WorldWideScience

Sample records for binary orbit physical

  1. A Physical Orbit for the High Proper Motion Binary HD 9939

    CERN Document Server

    Boden, A F; Torres, G; Boden, Andrew F.; Latham, David W.; Torres, Guillermo

    2006-01-01

    We report spectroscopic and interferometric observations of the high-proper motion double-lined binary system HD 9939, with an orbital period of approximately 25 days. By combining our radial-velocity and visibility measurements we estimate the system physical orbit and derive dynamical masses for the components of $M_A = 1.072 \\pm 0.014$ M$_{\\sun}$ and $M_B = 0.8383 \\pm 0.0081$ M$_{\\sun}$; fractional errors of 1.3% and 1.0%, respectively. We also determine a system distance of $42.23 \\pm 0.21$ pc, corresponding to an orbital parallax of $\\pi_{\\rm orb} = 23.68 \\pm 0.12$ mas. The system distance and the estimated brightness difference between the stars in $V$, $H$, and $K$ yield component absolute magnitudes in these bands. By spectroscopic analysis and spectral energy distribution modeling we also estimate the component effective temperatures and luminosities as $T_{\\rm eff}^A = 5050 \\pm 100$ K and $T_{\\rm eff}^B = 4950 \\pm 200$ K and $L_A$ = 2.451 $\\pm$ 0.041 $L_{\\sun}$ and $L_B$ = 0.424 $\\pm$ 0.023 $L_{\\sun...

  2. Orbits for sixteen binaries

    Directory of Open Access Journals (Sweden)

    Cvetković Z.

    2006-01-01

    Full Text Available In this paper orbits for 13 binaries are recalculated and presented. The reason is that recent observations show higher residuals than the corresponding ephemerides calculated by using the orbital elements given in the Sixth Catalog of Orbits of Visual Binary Stars. The binaries studied were: WDS 00182+7257 = A 803, WDS 00335+4006 = HO 3, WDS 00583+2124 = BU 302, WDS 01011+6022 = A 926, WDS 01014+1155 = BU 867, WDS 01112+4113 = A 655, WDS 01361−2954 + HJ 3447, WDS 02333+5219 = STT 42 AB,WDS 04362+0814 = A 1840 AB,WDS 08017−0836 = A 1580, WDS 08277−0425 = A 550, WDS 17471+1742 = STF 2215 and WDS 18025+4414 = BU 1127 Aa-B. In addition, for three binaries - WDS 01532+1526 = BU 260, WDS 02563+7253 = STF 312 AB and WDS 05003+3924 = STT 92 AB - the orbital elements are calculated for the first time. In this paper the authors present not only the orbital elements, but the masses dynamical parallaxes, absolute magnitudes and ephemerides for the next five years, as well.

  3. Capella (alpha Aurigae) revisited: New binary orbit, physical properties, and evolutionary state

    CERN Document Server

    Torres, Guillermo; Pavlovski, Kresimir; Dotter, Aaron

    2015-01-01

    Knowledge of the chemical composition and absolute masses of Capella are key to understanding the evolutionary state of this benchmark binary system comprising two giant stars. Previous efforts, including our own 2009 study, have largely failed to reach an acceptable agreement between the observations and current stellar evolution models, preventing us from assessing the status of the primary. Here we report a revision of the physical properties of the components incorporating recently published high-precision radial velocity measurements, and a new detailed chemical analysis providing abundances for more than 20 elements in both stars. We obtain highly precise (to about 0.3%) masses of 2.5687 +/- 0.0074 and 2.4828 +/- 0.0067 solar masses, radii of 11.98 +/- 0.57 and 8.83 +/- 0.33 solar radii, effective temperatures of 4970 +/- 50 K and 5730 +/- 60 K, and independently measured luminosities based on the orbital parallax (78.7 +/- 4.2 and 72.7 +/- 3.6 solar luminosities). We find an excellent match to stellar ...

  4. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue -- IX. Spotted pairs with red giants

    CERN Document Server

    Ratajczak, M; Konacki, M; Smith, A M S; Kozłowski, S K; Espinoza, N; Jordán, A; Brahm, R; Hempel, M; Anderson, D R; Hellier, C

    2016-01-01

    We present spectroscopic and photometric solutions for three spotted systems with red giant components. Absolute physical and orbital parameters for these double-lined detached eclipsing binary stars are presented for the first time. These were derived from the V-, and I-band ASAS and WASP photometry, and new radial velocities calculated from high quality optical spectra we obtained with a wide range of spectrographs and using the two-dimensional cross-correlation technique (TODCOR). All of the investigated systems (ASAS J184949-1518.7, BQ Aqr, and V1207 Cen) show the differential evolutionary phase of their components consisting of a main sequence star or a subgiant and a red giant, and thus constitute very informative objects in terms of testing stellar evolution models. Additionally, the systems show significant chromospheric activity of both components. They can be also classified as classical RS CVn-type stars. Besides the standard analysis of radial velocities and photometry, we applied spectral disenta...

  5. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IV. A 0.61 + 0.45 M_sun binary in a multiple system

    CERN Document Server

    Hełminiak, K G; Rozyczka, M; Kaluzny, J; Ratajczak, M; Borkowski, J; Sybilski, P; Muterspaugh, M W; Reichart, D E; Ivarsen, K M; Haislip, J B; Crain, J A; Foster, A C; Nysewander, M C; LaCluyze, A P

    2012-01-01

    We present the orbital and physical parameters of a newly discovered low-mass detached eclipsing binary from the All-Sky Automated Survey (ASAS) database: ASAS J011328-3821.1 A - a member of a visual binary system with the secondary component separated by about 1.4 seconds of arc. The radial velocities were calculated from the high-resolution spectra obtained with the 1.9-m Radcliffe/GIRAFFE, 3.9-m AAT/UCLES and 3.0-m Shane/HamSpec telescopes/spectrographs on the basis of the TODCOR technique and positions of H_alpha emission lines. For the analysis we used V and I band photometry obtained with the 1.0-m Elizabeth and robotic 0.41-m PROMPT telescopes, supplemented with the publicly available ASAS light curve of the system. We found that ASAS J011328-3821.1 A is composed of two late-type dwarfs having masses of M_1 = 0.612 +/- 0.030 M_sun, M_2 = 0.445 +/- 0.019 M_sun and radii of R_1 = 0.596 +/- 0.020 R_sun, R_2 = 0.445 +/- 0.024 R_sun, both show a substantial level of activity, which manifests in strong H_alp...

  6. Orbital and Physical Parameters of Visual Binary: WDS 17190-3459 ({\\alpha} 2000 = 17h 18m 56s and {\\delta} 2000 = - 34o 59' 22")

    CERN Document Server

    Nugraha, Rukman

    2010-01-01

    Since the Bosscha Observatory was established in 1923 researches on visual binary stars played an important role in astronomical studies in Indonesia. The visual binary of WDS 17190-3459 = MLO 4AB = HD156384 = HIP84709 was extensively observed at our observatory and other observatories. This system has already passed periastron three times since observed in the end of year 1876. The observation data is more than enough to construct an orbit. By using Thiele-Innes method we computed the orbit, and physical parameters are determined by using mass-luminosity relation. The result is presented in the table. Orbital Parameters: e = 0.578, P = 42.3 years, T = 1974.9, i = 132 o.7,{\\omega} = 247o.5, {\\Omega} = 318o.1, a = 1".713, mu = 8 o.51/years Physical Parameters:p = 0".134, Mbol1 = 6.7, Mbol2 = 7.4, M1 = 0.6 Mo, M2 = 0.5 Mo, q = 0.863. At time being there are several new methods for determining the orbit; for example the method of Gauss done by S\\"oderhjelm (1999) for calculating the orbit of the same stars WDS 1...

  7. The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit

    Science.gov (United States)

    Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.

    2013-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18

  8. The orbital elements and physical properties of the eclipsing binary BD+36 3317, a probable member of $\\delta$ Lyr cluster

    CERN Document Server

    Kıran, E; Değirmenci, Ö L; Wolf, M; Nemravová, J; Šlechta, M; Koubský, P

    2016-01-01

    Context. The fact that eclipsing binaries belong to a stellar group is useful, because the former can be used to estimate distance and additional properties of the latter, and vice versa. Aims. Our goal is to analyse new spectroscopic observations of BD$+36^\\circ3317$ along with the photometric observations from the literature and, for the first time, to derive all basic physical properties of this binary. We aim to find out whether the binary is indeed a member of the $\\delta$ Lyr open cluster. Methods. The spectra were reduced using the IRAF program and the radial velocities were measured with the program SPEFO. The line spectra of both components were disentangled with the program KOREL and compared to a grid of synthetic spectra. The final combined radial-velocity and photometric solution was obtained with the program PHOEBE. Results. We obtained the following physical elements of BD$+36^\\circ3317$: $M_1 = 2.24\\pm0.07 M_{\\odot}$, $M_2 = 1.52\\pm0.03 M_{\\odot}$, $R_1 = 1.76\\pm0.01 R_{\\odot}$, $R_2 = 1.46\\pm...

  9. Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - VI. AK Fornacis - a rare, bright K-type eclipsing binary

    CERN Document Server

    Hełminiak, K G; Ratajczak, M; Espinoza, N; Jordán, A; Konacki, M; Rabus, M

    2014-01-01

    We present the results of the combined photometric and spectroscopic analysis of a bright (V=9.14), nearby (d=31 pc), late-type detached eclipsing binary AK Fornacis. This P=3.981 d system has not been previously recognised as a double-lined spectroscopic binary, and this is the first full physical model of this unique target. With the FEROS, CORALIE and HARPS spectrographs we collected a number of high-resolution spectra in order to calculate radial velocities of both components of the binary. Measurements were done with our own disentangling procedure and the TODCOR technique, and were later combined with the photometry from the ASAS and SuperWASP archives. We also performed an atmospheric analysis of the component spectra with the Spectroscopy Made Easy (SME) package. Our analysis shows that AK For consists of two active, cool dwarfs having masses of $M_1=0.6958 \\pm 0.0010$ and $M_2=0.6355 \\pm 0.0007$ M$_\\odot$ and radii of $R_1=0.687 \\pm 0.020$ and $R_2=0.609 \\pm 0.016$ R$_\\odot$, slightly less metal abun...

  10. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - VII. V1200 Centauri: a bright triple in the Hyades moving group

    Science.gov (United States)

    Coronado, J.; Hełminiak, K. G.; Vanzi, L.; Espinoza, N.; Brahm, R.; Jordán, A.; Catelan, M.; Ratajczak, M.; Konacki, M.

    2015-04-01

    We present the orbital and physical parameters of the detached eclipsing binary V1200 Centauri (ASAS J135218-3837.3) from the analysis of spectroscopic observations and light curves from the All-Sky Automated Survey (ASAS) and SuperWASP (Wide Angle Search for Planets) data base. The radial velocities were computed from the high-resolution spectra obtained with the OUC (Observatorio Universidad Católica) 50-cm telescope and PUCHEROS (Pontificia Universidad Católica High Echelle Resolution Optical Spectrograph) spectrograph and with 1.2-m Euler telescope and CORALIE spectrograph using the cross-correlation technique TODCOR. We found that the absolute parameters of the system are M1 = 1.394 ± 0.030 M⊙, M2 = 0.866 ± 0.015 M⊙, R1 = 1.39 ± 0.15 R⊙, R2 = 1.10 ± 0.25 R⊙. We investigated the evolutionary status and kinematics of the binary and our results indicate that V1200 Centauri is likely a member of the Hyades moving group, but the largely inflated secondary's radius may suggest that the system may be even younger, around 30 Myr. We also found that the eclipsing pair is orbited by another, stellar-mass object on a 351-d orbit, which is unusually short for hierarchical triples. This makes V1200 Cen a potentially interesting target for testing the formation models of multiple stars.

  11. Orbital and physical parameters, and the distance of the eclipsing binary system OGLE-LMC-ECL-25658 in the Large Magellanic Cloud

    CERN Document Server

    Elgueta, S S; Gieren, W; Pietrzynski, G; Thompson, I B; Konorski, P; Pilecki, B; Villanova, S; Udalski, A; Soszynski, I; Suchomska, K; Karczmarek, P; Gorski, M; Wielgorski, P

    2016-01-01

    We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud. The system consists of two late G-type giant stars on an eccentric orbit and orbital period of ~200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson Devinney code. We derived orbital and physical parameters of the binary with a high precision of < 1 %. The masses and surface metallicities of the components are virtually the same and equal to 2.23 +/- 0.02 M_sun and [Fe/H] = -0.63 +/- 0.10 dex. However their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m...

  12. Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - VII. V1200 Centauri: a bright triple in the Hyades moving group

    CERN Document Server

    Coronado, J; Vanzi, L; Espinoza, N; Brahm, R; Jordán, A; Catelán, M; Ratajczak, M; Konacki, M

    2015-01-01

    We present the orbital and physical parameters of the detached eclipsing binary V1200~Centauri (ASAS~J135218-3837.3) from the analysis of spectroscopic observations and light curves from the \\textit{All Sky Automated Survey} (ASAS) and SuperWASP database. The radial velocities were computed from the high-resolution spectra obtained with the OUC 50-cm telescope and PUCHEROS spectrograph and with 1.2m Euler telescope and CORALIE spectrograph using the cross-correlation technique \\textsc{todcor}. We found that the absolute parameters of the system are $M_1= 1.394\\pm 0.030$ M$_\\odot$, $M_2= 0.866\\pm 0.015$ M$_\\odot$, $R_1= 1.39\\pm 0.15$ R$_\\odot$, $R_2= 1.10\\pm 0.25$ R$_\\odot$. We investigated the evolutionary status and kinematics of the binary and our results indicate that V1200~Centauri is likely a member of the Hyades moving group, but the largely inflated secondary's radius may suggest that the system may be even younger, around 30 Myr. We also found that the eclipsing pair is orbited by another, stellar-mas...

  13. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - VIII. The totally-eclipsing double-giant system HD 187669

    CERN Document Server

    Hełminiak, K G; Konacki, M; Pilecki, B; Ratajczak, M; Pietrzyński, G; Sybilski, P; Villanova, S; Gieren, W; Pojmański, G; Konorski, P; Suchomska, K; Reichart, D E; Ivarsen, K M; B., J; Haislip,; LaCluyze, A P

    2014-01-01

    We present the first full orbital and physical analysis of HD 187669, recognized by the All-Sky Automated Survey (ASAS) as the eclipsing binary ASAS J195222-3233.7. We combined multi-band photometry from the ASAS and SuperWASP public archives and 0.41-m PROMPT robotic telescopes with our high-precision radial velocities from the HARPS spectrograph. Two different approaches were used for the analysis: 1) fitting to all data simultaneously with the WD code, and 2) analysing each light curve (with JKTEBOP) and RVs separately and combining the partial results at the end. This system also shows a total primary (deeper) eclipse, lasting for about 6 days. A spectrum obtained during this eclipse was used to perform atmospheric analysis with the MOOG and SME codes in order to constrain physical parameters of the secondary. We found that ASAS J195222-3233.7 is a double-lined spectroscopic binary composed of two evolved, late-type giants, with masses of $M_1 = 1.504\\pm0.004$ and $M_2=1.505\\pm0.004$ M$_\\odot$, and radii ...

  14. The Orbital and Physical Parameters, and the Distance of the Eclipsing Binary System OGLE-LMC-ECL-25658 in the Large Magellanic Cloud

    Science.gov (United States)

    Elgueta, S. S.; Graczyk, D.; Gieren, W.; Pietrzyński, G.; Thompson, I. B.; Konorski, P.; Pilecki, B.; Villanova, S.; Udalski, A.; Soszyński, I.; Suchomska, K.; Karczmarek, P.; Górski, M.; Wielgórski, P.

    2016-08-01

    We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud (LMC). The system consists of two late G-type giant stars on an eccentric orbit with an orbital period of ˜200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson-Devinney code. We derived orbital and physical parameters of the binary with a high precision of \\lt 1%. The masses and surface metallicities of the components are virtually the same and equal to 2.23+/- 0.02 {M}⊙ and [{Fe}/{{H}}]\\=\\-0.63+/- 0.10 dex. However, their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M)\\=\\18.452+/- 0.023 (statistical) ± 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter, we applied a geometrical correction for its position in the LMC disk using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is {d}{{LMC}}\\=\\50.30+/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzyński et al.

  15. Early-type Eclipsing Binaries at Intermediate Orbital Periods

    CERN Document Server

    Moe, Maxwell

    2015-01-01

    We analyze 221 eclipsing binaries (EBs) in the Large Magellanic Cloud with B-type main-sequence (MS) primaries ($M_1$ $\\approx$ 4 - 14 M$_{\\odot}$) and orbital periods $P$ = 20 - 50 days that were photometrically monitored by the Optical Gravitational Lensing Experiment. We utilize our three-stage automated pipeline to (1) classify all 221 EBs, (2) fit physical models to the light curves of 130 detached well-defined EBs from which unique parameters can be determined, and (3) recover the intrinsic binary statistics by correcting for selection effects. We uncover two statistically significant trends with age. First, younger EBs tend to reside in dustier environments with larger photometric extinctions, an empirical relation that can be implemented when modeling stellar populations. Second, younger EBs generally have large eccentricities. This demonstrates that massive binaries at moderate orbital periods are born with a Maxwellian "thermal" orbital velocity distribution, which indicates they formed via dynamica...

  16. Orbits of Ten Visual Binary Stars

    Institute of Scientific and Technical Information of China (English)

    B.Novakovi(c)

    2007-01-01

    We present the orbits of ten visual binary stars:WDS 01015+6922.WDS 01424-0645,WDS 01461+6349,WDS 04374-0951,WDS 04478+5318,WDS 05255-0033,WDS 05491+6248,WDS 06404+4058,WDS 07479-1212,and WDS 18384+0850.We have also determined their masses,dynamical parallaxes and ephemerides.

  17. The orbital evolution of binary galaxies

    Science.gov (United States)

    Chan, R.; Junqueira, S.

    2001-02-01

    We present the results of self-consistent numerical simulations performed to study the orbital circularization of binary galaxies. We have generalized a previous model (Junqueira & de Freitas Pacheco 1994) and confirmed partially their results. The orbital evolution of pairs of galaxies is faster when we consider interacting pairs with contacting ``live'' galaxy halos but the circularization time remains larger than the Hubble time. Besides, the time behavior of the orbits has changed in comparison with previous work because of tidal forces and dynamical friction acting on the halos.

  18. Orbital eccentricities in primordial black holes binaries

    CERN Document Server

    Cholis, Ilias; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B; Raccanelli, Alvise

    2016-01-01

    It was recently suggested that the merger of $\\sim30\\,M_\\odot$ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on timescales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO a...

  19. Orbital eccentricities in primordial black hole binaries

    Science.gov (United States)

    Cholis, Ilias; Kovetz, Ely D.; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B.; Raccanelli, Alvise

    2016-10-01

    It was recently suggested that the merger of ˜30 M⊙ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on time scales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO and the Einstein Telescope to such effects. We show that if PBHs make up the dark matter, then roughly one event should have a detectable eccentricity given LIGO's expected sensitivity and observing time of six years. The Einstein Telescope should see O (10 ) such events after ten years.

  20. The Orbital Decay of Embedded Binary Stars

    CERN Document Server

    Stahler, Steven W

    2009-01-01

    Young binaries within dense molecular clouds are subject to dynamical friction from ambient gas. Consequently, their orbits decay, with both the separation and period decreasing in time. A simple analytic expression is derived for this braking torque. The derivation utilizes the fact that each binary acts as a quadrupolar source of acoustic waves. The acoustic disturbance has the morphology of a two-armed spiral and carries off angular momentum. From the expression for the braking torque, the binary orbital evolution is also determined analytically. This type of merger may help explain the origin of high-mass stars. If infrared dark clouds, with peak densities up to 10^7 cm^{-3}, contain low-mass binaries, those with separations less than 100 AU merge within about 10^5 yr. During the last few thousand years of the process, the rate of mechanical energy deposition in the gas exceeds the stars' radiative luminosity. Successive mergers may lead to the massive star formation believed to occur in these clouds.

  1. The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    CERN Document Server

    Triaud, Amaury H M J; Anderson, David R; Cargile, Phill; Cameron, Andrew Collier; Doyle, Amanda P; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gomez Maqueo; Hellier, Coel; Jehin, Emmanuel; Maxted, Pierre; Naef, Dominique; Pepe, Francesco; Pollacco, Don; Queloz, Didier; Ségransan, Damien; Smalley, Barry; Stassun, Keivan; Udry, Stéphane; West, Richard G

    2012-01-01

    This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 +/- 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects orbit in planes that appear aligned with their primaries' equatorial plane...

  2. Orbital Parameters for Two Young Spectroscopic Binaries

    Science.gov (United States)

    Karnath, Nicole

    I report orbital parameters for two low-mass, pre-main sequence spectroscopic binaries VSB 111 and VSB 126. These systems were originally identified as single-lined on the basis of visible-light spectral observations. High-resolution, infrared spectra were obtained to detect absorption lines of the secondary stars and measure radial velocities of both components in the systems. The combination of the visible and infrared observations of VSB 111 leads to a period of 902.1+/-0.9 days, an eccentricity of 0.788+/-0.008, and a mass ratio of 0.52+/-0.05. VSB 126 has a period of 12.9244+/-0.0002 days, an eccentricity of 0.18+/-0.02, and a mass ratio of 0.29+/-0.02. Visible-light photometry using the 0.8-m telescope at Lowell Observatory provided rotation periods for the primary stars in both systems, 3.74+/-0.02 days for VSB 111 and 5.71+/-0.07 days for VSB 126. Based on the vsini values, the primary rotation periods, and estimates for the primary radii, I find inclinations for the primary-star rotation axes, 42+47 -16° for VSB 111 and 54+36-29° for VSB 126, and compare these to the inclination angle of the binary orbits, iorb = 36+/-4° for VSB 111 and i orb = 45+/-4° for VSB 126, estimated from the orbital solutions. Both binaries are located in the young, star- forming cluster NGC 2264 with a complex and clumpy gas and dust structure at a distance of ~800 pc. The center-of-mass velocities of the two systems are consistent with distinct CO clouds within NGC 2264.

  3. Alignment of supermassive black hole binary orbits and spins

    CERN Document Server

    Miller, M Coleman

    2013-01-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from ~1 pc to 0.001 - 0.01 pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor ~(m_1/m_2)^{1/2}>1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignm...

  4. Multiple-Orbit Simulations of Binary Neutron Stars

    CERN Document Server

    Suh, InSaeng; Haywood, J Reese; Lan, N Q

    2016-01-01

    We study the general relativistic hydrodynamic evolution of neutron stars in binary orbits and analyze the equation of state dependence of the orbits as the stars approach the inner most last stable circular orbit. We show that by employing a conformally flat condition on the metric, one can stably numerically evolve ~100 quasi-circular orbits and could straightforwardly extend the calculation to the ~10,000 orbits needed to follow stars through the LIGO frequency band. We apply this code to orbiting neutron stars in the quasi-circular orbit approximation to both demonstrate the stability of this approach and explore the equation of state dependence of the orbital properties. We employ variety of available realistic neutron star equations of state as well as a Gamma=2 polytrope. We confirm that both the orbital and emergent gravity wave frequency evolve more slowly for a softer equation of state as the stars approach the innermost stable circular orbit.

  5. The orbital elements and physical properties of the eclipsing binary BD+36°3317, a probable member of δ Lyrae cluster

    Science.gov (United States)

    Kıran, E.; Harmanec, P.; Değirmenci, Ö. L.; Wolf, M.; Nemravová, J.; Šlechta, M.; Koubský, P.

    2016-03-01

    Context. The fact that eclipsing binaries belong to a stellar group is useful, because the former can be used to estimate distance and additional properties of the latter, and vice versa. Aims: Our goal is to analyse new spectroscopic observations of BD+ 36°3317 along with the photometric observations from the literature and, for the first time, to derive all basic physical properties of this binary. We aim to find out whether the binary is indeed a member of the δ Lyr open cluster. Methods: The spectra were reduced using the IRAF program and the radial velocities were measured with the program SPEFO. The line spectra of both components were disentangled with the program KOREL and compared to a grid of synthetic spectra. The final combined radial-velocity and photometric solution was obtained with the program PHOEBE. Results: We obtained the following physical elements of BD+36°3317: M1 = 2.24 ± 0.07 M⊙, M2 = 1.52 ± 0.03 M⊙, R1 = 1.76 ± 0.01 R⊙, R2 = 1.46 ± 0.01 R⊙, log L1 = 1.52 ± 0.08 L⊙, log L2 = 0.81 ± 0.07 L⊙. We derived the effective temperatures Teff,1 = 10 450 ± 420 K, Teff,2 = 7623 ± 328 K. Both components are located close to zero age main sequence in the Hertzsprung-Russell (HR) diagram and their masses and radii are consistent with the predictions of stellar evolutionary models. Our results imply the average distance to the system d̅ = 330 ± 29 pc. We re-investigated the membership of BD+ 36°3317 in the δ Lyr cluster and confirmed it. The distance to BD+ 36°3317, given above, therefore represents an accurate estimate of the true distance for δ Lyr cluster. Conclusions: The reality of the δ Lyr cluster and the cluster membership of BD+ 36°3317 have been reinforced.

  6. Bayesian analysis of exoplanet and binary orbits

    OpenAIRE

    Schulze-Hartung, Tim; Launhardt, Ralf; Henning, Thomas

    2012-01-01

    We introduce BASE (Bayesian astrometric and spectroscopic exoplanet detection and characterisation tool), a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The capabilities of BASE are demonstrated using all publicly available data of the binary Mizar A.

  7. Resolved astrometric orbits of ten O-type binaries

    CERN Document Server

    Bouquin, J -B Le; Gosset, E; De Becker, M; Duvert, G; Absil, O; Anthonioz, F; Berger, J -P; Ertel, S; Grellmann, R; Guieu, S; Kervella, P; Rabus, M; Willson, M

    2016-01-01

    Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2). We follow-up ten O+O binaries with AMBER, PIONIER and GRAVITY at the VLTI. Here, we report about 130 astrometric observations over the last 7 years. We combine this dataset with distance estimates to compute the total mass of the systems. We also compute preliminary individual component masses for the five systems with available SB2 radial velocities. Nine over the ten binaries have their three dimensional orbit well constrained. Four of them are known colliding wind, non-thermal radio emitters, and thus constitute valuable targets for future high angular resolution radio imaging. Two binaries break the correlation between period and eccentricity tentatively observed in previous studies. It suggests either that massive star formation produce a wide range of systems, or that several binary formation mechanisms ...

  8. Be discs in binary systems I. Coplanar orbits

    CERN Document Server

    Panoglou, Despina; Vieira, Rodrigo G; Cyr, Isabelle H; Jones, Carol E; Okazaki, Atsuo T; Rivinius, Thomas

    2016-01-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio, eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar systems. We simulate such binaries with the use of a smoothed particle hydrodynamics code. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. In circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc is smaller in size, more elongated and more massive for low viscosity parameter, small orbital separation and/or high mass ratio. Highly eccentric orbits are more complex, with the disc structure and total mass strongly dependent on the orbital phas...

  9. Constraining the orbits of young binary systems with ALMA

    Science.gov (United States)

    Nogueira, Natasha; Jensen, Eric L. N.; Akeson, Rachel L.

    2017-01-01

    Measuring the orbits of young binary systems can provide the stars' individual stellar masses as well as insight into the dynamical effects they should have on each others' protoplanetary disks. As a byproduct of our ALMA observations of disks in young binary systems, we are able to measure precise relative separations of binaries with separations of 0.22--0.35 arcsec (~ 30--50 AU at the distance of the Taurus star-forming region). Most of these systems were first resolved in the early 1990s, so our epoch 2015 observations add an additional point in the orbit that is 20--25 years after the discovery epoch. While this coverage does not yet yield a definitive orbit, the extended coverage allows improved constraints on the binary orbital parameters. We present updated orbital constraints on a number of young binary systems, including XZ Tau, GH Tau, GN Tau, IS Tau, V955 Tau, and JH 112.This work makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00150.S. and ADS/JAO.ALMA#2013.1.00105.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  10. HIPPARCOS PHOTOCENTRIC ORBITS OF 72 SINGLE-LINED SPECTROSCOPIC BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Ren Shulin; Fu Yanning, E-mail: rensl@pmo.ac.cn, E-mail: fyn@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-03-15

    By fitting the Hipparcos Intermediate Astrometric Data (HIAD), photocentric orbits can be obtained for the single-lined spectroscopic binaries (SB1s). In previous work, a simplifying approximation used in the fitting process was that the photocenter coincides with the primary, but simple arguments based on a mass-luminosity relation show that this approximation will introduce non-negligible deviation into photocentric orbits of a few SB1s. By fitting the revised HIAD without the approximation, the present paper tries to provide reliable photocentric orbits for those SB1s in the 9th Catalogue of Orbits of Spectroscopic Binaries having a reliable spectroscopic orbit of period between 50 days and 3.2 years. After a stringent assessment and screening process, we finally accept the photocentric orbits of 72 systems. Among these results, 37 orbits are obtained here for the first time. So far, only three of these systems are resolved with a known relative orbit. For each of them, the paired photocentric and relative orbits are in reasonably good agreement. For the 25 systems with a main-sequence primary, the masses of component stars and the semimajor axes of relative orbits are estimated for the purpose of planning ground-based observations.

