in 59 (38.3%), and the fatality rate was 7.8%. Hypotension requiring vasoactive agents was found to be an independent predictor of mortality (p<0.001). The phylogeny of 26 samples showed 17 (65%) clustering with the Kato-like group and eight (31%) with the Karp-like group. The presentation of scrub typhus can be variable, often non-specific, but with potentially severe multi-organ dysfunction. Prompt recognition is key to specific treatment and good outcomes. Further study of the circulating strains is essential for the development of a successful vaccine and sensitive point-of-care testing. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Correlated Temporal and Spectral Variability

    Science.gov (United States)

    Swank, Jean H.

    2007-01-01

    The variability of neutron star and black hole X-ray sources has several dimensions, because of the roles played by different important time-scales. The variations on time scales of hours, weeks, and months, ranging from 50% to orders of magnitude, arise out of changes in the flow in the disk. The most important driving forces for those changes are probably various possible instabilities in the disk, though there may be effects with other dominant causes. The changes in the rate of flow appear to be associated with changes in the flow's configuration, as the accreting material approaches the compact object, for there are generally correlated changes in both the Xray spectra and the character of the faster temporal variability. There has been a lot of progress in tracking these correlations, both for Z and Atoll neutron star low-mass X-ray binaries, and for black hole binaries. I will discuss these correlations and review briefly what they tell us about the physical states of the systems.

  18. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  19. Research of Precataclysmic Variables with Radius Excesses

    Science.gov (United States)

    Deminova, N. R.; Shimansky, V. V.; Borisov, N. V.; Gabdeev, M. M.; Shimanskaya, N. N.

    2017-06-01

    The results of spectroscopic observations of the pre-cataclysmic variable NSVS 14256825, which is a HW Vir binary system, were analyzed. The chemical composition is determined, the radial velocities and equivalent widths of a given star are measured. The fundamental parameters of the components were determined (R1 = 0.166 R⊙ , M2 = 0.100 M⊙ , R2 = 0.122 R⊙). It is shown that the secondary component has a mass close to the mass of brown dwarfs. A comparison of two close binary systems is made: HS 2333 + 3927 and NSVS 14256825. A radius-to-mass relationship for the secondary components of the studied pre-cataclysmic variables is constructed. It is concluded that an excess of radii relative to model predictions for MS stars is observed in virtually all systems.

  20. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  1. A NEW TeV BINARY: THE DISCOVERY OF AN ORBITAL PERIOD IN HESS J0632+057

    International Nuclear Information System (INIS)

    Bongiorno, S. D.; Falcone, A. D.; Stroh, M.; Holder, J.; Skilton, J. L.; Hinton, J. A.; Gehrels, N.; Grube, J.

    2011-01-01

    HESS J0632+057 is a variable, point-like source of very high energy (>100 GeV) gamma rays located in the Galactic plane. It is positionally coincident with a Be star, it is a variable radio and X-ray source, has a hard X-ray spectrum, and has low radio flux. These properties suggest that the object may be a member of the rare class of TeV/X-ray binary systems. The definitive confirmation of this would be the detection of a periodic orbital modulation of the flux at any wavelength. We have obtained Swift X-Ray Telescope observations of the source from MJD 54857 to 55647 (2009 January-2011 March) to test the hypothesis that HESS J0632+057 is an X-ray/TeV binary. We show that these data exhibit flux modulation with a period of 321 ± 5 days and we evaluate the significance of this period by calculating the null hypothesis probability, allowing for stochastic flaring. This periodicity establishes the binary nature of HESS J0632+057.

  2. Dysglycemia, Glycemic Variability, and Outcome After Cardiac Arrest and Temperature Management at 33°C and 36°C

    DEFF Research Database (Denmark)

    Borgquist, Ola; Wise, Matt P; Nielsen, Niklas

    2017-01-01

    OBJECTIVES: Dysglycemia and glycemic variability are associated with poor outcomes in critically ill patients. Targeted temperature management alters blood glucose homeostasis. We investigated the association between blood glucose concentrations and glycemic variability and the neurologic outcomes...... of patients randomized to targeted temperature management at 33°C or 36°C after cardiac arrest. DESIGN: Post hoc analysis of the multicenter TTM-trial. Primary outcome of this analysis was neurologic outcome after 6 months, referred to as "Cerebral Performance Category." SETTING: Thirty-six sites in Europe...... and Australia. PATIENTS: All 939 patients with out-of-hospital cardiac arrest of presumed cardiac cause that had been included in the TTM-trial. INTERVENTIONS: Targeted temperature management at 33°C or 36°C. MEASUREMENTS AND MAIN RESULTS: Nonparametric tests as well as multiple logistic regression and mixed...

  3. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  4. QTest: Quantitative Testing of Theories of Binary Choice.

    Science.gov (United States)

    Regenwetter, Michel; Davis-Stober, Clintin P; Lim, Shiau Hong; Guo, Ying; Popova, Anna; Zwilling, Chris; Cha, Yun-Shil; Messner, William

    2014-01-01

    The goal of this paper is to make modeling and quantitative testing accessible to behavioral decision researchers interested in substantive questions. We provide a novel, rigorous, yet very general, quantitative diagnostic framework for testing theories of binary choice. This permits the nontechnical scholar to proceed far beyond traditionally rather superficial methods of analysis, and it permits the quantitatively savvy scholar to triage theoretical proposals before investing effort into complex and specialized quantitative analyses. Our theoretical framework links static algebraic decision theory with observed variability in behavioral binary choice data. The paper is supplemented with a custom-designed public-domain statistical analysis package, the QTest software. We illustrate our approach with a quantitative analysis using published laboratory data, including tests of novel versions of "Random Cumulative Prospect Theory." A major asset of the approach is the potential to distinguish decision makers who have a fixed preference and commit errors in observed choices from decision makers who waver in their preferences.

  5. QTest: Quantitative Testing of Theories of Binary Choice

    Science.gov (United States)

    Regenwetter, Michel; Davis-Stober, Clintin P.; Lim, Shiau Hong; Guo, Ying; Popova, Anna; Zwilling, Chris; Cha, Yun-Shil; Messner, William

    2014-01-01

    The goal of this paper is to make modeling and quantitative testing accessible to behavioral decision researchers interested in substantive questions. We provide a novel, rigorous, yet very general, quantitative diagnostic framework for testing theories of binary choice. This permits the nontechnical scholar to proceed far beyond traditionally rather superficial methods of analysis, and it permits the quantitatively savvy scholar to triage theoretical proposals before investing effort into complex and specialized quantitative analyses. Our theoretical framework links static algebraic decision theory with observed variability in behavioral binary choice data. The paper is supplemented with a custom-designed public-domain statistical analysis package, the QTest software. We illustrate our approach with a quantitative analysis using published laboratory data, including tests of novel versions of “Random Cumulative Prospect Theory.” A major asset of the approach is the potential to distinguish decision makers who have a fixed preference and commit errors in observed choices from decision makers who waver in their preferences. PMID:24999495

  6. A SEARCH FOR PHOTOMETRIC VARIABILITY IN L- AND T-TYPE BROWN DWARF ATMOSPHERES

    International Nuclear Information System (INIS)

    Khandrika, Harish; Burgasser, Adam J.; Melis, Carl; Luk, Christopher; Bowsher, Emily; Swift, Brandon

    2013-01-01

    Using the Gemini infrared camera on the 3 m Shane telescope at Lick Observatory, we have searched for broadband J and K' photometric variability for a sample of 15 L- and T-type brown dwarfs, including 7 suspected spectral binaries. Four of the dwarfs—2MASS J0939–2448, 2MASS J1416+1348A, 2MASS J1711+2232, and 2MASS J2139+0220—exhibit statistically significant variations over timescales ranging from ∼0.5 hr to 6 days. Our detection of variability in 2MASS J2139+0220 confirms that reported by Radigan et al., and periodogram and phase dispersion minimization analysis also confirms a variability period of approximately 7.6 ± 0.2 hr. Remarkably, two of the four variables are known or candidate binary systems, including 2MASS J2139+0220, for which we find only marginal evidence of radial velocity variation over the course of a year. This result suggests that some spectral binary candidates may appear as such due to the blending of cloudy and non-cloudy regions in a single ''patchy'' atmosphere. Our results are consistent with an overall variability fraction of 35% ± 5%, with no clear evidence of greater variability among brown dwarfs at the L dwarf/T dwarf transition.

  7. The evolution of polar caps in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Frank, J.; Chanmugam, G.

    1986-01-01

    A simple analysis of the evolution of the size of the magnetic polar cap in accreting white dwarfs is made on the basis of current theories of the secular evolution of magnetic cataclysmic variables. For white dwarfs with dipolar fields it is shown that the size of the polar cap in DQ Her binaries is larger than in AM Her binaries. The size of the former is, however, smaller than deduced from interpretation of their X-ray light curves, while that of the latter is in rough agreement. If the dwarf contains an aligned magnetic quadrupole the size of the polar caps of the DQ Her binaries is significantly increased. Magnetic field decay of the quadrupole moment in the older AM Her binaries implies that their fields are predominantly dipolar. (author)

  8. Binarity and Variable Stars in the Open Cluster NGC 2126

    Science.gov (United States)

    Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila

    2018-04-01

    We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.

  9. Lominous binary supersoft X-ray sources: optical colors and absolute magnitudes

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch

    2003-01-01

    Roč. 406, č. 2 (2003), s. 613-621 ISSN 0004-6361 R&D Projects: GA AV ČR KSK1048102; GA ČR GA205/00/P013 Institutional research plan: CEZ:AV0Z1003909 Keywords : close star binaries * circumstellar matter * cataclysmic variables Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.843, year: 2003

  10. On the accuracy of Hipparcos using binary stars as a calibration tool

    Energy Technology Data Exchange (ETDEWEB)

    Docobo, J. A.; Andrade, M., E-mail: joseangel.docobo@usc.es, E-mail: manuel.andrade@usc.es [R. M. Aller Astronomical Observatory, University of Santiago de Compostela (USC), Santiago de Compostela E-15782, Galiza, P.O. Box 197 (Spain)

    2015-02-01

    Stellar binary systems, specifically those that present the most accurate available orbital elements, are a reliable tool to test the accuracy of astrometric observations. We selected all 35 binaries with these characteristics. Our objective is to provide standard uncertainties for the positions and parallaxes measured by Hipparcos relative to this trustworthy set, as well as to check supposed correlations between several parameters (measurement residuals, positions, magnitudes, and parallaxes). In addition, using the high-confidence subset of visual–spectroscopic binaries, we implemented a validation test of the Hipparcos trigonometric parallaxes of binary systems that allowed the evaluation of their reliability. Standard and non-standard statistical analysis techniques were applied in order to achieve well-founded conclusions. In particular, errors-in-variables models such as the total least-squares method were used to validate Hipparcos parallaxes by comparison with those obtained directly from the orbital elements. Previously, we executed Thompson's τ technique in order to detect suspected outliers in the data. Furthermore, several statistical hypothesis tests were carried out to verify if our results were statistically significant. A statistically significant trend indicating larger Hipparcos angular separations with respect to the reference values in 5.2 ± 1.4 mas was found at the 10{sup −8} significance level. Uncertainties in the polar coordinates θ and ρ of 1.°8 and 6.3 mas, respectively, were estimated for the Hipparcos observations of binary systems. We also verified that the parallaxes of binary systems measured in this mission are absolutely compatible with the set of orbital parallaxes obtained from the most accurate orbits at least at the 95% confidence level. This methodology allows us to better estimate the accuracy of Hipparcos observations of binary systems. Indeed, further application to the data collected by Gaia should yield a

  11. The Cluster AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster M22

    Science.gov (United States)

    Rozyczka, M.; Thompson, I. B.; Pych, W.; Narloch, W.; Poleski, R.; Schwarzenberg-Czerny, A.

    2017-09-01

    The field of the globular cluster M22 (NGC 6656) was monitored between 2000 and 2008 in a search for variable stars. BV light curves were obtained for 359 periodic, likely periodic, and long-term variables, 238 of which are new detections. 39 newly detected variables, and 63 previously known ones are members or likely members of the cluster, including 20 SX Phe, 10 RRab and 16 RRc type pulsators, one BL Her type pulsator, 21 contact binaries, and 9 detached or semi-detached eclipsing binaries. The most interesting among the identified objects are V112 - a bright multimode SX Phe pulsator, V125 - a β Lyr type binary on the blue horizontal branch, V129 - a blue/yellow straggler with a W UMa-like light curve, located halfway between the extreme horizontal branch and red giant branch, and V134 - an extreme horizontal branch object with P=2.33 d and a nearly sinusoidal light curve. All four of them are proper motion members of the cluster. Among nonmembers, a P=2.83 d detached eclipsing binary hosting a δ Sct type pulsator was found, and a peculiar P=0.93 d binary with ellipsoidal modulation and narrow minimum in the middle of one of the descending shoulders of the sinusoid. We also collected substantial new data for previously known variables. In particular we revise the statistics of the occurrence of the Blazhko effect in RR Lyr type variables of M22.

  12. A two-stage Bayesian design with sample size reestimation and subgroup analysis for phase II binary response trials.

    Science.gov (United States)

    Zhong, Wei; Koopmeiners, Joseph S; Carlin, Bradley P

    2013-11-01

    Frequentist sample size determination for binary outcome data in a two-arm clinical trial requires initial guesses of the event probabilities for the two treatments. Misspecification of these event rates may lead to a poor estimate of the necessary sample size. In contrast, the Bayesian approach that considers the treatment effect to be random variable having some distribution may offer a better, more flexible approach. The Bayesian sample size proposed by (Whitehead et al., 2008) for exploratory studies on efficacy justifies the acceptable minimum sample size by a "conclusiveness" condition. In this work, we introduce a new two-stage Bayesian design with sample size reestimation at the interim stage. Our design inherits the properties of good interpretation and easy implementation from Whitehead et al. (2008), generalizes their method to a two-sample setting, and uses a fully Bayesian predictive approach to reduce an overly large initial sample size when necessary. Moreover, our design can be extended to allow patient level covariates via logistic regression, now adjusting sample size within each subgroup based on interim analyses. We illustrate the benefits of our approach with a design in non-Hodgkin lymphoma with a simple binary covariate (patient gender), offering an initial step toward within-trial personalized medicine. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. FIRST LONG-TERM OPTICAL SPECTRAL MONITORING OF A BINARY BLACK HOLE CANDIDATE E1821+643. I. VARIABILITY OF SPECTRAL LINES AND CONTINUUM

    International Nuclear Information System (INIS)

    Shapovalova, A. I.; Burenkov, A. N.; Zhdanova, V. E.; Popović, L. Č.; Chavushyan, V. H.; Valdés, J. R.; Patiño-Álvarez, V.; León-Tavares, J.; Torrealba, J.; Ilić, D.; Kovačević, A.; Kollatschny, W.

    2016-01-01

    We report the results of the first long-term (1990–2014) optical spectrophotometric monitoring of a binary black hole candidate QSO E1821+643, a low-redshift, high-luminosity, radio-quiet quasar. In the monitored period, the continua and Hγ fluxes changed about two times, while the Hβ flux changed about 1.4 times. We found periodical variations in the photometric flux with periods of 1200, 1850, and 4000 days, and 4500-day periodicity in the spectroscopic variations. However, the periodicity of 4000–4500 days covers only one cycle of variation and should be confirmed with a longer monitoring campaign. There is an indication of the period around 1300 days in the spectroscopic light curves, buts with small significance level, while the 1850-day period could not be clearly identified in the spectroscopic light curves. The line profiles have not significantly changed, showing an important red asymmetry and broad line peak redshifted around +1000 km s −1 . However, Hβ shows a broader mean profile and has a larger time lag (τ ∼ 120 days) than Hγ (τ ∼ 60 days). We estimate that the mass of the black hole is ∼2.6 × 10 9 M ⊙ . The obtained results are discussed in the frame of the binary black hole hypothesis. To explain the periodicity in the flux variability and high redshift of the broad lines, we discuss a scenario where dense, gas-rich, cloudy-like structures are orbiting around a recoiling black hole

  14. Relationship of classical novae to other eruptive variables

    International Nuclear Information System (INIS)

    Vogt, N.

    1989-01-01

    Classical novae are characterized by their well known large-amplitude outbursts, accompanied by the ejection of a shell. The same stars, however, apparently pass through much longer quiescent phases whose duration exceeds that of the outburst phase by a factor ∼ 10 5 and that of historical nova records by a factor 10 2 -10 3 . Therefore a large number of variable stars should exist which actually are classical nova systems but whose last outbursts occurred in prehistoric times. We assume that some of these stars are hidden among the so-called 'nova-lies' in the literature. However some eruptive variables and symbiotic stars, i.e. stars which certainly are not nova remnants, are mentioned. Variables related to classical novae can be divided into three main classes: (i) Potential novae which are possibly classical novae in their quiescent state. Potential novae must share the basic configuration and parameters (orbital period, masses) with classical novae; they must be semi-detached cataclysmic binaries with a white dwarf as primary and a Roche-lobe-filling red dwarf on, or near, the mainsequence as secondary. (ii) Stars which share some outburst characteristics with classical novae without having the same binary configuration. For example recurrent novae with giant secondaries, very slow novae (and symbiotic binary stars). (iii) Stars which are evolutionarily related to classical novae, i.e. which possibly are progenitors or successors of novae in their secular evolution, such as binary nuclei of planetary nebulae and close, but detached, white dwarf-red dwarf pairs (e.g. V 471 Tau), both resulting from common-envelope evolution. These three main groups of nova-related stars are discussed. (author)

  15. Optimal Robust Self-Testing by Binary Nonlocal XOR Games

    OpenAIRE

    Miller, Carl A.; Shi, Yaoyun

    2013-01-01

    Self-testing a quantum apparatus means verifying the existence of a certain quantum state as well as the effect of the associated measuring devices based only on the statistics of the measurement outcomes. Robust (i.e., error-tolerant) self-testing quantum apparatuses are critical building blocks for quantum cryptographic protocols that rely on imperfect or untrusted devices. We devise a general scheme for proving optimal robust self-testing properties for tests based on nonlocal binary XOR g...

  16. pH-specific hydrothermal assembly of binary and ternary Pb(II)-(O,N-carboxylic acid) metal organic framework compounds: correlation of aqueous solution speciation with variable dimensionality solid-state lattice architecture and spectroscopic signatures.

    Science.gov (United States)

    Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A

    2012-09-03

    Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.

  17. HD 193793, a radio-emitting Wolf-Rayet binary star

    International Nuclear Information System (INIS)

    Florkowski, D.R.; Gottesman, S.T.

    1977-01-01

    The Wolf-Rayet binary HD 193793 has been observed as a weak, unresolved radio source. The observed flux densities do not agree with the predictions of the constant-mass-flow model of Wright and Barlow and Panagia and Felli. A variable-mass-flow model is suggested and an observational test is proposed. A comparison with γ 2 Vel is made, and the parameters affecting radio emission from Wolf-Rayet stars are briefly discussed. (author)

  18. Radius constraints from high-speed photometry of 20 low-mass white dwarf binaries

    International Nuclear Information System (INIS)

    Hermes, J. J.; Brown, Warren R.; Kilic, Mukremin; Gianninas, A.; Chote, Paul; Sullivan, D. J.; Winget, D. E.; Bell, Keaton J.; Falcon, R. E.; Winget, K. I.; Harrold, Samuel T.; Montgomery, M. H.; Mason, Paul A.

    2014-01-01

    We carry out high-speed photometry on 20 of the shortest-period, detached white dwarf binaries known and discover systems with eclipses, ellipsoidal variations (due to tidal deformations of the visible white dwarf), and Doppler beaming. All of the binaries contain low-mass white dwarfs with orbital periods of less than four hr. Our observations identify the first eight tidally distorted white dwarfs, four of which are reported for the first time here. We use these observations to place empirical constraints on the mass-radius relationship for extremely low-mass (≤0.30 M ☉ ) white dwarfs. We also detect Doppler beaming in several of these binaries, which confirms their high-amplitude radial-velocity variability. All of these systems are strong sources of gravitational radiation, and long-term monitoring of those that display ellipsoidal variations can be used to detect spin-up of the tidal bulge due to orbital decay.

  19. Radius constraints from high-speed photometry of 20 low-mass white dwarf binaries

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Chote, Paul; Sullivan, D. J. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Winget, D. E.; Bell, Keaton J.; Falcon, R. E.; Winget, K. I.; Harrold, Samuel T.; Montgomery, M. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Mason, Paul A., E-mail: j.j.hermes@warwick.ac.uk [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States)

    2014-09-01

    We carry out high-speed photometry on 20 of the shortest-period, detached white dwarf binaries known and discover systems with eclipses, ellipsoidal variations (due to tidal deformations of the visible white dwarf), and Doppler beaming. All of the binaries contain low-mass white dwarfs with orbital periods of less than four hr. Our observations identify the first eight tidally distorted white dwarfs, four of which are reported for the first time here. We use these observations to place empirical constraints on the mass-radius relationship for extremely low-mass (≤0.30 M {sub ☉}) white dwarfs. We also detect Doppler beaming in several of these binaries, which confirms their high-amplitude radial-velocity variability. All of these systems are strong sources of gravitational radiation, and long-term monitoring of those that display ellipsoidal variations can be used to detect spin-up of the tidal bulge due to orbital decay.

  20. Efficient algorithms for finding optimal binary features in numeric and nominal labeled data

    NARCIS (Netherlands)

    Mampaey, Michael; Nijssen, Siegfried; Feelders, Adrianus; Konijn, Rob; Knobbe, Arno

    2013-01-01

    An important subproblem in supervised tasks such as decision tree induction and subgroup discovery is finding an interesting binary feature (such as a node split or a subgroup refinement) based on a numeric or nominal attribute, with respect to some discrete or continuous target variable. Often one

  1. Variable blue straggler stars in NGC 5466

    International Nuclear Information System (INIS)

    Harris, H.C.; Mateo, M.; Olszewski, E.W.; Nemec, J.M.

    1990-01-01

    Nine variable blue stragglers have been found in the globular cluster NGC 5466. The six dwarf Cepheids in this cluster coexist in the instability strip with other nonvariable stars. The three eclipsing binaries are among the hottest of the blue stragglers. The hypothesis is discussed that all blue stragglers in this cluster have undergone mass transfer in close binaries. Under this hypothesis, rotation and spin-down play important roles in controlling the evolution of blue stragglers in old clusters and in affecting some of their observational properties. 14 refs

  2. Rational and Boundedly Rational Behavior in a Binary Choice Sender-Receiver Game

    Science.gov (United States)

    Landi, Massimiliano; Colucci, Domenico

    2008-01-01

    The authors investigate the strategic rationale behind the message sent by Osama bin Laden on the eve of the 2004 U.S. Presidential elections. They model this situation as a signaling game in which a population of receivers takes a binary choice, the outcome is decided by majority rule, sender and receivers have conflicting interests, and there is…

  3. Polarimetric observations of the innermost regions of relativistic jets in X-ray binaries

    Directory of Open Access Journals (Sweden)

    Russell D.M.