  11. Towards the field binary population: Influence of orbital decay on close binaries

    CERN Document Server

    Korntreff, Christina; Pfalzner, Susanne

    2012-01-01

    Surveys of the binary populations in the solar neighbourhood have shown that the periods of G- and M-type stars are log-normally distributed. However, observations of young binary populations suggest a log-uniform distribution. Clearly some process(es) change the period distribution over time. Most stars form in star clusters, in which two important dynamical processes occur: i) gas-induced orbital decay of embedded binary systems and ii) destruction of soft binaries in three-body interactions. The emphasis here is on orbital decay which has been largely neglected so far. Using a combination of Monte-Carlo and dynamical nbody modelling it is demonstrated here that the cluster dynamics destroys the number of wide binaries, but leaves short-period binaries basically undisturbed even for a initially log-uniform distribution. By contrast orbital decay significantly reduces the number and changes the properties of short-period binaries, but leaves wide binaries largely uneffected. Until now it was unclear whether ...

  12. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - V. Investigation of subgiants and giants: the case of ASAS J010538-8003.7, ASAS J182510-2435.5, and V1980 Sgr

    CERN Document Server

    Ratajczak, M; Konacki, M; Jordan, A

    2013-01-01

    We present absolute physical and orbital parameters for three double-lined detached eclipsing binary systems from the All Sky Automated Survey (ASAS) catalogue with subgiant and giant components. These parameters were derived from archival V-band ASAS photometry and new radial velocities. The radial velocities were calculated from high quality optical spectra we obtained with the 8.2 m Subaru/HDS, ESO 3.6 m/HARPS, 1.9 m Radcliffe/GIRAFFE, CTIO 1.5 m/CHIRON, and 1.2 m Euler/CORALIE using the two-dimensional cross-correlation technique (TODCOR) and synthetic template spectra chosen for every system separately as references. The physical and orbital parameters of the systems were derived with the PHOEBE and JKTEBOP codes. We checked the evolutionary status of the systems with several sets of isochrones and determined distances for each system. The derived uncertainties for individual masses of ASAS J010538-8003.7, ASAS J182510-2435.5, and V1980 Sgr components vary from 0.7% to 3.6% while the radii are in the ran...

  13. Gravitational binary-lens events with prominent effects of lens orbital motion

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.; Han, C.; Choi, J.-Y. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Kubiak, M.; Soszyński, I.; Pietrzyński, G.; Poleski, R.; Ulaczyk, K.; Pietrukowicz, P.; Kozłowski, S.; Skowron, J.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Gaudi, B. S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR 7095 CNRS-Université Pierre and Marie Curie, 98bis Bd Arago, F-75014 Paris (France); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Depoy, D. L. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Dong, Subo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Collaboration: OGLE Collaboration; μFUN Collaboration; PLANET Collaboration; RoboNet Collaboration; and others

    2013-12-01

    Gravitational microlensing events produced by lenses composed of binary masses are important because they provide a major channel for determining physical parameters of lenses. In this work, we analyze the light curves of two binary-lens events, OGLE-2006-BLG-277 and OGLE-2012-BLG-0031, for which the light curves exhibit strong deviations from standard models. From modeling considering various second-order effects, we find that the deviations are mostly explained by the effect of the lens orbital motion. We also find that lens parallax effects can mimic orbital effects to some extent. This implies that modeling light curves of binary-lens events not considering orbital effects can result in lens parallaxes that are substantially different from actual values and thus wrong determinations of physical lens parameters. This demonstrates the importance of routine consideration of orbital effects in interpreting light curves of binary-lens events. It is found that the lens of OGLE-2006-BLG-277 is a binary composed of a low-mass star and a brown dwarf companion.

  14. Characterizing Spinning Black Hole Binaries in Eccentric Orbits with LISA

    CERN Document Server

    Key, Joey Shapiro

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full seventeen parameter waveform model that includes the effects of orbital eccentricity, spin precession and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the ec...

  15. A Simple Analytical Formulation for Periodic Orbits in Binary Stars

    CERN Document Server

    Nagel, Erick

    2007-01-01

    An analytical approximation to periodic orbits in the circular restricted three-body problem is provided. The formulation given in this work is based in calculations known from classical mechanics, but with the addition of the necessary terms to give a fairly good approximation that we compare with simulations, resulting in a simple set of analytical expressions that solve periodic orbits on discs of binary systems without the need of solving the motion equations by numerical integrations.

  16. Periodic orbits of planets in binary systems

    Science.gov (United States)

    Voyatzis, G.

    2017-03-01

    Periodic solutions of the three body problem are very important for understanding its dynamics either in a theoretical framework or in various applications in celestial mechanics. In this paper we discuss the computation and continuation of periodic orbits for planetary systems. The study is restricted to coplanar motion. Starting from known results of two-planet systems around single stars, we perform continuation of solutions with respect to the mass and approach periodic orbits of single planets in two-star systems. Also, families of periodic solutions can be computed for fixed masses of the primaries. When they are linearly stable, we can conclude about the existence of phase space domains of long-term orbital stability.

  17. Interacting Binaries with Eccentric Orbits II. Secular Orbital Evolution Due To Non-Conservative Mass Transfer

    CERN Document Server

    Sepinsky, J F; Kalogera, V; Rasio, F A

    2009-01-01

    We investigate the secular evolution of the orbital semi-major axis and eccentricity due to mass transfer in eccentric binaries, allowing for both mass and angular momentum loss from the system. Adopting a delta function mass transfer rate at the periastron of the binary orbit, we find that, depending on the initial binary properties at the onset of mass transfer, the orbital semi-major axis and eccentricity can either increase or decrease at a rate linearly proportional to the magnitude of the mass transfer rate at periastron. The range of initial binary mass ratios and eccentricities that leads to increasing orbital semi-major axes and eccentricities broadens with increasing degrees of mass loss from the system and narrows with increasing orbital angular momentum loss from the binary. Comparison with tidal evolution timescales shows that the usual assumption of rapid circularization at the onset of mass transfer in eccentric binaries is not justified, irrespective of the degree of systemic mass and angular ...

  18. Orbital parameters and variability of the emission spectrum for the massive binary system 103 Tau

    Science.gov (United States)

    Tarasov, A. E.

    2016-09-01

    Based on high-resolution spectra taken near the He I 6678 Å line for the massive binary system 103 Tau, we have detected a weak absorption component belonging to the binary's secondary component. We have measured the radial velocities of both components, improved the previously known orbital parameters, and determined the new ones. The binary has an orbital period P orb = 58.305d, an orbital eccentricity e = 0.277, a radial velocity semi-amplitude of the bright component K A = 44.8 km s-1, and a component mass ratio M A / M B = 1.77. The absence of photometric variability and the estimates of physical parameters for the primary component suggest that the binary most likely has a considerable inclination of the orbital plane to the observer, i ≈ 50°-60°. In this case, the secondary component is probably a normal dwarf of spectral type B5-B8. Based on the spectra taken near the H α line, we have studied the variability of the emission profile. It is shown to be formed in the Roche lobe of the secondary component, but no traces of active mass exchange in the binary have been detected.

  19. Orbits for Nine Binaries and One Linear Solution

    Science.gov (United States)

    Cvetković, Z.; Pavlović, R.; Ninković, S.

    2016-03-01

    The subject of the present paper is the analysis of the orbital elements for nine binaries: WDS 00463-0634 = HDS 101, WDS 03264+3520 = HDS 430, WDS 03307-1926 = HDS 441, WDS 04025+0638 = HDS 510, WDS 09252+4606 = HDS 1353, WDS 09446+6459 = CHR 176, WDS 10294+1211 = HDS 1507, WDS 10596+1800 = HDS 1568, and WDS 14562+1745 = HDS 2108. The orbital elements are calculated for the first time for all of them. The eight binaries, denoted as HDS, were discovered during the Hipparcos mission. One binary, denoted as CHR, was discovered in the Center for High Angular Resolution Astronomy, CHARA, in 1988. These studied pairs have measured separations of less than 0.41 arcsec. For the eight pairs that have measured separations less than 0.3 arcsec, the resulting orbital periods fall within 16 and 55 years, and for the remaining one pair the orbital period is 94 years. In addition to the orbital elements, we also give (O - C) residuals in θ and ρ, masses, dynamical parallaxes, absolute magnitudes, spectral types, and ephemerides for the next five years. We also present one linear solution for the double star WDS 19218+7708 = HDS 2740 that has also been calculated for the first time. For this system we give (O - C) residuals in θ and ρ as well, along with ephemerides for the next five years.

  20. Accurate Evolutions of Orbiting Black-Hole Binaries Without Excision

    CERN Document Server

    Campanelli, M; Marronetti, P; Zlochower, Y

    2006-01-01

    We present a new algorithm for evolving orbiting black-hole binaries that does not require excision or a corotating shift. Our algorithm is based on a novel technique to handle the singular puncture conformal factor. This system, based on the BSSN formulation of Einstein's equations, when used with a `pre-collapsed' initial lapse, is non-singular at the start of the evolution, and remains non-singular and stable provided that a good choice is made for the gauge. As a test case, we use this technique to fully evolve orbiting black-hole binaries from near the Innermost Stable Circular Orbit (ISCO) regime. We show fourth order convergence of waveforms and compute the radiated gravitational energy and angular momentum from the plunge. These results are in good agreement with those predicted by the Lazarus approach.

  1. Interacting Binaries with Eccentric Orbits. III. Orbital Evolution due to Direct Impact and Self-Accretion

    CERN Document Server

    Sepinsky, J F; Kalogera, V; Rasio, F A

    2010-01-01

    The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of mass transfer is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion onto the companion star within a single orbit, self-accretion back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star, possibly leading to the formation of a disk. We calculate the secular evolution of the binary orbit in the first two cases and conclude that direct impact accretion can increase as well as decrease the orbital semi-major axis an...

  2. A complete waveform model for compact binaries on eccentric orbits

    Science.gov (United States)

    Huerta, Eliu; Agarwal, Bhanu; George, Daniel; Kumar, Prayush

    2016-03-01

    The detection of compact binaries with significant eccentricity in the sensitivity band of gravitational wave detectors will provide critical insights on the dynamics and formation channels of these events. In order to search for these systems and place constraints on their rates, we present an inspiral-merger-ringdown time domain waveform model that describes the GW emission from compact binaries on orbits with low to moderate values of eccentricity. We use this model to explore the detectability of these events in the context of advanced LIGO.

  3. Computational Algorithm for Orbit and Mass Determination of Visual Binaries

    CERN Document Server

    Sharaf, Mohamed; Saad, Abdel Naby; Elkhateeb, Magdy; Saad, Somaya

    2014-01-01

    In this paper we introduce an algorithm for determining the orbital elements and individual masses of visual binaries. The algorithm uses an optimal point, which minimizes a specific function describing the average length between the least-squares solution and the exact solution. The objective function to be minimized is exact, without any approximation. The algorithm is applied to Kowalsky's method for orbital parameter computation, and to Reed's method for the determination of the dynamical parallax and individual masses. The procedure is applied to A 1145 and ADS 15182.

  4. Accurate and efficient waveforms for compact binaries on eccentric orbits

    CERN Document Server

    Huerta, E A; McWilliams, Sean T; O'Shaughnessy, Richard; Yunes, Nicolas

    2014-01-01

    Compact binaries that emit gravitational waves in the sensitivity band of ground-based detectors can have non-negligible eccentricities just prior to merger, depending on the formation scenario. We develop a purely analytic, frequency-domain model for gravitational waves emitted by compact binaries on orbits with small eccentricity, which reduces to the quasi-circular post-Newtonian approximant TaylorF2 at zero eccentricity and to the post-circular approximation of Yunes et al. (2009) at small eccentricity. Our model uses a spectral approximation to the (post-Newtonian) Kepler problem to model the orbital phase as a function of frequency, accounting for eccentricity effects up to ${\\cal{O}}(e^8)$ at each post-Newtonian order. Our approach accurately reproduces an alternative time-domain eccentric waveform model for eccentricities $e\\in [0, 0.4]$ and binaries with total mass less than 12 solar masses. As an application, we evaluate the signal amplitude that eccentric binaries produce in different networks of e...

  5. Orbit of the mercury-manganese binary 41 Eridani

    Science.gov (United States)

    Hummel, C. A.; Schöller, M.; Duvert, G.; Hubrig, S.

    2017-03-01

    Context. Mercury-manganese (HgMn) stars are a class of slowly rotating chemically peculiar main-sequence late B-type stars. More than two-thirds of the HgMn stars are known to belong to spectroscopic binaries. Aims: By determining orbital solutions for binary HgMn stars, we will be able to obtain the masses for both components and the distance to the system. Consequently, we can establish the position of both components in the Hertzsprung-Russell diagram and confront the chemical peculiarities of the HgMn stars with their age and evolutionary history. Methods: We initiated a program to identify interferometric binaries in a sample of HgMn stars, using the PIONIER near-infrared interferometer at the VLTI on Cerro Paranal, Chile. For the detected systems, we intend to obtain full orbital solutions in conjunction with spectroscopic data. Results: The data obtained for the SB2 system 41 Eridani allowed the determination of the orbital elements with a period of just five days and a semi-major axis of under 2 mas. Including published radial velocity measurements, we derived almost identical masses of 3.17 ± 0.07 M⊙ for the primary and 3.07 ± 0.07 M⊙ for the secondary. The measured magnitude difference is less than 0.1 mag. The orbital parallax is 18.05 ± 0.17 mas, which is in good agreement with the Hipparcos trigonometric parallax of 18.33 ± 0.15 mas. The stellar diameters are resolved as well at 0.39 ± 0.03 mas. The spin rate is synchronized with the orbital rate. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.C-0111, 189.C-0644, 090.D-0291, and 090.D-0917.

  6. Physics Of Eclipsing Binaries. II. Toward the Increased Model Fidelity

    Science.gov (United States)

    Prša, A.; Conroy, K. E.; Horvat, M.; Pablo, H.; Kochoska, A.; Bloemen, S.; Giammarco, J.; Hambleton, K. M.; Degroote, P.

    2016-12-01

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.

  7. Interacting Binaries with Eccentric Orbits. Secular Orbital Evolution Due To Conservative Mass Transfer

    CERN Document Server

    Sepinsky, J F; Kalogera, V; Rasio, F A

    2007-01-01

    We investigate the secular evolution of the orbital semi-major axis and eccentricity due to mass transfer in eccentric binaries, assuming conservation of total system mass and orbital angular momentum. Assuming a delta function mass transfer rate centered at periastron, we find rates of secular change of the orbital semi-major axis and eccentricity which are linearly proportional to the magnitude of the mass transfer rate at periastron. The rates can be positive as well as negative, so that the semi-major axis and eccentricity can increase as well as decrease in time. Adopting a delta-function mass-transfer rate of $10^{-9} M_\\sun {\\rm yr}^{-1}$ at periastron yields orbital evolution timescales ranging from a few Myr to a Hubble time or more, depending on the binary mass ratio and orbital eccentricity. Comparison with orbital evolution timescales due to dissipative tides furthermore shows that tides cannot, in all cases, circularize the orbit rapidly enough to justify the often adopted assumption of instantan...

  8. Mass and orbit constraints of the gamma-ray binary LS 5039

    CERN Document Server

    Szalai, T; Kiss, L L; Matthews, J M; Vinkó, J; Kiss, Cs

    2011-01-01

    We present the results of space-based photometric and ground-based spectroscopic observing campaigns on the gamma-ray binary LS 5039. The new orbital and physical parameters of the system are similar to former results, except we found a lower eccentricity. Our MOST-data show that any broad-band optical photometric variability at the orbital period is below the 2 mmag level. Light curve simulations support the lower value of eccentricity and imply that the mass of the compact object is higher than 1.8 solar masses.

  9. Orbital Parameters for a Pre-Main Sequence Binary System

    Science.gov (United States)

    Karnath, Nicole; Prato, L.; Wasserman, L.

    2011-01-01

    The young system VSB 111 was originally classified as a single-lined spectroscopic binary in the star forming region of NGC 2264. Using the Keck II telescope we measured radial velocities for both the primary and secondary components in the infrared. By combining these data with previous visible light observations of the primary star, we derived the period, eccentricity, and other orbital parameters, as well as the mass ratio of the system. With additional information gained from further observations, for example the inclination derived from the angularly resolved orbit, we will eventually obtain the individual stellar masses, necessary to help to calibrate models of young star evolution. Furthermore, by compiling dozens or even hundreds of mass ratios for young binaries we can use mass ratio distributions to improve our understanding of binary star formation. No infrared excess or any other indication of a circumstellar disk is in evidence for VSB 111, indicating that either the accretion rate has dropped to an undetectable value or that this system has aged enough that its disk has dissipated, if originally present. Given the approximately 900 day period of this system, and its relatively high eccentricity, 0.8, the action of the companion could have been responsible for early dissipation of any disk material.

  10. A complete waveform model for compact binaries on eccentric orbits

    CERN Document Server

    Huerta, E A; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P; Chu, Tony; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela

    2016-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to non-linear memory. This framework reduces to the post-Newtonian approximant $\\texttt{TaylorT4}$ at third post-Newtonian order in the zero eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasi-circular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a c...

  11. Gravitational Wave Physics with Binary Love Relations

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolas

    2016-03-01

    Gravitational waves from the late inspiral of neutron star binaries encode rich information about their internal structure at supranuclear densities through their tidal deformabilities. However, extracting the individual tidal deformabilities of the components of a binary is challenging with future ground-based gravitational wave interferometers due to degeneracies between them. We overcome this difficulty by finding new, approximate universal relations between the individual tidal deformabilities that depend on the mass ratio of the two stars and are insensitive to their internal structure. Such relations have applications not only to gravitational wave astrophysics, but also to nuclear physics as they improve the measurement accuracy of tidal parameters. Moreover, the relations improve our ability to test extreme gravity and perform cosmology with gravitational waves emitted from neutron star binaries.

  12. The Possibility of Multiple Habitable Worlds Orbiting Binary Stars

    Science.gov (United States)

    Mason, P. A.

    2014-03-01

    Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a

  13. Circumbinary disk, an efficient medium extracting orbital angular momentum in close binaries

    Institute of Scientific and Technical Information of China (English)

    CHEN WenCong; ZENG QingGuo

    2009-01-01

    The loss of orbital angular momentum plays an important role in the mass transfer and orbital evolution of close binaries. The traditional mechanisms of orbital angular momentum loss consist of gravitational wave radiation, mass loss and magnetic braking. However, a small fraction of the mass outflow may form a thin circumbinary disk (CB disk) located in the orbital plane of the binary during mass exchange. The tide torques caused by the gravitational interaction between a CB disk and a binary system brake binary effectively, and extract the orbital angular momentum from the binary system. In this study, numerical calculations for the evolution of the white dwarf binary show that a CB disk is an efficient medium extracting orbital angular momentum even if the mass loss is very small. Finally, some theo-retical research and observational progress on CB disks are presented.

  14. Evidences on Secular Dynamical Evolution of Detached Active Binary Orbits and Contact Binary Formation

    CERN Document Server

    Eker, Z; Bilir, S; Karatas, Y

    2006-01-01

    Evidence of secular dynamical evolution for detached active binary orbits are presented. First order decreasing rates of orbital angular momentum (OAM), systemic mass ($M=M_{1}+M_{2}$) and orbital period of detached active binaries have been determined as $\\dot J/J = 3.48 \\times 10^{-10}$yr$^{-1}$, $\\dot M/M = 1.30 \\times 10^{-10}$yr$^{-1}$ and $\\dot P/P = 3.96\\times 10^{-10}$yr$^{-1}$ from the kinematical ages of 62 field detached systems. The ratio of $d \\log J/ d \\log M = 2.68$ implies that either there are mechanisms which amplify AM loss $\\delta=2.68$ times with respect to isotropic AM loss of hypothetical isotropic winds or there exist external causes contributing AM loss in order to produce this mean rate of decrease for orbital periods. Various decreasing rates of OAM ($d \\log J / dt$) and systemic mass ($d \\log M/ dt$) determine various speeds of dynamical evolutions towards a contact configuration. According to average dynamical evolution with $\\delta = 2.68$, the fraction of 10, 22 and 39 per cent ...

  15. Physical parameters of components in close binary systems: V

    CERN Document Server

    Zola, S; Zakrzewski, B; Kjurkchieva, D P; Marchev, D V; Baran, A; Rucinski, S M; Ogloza, W; Siwak, M; Koziel, D; Drozdz, M; Pokrzywka, B

    2009-01-01

    The paper presents combined spectroscopic and photometric orbital solutions for ten close binary systems: CN And, V776 Cas, FU Dra, UV Lyn, BB Peg, V592 Per, OU Ser, EQ Tau, HN UMa and HT Vir. The photometric data consist of new multicolor light curves, while the spectroscopy has been recently obtained within the radial velocity program at the David Dunlap Observatory (DDO). Absolute parameters of the components for these binary systems are derived. Our results confirm that CN And is not a contact system. Its configuration is semi-detached with the secondary component filling its Roche lobe. The configuration of nine other systems is contact. Three systems (V776 Cas, V592 Per and OU Ser) have high (44-77%) and six (FU Dra, UV Lyn, BB Peg, EQ Tau, HN UMa and HT Vir) low or intermediate (8-32%) fill-out factors. The absolute physical parameters are derived.

  16. Do floating orbits in extreme mass ratio binary black holes exist?

    CERN Document Server

    Kapadia, Shasvath J; Glampedakis, Kostas

    2013-01-01

    This paper examines the possibility of floating or non-decaying orbits for extreme mass ratio binary black holes. In the adiabatic approximation, valid in the extreme mass ratio case, if the orbital flux lost due to gravitational radiation reaction is compensated for by the orbital flux gained from the spins of the black holes via superradiant scattering (or, equivalently, tidal acceleration) the orbital decay would be stalled, causing the binary to "float". We show that this flux balance is not, in practice, possible for extreme mass ratio binary black holes with circular equatorial orbits; furthermore, adding eccentricity and inclination to the orbits will not significantly change this null result, thus ruling out the possibility of floating orbits for extreme mass ratio binary black holes. We also argue that binaries consisting of material bodies dense and massive enough to generate gravitational waves detectable by any kind of gravitational wave detector are also unlikely to float. Using a multipolar anal...

  17. Study of physical properties of spectroscopic binary stars

    Science.gov (United States)

    Popova, E. I.; Tutukov, A. V.; Yungelson, L. R.

    1982-11-01

    The main results of a study of a catalogue of physical parameters of 1041 spectroscopic binaries are presented. The results of the analysis of the observed distributions of SB's over the main, genetically and evolutionary stipulated parameters, such as apparent brightness and orbital periods, are given. The main effects of observational selection that prevent the direct analysis of innate distributions of SB's over masses, mass ratios of components, and the large semiaxes of their orbits are briefly discussed. Models of observed distributions of bright SB's over M(1), M(2)/M(1) and the large semiaxes are computed by a program which, starting with arbitrary distributions, generates models of observed distributions, taking into account the important effects of observational selection and stellar evolution.

  18. Investigation of the Orbital Properties of Intermediate-Mass Eclipsing Binary Star Systems

    Science.gov (United States)

    Obryan, Sierra; Ryle, W. T.; Williams, S.

    2013-06-01

    This research examines the orbital properties of intermediate-mass eclipsing binary stars. A binary eclipsing star system consists of two stars which orbit their common center of mass and pass in front of one another from our point of view. Many intermediate-mass eclipsing binary systems have been identified from the All Sky Automated Survey. However, this survey fails to produce well resolved data on each individual eclipse. This study overcomes this issue with dedicated observations from small aperture telescopes. By measuring the brightness of the system during an eclipse, light curves for each system can be generated. This information can then be combined with spectroscopic data to determine important physical parameters of the system. In particular, a new data analysis software package will be used to find revised mass and radius estimates for these stars. Refined physical parameters are vital due to these stars being used as astronomical distance indicators and comparison standards. This study currently focuses on star systems BD +11 3569, TYC 5933-142-1, and V448 Mon.

  19. Black-hole binaries go to eleven orbits

    CERN Document Server

    Sperhake, Ulrich; Mueller, Doreen; Sopuerta, Carlos F

    2010-01-01

    We analyse an eleven-orbit inspiral of a non-spinning black-hole binary with mass ratio q=M1/M2=4. The numerically obtained gravitational waveforms are compared with post-Newtonian (PN) predictions including several sub-dominant multipoles up to multipolar indices (l=5,m=5). We find that (i) numerical and post-Newtonian predictions of the phase of the (2,2) mode accumulate a phase difference of about 0.35 rad at the PN cut off frequency 0.1 for the Taylor T1 approximant; (ii) in contrast to previous studies of equal-mass and specific spinning binaries, we find the Taylor T4 approximant to agree less well with numerical results, provided the latter are extrapolated to infinite extraction radius; (iii) extrapolation of gravitational waveforms to infinite extraction radius is particularly important for subdominant multipoles with l unequal m; (iv) 3PN terms in post-Newtonian multipole expansions significantly improve the agreement with numerical predictions for sub-dominant multipoles.

  20. The third post-Newtonian gravitational waveforms for compact binary systems in general orbits: instantaneous terms

    CERN Document Server

    Mishra, Chandra Kant; Iyer, Bala R

    2015-01-01

    We compute the instantaneous contributions to the spherical harmonic modes of gravitational waveforms from compact binary systems in general orbits up to the third post-Newtonian order. We further extend these results for compact binaries in quasi-elliptical orbits using the 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric orbits. Using the multipolar post-Minkowskian formalism, starting from the different mass and current type multipole moments, we compute the spin weighted spherical harmonic decomposition of the instantaneous part of the gravitational waveform. These are terms which are functions of the retarded time and do not depend on the history of the binary evolution. Together with the hereditary part, which depends on the binary's dynamical history, these waveforms form the basis for construction of accurate templates for the detection of gravitational wave signals from binaries moving in quasi-elliptical orbits.

  1. Orbital Parameters for Two Young Spectroscopic Binary Systems

    Science.gov (United States)

    Karnath, Nicole; Prato, L. A.; Wasserman, L. H.; Torres, G.; Mathieu, R. D.

    2013-01-01

    Orbital parameters for two young, low-mass, pre-main sequence binary systems are described. Originally, VSB 111 and VSB 126 had parameters reported based on single-lined spectroscopic solutions. High-resolution, infrared spectra were obtained with the Keck II telescope on Mauna Kea and used to identify the lines of the secondary stars, yielding double-lined orbital solutions that include the systems' mass ratios. VSB 126 has a period of 12.9247±0.0001 days, an eccentricity of 0.184±0.015, and a mass ratio of 0.27±0.01. VSB 111 has a period of 901.3062±1.1792 days, an eccentricity of 0.791±0.008, and a mass ratio of 0.60±0.06. The two systems are located in the ~3 Myr old star forming region NGC 2264, at a distance of ~800 pc. We compare the cluster age and dynamical properties of the stars in these systems with the masses and ages predicted by models of pre-main sequence evolution. Partial support for this work was provided by NSF grant AST-1009136 (to LP).

  2. Post common envelope binaries from SDSS. XII: The orbital period distribution

    CERN Document Server

    Gómez-Morán, A Nebot; Schreiber, M R; Rebassa-Mansergas, A; Schwope, A D; Southworth, J; Aungwerojwit, A; Bothe, M; Davis, P J; Kolb, U; Müller, M; Papadaki, C; Pyrzas, S; Rabitz, A; Rodríguez-Gil, P; Schmidtobreick, L; Schwarz, R; Tappert, C; Toloza, O; Vogel, J; Zorotovic, M

    2011-01-01

    The complexity of the common envelope phase and of magnetic stellar wind braking currently limits our understanding of close binary evolution. Because of their intrinsically simple structure, observational population studies of white dwarf plus main sequence (WDMS) binaries hold the potential to test theoretical models and constrain their parameters. The Sloan Digital Sky Survey (SDSS) has provided a large and homogeneously selected sample of WDMS binaries, which we are characterising in terms of orbital and stellar parameters. We have obtained radial velocity information for 385 WDMS binaries from follow-up spectroscopy, and for an additional 861 systems from the SDSS sub-spectra. Radial velocity variations identify 191 of these WDMS binaries as post common envelope binaries (PCEBs). Orbital periods of 58 PCEBs were subsequently measured, predominantly from time-resolved spectroscopy, bringing the total number of SDSS PCEBs with orbital parameters to 79. Observational biases inherent to this PCEB sample were...