    2013-12-01

    Full Text Available Synchrotron emission from the relativistic jets launched close to black holes and neutron stars can be highly linearly polarized, depending on the configuration of the magnetic field. In X-ray binaries, optically thin synchrotron emission from the compact jets resides at infrared–optical wavelengths. The polarimetric signature of the jets is detected in the infrared and is highly variable in some X-ray binaries. This reveals the magnetic geometry in the compact jet, in a region close enough to the black hole that it is influenced by its strong gravity. In some cases the magnetic field is turbulent and variable near the jet base. In Cyg X–1, the origin of the γ-ray, X-ray and some of the infrared polarization is likely the optically thin synchrotron power law from the inner regions of the jet. In order to reproduce the polarization properties, the magnetic field in this region must be highly ordered, in contrast to other sources.

  4. Concurrent generation of multivariate mixed data with variables of dissimilar types.

    Science.gov (United States)

    Amatya, Anup; Demirtas, Hakan

    2016-01-01

    Data sets originating from wide range of research studies are composed of multiple variables that are correlated and of dissimilar types, primarily of count, binary/ordinal and continuous attributes. The present paper builds on the previous works on multivariate data generation and develops a framework for generating multivariate mixed data with a pre-specified correlation matrix. The generated data consist of components that are marginally count, binary, ordinal and continuous, where the count and continuous variables follow the generalized Poisson and normal distributions, respectively. The use of the generalized Poisson distribution provides a flexible mechanism which allows under- and over-dispersed count variables generally encountered in practice. A step-by-step algorithm is provided and its performance is evaluated using simulated and real-data scenarios.

  5. Towards Merging Binary Integer Programming Techniques with Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Reza Zamani

    2017-01-01

    Full Text Available This paper presents a framework based on merging a binary integer programming technique with a genetic algorithm. The framework uses both lower and upper bounds to make the employed mathematical formulation of a problem as tight as possible. For problems whose optimal solutions cannot be obtained, precision is traded with speed through substituting the integrality constrains in a binary integer program with a penalty. In this way, instead of constraining a variable u with binary restriction, u is considered as real number between 0 and 1, with the penalty of Mu(1-u, in which M is a large number. Values not near to the boundary extremes of 0 and 1 make the component of Mu(1-u large and are expected to be avoided implicitly. The nonbinary values are then converted to priorities, and a genetic algorithm can use these priorities to fill its initial pool for producing feasible solutions. The presented framework can be applied to many combinatorial optimization problems. Here, a procedure based on this framework has been applied to a scheduling problem, and the results of computational experiments have been discussed, emphasizing the knowledge generated and inefficiencies to be circumvented with this framework in future.

  6. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  7. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  8. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  9. Microlensing Binaries Discovered through High-magnification Channel

    DEFF Research Database (Denmark)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.

    2012-01-01

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba......Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010...

  10. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Zeyghami, Mehdi

    2015-01-01

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  11. Radio emission from symbiotic variables: CI Cygni, Z Andromedae, and EG Andromedae - Temporal variability as clues to the nature of symbiotics

    International Nuclear Information System (INIS)

    Torbett, M.V.; Campbell, B.

    1989-01-01

    A continuing survey of interacting binary systems has yielded first detections of the symbiotic variables CI Cyg and EG And and reproduced previous flux measurements for Z And. The CI Cyg observation implies considerable radio variability for some symbiotics, while the radio flux from Z And indicates this object has been reasonably stable in the radio for years. Rapid radio variability may indicate the presence of mass transfer through an accretion disk. 27 refs

  12. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    Science.gov (United States)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  13. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  14. Contact Binaries on Their Way Towards Merging

    Science.gov (United States)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  15. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  16. Third post-Newtonian dynamics of compact binaries: equations of motion in the centre-of-mass frame

    CERN Document Server

    Blanchet, L

    2003-01-01

    The equations of motion of compact binary systems and their associated Lagrangian formulation have been derived in previous works at the third post-Newtonian (3PN) approximation of general relativity in harmonic coordinates. In the present work, we investigate the binary's relative dynamics in the centre-of-mass frame (centre of mass located at the origin of the coordinates). We obtain the 3PN-accurate expressions of the centre-of-mass positions and equations of the relative binary motion. We show that the equations derive from a Lagrangian (neglecting the radiation reaction), from which we deduce the conserved centre-of-mass energy and angular momentum at the 3PN order. The harmonic-coordinates centre-of-mass Lagrangian is equivalent, via a contact transformation of the particles' variables, to the centre-of-mass Hamiltonian in ADM coordinates that is known from the post-Newtonian ADM-Hamiltonian formalism. As an application we investigate the dynamical stability of circular binary orbits at the 3PN order.

  17. Aetiologies and Short-term Outcomes of Acute Kidney Injury in

    African Journals Online (AJOL)

    GB

    2016-01-01

    Jan 1, 2016 ... differences for categorical variables while chi- square with trend was used where the categorical variable was ordinal. Binary logistic .... highly imperative for the government to subsidize renal care in order to reduce overall ...

  18. Long-term outcome of major depressive disorder in psychiatric patients is variable.

    Science.gov (United States)

    Holma, K Mikael; Holma, Irina A K; Melartin, Tarja K; Rytsälä, Heikki J; Isometsä, Erkki T

    2008-02-01

    The prevailing view of outcome of major depressive disorder (MDD), based on mostly inpatient cohorts sampled from tertiary centers, emphasizes chronicity and frequent recurrences. We investigated the long-term outcome of a regionally representative psychiatric MDD cohort comprising mainly outpatients. The Vantaa Depression Study included 163 patients with DSM-IV MDD (71.5% of those eligible) diagnosed using structured and semistructured interviews and followed up at 6 months, 18 months, and 5 years with a life chart between February 1, 1997, and April 30, 2004. The effects of comorbid disorders and other predictors on outcome were comprehensively investigated. Over the 5-year follow-up, 98.8% of patients achieved a symptom state below major depressive episode (MDE) criteria, and 88.4% reached full remission, with the median time to full remission being 11.0 months. Nearly one third (29.3%) had no recurrences, whereas 30.0% experienced 1, 12.9% experienced 2, and 27.9% experienced 3 or more recurrences. Preceding dysthymic disorder (p = .028), cluster C personality disorder (p = .041), and longer MDE duration prior to entry (p = .011) were the most significant predictors of longer time in achieving full remission. Severity of MDD and comorbidity, especially social phobia, predicted probability of, shorter time to, and number of recurrences. Previous literature on mostly inpatient MDD may have, by generalizing from patients with the most severe psychopathology, overemphasized chronicity of MDD. The long-term outcome of MDD in psychiatric care is variable, with about one tenth of patients having poor, one third having intermediate, and one half having favorable outcomes. In addition to known predictors, cluster C personality disorders and social phobia warrant further attention as predictors of MDD outcome among outpatients.

  19. Performance comparison of binary modulation schemes for visible light communication

    KAUST Repository

    Park, Kihong

    2015-09-11

    In this paper, we investigate the power spectral density of several binary modulation schemes including variable on-off keying, variable pulse position modulation, and pulse dual slope modulation which were previously proposed for visible light communication with dimming control. We also propose a novel slope-based modulation called differential chip slope modulation (DCSM) and develop a chip-based hard-decision receiver to demodulate the resulting signal, detect the chip sequence, and decode the input bit sequence. We show that the DCSM scheme can exploit spectrum density more efficiently than the reference schemes while providing an error rate performance comparable to them. © 2015 IEEE.

  20. Binary Systems and the Initial Mass Function

    Science.gov (United States)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  1. Accuracy of binary black hole waveform models for aligned-spin binaries

    Science.gov (United States)

    Kumar, Prayush; Chu, Tony; Fong, Heather; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-05-01

    Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave detectors. Reliable gravitational waveform models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of 84 high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries (mass-ratio 1 ≤q ≤3 ), and samples independently both black hole spins up to a dimensionless spin magnitude of 0.9 for equal-mass binaries and 0.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass ≳50 M⊙ ). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio ρ , except that SEOBNRv2's efficiency drops slightly for both black hole spins aligned at large magnitude. For parameter estimation, modeling inaccuracies of the SEOBNRv2 model are found to be smaller than systematic uncertainties for moderately strong GW events up to roughly ρ ≲15 . PhenomD's modeling errors are found to be smaller than SEOBNRv2's, and are generally irrelevant for ρ ≲20 . Both models' accuracy deteriorates with increased mass ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all four waveform models during parameter estimation for several recovered binary parameters: chirp mass, mass ratio, and effective spin.

  2. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  3. X-ray Binaries in the Central Region of M31

    Science.gov (United States)

    Trudolyubov, Sergey P.; Priedhorsky, W. C.; Cordova, F. A.

    2006-09-01

    We present the results of the systematic survey of X-ray sources in the central region of M31 using the data of XMM-Newton observations. The spectral properties and variability of 124 bright X-ray sources were studied in detail. We found that more than 80% of sources observed in two or more observations show significant variability on the time scales of days to years. At least 50% of the sources in our sample are spectrally variable. The fraction of variable sources in our survey is much higher than previously reported from Chandra survey of M31, and is remarkably close to the fraction of variable sources found in M31 globular cluster X-ray source population. We present spectral distribution of M31 X-ray sources, based on the spectral fitting with a power law model. The distribution of spectral photon index has two main peaks at 1.8 and 2.3, and shows clear evolution with source luminosity. Based on the similarity of the properties of M31 X-ray sources and their Galactic counterparts, we expect most of X-ray sources in our sample to be accreting binary systems with neutron star and black hole primaries. Combining the results of X-ray analysis (X-ray spectra, hardness-luminosity diagrams and variability) with available data at other wavelengths, we explore the possibility of distinguishing between bright neutron star and black hole binary systems, and identify 7% and 25% of sources in our sample as a probable black hole and neutron star candidates. Finally, we compare the M31 X-ray source population to the source populations of normal galaxies of different morphological type. Support for this work was provided through NASA Grant NAG5-12390. Part of this work was done during a summer workshop ``Revealing Black Holes'' at the Aspen Center for Physics, S. T. is grateful to the Center for their hospitality.

  4. Designing an artificial neural network for prediction of pregnancy outcomes in women with systemic lupus erythematosus in Iran

    Directory of Open Access Journals (Sweden)

    Mahmoud Akbarian

    2015-07-01

    Results: Twelve features with P<0.05 and four features with P<0.1 were identified by using binary logistic regression as effective features. These sixteen features were used as input variables in artificial neural networks. The accuracy, sensitivity and specificity of the test data for the MLP network were 90.9%, 80.0%, and 94.1% respectively and for the total data were 97.3%, 93.5%, and 99.0% respectively. Conclusion: According to the results, we concluded that feed-forward Multi-Layer Perceptron (MLP neural network with scaled conjugate gradient (trainscg back propagation learning algorithm can help physicians to predict the pregnancy outcomes (spontaneous abortion and live birth among pregnant women with lupus by using identified effective variables.

  5. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  6. Efficient and robust estimation for longitudinal mixed models for binary data

    DEFF Research Database (Denmark)

    Holst, René

    2009-01-01

    This paper proposes a longitudinal mixed model for binary data. The model extends the classical Poisson trick, in which a binomial regression is fitted by switching to a Poisson framework. A recent estimating equations method for generalized linear longitudinal mixed models, called GEEP, is used...... as a vehicle for fitting the conditional Poisson regressions, given a latent process of serial correlated Tweedie variables. The regression parameters are estimated using a quasi-score method, whereas the dispersion and correlation parameters are estimated by use of bias-corrected Pearson-type estimating...... equations, using second moments only. Random effects are predicted by BLUPs. The method provides a computationally efficient and robust approach to the estimation of longitudinal clustered binary data and accommodates linear and non-linear models. A simulation study is used for validation and finally...

  7. Theoretical studies of binaries in astrophysics

    Science.gov (United States)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  8. Mining frequent binary expressions

    NARCIS (Netherlands)

    Calders, T.; Paredaens, J.; Kambayashi, Y.; Mohania, M.K.; Tjoa, A.M.

    2000-01-01

    In data mining, searching for frequent patterns is a common basic operation. It forms the basis of many interesting decision support processes. In this paper we present a new type of patterns, binary expressions. Based on the properties of a specified binary test, such as reflexivity, transitivity

  9. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  10. Close-binary central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.

    1987-01-01

    Recent observations of PN central stars identified as binary systems are reviewed. The theoretical significance of binary central stars is discussed, and the characteristics of UU Sge, V 477 Lyr, MT Ser, LSS 2018, VW Pyx, and the central star of HFG 1 are briefly summarized. All of these binaries are shown to have periods less than 1 day, and it is estimated that about 10 percent of all binary central stars are close binaries. 27 references

  11. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  12. Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms.

    Science.gov (United States)

    Shahinfar, Saleh; Page, David; Guenther, Jerry; Cabrera, Victor; Fricke, Paul; Weigel, Kent

    2014-02-01

    When making the decision about whether or not to breed a given cow, knowledge about the expected outcome would have an economic impact on profitability of the breeding program and net income of the farm. The outcome of each breeding can be affected by many management and physiological features that vary between farms and interact with each other. Hence, the ability of machine learning algorithms to accommodate complex relationships in the data and missing values for explanatory variables makes these algorithms well suited for investigation of reproduction performance in dairy cattle. The objective of this study was to develop a user-friendly and intuitive on-farm tool to help farmers make reproduction management decisions. Several different machine learning algorithms were applied to predict the insemination outcomes of individual cows based on phenotypic and genotypic data. Data from 26 dairy farms in the Alta Genetics (Watertown, WI) Advantage Progeny Testing Program were used, representing a 10-yr period from 2000 to 2010. Health, reproduction, and production data were extracted from on-farm dairy management software, and estimated breeding values were downloaded from the US Department of Agriculture Agricultural Research Service Animal Improvement Programs Laboratory (Beltsville, MD) database. The edited data set consisted of 129,245 breeding records from primiparous Holstein cows and 195,128 breeding records from multiparous Holstein cows. Each data point in the final data set included 23 and 25 explanatory variables and 1 binary outcome for of 0.756 ± 0.005 and 0.736 ± 0.005 for primiparous and multiparous cows, respectively. The naïve Bayes algorithm, Bayesian network, and decision tree algorithms showed somewhat poorer classification performance. An information-based variable selection procedure identified herd average conception rate, incidence of ketosis, number of previous (failed) inseminations, days in milk at breeding, and mastitis as the most

  13. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  14. ACCRETION AND MAGNETIC RECONNECTION IN THE CLASSICAL T TAURI BINARY DQ TAU

    International Nuclear Information System (INIS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  15. ACCRETION AND MAGNETIC RECONNECTION IN THE CLASSICAL T TAURI BINARY DQ TAU

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Ardila, David R. [The Aerospace Corporation, M2-266, El Segundo, CA 90245 (United States); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Johns-Krull, Christopher [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Quijano-Vodniza, Alberto [University of Nariño Observatory, Pasto, Nariño (Colombia)

    2017-01-20

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  16. Flash-Point prediction for binary partially miscible aqueous-organic mixtures

    OpenAIRE

    Liaw, Horng-Jang; Chen, Chien Tsun; Gerbaud, Vincent

    2008-01-01

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes and heterogeneous distillation processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of aqueous-organic system. To confirm the predictive efficiency of the derived flash points, the model was verified by comparing the ...

  17. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  18. Testing the Binary Hypothesis: Pulsar Timing Constraints on Supermassive Black Hole Binary Candidates

    Science.gov (United States)

    Sesana, Alberto; Haiman, Zoltán; Kocsis, Bence; Kelley, Luke Zoltan

    2018-03-01

    The advent of time domain astronomy is revolutionizing our understanding of the universe. Programs such as the Catalina Real-time Transient Survey (CRTS) or the Palomar Transient Factory (PTF) surveyed millions of objects for several years, allowing variability studies on large statistical samples. The inspection of ≈250 k quasars in CRTS resulted in a catalog of 111 potentially periodic sources, put forward as supermassive black hole binary (SMBHB) candidates. A similar investigation on PTF data yielded 33 candidates from a sample of ≈35 k quasars. Working under the SMBHB hypothesis, we compute the implied SMBHB merger rate and we use it to construct the expected gravitational wave background (GWB) at nano-Hz frequencies, probed by pulsar timing arrays (PTAs). After correcting for incompleteness and assuming virial mass estimates, we find that the GWB implied by the CRTS sample exceeds the current most stringent PTA upper limits by almost an order of magnitude. After further correcting for the implicit bias in virial mass measurements, the implied GWB drops significantly but is still in tension with the most stringent PTA upper limits. Similar results hold for the PTF sample. Bayesian model selection shows that the null hypothesis (whereby the candidates are false positives) is preferred over the binary hypothesis at about 2.3σ and 3.6σ for the CRTS and PTF samples respectively. Although not decisive, our analysis highlights the potential of PTAs as astrophysical probes of individual SMBHB candidates and indicates that the CRTS and PTF samples are likely contaminated by several false positives.

  19. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or PhD thesis.

  20. Wind accretion and formation of disk structures in symbiotic binary systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  1. Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS

    Science.gov (United States)

    Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team

    2018-06-01

    Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.

  2. Relativistic boost as the cause of periodicity in a massive black-hole binary candidate.

    Science.gov (United States)

    D'Orazio, Daniel J; Haiman, Zoltán; Schiminovich, David

    2015-09-17

    Because most large galaxies contain a central black hole, and galaxies often merge, black-hole binaries are expected to be common in galactic nuclei. Although they cannot be imaged, periodicities in the light curves of quasars have been interpreted as evidence for binaries, most recently in PG 1302-102, which has a short rest-frame optical period of four years (ref. 6). If the orbital period of the black-hole binary matches this value, then for the range of estimated black-hole masses, the components would be separated by 0.007-0.017 parsecs, implying relativistic orbital speeds. There has been much debate over whether black-hole orbits could be smaller than one parsec (ref. 7). Here we report that the amplitude and the sinusoid-like shape of the variability of the light curve of PG 1302-102 can be fitted by relativistic Doppler boosting of emission from a compact, steadily accreting, unequal-mass binary. We predict that brightness variations in the ultraviolet light curve track those in the optical, but with a two to three times larger amplitude. This prediction is relatively insensitive to the details of the emission process, and is consistent with archival ultraviolet data. Follow-up ultraviolet and optical observations in the next few years can further test this prediction and confirm the existence of a binary black hole in the relativistic regime.

  3. Separation in 5 Msun Binaries

    Science.gov (United States)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  4. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  5. Head-on collisions of binary white dwarf-neutron stars: Simulations in full general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Etienne, Zachariah; Liu, Yuk Tung; Shapiro, Stuart L.

    2011-01-01

    We simulate head-on collisions from rest at large separation of binary white dwarf-neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold-degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of neutron stars (NSs) while, at the same time, scales down the size of white dwarfs (WDs). We call these scaled-down WD models 'pseudo-WDs (pWDs)'. Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that after the collision, 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92M · ), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.

  6. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Holley-Bockelmann, Kelly [Vanderbilt University, Nashville, TN (United States); Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu [Institute of Space Technology (IST), Islamabad (Pakistan)

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  7. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    International Nuclear Information System (INIS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-01-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy

  8. The Taiwanese-American occultation survey project stellar variability. III. Detection of 58 new variable stars

    Energy Technology Data Exchange (ETDEWEB)

    Ishioka, R.; Wang, S.-Y.; Zhang, Z.-W.; Lehner, M. J.; Cook, K. H.; King, S.-K.; Lee, T.; Marshall, S. L.; Schwamb, M. E.; Wang, J.-H.; Wen, C.-Y. [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Alcock, C.; Protopapas, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Axelrod, T. [Steward Observatory, 933 North Cherry Avenue, Room N204, Tucson, AZ 85721 (United States); Bianco, F. B. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Byun, Y.-I. [Department of Astronomy and University Observatory, Yonsei University, 134 Shinchon, Seoul 120-749 (Korea, Republic of); Chen, W. P.; Ngeow, C.-C. [Institute of Astronomy, National Central University, No. 300, Jhongda Road, Jhongli City, Taoyuan County 320, Taiwan (China); Kim, D.-W. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Rice, J. A., E-mail: ishioka@asiaa.sinica.edu.tw [Department of Statistics, University of California Berkeley, 367 Evans Hall, Berkeley, CA 94720 (United States)

    2014-04-01

    The Taiwanese-American Occultation Survey project is designed for the detection of stellar occultations by small-size Kuiper Belt Objects, and it has monitored selected fields along the ecliptic plane by using four telescopes with a 3 deg{sup 2} field of view on the sky since 2005. We have analyzed data accumulated during 2005-2012 to detect variable stars. Sixteen fields with observations of more than 100 epochs were examined. We recovered 85 variables among a total of 158 known variable stars in these 16 fields. Most of the unrecovered variables are located in the fields observed less frequently. We also detected 58 variable stars which are not listed in the International Variable Star Index of the American Association of Variable Star Observers. These variable stars are classified as 3 RR Lyrae, 4 Cepheid, 1 δ Scuti, 5 Mira, 15 semi-regular, and 27 eclipsing binaries based on the periodicity and the profile of the light curves.

  9. Compressibility of binary powder formulations: investigation and evaluation with compaction equations.

    Science.gov (United States)

    Gentis, Nicolaos D; Betz, Gabriele

    2012-02-01

    The purpose of this work was to investigate and evaluate the powder compressibility of binary mixtures containing a well-compressible compound (microcrystalline cellulose) and a brittle active drug (paracetamol and mefenamic acid) and its progression after a drug load increase. Drug concentration range was 0%-100% (m/m) with 10% intervals. The powder formulations were compacted to several relative densities with the Zwick material tester. The compaction force and tensile strength were fitted to several mathematical models that give representative factors for the powder compressibility. The factors k and C (Heckel and modified Heckel equation) showed mostly a nonlinear correlation with increasing drug load. The biggest drop in both factors occurred at far regions and drug load ranges. This outcome is crucial because in binary mixtures the drug load regions with higher changeover of plotted factors could be a hint for an existing percolation threshold. The susceptibility value (Leuenberger equation) showed varying values for each formulation without the expected trend of decrease for higher drug loads. The outcomes of this study showed the main challenges for good formulation design. Thus, we conclude that such mathematical plots are mandatory for a scientific evaluation and prediction of the powder compaction process. Copyright © 2011 Wiley Periodicals, Inc.

  10. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  11. Planetary Formation and Dynamics in Binary Systems

    Science.gov (United States)

    Xie, J. W.

    2013-01-01

    explanation for the turnover point in the size distribution of the present-day asteroid belt. For the specific case of close binaries such as Alpha Centauri, the snowball growth mode provides a safe way for the bodies to grow through the problematic range with a size of 1˜50 km. In chapter 6, we investigate the intermediate stages of the planet formation in highly inclined cases. We find that the gas drag plays a crucial role in the evolution of the planetesimals' semi-major axis, and the results can be generally divided into two categories, i.e., the Kozai-on regime and the Kozai-off regime. For both regimes, a robust outcome over a wide range of parameters is that, the planetesimals migrate/jump inwards and pile up, leading to a severely truncated and dense planetesimal disk around the primary. In this compact and dense disk, the collision rates are high but the relative velocities are low, providing conditions which are favorable for the planetesimal growth, and potentially allow for the subsequent formation of planets. Finally, we summarize this thesis in chapter 7. Many open questions still remain in current research field of planet formation in binary systems, and the current Kepler project provides an unprecedented opportunity for such researches. A comprehensive understanding of planets in binaries requires placing them in a bigger context to include the formation and evolution of stars and/or clusters.

  12. Perceptual biases for rhythm: The Mismatch Negativity latency indexes the privileged status of binary vs non-binary interval ratios.

    Science.gov (United States)

    Pablos Martin, X; Deltenre, P; Hoonhorst, I; Markessis, E; Rossion, B; Colin, C

    2007-12-01

    Rhythm perception appears to be non-linear as human subjects are better at discriminating, categorizing and reproducing rhythms containing binary vs non-binary (e.a. 1:2 vs 1:3) as well as metrical vs non-metrical (e.a. 1:2 vs 1:2.5) interval ratios. This study examined the representation of binary and non-binary interval ratios within the sensory memory, thus yielding a truly sensory, pre-motor, attention-independent neural representation of rhythmical intervals. Five interval ratios, one binary, flanked by four non-binary ones, were compared on the basis of the MMN they evoked when contrasted against a common standard interval. For all five intervals, the larger the contrast was, the larger the MMN amplitude was. The binary interval evoked a significantly much shorter (by at least 23 ms) MMN latency than the other intervals, whereas no latency difference was observed between the four non-binary intervals. These results show that the privileged perceptual status of binary rhythmical intervals is already present in the sensory representations found in echoic memory at an early, automatic, pre-perceptual and pre-motor level. MMN latency can be used to study rhythm perception at a truly sensory level, without any contribution from the motor system.

  13. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    International Nuclear Information System (INIS)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B.

    2015-01-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center

  14. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  15. The origin of the RS CVn binaries

    International Nuclear Information System (INIS)

    Biermann, P.

    1976-01-01

    Six possible origins for the RS CVn binaries are considered based on the following possibilities. RS CVn binaries might now be either pre-main-sequence or post-main-sequence. A pre-main-sequence binary might not always have been a binary but might have resulted from fission of a rapidly rotating single pre-main-sequence star. The main-sequence counterparts might be either single stars or binaries. To decide which of the six origins is possible, the following observed data for the RS CVn binaries are considered: total mass, total angular momentum, lack of observed connection with regions of star formation, large space density, kinematical age, and the visual companion of WW Dra. In addition lifetimes and space densities of single stars and other types of binaries are considered. The only origin possible is that the RS CVn binaries are in a thermal phase following fission of a main-sequence single star. In this explanation the single star had a rapidly rotating core which became unstable due to the core contraction which made it begin to evolve off the main sequence. The present Be stars might be examples of such parent single stars. (Auth.)

  16. Does psychotherapy work with school-aged youth? A meta-analytic examination of moderator variables that influence therapeutic outcomes.

    Science.gov (United States)

    Fedewa, Alicia L; Ahn, Soyeon; Reese, Robert J; Suarez, Marietta M; Macquoid, Ahjane; Davis, Matthew C; Prout, H Thompson

    2016-06-01

    The present study is a quantitative synthesis of the available literature to investigate the efficacy of psychotherapy for children's mental health outcomes. In particular, this study focuses on potential moderating variables-study design, treatment, client, and therapist characteristics-that may influence therapeutic outcomes for youth but have not been thoroughly accounted for in prior meta-analytic studies. An electronic search of relevant databases resulted in 190 unpublished and published studies that met criteria for inclusion in the analysis. Effect sizes differed by study design. Pre-post-test designs resulted in absolute magnitudes of treatment effects ranging from |-0.02| to |-0.76| while treatment versus control group comparison designs resulted in absolute magnitudes of treatment effects ranging from |-0.14| to |-2.39|. Changes in youth outcomes larger than 20% were found, irrespective of study design, for outcomes focused on psychosomatization (29% reduction), school attendance (25% increase), and stress (48% reduction). The magnitude of changes after psychotherapy ranged from 6% (externalizing problems) to 48% (stress). Several moderator variables significantly influenced psychotherapy treatment effect sizes, including frequency and length of treatment as well as treatment format. However, results did not support the superiority of a single type of intervention for most outcomes. Implications for therapy with school-aged youth and future research are discussed. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  17. Photometric studies of two solar type marginal contact binaries in the Small Magellanic Cloud

    Science.gov (United States)

    Shanti Priya, Devarapalli; Rukmini, Jagirdar

    2018-04-01

    Using the Optical Gravitational Lensing Experiment catalogue, two contact binaries were studied using data in the V and I bands. The photometric solutions for the V and I bands are presented for two contact binaries OGLE 003835.24-735413.2 (V1) and OGLE 004619.65-725056.2 (V2) in Small Maglellanic Cloud. The presented light curves are analyzed using the Wilson-Devinney code. The results show that the variables are in good thermal and marginal geometrical contact with features like the O’Connell effect in V1. The absolute dimensions are estimated and its dynamical evolution is inferred. They tend to be solar type marginal contact binaries. The 3.6-m Devasthal Optical Telescope and the 4.0-m International Liquid Mirror Telescope of the Aryabhatta Research Institute of Observational Sciences (ARIES, Nainithal) can facilitate the continuous monitoring of such kind of objects which will help in finding the reasons behind their period changes and their impact on the evolution of the clusters.

  18. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  19. Identifying the independent effect of HbA1c variability on adverse health outcomes in patients with Type 2 diabetes.

    Science.gov (United States)

    Prentice, J C; Pizer, S D; Conlin, P R

    2016-12-01

    To characterize the relationship between HbA 1c variability and adverse health outcomes among US military veterans with Type 2 diabetes. This retrospective cohort study used Veterans Affairs and Medicare claims for veterans with Type 2 diabetes taking metformin who initiated a second diabetes medication (n = 50 861). The main exposure of interest was HbA 1c variability during a 3-year baseline period. HbA 1c variability, categorized into quartiles, was defined as standard deviation, coefficient of variation and adjusted standard deviation, which accounted for the number and mean number of days between HbA 1c tests. Cox proportional hazard models predicted mortality, hospitalization for ambulatory care-sensitive conditions, and myocardial infarction or stroke and were controlled for mean HbA 1c levels and the direction of change in HbA 1c levels during the baseline period. Over a mean 3.3 years of follow-up, all HbA 1c variability measures significantly predicted each outcome. Using the adjusted standard deviation measure for HbA 1c variability, the hazard ratios for the third and fourth quartile predicting mortality were 1.14 (95% CI 1.04, 1.25) and 1.42 (95% CI 1.28, 1.58), for myocardial infarction and stroke they were 1.25 (95% CI 1.10, 1.41) and 1.23 (95% CI 1.07, 1.42) and for ambulatory-care sensitive condition hospitalization they were 1.10 (95% CI 1.03, 1.18) and 1.11 (95% CI 1.03, 1.20). Higher baseline HbA 1c levels independently predicted the likelihood of each outcome. In veterans with Type 2 diabetes, greater HbA 1c variability was associated with an increased risk of adverse long-term outcomes, independently of HbA 1c levels and direction of change. Limiting HbA 1c fluctuations over time may reduce complications. © 2016 Diabetes UK.

  20. Dual jets from binary black holes.

    Science.gov (United States)

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  1. Massive binaries in the vicinity of Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Pfuhl, O.; Gillessen, S.; Genzel, R.; Eisenhauer, F.; Fritz, T. K.; Ott, T. [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching (Germany); Alexander, T. [Faculty of Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel); Martins, F., E-mail: pfuhl@mpe.mpg.de [LUPM, Université Montpelier 2, CNRS, Place Eugéne Bataillon, F-34095, Montpellier (France)

    2014-02-20

    A long-term spectroscopic and photometric survey of the most luminous and massive stars in the vicinity of the supermassive black hole Sgr A* revealed two new binaries: a long-period Ofpe/WN9 binary, IRS 16NE, with a modest eccentricity of 0.3 and a period of 224 days, and an eclipsing Wolf-Rayet binary with a period of 2.3 days. Together with the already identified binary IRS 16SW, there are now three confirmed OB/WR binaries in the inner 0.2 pc of the Galactic center. Using radial velocity change upper limits, we were able to constrain the spectroscopic binary fraction in the Galactic center to F{sub SB}=0.30{sub −0.21}{sup +0.34} at a confidence level of 95%, a massive binary fraction close to that observed in dense clusters. The fraction of eclipsing binaries with photometric amplitudes Δm > 0.4 is F{sub EB}{sup GC}=3%±2%, which is consistent with local OB star clusters (F {sub EB} = 1%). Overall, the Galactic center binary fraction seems to be similar to the binary fraction in comparable young clusters.

  2. EVOLUTION OF THE BINARY FRACTION IN DENSE STELLAR SYSTEMS

    International Nuclear Information System (INIS)

    Fregeau, John M.; Ivanova, Natalia; Rasio, Frederic A.

    2009-01-01

    Using our recently improved Monte Carlo evolution code, we study the evolution of the binary fraction in globular clusters. In agreement with previous N-body simulations, we find generally that the hard binary fraction in the core tends to increase with time over a range of initial cluster central densities for initial binary fractions ∼<90%. The dominant processes driving the evolution of the core binary fraction are mass segregation of binaries into the cluster core and preferential destruction of binaries there. On a global scale, these effects and the preferential tidal stripping of single stars tend to roughly balance, leading to overall cluster binary fractions that are roughly constant with time. Our findings suggest that the current hard binary fraction near the half-mass radius is a good indicator of the hard primordial binary fraction. However, the relationship between the true binary fraction and the fraction of main-sequence stars in binaries (which is typically what observers measure) is nonlinear and rather complicated. We also consider the importance of soft binaries, which not only modify the evolution of the binary fraction, but can also drastically change the evolution of the cluster as a whole. Finally, we briefly describe the recent addition of single and binary stellar evolution to our cluster evolution code.

  3. Blood Pressure Variability and Outcome in Patients with Acute Nonlobar Intracerebral Hemorrhage following Intensive Antihypertensive Treatment

    Directory of Open Access Journals (Sweden)

    Jin Pyeong Jeon

    2018-01-01

    Conclusions: The MAC of SBP is associated with hematoma growth, and SD and COV are correlated with 3-month poor outcome in patients with supratentorial nonlobar ICH. Therefore, sustained SBP control, with a reduction in SBP variability is essential to reinforce the beneficial effect of intensive antihypertensive treatment.

  4. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  5. All-optical conversion scheme: Binary to quaternary and quaternary to binary number

    Science.gov (United States)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2009-04-01

    To achieve the inherent parallelism in optics a suitable number system and efficient encoding/decoding scheme for handling the data are very much essential. Binary number is accepted as the best representing number system in almost all types of existing electronic computers. But, binary number (0 and 1) is insufficient in respect to the demand of the coming generation. Multi-valued logic (with radix >2) can be viewed as an alternative approach to solve many problems in transmission, storage and processing of large amount of information in digital signal processing. Here, in this paper all-optical scheme for the conversion of binary to quaternary number and vice versa have been proposed and described. Simulation has also been done. In this all-optical scheme the numbers are represented by different discrete polarized state of light.

  6. Symbiotic stars - a binary model with super-critical accretion

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [National Radio Astronomy Observatory, Charlottesville, Va. (USA)

    1977-01-01

    The structure of symbiotic variables is discussed in terms of a binary model. Disc accretion by a main sequence star or white dwarf at rates close to the Eddington limit produces an ultraviolet continuum source near the accreting star surface. This generates a variable, radiatively-driven, out-flowing wind. The wind is optically thick and the disc luminosity is absorbed and scattered and thus degraded into the optical region. Variations in the rate of mass loss in the wind lead to optical eruptions through shifts in the position of, and conditions in, the last scattering surface. The behaviour of Z And determined by Boyarchuk is shown to be in agreement with such a model. The conditions in the out-flowing wind are discussed. Limits on the mass loss rate are derived from conditions at the surface of the accreting star. It is suggested that variable out-flow in the wind is generated by fluctuations in disc luminosity produced by changes in the giant companions rate of mass transfer. The relation between symbiotic variables and classical and dwarf novae is discussed.

  7. COSMIC probes into compact binary formation and evolution

    Science.gov (United States)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  8. Monitoring the Black Hole Binary GRS 1758-258 with INTEGRAL and RXTE

    Science.gov (United States)

    Pottschmidt, Katja; Chernyakova, Masha; Lubinski, Piotr; Migliari, Simone; Smith, David M.; Zdziarski, Andrzej A.; Tomsick, John A.; Bezayiff, N.; Kreykenbohm, Ingo; Kretschmar, Peter; hide

    2008-01-01

    The microquasar GRS 1758-258 is one of only three persistent black hole binaries that spend most of their time in the hard spectral state, the other two being Cyg X-l and 1E 1741.7-2942. It therefore provides the rare opportunity for an extensive long term study of this important black hole state which is associated with strong variability and radio jet emission. INTEGRAL has been monitoring the source since the first Galactic Center Deep Exposure season in spring 2003 during two 2-3 months long Galactic Center viewing epochs each year, amounting to 11 epochs including spring of 2008. With the exception of the last epoch quasi-simultaneous RXTE monitoring observations are available as well. Here we present an analysis of the epoch averaged broad band spectra which display considerable long term variability, most notably the occurrence of two soft/off states, extreme examples for the hysteretic behavior of black hole binaries. The hard source spectrum and long exposures allow us to extend the analysis for several epochs to approximately 800 keV using PICsIT data and address the question of the presence of a non-thermal Comptonization component.

  9. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    Science.gov (United States)

    Almog, Assaf; Garlaschelli, Diego

    2014-09-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.

  10. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    International Nuclear Information System (INIS)

    Almog, Assaf; Garlaschelli, Diego

    2014-01-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information. (paper)

  11. PERIODIC SIGNALS IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Guo, Xinyi; Stefano, Rosanne Di; Esin, Ann; Taylor, Jeffrey

    2015-01-01

    Gravitational microlensing events are powerful tools for the study of stellar populations. In particular, they can be used to discover and study a variety of binary systems. A large number of binary lenses have already been found through microlensing surveys and a few of these systems show strong evidence of orbital motion on the timescale of the lensing event. We expect that more binary lenses of this kind will be detected in the future. For binaries whose orbital period is comparable to the event duration, the orbital motion can cause the lensing signal to deviate drastically from that of a static binary lens. The most striking property of such light curves is the presence of quasi-periodic features, which are produced as the source traverses the same regions in the rotating lens plane. These repeating features contain information about the orbital period of the lens. If this period can be extracted, then much can be learned about the lensing system even without performing time-consuming, detailed light-curve modeling. However, the relative transverse motion between the source and the lens significantly complicates the problem of period extraction. To resolve this difficulty, we present a modification of the standard Lomb–Scargle periodogram analysis. We test our method for four representative binary lens systems and demonstrate its efficiency in correctly extracting binary orbital periods

  12. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  13. Topological and categorical properties of binary trees

    Directory of Open Access Journals (Sweden)

    H. Pajoohesh

    2008-04-01

    Full Text Available Binary trees are very useful tools in computer science for estimating the running time of so-called comparison based algorithms, algorithms in which every action is ultimately based on a prior comparison between two elements. For two given algorithms A and B where the decision tree of A is more balanced than that of B, it is known that the average and worst case times of A will be better than those of B, i.e., ₸A(n ≤₸B(n and TWA (n≤TWB (n. Thus the most balanced and the most imbalanced binary trees play a main role. Here we consider them as semilattices and characterize the most balanced and the most imbalanced binary trees by topological and categorical properties. Also we define the composition of binary trees as a commutative binary operation, *, such that for binary trees A and B, A * B is the binary tree obtained by attaching a copy of B to any leaf of A. We show that (T,* is a commutative po-monoid and investigate its properties.

  14. ζ1 + ζ2 Reticuli binary system: a puzzling chromospheric activity pattern

    Science.gov (United States)

    Flores, M.; Saffe, C.; Buccino, A.; Jaque Arancibia, M.; González, J. F.; Nuñez, N. E.; Jofré, E.

    2018-05-01

    We perform, for the first time, a detailed long-term activity study of the binary system ζ Ret. We use all available HARPS spectra obtained between the years 2003 and 2016. We build a time series of the Mount Wilson S index for both stars, then we analyse these series by using Lomb-Scargle periodograms. The components ζ1 Ret and ζ2 Ret that belong to this binary system are physically very similar to each other and also similar to our Sun, which makes it a remarkable system. We detect in the solar-analogue star ζ2 Ret a long-term activity cycle with a period of ˜10 yr, similar to the solar one (˜11 yr). It is worthwhile to mention that this object satisfies previous criteria for a flat star and for a cycling star simultaneously. Another interesting feature of this binary system is a high ˜0.220 dex difference between the average log (R^' }_HK) activity levels of both stars. Our study clearly shows that ζ1 Ret is significantly more active than ζ2 Ret. In addition, ζ1 Ret shows an erratic variability in its stellar activity. In this work, we explore different scenarios trying to explain this rare behaviour in a pair of coeval stars, which could help to explain the difference in this and other binary systems. From these results, we also warn that for the development of activity-age calibrations (which commonly use binary systems and/or stellar clusters as calibrators) the whole history of activity available for the stars involved should be taken into account.

  15. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  16. Detecting Malicious Code by Binary File Checking

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2014-01-01

    Full Text Available The object, library and executable code is stored in binary files. Functionality of a binary file is altered when its content or program source code is changed, causing undesired effects. A direct content change is possible when the intruder knows the structural information of the binary file. The paper describes the structural properties of the binary object files, how the content can be controlled by a possible intruder and what the ways to identify malicious code in such kind of files. Because the object files are inputs in linking processes, early detection of the malicious content is crucial to avoid infection of the binary executable files.

  17. TWENTY-FIVE SUBARCSECOND BINARIES DISCOVERED BY LUNAR OCCULTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, A. [National Astronomical Research Institute of Thailand, 191 Siriphanich Bldg., Huay Kaew Rd., Suthep, Muang, Chiang Mai 50200 (Thailand); Fors, O. [Departament Astronomia i Meteorologia and Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (UB/IEEC), Marti i Franques 1, E-08028 Barcelona (Spain); Cusano, F. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Moerchen, M., E-mail: andrea4work@gmail.com [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2013-09-15

    We report on 25 subarcsecond binaries, detected for the first time by means of lunar occultations in the near-infrared (near-IR) as part of a long-term program using the ISAAC instrument at the ESO Very Large Telescope. The primaries have magnitudes in the range K = 3.8-10.4, and the companions in the range K = 6.4-12.1. The magnitude differences have a median value of 2.8, with the largest being 5.4. The projected separations are in the range 6-748 mas and with a median of 18 mas, or about three times less than the diffraction limit of the telescope. Among our binary detections are a pre-main-sequence star and an enigmatic Mira-like variable previously suspected to have a companion. Additionally, we quote an accurate first-time near-IR detection of a previously known wider binary. We discuss our findings on an individual basis as far as made possible by the available literature, and we examine them from a statistical point of view. We derive a typical frequency of binarity among field stars of Almost-Equal-To 10%, in the resolution and sensitivity range afforded by the technique ( Almost-Equal-To 0.''003 to Almost-Equal-To 0.''5, and K Almost-Equal-To 12 mag, respectively). This is in line with previous results using the same technique but we point out interesting differences that we can trace up to sensitivity, time sampling, and average distance of the targets. Finally, we discuss the prospects for further follow-up studies.

  18. Quantitative Characterization of the Toxicities of Cd-Ni and Cd-Cr Binary Mixtures Using Combination Index Method

    Directory of Open Access Journals (Sweden)

    Lingyun Mo

    2016-01-01

    Full Text Available Direct equipartition ray design was used to construct Cd-Ni and Cd-Cr binary mixtures. Microplate toxicity analysis was used to evaluate the toxicity of individual substance and the Cd-Ni and Cd-Cr mixtures on Chlorella pyrenoidosa and Selenastrum capricornutum. The interacting toxicity of the mixture was analyzed with concentration addition (CA model. In addition, combination index method (CI was proposed and used to quantitatively characterize the toxicity of the binary mixtures of Cd-Ni and Cd-Cr observed in experiment and find the degree of deviation from the predicted outcome of the CA model, that is, the intensity of interacting toxicity. Results indicate that most of the 20 binary mixtures exhibit enhancing and synergistic effect, and only Cd-Cr-R4 and Cd-Cr-R5 mixtures have relatively high antagonistic effects against C. pyrenoidosa. Based on confidence interval, CI can compare the intensities of interaction of the mixtures under varying levels of effect. The characterization methods are applicable for analyzing binary mixture with complex interaction.

  19. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  20. RADIAL VELOCITY STUDIES OF CLOSE BINARY STARS. XIV

    International Nuclear Information System (INIS)

    Pribulla, Theodor; Rucinski, Slavek M.; DeBond, Heide; De Ridder, Archie; Karmo, Toomas; Thomson, J. R.; Croll, Bryce; Ogloza, Waldemar; Pilecki, Bogumil; Siwak, Michal

    2009-01-01

    Radial velocity (RV) measurements and sine curve fits to the orbital RV variations are presented for 10 close binary systems: TZ Boo, VW Boo, EL Boo, VZ CVn, GK Cep, RW Com, V2610 Oph, V1387 Ori, AU Ser, and FT UMa. Our spectroscopy revealed two quadruple systems, TZ Boo and V2610 Oph, while three stars showing small photometric amplitudes, EL Boo, V1387 Ori, and FT UMa, were found to be triple systems. GK Cep is a close binary with a faint third component. While most of the studied eclipsing systems are contact binaries, VZ CVn and GK Cep are detached or semidetached double-lined binaries, and EL Boo, V1387 Ori, and FT UMa are close binaries of uncertain binary type. The large fraction of triple and quadruple systems found in this sample supports the hypothesis of formation of close binaries in multiple stellar systems; it also demonstrates that low photometric amplitude binaries are a fertile ground for further discoveries of multiple systems.