  3. THE PUZZLING MUTUAL ORBIT OF THE BINARY TROJAN ASTEROID (624) HEKTOR

    Energy Technology Data Exchange (ETDEWEB)

    Marchis, F.; Cuk, M. [Carl Sagan Center at the SETI Institute, Mountain View, CA 94043 (United States); Durech, J. [Astronomical Institute, Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Castillo-Rogez, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Vachier, F.; Berthier, J. [IMCCE-Obs de Paris, F-75014 Paris (France); Wong, M. H.; Kalas, P.; Duchene, G. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Van Dam, M. A. [Flat Wavefronts, Christchurch 8140 (New Zealand); Hamanowa, H. [Hamanowa Observatory, Motomiya, Fukushima 969-1204 (Japan); Viikinkoski, M., E-mail: fmarchis@seti.org [Tampere University of Technology, FI-33101 Tampere (Finland)

    2014-03-10

    Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W. M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req = 125 km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.

  4. VizieR Online Data Catalog: Orbits of visual binaries and dynamical masses (Malkov+, 2012)

    Science.gov (United States)

    Malkov, O. Yu.; Tamazian, V. S.; Docobo, J. A.; Chulkov, D. A.

    2012-10-01

    To compile the orbit list, we combined data from both OARMAC (catalog of Orbits and Ephemerides of Visual Double Stars) and ORB6 (Sixth Catalog of Orbits of Visual Binary Stars). At this stage, we maintained systems without parallax, but removed systems without a period / semi-major axis. The resulting list contains 3139 orbits for 2278 pairs: 1588 pairs have a single orbit, 548 pairs have two orbits, 120 pairs have three orbits, 19 pairs have four orbits, one pair has five orbits, and two pairs have seven orbits. Table 1 contains a compiled set (1) of 3139 orbit solutions for visual binary stars. Separate entries are provided for different pairs in multiple systems. Several solutions per pair are possible. Each entry includes main orbital elements (Semi-major axis, period, eccentricity with corresponding uncertainties), indication of multiplicity and number of solutions, as well as visual magnitudes, spectral classes of the components, parallax and interstellar extinction estimate. Table 2 contains a refined set of 652 solely binary systems with reliable orbit and determined parallax. One entry corresponds to one system. 3 masses estimates are provided: 1) Dynamical mass with uncertainty derived from Kepler's third law and trigonometric parallax, 2) Photometric mass estimated from visual magnitudes, parallax and mass-luminosity relation, 3) Spectroscopic mass based on mass-spectrum relation introduced by Straizys V. & Kuriliene G. 1981Ap&SS..80..353S. Main orbital elements, parallax, components magnitudes, spectral classes (2 data files).

  5. Physical parameters of close binary systems: VI

    CERN Document Server

    Gazeas, K D; Zola, S; Kreiner, J M; Rucinski, S M

    2009-01-01

    New high-quality CCD photometric light curves for the W UMa-type systems V410 Aur, CK Boo, FP Boo, V921 Her, ET Leo, XZ Leo, V839 Oph, V2357 Oph, AQ Psc and VY Sex are presented. The new multicolor light curves, combined with the spectroscopic data recently obtained at David Dunlap Observatory, are analyzed with the Wilson-Devinney code to yield the physical parameters (masses, radii and luminosities) of the components. Our models for all ten systems resulted in a contact configuration. Four binaries (V921 Her, XZ Leo, V2357 Oph and VY Sex) have low, while two (V410 Aur and CK Boo) have high fill-out factors. FP Boo, ET Leo, V839 Oph and AQ Psc have medium values of the fill-out factor. Three of the systems (FP Boo, V921 Her and XZ Leo) have very bright primaries as a result of their high temperatures and large radii.

  6. Orbital Period Variations in Eclipsing Post Common Envelope Binaries

    CERN Document Server

    Parsons, S G; Copperwheat, C M; Dhillon, V S; Littlefair, S P; Hickman, R D G; Maxted, P F L; Gänsicke, B T; Unda-Sanzana, E; Colque, J P; Barraza, N; Sánchez, N; Monard, L A G

    2010-01-01

    We present high speed ULTRACAM photometry of the eclipsing post common envelope binaries DE CVn, GK Vir, NN Ser, QS Vir, RR Cae, RX J2130.6+4710, SDSS 0110+1326 and SDSS 0303+0054 and use these data to measure precise mid-eclipse times in order to detect any period variations. We detect a large (~ 250 sec) departure from linearity in the eclipse times of QS Vir which Applegate's mechanism fails to reproduce by an order of magnitude. The only mechanism able to drive this period change is a third body in a highly elliptical orbit. However, the planetary/sub-stellar companion previously suggested to exist in this system is ruled out by our data. Our eclipse times show that the period decrease detected in NN Ser is continuing, with magnetic braking or a third body the only mechanisms able to explain this change. The planetary/sub-stellar companion previously suggested to exist in NN Ser is also ruled out by our data. Our precise eclipse times also lead to improved ephemerides for DE CVn and GK Vir. The width of a...

  7. Orbital period studies of the two contact binaries TZ Bootis and Y Sextantis

    Science.gov (United States)

    Qian, S.; Liu, Q.

    2000-03-01

    The physical properties of the two A-type contact binaries TZ Boo and Y Sex are nearly the same. In the present paper, many of their published times of light minima are collected and the changes in their orbital periods are analyzed. It is indicated that the orbital period of TZ Boo shows several alternating jumps while it undergoes a secular decrease of -11.8x10-8 days/year. Several random jumps superposed on a secular decrease (-5.5x10-8 days/year) are also found in the period of Y Sex. The secular decrease is usually interpreted as mass transfer from the more to the less massive components, or mass and angular momentum loss (AML) from the systems. According to the AML theory, on the contact stage, the orbital AML is mainly caused by the mass transfer from the less to the more massive component and the mass ratio decreasing and orbital period gradually increasing are the corresponding results. The extremely low mass ratio and orbital angular momentum of the two systems show that they are evolved via AML and the present secular decrease in the periods may suggest that the magnetic activity in the two systems are very strong. The relation between the changes of the orbital periods and the magnetic activity in the two systems are discussed. We think that the interplay between the variable AML and variable magnetic coupling can explain both the jumps and secular decrease in the orbital periods of the two systems. Table~2 and Table~4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strabg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  8. Deriving the orbital properties of pulsators in binary systems through their light arrival time delays

    CERN Document Server

    Murphy, Simon J

    2015-01-01

    We present the latest developments to the phase modulation method for finding binaries among pulsating stars. We demonstrate how the orbital elements of a pulsating binary star can be obtained analytically, that is, without converting time delays to radial velocities by numerical differentiation. Using the time delays directly offers greater precision, and allows the parameters of much smaller orbits to be derived. The method is applied to KIC9651065, KIC10990452, and KIC8264492, and a set of the orbital parameters is obtained for each system. Radial velocity curves for these stars are deduced from the orbital elements thus obtained.

  9. Modeling and analysis of periodic orbits around a contact binary asteroid

    NARCIS (Netherlands)

    Feng, J.; Noomen, R.; Visser, P.N.A.M.; Yuan, J.

    2015-01-01

    The existence and characteristics of periodic orbits (POs) in the vicinity of a contact binary asteroid are investigated with an averaged spherical harmonics model. A contact binary asteroid consists of two components connected to each other, resulting in a highly bifurcated shape. Here, it is repre

  10. Orbital period variations in eclipsing post-common-envelope binaries

    Science.gov (United States)

    Parsons, S. G.; Marsh, T. R.; Copperwheat, C. M.; Dhillon, V. S.; Littlefair, S. P.; Hickman, R. D. G.; Maxted, P. F. L.; Gänsicke, B. T.; Unda-Sanzana, E.; Colque, J. P.; Barraza, N.; Sánchez, N.; Monard, L. A. G.

    2010-10-01

    We present high-speed ULTRACAM photometry of the eclipsing post-common-envelope binaries DE CVn, GK Vir, NN Ser, QS Vir, RR Cae, RX J2130.6+4710, SDSS 0110+1326 and SDSS 0303+0054 and use these data to measure precise mid-eclipse times in order to detect any period variations. We detect a large (~250 s) departure from linearity in the eclipse times of QS Vir which Applegate's mechanism fails to reproduce by an order of magnitude. The only mechanism able to drive this period change is a third body in a highly elliptical orbit. However, the planetary/sub-stellar companion previously suggested to exist in this system is ruled out by our data. Our eclipse times show that the period decrease detected in NN Ser is continuing, with magnetic braking or a third body the only mechanisms able to explain this change. The planetary/sub-stellar companion previously suggested to exist in NN Ser is also ruled out by our data. Our precise eclipse times also lead to improved ephemerides for DE CVn and GK Vir. The width of a primary eclipse is directly related to the size of the secondary star and variations in the size of this star could be an indication of Applegate's mechanism or Wilson (starspot) depressions which can cause jitter in the O-C curves. We measure the width of primary eclipses for the systems NN Ser and GK Vir over several years but find no definitive variations in the radii of the secondary stars. However, our data are precise enough (Δ Rsec/Rsec effects of Applegate's mechanism in the future. We find no evidence of Wilson depressions in either system. We also find tentative indications that flaring rates of the secondary stars depend on their mass rather than rotation rates.

  11. The ELM Survey. VII. Orbital Properties of Low Mass White Dwarf Binaries

    CERN Document Server

    Brown, Warren R; Kilic, Mukremin; Kenyon, Scott J; Prieto, Carlos Allende

    2016-01-01

    We present the discovery of 15 extremely low mass (5 < log{g} < 7) white dwarf candidates, 9 of which are in ultra-compact double-degenerate binaries. Our targeted ELM Survey sample now includes 76 binaries. The sample has a lognormal distribution of orbital periods with a median period of 5.4 hr. The velocity amplitudes imply that the binary companions have a normal distribution of mass with 0.76 Msun mean and 0.25 Msun dispersion. Thus extremely low mass white dwarfs are found in binaries with a typical mass ratio of 1:4. Statistically speaking, 95% of the white dwarf binaries have a total mass below the Chandrasekhar mass and thus are not Type Ia supernova progenitors. Yet half of the observed binaries will merge in less than 6 Gyr due to gravitational wave radiation; probable outcomes include single massive white dwarfs and stable mass transfer AM CVn binaries.

  12. Observed and Intrinsic Properties of Binary Star Orbits

    Directory of Open Access Journals (Sweden)

    Guillermo Bosch

    2001-01-01

    Full Text Available We have analyzed the effects that the process of spectroscopic binary detection can introduce on the known statistics of these stars. Performing a Monte Carlo simulation, we have studied the possibility of having a 100% spectroscopic binarity. We show the biases in the period and mass ratio distribution introduced by a search for binaries on such a population.

  13. The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis

    CERN Document Server

    Barclay, Thomas; Adams, Fred C; Ciardi, David R; Huber, Daniel; Foreman-Mackey, Daniel; Montet, Benjamin T; Caldwell, Douglas

    2015-01-01

    Kepler-296 is a binary star system with two M-dwarf components separated by 0.2 arcsec. Five transiting planets have been confirmed to be associated with the Kepler-296 system; given the evidence to date, however, the planets could in principle orbit either star. This ambiguity has made it difficult to constrain both the orbital and physical properties of the planets. Using both statistical and analytical arguments, this paper shows that all five planets are highly likely to orbit the primary star in this system. We performed a Markov-Chain Monte Carlo simulation using a five transiting planet model, leaving the stellar density and dilution with uniform priors. Using importance sampling, we compared the model probabilities under the priors of the planets orbiting either the brighter or the fainter component of the binary. A model where the planets orbit the brighter component, Kepler-296A, is strongly preferred by the data. Combined with our assertion that all five planets orbit the same star, the two outer p...

  14. Binary evolution using the theory of osculating orbits: conservative Algol evolution

    CERN Document Server

    Davis, P J; Deschamps, R

    2014-01-01

    Our aim is to calculate the evolution of Algol binaries within the framework of the osculating orbital theory, which considers the perturbing forces acting on the orbit of each star arising from mass exchange via Roche lobe overflow (RLOF). The scheme is compared to results calculated from a `classical' prescription. Using our stellar binary evolution code BINSTAR, we calculate the orbital evolution of Algol binaries undergoing case A and case B mass transfer, by applying the osculating scheme. The velocities of the ejected and accreted material are evaluated by solving the restricted three-body equations of motion, within the ballistic approximation. This allows us to determine the change of linear momentum of each star, and the gravitational force applied by the mass transfer stream. Torques applied on the stellar spins by tides and mass transfer are also considered. Using the osculating formalism gives shorter post-mass transfer orbital periods typically by a factor of 4 compared to the classical scheme, o...

  15. On the Physical Processes in Contact Binary Systems

    Institute of Scientific and Technical Information of China (English)

    Run-Qian Huang; Han-Feng Song; Shao-Lan Bi

    2007-01-01

    Three important physical processes occurring in contact binary systems are studied.The first one is the effect of spin, orbital rotation and tide on the structure of the components,which includes also the effect of meridian circulation on the mixing of the chemical elements in the components. The second one is the mass and energy exchange between the components.To describe the energy exchange, a new approach is introduced based on the understanding that the exchange is due to the release of the potential, kinetic and thermal energy of the exchanged mass. The third is the loss of mass and angular momentum through the outer Lagrangian point. The rate of mass loss and the angular momentum carried away by the lost mass are discussed. To show the effects of these processes, we follow the evolution of a binary system consisting of a 12M⊙ and a 5M⊙ star with mass exchange between the components and mass loss via the outer Lagrangian point, both with and without considering the effects of rotation and tide. The result shows that the effect of rotation and tide advances the start of the semi-detached and the contact phases, and delays the end of the hydrogen-burning phase of the primary. Furthermore, it can change not only the occurrence of mass and angular momentum loss via the outer Lagrangian point, but also the contact or semi-contact status of the system. Thus, this effect can result in the special phenomenon of short-term variations occurring over a slow increase of the orbital period. The occurrence of mass and angular momentum loss via the outer Lagrangian point can affect the orbital period of the system significantly, but this process can be influenced, even suppressed out by the effect of rotation and tide. The mass and energy exchange occurs in the common envelope. The net result of the mass exchange process is a mass transfer from the primary to the secondary during the whole contact phase.

  16. The Ratio of Retrograde to Prograde Orbits: A Unique Way to test Kuiper Belt Binary Formation Theories

    CERN Document Server

    Schlichting, Hilke E

    2008-01-01

    With the discovery of Kuiper Belt binaries that have wide separations and roughly equal masses new theories were proposed to explain their formation. Two formation scenarios were suggested by Goldreich and collaborators: In the first, dynamical friction that is generated by the sea of small bodies enables a transient binary to become bound ($L^2s$ mechanism); in the second, a transient binary gets bound by an encounter with a third body ($L^3$ mechanism). We show that these different binary formation scenarios leave their own unique signatures in the relative abundance of prograde to retrograde binary orbits. This signature is due to stable retrograde orbits that exist much further out in the Hill sphere than prograde orbits. It provides an excellent opportunity to distinguish between the different binary formation scenarios observationally. We predict that if binary formation proceeded while sub-Hill velocities prevailed, the vast majority of all comparable mass ratio binaries have retrograde orbits. This do...

  17. Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries

    CERN Document Server

    Van Eylen, Vincent; Albrecht, Simon

    2016-01-01

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging, because it requires large and well-characterized samples including both hot and cool stars. Here we seek evidence for the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure $e\\cos\\omega$ based on the relative timing of the primary and secondary eclipses. We examine the distribution of $e\\cos\\omega$ as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot-hot binaries are most likely to be eccentric; for periods shorter than 4 days, significant eccentricities occur frequently for hot-hot binaries, but not for hot-co...

  18. Precession of the Orbital Plane of Binary Pulsars and Significant Variabilities

    Institute of Scientific and Technical Information of China (English)

    Bi-Ping Gong

    2005-01-01

    There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schafer and Wex & Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schafer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i =87.7+17 -29 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex & Kopeikin's is supported.

  19. Physics Of Eclipsing Binaries. II. The Increased Model Precision

    CERN Document Server

    Prsa, Andrej; Horvat, Martin; Pablo, Herbert; Kochoska, Angela; Bloemen, Steven; Nemravova, Jana; Giammarco, Joseph; Hambleton, Kelly M; Degroote, Pieter

    2016-01-01

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. ...

  20. The spectroscopic orbits and physical parameters of GG Carinae

    Science.gov (United States)

    Marchiano, P.; Brandi, E.; Muratore, M. F.; Quiroga, C.; Ferrer, O. E.; García, L. G.

    2012-04-01

    Aims: GG Car is an eclipsing binary classified as a B[e] supergiant star. The aims of our study are to improve the orbital elements of the binary system in order to obtain the actual orbital period of this system. We also compare the spectral energy distribution of the observed fluxes over a wide wavelength range with a model of a circumstellar envelope composed of gas and dust. This fitting allows us to derive the physical parameters of the system and its environment, as well as to obtain an estimation of the distance to GG Car. Methods: We analyzed about 55 optical and near infrared spectrograms taken during 1996-2010. The spectroscopic orbits were obtained by measuring the radial velocities of the blueshifted absorptions of the He I P-Cygni profiles, which are very representative of the orbital motion of both stars. On the other hand, we modeled the spectral energy distribution of GG Car, proposing a simple model of a spherical envelope consisting of a layer close to the central star composed of ionized gas and other outermost layers composed of dust. Its effect on the spectral energy distribution considering a central B-type star is presented. Comparing the model with the observed continuum energy distribution of GG Car, we can derive fundamental parameters of the system, as well as global physical properties of the gas and dust envelope. It is also possible to estimate the distance taking the spectral regions into account where the theoretical data fit the observational data very well and using the set of parameters obtained and the value of the observed flux for different wavelengths. Results: For the first time, we have determined the orbits for both components of the binary through a detailed study of the He I lines, at λλ4471, 5875, 6678, and 7065 Å, thereby obtaining an orbital period of 31.033 days. An eccentric orbit with e = 0.28 and a mass ratio q = 2.2 ± 0.9 were calculated. Comparing the model with the observed continuum energy distribution of

  1. The Phases Differential Astrometry Data Archive. 2. Updated Binary Star Orbits and a Long Period Eclipsing Binary

    Science.gov (United States)

    2010-12-01

    reduction algorithms , and presents the full cata- log of astrometric measurements from PHASES (Muterspaugh et al. 2010d). The current paper combines...the binary orbit that were consistent with the visual orbit, though these are clustered at two observing epochs and showing little variation, making...4.3 km s−1), 2. 352 measurements by Neubauer (1944) (σ ∼ 1.2 km s−1), 3. 25 measurements by Wolff (1978) (σ ∼ 0.8 km s−1), 4. 60 measurements by

  2. Light equation in eclipsing binary CV Boo: third body candidate in elliptical orbit

    CERN Document Server

    Bogomazov, A I; Satovskii, B L; Krushevska, V N; Kuznyetsova, Yu G; Ehgamberdiev, Sh A; Karimov, R G; Khalikova, A V; Ibrahimov, M A; Irsmambetova, T R; Tutukov, A V

    2016-01-01

    A short period eclipsing binary star CV Boo is tested for the possible existence of additional bodies in the system with a help of the light equation method. We use data on the moments of minima from the literature as well as from our observations during 2014 May--July. A variation of the CV Boo's orbital period is found with a period of $\\approx 75$ d. This variation can be explained by the influence of a third star with a mass of $\\approx 0.4M_{\\odot}$ in an eccentric orbit with $e\\approx 0.9$. A possibility that the orbital period changes on long time scales is discussed. The suggested tertiary companion is near the chaotic zone around the central binary, so CV Boo represents an interesting example to test its dynamical evolution. A list of 14 minima moments of the binary obtained from our observations is presented.

  3. Orbital physics in the perovskite Ti oxides

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Masahito [Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Imada, Masatoshi [Institute for Solid State Physics, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2004-11-01

    Titanate compounds have been recognized as key materials for understanding the coupling of magnetism and orbitals in strongly correlated electron systems. In the perovskite Ti oxide RTiO{sub 3} (where R represents the trivalent rare-earth ions), which is a typical Mott-Hubbard insulator, the Ti t{sub 2g} orbitals and spins in the 3d{sup 1} state couple each other through the strong electron correlations, resulting in a rich variety of orbital-spin phases. One way of controlling the coupling is to change the tiltings of the TiO{sub 6} octahedra (namely the GdFeO{sub 3}-type distortion) by varying the R ions, through which the relative ratio of the electron bandwidth to the Coulomb interaction is controlled. With this control, these Mott insulators exhibit an antiferromagnetic-to-ferromagnetic (AFM-FM) phase transition, which has turned out to be a consequence of rich orbital physics in these materials. The origin and nature of orbital-spin structures of these Mott insulators have been intensively studied both experimentally and theoretically. When the Mott insulators are doped with carriers, the titanates show touchstone properties of the filling controlled Mott transition. In this paper, we first review the state of the art on the studies for understanding physics contained in the properties of the perovskite titanates. On the properties of the insulators, we focus on the following three topics: (1) the origin and nature of the ferromagnetism as well as the orbital ordering in the compounds with relatively small R ions such as GdTiO{sub 3} and YTiO{sub 3} (2) the origin of the G-type antiferromagnetism and the orbital state in LaTiO{sub 3} and (3) the orbital-spin structures in other AFM(G) compounds with relatively large R ions (R = Ce, Pr, Nd and Sm). On the basis of these discussions, we discuss the whole phase diagram together with mechanisms of the magnetic phase transition. On the basis of the microscopic understanding of the orbital-spin states, we show that

  4. Testing Theory with Dynamical Masses and Orbits of Ultracool Binaries

    CERN Document Server

    Dupuy, Trent J; Ireland, Michael J

    2011-01-01

    Mass is the fundamental parameter that governs the evolution of stars, brown dwarfs, and gas-giant planets. Thus, direct mass measurements are essential to test the evolutionary and atmospheric models that underpin studies of these objects. We present results from our program to test models using precise dynamical masses for visual binaries based on Keck laser guide star adaptive optics astrometric monitoring of a sample of over 30 ultracool (> M6) objects since 2005. In just the last 2 years, we have more than tripled the number of late-M, L, and T dwarf binaries with precise dynamical masses. For most field binaries, based on direct measurements of their luminosities and total masses, we find a "temperature problem" in that evolutionary model radii give effective temperatures that are inconsistent with those from model atmosphere fitting of observed spectra by 100-300 K. We also find a "luminosity problem" for the only binary with an independent age determination (from its solar-type primary via age-activit...

  5. A new photometric and spectroscopic study of the eclipsing binaries CC Her and CM Lac: Physical parameters and evolutionary status

    CERN Document Server

    Liakos, Alexios

    2014-01-01

    New complete light and radial velocities curves were obtained for the eclipsing binaries CC Her and CM Lac. The data are analysed with modern techniques in order to derive the physical parameters of the systems and study their present evolutionary status. We found that CC Her is a classical Algol type binary, while CM Lac is a detached system with two Main Sequence stars in asynchronous orbit.

  6. Orbit and spin evolution of synchronous binary stars on the main sequence

    Institute of Scientific and Technical Information of China (English)

    Lin-Sen Li

    2012-01-01

    A set of synchronous equations are derived from a set of non-synchronous equations.The analytical solutions are given by solving the set of differential equations.The results of the evolutionary trend of the spin-orbit interaction are that the semi-major axis gradually shrinks with time; the orbital eccentricity gradually decreases with time until orbital circularization occurs; the orbital period gradually shortens with time and the rotational angular velocity of the primary component gradually speeds up with time before the orbit achieves circularization.The theoretical results are applied to evolution of the orbit and spin of synchronous binary stars Algol A and B that are on the main sequence.The circularization time,lifetime and the evolutionary numerical solutions of orbit and spin when circularization time occurs are estimated for Algol A and B.

  7. Physical parameters of components in close binary systems: V

    OpenAIRE

    Zola, S.; Kreiner, J. M.; Zakrzewski, B.; Kjurkchieva, D. P.; Marchev, D. V.; Baran, A.; Rucinski, S. M.; Ogloza, W.; Siwak, M.; Koziel, D.; Drozdz, M.; Pokrzywka, B.

    2009-01-01

    The paper presents combined spectroscopic and photometric orbital solutions for ten close binary systems: CN And, V776 Cas, FU Dra, UV Lyn, BB Peg, V592 Per, OU Ser, EQ Tau, HN UMa and HT Vir. The photometric data consist of new multicolor light curves, while the spectroscopy has been recently obtained within the radial velocity program at the David Dunlap Observatory (DDO). Absolute parameters of the components for these binary systems are derived. Our results confirm that CN And is not a co...

  8. The Araucaria Project. Precise physical parameters of the eclipsing binary IO Aqr

    CERN Document Server

    Graczyk, D; Pietrzynski, G; Pilecki, B; Konorski, P; Gieren, W; Storm, J; Gallenne, A; Anderson, R I; Suchomska, K; West, R G; Pollacco, D; Faedi, F; Pojmanski, G

    2015-01-01

    Our aim is to precisely measure the physical parameters of the eclipsing binary IO Aqr and derive a distance to this system by applying a surface brightness - colour relation. Our motivation is to combine these parameters with future precise distance determinations from the GAIA space mission to derive precise surface brightness - colour relations for stars. We extensively used photometry from the Super-WASP and ASAS projects and precise radial velocities obtained from HARPS and CORALIE high-resolution spectra. We analysed light curves with the code JKTEBOP and radial velocity curves with the Wilson-Devinney program. We found that IO Aqr is a hierarchical triple system consisting of a double-lined short-period (P=2.37 d) spectroscopic binary and a low-luminosity and low-mass companion star orbiting the binary with a period of ~25000 d (~70 yr) on a very eccentric orbit. We derive high-precision (better than 1%) physical parameters of the inner binary, which is composed of two slightly evolved main-sequence st...

  9. Binary neutron star merger simulations with different initial orbital frequency and equation of state

    Science.gov (United States)

    Maione, F.; De Pietri, R.; Feo, A.; Löffler, F.

    2016-09-01

    We present results from three-dimensional general relativistic simulations of binary neutron star coalescences and mergers using public codes. We considered equal mass models where the baryon mass of the two neutron stars is 1.4{M}⊙ , described by four different equations of state (EOS) for the cold nuclear matter (APR4, SLy, H4, and MS1; all parametrized as piecewise polytropes). We started the simulations from four different initial interbinary distances (40,44.3,50, and 60 km), including up to the last 16 orbits before merger. That allows us to show the effects on the gravitational wave (GW) phase evolution, radiated energy and angular momentum due to: the use of different EOS, the orbital eccentricity present in the initial data and the initial separation (in the simulation) between the two stars. Our results show that eccentricity has a major role in the discrepancy between numerical and analytical waveforms until the very last few orbits, where ‘tidal’ effects and missing high-order post-Newtonian coefficients also play a significant role. We test different methods for extrapolating the GW signal extracted at finite radii to null infinity. We show that an effective procedure for integrating the Newman-Penrose {\\psi }4 signal to obtain the GW strain h is to apply a simple high-pass digital filter to h after a time domain integration, where only the two physical motivated integration constants are introduced. That should be preferred to the more common procedures of introducing additional integration constants, integrating in the frequency domain or filtering {\\psi }4 before integration.

  10. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    Science.gov (United States)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  11. THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Jovanovic, P.; Bon, N.; Popovic, L. C. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Marziani, P. [INAF, Osservatorio Astronomico di Padova, Padova (Italy); Shapovalova, A. I. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Borka Jovanovic, V.; Borka, D. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Sulentic, J. [Instituto de Astrofisica de Andalucia, CSIC, Apdo. 3004, E-18080 Granada (Spain)

    2012-11-10

    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.

  12. KIC 2831097 - A 2-year orbital-period RR Lyrae binary candidate

    CERN Document Server

    Sódor, Á; Liška, J; Bognár, Zs

    2016-01-01

    We report the discovery of a new Kepler first-overtone RR Lyrae pulsator, KIC 2831097. The pulsation shows large, 0.1 d amplitude, systematic phase variations that can be interpreted as light travel-time effect caused by orbital motion in a binary system, superimposed on a linear pulsation-period decrease. The assumed eccentric (e=0.47) orbit with the period of approximately 2 yr is the shortest among the non-eclipsing RR Lyrae binary candidates. The binary model gives a lowest estimate for the mass of the companion of 8.4 M_Sun, that places it among black hole candidates. Beside the first-overtone pulsation, numerous additional non-radial pulsation frequencies were also identified. We detected an ~47-d Blazhko-like irregular light-curve modulation.

  13. Orbits, masses and dynamical parallaxes of 12 visual binary systems

    Directory of Open Access Journals (Sweden)

    Olević Dragomir M.

    2003-01-01

    Full Text Available In this paper the preliminary orbital elements are presented for the following double stars: WDS 00153+4412 = A 1256 AB, WDS 00470+2315 = HU 413, WDS 00520+3154 = A 924, WDS 01036+6341 = MLR 87, WDS 01131+2942 = A 1260, WDS 01158+0947 = A 2102, WDS 01200-1549 = HJ 2036, WDS 02423+4925 = HU 539, WDS 02512+0141 = A 2338, WDS 02514-2139 = DON 43, WDS 06253+0130 = FIN 343, WDS 20329+1142 = J 1. For all pairs in addition to the orbital elements, the dynamical parallaxes, the masses, the absolute magnitudes, the observations the residuals (O-C and the ephemerides for the next six years are given.

  14. Tidal invariants for compact binaries on quasi-circular orbits

    CERN Document Server

    Dolan, Sam R; Ottewill, Adrian C; Warburton, Niels; Wardell, Barry

    2014-01-01

    We extend the gravitational self-force approach to encompass `self-interaction' tidal effects for a compact body of mass $\\mu$ on a quasi-circular orbit around a black hole of mass $M \\gg \\mu$. Specifically, we define and calculate at $O(\\mu)$ (conservative) shifts in the eigenvalues of the electric- and magnetic-type tidal tensors, and a (dissipative) shift in a scalar product between their eigenbases. This approach yields four gauge-invariant functions, from which one may construct other tidal quantities such as the curvature scalars and the speciality index. First, we analyze the general case of a geodesic in a regular perturbed vacuum spacetime admitting a helical Killing vector and a reflection symmetry. Next, we specialize to focus on circular orbits in the equatorial plane of Kerr spacetime at $O(\\mu)$. We present accurate numerical results for the Schwarzschild case for orbital radii up to the light-ring, calculated via independent implementations in Lorenz and Regge-Wheeler gauges. We show that our r...

  15. Orbital period changes and the higher-order multiplicity fraction amongst SuperWASP eclipsing binaries

    CERN Document Server

    Lohr, M E; Payne, S G; West, R G; Wheatley, P J

    2015-01-01

    Orbital period changes of binary stars may be caused by the presence of a third massive body in the system. Here we have searched the archive of the Wide Angle Search for Planets (SuperWASP) project for evidence of period variations in 13927 eclipsing binary candidates. Sinusoidal period changes, strongly suggestive of third bodies, were detected in 2% of cases; however, linear period changes were observed in a further 22% of systems. We argue on distributional grounds that the majority of these apparently linear changes are likely to reflect longer-term sinusoidal period variations caused by third bodies, and thus estimate a higher-order multiplicity fraction of 24% for SuperWASP binaries, in good agreement with other recent figures for the fraction of triple systems amongst binary stars in general.

  16. Frequency and time domain inspiral templates for comparable mass compact binaries in eccentric orbits

    CERN Document Server

    Tanay, Sashwat; Gopakumar, Achamveedu

    2016-01-01

    Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the post-circular scheme of Yunes {\\it et al.} [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasi-circular time-domain {\\texttt{TaylorT4}} approximant at 2PN o...

  17. Orbits of the visual binaries ADS 8814 and ADS 8065 from observations along a short arc

    Science.gov (United States)

    Kiselev, A. A.; Kiyaeva, O. V.; Romanenko, L. G.; Gorynya, N. A.

    2012-07-01

    The orbits of the visual binaries ADS 8814 and ADS 8065 are determined for the first time. The orbits were calculated using the parameters of the apparent motion, based on position observations along short arcs obtained on the 26-inch refrector of the Pulkovo Observatory, supplemented with radial-velocity observations for the stellar components in both pairs obtained on the 1-m telescope of the Simeiz Section of the Crimean Astrophysical Observatory. All previous visual and photographic observations of these stars after 1832 were also taken into account. The orbit of ADS 8814 was refined using the differential-correction method. The orbital periods of these two stars are about 800 and 6000 years, respectively. The mass estimates derived for the known parallaxes from the Hipparcos catalog correspond to the spectral types of these stars. The polar vectors of the obtained orbits in Galactic coordinates are also given.

  18. Stable Orbits in the Didymos Binary Asteroid System - Useful Platforms for Exploration

    Science.gov (United States)

    Damme, Friedrich; Hussmann, Hauke; Wickhusen, Kai; Enrico, Mai; Oberst, Jürgen

    2016-04-01

    We have analyzed particle motion in binary asteroid systems to search for stable orbits. In particular, we studied the motion of particles near the asteroid 1996 GT (Didymos), proposed as a target for the AIDA mission. The combined gravity fields of the odd-shaped rotating objects moving about each other are complex. In addition, orbiting spacecraft or dust particles are affected by radiation pressure, possibly exceeding the faint gravitational forces. For the numerical integrations, we adopt parameters for size, shape, and rotation from telescopic observations. To simulate the effect of radiation pressure during a spacecraft mission, we apply a spacecraft wing-box shape model. Integrations were carried out beginning in near-circular orbits over 11 days, during which the motion of the particles were examined. Most orbits are unstable with particles escaping quickly or colliding with the asteroid bodies. However, with carefully chosen initial positions, we found stable motion (in the orbiting plane of the secondary) associated with the Lagrangian points (L4 and L5), in addition to horseshoe orbits, where particles move from one of the Lagrangian point to the other. Finally, we examined orbits in 1:2 resonances with the motion of the orbital period of the secondary. Stable conditions depend strongly on season caused by the inclination of the mutual orbit plane with respect to Didymos solar orbit. At larger distance from the asteroid pair, we find the well-known terminator orbits where gravitational attraction is balanced against radiation pressure. Stable orbits and long motion arcs are useful for long tracking runs by radio or Laser instruments and are well-suited for modelling of the ephemerides of the asteroid pair and gravity field mapping. Furthermore, these orbits may be useful as observing posts or as platforms for approach. These orbits may also represent traps for dust particles, an opportunity for dust collection - or possibly a hazard to spacecraft

  19. Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991

    CERN Document Server

    Hernández, J I González; Rebolo, R; Casares, J

    2016-01-01

    We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2m-VLT telecope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of $\\dot P=-20.7\\pm12.7$ ms yr$^{-1}$ ($-24.5\\pm15.1$ $\\mu $s per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.

  20. Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991

    Science.gov (United States)

    González Hernández, J. I.; Suárez-Andrés, L.; Rebolo, R.; Casares, J.

    2017-02-01

    We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2-m VLT telescope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of dot{P}=-20.7± 12.7 ms yr-1 (-24.5 ± 15.1 μs per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.

  1. RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Kilic, Mukremin; Gianninas, A.; Kenyon, Scott J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Allende Prieto, Carlos; Cabrera-Lavers, Antonio [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Mukadam, Anjum S., E-mail: jjhermes@astro.as.utexas.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2012-10-01

    We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (- 9.8 {+-} 2.8) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.31 {+-} 0.09 ms yr{sup -1}). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M{sub 1} = 0.26 {+-} 0.04 M{sub Sun} and M{sub 2} = 0.50 {+-} 0.04 M{sub Sun }. General relativity predicts orbital decay due to gravitational wave radiation of (- 8.2 {+-} 1.7) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.26 {+-} 0.05 ms yr{sup -1}). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.

  2. Orbital parameters, chemical composition, and magnetic field of the Ap binary HD 98088

    CERN Document Server

    Folsom, C P; Wade, G A; Kochukhov, O; Alecian, E; Shulyak, D

    2013-01-01

    HD 98088 is a synchronised, double-lined spectroscopic binary system with a magnetic Ap primary component and an Am secondary component. We study this rare system using high-resolution MuSiCoS spectropolarimetric data, to gain insight into the effect of binarity on the origin of stellar magnetism and the formation of chemical peculiarities in A-type stars. Using a new collection of 29 high-resolution Stokes VQU spectra we re-derive the orbital and stellar physical parameters and conduct the first disentangling of spectroscopic observations of the system to conduct spectral analysis of the individual stellar components. From this analysis we determine the projected rotational velocities of the stars and conduct a detailed chemical abundance analysis of each component using both the SYNTH3 and ZEEMAN spectrum synthesis codes. The surface abundances of the primary component are typical of a cool Ap star, while those of the secondary component are typical of an Am star. We present the first magnetic analysis of b...

  3. Spectra disentangling applied to the Hyades binary Theta^2 Tau AB: new orbit, orbital parallax and component properties

    CERN Document Server

    Torres, K B V; Frémat, Y; Hensberge, H; Lebreton, Y; Y.,; Skoda, P

    2010-01-01

    Theta^2 Tauri is a detached and single-lined interferometric-spectroscopic binary as well as the most massive binary system of the Hyades cluster. The system revolves in an eccentric orbit with a periodicity of 140.7 days. The secondary has a similar temperature but is less evolved and fainter than the primary. It is also rotating more rapidly. Since the composite spectra are heavily blended, the direct extraction of radial velocities over the orbit of component B was hitherto unsuccessful. Using high-resolution spectroscopic data recently obtained with the Elodie (OHP, France) and Hermes (ORM, La Palma, Spain) spectrographs, and applying a spectra disentangling algorithm to three independent data sets including spectra from the Oak Ridge Observatory (USA), we derived an improved spectroscopic orbit and refined the solution by performing a combined astrometric-spectroscopic analysis based on the new spectroscopy and the long-baseline data from the Mark III optical interferometer. As a result, the velocity amp...

  4. 2.5PN kick from black-hole binaries in circular orbit: Nonspinning case

    CERN Document Server

    Mishra, Chandra Kant; Iyer, Bala R

    2013-01-01

    Using the Multipolar post-Minskowskian formalism, we compute the linear momentum flux from black-hole binaries in circular orbits and having no spins. The total linear momentum flux contains various types of instantaneous (which are functions of the retarded time) and hereditary (which depends on the dynamics of the binary in the past) terms both of which are analytically computed. In addition to the inspiral contribution, we use a simple model of plunge to compute the kick or recoil accumulated during this phase.

  5. First order post-Newtonian gravitational waveforms of binaries on eccentric orbits with Hansen coefficients

    Science.gov (United States)

    Mikóczi, Balázs; Forgács, Péter; Vasúth, Mátyás

    2015-08-01

    The inspiral and merger of supermassive black hole binary systems with high orbital eccentricity are among the promising sources of the advanced gravitational wave observatories. In this paper we compute gravitational waveforms in the frequency domain to the first post-Newtonian order, emitted by compact binary systems with arbitrary eccentricity. Our results are fully analytic, ready-to-use expressions of the waveforms in terms of a suitable generalization of Hansen coefficients known from celestial mechanics. Secular terms induced by the eccentricity are eliminated by introducing a suitable phase shift. The obtained waveforms have a rather simple structure, greatly facilitating their use in applications.

  6. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    CERN Document Server

    Knispel, B; Stappers, B W; Freire, P C C; Lazarus, P; Allen, B; Aulbert, C; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Cardoso, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J S; Eggenstein, H -B; Fehrmann, H; Ferdman, R; Hessels, J W T; Jenet, F A; Karako-Argaman, C; Kaspi, V M; van Leeuwen, J; Lorimer, D R; Lynch, R; Machenschalk, B; Madsen, E; McLaughlin, M A; Patel, C; Ransom, S M; Scholz, P; Siemens, X; Spitler, L G; Stairs, I H; Stovall, K; Swiggum, J K; Venkataraman, A; Wharton, R S; Zhu, W W

    2015-01-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 ($P=4.3$ ms) in a binary system with an eccentric ($e=0.08$) orbit in Pulsar ALFA survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 $M_\\odot$ and is most likely a white dwarf. Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities $e < 0.001$. However, four recently discovered binary MSPs have orbits with larger eccentricities ($0.03 < e < 0.4$); PSR J1950+2414 is only the fifth such system to be discovered. The upper limits for the the intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities of these systems are not compatible with the predictions of the standard recycling scenario: som...

  7. Periodic X-ray Modulation and its relation with orbital elements in Compact Binaries

    CERN Document Server

    Ghosh, Arindam

    2014-01-01

    Stellar companion of a black hole orbiting in an eccentric orbit will experience modulating tidal force with a periodicity same as that of the orbital period. This, in turn, would modulate accretion rates, and the seed photon flux which are inverse Comptonized to produce harder X-rays. By analyzing complete all sky monitor (ASM) data (1.5-12 keV) of RXTE and all sky survey data (15-50 keV) of Swift/BAT we discover this periodicity in several objects. We also estimate eccentricities from the RMS power of the peak around quasi-orbital periods (QOP). Our method provides an independent way to obtain time periods and eccentricities of such compact binaries.

  8. The Orbital Nature of 81 Ellipsoidal Red Giant Binaries in the Large Magellanic Cloud

    Science.gov (United States)

    Nie, J. D.; Wood, P. R.; Nicholls, C. P.

    2017-02-01

    In this paper, we collect a sample of 81 ellipsoidal red giant binaries in the Large Magellanic Cloud (LMC), and we study their orbital natures individually and statistically. The sample contains 59 systems with circular orbits and 22 systems with eccentric orbits. We derive orbital solutions using the 2010 version of the Wilson–Devinney code. The sample is selection-bias corrected, and the orbital parameter distributions are compared to model predictions for the LMC and to observations in the solar vicinity. The masses of the red giant primaries are found to range from about 0.6 to 9 {M}ȯ with a peak at around 1.5 {M}ȯ , in agreement with studies of the star formation history of the LMC, which find a burst of star formation beginning around 4 Gyr ago. The observed distribution of mass ratios q={m}2/{m}1 is more consistent with the flat q distribution derived for the solar vicinity by Raghavan et al. than it is with the solar vicinity q distribution derived by Duquennoy & Mayor. There is no evidence for an excess number of systems with equal mass components. We find that about 20% of the ellipsoidal binaries have eccentric orbits, twice the fraction estimated by Soszynski et al. Our eccentricity evolution test shows that the existence of eccentric ellipsoidal red giant binaries on the upper parts of the red giant branch (RGB) can only be explained if tidal circularization rates are ∼1/100 the rates given by the usual theory of tidal dissipation in convective stars.

  9. Are the orbital poles of binary stars in the solar neighbourhood anisotropically distributed?

    CERN Document Server

    Agati, J-L; Jorissen, A; Soulié, E; Udry, S; Verhas, P; Dommanget, J

    2014-01-01

    We test whether or not the orbital poles of the systems in the solar neighbourhood are isotropically distributed on the celestial sphere. The problem is plagued by the ambiguity on the position of the ascending node. Of the 95 systems closer than 18 pc from the Sun with an orbit in the 6th Catalogue of Orbits of Visual Binaries, the pole ambiguity could be resolved for 51 systems using radial velocity collected in the literature and CORAVEL database or acquired with the HERMES-Mercator spectrograph. For several systems, we can correct the erroneous nodes in the 6th Catalogue of Orbits and obtain new combined spectroscopic-astrometric orbits for seven systems [WDS 01083+5455Aa,Ab; 01418+4237AB; 02278+0426AB (SB2); 09006+4147AB (SB2); 16413+3136AB; 17121+4540AB; 18070+3034AB]. We used of spherical statistics to test for possible anisotropy. After ordering the binary systems by increasing distance from the Sun, we computed the false-alarm probability for subsamples of increasing sizes, from N = 1 up to the full ...

  10. Impact of the orbital uncertainties on the timing of pulsars in binary systems

    CERN Document Server

    Caliandro, G Andrea; Rea, Nanda

    2012-01-01

    The detection of pulsations from an X-ray binary is an unambiguous signature of the presence of a neutron star in the system. When the pulsations are missed in the radio band, their detection at other wavelengths, like X-ray or gamma-rays, requires orbital demodulation, since the length of the observations are often comparable to, or longer than the system orbital period. The detailed knowledge of the orbital parameters of binary systems plays a crucial role in the detection of the spin period of pulsars, since any uncertainty in their determination translates into a loss in the coherence of the signal during the demodulation process. In this paper, we present an analytical study aimed at unveiling how the uncertainties in the orbital parameters might impact on periodicity searches. We find a correlation between the power of the signal in the demodulated arrival time series and the uncertainty in each of the orbital parameters. This correlation is also a function of the pulsar frequency. We test our analytica...

  11. The Orbit of Transneptunian Binary Manw\\"e and Thorondor and their Upcoming Mutual Events

    OpenAIRE

    2014-01-01

    A new Hubble Space Telescope observation of the 7:4 resonant transneptunian binary system (385446) Manw\\"e has shown that, of two previously reported solutions for the orbit of its satellite Thorondor, the prograde one is correct. The orbit has a period of 110.18 $\\pm$ 0.02 days, semimajor axis of 6670 $\\pm$ 40 km, and an eccentricity of 0.563 $\\pm$ 0.007. It will be viewable edge-on from the inner solar system during 2015-2017, presenting opportunities to observe mutual occultation and eclip...

  12. Quasi-circular orbits of conformal thin-sandwich puncture binary black holes

    CERN Document Server

    Hannam, M D

    2005-01-01

    I construct initial data for equal-mass irrotational binary black holes using the conformal thin-sandwich puncture (CTSP) approach. I locate quasi-circular orbits using the effective-potential method, and estimate the location of the innermost stable circular orbit (ISCO). The ISCO prediction is consistent with results for conformal thin-sandwich data produced using excision techniques. These results also show that the ISCOs predicted by the effective-potential and ADM-Komar mass-comparison methods agree for CTS data, just as they did for Bowen-York data.

  13. Line Shapes Emitted from Spiral Structures around Symmetric Orbits of Supermassive Binary Black Holes

    CERN Document Server

    Smailagić, Marijana

    2016-01-01

    Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shapes variation are induced by supermassive binary black hole systems (SMBBH). We assume that accreting gas inside of circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.

  14. The final spin from binary black holes in quasi-circular orbits

    CERN Document Server

    Hofmann, Fabian; Rezzolla, Luciano

    2016-01-01

    We revisit the problem of predicting the spin magnitude and direction of the black hole resulting from the merger of two black holes with arbitrary masses and spins inspiralling in quasi-circular orbits. We do this by analyzing a catalog of 641 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum, but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins...

  15. Improved orbits and parallaxes for eight visual binaries with unrealistic previous masses using the Hipparcos parallax

    CERN Document Server

    Docobo, J A; Malkov, O Yu; Campo, P P; Chulkov, D A

    2016-01-01

    Improved orbits are presented for the visual binaries WDS 02366+1227, WDS 02434-6643, WDS 03244-1539, WDS 08507+1800, WDS 09128-6055, WDS 11532-1540, WDS 17375+2419, and WDS 22408-0333. The latest orbits for these binaries were demonstrating a great inconsistency between the systemic mass obtained through Kepler's Third Law and that calculated as a sum of their components' mass through standard mass-luminosity and mass-spectrum relationships. Our improvement allowed us to obtain consistent systemic masses for WDS 02434-6643 and WDS 09128-6055 without a need for changing the Hipparcos parallax. For the remaining 6 pairs, we suggest the use of their dynamical parallax as a reliable distance estimate unless more precise parallax is reported. Astrophysical and dynamical properties of individual objects are discussed.

  16. A Terrestrial Planet in a ~1 AU Orbit Around One Member of a ~15 AU Binary

    CERN Document Server

    Gould, A; Shin, I -G; Porritt, I; Skowron, J; Han, C; Yee, J C; Kozłowski, S; Choi, J -Y; Poleski, R; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Mróz, P; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Gaudi, B S; Christie, G W; Drummond, J; McCormick, J; Natusch, T; Ngan, H; Tan, T -G; Albrow, M; DePoy, D L; Hwang, K -H; Jung, Y K; Lee, C -U; Park, H; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Larsen, P; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Philpott, L; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Shvartzvald, Y; Maoz, D; Kaspi, S; Friedmann, M

    2014-01-01

    We detect a cold, terrestrial planet in a binary-star system using gravitational microlensing. The planet has low mass (2 Earth masses) and lies projected at $a_{\\perp,ph}$ ~ 0.8 astronomical units (AU) from its host star, similar to the Earth-Sun distance. However, the planet temperature is much lower, T<60 Kelvin, because the host star is only 0.10--0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host is itself orbiting a slightly more massive companion with projected separation $a_{\\perp,ch}=$10--15 AU. Straightforward modification of current microlensing search strategies could increase their sensitivity to planets in binary systems. With more detections, such binary-star/planetary systems could place constraints on models of planet formation and evolution. This detection is consistent with such systems being very common.

  17. Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Allen, B. [Leibniz Universität, Hannover, D-30167 Hannover (Germany); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Freire, P. C. C.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H. [Max-Planck-Institut für Gravitationsphysik, Callinstr. 38, D-30167 Hannover (Germany); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Department of Astronomy and Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Cardoso, F. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Ferdman, R. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T., E-mail: benjamin.knispel@aei.mpg.de [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

    2015-06-10

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  18. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    Science.gov (United States)

    Knispel, B.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Eggenstein, H.-B.; Fehrmann, H.; Ferdman, R.; Hessels, J. W. T.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; van Leeuwen, J.; Lorimer, D. R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Scholz, P.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; Venkataraman, A.; Wharton, R. S.; Zhu, W. W.

    2015-06-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  19. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    NARCIS (Netherlands)

    Knispel, B.; Lyne, A.G.; Stappers, B.W.; Freire, P.C.C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Deneva, J.S.; Eggenstein, H.B.; Fehrmann, H.; Ferdman, R.; Hessels, J.W.T.; Jenet, F.A.; Karako-Argaman, C.; Kaspi, V.M.; van Leeuwen, J.; Lorimer, D.R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M.A.; Patel, C.; Ransom, S.M.; Scholz, P.; Siemens, X.; Spitler, L.G.; Stairs, I.H.; Stovall, K.; Swiggum, J.K.; Venkataraman, A.; Wharton, R.S.; Zhu, W.W.

    2015-01-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a whi

  20. The large-scale nebular pattern of a superwind binary in an eccentric orbit

    Science.gov (United States)

    Kim, Hyosun; Trejo, Alfonso; Liu, Sheng-Yuan; Sahai, Raghvendra; Taam, Ronald E.; Morris, Mark R.; Hirano, Naomi; Hsieh, I.-Ta

    2017-03-01

    Preplanetary nebulae and planetary nebulae are evolved, mass-losing stellar objects that show a wide variety of morphologies. Many of these nebulae consist of outer structures that are nearly spherical (spiral/shell/arc/halo) and inner structures that are highly asymmetric (bipolar/multipolar) 1,2 . The coexistence of such geometrically distinct structures is enigmatic because it hints at the simultaneous presence of both wide and close binary interactions, a phenomenon that has been attributed to stellar binary systems with eccentric orbits 3 . Here, we report high-resolution molecular line observations of the circumstellar spiral-shell pattern of AFGL 3068, an asymptotic giant branch star transitioning to the preplanetary nebula phase. The observations clearly reveal that the dynamics of the mass loss is influenced by the presence of an eccentric-orbit binary. This quintessential object opens a window on the nature of deeply embedded binary stars through the circumstellar spiral-shell patterns that reside at distances of several thousand au from the stars.

  1. The Final Spin from Binary Black Holes in Quasi-circular Orbits

    Science.gov (United States)

    Hofmann, Fabian; Barausse, Enrico; Rezzolla, Luciano

    2016-07-01

    We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.

  2. Gravitational Microlensing Evidence for a Planet Orbiting a Binary Star System

    CERN Document Server

    Bennett, D P; Becker, A C; Butler, N; Dann, J H; Kaspi, S; Leibowitz, E M; Lipkin, Yu M; Maoz, D; Mendelson, H; Peterson, B A; Quinn, J; Shemmer, O; Thomson, S; Turner, S E

    1999-01-01

    The study of extra-solar planetary systems has emerged as a new discipline of observational astronomy in the past few years with the discovery of a number of extra-solar planets. The properties of most of these extra-solar planets were not anticipated by theoretical work on the formation of planetary systems. Here we report observations and light curve modeling of gravitational microlensing event MACHO-97-BLG-41, which indicates that the lens system consists of a planet orbiting a binary star system. According to this model, the mass ratio of the binary star system is 3.8:1 and the stars are most likely to be a late K dwarf and an M dwarf with a separation of about 1.8 AU. A planet of about 3 Jupiter masses orbits this system at a distance of about 7 AU. If our interpretation of this light curve is correct, it represents the first discovery of a planet orbiting a binary star system and the first detection of a Jovian planet via the gravitational microlensing technique. It suggests that giant planets may be co...

  3. The Near-contact Binary RZ Draconis with Two Possible Light-time Orbits

    Science.gov (United States)

    Yang, Y.-G.; Li, H.-L.; Dai, H.-F.; Zhang, L.-Y.

    2010-12-01

    We present new multicolor photometry for RZ Draconis, observed in 2009 at the Xinglong Station of the National Astronomical Observatories of China. By using the updated version of the Wilson-Devinney Code, the photometric-spectroscopic elements were deduced from new photometric observations and published radial velocity data. The mass ratio and orbital inclination are q = 0.375(±0.002) and i = 84fdg60(±0fdg13), respectively. The fill-out factor of the primary is f = 98.3%, implying that RZ Dra is an Algol-like near-contact binary. Based on 683 light minimum times from 1907 to 2009, the orbital period change was investigated in detail. From the O - C curve, it is discovered that two quasi-sinusoidal variations may exist (i.e., P 3 = 75.62(±2.20) yr and P 4 = 27.59(±0.10) yr), which likely result from light-time effects via the presence of two additional bodies. In a coplanar orbit with the binary system, the third and fourth bodies may be low-mass drafts (i.e., M 3 = 0.175 M sun and M 4 = 0.074 M sun). If this is true, RZ Dra may be a quadruple star. The additional body could extract angular momentum from the binary system, which may cause the orbit to shrink. With the orbit shrinking, the primary may fill its Roche lobe and RZ Dra evolves into a contact configuration.

  4. Eccentricity and Spin-Orbit Misalignment in Short-Period Stellar Binaries as a Signpost of Hidden Tertiary Companions

    CERN Document Server

    Anderson, Kassandra R; Storch, Natalia I

    2016-01-01

    Eclipsing binaries are observed to have a range of eccentricities and spin-orbit misalignments (stellar obliquities). Whether such properties are primordial, or arise from post-formation dynamical interactions remains uncertain. This paper considers the scenario in which the binary is the inner component of a hierarchical triple stellar system, and derives the requirements that the tertiary companion must satisfy in order to raise the eccentricity and obliquity of the inner binary. Through numerical integrations of the secular octupole-order equations of motion of stellar triples, coupled with the spin precession of the oblate primary star due to the torque from the secondary, we obtain a simple, robust condition for producing spin-orbit misalignment in the inner binary: In order to excite appreciable obliquity, the precession rate of the stellar spin axis must be smaller than the orbital precession rate due to the tertiary companion. This yields quantitative requirements on the mass and orbit of the tertiary...

  5. Constraining the Orbits of the Supermassive Binary Blackhole Pair 0402+379

    Science.gov (United States)

    Holland, Ben; Peck, Alison B.; Taylor, Gregory B.; Zavala, Robert T.; Romani, Roger W.

    2015-01-01

    Galaxy mergers are a relatively common occurrence in the Universe. Given that most large galaxies harbor supermassive black holes in their centers, it should follow that two supermassive black holes could be found in the centers of galaxies that have recently undergone a merger event. Supermassive black hole binaries (SMBHB) with small separation (referred to as "tight binaries"), however, are quite rare, implying that the mergers happen less often than we think, or that the binary black hole merger happens much more quickly than expected from simulations. We present observations of one of the best candidates for a tight SMBHB, 0402+379, made in 2003, 2005, and 2009 using the VLBA at 3 frequencies, and report on their apparent relative component motions over this time frame. Additionally, these results are compared to earlier observations of 0402+379 which can help establish a long time baseline. This information, although still preliminary, can be used to provide constraints on the orbits of this binary system which in turn may yield insight as to why these binary systems are not significantly more commonly detected in, for example, ULIRGs in the late stages of merger.