  1. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. VII. BINARY ORBIT AND LONG SECONDARY PERIOD VARIABILITY OF CH CYGNI

    International Nuclear Information System (INIS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Fekel, Francis C.

    2009-01-01

    High-dispersion spectroscopic observations are used to refine orbital elements for the symbiotic binary CH Cyg. The current radial velocities, added to a previously published 13 year time series of infrared velocities for the M giant in the CH Cyg symbiotic system, more than double the length of the time series to 29 years. The two previously identified velocity periods are confirmed. The long period, revised to 15.6 ± 0.1 yr, is shown to result from a binary orbit with a 0.7 M sun white dwarf and 2 M sun M giant. Mass transfer to the white dwarf is responsible for the symbiotic classification. CH Cyg is the longest period S-type symbiotic known. Similarities with the longer period D-type systems are noted. The 2.1 year period is shown to be on Wood's sequence D, which contains stars identified as having long secondary periods (LSP). The cause of the LSP variation in CH Cyg and other stars is unknown. From our review of possible causes, we identify g-mode nonradial pulsation as the leading mechanism for LSP variation in CH Cyg. If g-mode pulsation is the cause of the LSPs, a radiative region is required near the photosphere of pulsating asymptotic giant branch stars.

  2. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  3. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  4. Wind accretion in the massive X-ray binary 4U 2206+54: abnormally slow wind and a moderately eccentric orbit

    Science.gov (United States)

    Ribó, M.; Negueruela, I.; Blay, P.; Torrejón, J. M.; Reig, P.

    2006-04-01

    Massive X-ray binaries are usually classified by the properties of the donor star in classical, supergiant and Be X-ray binaries, the main difference being the mass transfer mechanism between the two components. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_∞) of ~350 km s-1, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela X-1, reinforcing the idea that 4U 2206+54 is also a wind-fed system. We find a quasi-period decreasing from ~270 to ~130 d, noticed in previous works but never studied in detail. We discuss possible scenarios for its origin and conclude that long-term quasi-periodic variations in the mass-loss rate of the primary are probably driving such variability in the measured X-ray flux. We obtain an improved orbital period of P_orb=9.5591±0.0007 d with maximum X-ray flux at MJD 51856.6±0.1. Our study of the orbital X-ray variability in the context of wind accretion suggests a moderate eccentricity around 0.15 for this binary system. Moreover, the low value of v_∞ solves the long-standing problem of the relatively high X-ray luminosity for the unevolved nature of the donor, BD +53°2790, which is probably an O9.5 V star. We note that changes in v_∞ and/or the mass-loss rate of the primary alone cannot explain the different patterns displayed by the orbital X-ray variability. We finally emphasize that 4U 2206+54, together with LS 5039, could be part of a new population of wind-fed HMXBs with main sequence donors, the natural progenitors of supergiant X-ray binaries.

  5. Detectability of Gravitational Waves from High-Redshift Binaries.

    Science.gov (United States)

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  6. Variable-energy drift-tube linear accelerator

    Science.gov (United States)

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  7. Non-binary Entanglement-assisted Stabilizer Quantum Codes

    OpenAIRE

    Riguang, Leng; Zhi, Ma

    2011-01-01

    In this paper, we show how to construct non-binary entanglement-assisted stabilizer quantum codes by using pre-shared entanglement between the sender and receiver. We also give an algorithm to determine the circuit for non-binary entanglement-assisted stabilizer quantum codes and some illustrated examples. The codes we constructed do not require the dual-containing constraint, and many non-binary classical codes, like non-binary LDPC codes, which do not satisfy the condition, can be used to c...

  8. Hydrodynamic simulations of accretion disks in cataclysmic variables

    International Nuclear Information System (INIS)

    Hirose, Masahito; Osaki, Yoji

    1990-01-01

    The tidal effects of secondary stars on accretion disks in cataclysmic variables are studied by two-dimensional hydrodynamical simulations. The time evolution of an accretion disk under a constant mass supply rate from the secondary is followed until it reaches a quasi-steady state. We have examined various cases of different mass ratios of binary systems. It is found that the accretion disk settles into a steady state of an elongated disk fixed in the rotating frame of the binary in a binary system with comparable masses of component stars. On the other hand, in the case of a low-mass secondary, the accretion disk develops a non-axisymmetric (eccentric) structure and finally settles into a periodically oscillating state in which a non-axisymmetric eccentric disk rotates in the opposite direction to the orbital motion of the binary in the rotating frame of the binary. The period of oscillation is a few percent longer than the orbital period of the binary, and it offers a natural explanation for the ''superhump'' periodicity of SU UMa stars. Our results thus confirm basically those of Whitehurst (1988, AAA 45.064.032) who discovered the tidal instability of an accretion disk in the case of a low-mass secondary. We then discuss the cause of the tidal instability. It is shown that the tidal instability of accretion disks is caused by a parametric resonance between particle orbits and an orbiting secondary star with a 1:3 period ratio. (author)

  9. LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX

    Science.gov (United States)

    Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Weisz, D. R.; Baruffolo, A.; Bechtold, J.; Burwitz, V.; De Santis, C.; Gallozzi, S.; Garnavich, P. M.; Giallongo, E.; Hill, J. M.; Pogge, R. W.; Ragazzoni, R.; Speziali, R.; Thompson, D. J.; Wagner, R. M.

    2008-01-01

    In a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ~ - 7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 271 days, and the light curve is well fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed of two yellow supergiants (V - Isimeq 1 mag, Teffsimeq 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however, note a second example. The SMC F0 supergiant R47 is a bright (MV ~ - 7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well fit as a contact binary with a 181 day period. We propose that these systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star at the same core evolutionary stage. We also discuss the possibility of this variable being a long-period Cepheid. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  10. The Mass-to-Light Ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The Binary Population and Its Effect in the Measured Velocity Dispersions of Dwarf Spheroidal Galaxies

    OpenAIRE

    Olszewski, E.; Pryor, C.; Armandroff, T.

    1995-01-01

    We use a large set of radial velocities in the Ursa Minor and Draco dwarf spheroidal galaxies to search for binary stars and to infer the binary frequency. Of the 118 stars in our sample with multiple observations, six are velocity variables with $\\chi^2$ probabilities below 0.001. We use Monte Carlo simulations that mimic our observations to determine the efficiency with which our observations find binary stars. Our best, though significantly uncertain, estimate of the binary frequency for s...

  11. A scan statistic for binary outcome based on hypergeometric probability model, with an application to detecting spatial clusters of Japanese encephalitis.

    Science.gov (United States)

    Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong

    2013-01-01

    As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.

  12. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    International Nuclear Information System (INIS)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Fabrycky, Daniel C.

    2014-01-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.

  13. Radiation-induced segregation in binary and ternary alloys

    International Nuclear Information System (INIS)

    Okamoto, P.R.; Rehn, L.E.

    1979-01-01

    A review is given of our current knowledge of radiation-induced segregation of major and minor elements in simple binary and ternary alloys as derived from experimental techniques such as Auger electron spectroscopy, secondary-ion mass spectroscopy, ion-backscattering, infrared emissivity measurements and transmission electron microscopy. Measurements of the temperature, dose and dose-rate dependences as well as of the effects of such materials variables as solute solubility, solute misfit and initial solute concentration has proved particularly valuable in understanding the mechanisms of segregation. The interpretation of these data in terms of current theoretical models which link solute segregation behavior to defect-solute binding interactions and/or to the relative diffusion rates of solute and solvent atoms the interstitial and vacancy migration mechanisms has, in general, been fairly successful and has provided considerable insight into the highly interrelated phenomena of solute-defect trapping, solute segregation, phase stability and void swelling. Specific examples in selected fcc, bcc and hcp alloy systems are discussed with particular emphasis given to the effects of radiation-induced segregation on the phase stability of single-phase and two-phase binary alloys and simple Fe-Cr-Ni alloys. (Auth.)

  14. A 15.7-Minute AM CVn Binary Discovered in K2

    Science.gov (United States)

    Green, M. J.; Hermes, J. J.; Marsh, T. R.; Steeghs, D. T. H.; Bell, Keaton J.; Littlefair, S. P.; Parsons, S. G.; Dennihy, E.; Fuchs, J. T.; Reding, J. S.; Kaiser, B. C.; Ashley, R. P.; Breedt, E.; Dhillon, V. S.; Gentile Fusillo, N. P.; Kerry, P.; Sahman, D. I.

    2018-04-01

    We present the discovery of SDSS J135154.46-064309.0, a short-period variable observed using 30-minute cadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 minutes makes this system the fourth-shortest period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 minutes, 16.1121 ± 0.0004 minutes and 664.82 ± 0.06 minutes, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1 = 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by LISA, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components.

  15. Enhanced winds and tidal streams in massive X-ray binaries

    International Nuclear Information System (INIS)

    Blondin, J.M.; Stevens, I.R.; Kallman, T.R.

    1991-01-01

    The tidal effects created by the presence of a compact companion are expected to induce a stream of enhanced wind from the early-type primary star in massive X-ray binary systems. In this paper, two-dimensional gasdynamical simulations of such streams are presented. It is found that the wind enhancement is a sensitive function of the binary separation, and develops into a tidal stream as the primary approaches its critical surface. For typical system parameters, the Coriolis force deflects the stream sufficiently that it does not impact directly on the compact companion but passes behind it. The density in the stream can reach values of 20-30 times the ambient wind density, leading to strong attenuation of the X-ray flux that passes through the tidal stream, providing a possible explanation of the enhanced absorption events seen at later phases in the X-ray observations of massive X-ray binary systems such as Vela X-1. In contrast to the time-variable accretion wake, the tidal stream is relatively stationary, producing absorption features that should remain fixed from orbit to orbit. For systems with a strong tidal stream, the large asymmetry in the accreting wind results in the accretion of angular momentum of constant sign, as opposed to systems without streams, where the sign of the accreted angular momentum can change. 39 refs

  16. Linear latent variable models: the lava-package

    DEFF Research Database (Denmark)

    Holst, Klaus Kähler; Budtz-Jørgensen, Esben

    2013-01-01

    are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation......An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...

  17. CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Scott C.; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela; Zlochower, Yosef [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Krolik, Julian H. [Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218 (United States); Yunes, Nicolas, E-mail: scn@astro.rit.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-08-10

    We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.

  18. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  19. The population of single and binary white dwarfs of the Galactic bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-05-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.

  20. Observations of new Wolf-Rayet binaries

    International Nuclear Information System (INIS)

    Niemela, V.S.

    1982-01-01

    The author reports here preliminary results of spectrographic observations for three southern WR stars, whose binary nature had not been previously verified: HDE 320102, CD -45 0 4482, HD 62910. The observations were carried out at the Cerro Tololo Inter-American Observatory, Chile, mostly with the Cassegrain spectrograph with IT attached to the 1-m reflector. These spectrograms were secured on Kodak IIIaJ emulsion, and have a dispersion of 45 A/mm. The results suggest that HDE 320102 must be a double-lined 05-7 + WN3 spectroscopic binary, that CD -45 0 4482 appears to be a single-lined spectroscopic binary and that HD 62910 may be a binary. (Auth.)

  1. Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates

    Science.gov (United States)

    Charisi, Maria; Haiman, Zoltán; Schiminovich, David; D'Orazio, Daniel J.

    2018-06-01

    Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ˜20 per cent (˜37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs.

  2. Asteroseismic effects in close binary stars

    Science.gov (United States)

    Springer, Ofer M.; Shaviv, Nir J.

    2013-09-01

    Turbulent processes in the convective envelopes of the Sun and stars have been shown to be a source of internal acoustic excitations. In single stars, acoustic waves having frequencies below a certain cut-off frequency propagate nearly adiabatically and are effectively trapped below the photosphere where they are internally reflected. This reflection essentially occurs where the local wavelength becomes comparable to the pressure scale height. In close binary stars, the sound speed is a constant on equipotentials, while the pressure scale height, which depends on the local effective gravity, varies on equipotentials and may be much greater near the inner Lagrangian point (L1). As a result, waves reaching the vicinity of L1 may propagate unimpeded into low-density regions, where they tend to dissipate quickly due to non-linear and radiative effects. We study the three-dimensional propagation and enhanced damping of such waves inside a set of close binary stellar models using a WKB approximation of the acoustic field. We find that these waves can have much higher damping rates in close binaries, compared to their non-binary counterparts. We also find that the relative distribution of acoustic energy density at the visible surface of close binaries develops a ring-like feature at specific acoustic frequencies and binary separations.

  3. A radio-pulsing white dwarf binary star.

    Science.gov (United States)

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  4. Artificial Intelligence and the Brave New World of Eclipsing Binaries

    Science.gov (United States)

    Devinney, E.; Guinan, E.; Bradstreet, D.; DeGeorge, M.; Giammarco, J.; Alcock, C.; Engle, S.

    2005-12-01

    The explosive growth of observational capabilities and information technology over the past decade has brought astronomy to a tipping point - we are going to be deluged by a virtual fire hose (more like Niagara Falls!) of data. An important component of this deluge will be newly discovered eclipsing binary stars (EBs) and other valuable variable stars. As exploration of the Local Group Galaxies grows via current and new ground-based and satellite programs, the number of EBs is expected to grow explosively from some 10,000 today to 8 million as GAIA comes online. These observational advances will present a unique opportunity to study the properties of EBs formed in galaxies with vastly different dynamical, star formation, and chemical histories than our home Galaxy. Thus the study of these binaries (e.g., from light curve analyses) is expected to provide clues about the star formation rates and dynamics of their host galaxies as well as the possible effects of varying chemical abundance on stellar evolution and structure. Additionally, minimal-assumption-based distances to Local Group objects (and possibly 3-D mapping within these objects) shall be returned. These huge datasets of binary stars will provide tests of current theories (or suggest new theories) regarding binary star formation and evolution. However, these enormous data will far exceed the capabilities of analysis via human examination. To meet the daunting challenge of successfully mining this vast potential of EBs and variable stars for astrophysical results with minimum human intervention, we are developing new data processing techniques and methodologies. Faced with an overwhelming volume of data, our goal is to integrate technologies of Machine Learning and Pattern Processing (Artificial Intelligence [AI]) into the data processing pipelines of the major current and future ground- and space-based observational programs. Data pipelines of the future will have to carry us from observations to

  5. Logistic chaotic maps for binary numbers generations

    International Nuclear Information System (INIS)

    Kanso, Ali; Smaoui, Nejib

    2009-01-01

    Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applications, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like properties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear complexity and very good statistical properties. The systems are put forward for security evaluation by the cryptographic committees.

  6. Converting optical scanning holograms of real objects to binary Fourier holograms using an iterative direct binary search algorithm.

    Science.gov (United States)

    Leportier, Thibault; Park, Min Chul; Kim, You Seok; Kim, Taegeun

    2015-02-09

    In this paper, we present a three-dimensional holographic imaging system. The proposed approach records a complex hologram of a real object using optical scanning holography, converts the complex form to binary data, and then reconstructs the recorded hologram using a spatial light modulator (SLM). The conversion from the recorded hologram to a binary hologram is achieved using a direct binary search algorithm. We present experimental results that verify the efficacy of our approach. To the best of our knowledge, this is the first time that a hologram of a real object has been reconstructed using a binary SLM.

  7. HD 143418: an unusual light variable and a double-lined spectroscopic binary with a CP primary

    Czech Academy of Sciences Publication Activity Database

    Božić, H.; Wolf, M.; Harmanec, P.; Prša, A.; Percy, J. R.; Ruždjak, D.; Sudar, D.; Šlechta, Miroslav; Ak, H.; Eenens, P.

    2007-01-01

    Roč. 464, č. 1 (2007), s. 263-275 ISSN 0004-6361 R&D Projects: GA AV ČR KSK2043105; GA ČR GA205/03/0788 Grant - others:GA ČR(CZ) GA205/06/0304 Institutional research plan: CEZ:AV0Z10030501 Source of funding: V - iné verejné zdroje Keywords : binaries spectroscopis * individual star HD 143418 * chemically peculiar Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  8. PG 1316+678: A young pre-cataclysmic binary with weak reflection effects

    Science.gov (United States)

    Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Sakhibullin, N. A.; Shimanskaya, N. N.; Spiridonova, O. I.; Irtuganov, E. N.

    2013-03-01

    The PG 1316+678 star is classified as a pre-cataclysmic binary, as is evidenced by its photometric and spectroscopic observations. Its orbital period is determined to be P orb = 3.3803d, which coincides with the photometric period. The intensities of the emission HI and HeI lines are shown to vary synchronously with the brightness of the object (Δ m V = 0.065 m , Δ m R = 0.08 m ). These variations arise as the UV radiation from the DAO white dwarf is reflected from the surface of the cold companion. The parameters of the binary are estimated and the time of its evolution after the common-envelope phase is determined to be t ≈ 240 000 years. Thus, PG 1316+678 is a young pre-cataclysmic NN Ser variable with the smallest known photometric reflection effect.

  9. Global phase equilibrium calculations: Critical lines, critical end points and liquid-liquid-vapour equilibrium in binary mixtures

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht

    2007-01-01

    A general strategy for global phase equilibrium calculations (GPEC) in binary mixtures is presented in this work along with specific methods for calculation of the different parts involved. A Newton procedure using composition, temperature and Volume as independent variables is used for calculation...

  10. ASSOCIATING LONG-TERM γ-RAY VARIABILITY WITH THE SUPERORBITAL PERIOD OF LS I +61°303

    International Nuclear Information System (INIS)

    Ackermann, M.; Buehler, R.; Ajello, M.; Ballet, J.; Casandjian, J. M.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bonamente, E.; Cecchi, C.; Brandt, T. J.; Brigida, M.; Bruel, P.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Chekhtman, A.

    2013-01-01

    Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar emission) peaks at high energies. Detected from radio to TeV gamma rays, the γ-ray binary LS I +61°303 is highly variable across all frequencies. One aspect of this system's variability is the modulation of its emission with the timescale set by the ∼26.4960 day orbital period. Here we show that, during the time of our observations, the γ-ray emission of LS I +61°303 also presents a sinusoidal variability consistent with the previously known superorbital period of 1667 days. This modulation is more prominently seen at orbital phases around apastron, whereas it does not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating gamma rays. These findings open the possibility to use γ-ray observations to study the outflows of massive stars in eccentric binary systems

  11. A New Catalog of Contact Binary Stars from ROTSE-I Sky Patrols

    Science.gov (United States)

    Gettel, S. J.; McKay, T. A.; Geske, M. T.

    2005-05-01

    Over 65,000 variable stars have been detected in the data from the ROTSE-I Sky Patrols. Using period-color and light curve selection techniques, about 5000 objects have been identified as contact binaries. This selection is tested for completeness against EW objects in the GCVS. By utilizing infrared color data from 2MASS, we fit a period-color-luminosity relation to these stars and estimate their distances.

  12. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    International Nuclear Information System (INIS)

    Lewis, K. M.; Ida, S.; Ochiai, H.; Nagasawa, M.

    2015-01-01

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data

  13. Interaction of Massive Black Hole Binaries with Their Stellar Environment. II. Loss Cone Depletion and Binary Orbital Decay

    Science.gov (United States)

    Sesana, Alberto; Haardt, Francesco; Madau, Piero

    2007-05-01

    We study the long-term evolution of massive black hole binaries (MBHBs) at the centers of galaxies using detailed scattering experiments to solve the full three-body problem. Ambient stars drawn from an isotropic Maxwellian distribution unbound to the binary are ejected by the gravitational slingshot. We construct a minimal, hybrid model for the depletion of the loss cone and the orbital decay of the binary and show that secondary slingshots-stars returning on small-impact parameter orbits to have a second superelastic scattering with the MBHB-may considerably help the shrinking of the pair in the case of large binary mass ratios. In the absence of loss cone refilling by two-body relaxation or other processes, the mass ejected before the stalling of a MBHB is half the binary reduced mass. About 50% of the ejected stars are expelled in a ``burst'' lasting ~104 yr M1/46, where M6 is the binary mass in units of 106 Msolar. The loss cone is completely emptied in a few bulge crossing timescales, ~107 yr M1/46. Even in the absence of two-body relaxation or gas dynamical processes, unequal mass and/or eccentric binaries with M6>~0.1 can shrink to the gravitational wave emission regime in less than a Hubble time and are therefore ``safe'' targets for the planned Laser Interferometer Space Antenna.

  14. Logic regression and its extensions.

    Science.gov (United States)

    Schwender, Holger; Ruczinski, Ingo

    2010-01-01

    Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. WIYN Open Cluster Study: Binary Orbits and Tidal Circularization in NGC 6819

    Science.gov (United States)

    Morscher, Meagan B.; Mathieu, R. D.; Kaeppler, S.; Hole, K. T.; Meibom, S.

    2006-12-01

    We are conducting a comprehensive stellar radial-velocity survey in NGC 6819, a rich, intermediate age ( 2.4 Gyr) open cluster with [Fe/H] -0.05. As of October 2006, we have obtained 7065 radial-velocity measurements of 1409 stars using the WIYN Hydra Multi-Object Spectrograph, with typical velocity measurement precisions of 0.4 km/s. Using an E/I criterion of 3, we have identified 282 velocity variables. In the past year we have expanded the number of final orbital solutions by 45 to a total of more than 80 solutions. In coeval stellar populations, circular binaries tend to have the shortest orbital periods, while longer period binaries show a distribution of non-zero eccentricities. The circularization of the shortest period orbits is the result of an exchange of stellar and orbital angular momentum due to tidal interactions. We defined a population’s tidal circularization period as the longest orbital period at which a binary of typical initial eccentricity has become circularized (e.g., has evolved to an eccentricity e = 0.01) over the lifetime of the cluster (Meibom & Mathieu, 2005, ApJ, 620, 970). We are studying the trend of increasing tidal circularization periods with population age. Preliminary results in NGC 6819 indicate a tidal circularization period of 7.5 days, which is consistent with this overall trend. We will recalculate the tidal circularization period in order to include the latest sample of orbital solutions. This comprehensive survey also allows us to investigate the relative spatial distributions of spectroscopic binaries and other constant-velocity cluster members of similar mass. We find the spectroscopic binaries to be more centrally concentrated at a statistically significant level, which we attribute to energy equipartition processes. MM was supported by REU NSF grant AST-0453442. RDM, SK, KTH, and SM were supported by NSF grant AST-0406615.