  6. The Araucaria project. Precise physical parameters of the eclipsing binary IO Aquarii

    Science.gov (United States)

    Graczyk, D.; Maxted, P. F. L.; Pietrzyński, G.; Pilecki, B.; Konorski, P.; Gieren, W.; Storm, J.; Gallenne, A.; Anderson, R. I.; Suchomska, K.; West, R. G.; Pollacco, D.; Faedi, F.; Pojmański, G.

    2015-09-01

    Aims: Our aim is to precisely measure the physical parameters of the eclipsing binary IO Aqr and derive a distance to this system by applying a surface brightness - colour relation. Our motivation is to combine these parameters with future precise distance determinations from the Gaia space mission to derive precise surface brightness - colour relations for stars. Methods: We extensively used photometry from the Super-WASP and ASAS projects and precise radial velocities obtained from HARPS and CORALIE high-resolution spectra. We analysed light curves with the code JKTEBOP and radial velocity curves with the Wilson-Devinney program. Results: We found that IO Aqr is a hierarchical triple system consisting of a double-lined short-period (P = 2.37 d) spectroscopic binary and a low-luminosity and low-mass companion star orbiting the binary with a period of ≳25 000 d (≳70 yr) on a very eccentric orbit. We derive high-precision (better than 1%) physical parameters of the inner binary, which is composed of two slightly evolved main-sequence stars (F5 V-IV + F6 V-IV) with masses of M1 = 1.569 ± 0.004 and M2 = 1.655 ± 0.004 M⊙ and radii R1 = 2.19 ± 0.02 and R2 = 2.49 ± 0.02 R⊙. The companion is most probably a late K-type dwarf with mass ≈0.6 M⊙. The distance to the system resulting from applying a () surface brightness - colour relation is 255 ± 6 (stat.) ± 6 (sys.) pc, which agrees well with the Hipparcos value of 270+91-55 pc, but is more precise by a factor of eight.

  7. Exoplanet detection. A terrestrial planet in a ~1-AU orbit around one member of a ~15-AU binary.

    Science.gov (United States)

    Gould, A; Udalski, A; Shin, I-G; Porritt, I; Skowron, J; Han, C; Yee, J C; Kozłowski, S; Choi, J-Y; Poleski, R; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Mróz, P; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Gaudi, B S; Christie, G W; Drummond, J; McCormick, J; Natusch, T; Ngan, H; Tan, T-G; Albrow, M; DePoy, D L; Hwang, K-H; Jung, Y K; Lee, C-U; Park, H; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Larsen, P; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Philpott, L; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Shvartzvald, Y; Maoz, D; Kaspi, S; Friedmann, M

    2014-07-04

    Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.

  8. Long-term orbital period behaviour of contact binaries V343 Ori and FZ Ori

    Science.gov (United States)

    Yıldırım, Muhammed Faruk; Soydugan, Faruk

    2017-02-01

    In this study, we investigated orbital period variations of two contact binaries V343 Ori and FZ Ori based on published minima times. Using the O-C analysis, it was found that both systems indicate orbital period increase. Mass transfer from less massive component to more massive component was used to explain increases in the orbital periods. On the other hand, the secular changes in their periods can be a sign of the thermal relaxation oscillation. In the O-C diagram of FZ Ori, periodic variations also exist. Cyclic periodic changes can be explained as being the result of a light-travel time effect via a tertiary body around the eclipsing pair. The minimum mass of probable tertiary component around FZ Ori was found to be 0.63 M⊙. In addition, the cyclic variation may be evidence of magnetic activity of the components, which are late-type stars.

  9. The Orbit of Transneptunian Binary Manw\\"e and Thorondor and their Upcoming Mutual Events

    CERN Document Server

    Grundy, W M; Porter, S B; Noll, K S

    2014-01-01

    A new Hubble Space Telescope observation of the 7:4 resonant transneptunian binary system (385446) Manw\\"e has shown that, of two previously reported solutions for the orbit of its satellite Thorondor, the prograde one is correct. The orbit has a period of 110.18 $\\pm$ 0.02 days, semimajor axis of 6670 $\\pm$ 40 km, and an eccentricity of 0.563 $\\pm$ 0.007. It will be viewable edge-on from the inner solar system during 2015-2017, presenting opportunities to observe mutual occultation and eclipse events. However, the number of observable events will be small, owing to the long orbital period and expected small sizes of the bodies relative to their separation. This paper presents predictions for events observable from Earth-based telescopes and discusses the associated uncertainties and challenges.

  10. Spectroscopic Orbital Elements for the Helium-Rich Subdwarf Binary PG1544+488

    CERN Document Server

    Şener, H Tuğça

    2014-01-01

    PG1544+488 is an exceptional short-period spectroscopic binary containing two subdwarf B stars. It is also exceptional because the surfaces of both components are extremely helium-rich. We present a new analysis of spectroscopy of PG1544+488 obtained with the William Herschel Telescope. We obtain improved orbital parameters and atmospheric parameters for each component. The orbital period $P=0.496\\pm0.002$\\,d, dynamical mass ratio $M_{\\rm B}/M_{\\rm A}=0.911\\pm0.015$, and spectroscopic radius ratio $R_{\\rm B}/R_{\\rm A}=0.939\\pm0.004$ indicate a binary consisting of nearly identical twins. The data are insufficient to distinguish any difference in surface composition between the components, which are slightly metal-poor (1/3 solar) and carbon-rich (0.3% by number). The latter indicates that the hotter component, at least, has ignited helium. The best theoretical model for the origin of PG1544+488 is by the ejection of a common envelope from a binary system in which both components are giants with helium cores o...

  11. The evolution of a binary in a retrograde circular orbit embedded in an accretion disk

    CERN Document Server

    Ivanov, P B; Paardekooper, S -J; Polnarev, A G

    2014-01-01

    Supermassive black hole binaries may form as a consequence of galaxy mergers. Both prograde and retrograde orbits have been proposed. We study a binary of a small mass ratio, q, in a retrograde orbit immersed in and interacting with a gaseous accretion disk in order to estimate time scales for inward migration leading to coalescence and the accretion rate to the secondary component. We employ both semi-analytic methods and two dimensional numerical simulations, focusing on the case where the binary mass ratio is small but large enough to significantly perturb the disk. We develop the theory of type I migration for this case and determine conditions for gap formation finding that then inward migration occurs on a time scale equal to the time required for one half of the secondary mass to be accreted through the unperturbed disk, with accretion onto the secondary playing only a minor role. The semi-analytic and fully numerical approaches are in good agreement, the former being applicable over long time scales. ...

  12. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    Science.gov (United States)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2011-01-01

    The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  13. Carrying the physics of black-hole binary evolution into gravitational-wave models for pulsar-timing arrays

    Science.gov (United States)

    Taylor, Stephen; Sampson, Laura; Simon, Joseph

    2016-03-01

    There has recently been significant interest in how the galactic environments of supermassive black-hole binaries influences the stochastic gravitational-wave background signal from a population of these systems, and in how the resulting detection prospects for pulsar-timing arrays are effected. Tackling these problems requires us to have robust and computationally-efficient models for the strain spectrum as a function of different environment influences or the binary orbital eccentricity. In this talk we describe a new method of constructing these models from a small number of synthesized black-hole binary populations which have varying input physics. We use these populations to train an interpolant via Gaussian-process regression, allowing us to carry real physics into our subsequent pulsar-timing array inferences, and to also correctly propagate forward uncertainties from our interpolation.

  14. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    Science.gov (United States)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  15. Physics of orbital degree of freedom - resonant X-ray scattering for observation of orbital ordering

    CERN Document Server

    Hirota, K

    2003-01-01

    Orbital degree of freedom plays very important roles in electric and magnetic properties in strongly correlated electron systems. The method for measurement of orbital ordering, however, has been limited so far. Recently it has been pointed out that the resonant X-ray scattering (RXS) technique is a very powerful tool to observe the ordering. In ths paper, the principle of RXS and the recent development are described after the general introduction of orbital degree of freedom. Finally the future in orbital physics will be discussed. (author)

  16. An interferometric-spectroscopic orbit for the binary HD 195987 Testing models of stellar evolution for metal-poor stars

    CERN Document Server

    Torres, G; Latham, D W; Pan, M; Stefanik, R P; Torres, Guillermo; Boden, Andrew F.; Latham, David W.; Pan, Margaret; Stefanik, Robert P.

    2002-01-01

    We report spectroscopic and interferometric observations of the moderately metal-poor double-lined binary system HD 195987, with an orbital period of 57.3 days. By combining our radial-velocity and visibility measurements we determine the orbital elements and derive absolute masses for the components of M(A) = 0.844 +/- 0.018 Msun and M(B) = 0.6650 +/- 0.0079 Msun, with relative errors of 2% and 1%, respectively. We also determine the orbital parallax, pi(orb) = 46.08 +/- 0.27 mas, corresponding to a distance of 21.70 +/- 0.13 pc. The parallax and the measured brightness difference between the stars in V, H, and K yield the component absolute magnitudes in those bands. We also estimate the effective temperatures of the stars as Teff(A) = 5200 +/- 100 K and Teff(B) = 4200 +/- 200 K. Together with detailed chemical abundance analyses from the literature giving [Fe/H] approximately -0.5 (corrected for binarity) and [alpha/Fe] = +0.36, we use these physical properties to test current models of stellar evolution f...

  17. A Binary Orbit for the Massive, Evolved Star HDE 326823, a WR+O System Progenitor

    CERN Document Server

    Richardson, Noel D; Williams, Stephen J

    2011-01-01

    The hot star HDE 326823 is a candidate transition-phase object that is evolving into a nitrogen-enriched Wolf-Rayet star. It is also a known low-amplitude, photometric variable with a 6.123 d period. We present new, high and moderate resolution spectroscopy of HDE 326823, and we show that the absorption lines show coherent Doppler shifts with this period while the emission lines display little or no velocity variation. We interpret the absorption line shifts as the orbital motion of the apparently brighter star in a close, interacting binary. We argue that this star is losing mass to a mass gainer star hidden in a thick accretion torus and to a circumbinary disk that is the source of the emission lines. HDE 326823 probably belongs to a class of objects that produce short-period WR+O binaries.

  18. On the Orbit of Visual Binary ADS 8119 AB ({\\alpha} = 11h18m10s.9 and {\\delta}=+31o31'44".9)

    CERN Document Server

    Siregar, S

    2010-01-01

    Xi UrsaMajoris ({\\xi} Uma) historically is one of the most important double star inconstellation Ursa Major, found by Sir William Herschel on May, 2, 1780 and the first binary successfully determined by using the principle of two body problem in 1828 by Savary. This star consists of two pair wide binary ADS8119 AB; in this case HD 98231(ADS8119 A) as primary and HD98230 (ADS 8119 B) as secondary. We have collected the observational data consist of separation angular ({\\rho}) and position angle ({\\theta}) fromthe observations in 1780 up to 2005 taken from Bosscha Observatory and other Observatories in the world. This paper presents the recent status of orbit binary system ADS 8119. By using Thiele Van den Bos method and empirical formula Strand's Mass-Luminosity relation we have determined the orbit and mass of ADS 8119AB. The result is; Orbital and Physical Element of ADS 8119 AB. Dynamical Elements, Orbit Orientation, Masses-Parallax; P = 60 years, e = 0.426, T = 1935.8, i = 110o9, {\\Omega} = 104o.7, {\\omega...

  19. Spin-orbit precession for eccentric black hole binaries at first order in the mass ratio

    CERN Document Server

    Akcay, Sarp; Dolan, Sam

    2016-01-01

    We consider spin-orbit ("geodetic") precession for a compact binary in strong-field gravity. Specifically, we compute $\\psi$, the ratio of the accumulated spin-precession and orbital angles over one radial period, for a spinning compact body orbiting a non-rotating black hole. We show that $\\psi$ can be computed for eccentric orbits in both the gravitational self-force and post-Newtonian frameworks, and that the results appear to be consistent. We present a post-Newtonian expansion for $\\psi$ at next-to-next-to-leading order, and a Lorenz-gauge gravitational self-force calculation for $\\psi$ at first order in the mass ratio. The latter provides new numerical data in the strong-field regime to inform the Effective One-Body model of the gravitational two-body problem. We conclude that $\\psi$ complements the Detweiler redshift $z$ as a key invariant quantity characterizing eccentric orbits in the gravitational two-body problem.

  20. Spin–orbit precession for eccentric black hole binaries at first order in the mass ratio

    Science.gov (United States)

    Akcay, Sarp; Dempsey, David; Dolan, Sam R.

    2017-04-01

    We consider spin–orbit (‘geodetic’) precession for a compact binary in strong-field gravity. Specifically, we compute ψ, the ratio of the accumulated spin-precession and orbital angles over one radial period, for a spinning compact body of mass m 1 and spin s 1, with {{s}1}\\ll Gm12/c , orbiting a non-rotating black hole. We show that ψ can be computed for eccentric orbits in both the gravitational self-force and post-Newtonian frameworks, and that the results appear to be consistent. We present a post-Newtonian expansion for ψ at next-to-next-to-leading order, and a Lorenz-gauge gravitational self-force calculation for ψ at first order in the mass ratio. The latter provides new numerical data in the strong-field regime to inform the effective one-body model of the gravitational two-body problem. We conclude that ψ complements the Detweiler redshift z as a key invariant quantity characterizing eccentric orbits in the gravitational two-body problem.

  1. Orbital-Period Variations and Photometric Analysis for the Neglected Contact Binary EH Cancri

    Science.gov (United States)

    Yang, Y.-G.; Shao, Z.-Y.; Pan, H.-J.; Yin, X.-G.

    2011-08-01

    New CCD photometry for the eclipsing binary EH Cnc was made from 2009 to 2011, and five new eclipsing times are presented. Through using the updated Wilson-Devinney code, we first deduced the photometric solution at χ2 = 0.9906. The results show that EH Cnc is a W-type contact binary, whose mass ratio and overcontact degree are q = 2.51 (± 0.02) and f = 27.7% (± 3.4%) , respectively. By analyzing the O - C curve of EH Cnc, it is found that there exists a secular-period decrease with a cyclic variation. The period and semiamplitude are P3=16.6(±0.4) yr and A = 0.0032 days (± 0.0003 days), respectively. This kind of cyclic variation may probably be attributed to the light-time effect via the presence of an unseen third body, because the values of ΔQ1,2 are much smaller than the typical one for close binaries. The orbital period of EH Cnc continuously decreases at a rate of dP/dt=-1.01(±0.05) × 10-7 days yr-1. This kind of secular period decrease may result from mass transfer from the primary to the secondary, accompanied by mass and angular momentum loss from the system. With the orbital period decreasing, the inner and outer Roche lobes will shrink, causing the contact degree to increase. Finally, binaries with decreasing periods, such as EH Cnc, will evolve into deep-contact configurations.

  2. Emergent spin-valley-orbital physics by spontaneous parity breaking

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-10-01

    The spin-orbit coupling in the absence of spatial inversion symmetry plays an important role in realizing intriguing electronic states in solids, such as topological insulators and unconventional superconductivity. Usually, the inversion symmetry breaking is inherent in the lattice structures, and hence, it is not easy to control these interesting properties by external parameters. We here theoretically investigate the possibility of generating the spin-orbital entanglement by spontaneous electronic ordering caused by electron correlations. In particular, we focus on the centrosymmetric lattices with local asymmetry at the lattice sites, e.g. zigzag, honeycomb, and diamond structures. In such systems, conventional staggered orders, such as charge order and antiferromagnetic order, break the inversion symmetry and activate the antisymmetric spin-orbit coupling, which is hidden in a sublattice-dependent form in the paramagnetic state. Considering a minimal two-orbital model on a honeycomb structure, we scrutinize the explicit form of the antisymmetric spin-orbit coupling for all the possible staggered charge, spin, orbital, and spin-orbital orders. We show that the complete table is useful for understanding of spin-valley-orbital physics, such as spin and valley splitting in the electronic band structure and generalized magnetoelectric responses in not only spin but also orbital and spin-orbital channels, reflecting in peculiar magnetic, elastic, and optical properties in solids.

  3. Orbital period variation study of the low-mass Algol eclipsing binary AI Draconis

    Directory of Open Access Journals (Sweden)

    Magdy A. Hanna

    2013-06-01

    Full Text Available Orbital period changes for the Algol-type eclipsing binary AI Dra were studied based on the analysis of its observed times of light minimum. The period variation showed cyclic changes in the interval from JD. ≈ 2436000 to JD. ≈ 2447500 and a secular period increase rate (dP/dt = 2.44 × 10−7 d/year starting from JD. ≈ 2448500 up to 2455262, in a time scale equals to 5 × 106 year.

  4. Highest Occupied Molecular Orbital of Cyclopentanone by Binary (e, 2e) Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-Feng; NING Chuan-Gang; DENG Jing-Kang; REN Xue-Guang; SU Guo-Lin; YANG Tie-Cheng; HUANG Yan-Ru

    2006-01-01

    @@ We report the first measurements of the momentum profiles of highest occupied molecular orbital (HOMO) and the complete valence shell binding energy spectra of cyclopentanone with impact energies of 600 and 1200 eV by a binary (e, 2e) spectrometer. The experimental momentum profiles of the HOMO orbital are compared with the theoretical momentum distribution calculated using the Hartree-Fock and density functional theory methods with various basis sets. However, none of these calculations gives a completely satisfactory description of the momentum distributions of the HOMO 7b2. The inadequacy of the calculations could result in the intensity difference of the second maximum at p ~l.2a.u. between the experiment and the theory. The discrepancy between experimental and theoretical data in the low-momentum region is explained with the distorted wave effect.

  5. Secular precessing compact binary dynamics, spin and orbital angular momentum flip-flops

    CERN Document Server

    Tápai, Márton; Gergely, László Árpád

    2016-01-01

    We derive the conservative secular evolution of precessing compact binaries to second post-Newtonian order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. The emerging closed system of first-order differential equations evolves the pairs of polar and azimuthal angles of the spin and orbital angular momentum vectors together with the periastron angle. In contrast with the instantaneous dynamics, the secular dynamics is autonomous. This secular dynamics reliably characterizes the system over timescales starting from a few times the radial period to several precessional periods, but less than the radiation reaction timescale. We numerically compare the instantaneous and secular evolutions and estimate the number of periods for which dissipation has no significant effect, e.g. the conservative timescale. We apply the analytic equations to study the spin flip-flop effect, recently found by numerical relativity methods. Our investigations show that the effect ...

  6. Visual orbit for the low-mass binary Gliese 22 AC from speckle interferometry

    CERN Document Server

    Woitas, J; Docobo, J A; Leinert, C; Leinert, Ch.

    2003-01-01

    Based on 14 data points obtained with near-infrared speckle interferometry and covering an almost entire revolution, we present a first visual orbit for the low-mass binary system Gliese 22 AC. The quality of the orbit is largely improved with respect to previous astrometric solutions. The dynamical system mass is 0.592 +- 0.065 solar masses, where the largest part of the error is due to the Hipparcos parallax. A comparison of this dynamical mass with mass-luminosity relations on the lower main sequence and theoretical evolutionary models for low-mass objects shows that both probably underestimate the masses of M dwarfs. A mass estimate for the companion Gliese 22 C indicates that this object is a very low-mass star with a mass close to the hydrogen burning mass limit.

  7. MAXI J1659-152: the shortest orbital period black-hole binary

    DEFF Research Database (Denmark)

    Kuulkers, E.; Kouveliotou, C.; van der Horst, A. J.

    -hole candidate. We confirm the dipping nature in the X-ray light curves. We find that the dips recur on a period of 2.4139+/-0.0005 hrs, and interpret this as the orbital period of the system. It is thus the shortest period black-hole X-ray binary known to date. Using the various observables, we derive...... the properties of the source. The inclination of the accretion disk with respect to the line of sight is estimated to be 60-75 degrees. The companion star to the black hole is possibly a M5 dwarf star, with a mass and radius of about 0.15 M_sun and 0.23 R_sun, respectively. The system is rather compact (orbital...

  8. Third post-Newtonian angular momentum flux and the secular evolution of orbital elements for inspiralling compact binaries in quasi-elliptical orbits

    CERN Document Server

    Arun, K G; Iyer, Bala R; Sinha, Siddhartha

    2009-01-01

    The angular momentum flux from an inspiralling binary system of compact objects moving in quasi-elliptical orbits is computed at the third post-Newtonian (3PN) order using the multipolar post-Minkowskian wave generation formalism. The 3PN angular momentum flux involves the instantaneous, tail, and tail-of-tails contributions as for the 3PN energy flux, and in addition a contribution due to non-linear memory. We average the angular momentum flux over the binary's orbit using the 3PN quasi-Keplerian representation of elliptical orbits. The averaged angular momentum flux provides the final input needed for gravitational wave phasing of binaries moving in quasi-elliptical orbits. We obtain the evolution of orbital elements under 3PN gravitational radiation reaction in the quasi-elliptic case. For small eccentricities, we give simpler limiting expressions relevant for phasing up to order $e^2$. This work is important for the construction of templates for quasi-eccentric binaries, and for the comparison of post-New...

  9. Photoelectric Radial Velocities, Paper XVIII Spectroscopic Orbits for Another 52 Binaries in the Hyades Field

    Indian Academy of Sciences (India)

    R. F. Griffin

    2012-03-01

    Spectroscopic orbits are presented for 52 stars in the Hyades field, of which 41 prove to be actual members of the Hyades (with some reservations in two cases). Most of the stars concerned have not had orbits published for them previously. Three of them are of higher multiplicity. The already-known double-lined eclipsing system van Bueren 22 is demonstrated to be a triple system, as was obliquely announced 25 years ago; its `outer’ orbit, which has a period of about 8 years, is now determined. Van Bueren 75 is already known to be triple, but here the visual secondary is shown to be the (single-lined) spectroscopic sub-system, and an independent spectroscopic solution is given for the 40-year orbit of what has hitherto been regarded as the `visual’ pair. Van Bueren 102, for which a close visual companion was discovered comparatively recently, is a single-lined binary whose -velocity has shown a steady drift over at least the last 30 (probably 50) years. Three stars, vB 39, 50 and 59, have notably high eccentricities of 0.85, 0.98 and 0.94, respectively; they have quite long periods (especially vB 50, which is over 100 years), and every one of them contrived to pass the whole of its recent periastron passage (about 180° of true anomaly) between seasons, at the time of year when the Hyades are unobservable!

  10. First visual orbit for the prototypical colliding-wind binary WR 140

    CERN Document Server

    Monnier, J D; Pedretti, E; Millan-Gabet, R; Berger, J P; Traub, W; Schloerb, F P; Brummelaar, T ten; McAlister, H; Ridgway, S; Sturmann, L; Sturmann, J; Turner, N; Baron, F; Kraus, S; Tannirkulam, A; Williams, P M

    2011-01-01

    Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we report the first visual orbit for WR 140(=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/- 0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with uncertainties times 6 smaller than previous work and paves the way for detailed modeling of the system. Our newly measured ...

  11. Physical Properties of the Low-Mass Eclipsing Binary NSVS 02502726

    CERN Document Server

    Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk

    2012-01-01

    NSVS 02502726 has been known as a double-lined, detached eclipsing binary that consists of two low-mass stars. We obtained $BVRI$ photometric follow-up observations in 2009 and 2011 to measure improved physical properties of the binary star. Each set of light curves, including the 2008 data given by \\cCakirli et al., was simultaneously analyzed with the previously published radial-velocity curves using the Wilson-Devinney binary code. The conspicuous seasonal light variations of the system are satisfactorily modelled by a two-spot model with one starspot on each component and by changes of the spot parameters with time. Based on 23 eclipse timings calculated from the synthetic model and one ephemeris epoch, an orbital period study of NSVS 02502726 reveals that the period has experienced a continuous decrease of $-5.9\\times10^{-7}$ d yr$^{-1}$ or a sinusoidal variation with a period and semi-amplitude of 2.51 yrs and 0.0011 d, respectively. The timing variations could be interpreted as either the light-travel-...

  12. Physical parameters of the O6.5V+B1V eclipsing binary system LS 1135

    CERN Document Server

    Lajus, E F

    2006-01-01

    ASAS photometric observations of LS 1135, an O-type SB1 binary system with an orbital period of 2.7 days, show that the system is also eclipsing. This prompted us to re-examine the spectra used in the previously published spectroscopic orbit. Our new analysis of the spectra obtained near quadratures, reveal the presence of faint lines of the secondary component. We present for the first time a double-lined radial velocity orbit and values of physical parameters of this binary system. These values were obtained by analyzing ASAS photometry jointly with the radial velocities of both components performing a numerical model of this binary based on the Wilson-Devinney method. We obtained an orbital inclination i ~ 68.5 deg. With this value of the inclination we deduced masses M1 ~ 30 +/- 1 Mo and M2 ~ 9 +/- 1 Mo; and radii R1 ~ 12 +/- 1 Ro and R2 ~ 5 +/- 1 Ro for primary and secondary components, respectively. Both components are well inside their respective Roche lobes. Fixing the Teff of the primary to the value...

  13. The first orbital parameters and period variation of the short-period eclipsing binary AQ Boo

    Science.gov (United States)

    Wang, Shuai; Zhang, Liyun; Pi, Qingfeng; Han, Xianming L.; Zhang, Xiliang; Lu, Hongpeng; Wang, Daimei; Li, TongAn

    2016-10-01

    We obtained the first VRI CCD light curves of the short-period contact eclipsing binary AQ Boo, which was observed on March 22 and April 19 in 2014 at Xinglong station of National Astronomical Observatories, and on January 20, 21 and February 28 in 2015 at Kunming station of Yunnan Observatories of Chinese Academy of Sciences, China. Using our six newly obtained minima and the minima that other authors obtained previously, we revised the ephemeris of AQ Boo. By fitting the O-C (observed minus calculated) values of the minima, the orbital period of AQ Boo shows a decreasing tendency P˙ = - 1.47(0.17) ×10-7 days/year. We interpret the phenomenon by mass transfer from the secondary (more massive) component to the primary (less massive) one. By using the updated Wilson & Devinney program, we also derived the photometric orbital parameters of AQ Boo for the first time. We conclude that AQ Boo is a near contact binary with a low contact factor of 14.43%, and will become an over-contact system as the mass transfer continues.

  14. Binary orbits as the driver of gamma-ray emission and mass ejection in classical novae

    CERN Document Server

    Chomiuk, Laura; Yang, Jun; O'Brien, T J; Paragi, Zsolt; Mioduszewski, Amy J; Beswick, R J; Cheung, C C; Mukai, Koji; Nelson, Thomas; Ribeiro, Valerio A R M; Rupen, Michael P; Sokoloski, J L; Weston, Jennifer; Zheng, Yong; Bode, Michael F; Eyres, Stewart; Roy, Nirupam; Taylor, Gregory B

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel ~10^(-4) solar masses of material at velocities exceeding 1,000 kilometres per second. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds, or binary interaction with the nova envelope. Classical novae are now routinely detected in gigaelectronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface ...

  15. Testing Stellar Models With An Improved Physical Orbit for 12 Bootis

    CERN Document Server

    Boden, A F; Hummel, C A; Boden, Andrew F.; Torres, Guillermo; Hummel, Christian A.

    2005-01-01

    We report on a significantly improved determination of the physical orbit of the double-lined spectroscopic binary system 12 Boo. We have a 12 Boo interferometry dataset spanning six years with the Palomar Testbed Interferometer, a smaller amount of data from the Navy Prototype Optical Interferometer, and a radial velocity dataset spanning 14 years from the Harvard-Smithsonian Center for Astrophysics. We have updated the 12 Boo physical orbit model with our expanded interferometric and radial velocity datasets. The revised orbit is in good agreement with previous results, and the physical parameters implied by a combined fit to our visibility and radial velocity data result in precise component masses and luminosities. In particular, the orbital parallax of the system is determined to be 27.719 $\\pm$ 0.015 mas, and masses of the two components are determined to be 1.4160 $\\pm$ 0.0049 M$_{\\sun}$ and 1.3740 $\\pm$ 0.0045 M$_{\\sun}$, respectively. Based on theoretical models we can estimate a system age of approx...