  16. Binary neutron star mergers: Dependence on the nuclear equation of state

    International Nuclear Information System (INIS)

    Hotokezaka, Kenta; Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Kiuchi, Kenta

    2011-01-01

    We perform a numerical-relativity simulation for the merger of binary neutron stars with 6 nuclear-theory-based equations of states (EOSs) described by piecewise polytropes. Our purpose is to explore the dependence of the dynamical behavior of the binary neutron star merger and resulting gravitational waveforms on the EOS of the supernuclear-density matter. The numerical results show that the merger process and the first outcome are classified into three types: (i) a black hole is promptly formed, (ii) a short-lived hypermassive neutron star (HMNS) is formed, (iii) a long-lived HMNS is formed. The type of the merger depends strongly on the EOS and on the total mass of the binaries. For the EOS with which the maximum mass is larger than 2M · , the lifetime of the HMNS is longer than 10 ms for a total mass m 0 =2.7M · . A recent radio observation suggests that the maximum mass of spherical neutron stars is M max ≥1.97±0.04M · in one σ level. This fact and our results support the possible existence of a HMNS soon after the onset of the merger for a typical binary neutron star with m 0 =2.7M · . We also show that the torus mass surrounding the remnant black hole is correlated with the type of the merger process; the torus mass could be large, ≥0.1M · , in the case that a long-lived HMNS is formed. We also show that gravitational waves carry information of the merger process, the remnant, and the torus mass surrounding a black hole.

  17. Predicting treatment effect from surrogate endpoints and historical trials: an extrapolation involving probabilities of a binary outcome or survival to a specific time.

    Science.gov (United States)

    Baker, Stuart G; Sargent, Daniel J; Buyse, Marc; Burzykowski, Tomasz

    2012-03-01

    Using multiple historical trials with surrogate and true endpoints, we consider various models to predict the effect of treatment on a true endpoint in a target trial in which only a surrogate endpoint is observed. This predicted result is computed using (1) a prediction model (mixture, linear, or principal stratification) estimated from historical trials and the surrogate endpoint of the target trial and (2) a random extrapolation error estimated from successively leaving out each trial among the historical trials. The method applies to either binary outcomes or survival to a particular time that is computed from censored survival data. We compute a 95% confidence interval for the predicted result and validate its coverage using simulation. To summarize the additional uncertainty from using a predicted instead of true result for the estimated treatment effect, we compute its multiplier of standard error. Software is available for download. © 2011, The International Biometric Society No claim to original US government works.

  18. Diastolic blood pressure variability in 24 hour-ABPM and outcomes of chronic kidney disease
.

    Science.gov (United States)

    Sahutoglu, Tuncay; Sakaci, Tamer

    2018-04-10

    Blood pressure variability (BPV) has been associated with increased morbidity and mortality. There are a few studies that reported worse outcomes of chronic kidney disease (CKD) with greater visit-to-visit BPV (VVV), but data with ambulatory blood pressure monitoring (ABPM) is scarce. Ambulatory hypertensive CKD (stage 2 - 4) patients (> 18 years old) with complete 24 hours of ABPM study (SpaceLabs), who were followed up between January 2012 and December 2016, were retrospectively analyzed for the baseline characteristics and outcomes of CKD. Coefficient of variation (CV) in diastolic blood pressure (DBP) was used as an index of BPV. Data of 191 patients (mean age 59.7 ± 12.4 years, 54.9% males, 42.1% diabetic, mean eGFR-EPI (Chronic Kidney Disease Epidemiology Collaboration) 51.7 ± 22.0 mL/min/1.73m2, mean follow-up 26.2 ± 10.4 months) were available for the analysis. On multivariate linear regression analysis, greater DBP-CV was associated with slower decline in eGFR-EPI per year (B -0.648, p = 0.000). Likewise, the hazard ratio (HR) for dialysis inception (occurred in 9.4%) was found significantly lower with increasing DBP-CV in unadjusted and fully adjusted Cox models (HR 0.730, 95% CI 0.618 - 0.861, p = 0.000, and HR 0.678, 95% CI 0.526 - 0.874, p = 0.003, respectively). These findings suggest that DBP variability in 24-hour ABPM may be a good prognostic factor for the outcomes of CKD. Further studies are needed to determine the impact of 24-hour ABPM BPV on CKD progression and its differences from VVV.
.

  19. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  20. Merger rate of primordial black-hole binaries

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Kovetz, Ely D.; Kamionkowski, Marc

    2017-12-01

    Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain poorly constrained in the ˜20 - 100 M⊙ mass range. PBH binaries were recently suggested as the possible source of LIGO's first detections. In this paper, we thoroughly revisit existing estimates of the merger rate of PBH binaries. We compute the probability distribution of orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations. We then check whether the orbital parameters of PBH binaries formed in the early Universe can be significantly affected between formation and merger. Our analytic estimates indicate that the tidal field of halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do not do significant work on nor torque PBH binaries. We estimate the torque due to baryon accretion to be much weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of typical PBH binaries. We also revisit the PBH-binary merger rate resulting from gravitational capture in present-day halos, accounting for Poisson fluctuations. If binaries formed in the early Universe survive to the present time, as suggested by our analytic estimates, they dominate the total PBH merger rate. Moreover, this merger rate would be orders of magnitude larger than LIGO's current upper limits if PBHs make a significant fraction of the dark matter. As a consequence, LIGO would constrain ˜10 - 300 M⊙ PBHs to constitute no more than ˜1 % of the dark matter. To make this conclusion fully robust, though, numerical study of several complex astrophysical processes—such as the formation of the first PBH halos and how they may affect PBH binaries, as well as the accretion of gas onto an extremely eccentric binary—is needed.

  1. Theoretical statistics of zero-age cataclysmic variables

    International Nuclear Information System (INIS)

    Politano, M.J.

    1988-01-01

    The distribution of the white dwarf masses, the distribution of the mass ratios and the distribution of the orbital periods in cataclysmic variables which are forming at the present time are calculated. These systems are referred to as zero-age cataclysmic variables. The results show that 60% of the systems being formed contain helium white dwarfs and 40% contain carbon-oxygen white dwarfs. The mean dwarf mass in those systems containing helium white dwarfs is 0.34. The mean white dwarf mass in those systems containing carbon-oxygen white dwarfs is 0.75. The orbital period distribution identifies four main classes of zero-age cataclysmic variables: (1) short-period systems containing helium white dwarfs, (2) systems containing carbon-oxygen white dwarfs whose secondaries are convectively stable against rapid mass transfer to the white dwarf, (3) systems containing carbon-oxygen white dwarfs whose secondaries are radiatively stable against rapid mass transfer to the white dwarf and (4) long period systems with evolved secondaries. The white dwarf mass distribution in zero-age cataclysmic variables has direct application to the calculation of the frequency of outburst in classical novae as a function of the mass of the white dwarf. The method developed in this thesis to calculate the distributions of the orbital parameters in zero-age cataclysmic variables can be used to calculate theoretical statistics of any class of binary systems. This method provides a theoretical framework from which to investigate the statistical properties and the evolution of the orbital parameters of binary systems

  2. MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, the Weizmann Institute (Israel); Hung, L.-W. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Janczak, J. [Department of Physics, Ohio State University, 191 W. Woodruff, Columbus, OH 43210 (United States); Kaspi, S. [School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978 (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-02-20

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3{sigma} confidence level for three events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretical prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q {approx} 0.1, making the companion of the lens a strong brown dwarf candidate.

  3. Spectral and photometric analysis of the eclipsing binary epsilon Aurigae prior to and during the 2009-2011 eclipse

    Czech Academy of Sciences Publication Activity Database

    Chadima, P.; Harmanec, P.; Bennett, P.D.; Kloppenborg, B.; Stencel, R.; Yang, S.; Božić, H.; Šlechta, Miroslav; Kotková, Lenka; Wolf, M.; Škoda, Petr; Votruba, Viktor; Hopkins, J.L.; Buil, C.; Sudar, D.

    2011-01-01

    Roč. 530, June (2011), A146/1-A146/13 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : variables stars * binaries * eclipsing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  4. THE CHANDRA VARIABLE GUIDE STAR CATALOG

    International Nuclear Information System (INIS)

    Nichols, Joy S.; Lauer, Jennifer L.; Morgan, Douglas L.; Sundheim, Beth A.; Henden, Arne A.; Huenemoerder, David P.; Martin, Eric

    2010-01-01

    Variable stars have been identified among the optical-wavelength light curves of guide stars used for pointing control of the Chandra X-ray Observatory. We present a catalog of these variable stars along with their light curves and ancillary data. Variability was detected to a lower limit of 0.02 mag amplitude in the 4000-10000 A range using the photometrically stable Aspect Camera on board the Chandra spacecraft. The Chandra Variable Guide Star Catalog (VGUIDE) contains 827 stars, of which 586 are classified as definitely variable and 241 are identified as possibly variable. Of the 586 definite variable stars, we believe 319 are new variable star identifications. Types of variables in the catalog include eclipsing binaries, pulsating stars, and rotating stars. The variability was detected during the course of normal verification of each Chandra pointing and results from analysis of over 75,000 guide star light curves from the Chandra mission. The VGUIDE catalog represents data from only about 9 years of the Chandra mission. Future releases of VGUIDE will include newly identified variable guide stars as the mission proceeds. An important advantage of the use of space data to identify and analyze variable stars is the relatively long observations that are available. The Chandra orbit allows for observations up to 2 days in length. Also, guide stars were often used multiple times for Chandra observations, so many of the stars in the VGUIDE catalog have multiple light curves available from various times in the mission. The catalog is presented as both online data associated with this paper and as a public Web interface. Light curves with data at the instrumental time resolution of about 2 s, overplotted with the data binned at 1 ks, can be viewed on the public Web interface and downloaded for further analysis. VGUIDE is a unique project using data collected during the mission that would otherwise be ignored. The stars available for use as Chandra guide stars are

  5. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    Energy Technology Data Exchange (ETDEWEB)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav, E-mail: ryan.j.oelkers@vanderbilt.edu [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN 37235 (United States)

    2017-06-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10{sup 3} au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10{sup 3} and 10{sup 5.5} au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  6. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    International Nuclear Information System (INIS)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav

    2017-01-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10 3 au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10 3 and 10 5.5 au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  7. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  8. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  9. Non-negative Matrix Factorization for Binary Data

    DEFF Research Database (Denmark)

    Larsen, Jacob Søgaard; Clemmensen, Line Katrine Harder

    We propose the Logistic Non-negative Matrix Factorization for decomposition of binary data. Binary data are frequently generated in e.g. text analysis, sensory data, market basket data etc. A common method for analysing non-negative data is the Non-negative Matrix Factorization, though...... this is in theory not appropriate for binary data, and thus we propose a novel Non-negative Matrix Factorization based on the logistic link function. Furthermore we generalize the method to handle missing data. The formulation of the method is compared to a previously proposed method (Tome et al., 2015). We compare...... the performance of the Logistic Non-negative Matrix Factorization to Least Squares Non-negative Matrix Factorization and Kullback-Leibler (KL) Non-negative Matrix Factorization on sets of binary data: a synthetic dataset, a set of student comments on their professors collected in a binary term-document matrix...

  10. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  11. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  12. High Intrapatient Variability of Tacrolimus Levels and Outpatient Clinic Nonattendance Are Associated With Inferior Outcomes in Renal Transplant Patients

    Directory of Open Access Journals (Sweden)

    Dawn L. Goodall, MSc

    2017-08-01

    Conclusions. This study shows that high tacrolimus IPV and clinic nonattendance are associated with inferior allograft survival. Interventions to minimize the causes of high variability, particularly nonadherence are essential to improve long-term allograft outcomes.

  13. Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting

    Science.gov (United States)

    Dazard, Jean-Eudes; Ishwaran, Hemant; Mehlotra, Rajeev; Weinberg, Aaron; Zimmerman, Peter

    2018-01-01

    Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from random survival forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and nonlinear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are uncovered, while they may not be accompanied with their corresponding main-effects, and may not be detected by standard semi-parametric regression modeling and test statistics used in survival analysis. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may be inferred. We applied our approach to an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or nonlinear pairwise statistical interactions of variables may be efficiently detected with a predictive value in observational studies with time-to-event outcomes. PMID:29453930

  14. Binary Star Fractions from the LAMOST DR4

    Science.gov (United States)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  15. Adaptable recursive binary entropy coding technique

    Science.gov (United States)

    Kiely, Aaron B.; Klimesh, Matthew A.

    2002-07-01

    We present a novel data compression technique, called recursive interleaved entropy coding, that is based on recursive interleaving of variable-to variable length binary source codes. A compression module implementing this technique has the same functionality as arithmetic coding and can be used as the engine in various data compression algorithms. The encoder compresses a bit sequence by recursively encoding groups of bits that have similar estimated statistics, ordering the output in a way that is suited to the decoder. As a result, the decoder has low complexity. The encoding process for our technique is adaptable in that each bit to be encoded has an associated probability-of-zero estimate that may depend on previously encoded bits; this adaptability allows more effective compression. Recursive interleaved entropy coding may have advantages over arithmetic coding, including most notably the admission of a simple and fast decoder. Much variation is possible in the choice of component codes and in the interleaving structure, yielding coder designs of varying complexity and compression efficiency; coder designs that achieve arbitrarily small redundancy can be produced. We discuss coder design and performance estimation methods. We present practical encoding and decoding algorithms, as well as measured performance results.

  16. Sample size adjustments for varying cluster sizes in cluster randomized trials with binary outcomes analyzed with second-order PQL mixed logistic regression.

    Science.gov (United States)

    Candel, Math J J M; Van Breukelen, Gerard J P

    2010-06-30

    Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second-order penalized quasi-likelihood estimation (PQL). Starting from first-order marginal quasi-likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second-order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed-form formulas for sample size calculation are based on first-order MQL, planning a trial also requires a conversion factor to obtain the variance of the second-order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. (c) 2010 John Wiley & Sons, Ltd.

  17. WHITE-LIGHT FLARES ON CLOSE BINARIES OBSERVED WITH KEPLER

    International Nuclear Information System (INIS)

    Gao, Qing; Xin, Yu; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang

    2016-01-01

    Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period ( P orb ) and rotation period ( P rot , calculated for only detached binaries). We find that the AL increases with decreasing P orb or P rot , up to the critical values at P orb ∼ 3 days or P rot ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.

  18. A systematic literature search to identify performance measure outcomes used in clinical studies of racehorses.

    Science.gov (United States)

    Wylie, C E; Newton, J R

    2018-05-01

    Racing performance is often used as a measurable outcome variable in research studies investigating clinical diagnoses or interventions. However, the use of many different performance measures largely precludes conduct of meaningful comparative studies and, to date, those being used have not been collated. To systematically review the veterinary scientific literature for the use of racing performance as a measurable outcome variable in clinical studies of racehorses, collate and identify those most popular, and identify their advantages and disadvantages. Systematic literature search. The search criteria "((racing AND performance) AND (horses OR equidae))" were adapted for both MEDLINE and CAB Abstracts databases. Data were collected in standardised recording forms for binary, categorical and quantitative measures, and the use of performance indices. In total, 217 studies that described racing performance were identified, contributing 117 different performance measures. No one performance measure was used in all studies, despite 90.3% using more than one variable. Data regarding race starts and earnings were used most commonly, with 88.0% and 54.4% of studies including at least one measure of starts and earnings, respectively. Seventeen variables were used 10 times or more, with the top five comprising: 'return to racing', 'number of starts', 'days to first start', 'earnings per period of time' and 'earnings per start'. The search strategies may not have identified all relevant papers, introducing bias to the review. Performance indices have been developed to improve assessment of interventions; however, they are not widely adopted in the scientific literature. Use of the two most commonly identified measures, whether the horse returned to racing and number of starts over a defined period of time, would best facilitate future systematic reviews and meta-analyses in advance of the development of a gold-standard measure of race performance outcome. © 2017 EVJ Ltd.

  19. Evolution and merging of binaries with compact objects

    International Nuclear Information System (INIS)

    Bethe, Hans A.; Brown, Gerald E.; Lee, Chang-Hwan

    2007-01-01

    In the light of recent observations in which short γ-ray bursts are interpreted as arising from black-hole(BH), neutron-star(NS) or NS-NS mergings we would like to review our research on the evolution of compact binaries, especially those containing NS's. These were carried out with predictions for LIGO in mind, but are directly applicable to short γ-ray bursts in the interpretation above. Most important in our review is that we show that the standard scenario for evolving NS-NS binaries always ends up with a low-mass BH (LMBH), NS binary. Bethe and Brown [1998, Astrophys. J. 506, 780] showed that this fate could be avoided if the two giants in the progenitor binary burned He at the same time, and that in this way the binary could avoid the common envelope evolution of the NS with red giant companion which sends the first born NS into a BH in the standard scenario. The burning of He at the same time requires, for the more massive giants such as the progenitors of the Hulse-Taylor binary NS that the two giants be within 4% of each other in zero age main sequence (ZAMS) mass. Applying this criterion to all binaries results in a factor ∼5 of LMBH-NS binaries as compared with NS-NS binaries. Although this factor is substantially less than the originally claimed factor of 20 which Bethe and Brown (1998) estimated, largely because a careful evolution has been carried through here, our factor 5 is augmented by a factor of ∼8 arising from the higher rate of star formation in the earlier Galaxy from which the BH-NS binaries came from. Furthermore, here we calculate the mergers for short-hard gamma-ray bursts, whereas Bethe and Brown's factor 20 included a factor of 2 for the higher chirp masses in a BH-NS binary as compared with NS-NS one. In short, we end up with an estimate of factor ∼40 over that calculated with NS-NS binary mergers in our Galaxy alone. Our total rate is estimated to be about one merging of compact objects per year. Our scenario of NS-NS binaries

  20. Joint modeling of correlated binary outcomes: The case of contraceptive use and HIV knowledge in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Di Fang

    Full Text Available Recent advances in statistical methods enable the study of correlation among outcomes through joint modeling, thereby addressing spillover effects. By joint modeling, we refer to simultaneously analyzing two or more different response variables emanating from the same individual. Using the 2011 Bangladesh Demographic and Health Survey, we jointly address spillover effects between contraceptive use (CUC and knowledge of HIV and other sexually transmitted diseases. Jointly modeling these two outcomes is appropriate because certain types of contraceptive use contribute to the prevention of HIV and STDs and the knowledge and awareness of HIV and STDs typically lead to protection during sexual intercourse. In particular, we compared the differences as they pertained to the interpretive advantage of modeling the spillover effects of joint modeling HIV and CUC as opposed to addressing them separately. We also identified risk factors that determine contraceptive use and knowledge of HIV and STDs among women in Bangladesh. We found that by jointly modeling the correlation between HIV knowledge and contraceptive use, the importance of education decreased. The HIV prevention program had a spillover effect on CUC: what seemed to be impacted by education can be partially contributed to one's exposure to HIV knowledge. The joint model revealed a less significant impact of covariates as opposed to both separate models and standard models. Additionally, we found a spillover effect that would have otherwise been undiscovered if we did not jointly model. These findings further suggested that the simultaneous impact of correlated outcomes can be adequately addressed for the commonality between different responses and deflate, which is otherwise overestimated when examined separately.

  1. Using variable combination population analysis for variable selection in multivariate calibration.

    Science.gov (United States)

    Yun, Yong-Huan; Wang, Wei-Ting; Deng, Bai-Chuan; Lai, Guang-Bi; Liu, Xin-bo; Ren, Da-Bing; Liang, Yi-Zeng; Fan, Wei; Xu, Qing-Song

    2015-03-03

    Variable (wavelength or feature) selection techniques have become a critical step for the analysis of datasets with high number of variables and relatively few samples. In this study, a novel variable selection strategy, variable combination population analysis (VCPA), was proposed. This strategy consists of two crucial procedures. First, the exponentially decreasing function (EDF), which is the simple and effective principle of 'survival of the fittest' from Darwin's natural evolution theory, is employed to determine the number of variables to keep and continuously shrink the variable space. Second, in each EDF run, binary matrix sampling (BMS) strategy that gives each variable the same chance to be selected and generates different variable combinations, is used to produce a population of subsets to construct a population of sub-models. Then, model population analysis (MPA) is employed to find the variable subsets with the lower root mean squares error of cross validation (RMSECV). The frequency of each variable appearing in the best 10% sub-models is computed. The higher the frequency is, the more important the variable is. The performance of the proposed procedure was investigated using three real NIR datasets. The results indicate that VCPA is a good variable selection strategy when compared with four high performing variable selection methods: genetic algorithm-partial least squares (GA-PLS), Monte Carlo uninformative variable elimination by PLS (MC-UVE-PLS), competitive adaptive reweighted sampling (CARS) and iteratively retains informative variables (IRIV). The MATLAB source code of VCPA is available for academic research on the website: http://www.mathworks.com/matlabcentral/fileexchange/authors/498750. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Perceived match or mismatch on the Gottman conflict styles: associations with relationship outcome variables.

    Science.gov (United States)

    Busby, Dean M; Holman, Thomas B

    2009-12-01

    Gottman has proposed that there are 3 functional styles of conflict management in couple relationships, labeled Avoidant, Validating, and Volatile, and 1 dysfunctional style, labeled Hostile. Using a sample of 1,983 couples in a committed relationship, we test the association of perceived matches or mismatches on these conflict styles with relationship outcome variables. The results indicate that 32% of the participants perceive there is a mismatch with their conflict style and that of their partner. The Volatile-Avoidant mismatch was particularly problematic and was associated with more stonewalling, relationship problems, and lower levels of relationship satisfaction and stability than the Validating matched style and than other mismatched styles. The most problematic style was the Hostile style. Contrary to existing assumptions by Gottman, the 3 matched functional styles were not equivalent, as the Validating Style was associated with substantially better results on relationship outcome measures than the Volatile and Avoidant styles.

  3. The variable stars of NGC 1866

    International Nuclear Information System (INIS)

    Welch, D.L.; Cote, P.; Fischer, P.; Mateo, M.; Madore, B.F.