  16. V346 Centauri: Early-type eclipsing binary with apsidal motion and abrupt change of orbital period

    Science.gov (United States)

    Mayer, Pavel; Harmanec, Petr; Wolf, Marek; Nemravová, Jana; Prša, Andrej; Frémat, Yves; Zejda, Miloslav; Liška, Jiři; Juryšek, Jakub; Hoňková, Kateřina; Mašek, Martin

    2016-06-01

    New physical elements of the early B-type eclipsing binary V346 Cen are derived using the HARPS spectra downloaded from the ESO archive and also numerous photometric observations from various sources. A model of the observed times of primary and secondary minima that fits them best is a combination of the apsidal motion and an abrupt decrease in the orbital period from 6.^d322123 to 6.^d321843 (shortening by 24 s), which occurred somewhere around JD 2 439 000. Assumption of a secularly decreasing orbital period provides a significantly worse fit. Local times of minima and the final solution of the light curve were obtained with the program PHOEBE. Radial velocities of both binary components, free of line blending, were derived via 2D cross-correlation with a program built on the principles of the program TODCOR. The oxygen lines in the secondary spectra are weaker than those in the model spectra of solar chemical composition. Using the component spectra disentangled with the program KOREL, we find that both components rotate considerably faster than would correspond to the synchronization at periastron. The apside rotation known from earlier studies is confirmed and compared to the theoretical value. Based on observations made with the ESO telescopes at the La Silla Paranal Observatory under programmes ID 083.D-0040(A), 085.C-0614(A), and 178.D-0361(B).Tables A.2-A.6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A129

  17. Gravitational Radiation Damping and Evolution of the Orbit of Compact Binary Stars (Solution by the Second Perturbation Method)

    Indian Academy of Sciences (India)

    Lin-Sen Li

    2014-06-01

    The influence of the gravitational radiation damping on the evolution of the orbital elements of compact binary stars is examined by using the method of perturbation. The perturbation equations with the true anomaly as an independent variable are given. This effect results in both the secular and periodic variation of the semi-major axis, the eccentricity, the mean longitude at the epoch and the mean longitude. However, the longitude of periastron exhibits no secular variation, but only periodic variation. The effect of secular variation of the orbit would lead to collapse of the system of binary stars. The deduced formulae are applied to the calculation of secular variation of the orbital elements for three compact binary stars: PSR 1913+16, PSR J0737-3039 and M33X-7. The results obtained are discussed.

  18. Connection between orbital modulation of H-alpha and gamma-rays in the Be/X-ray binary LSI+61303

    CERN Document Server

    Zamanov, R; Stoyanov, K; Borissova, A; Tomov, N A

    2013-01-01

    We studied the average orbital modulation of various parameters (gamma-ray flux, H-alpha emission line, optical V band brightness) of the radio- and gamma-ray emitting Be/X-ray binary LSI+61303. Using the Spearman rank correlation test, we found highly significant correlations between the orbital variability of the equivalent width of the blue hump of the H-alpha and Fermi-LAT flux with a Spearman p-value 2e-5, and the equivalent widths ratio EW_B/EW_R and Fermi-LAT flux with p-value 9e-5. We also found a significant anti-correlation between Fermi-LAT flux and V band magnitude with p-value 7.10^{-4}. All these correlations refer to the average orbital variability, and we conclude that the H-alpha and gamma-ray emission processes in LSI+61303 are connected. The possible physical scenario is briefly discussed.

  19. Are the orbital poles of binary stars in the solar neighbourhood anisotropically distributed?

    Science.gov (United States)

    Agati, J.-L.; Bonneau, D.; Jorissen, A.; Soulié, E.; Udry, S.; Verhas, P.; Dommanget, J.

    2015-02-01

    We test whether or not the orbital poles of the systems in the solar neighbourhood are isotropically distributed on the celestial sphere. The problem is plagued by the ambiguity on the position of the ascending node. Of the 95 systems closer than 18 pc from the Sun with an orbit in the 6th Catalogue of Orbits of Visual Binaries, the pole ambiguity could be resolved for 51 systems using radial velocity collected in the literature and CORAVEL database or acquired with the HERMES/Mercator spectrograph. For several systems, we can correct the erroneous nodes in the 6th Catalogue of Orbits and obtain new combined spectroscopic/astrometric orbits for seven systems [WDS 01083+5455Aa,Ab; 01418+4237AB; 02278+0426AB (SB2); 09006+4147AB (SB2); 16413+3136AB; 17121+4540AB; 18070+3034AB]. We used of spherical statistics to test for possible anisotropy. After ordering the binary systems by increasing distance from the Sun, we computed the false-alarm probability for subsamples of increasing sizes, from N = 1 up to the full sample of 51 systems. Rayleigh-Watson and Beran tests deliver a false-alarm probability of 0.5% for the 20 systems closer than 8.1 pc. To evaluate the robustness of this conclusion, we used a jackknife approach, for which we repeated this procedure after removing one system at a time from the full sample. The false-alarm probability was then found to vary between 1.5% and 0.1%, depending on which system is removed. The reality of the deviation from isotropy can thus not be assessed with certainty at this stage, because only so few systems are available, despite our efforts to increase the sample. However, when considering the full sample of 51 systems, the concentration of poles toward the Galactic position l = 46.0°, b = 37°, as observed in the 8.1 pc sphere, totally vanishes (the Rayleigh-Watson false-alarm probability then rises to 18%). Tables 1-3 and Appendices are available in electronic form at http://www.aanda.org† Deceased October 1, 2014.

  20. The spectroscopic binary system Gl 375. I. Orbital parameters and chromospheric activity

    CERN Document Server

    Díaz, Rodrigo F; Cincunegui, Carolina; Mauas, Pablo J D

    2007-01-01

    We study the spectroscopic binary system Gl 375. We employ medium resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO and photometric observations obtained from the ASAS database. We separate the composite spectra into those corresponding to both components. The separated spectra allow us to confirm that the spectral types of both components are similar (dMe3.5) and to obtain precise measurements of the orbital period (P = 1.87844 days), minimum masses (M_1 sin^3 i = 0.35 M_sun and M_2 sin^3 i =0.33 M_sun) and other orbital parameters. The photometric observations exhibit a sinusoidal variation with the same period as the orbital period. We interpret this as signs of active regions carried along with rotation in a tidally synchronized system, and study the evolution of the amplitude of the modulation in longer timescales. Together with the mean magnitude, the modulation exhibits a roughly cyclic variation with a period of around 800 days. This periodicity is also ...

  1. Orbital motions and light curves of young binaries XZ Tau and VY Tau

    CERN Document Server

    Dodin, A V; Zharova, A V; Lamzin, S A; Malogolovets, E V; Roe, J M

    2015-01-01

    The results of our speckle interferometric observations of young binaries VY Tau and XZ Tau are presented. For the first time, we found a relative displacement of VY Tau components as well as a preliminary orbit for XZ Tau. It appeared that the orbit is appreciably non-circular and is inclined by $i \\lesssim 47^o$ from the plane of the sky. It means that the rotation axis of XZ Tau A and the axis of its jet are significantly non-perpendicular to the orbital plane. We found that the average brightness of XZ Tau had been increasing from the beginning of the last century up to the mid-thirties and then it decreased by $\\Delta B > 2$ mag. The maximal brightness has been reached significantly later on the time of periastron passage. The total brightness of XZ Tau's components varied in a non-regular way from 1970 to 1985 when eruptions of hot gas from XZ Tau A presumably had occurred. In the early nineties the variations became regular following which a chaotic variability had renewed. We also report that a flare ...

  2. Binary neutron star merger simulations with different initial orbital frequency and equation of state

    CERN Document Server

    Maione, Francesco; Feo, Alessandra; Löffler, Frank

    2016-01-01

    We present results from three-dimensional general relativistic simulations of binary neutron star coalescences and mergers using public codes. We considered equal mass models where the baryon mass of the two Neutron Stars (NS) is $1.4M_{\\odot}$, described by four different equations of state (EOS) for the cold nuclear matter (APR4, SLy, H4, and MS1; all parametrized as piecewise polytropes). We started the simulations from four different initial interbinary distances ($40, 44.3, 50$, and $60$ km), including up to the last 16 orbits before merger. That allows to show the effects on the gravitational wave phase evolution, radiated energy and angular momentum due to: the use of different EOSs, the orbital eccentricity present in the initial data and the initial separation (in the simulation) between the two stars. Our results show that eccentricity has a major role in the discrepancy between numerical and analytical waveforms until the very last few orbits, where "tidal" effects and missing high-order post-Newto...

  3. Physical Characterization and Origin of Binary Near-Earth Asteroid (175706) 1996 FG3

    NARCIS (Netherlands)

    Walsh, Kevin J.; Delbo', Marco; Mueller, Michael; Binzel, Richard P.; DeMeo, Francesca E.

    2012-01-01

    The near-Earth asteroid (NEA) (175706) 1996 FG3 is a particularly interesting spacecraft target: a binary asteroid with a low-Δv heliocentric orbit. The orbit of its satellite has provided valuable information about its mass density while its albedo and colors suggest it is primitive or part of the

  4. Long-term orbital period behaviour of low mass ratio contact binaries GR Vir and FP Boo

    Science.gov (United States)

    Ćetinkaya, Halil; Soydugan, Faruk

    2017-02-01

    In this study, we investigated orbital period variations of two low mass ratio contact binaries GR Vir and FP Boo based on published minima times. From the O-C analysis, it was found that FP Boo indicates orbital period decrease while the period of GR Vir is increasing. Mass transfer process was used to explain increase and decrease in the orbital periods. In the O-C diagrams of both systems periodic variations also exist. Cyclic changes can be explained as being the result of a light-travel time effect via a third component around the eclipsing binaries. In order to interpret of cyclic orbital period changes for GR Vir, which has late-type components, possible magnetic activity cycles of the components have been also considered.

  5. Constraining the Absolute Orientation of eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    Science.gov (United States)

    Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.

  6. High Resolution Imaging of Very Low Mass Spectral Binaries: Three Resolved Systems and Detection of Orbital Motion in an L/T Transition Binary

    CERN Document Server

    Gagliuffi, Daniella C Bardalez; Burgasser, Adam J

    2015-01-01

    We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341$-$3052, SDSS J1511+0607 and SDSS J2052$-$1609; the first two are resolved for the first time. All three have projected separations $<8$ AU and estimated periods of $14-80$ years. We also report a preliminary orbit determination for SDSS J2052$-$1609 based on six epochs of resolved astrometry between 2005$-$2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of $47^{+12}_{-11}\\%$ for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging.

  7. Constraining the Absolute Orientation of Eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    CERN Document Server

    Madura, Thomas I; Owocki, Stanley P; Groh, Jose H; Okazaki, Atsuo T; Russell, Christopher M P

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA {\\theta} that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38 degrees, and the temporal variations in emission seen at negative slit PAs, the binary ...

  8. Algol-like Interacting Binaries with Long Non-orbital Periodicities

    Science.gov (United States)

    Mennickent, R. E.

    The phenomenon of Double Periodic Variables (DPVs) is summarized, enlightening their photometric and spectroscopic characteristics. The current evidence for binarity, accretion discs and inflows/outflows is presented. Stellar masses, radii, temperature and luminosities, along with orbital and disc parameters, have been obtained for some systems as the result of a multicomponent fit to the light curves. These parameters have been compared with those of published binary star evolutionary tracks obtaining the best synthetic model for those systems. This allow us to discuss their evolutionary stage determining their age and mass transfer rate, and explore the possible relation between DPVs, W Serpentids and classical Algols. We provide clues on the origin of the long-term variability, mainly based on spectroscopic studies and photometric insights.

  9. Magnetic activity and orbital period variation of the short-period eclipsing binary DV Psc

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Qing-feng; Zhang, Li-Yun [College of Science/Department of Physics and NAOC-GZU-Sponsored Center for Astronomy Research, Guizhou University, Guiyang 550025 (China); Li, Zhong-mu [Institute for Astronomy and History of Science and Technology, Dali University, Dali 671003 (China); Zhang, Xi-liang, E-mail: liy_zhang@hotmail.com [Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-03-01

    We present six new BVR{sub c}I{sub c} CCD light curves of a short-period RS CVn binary DV Psc obtained in 2010-2012. The light curve distortions change on both short and long timescales, which is explained by two starspots on the primary component. Moreover, five new flare events were detected and the flare ratio of DV Psc is about 0.082 flares per hour. There is a possible relation between the phases (longitude) of the flares and starspots for all of the available data of late-type binaries, which implies a correlation of the stellar activity of the spots and flares. The cyclic oscillation, with a period of 4.9 ± 0.4 yr, may result from the magnetic activity cycle, identified by the variability of Max. I-Max. II. Until now, there were no spectroscopic studies of chromospheric activity indicators of the H{sub β} and H{sub γ} lines for DV Psc. Our observations of these indicators show that DV Psc is active, with excess emissions. The updated O – C diagram with an observing time span of about 15 yr shows an upward parabola, which indicates a secular increase in the orbital period of DV Psc. The orbital period secularly increases at a rate of dP/dt = 2.0×10{sup –7} days yr{sup –1}, which might be explained by the angular momentum exchanges or mass transfer from the secondary to primary component.

  10. 11-orbit inspiral of a mass ratio 4:1 black-hole binary

    Energy Technology Data Exchange (ETDEWEB)

    Sperhake, U; Sopuerta, C F [Institute of Space Sciences (CSIC-IEEC), Campus UAB, Torre C5 Parells, 08193 Bellaterra (Spain); Bruegmann, B; Mueller, D, E-mail: sperhake@ieec.uab.es [Theoretisch Physikalisches Institut, Friedrich Schiller Universitaet, Max-Wien Platz 1, 07743 Jena (Germany)

    2011-07-07

    We analyse an 11-orbit inspiral of a non-spinning black-hole binary with mass ratio q {identical_to} M{sub 1}/M{sub 2} = 4. The numerically obtained gravitational waveforms are compared with post-Newtonian (PN) predictions including several subdominant multipoles up to multipolar indices (l = 5, m = 5). We find that (i) numerical and post-Newtonian predictions of the phase of the (2, 2) mode accumulate a phase difference of about 0.35 rad at the PN cut-off frequency M{omega} = 0.1 for the Taylor T1 approximant when numerical and PN waveforms are matched over a window in the early inspiral phase; (ii) in contrast to previous studies of equal mass and specific spinning binaries, we find the Taylor T4 approximant to agree less well with numerical results, provided the latter are extrapolated to infinite extraction radius; (iii) extrapolation of gravitational waveforms to infinite extraction radius is particularly important for subdominant multipoles with l {ne} m; (iv) 3PN terms in post-Newtonian multipole expansions significantly improve the agreement with numerical predictions for subdominant multipoles.

  11. An Analytic Method to determine Habitable Zones for S-Type Planetary Orbits in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Georgakarakos, Nikolaos; Gyergyovits, Markus; Funk, Barbara

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical Habitable Zone arise. Do the radiative and gravitational perturbations of the second star influence the extent of the Habitable Zone significantly, or is it sufficient to consider the host-star only? In this article we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time independent analytical estimates and compare these to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of Habitable Zones towards the secondary in close binary systems.

  12. An orbital period investigation of the Algol-type eclipsing binary VW Hydrae

    Institute of Scientific and Technical Information of China (English)

    Jia Zhang; Sheng-Bang Qian; Boonrucksar Soonthornthum

    2009-01-01

    Orbital period variations of the Algol-type eclipsing binary, VW Hydrae, are analyzed based on one newly determined eclipse time and the other times of light minima collected from the literature. It is discovered that the orbital period shows a continuous increase at a rate of dP/dt = +6.34×10-7 d yr-1 while it undergoes a cyclic change with an amplitude of 0.0639 d and a period of 51.5 yr. After the long-term period increase and the large-amphtude period oscillation were subtracted from the O-C curve, the residuals of the photoelectric and CCD data indicate a small-amplitude cyclic variation with a period of 8.75 yr and a small amplitude of 0.0048d. The continuous period increase indicates a conservative mass transfer at a rate of dM2/dt = 7.89×10-8 M⊙ yr-1 from the secondary to the primary. The period increase may be caused by a combination of the mass transfer from the secondary to the primary and the angular momentum transfer from the binary system to the circumbinary disk. The two cyclic period oscillations can be explained by light-travel time effects via the presence of additional bodies. The small-amplitude periodic change indicates the existence of a less massive component with mass M3 > 0.53 M⊙, while the large-amplitude one is caused by the presence of a more massive component with mass M4 > 2.84 M⊙. The ultraviolet source in the system reported by Kviz & Rufener (1987) may be one of the additional components, and it is possible that the more massive one may be an unseen neutron star or black hole. The rapid period increase and the possibility of the presence of two additional components in the binary make it a very interesting system to study. New photometric and high-resolution spectroscopic observations and a detailed investigation of those data are required in the future.

  13. Masses of the components of SB2 binaries observed with Gaia. III. Accurate SB2 orbits for 10 binaries and masses of HIP 87895

    CERN Document Server

    Kiefer, Flavien; Arenou, Frédéric; Pourbaix, Dimitri; Famaey, Benoit; Guillout, Patrick; Lebreton, Yveline; Gómez-Morán, Ada Nebot; Mazeh, Tsevi; Salomon, Jean-Baptiste; Soubiran, Caroline; Tal-Or, Lev

    2016-01-01

    In anticipation of the Gaia astrometric mission, a large sample of spectroscopic binaries has been observed since 2010 with the SOPHIE spectrograph at the Haute--Provence Observatory. Our aim is to derive the orbital elements of double-lined spectroscopic binaries (SB2s) with an accuracy sufficient to finally obtain the masses of the components with relative errors as small as 1 % when the astrometric measurements of Gaia are taken into account. In this paper we present the results from five years of observations of 10 SB2 systems with periods ranging from 37 to 881 days. Using the TODMOR algorithm we computed radial velocities from the spectra, and then derived the orbital elements of these binary systems. The minimum masses of the components are then obtained with an accuracy better than 1.2 % for the ten binaries. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 87895 with an accuracy of 0.98 % and 1.2 % respect...

  14. A new determination of the orbit and masses of the Be binary system delta Scorpii

    CERN Document Server

    Tango, W J; Jacob, A P; Méndez, A; North, J R; O'Byrne, J W; Seneta, E B; Tuthill, P G

    2008-01-01

    The binary star delta Sco (HD143275) underwent remarkable brightening in the visible in 2000, and continues to be irregularly variable. The system was observed with the Sydney University Stellar Interferometer (SUSI) in 1999, 2000, 2001, 2006 and 2007. The 1999 observations were consistent with predictions based on the previously published orbital elements. The subsequent observations can only be explained by assuming that an optically bright emission region with an angular size of > 2 +/- 1 mas formed around the primary in 2000. By 2006/2007 the size of this region grew to an estimated > 4 mas. We have determined a consistent set of orbital elements by simultaneously fitting all the published interferometric and spectroscopic data as well as the SUSI data reported here. The resulting elements and the brightness ratio for the system measured prior to the outburst in 2000 have been used to estimate the masses of the components. We find Ma = 15 +/- 7 Msun and Mb = 8.0 +/- 3.6 Msun. The dynamical parallax is est...

  15. The young binary HD 102077: Orbit, spectral type, kinematics, and moving group membership

    CERN Document Server

    Wöllert, Maria; Reffert, Sabine; Schlieder, Joshua E; Mohler-Fischer, Maren; Köhler, Rainer; Henning, Thomas

    2014-01-01

    The K-type binary star HD 102077 was proposed as a candidate member of the TW Hydrae Association (TWA) which is a young (5-15 Myr) moving group in close proximity (~50 pc) to the solar system. The aim of this work is to verify this hypothesis by different means. We first combine diffraction-limited observations from the ESO NTT 3.5m telescope in SDSS-i' and -z' passbands and ESO 3.6m telescope in H-band with literature data to obtain a new, amended orbit fit, estimate the spectral types of both components, and reanalyse the Hipparcos parallax and proper motion taking the orbital motion into account. Moreover, we use two high-resolution spectra of HD 102077 obtained with the fibre-fed optical echelle spectrograph FEROS at the MPG/ESO 2.2m telescope to determine the radial velocity and the lithium equivalent width of the system. The trajectory of HD 102077 is well constrained and we derive a total system mass of $2.6 \\pm 0.8\\,$ M$_{\\odot}$ and a semi-major axis of $14.9 \\pm 1.6\\,$AU. From the i'-z' colours we i...

  16. Orbital Solutions and Absolute Elements of the Massive Algol Binary ET Tauri

    Science.gov (United States)

    Williamon, Richard M.; Dale, Horace; Evavold, Charles L.; Langoussis, Alexander; Fekel, Francis C.; Muterspaugh, Matthew W.; Williams, Stephen; Napier, Kate; Sowell, James R.

    2016-12-01

    We acquired differential UBV photoelectric photometry and radial velocities of the relatively bright, understudied, massive Algol binary ET Tau and utilized the Wilson-Devinney (WD) analysis program to obtain a simultaneous solution of these observations. To improve the orbital ephemeris, the V measurements from the ASAS program were also analyzed. Because of the very rapid rotation of the significantly more massive and hotter component (B2/3 spectral class), only radial velocities of the secondary component, which has a ˜B7 spectral class, could be measured. We derive masses of {M}1=14.34+/- 0.28 {M}⊙ and {M}2=6.339+/- 0.117 {M}⊙ and equal-volume radii of {R}1=6.356+/- 0.056 {R}⊙ and {R}2=11.84+/- 0.10 {R}⊙ for the primary and secondary, respectively. The secondary is filling its Roche lobe, so the system is semi-detached. The effective temperature of the secondary was held fixed at 15,000 K, and the primary's temperature was found to be {30,280}+/- 109 K. The system, which has a period of 5.996883 ± 0.000002 days, is assumed to have a circular orbit and is seen at an inclination of 79\\buildrel{\\circ}\\over{.} 55+/- 0\\buildrel{\\circ}\\over{.} 05.

  17. MAXI J1659-152: the shortest orbital period black-hole binary

    CERN Document Server

    Kuulkers, E; van der Horst, A J; Belloni, T; Chenevez, J; Ibarra, A; Munoz-Darias, T; Bazzano, A; Bel, M Cadolle; De Cesare, G; Trigo, M Diaz; Jourdain, E; Lubinski, P; Natalucci, L; Ness, J -U; Parmar, A; Pollock, A M T; Rodriguez, J; Roques, J -P; Sanchez-Fernandez, C; Ubertini, P; Winkler, C

    2011-01-01

    Following the detection of a bright new X-ray source, MAXI J1659-152, a series of observations was triggered with almost all currently flying high-energy missions. We report here on XMM-Newton, INTEGRAL and RXTE observations during the early phase of the X-ray outburst of this transient black-hole candidate. We confirm the dipping nature in the X-ray light curves. We find that the dips recur on a period of 2.4139+/-0.0005 hrs, and interpret this as the orbital period of the system. It is thus the shortest period black-hole X-ray binary known to date. Using the various observables, we derive the properties of the source. The inclination of the accretion disk with respect to the line of sight is estimated to be 60-75 degrees. The companion star to the black hole is possibly a M5 dwarf star, with a mass and radius of about 0.15 M_sun and 0.23 R_sun, respectively. The system is rather compact (orbital separation is about 1.35 R_sun) and is located at a distance of roughly 7 kpc. In quiescence, MAXI J1659-152 is e...

  18. Dynamical Stability of Earth-Like Planetary Orbits in Binary Systems

    CERN Document Server

    David, E M; Fatuzzo, M; Adams, F C; David, Eva-Marie; Quintana, Elisa V.; Fatuzzo, Marco; Adams, Fred C.

    2003-01-01

    This paper explores the stability of an Earth-like planet orbiting a solar mass star in the presence of an outer-lying intermediate mass companion. The overall goal is to estimate the fraction of binary systems that allow Earth-like planets to remain stable over long time scales. We numerically determine the planet's ejection time $\\tauej$ over a range of companion masses ($M_C$ = 0.001 -- 0.5 $M_\\odot$), orbital eccentricities $\\epsilon$, and semi-major axes $a$. This suite of $\\sim40,000$ numerical experiments suggests that the most important variables are the companion's mass $M_C$ and periastron distance $\\rmin$ = $a(1-\\epsilon)$ to the primary star. At fixed $M_C$, the ejection time is a steeply increasing function of $\\rmin$ over the range of parameter space considered here (although the ejection time has a distribution of values for a given $\\rmin$). Most of the integration times are limited to 10 Myr, but a small set of integrations extend to 500 Myr. For each companion mass, we find fitting formulae ...

  19. Physical and geometrical parameters of CVBS X: the spectroscopic binary Gliese 762.1

    Science.gov (United States)

    Masda, Suhail G.; Al-Wardat, Mashhoor A.; Neuhäuser, Ralph; Al-Naimiy, Hamid M.

    2016-07-01

    We present the physical and geometrical parameters of the individual components of the close visual double-lined spectroscopic binary system Gliese 762.1, which were estimated using Al-Wardat's complex method for analyzing close visual binary systems. The estimated parameters of the individual components of the system are as follows: radius RA = 0.845 ± 0.09 R ⊙, RB = 0.795 ± 0.10 R ⊙, effective temperature TA eff = 5300 ± 50 K, TB eff = 5150 ± 50 K, surface gravity log gA = 4.52 ± 0.10, log gB = 4.54±0.15 and luminosity LA = 0.51±0.08 L ⊙, LB = 0.40±0.07 L ⊙. New orbital elements are presented with a semi-major axis of 0.0865 ± 0.010 arcsec using the Hippracos parallax π = 58.96 ± 0.65 mas, and an accurate total mass and individual masses of the system are determined as M = 1.72 ± 0.60 M⊙, MA = 0.89 ± 0.08 M ⊙ and MB = 0.83 ± 0.07 M⊙. Finally, the spectral types and luminosity classes of both components are assigned as K0V and K1.5V for the primary and secondary components respectively, and their positions on the H-R diagram and evolutionary tracks are given.

  20. New precision orbits of bright double-lined spectroscopic binaries. IX. HD 54371, HR 2692, and 16 ursa majoris

    Energy Technology Data Exchange (ETDEWEB)

    Fekel, Francis C.; Williamson, Michael H.; Muterspaugh, Matthew W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Boulevard, Box 9501, Nashville, TN 37209 (United States); Pourbaix, Dimitri [FNRS Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, B-1050 Bruxelles (Belgium); Willmarth, Daryl [Kitt Peak National Obsevatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States); Tomkin, Jocelyn, E-mail: fekel@evans.tsuniv.edu, E-mail: michael.h.williamson@gmail.com, E-mail: matthew1@coe.tsuniv.edu, E-mail: pourbaix@astro.ulb.ac.be, E-mail: dwillmarth@noao.edu [Astronomy Department and McDonald Observatory, University of Texas, Austin, TX 78712 (United States)

    2015-02-01

    With extensive sets of new radial velocities we have determined orbital elements for three previously known spectroscopic binaries, HD 54371, HR 2692, and 16 UMa. All three systems have had the lines of their secondaries detected for the first time. The orbital periods range from 16.24 to 113.23 days, and the three binaries have modestly or moderately eccentric orbits. The secondary to primary mass ratios range from 0.50 to 0.64. The orbital dimensions (a{sub 1} sin i and a{sub 2} sin i) and minimum masses (m{sub 1} sin{sup 3} i and m{sub 2} sin{sup 3} i) of the binary components all have accuracies of ⩽1%. With our spectroscopic results and the Hipparcos data, we also have determined astrometric orbits for two of the three systems, HR 2692 and 16 UMa. The primaries of HD 54371 and 16 UMa are solar-type stars, and their secondaries are likely K or M dwarfs. The primary of HR 2692 is a late-type subgiant and its secondary is a G or K dwarf. The primaries of both HR 2692 and 16 UMa may be pseudosynchronously rotating, while that of HD 54371 is rotating faster than its pseudosynchronous velocity.

  1. The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital stability

    CERN Document Server

    Scheirich, P; Jacobson, S A; Ďurech, J; Kušnirák, P; Hornoch, K; Mottola, S; Mommert, M; Hellmich, S; Pray, D; Polishook, D; Krugly, Yu N; Inasaridze, R Ya; Kvaratskhelia, O I; Ayvazian, V; Slyusarev, I; Pittichová, J; Jehin, E; Manfroid, J; Gillon, M; Galád, A; Pollock, J; Licandro, J; Alí-Lagoa, V; Brinsfield, J; Molotov, I E

    2014-01-01

    Using our photometric observations taken between April 1996 and January 2013 and other published data, we derive properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\\deg} and -83{\\deg}, respectively, with the mean radius of the uncertainty area of 4{\\deg}, and the orbital period is 16.1508 +\\- 0.0002 h (all uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +\\- 0.20 deg/yr^2, i.e., consistent with zero. The drif...

  2. Light curve solution and orbital period analysis of the contact binary V842 Herculis

    Science.gov (United States)

    Selam, S. O.; Albayrak, B.; Şenavci, H. V.; Aksu, O.

    2005-10-01

    New photoelectric BV light curves were obtained for the neglected eclipsing binary V842 Her at the TÜB{İTAK National Observatory (TUG) and studied for the first time in detail to determine the orbital parameters and geometry of the system. The solutions obtained simultaneously for the new light curves and the radial velocity curves in the literature by using the Wilson-Devinney code reveal a typical W-type contact system. The light curves exhibit the so-called O'Connell effect which the level of the primary maxima being higher than that of the secondary ones in both pass-bands. The O'Connell effect in the light curves is explained in terms of a dark-spot located on the more massive component which makes the more massive larger component slightly cooler than the less massive smaller one. The O-C diagram constructed for all available times of minima of V842 Her exhibits a cyclic character superimposed on a quadratic variation. The quadratic character yields a orbital period increase with a rate of dP/dt=7.76×10-7 days yr-1 which can be attributed to the mass exchange/loss mechanism in the system. By assuming the presence of a gravitationally bound third body in the system, the analysis of the cyclic nature in the O-C diagram revealed a third body with mass of 0.4M\\sun orbiting around the eclipsing pair. The possibility of magnetic activity cycle effect as a cause for the observed cyclic variation in the O-C diagram was also discussed.

  3. Massive black hole binaries in gas-rich galaxy mergers; multiple regimes of orbital decay and interplay with gas inflows

    Science.gov (United States)

    Mayer, Lucio

    2013-12-01

    We revisit the phases of the pairing and sinking of black holes (BHs) in galaxy mergers and circumnuclear discs in light of the results of recent simulations with massive BHs embedded in predominantly gaseous backgrounds. After a general overview we highlight for the first time the existence of a clear transition, for unequal mass BHs, between the regime in which the orbital decay is dominated by the conventional dynamical friction wake and one in which global disc torques associated with density waves launched by the secondary BH as well as co-orbital torques arising from gas gravitationally captured by the BH dominate and lead to faster decay. The new regime intervenes at BH binary separations of a few tens of parsecs and below, following a phase of orbital circularization driven dynamical friction. It bears some resemblance with planet migration in protoplanetary discs. While the orbital timescale is reasonably matched by the migration rate for the Type-I regime, the dominant negative torque arises near the co-rotation resonance, which is qualitatively similar to what is found in the so-called Type-III migration, the fastest migration regime identified so far for planets. This fast decay rate brings the BHs to separations of order 10-1 pc, the resolution limit of our simulations, in less than ˜107 yr in a smooth disc, while the decay timescale can increase to >108 yr in clumpy discs due to gravitational scattering with molecular clouds. Eventual gap opening at sub-pc scale separations will slow down the orbital decay subsequently. How fast the binary BH can reach the separation at which gravitational waves take over will be determined by the nature of the interaction with the circumbinary disc and the complex torques exerted the gas flowing through the edge of such disc, the subject of many recent studies. We also present a new intriguing connection between the conditions required for rapid orbital decay of massive BH binaries and those required for prominent

  4. Mercury's spin-orbit model and its physical libration

    Science.gov (United States)

    Rambaux, N.

    2004-12-01

    The upcoming space missions, MESSENGER and BepiColombo with onboard instrumentation capable of measuring the rotational parameters stimulate the objective to reach an accurate theory of the rotational motion of Mercury. Our work deals with the physical and dynamical causes that induce librations of Mercury in order to evaluate accurately the rotational motion of this planet. In this aim, we have extended our BJV relativistic model of solar system integration including the spin-orbit coupled motion of the Moon to the spin-orbit coupling of terrestrial planets and particularly to Mercury (the BJV model was previously built by Bois, Journet and Vokrouhlicky in accordance with the requirements of the Lunar Laser Ranging observational accuracy). The model is at present called SONYR, acronym of Spin-Orbit N-BodY Relativistic model. Using the model, we can analyze the different families of rotational librations and identify their causes such as the planetary interactions or the impact of the parameters describing the dynamical figure of Mercury. In addition, the spin-orbit motion of Mercury is characterized by two proper frequencies (15.847 and 1066 years). Mercury presents also, between its angle of precession and the ascending node of the orbit, a second synchronism of 278898 years, which can be understood as a spin-orbit secular resonance. Besides, within the SONYR model, which integrates simultaneously the orbital and rotational motion of Mercury, we have been able to improve the Hermean's mean obliquity (1.665 arcminutes) and we identify the non-linear relationship between the dynamical figure and both the obliquity and the angle of libration in longitude. These determinations provide constraints on the internal structure of Mercury.

  5. The orbits of subdwarf-B + main-sequence binaries. II. Three eccentric systems; BD+29 3070, BD +34 1543 and Feige 87

    CERN Document Server

    Vos, J; Nemeth, P; Green, E M; Heber, U; Van Winckel, H

    2013-01-01

    The predicted orbital-period distribution of the subdwarf-B (sdB) population is bi-modal with a peak at short ( 250 days) periods. Observationally, many short-period sdB systems are known, but the predicted long period peak is missing as orbits have only been determined for a few long-period systems. As these predictions are based on poorly understood binary-interaction processes, it is of prime importance to confront the predictions with reliable observational data. We therefore initiated a monitoring program to find and characterize long-period sdB stars. In this paper we aim to determine the orbital parameters of the three long-period sdB+MS binaries BD+29 3070, BD+34 1543 and Feige 87, to constrain their absolute dimensions and the physical parameters of the components. High-resolution spectroscopic time series were obtained with HERMES at the Mercator telescope on La Palma, and analyzed to determine the radial velocities of both the sdB and MS components. Photometry from the literature was used to constr...

  6. Physical Properties of the Low-mass Eclipsing Binary NSVS 02502726

    Science.gov (United States)

    Lee, Jae Woo; Youn, Jae-Hyuck; Kim, Seung-Lee; Lee, Chung-Uk

    2013-01-01

    NSVS 02502726 has been known as a double-lined, detached eclipsing binary that consists of two low-mass stars. We obtained BVRI photometric follow-up observations in 2009 and 2011 to measure improved physical properties of the binary star. Each set of light curves, including the 2008 data given by Çakirli et al., was simultaneously analyzed with the previously published radial velocity curves using the Wilson-Devinney binary code. The conspicuous seasonal light variations of the system are satisfactorily modeled by a two-spot model with one starspot on each component and by changes of the spot parameters with time. Based on 23 eclipse timings calculated from the synthetic model and one ephemeris epoch, an orbital period study of NSVS 02502726 reveals that the period has experienced a continuous decrease of -5.9 × 10-7 day yr-1 or a sinusoidal variation with a period and semi-amplitude of 2.51 yr and 0.0011 days, respectively. The timing variations could be interpreted as either the light-travel-time effect due to the presence of an unseen third body, or as the combination of this effect and angular momentum loss via magnetic stellar wind braking. Individual masses and radii of both components are determined to be M 1 = 0.689 ± 0.016 M ⊙, M 2 = 0.341 ± 0.009 M ⊙, R 1 = 0.707 ± 0.007 R ⊙, and R 2 = 0.657 ± 0.008 R ⊙. The results are very different from those of Çakirli et al. with the primary's radius (0.674 ± 0.006 R ⊙) smaller the secondary's (0.763 ± 0.007 R ⊙). We compared the physical parameters presented in this paper with current low-mass stellar models and found that the measured values of the primary star are best fitted to a 79 Myr isochrone. The primary is in good agreement with the empirical mass-radius relation from low-mass binaries, but the secondary is oversized by about 85%.

  7. Orbital parameters for the two young binaries VSB 111 and VSB 126

    Energy Technology Data Exchange (ETDEWEB)

    Karnath, N.; Prato, L.; Wasserman, L. H.; Skiff, B. A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mathieu, R. D., E-mail: nicole@lowell.edu, E-mail: lprato@lowell.edu, E-mail: lhw@lowell.edu, E-mail: bas@lowell.edu, E-mail: gtorres@cfa.harvard.edu, E-mail: mathieu@astro.wisc.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-12-01

    We report orbital parameters for two low-mass, pre-main-sequence, double-lined spectroscopic binaries: VSB 111 and VSB 126. These systems were originally identified as single-lined on the basis of visible-light observations. We obtained high-resolution infrared spectra with the 10 m Keck II telescope, detected absorption lines of the secondary stars, and measured radial velocities of both components in the systems. The visible-light spectra were obtained with the 1.5 m Wyeth reflector at the Oak Ridge Observatory, the 1.5 m Tillinghast reflector at the F. L. Whipple Observatory, and the 4.5 m equivalent Multiple Mirror Telescope. The combination of our visible and infrared observations of VSB 111 leads to a period of 902.1 ± 0.9 days, an eccentricity of 0.788 ± 0.008, and a mass ratio of 0.52 ± 0.05. VSB 126 has a period of 12.9244 ± 0.0002 days, an eccentricity of 0.18 ± 0.02, and a mass ratio of 0.29 ± 0.02. Visible-light photometry, using the 0.8 m telescope at Lowell Observatory, provided rotation periods for the primary stars in both systems: 3.74 ± 0.02 days for VSB 111 and 5.71 ± 0.07 days for VSB 126. Both binaries are located in the young, active star-forming cluster NGC 2264 at a distance of ∼800 pc. The difference in the center-of-mass velocities of the two systems is consistent with the radial velocity gradient seen across NGC 2264. To test the evolutionary models for accuracy and consistency, we compare the stellar properties derived from several sets of theoretical calculations for pre-main-sequence evolution with our dynamical results.

  8. Orbital Parameters for the Two Young Binaries VSB 111 and VSB 126

    Science.gov (United States)

    Karnath, N.; Prato, L.; Wasserman, L. H.; Torres, Guillermo; Skiff, B. A.; Mathieu, R. D.

    2013-12-01

    We report orbital parameters for two low-mass, pre-main-sequence, double-lined spectroscopic binaries: VSB 111 and VSB 126. These systems were originally identified as single-lined on the basis of visible-light observations. We obtained high-resolution infrared spectra with the 10 m Keck II telescope, detected absorption lines of the secondary stars, and measured radial velocities of both components in the systems. The visible-light spectra were obtained with the 1.5 m Wyeth reflector at the Oak Ridge Observatory, the 1.5 m Tillinghast reflector at the F. L. Whipple Observatory, and the 4.5 m equivalent Multiple Mirror Telescope. The combination of our visible and infrared observations of VSB 111 leads to a period of 902.1 ± 0.9 days, an eccentricity of 0.788 ± 0.008, and a mass ratio of 0.52 ± 0.05. VSB 126 has a period of 12.9244 ± 0.0002 days, an eccentricity of 0.18 ± 0.02, and a mass ratio of 0.29 ± 0.02. Visible-light photometry, using the 0.8 m telescope at Lowell Observatory, provided rotation periods for the primary stars in both systems: 3.74 ± 0.02 days for VSB 111 and 5.71 ± 0.07 days for VSB 126. Both binaries are located in the young, active star-forming cluster NGC 2264 at a distance of ~800 pc. The difference in the center-of-mass velocities of the two systems is consistent with the radial velocity gradient seen across NGC 2264. To test the evolutionary models for accuracy and consistency, we compare the stellar properties derived from several sets of theoretical calculations for pre-main-sequence evolution with our dynamical results.

  9. Is there a compact companion orbiting the late O-type binary star HD 164816?

    Science.gov (United States)

    Trepl, L.; Hambaryan, V. V.; Pribulla, T.; Tetzlaff, N.; Chini, R.; Neuhäuser, R.; Popov, S. B.; Stahl, O.; Walter, F. M.; Hohle, M. M.

    2012-12-01

    We present a multi-wavelength (X-ray, γ-ray, optical and radio) study of HD 164816, a late O-type X-ray detected spectroscopic binary. X-ray spectra are analysed and the X-ray photon arrival times are checked for pulsation. In addition, newly obtained optical spectroscopic monitoring data on HD 164816 are presented. They are complemented by available radio data from several large-scale surveys as well as the Fermi γ-ray data from its Large Area Telescope. We report the detection of a low energy excess in the X-ray spectrum that can be described by a simple absorbed blackbody model with a temperature of ˜50 eV as well as a 9.78 s pulsation of the X-ray source. The soft X-ray excess, the X-ray pulsation and the kinematical age would all be consistent with a compact object like a neutron star as companion to HD 164816. The size of the soft X-ray excess emitting area is consistent with a circular region with a radius of about 7 km, typical for neutron stars, while the emission measure (EM) of the remaining harder emission is typical for late O-type single or binary stars. If HD 164816 includes a neutron star born in a supernova, this supernova should have been very recent and should have given the system a kick, which is consistent with the observation that the star HD 164816 has a significantly different radial velocity than the cluster mean. In addition we confirm the binarity of HD 164816 itself by obtaining an orbital period of 3.82 d, projected masses m1sin3i = 2.355(69) M⊙, m2sin3i = 2.103(62) M⊙ apparently seen at low inclination angle, determined from high-resolution optical spectra.

  10. The Araucaria Project: High-precision orbital parallax and masses of the eclipsing binary TZ Fornacis

    Science.gov (United States)

    Gallenne, A.; Pietrzyński, G.; Graczyk, D.; Konorski, P.; Kervella, P.; Mérand, A.; Gieren, W.; Anderson, R. I.; Villanova, S.

    2016-02-01

    Context. Independent distance estimates are particularly useful to check the precision of other distance indicators, while accurate and precise masses are necessary to constrain evolution models. Aims: The goal is to measure the masses and distance of the detached eclipsing-binary TZ For with a precision level lower than 1% using a fully geometrical and empirical method. Methods: We obtained the first interferometric observations of TZ For with the VLTI/PIONIER combiner, which we combined with new and precise radial velocity measurements to derive its three-dimensional orbit, masses, and distance. Results: The system is well resolved by PIONIER at each observing epoch, which allowed a combined fit with eleven astrometric positions. Our derived values are in a good agreement with previous work, but with an improved precision. We measured the mass of both components to be M1 = 2.057 ± 0.001 M⊙ and M2 = 1.958 ± 0.001 M⊙. The comparison with stellar evolution models gives an age of the system of 1.20 ± 0.10 Gyr. We also derived the distance to the system with a precision level of 1.1%: d = 185.9 ± 1.9 pc. Such precise and accurate geometrical distances to eclipsing binaries provide a unique opportunity to test the absolute calibration of the surface brightness-colour relation for late-type stars, and will also provide the best opportunity to check on the future Gaia measurements for possible systematic errors. Based on observations made with ESO telescopes at Paranal observatory under program IDs 094.D-0320.The calibrated interferometric data as OIFITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A35

  11. The eccentric massive binary V380 Cyg: revised orbital elements and interpretation of the intrinsic variability of the primary component

    CERN Document Server

    Tkachenko, A; Aerts, C; Pavlovski, K; Southworth, J; Papics, P I; Moravveji, E; Kolbas, V; Tsymbal, V; Debosscher, J; Clemer, K

    2013-01-01

    We present a detailed analysis and interpretation of the high-mass binary V380 Cyg, based on high-precision space photometry gathered with the Kepler space mission as well as high-resolution ground-based spectroscopy obtained with the HERMES spectrograph attached to the 1.2m Mercator telescope. We derive a precise orbital solution and the full physical properties of the system, including dynamical component mass estimates of 11.43+/-0.19 and 7.00+/-0.14 solar masses for the primary and secondary, respectively. Our frequency analysis reveals the rotation frequency of the primary in both the photometric and spectroscopic data and additional low-amplitude stochastic variability at low frequency in the space photometry with characteristics that are compatible with recent theoretical predictions for gravity-mode oscillations excited either by the convective core or by sub-surface convective layers. Doppler Imaging analysis of the silicon lines of the primary suggests the presence of two high-contrast stellar surfa...

  12. Orbitally modulated photoexcited Si I emission in the eclipsing composite-spectrum binary ζ Aurigae

    Science.gov (United States)

    Harper, G. M.; Griffin, R. E. M.; Bennett, P. D.; O'Riain, N.

    2016-02-01

    We examine the little-known phenomenon of orbitally modulated Si I emission at λ 3905.523 Å and λ 4102.936 Å in composite-spectrum binaries, with specific reference to ζ Aurigae (K4 Ib + B5 V). The emission is detected in the isolated spectrum of the B-type dwarf secondary, and while λ 4102 Å is heavily blended with Hδ, λ 3905 Å falls in the B-star's featureless continuum. The narrowness of the emission (vturb ≃ 6 km s-1) demonstrates that it originates in the upper photosphere or deep chromosphere of the K star primary. We propose that photoexcitation by the hot star's UV continuum, followed by recombination and cascades, leads to resonant scattering and subsequent pumping of lower opacity transitions in the singlet and triplet systems of Si I. This process channels the UV continuum into select narrow emission lines. We have also identified weaker photoexcited emission of Fe II at λ 3938.289 Å. The strengths, positions, and widths of the λ 3905 Å emission line vary with orbital phase owing to changes in the dilution of the irradiating flux and in the geometrical aspect of the irradiated hemisphere. Utilizing the inherent spatial resolution provided by the illuminated patch, and assuming that the K star is spherical with isotropic emission, yields vsin i ˜ 5.7 km s-1. Evidence of tidal distortion was deduced from the timing of the rapidly rising phase of the emission just after periastron. Increasing the diagnostic potential requires radiative transfer modelling of the formation and centre-to-limb variation of the emission.

  13. CIRCUMBINARY PLANETS ORBITING THE RAPIDLY PULSATING SUBDWARF B-TYPE BINARY NY Vir

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.-B.; Zhu, L.-Y.; Dai, Z.-B.; He, J.-J. [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernandez-Lajus, E. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); Xiang, F.-Y., E-mail: qsb@ynao.ac.cn [Physics Department, Xiangtan University, 411105 Xiangtan, Funan Province (China)

    2012-02-15

    We report here the tentative discovery of a Jovian planet in orbit around the rapidly pulsating subdwarf B-type (sdB-type) eclipsing binary NY Vir. By using newly determined eclipse times together with those collected from the literature, we detect that the observed-calculated (O - C) curve of NY Vir shows a small-amplitude cyclic variation with a period of 7.9 yr and a semiamplitude of 6.1 s, while it undergoes a downward parabolic change (revealing a period decrease at a rate of P-dot = -9.2 x 10{sup -12}). The periodic variation was analyzed for the light-travel-time effect via the presence of a third body. The mass of the tertiary companion was determined to be M{sub 3}sin i' = 2.3({+-} 0.3)M{sub Jupiter} when a total mass of 0.60 M{sub Sun} for NY Vir is adopted. This suggests that it is most probably a giant circumbinary planet orbiting NY Vir at a distance of about 3.3 astronomical units (AU). Since the rate of period decrease cannot be explained by true angular momentum loss caused by gravitational radiation or/and magnetic braking, the observed downward parabolic change in the O - C diagram may be only a part of a long-period (longer than 15 years) cyclic variation, which may reveal the presence of another Jovian planet ({approx}2.5 M{sub Jupiter}) in the system.

  14. Orbital Parameters for the Two Young Binaries VSB 111 and VSB 126

    CERN Document Server

    Karnath, Nicole; Wasserman, Larry; Torres, Guillermo; Skiff, Brian; Mathieu, Robert

    2013-01-01

    We report orbital parameters for two low-mass, pre-main sequence, double-lined spectroscopic binaries VSB 111 and VSB 126. These systems were originally identified as single-lined on the basis of visible-light observations. We obtained high-resolution, infrared spectra with the 10-m Keck II telescope, detected absorption lines of the secondary stars, and measured radial velocities of both components in the systems. The visible light spectra were obtained on the 1.5-m Wyeth reflector at the Oak Ridge Observatory, the 1.5-m Tillinghast reflector at the F. L. Whipple Observatory, and the 4.5-m equivalent Multiple Mirror Telescope. The combination of our visible and infrared observations of VSB 111 leads to a period of 902.1+/-0.9 days, an eccentricity of 0.788+/-0.008, and a mass ratio of 0.52+/-0.05. VSB 126 has a period of 12.9244+/-0.0002 days, an eccentricity of 0.18+/-0.02, and a mass ratio of 0.29+/-0.02. Visible-light photometry, using the 0.8-m telescope at Lowell Observatory, provided rotation periods f...

  15. NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits

    CERN Document Server

    Arzoumanian, Z; Burke-Spolaor, S; Chamberlin, S J; Chatterjee, S; Cordes, J M; Demorest, P B; Deng, X; Dolch, T; Ellis, J A; Ferdman, R D; Finn, L S; Garver-Daniels, N; Jenet, F; Jones, G; Kaspi, V M; Koop, M; Lam, M; Lazio, T J W; Lommen, A N; Lorimer, D R; Luo, J; Lynch, R S; Madison, D R; McLaughlin, M; McWilliams, S T; Nice, D J; Palliyaguru, N; Pennucci, T T; Ransom, S M; Sesana, A; Siemens, X; Stairs, I H; Stinebring, D R; Stovall, K; Swiggum, J; Vallisneri, M; van Haasteren, R; Wang, Y; Zhu, W W

    2014-01-01

    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project currently observes 43 pulsars using the Green Bank and Arecibo radio telescopes. In this work we use a subset of 17 pulsars timed for a span of roughly five years (2005--2010). We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Within the timing data, we perform a search for continuous gravitational waves from individual supermassive black hole binaries in circular orbits using robust frequentist and Bayesian techniques. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar dataset we place a 95% upper limit on the sky-averaged strain amplitude of $h_0\\lesssim 3.8\\times 10^{-14}$ at a frequency of 10 nHz. Furthermore, we place 95% ...

  16. Rapid Orbital Decay in the 12.75-minute WD+WD Binary J0651+2844

    CERN Document Server

    Hermes, J J; Brown, Warren R; Winget, D E; Prieto, Carlos Allende; Gianninas, A; Mukadam, Anjum S; Cabrera-Lavers, Antonio; Kenyon, Scott J

    2012-01-01

    We report the detection of orbital decay in the 12.75-min, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13-month baseline constrain the orbital period to 765.206543(55) s and indicate the orbit is decreasing as a rate of (-9.8 +/- 2.8) x 10^(-12) s/s (or -0.31 +/- 0.09 ms/yr). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M1 = 0.26 +/- 0.04 Msun and M2 = 0.50 +/- 0.04 Msun. General relativity predicts orbital decay due to gravitational wave radiation of (-8.2 +/- 1.7) x 10^(-12) s/s (or -0.26 +/- 0.05 ms/yr). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of ...

  17. New Precision Orbits of Bright Double-Lined Spectroscopic Binaries. I: RR Lyncis, 12 Bootis, and HR 6169

    CERN Document Server

    Tomkin, J; Fekel, Francis C.; Tomkin, Jocelyn

    2006-01-01

    Radial velocities from the 2.1 m telescope at McDonald Observatory supplemented with radial velocities from the coude' feed telescope at KPNO provide new precise orbits for the double-lined spectroscopic binaries RR Lyn (A3/A8/A6), 12 Boo (F8IV), and HR 6169 (A2V). We derive orbital dimensions and minimum masses with accuracies of 0.06 to 0.9 %. The three systems, which have V magnitudes of 5.54, 4.83, and 6.42, respectively, are all sufficiently bright that they are easily within the grasp of modern optical interferometers and so afford the prospect, when our spectroscopic observations are complemented by interferometric observations, of fully-determined orbits, precise masses, and distances. In the case of RR Lyn, which is also a detached eclipsing binary with a well-determined orbital inclination, we are able to determine the semimajor axis of the relative orbit, a = 29.32 +/- 0.04 Rsun, primary and secondary radii of 2.57 +/- 0.02 Rsun and 1.59 +/- 0.03 Rsun, respectively; and primary and secondary masses...

  18. Orbital solutions of eight close sdB binaries and constraints on the nature of the unseen companions

    CERN Document Server

    Geier, S; Heber, U; Kupfer, T; Maxted, P F L; Barlow, B N; Vuckovic, M; Tillich, A; Mueller, S; Edelmann, H; Classen, L; McLeod, A F

    2014-01-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars (sdBs) with massive compact companions such as white dwarfs, neutron stars, or stellar-mass black holes. In a supplementary programme we obtained time-resolved spectroscopy of known hot subdwarf binary candidates. Here we present orbital solutions of eight close sdB binaries with orbital periods ranging from 0.1 to 10 days, which allow us to derive lower limits on the masses of their companions. Additionally, a dedicated photometric follow-up campaign was conducted to obtain light curves of the reflection-effect binary HS 2043+0615. We are able to constrain the most likely nature of the companions in all cases but one, making use of information derived from photometry and spectroscopy. Four sdBs have white dwarf companions, while another three are orbited by low-mass main sequence stars of spectral type M.

  19. Physical and Orbital Properties of Some of Saturn's Small Satellites

    Science.gov (United States)

    Porco, C. C.; Thomas, P.; Spitale, J.; Jacobson, R. A.; Denk, T.; Charnoz, S.; Richardson, D. C.; Dones, L.; Baker, E.; Weiss, J. W.

    2005-08-01

    We present Cassini imaging results on the orbits and physical properties for the small ring-region moons Pan, Atlas, and the Cassini-discovered Keeler gap moon, S/2005 S1 (1), as well as the newly discovered/recovered moons orbiting among the major satellites, Methone (S/2004 S1), Pallene (S/2004 S2), and the Dione co-orbital S/2004 S5 Polydeuces (2,3,4). We find that Atlas is undergoing a 700-km amplitude longitudinal perturbation by Prometheus, Methone is undergoing a 30,000-km amplitude longitudinal perturbation by Mimas, and Pallene is undergoing a long-term 75-km amplitude longitudinal perturbation by Enceladus. Orbital integrations involving Atlas return a mass of GMAtlas = (0.43 ± 0.18) X 10-3 km3/sec2, three times larger than previously reported (4). Reasonably high resolution images have also allowed refinement of physical dimensions and spectral properties of these small moons. Results will be presented. At the time of writing, we find that Atlas has polar and equatorial diameters of 19 km, 38 km and 46 km, respectively. Its volume is (1.5 ± 0.4) X 104 km3, yielding a density of 0.43 ± 0.20 gm/cm3. Pan's polar diameter is 23 km, and differences in its equatorial axes are not well constrained; they both appear to be ˜ 35 km. Pan's volume is (1.4 ± 0.7) X 104 km3. Using the most currently reliable mass, GMPan = (0.33 ± 0.05) × 10-3 km3/sec2 (4), Pan's density is roughly 0.4 ± 0.2 gm/cm3. Both Pan and Atlas appear to be synchronous rotators, but libration cannot be ruled out yet. Given its shape, it is possible that Atlas is in a secondary spin-orbit resonance that could force a libration. Preliminary idealized rubble pile simulations have been performed which show that, at the orbits of Atlas and Pan, a simple self-gravitating ice-particle aggregate, with equal equatorial dimensions, would be stable against tides; a body with sufficiently unequal equatorial dimensions would not. [1] IAUC 8524. [2] IAUC 8389. [Correction: Pallene (S/2004 S2) is the

  20. Accretion and Orbital Inspiral in Gas-Assisted Supermassive Black Hole Binary Mergers

    CERN Document Server

    Rafikov, Roman R

    2016-01-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant $\\dot M$ accretion disk solution. Suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semi-major axis, the binary can merge in less than its mass-doubling time due to accretion. T...

  1. Physical and Geometrical Parameters of CVBS X: The Spectroscopic Binary Gliese 762.1

    CERN Document Server

    Masda, Suhail G; Neuhäuser, Ralph; Al-Naimiy, Hamid M

    2016-01-01

    We present the physical and geometrical parameters of the individual components of the close visual double-lined spectroscopic binary system Gliese 762.1, which were estimated using Al-Wardat's complex method for analyzing close visual binary systems. The estimated parameters of the individual components of the system are as follows: radius $R_{A}=0.845\\pm0.09 R_\\odot$, $R_{B}=0.795\\pm0.10 R_\\odot$, effective temperature $T_{\\rm eff}^{A} =5300\\pm50$\\,K, $T_{\\rm eff}^{B} =5150\\pm50$\\,K, surface gravity log $g_{A}=4.52\\pm0.10$, log $g_{B}=4.54\\pm0.15$ and luminosity $L_A=0.51\\pm0.08 L_\\odot$, $L_B=0.40\\pm0.07L_\\odot$. New orbital elements are presented with a semi-major axis of $0.0865 \\pm 0.010 $ arcsec using the Hippracos parallax $\\pi=58.96\\pm0.65$ mas, and an accurate total mass and individual masses of the system are determined as $M=1.72\\pm0.60M_\\odot$, $M_A=0.89 \\pm0.08M_\\odot$ and $M_B=0.83 \\pm0.07M_\\odot$. Finally, the spectral types and luminosity classes of both components are assigned as K0V and K1....