    1991-01-01

    A search has been conducted for new variables in the LMC cluster NGC 1866 using new multiepoch CCD photometry. Eight previously unknown Cepheid variables, most near the cluster core, are found. Of the new variables reported by Storm et al. (188), only six of 10 appear to be Cepheids and one of these is not a member. Periods and mean magnitudes and colors for sufficiently uncrowded variables are reported, as is one red giant variable of long period and one Cepheid which is a single-lined spectroscopic binary with a velocity semiamplitude greater than or equal to 10.5 km/s. The variation of light-curve amplitude with position in the instability strip is reported along with an apparently nonvariable star, which is a radial velocity member, in the strip. A true distance modulus of 18.57 + or - 0.01 mag is obtained for the cluster. 36 refs

  4. Age at disease onset and peak ammonium level rather than interventional variables predict the neurological outcome in urea cycle disorders.

    Science.gov (United States)

    Posset, Roland; Garcia-Cazorla, Angeles; Valayannopoulos, Vassili; Teles, Elisa Leão; Dionisi-Vici, Carlo; Brassier, Anaïs; Burlina, Alberto B; Burgard, Peter; Cortès-Saladelafont, Elisenda; Dobbelaere, Dries; Couce, Maria L; Sykut-Cegielska, Jolanta; Häberle, Johannes; Lund, Allan M; Chakrapani, Anupam; Schiff, Manuel; Walter, John H; Zeman, Jiri; Vara, Roshni; Kölker, Stefan

    2016-09-01

    Patients with urea cycle disorders (UCDs) have an increased risk of neurological disease manifestation. Determining the effect of diagnostic and therapeutic interventions on the neurological outcome. Evaluation of baseline, regular follow-up and emergency visits of 456 UCD patients prospectively followed between 2011 and 2015 by the E-IMD patient registry. About two-thirds of UCD patients remained asymptomatic until age 12 days [i.e. the median age at diagnosis of patients identified by newborn screening (NBS)] suggesting a potential benefit of NBS. In fact, NBS lowered the age at diagnosis in patients with late onset of symptoms (>28 days), and a trend towards improved long-term neurological outcome was found for patients with argininosuccinate synthetase and lyase deficiency as well as argininemia identified by NBS. Three to 17 different drug combinations were used for maintenance therapy, but superiority of any single drug or specific drug combination above other combinations was not demonstrated. Importantly, non-interventional variables of disease severity, such as age at disease onset and peak ammonium level of the initial hyperammonemic crisis (cut-off level: 500 μmol/L) best predicted the neurological outcome. Promising results of NBS for late onset UCD patients are reported and should be re-evaluated in a larger and more advanced age group. However, non-interventional variables affect the neurological outcome of UCD patients. Available evidence-based guideline recommendations are currently heterogeneously implemented into practice, leading to a high variability of drug combinations that hamper our understanding of optimised long-term and emergency treatment.

  5. Texture classification by texton: statistical versus binary.

    Directory of Open Access Journals (Sweden)

    Zhenhua Guo

    Full Text Available Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8, image patch (Statistical_Joint and locally invariant fractal (Statistical_Fractal are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor.

  6. Absolute Dimensions of Contact Binary Stars in Baade Window

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1999-12-01

    Full Text Available The light curves of the representative 6 contact binary stars observed by OGLE Project of searching for dark matter in our Galaxy have been analyzed by the method of the Wilson and Devinney Differential Correction to find photometric solutions. The orbital inclinations of these binaries are in the range of 52 deg - 69 deg which is lower than that of the solar neighborhood binaries. The Roche lobe filling factor of these binaries are distributed in large range of 0.12 - 0.90. Since absence of spectroscopic observations for these binaries we have found masses of the 6 binary systems based on the intersection between Kepler locus and locus derived from Vandenberg isochrones in the mass - luminosity plane. Then absolute dimensions and distances have been found by combining the masses and the photometric solutions. The distances of the 6 binary systems are distributed in the range of 1 kpc - 6 kpc. This distance range is the limiting range where the contact binaries which have period shorter than a day are visible. Most contact binaries discovered in the Baade window do not belong to the Galactic bulge.

  7. Orbital motion in pre-main sequence binaries

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simon, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Patience, J., E-mail: schaefer@chara-array.org [Astrophysics Group, School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  8. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  9. Serial binary interval ratios improve rhythm reproduction

    Directory of Open Access Journals (Sweden)

    Xiang eWu

    2013-08-01

    Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  10. Serial binary interval ratios improve rhythm reproduction.

    Science.gov (United States)

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  11. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  12. Tidal and magnetic interactions in close binary stars

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1983-03-01

    The thesis investigates the nature of non-synchronous motions in members of close binary stars under the influence of gravitational and magnetic fields existing in these systems, and the evolution of such motions in different classes of binaries. Largely convective stars are considered and a solution is found for the fluid flow associated with the non-synchronous rotation of such a secondary in a close binary system, taking tidal and rotational forces into account. The tidal velocity field is calculated for a low mass white dwarf secondary star in a twin - degenerate binary. It is found that the synchronisation times can be comparable to the lifetime of the binary so that some asynchronism may remain present. (U.K.)

  13. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.

    Science.gov (United States)

    Cook, James P; Mahajan, Anubha; Morris, Andrew P

    2017-02-01

    Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.

  14. Dynamical Formation and Merger of Binary Black Holes

    Science.gov (United States)

    Stone, Nicholas

    2017-01-01

    The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.

  15. Black Hole/Pulsar Binaries in the Galaxy

    Science.gov (United States)

    Shao, Yong; Li, Xiang-Dong

    2018-04-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disk. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 Myr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution duo to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3 - 80 BH/pulsar binaries in the Galactic disk and around 10% of them could be detected by the Five-hundred-meter Aperture Spherical radio Telescope.

  16. Investigating Dark Energy with Black Hole Binaries

    International Nuclear Information System (INIS)

    Mersini-Houghton, Laura; Kelleher, Adam

    2009-01-01

    The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accrete dark energy. The accretion induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state w[z] of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. This talk describes how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy.

  17. Black hole/pulsar binaries in the Galaxy

    Science.gov (United States)

    Shao, Yong; Li, Xiang-Dong

    2018-06-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.

  18. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  19. Herschel OBSERVATIONS OF DUST AROUND THE HIGH-MASS X-RAY BINARY GX 301-2

    Energy Technology Data Exchange (ETDEWEB)

    Servillat, M. [Laboratoire Univers et Théories (CNRS/INSU, Observatoire de Paris, Université Paris Diderot), 5 place Jules Janssen, F-92190 Meudon (France); Coleiro, A.; Chaty, S. [Laboratoire AIM (CEA/Irfu/SAp, CNRS/INSU, Universit Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France); Rahoui, F. [Harvard University, Department of Astronomy, 60 Garden Street, Cambridge, MA 02138 (United States); Zurita Heras, J. A., E-mail: mathieu.servillat@obspm.fr [AstroParticule et Cosmologie (Université Paris Diderot, CNRS/IN2P3, CEA/DSM, Observatoire de Paris, Sorbonne Paris Cité), 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France)

    2014-12-20

    We aim at characterizing the structure of the gas and dust around the high-mass X-ray binary GX 301-2, a highly obscured X-ray binary hosting a hypergiant (HG) star and a neutron star, in order to better constrain its evolution. We used Herschel PACS to observe GX 301-2 in the far infrared and completed the spectral energy distribution of the source using published data or catalogs from the optical to the radio range (0.4 to 4 × 10{sup 4} μm). GX 301-2 is detected for the first time at 70 and 100 μm. We fitted different models of circumstellar (CS) environments to the data. All tested models are statistically acceptable, and consistent with an HG star at ∼3 kpc. We found that the addition of a free-free emission component from the strong stellar wind is required and could dominate the far-infrared flux. Through comparisons with similar systems and discussion on the estimated model parameters, we favor a disk-like CS environment of ∼8 AU that would enshroud the binary system. The temperature goes down to ∼200 K at the edge of the disk, allowing for dust formation. This disk is probably a rimmed viscous disk with an inner rim at the temperature of the dust sublimation temperature (∼1500 K). The similarities between the HG GX 301-2, B[e] supergiants, and the highly obscured X-ray binaries (particularly IGR J16318-4848) are strengthened. GX 301-2 might represent a transition stage in the evolution of massive stars in binary systems, connecting supergiant B[e] systems to luminous blue variables.

  20. V1309 Scorpii: merger of a contact binary

    Science.gov (United States)

    Tylenda, R.; Hajduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; Ulaczyk, K.

    2011-04-01

    Context. Stellar mergers are expected to take place in numerous circumstences in the evolution of stellar systems. In particular, they are considered as a plausible origin of stellar eruptions of the V838 Mon type. V1309 Sco is the most recent eruption of this type in our Galaxy. The object was discovered in September 2008. Aims: Our aim is to investigate the nature of V1309 Sco. Methods: V1309 Sco has been photometrically observed in course of the OGLE project since August 2001. We analyse these observations in different ways. In particular, periodogram analyses were done to investigate the nature of the observed short-term variability of the progenitor. Results: We find that the progenitor of V1309 Sco was a contact binary with an orbital period of ~1.4 day. This period was decreasing with time. The light curve of the binary was also evolving, indicating that the system evolved towards its merger. The violent phase of the merger, marked by the systematic brightenning of the object, began in March 2008, i.e. half a year before the outburst discovery. We also investigate the observations of V1309 Sco during the outburst and the decline and show that they can be fully accounted for within the merger hypothesis. Conclusions: For the first time in the literature we show from direct observations that contact binaries indeed end up by merging into a single object, as was suggested in numerous theoretical studies of these systems. Our study also shows that stellar mergers indeed result in eruptions of the V838 Mon type. Based on observations obtained with the 1.3-m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution of Washington. The photometric data analysed in the present paper are available from the OGLE Internet archive: ftp://ogle.astrouw.edu.pl/ogle/ogle3/V1309_SCO

  1. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Gianninas, A.; Allende Prieto, Carlos

    2013-01-01

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P ≤ 1 day) binaries. Our sample includes four objects with remarkable log g ≅ 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times 0.9 M ☉ companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  2. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  3. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  4. Variance in binary stellar population synthesis

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  5. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    Science.gov (United States)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  6. Did ASAS-SN Kill the Supermassive Black Hole Binary Candidate PG1302-102?

    Science.gov (United States)

    Liu, Tingting; Gezari, Suvi; Miller, M. Coleman

    2018-05-01

    Graham et al. reported a periodically varying quasar and supermassive black hole binary candidate, PG1302-102 (hereafter PG1302), which was discovered in the Catalina Real-time Transient Survey (CRTS). Its combined Lincoln Near-Earth Asteroid Research (LINEAR) and CRTS optical light curve is well fitted to a sinusoid of an observed period of ≈1884 days and well modeled by the relativistic Doppler boosting of the secondary mini-disk. However, the LINEAR+CRTS light curve from MJD ≈52,700 to MJD ≈56,400 covers only ∼2 cycles of periodic variation, which is a short baseline that can be highly susceptible to normal, stochastic quasar variability. In this Letter, we present a reanalysis of PG1302 using the latest light curve from the All-sky Automated Survey for Supernovae (ASAS-SN), which extends the observational baseline to the present day (MJD ≈58,200), and adopting a maximum likelihood method that searches for a periodic component in addition to stochastic quasar variability. When the ASAS-SN data are combined with the previous LINEAR+CRTS data, the evidence for periodicity decreases. For genuine periodicity one would expect that additional data would strengthen the evidence, so the decrease in significance may be an indication that the binary model is disfavored.

  7. Clumpy wind accretion in Supergiant X-ray Binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  8. Spatial Cluster Detection for Repeatedly Measured Outcomes while Accounting for Residential History

    OpenAIRE

    Cook, Andrea J.; Gold, Diane R.; Li, Yi

    2009-01-01

    Spatial cluster detection has become an important methodology in quantifying the effect of hazardous exposures. Previous methods have focused on cross-sectional outcomes that are binary or continuous. There are virtually no spatial cluster detection methods proposed for longitudinal outcomes. This paper proposes a new spatial cluster detection method for repeated outcomes using cumulative geographic residuals. A major advantage of this method is its ability to readily incorporate information ...

  9. "Binary" and "non-binary" detection tasks: are current performance measures optimal?

    Science.gov (United States)

    Gur, David; Rockette, Howard E; Bandos, Andriy I

    2007-07-01

    We have observed that a very large fraction of responses for several detection tasks during the performance of observer studies are in the extreme ranges of lower than 11% or higher than 89% regardless of the actual presence or absence of the abnormality in question or its subjectively rated "subtleness." This observation raises questions regarding the validity and appropriateness of using multicategory rating scales for such detection tasks. Monte Carlo simulation of binary and multicategory ratings for these tasks demonstrate that the use of the former (binary) often results in a less biased and more precise summary index and hence may lead to a higher statistical power for determining differences between modalities.

  10. Surgical outcomes of laparoscopic hysterectomy with concomitant endometriosis without bowel or bladder dissection: a cohort analysis to define a case-mix variable.

    Science.gov (United States)

    Sandberg, Evelien M; Driessen, Sara R C; Bak, Evelien A T; van Geloven, Nan; Berger, Judith P; Smeets, Mathilde J G H; Rhemrev, Johann P T; Jansen, Frank Willem

    2018-01-01

    Pelvic endometriosis is often mentioned as one of the variables influencing surgical outcomes of laparoscopic hysterectomy (LH). However, its additional surgical risks have not been well established. The aim of this study was to analyze to what extent concomitant endometriosis influences surgical outcomes of LH and to determine if it should be considered as case-mix variable. A total of 2655 LH's were analyzed, of which 397 (15.0%) with concomitant endometriosis. For blood loss and operative time, no measurable association was found for stages I ( n  = 106) and II ( n  = 103) endometriosis compared to LH without endometriosis. LH with stages III ( n  = 93) and IV ( n  = 95) endometriosis were associated with more intra-operative blood loss ( p  = case-mix variables in future quality measurement tools.

  11. VARIABLE O VI AND N V EMISSION FROM THE X-RAY BINARY LMC X-3: HEATING OF THE BLACK HOLE COMPANION

    International Nuclear Information System (INIS)

    Song Limin; Tripp, Todd M.; Wang, Q. Daniel; Yao Yangsen; Cui Wei; Xue Yongquan; Orosz, Jerome A.; Steeghs, Danny; Steiner, James F.; Torres, Manuel A. P.; McClintock, Jeffrey E.

    2010-01-01

    Based on high-resolution ultraviolet spectroscopy obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Cosmic Origins Spectrograph, we present new detections of O VI and N V emission from the black hole X-ray binary (XRB) system LMC X-3. We also update the ephemeris of the XRB using recent radial velocity measurements obtained with the echelle spectrograph on the Magellan-Clay telescope. We observe significant velocity variability of the UV emission, and we find that the O VI and N V emission velocities follow the optical velocity curve of the XRB. Moreover, the O VI and N V intensities regularly decrease between binary phase = 0.5 and 1.0, which suggests that the source of the UV emission is increasingly occulted as the B star in the XRB moves from superior to inferior conjunction. These trends suggest that illumination of the B star atmosphere by the intense X-ray emission from the accreting black hole creates a hot spot on one side of the B star, and this hot spot is the origin of the O VI and N V emission. However, the velocity semiamplitude of the ultraviolet emission, K UV ∼ 180 km s -1 , is lower than the optical semiamplitude; this difference could be due to rotation of the B star. Comparison of the FUSE observations taken in 2001 November and 2004 April shows a significant change in the O VI emission characteristics: in the 2001 data, the O VI region shows both broad and narrow emission features, while in 2004 only the narrow O VI emission is clearly present. Rossi X-ray Timing Explorer data show that the XRB was in a high/soft state in the 2001 November epoch but was in a transitional state in 2004 April, so the shape of the X-ray spectrum might change the properties of the region illuminated on the B star and thus change the broad versus narrow characteristics of the UV emission. If our hypothesis about the origin of the highly ionized emission is correct, then careful analysis of the emission occultation could, in principle

  12. Kilonova/Macronova Emission from Compact Binary Mergers

    Directory of Open Access Journals (Sweden)

    Masaomi Tanaka

    2016-01-01

    Full Text Available We review current understanding of kilonova/macronova emission from compact binary mergers (mergers of two neutron stars or a neutron star and a black hole. Kilonova/macronova is emission powered by radioactive decays of r-process nuclei and it is one of the most promising electromagnetic counterparts of gravitational wave sources. Emission from the dynamical ejecta of ~0.01M⊙ is likely to have a luminosity of ~1040–1041 erg s−1 with a characteristic timescale of about 1 week. The spectral peak is located in red optical or near-infrared wavelengths. A subsequent accretion disk wind may provide an additional luminosity or an earlier/bluer emission if it is not absorbed by the precedent dynamical ejecta. The detection of near-infrared excess in short GRB 130603B and possible optical excess in GRB 060614 supports the concept of the kilonova/macronova scenario. At 200 Mpc distance, a typical peak brightness of kilonova/macronova with 0.01M⊙ ejecta is about 22 mag and the emission rapidly fades to >24 mag within ~10 days. Kilonova/macronova candidates can be distinguished from supernovae by (1 the faster time evolution, (2 fainter absolute magnitudes, and (3 redder colors. Since the high expansion velocity (v~0.1–0.2c is a robust outcome of compact binary mergers, the detection of smooth spectra will be the smoking gun to conclusively identify the gravitational wave source.

  13. Combining biological and psychosocial baseline variables did not improve prediction of outcome of a very-low-energy diet in a clinic referral population.

    Science.gov (United States)

    Sumithran, P; Purcell, K; Kuyruk, S; Proietto, J; Prendergast, L A

    2018-02-01

    Consistent, strong predictors of obesity treatment outcomes have not been identified. It has been suggested that broadening the range of predictor variables examined may be valuable. We explored methods to predict outcomes of a very-low-energy diet (VLED)-based programme in a clinically comparable setting, using a wide array of pre-intervention biological and psychosocial participant data. A total of 61 women and 39 men (mean ± standard deviation [SD] body mass index: 39.8 ± 7.3 kg/m 2 ) underwent an 8-week VLED and 12-month follow-up. At baseline, participants underwent a blood test and assessment of psychological, social and behavioural factors previously associated with treatment outcomes. Logistic regression, linear discriminant analysis, decision trees and random forests were used to model outcomes from baseline variables. Of the 100 participants, 88 completed the VLED and 42 attended the Week 60 visit. Overall prediction rates for weight loss of ≥10% at weeks 8 and 60, and attrition at Week 60, using combined data were between 77.8 and 87.6% for logistic regression, and lower for other methods. When logistic regression analyses included only baseline demographic and anthropometric variables, prediction rates were 76.2-86.1%. In this population, considering a wide range of biological and psychosocial data did not improve outcome prediction compared to simply-obtained baseline characteristics. © 2017 World Obesity Federation.

  14. The MAVERIC Survey: A Red Straggler Binary with an Invisible Companion in the Galactic Globular Cluster M10

    Science.gov (United States)

    Shishkovsky, Laura; Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Tremou, Evangelia; Li, Kwan-Lok; Salinas, Ricardo; Tudor, Vlad; Miller-Jones, James C. A.; Maccarone, Thomas J.; Heinke, Craig O.; Sivakoff, Gregory R.

    2018-03-01

    We present the discovery and characterization of a radio-bright binary in the Galactic globular cluster M10. First identified in deep radio continuum data from the Karl G. Jansky Very Large Array, M10-VLA1 has a flux density of 27 ± 4 μJy at 7.4 GHz and a flat-to-inverted radio spectrum. Chandra imaging shows an X-ray source with L X ≈ 1031 erg s‑1 matching the location of the radio source. This places M10-VLA1 within the scatter of the radio-X-ray luminosity correlation for quiescent stellar-mass black holes, and a black hole X-ray binary is a viable explanation for this system. The radio and X-ray properties of the source disfavor, but do not rule out, identification as an accreting neutron star or white dwarf system. Optical imaging from the Hubble Space Telescope and spectroscopy from the SOAR telescope show that the system has an orbital period of 3.339 days and an unusual “red straggler” component: an evolved star found redward of the M10 red giant branch. These data also show UV/optical variability and double-peaked Hα emission characteristic of an accretion disk. However, SOAR spectroscopic monitoring reveals that the velocity semi-amplitude of the red straggler is low. We conclude that M10-VLA1 is most likely either a quiescent black hole X-ray binary with a rather face-on (i orientation or an unusual flaring RS Canum Venaticorum variable-type active binary, and discuss future observations that could distinguish between these possibilities.

  15. Heart rate variability measured early in patients with evolving acute coronary syndrome and 1-year outcomes of rehospitalization and mortality.

    Science.gov (United States)

    Harris, Patricia R E; Stein, Phyllis K; Fung, Gordon L; Drew, Barbara J

    2014-01-01

    This study sought to examine the prognostic value of heart rate variability (HRV) measurement initiated immediately after emergency department presentation for patients with acute coronary syndrome (ACS). Altered HRV has been associated with adverse outcomes in heart disease, but the value of HRV measured during the earliest phases of ACS related to risk of 1-year rehospitalization and death has not been established. Twenty-four-hour Holter recordings of 279 patients with ACS were initiated within 45 minutes of emergency department arrival; recordings with ≥18 hours of sinus rhythm were selected for HRV analysis (number [N] =193). Time domain, frequency domain, and nonlinear HRV were examined. Survival analysis was performed. During the 1-year follow-up, 94 patients were event-free, 82 were readmitted, and 17 died. HRV was altered in relation to outcomes. Predictors of rehospitalization included increased normalized high frequency power, decreased normalized low frequency power, and decreased low/high frequency ratio. Normalized high frequency >42 ms(2) predicted rehospitalization while controlling for clinical variables (hazard ratio [HR] =2.3; 95% confidence interval [CI] =1.4-3.8, P=0.001). Variables significantly associated with death included natural logs of total power and ultra low frequency power. A model with ultra low frequency power 0.3 ng/mL (HR =4.0; 95% CI =1.3-12.1; P=0.016) revealed that each contributed independently in predicting mortality. Nonlinear HRV variables were significant predictors of both outcomes. HRV measured close to the ACS onset may assist in risk stratification. HRV cut-points may provide additional, incremental prognostic information to established assessment guidelines, and may be worthy of additional study.

  16. Unification of binary star ephemeris solutions

    International Nuclear Information System (INIS)

    Wilson, R. E.; Van Hamme, W.

    2014-01-01

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  17. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  18. Low Cerebral Blood Volume Identifies Poor Outcome in Stent Retriever Thrombectomy

    International Nuclear Information System (INIS)

    Protto, Sara; Pienimäki, Juha-Pekka; Seppänen, Janne; Numminen, Heikki; Sillanpää, Niko

    2017-01-01

    BackgroundMechanical thrombectomy (MT) is an efficient treatment of acute stroke caused by large-vessel occlusion. We evaluated the factors predicting poor clinical outcome (3-month modified Rankin Scale, mRS >2) although MT performed with modern stent retrievers.MethodsWe prospectively collected the clinical and imaging data of 105 consecutive anterior circulation stroke patients who underwent MT after multimodal CT imaging. Patients with occlusion of the internal carotid artery and/or middle cerebral artery up to the M2 segment were included. We recorded baseline clinical, procedural and imaging variables, technical outcome, 24-h imaging outcome and the clinical outcome. Differences between the groups were studied with appropriate statistical tests and binary logistic regression analysis.ResultsLow cerebral blood volume Alberta stroke program early CT score (CBV-ASPECTS) was associated with poor clinical outcome (median 7 vs. 9, p = 0.01). Lower collateral score (CS) significantly predicted poor outcome in regression modelling with CS = 0 increasing the odds of poor outcome 4.4-fold compared to CS = 3 (95% CI 1.27–15.5, p = 0.02). Lower CBV-ASPECTS significantly predicted poor clinical outcome among those with moderate or severe stroke (OR 0.82, 95% CI 0.68–1, p = 0.05) or poor collateral circulation (CS 0–1, OR 0.66, 95% CI 0.48–0.90, p = 0.009) but not among those with mild strokes or good collaterals.ConclusionsCBV-ASPECTS estimating infarct core is a significant predictor of poor clinical outcome among anterior circulation stroke patients treated with MT, especially in the setting of poor collateral circulation and/or moderate or severe stroke.

  19. Low Cerebral Blood Volume Identifies Poor Outcome in Stent Retriever Thrombectomy

    Energy Technology Data Exchange (ETDEWEB)

    Protto, Sara, E-mail: sara.protto@pshp.fi; Pienimäki, Juha-Pekka; Seppänen, Janne [Tampere University Hospital, Medical Imaging Center (Finland); Numminen, Heikki [Tampere University Hospital, Department of Neurology (Finland); Sillanpää, Niko [Tampere University Hospital, Medical Imaging Center (Finland)

    2017-04-15

    BackgroundMechanical thrombectomy (MT) is an efficient treatment of acute stroke caused by large-vessel occlusion. We evaluated the factors predicting poor clinical outcome (3-month modified Rankin Scale, mRS >2) although MT performed with modern stent retrievers.MethodsWe prospectively collected the clinical and imaging data of 105 consecutive anterior circulation stroke patients who underwent MT after multimodal CT imaging. Patients with occlusion of the internal carotid artery and/or middle cerebral artery up to the M2 segment were included. We recorded baseline clinical, procedural and imaging variables, technical outcome, 24-h imaging outcome and the clinical outcome. Differences between the groups were studied with appropriate statistical tests and binary logistic regression analysis.ResultsLow cerebral blood volume Alberta stroke program early CT score (CBV-ASPECTS) was associated with poor clinical outcome (median 7 vs. 9, p = 0.01). Lower collateral score (CS) significantly predicted poor outcome in regression modelling with CS = 0 increasing the odds of poor outcome 4.4-fold compared to CS = 3 (95% CI 1.27–15.5, p = 0.02). Lower CBV-ASPECTS significantly predicted poor clinical outcome among those with moderate or severe stroke (OR 0.82, 95% CI 0.68–1, p = 0.05) or poor collateral circulation (CS 0–1, OR 0.66, 95% CI 0.48–0.90, p = 0.009) but not among those with mild strokes or good collaterals.ConclusionsCBV-ASPECTS estimating infarct core is a significant predictor of poor clinical outcome among anterior circulation stroke patients treated with MT, especially in the setting of poor collateral circulation and/or moderate or severe stroke.

  20. A note about high blood pressure in childhood

    Science.gov (United States)

    Teodoro, M. Filomena; Simão, Carla

    2017-06-01

    In medical, behavioral and social sciences it is usual to get a binary outcome. In the present work is collected information where some of the outcomes are binary variables (1='yes'/ 0='no'). In [14] a preliminary study about the caregivers perception of pediatric hypertension was introduced. An experimental questionnaire was designed to be answered by the caregivers of routine pediatric consultation attendees in the Santa Maria's hospital (HSM). The collected data was statistically analyzed, where a descriptive analysis and a predictive model were performed. Significant relations between some socio-demographic variables and the assessed knowledge were obtained. In [14] can be found a statistical data analysis using partial questionnaire's information. The present article completes the statistical approach estimating a model for relevant remaining questions of questionnaire by Generalized Linear Models (GLM). Exploring the binary outcome issue, we intend to extend this approach using Generalized Linear Mixed Models (GLMM), but the process is still ongoing.

  1. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  2. Binary Classification Method of Social Network Users

    Directory of Open Access Journals (Sweden)

    I. A. Poryadin

    2017-01-01

    Full Text Available The subject of research is a binary classification method of social network users based on the data analysis they have placed. Relevance of the task to gain information about a person by examining the content of his/her pages in social networks is exemplified. The most common approach to its solution is a visual browsing. The order of the regional authority in our country illustrates that its using in school education is needed. The article shows restrictions on the visual browsing of pupil’s pages in social networks as a tool for the teacher and the school psychologist and justifies that a process of social network users’ data analysis should be automated. Explores publications, which describe such data acquisition, processing, and analysis methods and considers their advantages and disadvantages. The article also gives arguments to support a proposal to study the classification method of social network users. One such method is credit scoring, which is used in banks and credit institutions to assess the solvency of clients. Based on the high efficiency of the method there is a proposal for significant expansion of its using in other areas of society. The possibility to use logistic regression as the mathematical apparatus of the proposed method of binary classification has been justified. Such an approach enables taking into account the different types of data extracted from social networks. Among them: the personal user data, information about hobbies, friends, graphic and text information, behaviour characteristics. The article describes a number of existing methods of data transformation that can be applied to solve the problem. An experiment of binary gender-based classification of social network users is described. A logistic model obtained for this example includes multiple logical variables obtained by transforming the user surnames. This experiment confirms the feasibility of the proposed method. Further work is to define a system

  3. To cross or not to cross: modeling wildlife road crossings as a binary response variable with contextual predictors

    Science.gov (United States)

    Siers, Shane R.; Reed, Robert N.; Savidge, Julie A.

    2016-01-01

    probabilities as a binary response variable, influenced by contextual factors, may be useful for describing or predicting road crossings by individuals of other taxa provided that appropriate spatial and temporal resolution can be achieved and that potentially influential covariate data can be obtained.

  4. ASSOCIATING LONG-TERM {gamma}-RAY VARIABILITY WITH THE SUPERORBITAL PERIOD OF LS I +61 Degree-Sign 303

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Ballet, J.; Casandjian, J. M. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bonamente, E.; Cecchi, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Caliandro, G. A. [Institute of Space Sciences (IEEE-CSIC), Campus UAB, E-08193 Barcelona (Spain); Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Caraveo, P. A. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano (Italy); Cavazzuti, E. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma) (Italy); Chekhtman, A., E-mail: andrea.caliandro@ieec.uab.es, E-mail: hadasch@ieec.uab.es, E-mail: dtorres@ieec.uab.es [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); and others

    2013-08-20

    Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar emission) peaks at high energies. Detected from radio to TeV gamma rays, the {gamma}-ray binary LS I +61 Degree-Sign 303 is highly variable across all frequencies. One aspect of this system's variability is the modulation of its emission with the timescale set by the {approx}26.4960 day orbital period. Here we show that, during the time of our observations, the {gamma}-ray emission of LS I +61 Degree-Sign 303 also presents a sinusoidal variability consistent with the previously known superorbital period of 1667 days. This modulation is more prominently seen at orbital phases around apastron, whereas it does not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating gamma rays. These findings open the possibility to use {gamma}-ray observations to study the outflows of massive stars in eccentric binary systems.

  5. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  6. WHITE-DWARF-MAIN-SEQUENCE BINARIES IDENTIFIED FROM THE LAMOST PILOT SURVEY

    International Nuclear Information System (INIS)

    Ren Juanjuan; Luo Ali; Li Yinbi; Wei Peng; Zhao Jingkun; Zhao Yongheng; Song Yihan; Zhao Gang

    2013-01-01

    We present a set of white-dwarf-main-sequence (WDMS) binaries identified spectroscopically from the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) pilot survey. We develop a color selection criteria based on what is so far the largest and most complete Sloan Digital Sky Survey (SDSS) DR7 WDMS binary catalog and identify 28 WDMS binaries within the LAMOST pilot survey. The primaries in our binary sample are mostly DA white dwarfs except for one DB white dwarf. We derive the stellar atmospheric parameters, masses, and radii for the two components of 10 of our binaries. We also provide cooling ages for the white dwarf primaries as well as the spectral types for the companion stars of these 10 WDMS binaries. These binaries tend to contain hot white dwarfs and early-type companions. Through cross-identification, we note that nine binaries in our sample have been published in the SDSS DR7 WDMS binary catalog. Nineteen spectroscopic WDMS binaries identified by the LAMOST pilot survey are new. Using the 3σ radial velocity variation as a criterion, we find two post-common-envelope binary candidates from our WDMS binary sample

  7. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  8. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Reipurth, Bo; Mikkola, Seppo

    2015-01-01

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  9. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  10. Non-binary or genderqueer genders.

    Science.gov (United States)

    Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy

    2016-01-01

    Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are 'genderqueer' or 'non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging presence and advocacy of these groups of people. Population-based studies show a small percentage--but a sizable proportion in terms of raw numbers--of people who identify as non-binary. While such genders have been extant historically and globally, they remain marginalized, and as such--while not being disorders or pathological in themselves--people with such genders remain at risk of victimization and of minority or marginalization stress as a result of discrimination. This paper therefore reviews the limited literature on this field and considers ways in which (mental) health professionals may assist the people with genderqueer and non-binary gender identities and/or expressions they may see in their practice. Treatment options and associated risks are discussed.

  11. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  12. A Survey of Binary Similarity and Distance Measures

    Directory of Open Access Journals (Sweden)

    Seung-Seok Choi

    2010-02-01

    Full Text Available The binary feature vector is one of the most common representations of patterns and measuring similarity and distance measures play a critical role in many problems such as clustering, classification, etc. Ever since Jaccard proposed a similarity measure to classify ecological species in 1901, numerous binary similarity and distance measures have been proposed in various fields. Applying appropriate measures results in more accurate data analysis. Notwithstanding, few comprehensive surveys on binary measures have been conducted. Hence we collected 76 binary similarity and distance measures used over the last century and reveal their correlations through the hierarchical clustering technique.

  13. The binary white dwarf LHS 3236

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  14. Light curve analysis of the late type binary V523 Cassiopeiae

    Directory of Open Access Journals (Sweden)

    Latković O.

    2009-01-01

    Full Text Available We present the analysis of V and R light curves of the late type contact binary V523 Cas for the season of 2006. These observations make part of the monitoring program aimed at studying the long-term light curve variability in this system. Our results confirm that the system is in an over contact configuration, and include a bright spot in the neck region of the cooler and larger primary. We compare these results with the previous solution, obtained for the season 2005 dataset and discuss the differences.

  15. Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle

    Science.gov (United States)

    Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2018-06-01

    We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.

  16. Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees

    International Nuclear Information System (INIS)

    Jerebko, Anna K.; Summers, Ronald M.; Malley, James D.; Franaszek, Marek; Johnson, C. Daniel

    2003-01-01

    Detection of colonic polyps in CT colonography is problematic due to complexities of polyp shape and the surface of the normal colon. Published results indicate the feasibility of computer-aided detection of polyps but better classifiers are needed to improve specificity. In this paper we compare the classification results of two approaches: neural networks and recursive binary trees. As our starting point we collect surface geometry information from three-dimensional reconstruction of the colon, followed by a filter based on selected variables such as region density, Gaussian and average curvature and sphericity. The filter returns sites that are candidate polyps, based on earlier work using detection thresholds, to which the neural nets or the binary trees are applied. A data set of 39 polyps from 3 to 25 mm in size was used in our investigation. For both neural net and binary trees we use tenfold cross-validation to better estimate the true error rates. The backpropagation neural net with one hidden layer trained with Levenberg-Marquardt algorithm achieved the best results: sensitivity 90% and specificity 95% with 16 false positives per study

  17. Quantum engineering of continuous variable quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Sabuncu, Metin

    2009-10-29

    Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

  18. Quantum engineering of continuous variable quantum states

    International Nuclear Information System (INIS)

    Sabuncu, Metin

    2009-01-01

    Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

  19. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  20. Preventive maintenance scheduling by variable dimension evolutionary algorithms

    International Nuclear Information System (INIS)

    Limbourg, Philipp; Kochs, Hans-Dieter

    2006-01-01

    Black box optimization strategies have been proven to be useful tools for solving complex maintenance optimization problems. There has been a considerable amount of research on the right choice of optimization strategies for finding optimal preventive maintenance schedules. Much less attention is turned to the representation of the schedule to the algorithm. Either the search space is represented as a binary string leading to highly complex combinatorial problem or maintenance operations are defined by regular intervals which may restrict the search space to suboptimal solutions. An adequate representation however is vitally important for result quality. This work presents several nonstandard input representations and compares them to the standard binary representation. An evolutionary algorithm with extensions to handle variable length genomes is used for the comparison. The results demonstrate that two new representations perform better than the binary representation scheme. A second analysis shows that the performance may be even more increased using modified genetic operators. Thus, the choice of alternative representations leads to better results in the same amount of time and without any loss of accuracy

  1. Eclipsing binary stars with a δ Scuti component

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  2. Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes

    Science.gov (United States)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-04-01

    Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  3. Outcome-based anatomic criteria for defining the hostile aortic neck.

    Science.gov (United States)

    Jordan, William D; Ouriel, Kenneth; Mehta, Manish; Varnagy, David; Moore, William M; Arko, Frank R; Joye, James; de Vries, Jean-Paul P M

    2015-06-01

    There is abundant evidence linking hostile proximal aortic neck anatomy to poor outcome after endovascular aortic aneurysm repair (EVAR), yet the definition of hostile anatomy varies from study to study. This current analysis was undertaken to identify anatomic criteria that are most predictive of success or failure at the aortic neck after EVAR. The study group comprised 221 patients in the Aneurysm Treatment using the Heli-FX Aortic Securement System Global Registry (ANCHOR) clinical trial, a population enriched with patients with challenging aortic neck anatomy and failure of sealing. Imaging protocols were not protocol specified but were performed according to the institution's standard of care. Core laboratory analysis assessed the three-dimensional centerline-reformatted computed tomography scans. Failure at the aortic neck was defined by type Ia endoleak occurring at the time of the initial endograft implantation or during follow-up. Receiver operating characteristic curve analysis was used to assess the value of each anatomic measure in the classification of aortic neck success and failure and to identify optimal thresholds of discrimination. Binary logistic regression was performed after excluding highly intercorrelated variables, creating a final model with significant predictors of outcome after EVAR. Among the 221 patients, 121 (54.8%) remained free of type Ia endoleak and 100 (45.2%) did not. Type Ia endoleaks presented immediately after endograft deployment in 58 (58.0%) or during follow-up in 42 (42.0%). Receiver operating characteristic curve analysis identified 12 variables where the classification of patients with type Ia endoleak was significantly more accurate than chance alone. Increased aortic neck diameter at the lowest renal artery (P = .013) and at 5 mm (P = .008), 10 mm (P = .008), and 15 mm (P = .010) distally; aneurysm sac diameter (P = .001), common iliac artery diameters (right, P = .012; left, P = .032), and a conical (P = .049) neck

  4. Evolution of binaries with compact objects in globular clusters

    OpenAIRE

    Ivanova, Natalia

    2017-01-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries...

  5. Non-Binary Protograph-Based LDPC Codes: Analysis,Enumerators and Designs

    OpenAIRE

    Sun, Yizeng

    2013-01-01

    Non-binary LDPC codes can outperform binary LDPC codes using sum-product algorithm with higher computation complexity. Non-binary LDPC codes based on protographs have the advantage of simple hardware architecture. In the first part of this thesis, we will use EXIT chart analysis to compute the thresholds of different protographs over GF(q). Based on threshold computation, some non-binary protograph-based LDPC codes are designed and their frame error rates are compared with binary LDPC codes. ...

  6. Heart rate variability measured early in patients with evolving acute coronary syndrome and 1-year outcomes of rehospitalization and mortality

    Directory of Open Access Journals (Sweden)

    Harris PR

    2014-08-01

    Full Text Available Patricia R E Harris,1 Phyllis K Stein,2 Gordon L Fung,3 Barbara J Drew4 1Electrocardiographic Monitoring Research Laboratory, School of Nursing, Department of Physiological Nursing, University of California, San Francisco, CA, USA; 2Heart Rate Variability Laboratory, School of Medicine, Division of Cardiology, Washington University, St Louis, MO, USA; 3Cardiology Services, Mount Zion, Department of Medicine, Division of Cardiology, University of California, San Francisco, CA, USA; 4School of Nursing, Department of Physiological Nursing, Division of Cardiology, University of California, San Francisco, CA, USA Objective: This study sought to examine the prognostic value of heart rate variability (HRV measurement initiated immediately after emergency department presentation for patients with acute coronary syndrome (ACS. Background: Altered HRV has been associated with adverse outcomes in heart disease, but the value of HRV measured during the earliest phases of ACS related to risk of 1-year rehospitalization and death has not been established. Methods: Twenty-four-hour Holter recordings of 279 patients with ACS were initiated within 45 minutes of emergency department arrival; recordings with ≥18 hours of sinus rhythm were selected for HRV analysis (number [N] =193. Time domain, frequency domain, and nonlinear HRV were examined. Survival analysis was performed. Results: During the 1-year follow-up, 94 patients were event-free, 82 were readmitted, and 17 died. HRV was altered in relation to outcomes. Predictors of rehospitalization included increased normalized high frequency power, decreased normalized low frequency power, and decreased low/high frequency ratio. Normalized high frequency >42 ms2 predicted rehospitalization while controlling for clinical variables (hazard ratio [HR] =2.3; 95% confidence interval [CI] =1.4–3.8, P=0.001. Variables significantly associated with death included natural logs of total power and ultra low frequency

  7. Reconciliation with non-binary species trees.

    Science.gov (United States)

    Vernot, Benjamin; Stolzer, Maureen; Goldman, Aiton; Durand, Dannie

    2008-10-01

    Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for reconciliation with non-binary species trees. Yet a striking proportion of species trees are non-binary. For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees, current algorithms overestimate the number of duplications because they cannot distinguish between duplication and incomplete lineage sorting. We present the first algorithms for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene to species trees to infer the minimum number of duplications in O(|V(G) | x (k(S) + h(S))) time, where |V(G)| is the number of nodes in the gene tree, h(S) is the height of the species tree and k(S) is the size of its largest polytomy. We present a dynamic programming algorithm which also minimizes the total number of losses. Although this algorithm is exponential in the size of the largest polytomy, it performs well in practice for polytomies with outdegree of 12 or less. We also present a heuristic which estimates the minimal number of losses in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of the time. Our algorithms have been implemented in NOTUNG, a robust, production quality, tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated, high-throughput analysis of large data sets.

  8. Performance and separation occurrence of binary probit regression estimator using maximum likelihood method and Firths approach under different sample size

    Science.gov (United States)

    Lusiana, Evellin Dewi

    2017-12-01

    The parameters of binary probit regression model are commonly estimated by using Maximum Likelihood Estimation (MLE) method. However, MLE method has limitation if the binary data contains separation. Separation is the condition where there are one or several independent variables that exactly grouped the categories in binary response. It will result the estimators of MLE method become non-convergent, so that they cannot be used in modeling. One of the effort to resolve the separation is using Firths approach instead. This research has two aims. First, to identify the chance of separation occurrence in binary probit regression model between MLE method and Firths approach. Second, to compare the performance of binary probit regression model estimator that obtained by MLE method and Firths approach using RMSE criteria. Those are performed using simulation method and under different sample size. The results showed that the chance of separation occurrence in MLE method for small sample size is higher than Firths approach. On the other hand, for larger sample size, the probability decreased and relatively identic between MLE method and Firths approach. Meanwhile, Firths estimators have smaller RMSE than MLEs especially for smaller sample sizes. But for larger sample sizes, the RMSEs are not much different. It means that Firths estimators outperformed MLE estimator.

  9. Meta-Analyst: software for meta-analysis of binary, continuous and diagnostic data

    Directory of Open Access Journals (Sweden)

    Schmid Christopher H

    2009-12-01

    Full Text Available Abstract Background Meta-analysis is increasingly used as a key source of evidence synthesis to inform clinical practice. The theory and statistical foundations of meta-analysis continually evolve, providing solutions to many new and challenging problems. In practice, most meta-analyses are performed in general statistical packages or dedicated meta-analysis programs. Results Herein, we introduce Meta-Analyst, a novel, powerful, intuitive, and free meta-analysis program for the meta-analysis of a variety of problems. Meta-Analyst is implemented in C# atop of the Microsoft .NET framework, and features a graphical user interface. The software performs several meta-analysis and meta-regression models for binary and continuous outcomes, as well as analyses for diagnostic and prognostic test studies in the frequentist and Bayesian frameworks. Moreover, Meta-Analyst includes a flexible tool to edit and customize generated meta-analysis graphs (e.g., forest plots and provides output in many formats (images, Adobe PDF, Microsoft Word-ready RTF. The software architecture employed allows for rapid changes to be made to either the Graphical User Interface (GUI or to the analytic modules. We verified the numerical precision of Meta-Analyst by comparing its output with that from standard meta-analysis routines in Stata over a large database of 11,803 meta-analyses of binary outcome data, and 6,881 meta-analyses of continuous outcome data from the Cochrane Library of Systematic Reviews. Results from analyses of diagnostic and prognostic test studies have been verified in a limited number of meta-analyses versus MetaDisc and MetaTest. Bayesian statistical analyses use the OpenBUGS calculation engine (and are thus as accurate as the standalone OpenBUGS software. Conclusion We have developed and validated a new program for conducting meta-analyses that combines the advantages of existing software for this task.

  10. Influence of non-binary effects on intranuclear cascade method

    International Nuclear Information System (INIS)

    Gomes, E.H.C.

    1985-01-01

    The importance of non binary process effects in the intranuclear cascade method is analysed. It is shown that, in the higher density steps, the non binary collisions lead to baryon density distribution and rapidity differents from the one obtained using the usual intranuclear cascade method (limited to purely binary collisions). The validity of the applications of binary intranuclear cascade method to the simulation of the thermal equilibrium, nuclear transparency and particle production, is discussed. (M.C.K.) [pt

  11. THE CLOSE BINARY FRACTION OF DWARF M STARS

    International Nuclear Information System (INIS)

    Clark, Benjamin M.; Blake, Cullen H.; Knapp, Gillian R.

    2012-01-01

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for ∼17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  12. THE CLOSE BINARY FRACTION OF DWARF M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Benjamin M. [Penn Manor High School, 100 East Cottage Avenue, Millersville, PA 17551 (United States); Blake, Cullen H.; Knapp, Gillian R. [Princeton University, Department of Astrophysical Sciences, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)

    2012-01-10

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for {approx}17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  13. A binary mixture operated heat pump

    International Nuclear Information System (INIS)

    Hihara, E.; Saito, T.

    1991-01-01

    This paper evaluates the performance of possible binary mixtures as working fluids in high- temperature heat pump applications. The binary mixtures, which are potential alternatives of fully halogenated hydrocarbons, include HCFC142b/HCFC22, HFC152a/HCFC22, HFC134a/HCFC22. The performance of the mixtures is estimated by a thermodynamic model and a practical model in which the heat transfer is considered in heat exchangers. One of the advantages of binary mixtures is a higher coefficient of performance, which is caused by the small temperature difference between the heat-sink/-source fluid and the refrigerant. The mixture HCFC142b/HCFC22 is promising from the stand point of thermodynamic performance

  14. Wide- and contact-binary formation in substructured young stellar clusters

    Science.gov (United States)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  15. An Efficient Binary Differential Evolution with Parameter Adaptation

    Directory of Open Access Journals (Sweden)

    Dongli Jia

    2013-04-01

    Full Text Available Differential Evolution (DE has been applied to many scientific and engineering problems for its simplicity and efficiency. However, the standard DE cannot be used in a binary search space directly. This paper proposes an adaptive binary Differential Evolution algorithm, or ABDE, that has a similar framework as the standard DE but with an improved binary mutation strategy in which the best individual participates. To further enhance the search ability, the parameters of the ABDE are slightly disturbed in an adaptive manner. Experiments have been carried out by comparing ABDE with two binary DE variants, normDE and BDE, and the most used binary search technique, GA, on a set of 13 selected benchmark functions and the classical 0-1 knapsack problem. Results show that the ABDE performs better than, or at least comparable to, the other algorithms in terms of search ability, convergence speed, and solution accuracy.

  16. EXPLORING THE VARIABLE SKY WITH LINEAR. III. CLASSIFICATION OF PERIODIC LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Palaversa, Lovro; Eyer, Laurent; Rimoldini, Lorenzo [Observatoire Astronomique de l' Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland); Ivezić, Željko; Loebman, Sarah; Hunt-Walker, Nicholas; VanderPlas, Jacob; Westman, David; Becker, Andrew C. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Ruždjak, Domagoj; Sudar, Davor; Božić, Hrvoje [Hvar Observatory, Faculty of Geodesy, Kačićeva 26, 10000 Zagreb (Croatia); Galin, Mario [Faculty of Geodesy, Kačićeva 26, 10000 Zagreb (Croatia); Kroflin, Andrea; Mesarić, Martina; Munk, Petra; Vrbanec, Dijana [Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb (Croatia); Sesar, Branimir [Division of Physics, Mathematics, and Astronomy, Caltech, Pasadena, CA 91125 (United States); Stuart, J. Scott [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420-9108 (United States); Srdoč, Gregor, E-mail: lovro.palaversa@unige.ch [Saršoni 90, 51216 Viškovo (Croatia); and others

    2013-10-01

    We describe the construction of a highly reliable sample of ∼7000 optically faint periodic variable stars with light curves obtained by the asteroid survey LINEAR across 10,000 deg{sup 2} of the northern sky. The majority of these variables have not been cataloged yet. The sample flux limit is several magnitudes fainter than most other wide-angle surveys; the photometric errors range from ∼0.03 mag at r = 15 to ∼0.20 mag at r = 18. Light curves include on average 250 data points, collected over about a decade. Using Sloan Digital Sky Survey (SDSS) based photometric recalibration of the LINEAR data for about 25 million objects, we selected ∼200,000 most probable candidate variables with r < 17 and visually confirmed and classified ∼7000 periodic variables using phased light curves. The reliability and uniformity of visual classification across eight human classifiers was calibrated and tested using a catalog of variable stars from the SDSS Stripe 82 region and verified using an unsupervised machine learning approach. The resulting sample of periodic LINEAR variables is dominated by 3900 RR Lyrae stars and 2700 eclipsing binary stars of all subtypes and includes small fractions of relatively rare populations such as asymptotic giant branch stars and SX Phoenicis stars. We discuss the distribution of these mostly uncataloged variables in various diagrams constructed with optical-to-infrared SDSS, Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer photometry, and with LINEAR light-curve features. We find that the combination of light-curve features and colors enables classification schemes much more powerful than when colors or light curves are each used separately. An interesting side result is a robust and precise quantitative description of a strong correlation between the light-curve period and color/spectral type for close and contact eclipsing binary stars (β Lyrae and W UMa): as the color-based spectral type varies from K4 to F5, the

  17. Beyond binaries : a way forward for comparativeeducation

    Directory of Open Access Journals (Sweden)

    Marianne Larsen

    2012-09-01

    Full Text Available Binary discourses shape and produce the stories we construct about the field of comparative education. In the first part of this article, I review a set of binary discourses that have characterized social science research since the Enlightenment, including: quantitative-qualitative, nomotheticidiographic, inductive-deductive, and practice-theory. We can think of each of these binaries at opposite ends of a set of spectrums. In the second section of the paper, I show some of the ways in which these binaries have influenced the ways that we write and talk about research within the field of comparative education. I refer to the notion of binary discourses and the productive capacity of these discourses to shape our field. I then outline some critiques of these binaries to demonstrate the inherent limitations of binary discourses, and why we need to move beyond binaries in our research, and in the histories about our field. Finally, I present some tentative conclusions on ways to get ourselves out of the trap of binary thinking.Los discursos binarios moldean y producen los argumentos que construimos sobre la disciplina de la Educación Comparada. En la primera parte de este artículo, analizo un conjunto de discursos binarios que han caracterizado la investigación en Ciencias Sociales desde la Ilustración, incluyendo la cuantitativa-cualitativa, nomotética-idiográfica, inductivadeductiva, y la práctica-teoría. Podemos pensar sobre cada uno de estos discursos binarios como argumentos en los polos de un conjunto de posibilidades. En la segunda sección del artículo, revelo algunos modos en los que estos discursos binarios han influenciado las formas a través de las cuales escribimos y analizamos la investigación en el ámbito de la Educación Comparada. Analizo la noción de discursos binarios y la capacidad productiva de estos discursos de impactar nuestra ciencia. Seguidamente expongo algunas críticas de estos discursos binarios con el

  18. Grammar-Based Specification and Parsing of Binary File Formats

    Directory of Open Access Journals (Sweden)

    William Underwood

    2012-03-01

    Full Text Available The capability to validate and view or play binary file formats, as well as to convert binary file formats to standard or current file formats, is critically important to the preservation of digital data and records. This paper describes the extension of context-free grammars from strings to binary files. Binary files are arrays of data types, such as long and short integers, floating-point numbers and pointers, as well as characters. The concept of an attribute grammar is extended to these context-free array grammars. This attribute grammar has been used to define a number of chunk-based and directory-based binary file formats. A parser generator has been used with some of these grammars to generate syntax checkers (recognizers for validating binary file formats. Among the potential benefits of an attribute grammar-based approach to specification and parsing of binary file formats is that attribute grammars not only support format validation, but support generation of error messages during validation of format, validation of semantic constraints, attribute value extraction (characterization, generation of viewers or players for file formats, and conversion to current or standard file formats. The significance of these results is that with these extensions to core computer science concepts, traditional parser/compiler technologies can potentially be used as a part of a general, cost effective curation strategy for binary file formats.

  19. A possible close supermassive black-hole binary in a quasar with optical periodicity.

    Science.gov (United States)

    Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-02-05

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.

  20. The infrared variability and nature of symbiotic stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Catchpole, R.M.; Whitelock, P.A.; Carter, B.S.; Roberts, G.

    1983-01-01

    Infrared variability and spectra show that the symbiotic systems (He 2-106, He 2-38, He 2-34) contain Mira variable components. The first two also show a longer term infrared variability. It is suggested that this is due to variable dust obscuration (as in R Aqr). The phenomenon is then too frequent for the dust clouds to be confined to the orbital planes of the binary systems. Seven Miras in symbiotics have known periods which range from 370 to 580 days, suggesting a greater frequency of long-period Miras in symbiotics than in the general field. Symbiotic Miras have dust excesses with colour temperatures near 1000 K. Observations of four other symbiotic systems (Pe 2-3, He 2-87, H 2-5, AG Peg) are consistent with their containing non-variable or low amplitude M-type components. (author)

  1. The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band

    Science.gov (United States)

    Tang, Yike; Haiman, Zoltán; MacFadyen, Andrew

    2018-05-01

    We present the results of 2D, moving-mesh, viscous hydrodynamical simulations of an accretion disc around a merging supermassive black hole binary (SMBHB). The simulation is pseudo-Newtonian, with the BHs modelled as point masses with a Paczynski-Wiita potential, and includes viscous heating, shock heating, and radiative cooling. We follow the gravitational inspiral of an equal-mass binary with a component mass Mbh = 106 M⊙ from an initial separation of 60rg (where rg ≡ GMbh/c2 is the gravitational radius) to the merger. We find that a central, low-density cavity forms around the binary, as in previous work, but that the BHs capture gas from the circumbinary disc and accrete efficiently via their own minidiscs, well after their inspiral outpaces the viscous evolution of the disc. The system remains luminous, displaying strong periodicity at twice the binary orbital frequency throughout the entire inspiral process, all the way to the merger. In the soft X-ray band, the thermal emission is dominated by the inner edge of the circumbinary disc with especially clear periodicity in the early inspiral. By comparison, harder X-ray emission is dominated by the minidiscs, and the light curve is initially more noisy but develops a clear periodicity in the late inspiral stage. This variability pattern should help identify the electromagnetic counterparts of SMBHBs detected by the space-based gravitational-wave detector LISA.

  2. Comments on the evolution and origin of cataclysmic binaries

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1980-01-01

    Aspects of the observational data on cataclysmic binaries are discussed and possible correlations between type of behaviour and binary period are noted. A gap between 2 and 3 hr in binary periods is judged to be real. A simple numerical procedure for evolving Roche-lobe-filling stars is described, and applied to white dwarf-red dwarf binaries for various mass loss and angular momentum loss mechanisms, and initial conditions. The results, in which the short-time-scale behaviour of the systems is ignored, are classified into four modes of evolution: normal, nuclear evolution dominated, angular momentum loss dominated and hydrodynamical. The clustering below 2 hr is interpreted in terms of evolution following the hydrodynamical mode, and it is suggested that both stars in such systems are of low mass. This may be the commonest type of cataclysmic binary. A possible explanation for the apparent clustering of classical novae to periods of 3 to 5 hr is given, and evolutionary schemes for cataclysmic binaries outlined. It is suggested that the short-period systems (approximately < 2 hr) arise mainly from late case B mass transfer in the original binary and the longer period systems mainly from case C. (author)

  3. Diverse Long-term Variability of Five Candidate High-mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Energy Technology Data Exchange (ETDEWEB)

    Corbet, Robin H. D. [University of Maryland, Baltimore County, MD 21250 (United States); Coley, Joel B. [NASA Postdoctoral Program, and Astroparticle Physics Laboratory, Code 661 NASA Goddard Space Flight Center, Greenbelt Road, MD 20771 (United States); Krimm, Hans A., E-mail: corbet@umbc.edu [Universities Space Research Association, 10211 Wincopin Circle, Suite 500, Columbia, MD 21044 (United States)

    2017-09-10

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton . Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ∼30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.

  4. Non-binary or genderqueer genders

    OpenAIRE

    Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy

    2016-01-01

    Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are genderqueer' or non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging ...

  5. Statistical Analysis of a Comprehensive List of Visual Binaries

    Directory of Open Access Journals (Sweden)

    Kovaleva D.

    2015-12-01

    Full Text Available Visual binary stars are the most abundant class of observed binaries. The most comprehensive list of data on visual binaries compiled recently by cross-matching the largest catalogues of visual binaries allowed a statistical investigation of observational parameters of these systems. The dataset was cleaned by correcting uncertainties and misclassifications, and supplemented with available parallax data. The refined dataset is free from technical biases and contains 3676 presumably physical visual pairs of luminosity class V with known angular separations, magnitudes of the components, spectral types, and parallaxes. We also compiled a restricted sample of 998 pairs free from observational biases due to the probability of binary discovery. Certain distributions of observational and physical parameters of stars of our dataset are discussed.

  6. Main Memory Implementations for Binary Grouping

    OpenAIRE

    May, Norman; Moerkotte, Guido

    2005-01-01

    An increasing number of applications depend on efficient storage and analysis features for XML data. Hence, query optimization and efficient evaluation techniques for the emerging XQuery standard become more and more important. Many XQuery queries require nested expressions. Unnesting them often introduces binary grouping. We introduce several algorithms implementing binary grouping and analyze their time and space complexity. Experiments demonstrate their performance.

  7. Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts

    Science.gov (United States)

    Rao, A. R.; Vahia, M. N.

    1994-01-01

    The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.

  8. Collapse of white dwarfs in low mass binary systems

    International Nuclear Information System (INIS)

    Isern, J.; Canal, R.; Garcia-Berro, E.; Hernanz, M.; Labay, J.

    1987-01-01

    Low-mass binary X-ray sources and cataclysmic variables are composed of a compact star plus a non-degenerate star with a mass of the order of 1 M sun . In the first case, the degenerate star is a neutron star. In the second case, the star is a white dwarf. The similarities of both systems are so high that it is worthwhile to look for the possibility of obtaining a neutron star from the collapse of a white dwarf that accretes matter. The present work shows that massive, initially cold white dwarfs can collapse non-explosively if they accrete mass at a rate greater than 1.0E-7 M sun per year. (Author)

  9. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    Science.gov (United States)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  10. Distortion of Probability and Outcome Information in Risky Decisions

    Science.gov (United States)

    DeKay, Michael L.; Patino-Echeverri, Dalia; Fischbeck, Paul S.

    2009-01-01

    Substantial evidence indicates that information is distorted during decision making, but very few studies have assessed the distortion of probability and outcome information in risky decisions. In two studies involving six binary decisions (e.g., banning blood donations from people who have visited England, because of "mad cow disease"),…

  11. Optical three-step binary-logic-gate-based MSD arithmetic

    Science.gov (United States)

    Fyath, R. S.; Alsaffar, A. A. W.; Alam, M. S.

    2003-11-01

    A three-step modified signed-digit (MSD) adder is proposed which can be optically implmented using binary logic gates. The proposed scheme depends on encoding each MSD digits into a pair of binary digits using a two-state and multi-position based encoding scheme. The design algorithm depends on constructing the addition truth table of binary-coded MSD numbers and then using Karnaugh map to achieve output minimization. The functions associated with the optical binary logic gates are achieved by simply programming the decoding masks of an optical shadow-casting logic system.

  12. A BINARY ORBIT FOR THE MASSIVE, EVOLVED STAR HDE 326823, A WR+O SYSTEM PROGENITOR

    International Nuclear Information System (INIS)

    Richardson, N. D.; Gies, D. R.; Williams, S. J.

    2011-01-01

    The hot star HDE 326823 is a candidate transition-phase object that is evolving into a nitrogen-enriched Wolf-Rayet star. It is also a known low-amplitude, photometric variable with a 6.123 day period. We present new, high- and moderate-resolution spectroscopy of HDE 326823, and we show that the absorption lines show coherent Doppler shifts with this period while the emission lines display little or no velocity variation. We interpret the absorption line shifts as the orbital motion of the apparently brighter star in a close, interacting binary. We argue that this star is losing mass to a mass gainer star hidden in a thick accretion torus and to a circumbinary disk that is the source of the emission lines. HDE 326823 probably belongs to a class of objects that produce short-period WR+O binaries.

  13. The cool surfaces of binary near-Earth asteroids

    Science.gov (United States)

    Delbo, Marco; Walsh, Kevin; Mueller, Michael; Harris, Alan W.; Howell, Ellen S.

    2011-03-01

    Here we show results from thermal-infrared observations of km-sized binary near-Earth asteroids (NEAs). We combine previously published thermal properties for NEAs with newly derived values for three binary NEAs. The η value derived from the near-Earth asteroid thermal model (NEATM) for each object is then used to estimate an average thermal inertia for the population of binary NEAs and compared against similar estimates for the population of non-binaries. We find that these objects have, in general, surface temperatures cooler than the average values for non-binary NEAs as suggested by elevated η values. We discuss how this may be evidence of higher-than-average surface thermal inertia. This latter physical parameter is a sensitive indicator of the presence or absence of regolith: bodies covered with fine regolith, such as the Earth’s moon, have low thermal inertia, whereas a surface with little or no regolith displays high thermal inertia. Our results are suggestive of a binary formation mechanism capable of altering surface properties, possibly removing regolith: an obvious candidate is the YORP effect. We present also newly determined sizes and geometric visible albedos derived from thermal-infrared observations of three binary NEAs: (5381) Sekhmet, (153591) 2001 SN263, and (164121) 2003 YT1. The diameters of these asteroids are 1.41 ± 0.21 km, 1.56 ± 0.31 km, and 2.63 ± 0.40 km, respectively. Their albedos are 0.23 ± 0.13, 0.24 ± 0.16, and 0.048 ± 0.015, respectively.

  14. Chromospherically active stars. IV - HD 178450 = V478 Lyr: An early-type BY Draconis type binary

    Science.gov (United States)

    Fekel, Francis C.

    1988-01-01

    It is shown that the variable star HD 178450 = V478 Lyr is a chromospherically active G8 V single-lined spectroscopic binary with a period of 2.130514 days. This star is characterized by strong UV emission features and a filled-in H-alpha absorption line which is variable in strength. Classified as an early-type BY Draconis system, it is similar to the BY Dra star HD 175742 = V775 Her. The unseen secondary of HD 178450 has a mass of about 0.3 solar masses and is believed to be an M2-M3 dwarf.

  15. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search

    Directory of Open Access Journals (Sweden)

    Xingwang Huang

    2017-01-01

    Full Text Available Binary bat algorithm (BBA is a binary version of the bat algorithm (BA. It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO. Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.

  16. Comparative instrumental evaluation of efficacy and safety between a binary and a ternary system in chemexfoliation.

    Science.gov (United States)

    Cameli, Norma; Mariano, Maria; Ardigò, Marco; Corato, Cristina; De Paoli, Gianfranco; Berardesca, Enzo

    2017-09-20

    To instrumentally evaluate the efficacy and the safety of a new ternary system chemo exfoliating formulation (water-dimethyl isosorbide-acid) vs traditional binary systems (water and acid) where the acid is maintained in both the systems at the same concentration. Different peelings (binary system pyruvic acid and trichloroacetic acid-TCA, and ternary system pyruvic acid and TCA) were tested on the volar forearm of 20 volunteers of both sexes between 28 and 50 years old. The outcomes were evaluated at the baseline, 10 minutes, 24 hours, and 1 week after the peeling by means of noninvasive skin diagnosis techniques. In vivo reflectance confocal microscopy was used for stratum corneum evaluation, transepidermal waterloss, and Corneometry for skin barrier and hydration, Laser Doppler velocimetry in association with colorimetry for irritation and erythema analysis. The instrumental data obtained showed that the efficacy and safety of the new ternary system peel compounds were significantly higher compared with the binary system formulations tested. The new formulation peels improved chemexfoliation and reduced complications such as irritation, redness, and postinflammatory pigmentation compared to the traditional aqueous solutions. The study showed that ternary system chemexfoliation, using a controlled delivery technology, was able to provide the same clinical effects in term of stratum corneum reduction with a significantly reduced barrier alteration, water loss, and irritation/erythema compared to traditional binary system peels. © 2017 Wiley Periodicals, Inc.

  17. Close Binaries in the Orion Nebula Cluster: On the Universality of Stellar Multiplicity and the Origin of Field Stars

    Science.gov (United States)

    Duchene, Gaspard; Lacour, Sylvestre; Moraux, Estelle; Bouvier, Jerome; Goodwin, Simon

    2018-01-01

    While stellar multiplicity is an ubiquitous outcome of star formation, there is a clear dichotomy between the multiplicity properties of young (~1 Myr-old) stellar clusters, like the ONC, which host a mostly field-like population of visual binaries, and those of equally young sparse populations, like the Taurus-Auriga region, which host twice as many stellar companions. Two distinct scenarios can account for this observation: one in which different star-forming regions form different number of stars, and one in which multiplicity properties are universal at birth but where internal cluster dynamics destroy many wide binaries. To solve this ambiguity, one must probe binaries that are sufficiently close so as not to be destroyed through interactions with other cluster members. To this end, we have conducted a survey for 10-100 au binaries in the ONC using the aperture masking technique with the VLT adaptive optics system. Among our sample of the 42 ONC members, we discovered 13 companions in this range of projected separations. This is consistent with the companion frequency observed in the Taurus population and twice as high as that observed among field stars. This survey thus strongly supports the idea that stellar multiplicity is characterized by near-universal initial properties that can later be dynamically altered. On the other hand, this exacerbates the question of the origin of field stars, since only clusters much denser than the ONC can effectively destroyed binaries closer than 100 au.

  18. Asymmetric supernova explosions and the origin of binary pulsars

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1978-01-01

    The author investigates the effect of asymmetric supernova explosions on the orbital parameters of binary systems with a compact component. Such explosions are related to the origin of binary pulsars. The degree of asymmetry of the explosion is represented by the kick velocity gained by the exploding star due to the asymmetric mass ejection. The required kick velocity to produce the observed parameters of the binary pulsar PSR 1913 + 16 should be larger than approximately 80 km s -1 if the mass of the exploding star is larger than approximately 4 solar masses. The mean survival probability of the binary system ( ) is examined for various degrees of asymmetry in the explosion. The rare occurrence of a binary pulsar does not neccessarily imply that such a probability is low since not all pulsars have originated in a binary system. Assuming the birth rate of pulsars by Taylor and Manchester (1977), it is derived that would be as high as 0.25. Such values of can be obtained if the mass of the exploding stars is, in general, not large (< approximately 10 solar masses). (Auth.)

  19. General simulation algorithm for autocorrelated binary processes.

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  20. General simulation algorithm for autocorrelated binary processes

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.