  2. The puzzling orbital period evolution of the low mass X-ray binary AX J1745.6-2901

    CERN Document Server

    Ponti, G; Munoz-Darias, T; Stella, L; Nandra, K

    2015-01-01

    The orbital period evolution of X-ray binaries provides fundamental clues to understanding mechanisms of angular momentum loss from these systems. We present an X-ray eclipse timing analysis of the transient low mass X-ray binary AX J1745.6-2901. This system shows full eclipses and thus is one of the few objects for which accurate orbital evolution studies using this method can be carried out. We report on XMM-Newton and ASCA observations covering 30 complete X-ray eclipses spanning an interval of more than 20 years. We improve the determination of the orbital period to a relative precision of $2\\times10^{-8}$, two orders of magnitudes better than previous estimates. We determine, for the first time, a highly significant rate of decrease of the orbital period $\\dot{P}_{orb}=-4.03\\pm0.32\\times10^{-11}$~s/s. This is at least one order of magnitude larger than expected from conservative mass transfer and angular momentum losses due to gravitational waves and magnetic breaking, and might result from non-conservat...

  3. THE FIRST PHOTOMETRIC STUDY AND ORBITAL SOLUTION/PERIOD ANALYSIS OF THE MISCLASSIFIED BINARY SYSTEM V380 CAS

    Energy Technology Data Exchange (ETDEWEB)

    Christopoulou, P.-E.; Papageorgiou, A. [Department of Physics, University of Patras, 26500 Patra (Greece); Kleidis, S. [Helliniki Astronomiki Enosi, Athens (Greece); Tsantilas, S. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, Athens University, Panepistimiopolis, Zografos 15784, Athens (Greece)

    2012-02-15

    We present the first multicolor CCD photometry for the eclipsing binary V380 Cassiopeia (V380 Cas) observed on 34 nights in 2009 and 2010 at the University of Patras Observatory. The PHOEBE program based on the Wilson-Devinney algorithm was used to analyze the first complete BVR{sub c} I{sub c} light curves. It was found that V380 Cas was misclassified and it is a well-detached system consisting of two main-sequence stars. A range of solutions found to give satisfactory fits to the observations is also investigated. The first orbital solution based on the photometric mass ratio q = 1.08 of almost equal temperatures and masses and orbital inclination of i = 86.{sup 0}57 was obtained. In addition, based on all available times of light minima, including 12 new ones, a new orbital period of P = 2.714539884 days is given.

  4. Change in the orbital period of a binary system due to dynamical tides for main-sequence stars

    Science.gov (United States)

    Chernov, S. V.

    2017-03-01

    We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes t = 4.57 × 109 yr closely corresponds to our Sun. We show that a planet of one Jupiter mass revolving around a star of one solar mass will fall onto the star in the main-sequence lifetime of the star due to dynamical tides if the initial orbital period of the planet is less than P orb ≈ 2.8 days. Planets of one Jupiter mass with an orbital period P orb ≈ 2 days or shorter will fall onto a star of one and a half and two solar masses in the mainsequence lifetime of the star.

  5. Reconceiling the orbital and physical properties of the martian moons

    CERN Document Server

    Ronnet, Thomas; Mousis, Olivier; Brugger, Bastien; Beck, Pierre; Devouard, Bertrand; Witasse, Olivier; Cipriani, Fabrice

    2016-01-01

    The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) is able to reconcile their orbital and physical properties. Here, we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and...

  6. Spectroscopic orbits of two short-period early-type binaries using two-dimensional cross-correlations

    Science.gov (United States)

    González, J. F.; Lapasset, E.

    2003-06-01

    We apply the two-dimensional cross-correlation technique TODCOR to derive spectroscopic orbits for the two B-type double-lined spectroscopic binaries HD 66066A and HD 315031, previously mentioned as blue straggler candidates of the open clusters NGC 2516 and NGC 6530, respectively. Reliable radial velocities for both components are measured even for orbital phases for which the separation between the spectral lines are about 0.5 times the quadratic sum of the full-width at half-maximum of the lines. Both binaries have circular orbits and the orbital periods are 1.67 and 1.38 days for HD 66066A and HD 315031, respectively. We calculate minimum masses with errors of 3-5% and obtain the projected radii from the line widths. We derive absolute stellar parameters which are consistent with the age and distance of the clusters. Both binary systems are formed by main-sequence stars and it is expected that they will experience mass-transfer between their components before the end of the core H-burning stage. HD 315031 is likely a triple system as suggested by the variation of the center-of-mass velocity. The observations presented here were obtained at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) and the National Universities of La Plata, Córdoba and San Juan.

  7. Physical parameter study of eight W Ursae Majoris-type contact binaries in NGC 188

    CERN Document Server

    Chen, Xiaodian; de Grijs, Richard; Zhang, Xiaobin; Xin, Yu; Wang, Kun; Luo, Changqing; Yan, Zhengzhou; Tian, Jianfeng; Sun, Jinjiang; Liu, Qili; Zhou, Qiang; Luo, Zhiquan

    2016-01-01

    We used the newly commissioned 50 cm Binocular Network (50BiN) telescope at Qinghai Station of Purple Mountain Observatory (Chinese Academy of Sciences) to observe the old open cluster NGC 188 in V and R as part of a search for variable objects. Our time-series data span a total of 36 days. Radial velocity and proper-motion selection resulted in a sample of 532 genuine cluster members. Isochrone fitting was applied to the cleaned cluster sequence, yielding a distance modulus of (m - M)0V = 11.35 \\pm 0.10 mag and a total foreground reddening of E(V - R) = 0.062 \\pm 0.002 mag. Light-curve solutions were obtained for eight W Ursae Majoris eclipsing-binary systems (W UMas) and their orbital parameters were estimated. Using the latter parameters, we estimate a distance to the W UMas which is independent of the host cluster's physical properties. Based on combined fits to six of the W UMas (EP Cep, EQ Cep, ES Cep, V369 Cep, and--for the first time--V370 Cep and V782 Cep), we obtain an average distance modulus of (m...

  8. The Tarantula Massive Binary Monitoring project: II. A first SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145

    CERN Document Server

    Shenar, T; Sablowski, D P; Hainich, R; Sana, H; Moffat, A F J; Todt, H; Hamann, W -R; Oskinova, L M; Sander, A; Tramper, F; Langer, N; Bonanos, A Z; de Mink, S E; Graefener, G; Crowther, P A; Vink, J S; Almeida, L A; de Koter, A; Barba, R; Herrero, A; Ulaczyk, K

    2016-01-01

    We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300Msun, making it a candidate for the most massive star known. While the primary is a known late type, H-rich Wolf-Rayet star (WN6h), the secondary could not be so far unambiguously detected. Using moderate resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary, and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1 sin^3 i ~ M2 sin^3 i ~ 13 +- 2 Msun, ...

  9. Post-common envelope binaries from SDSS - XVI. Long orbital period systems and the energy budget of CE evolution

    CERN Document Server

    Rebassa-Mansergas, A; Schreiber, M R; Gaensicke, B T; Southworth, J; Gomez-Moran, A Nebot; Tappert, C; Koester, D; Pyrzas, S; Papadaki, C; Schmidtobreick, L; Schwope, A; Toloza, O

    2012-01-01

    Virtually all close compact binary stars are formed through common-envelope (CE) evolution. It is generally accepted that during this crucial evolutionary phase a fraction of the orbital energy is used to expel the envelope. However, it is unclear whether additional sources of energy, such as the recombination energy of the envelope, play an important role. Here we report the discovery of the second and third longest orbital period post-common envelope binaries (PCEBs) containing white dwarf (WD) primaries, i.e. SDSSJ121130.94-024954.4 (Porb = 7.818 +- 0.002 days) and SDSSJ222108.45+002927.7 (Porb = 9.588 +- 0.002 days), reconstruct their evolutionary history, and discuss the implications for the energy budget of CE evolution. We find that, despite their long orbital periods, the evolution of both systems can still be understood without incorporating recombination energy, although at least small contributions of this additional energy seem to be likely. If recombination energy significantly contributes to the...

  10. Orbital and Superorbital Monitoring of the Be/X-ray binary A0538-66: constraints on the system parameters

    Science.gov (United States)

    Rajoelimanana, A. F.; Charles, P. A.; Meintjes, P. J.; Townsend, L. J.; Schurch, M. P. E.; Udalski, A.

    2016-10-01

    We combine the decade long photometry of the Be/X-ray binary system A0538-66 provided by the MACHO and OGLE IV projects with high resolution SALT spectroscopy to provide detailed constraints on the orbital parameters and system properties. The ˜420d superorbital modulation is present throughout, but has reduced in amplitude in recent years. The well-defined 16.6409d orbital outbursts, which were a strong function of superorbital phase in the MACHO data (not occurring at all at superorbital maximum), are present throughout the OGLE IV coverage. However, their amplitude reduces during superorbital maximum. We have refined the orbital period and ephemeris of the optical outburst based on ˜ 25 yrs light curves to HJD = 2455674.48±0.03 + n*16.6409±0.0003d. Our SALT spectra reveal a B1 III star with vsin i of 285 kms-1 from which we have derived an orbital radial velocity curve which confirms the high eccentricity of e = 0.72±0.14. Furthermore, the mass function indicates that, unless the neutron star far exceeds the canonical 1.44 M⊙, the donor must be significantly undermassive for its spectral type. We discuss the implications of the geometry and our derived orbital solution on the observed behaviour of the system.

  11. Orbital and superorbital monitoring of the Be/X-ray binary A0538-66: constraints on the system parameters

    Science.gov (United States)

    Rajoelimanana, A. F.; Charles, P. A.; Meintjes, P. J.; Townsend, L. J.; Schurch, M. P. E.; Udalski, A.

    2017-02-01

    We combine the decade-long photometry of the Be/X-ray binary system A0538-66 provided by the Massive astrophysical compact halo object (MACHO) and optical gravitational lensing experiment (OGLE) IV projects with high-resolution Southern African Large Telescope (SALT) spectroscopy to provide detailed constraints on the orbital parameters and system properties. The ˜420 d superorbital modulation is present throughout, but has reduced in amplitude in recent years. The well-defined 16.6409 d orbital outbursts, which were a strong function of superorbital phase in the MACHO data (not occurring at all at superorbital maximum), are present throughout the OGLE IV coverage. However, their amplitude reduces during superorbital maximum. We have refined the orbital period and ephemeris of the optical outburst based on ˜25 yr light curves to HJD = 2455674.48 ± 0.03 + n*16.6409 ± 0.0003d. Our SALT spectra reveal a B1 III star with vsin i of 285 kms-1 from which we have derived an orbital radial velocity curve which confirms the high eccentricity of e = 0.72 ± 0.14. Furthermore, the mass function indicates that, unless the neutron star far exceeds the canonical 1.44 M⊙, the donor must be significantly undermassive for its spectral type. We discuss the implications of the geometry and our derived orbital solution on the observed behaviour of the system.

  12. Photometric Properties of Selected Algol-type Binaries. III. AL Geminorum and BM Monocerotis with Possible Light-time Orbits

    Science.gov (United States)

    Yang, Y.-G.; Li, H.-L.; Dai, H.-F.

    2012-01-01

    We present the CCD photometry of two Algol-type binaries, AL Gem and BM Mon, observed from 2008 November to 2011 January. With the updated Wilson-Devinney program, photometric solutions were deduced from their EA-type light curves. The mass ratios and fill-out factors of the primaries are found to be q ph = 0.090(± 0.005) and f 1 = 47.3%(± 0.3%) for AL Gem, and q ph = 0.275(± 0.007) and f 1 = 55.4%(± 0.5%) for BM Mon, respectively. By analyzing the O-C curves, we discovered that the periods of AL Gem and BM Mon change in a quasi-sinusoidal mode, which may possibly result from the light-time effect via the presence of a third body. Periods, amplitudes, and eccentricities of light-time orbits are 78.83(± 1.17) yr, 0fd0204(±0fd0007), and 0.28(± 0.02) for AL Gem and 97.78(± 2.67) yr, 0fd0175(±0fd0006), and 0.29(± 0.02) for BM Mon, respectively. Assumed to be in a coplanar orbit with the binary, the masses of the third bodies would be 0.29 M ⊙ for AL Gem and 0.26 M ⊙ for BM Mon. This kind of additional companion can extract angular momentum from the close binary orbit, and such processes may play an important role in multiple star evolution.

  13. Effects of the gravitational waves emission on the orbit of the binary neutron stars considering the mass variation.

    Science.gov (United States)

    Mabrouk, Zeinab; Rahoma, W. A.

    2016-07-01

    Gravitational waves which have been announced finally to be detected in February 11, 2016 are believed to be emitted from many sources and phenomena in the universe, the binary neutron stars systems specially the inspirals are one kind of them. In this paper we are going to calculate the effects of this emission on the elements of the elliptical orbits of such binary neutron stars before the onset of the mass exchange. We based our work on the Imshennik and Popov (1994) paper then we do some modifications. The main and important results that Imshennik and Popov get were the rate of change of the eccentricity e, the rate of change of the semi major axis a, and the monotonic dependence between them a=a(e). Finally they concluded the smallness of the final eccentricity which make the orbits to be near-circular due to the emission of the gravitational waves. Our modification is to consider the masses of the two binary stars to be varied using the famous Eddington-Jeams law, then we expand them around the time t using Taylor expansion. we do this variation first for one mass with the constancy of the second one, then we let both mosses to vary together. We start the algorithm from the beginning substituting with our new series of masses in the two main equations, the average rate of change of the total energy of the system (dE/dt) , and the average rate of change of the angular momentum (dJ/dt). This modification leads to new expressions of the previous mentioned rate of changes of the orbital elements obtained by Imshennik and Popov, some of them we obtained and still working in the rest.

  14. THE LEECH EXOPLANET IMAGING SURVEY: ORBIT AND COMPONENT MASSES OF THE INTERMEDIATE-AGE, LATE-TYPE BINARY NO UMa

    Energy Technology Data Exchange (ETDEWEB)

    Schlieder, Joshua E. [NASA Ames Research Center, Space Science and Astrobiology Division, MS 245-6, Moffett Field, CA 94035 (United States); Skemer, Andrew J.; Hinz, Philip; Leisenring, Jarron; Defrère, Denis; Close, Laird M.; Eisner, Josh A. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Maire, Anne-Lise; Desidera, Silvano [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova (Italy); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA, 22904 (United States); Bailey, Vanessa [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Esposito, Simone [INAF—Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy); Strassmeier, Klaus G.; Weber, Michael [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany); Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Henning, Thomas [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN, 46556 (United States); Hofmann, Karl-Heinz, E-mail: joshua.e.schlieder@nasa.gov [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany); and others

    2016-02-10

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, K{sub s}-, and L′-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M{sub ⊙} and 0.64 ± 0.02 M{sub ⊙}, respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits.

  15. The Tarantula Massive Binary Monitoring. II. First SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145

    Science.gov (United States)

    Shenar, T.; Richardson, N. D.; Sablowski, D. P.; Hainich, R.; Sana, H.; Moffat, A. F. J.; Todt, H.; Hamann, W.-R.; Oskinova, L. M.; Sander, A.; Tramper, F.; Langer, N.; Bonanos, A. Z.; de Mink, S. E.; Gräfener, G.; Crowther, P. A.; Vink, J. S.; Almeida, L. A.; de Koter, A.; Barbá, R.; Herrero, A.; Ulaczyk, K.

    2017-02-01

    We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159 d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300 M⊙, making it a candidate for being the most massive star known to date. While the primary is a known late-type, H-rich Wolf-Rayet star (WN6h), the secondary has so far not been unambiguously detected. Using moderate-resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1sin3i ≈ M2sin3i = 13 ± 2 M⊙, with q = M2/M1 = 1.01 ± 0.07. An analysis of emission excess stemming from a wind-wind collision yields an inclination similar to that obtained from polarimetry (i = 39 ± 6°). Our analysis thus implies and , excluding M1 > 300 M⊙. A detailed comparison with evolution tracks calculated for single and binary stars together with the high eccentricity suggests that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of ≈ 80 M⊙ and initial masses of Mi,1 ≈ 105 and Mi,2 ≈ 90 M⊙, consistent with the upper limits of our derived orbital masses, and would imply an age of ≈ 2.2 Myr. A copy of the disentangled spectra, as either FITS files or tables are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A85

  16. Orbital and Superorbital Monitoring of the Be/X-ray binary A0538-66: constraints on the system parameters

    CERN Document Server

    Rajoelimanana, A F; Meintjes, P J; Townsend, L J; Schurch, M P E; Udalski, A

    2016-01-01

    We combine the decade long photometry of the Be/X-ray binary system A0538-66 provided by the MACHO and OGLE IV projects with high resolution SALT spectroscopy to provide detailed constraints on the orbital parameters and system properties. The ~420d superorbital modulation is present throughout, but has reduced in amplitude in recent years. The well-defined 16.6409d orbital outbursts, which were a strong function of superorbital phase in the MACHO data (not occurring at all at superorbital maximum), are present throughout the OGLE IV coverage. However, their amplitude reduces during superorbital maximum. We have refined the orbital period and ephemeris of the optical outburst based on ~25 yrs light curves to HJD = 2455674.48 +/- 0.03 + n*16.6409 +/- 0.0003d. Our SALT spectra reveal a B1 III star with vsini of 285 km/s from which we have derived an orbital radial velocity curve which confirms the high eccentricity of e = 0.72 +/- 0.14. Furthermore, the mass function indicates that, unless the neutron star far ...

  17. Measuring the mass of a pre-main sequence binary star through the orbit of TWA5A

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Q; Ghez, A; Duchene, G; McCabe, C; Macintosh, B

    2007-01-18

    We present the results of a five year monitoring campaign of the close binary TWA 5Aab in the TW Hydrae association, using speckle and adaptive optics on the W.M. Keck 10 m telescopes. These measurements were taken as part of our ongoing monitoring of pre-main sequence (PMS) binaries in an effort to increase the number of dynamically determined PMS masses and thereby calibrate the theoretical PMS evolutionary tracks. Our observations have allowed us to obtain the first determination of this system's astrometric orbit. We find an orbital period of 5.94 {+-} 0.09 years and a semi-major axis of 0.''066 {+-} 0.''005. Combining these results with a kinematic distance, we calculate a total mass of 0.71 {+-} 0.14 M{sub {circle_dot}} (D/44 pc){sup 3}. for this system. This mass measurement, as well as the estimated age of this system, are consistent to within 2{sigma} of all theoretical models considered. In this analysis, we properly account for correlated uncertainties, and show that while these correlations are generally ignored, they increase the formal uncertainties by up to a factor of five and therefore are important to incorporate. With only a few more years of observation, this type of measurement will allow the theoretical models to be distinguished.

  18. Physical Characterization of the Binary Asteroid 66146 (1998 Tu3)

    Science.gov (United States)

    Truong, Thien-Tin; Hicks, M.; Mayes, D.; Barajas, T.; Garcia, K.

    2011-01-01

    The near-Earth asteroid 66146 (1998 TU3) was discovered on 1998 October 13 by the LINEAR NEO survey (MPEC 1998-U03). We obtained five nights of Bessel BVRI observations (2010 Aug 6,7,10,12,13 UT) and one night of Bessel R (August 8 PST) at the JPL Table Mountain Observatory (TMO) 0.6-m telescope near Wrightwood, California. These observations were obtained as part of our ongoing survey at TMO of Potentially Hazardous Asteroids (PHAs), planetary radar targets, and low delta-V near-Earth asteroids (NEOs). The object's rotationally averaged colors (B-R=1.238+/-0.011 mag; V-R=0.440+/-0.008 mag; R-I=0.275+/-0.010 mag) were found most compatible with an Sk-type spectral classification (Bus Taxonomy)/S-type (Tholen Taxonomy). This association was obtained through a comparison of our colors with the 1341 asteroid spectra in the SMASS II database (Bus & Binzel 2002). Our classification differs significantly from the Q-type taxonomy reported by Whitely (2002). Assuming a solar phase parameter g=0.15 we performed a period search using standard Fourier techniques. We found a best-fit rotational period Psyn=2.378+/-0.001 hr, in excellent agreement with the 2.3779+/-0.0004 period determined by Richards et al. (2007). The dispersion in the phased single period lightcurve strongly suggests that 1998 TU3 is be a binary system, with variations in observed flux caused by an unresolved, tidally locked secondary companion. Fitting a 2-period model as described by Pravec et al. (2000), we found that our photometry agrees well with a binary model (P1=2.378+/-0.01 hr, P2=28.28+/-0.05 hr). We have three additional nights scheduled for this object at TMO (Oct 8, 9, 10 2010 UT), extending our solar phase coverage and allowing us to refine our rotational models. 1998 TU3 will experience an exceptional apparition in 2012. This object may be a good candidate for shape/pole modeling via lightcurve inversion, especially if photometry can be obtained from both northern and southern hemispheres. We

  19. Measurement of Gravitational Spin-Orbit Coupling in a Binary Pulsar System

    Science.gov (United States)

    Stairs, I. H.; Thorsett. S. E.; Arzoumanian, Z.

    2004-01-01

    In relativistic gravity, a spinning pulsar will precess as it orbits a compact companion star. We have measured the effect of such precession on the average shape and polarization of the radiation from PSR B1534+12. We have also detected, with limited precision, special-relativistic aberration of the revolving pulsar beam due to orbital motion. Our observations fix the system geometry, including the misalignment between the spin and orbital angular momenta, and yield a measurement of the precession timescale consistent with the predictions of General Relativity.

  20. Observable gravitational and electromagnetic orbits and trajectories in discrete physics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.; McGoveran, D.O.

    1988-11-28

    Our discrete and finite version of relativistic quantum mechanics provides an elementary particle physics consistent with the standard model of quarks and leptons. Our recent relativistic calculation of the bound state spectrum of hydrogen has allowed us to make a combinatorial correction to the first order estimate of 1/..cap alpha.. = /Dirac h/c/e/sup 2/ = 137 derived from the combinatorial hierarchy and achieve agreement with experiment up to terms of order ..cap alpha../sup 3/. The same theory requires that to first order /Dirac h/c/Gm/sub p//sup 2/ = 2/sup 127/ + 136 approx. = 1.7 /times/ 10/sup 38/. Using the emission and absorption of spin 1 photons and spin 2 gravitons in this framework, we try to show that we can meet the three additional tests of general relativity---solar red shift, solar bending of light, and precession of the perihelion of Mercury. We predict that a macroscopic electromagnetic orbit would have four times the Sommerfeld precession for basically the same reason that Mercury has six times the Sommerfeld precession. 20 refs.

  1. Physical and orbital properties of Beta Pictoris b

    CERN Document Server

    Bonnefoy, M; Galicher, R; Beust, H; Lagrange, A -M; Baudino, J -L; Chauvin, G; Borgniet, S; Meunier, N; Rameau, J; Boccaletti, A; Cumming, A; Helling, C; Homeier, D; Allard, F; Delorme, P

    2014-01-01

    The intermediate-mass star Beta Pictoris is known to be surrounded by a structured edge-on debris disk within which a gas giant planet was discovered orbiting at 8-10 AU. The physical properties of Beta Pic b were previously inferred from broad and narrow-band 0.9-4.8 microns photometry. We used commissioning data of the Gemini Planet Imager (GPI) to obtain new astrometry and a low-resolution (R=35-39) J-band (1.12-1.35 microns) spectrum of the planet. We find that the planet has passed the quadrature. We constrain its semi-major axis to $\\leq$ 10 AU (90 % prob.) with a peak at 8.9+0.4-0.6 AU. The joint fit of the planet astrometry and the most recent radial velocity measurements of the star yields a planet's dynamical mass $\\leq$ 20 MJup (greater than 96 % prob.). The extracted spectrum of Beta Pic b is similar to those of young L1-1.5+1 dwarfs. We use the spectral type estimate to revise the planet luminosity to log(L/Lsun)=-3.90+-0.07. The 0.9-4.8 microns photometry and spectrum are reproduced for Teff=165...

  2. Visual binary stars: data to investigate formation of binaries

    Science.gov (United States)

    Kovaleva,, D.; Malkov,, O.; Yungelson, L.; Chulkov, D.

    Statistics of orbital parameters of binary stars as well as statistics of their physical characteristics bear traces of star formation history. However, statistical investigations of binaries are complicated by incomplete or missing observational data and by a number of observational selection effects. Visual binaries are the most common type of observed binary stars, with the number of pairs exceeding 130 000. The most complete list of presently known visual binary stars was compiled by cross-matching objects and combining data of the three largest catalogues of visual binaries. This list was supplemented by the data on parallaxes, multicolor photometry, and spectral characteristics taken from other catalogues. This allowed us to compensate partly for the lack of observational data for these objects. The combined data allowed us to check the validity of observational values and to investigate statistics of the orbital and physical parameters of visual binaries. Corrections for incompleteness of observational data are discussed. The datasets obtained, together with modern distributions of binary parameters, will be used to reconstruct the initial distributions and parameters of the function of star formation for binary systems.

  3. Physical properties of trans-neptunian binaries (120347) Salacia-Actaea and (42355) Typhon-Echidna

    NARCIS (Netherlands)

    Stansberry, J. A.; Grundy, W. M.; Mueller, M.; Benecchi, S. D.; Rieke, G. H.; Noll, K. S.; Buie, M. W.; Levison, H. F.; Porter, S. B.; Roe, H. G.

    2012-01-01

    We report new Hubble Space Telescope and Spitzer Space Telescope results concerning the physical properties of the trans-neptunian object (TNO) binaries (120347) Salacia-Actaea (formerly 2004 SB60), and (42355) Typhon-Echidna (formerly 2002 CR46). The mass of the (120347) Salacia-Actaea system is 4.

  4. Physics of higher orbital bands in optical lattices: a review

    OpenAIRE

    Li, Xiaopeng; Liu, W. Vincent

    2015-01-01

    Orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensation and topological semimetals emerge. A brief introduction of orbital degree of freedom in optical lattices is given ...

  5. Physics of higher orbital bands in optical lattices: a review

    Science.gov (United States)

    Li, Xiaopeng; Liu, W. Vincent

    2016-11-01

    The orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensates and topological semimetals emerge. A brief introduction of orbital degrees of freedom in optical lattices is given and a summary of exotic orbital models and resulting many-body phases is provided. Experimental consequences of the novel phases are also discussed.

  6. Suzaku Monitoring of Hard X-ray Emission from Eta Carinae over a Single Binary Orbital Cycle

    CERN Document Server

    Hamaguchi, Kenji; Takahashi, Hiromitsu; Yuasa, Takayuki; Ishida, Manabu; Gull, Theodore R; Pittard, Julian M; Russell, Christopher M P; Madura, Thomas I

    2014-01-01

    The Suzaku X-ray observatory monitored the supermassive binary system Eta Carinae 10 times during the whole 5.5 year orbital cycle between 2005-2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15-40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ~4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of 3 around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ~3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. Thi...

  7. Massive Black Hole binaries in gas-rich galaxy mergers; multiple regimes of orbital decay and interplay with gas inflows

    CERN Document Server

    Mayer, Lucio

    2013-01-01

    We revisit the phases of the pairing and sinking of BHs in galaxy mergers and circunmunclear disks in light of the results of recent simulations with massive BHs embedded in predominantly gaseous backgrounds. After a general overview we discuss the importance of a fast orbital decay regime dominated by global disk torques rather than by the local dynamical friction wake. This regime can dominate at BH binary separations of a few tens of parsecs and below, following a phase of orbital circularization dominated by local dynamical friction. It is similar to Type-I migration in planetary evolution. It can bring the black holes to separations small enough for gravitational waves to take over on a timescale ranging from less than $\\sim 10^7$ yr to up to $10^8$ yr, depending on whether the interstellar medium is smooth or clumpy. Eventual gap opening at sub-pc scale separations slows down but does not interrupt the orbital decay.Subsequently, we discuss a new intriguing connection between the conditions required for...

  8. S-Type and P-Type Habitability in Stellar Binary Systems: A Comprehensive Approach. II. Elliptical Orbits

    CERN Document Server

    Cuntz, Manfred

    2014-01-01

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes (radiative habitable zone; RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs ...

  9. Physical properties and evolutionary status of the W-subtype contact binary V502 Oph with a stellar companion

    Science.gov (United States)

    Xiao, Zhou; Shengbang, Qian; Binghe, Huang; Hao, Li; Jia, Zhang

    2016-12-01

    Multi-color (B, V, Rc, Ic) CCD photometric light curves of the contact binary V502 Oph are analyzed using the Wilson-Devinney program. The solutions reveal that V502 Oph is a W-subtype contact (f = 35.3%) binary system. The temperature difference between its two components is 240 K and the more massive star has a lower surface temperature. A cool spot is added in our model to account for the light curves' asymmetry (O'Connell effect) and a third light is detected for the first time in the light curves' modeling. Combining the orbital inclination (i = 76.4°) with the published mass function of V502 Oph, the absolute physical parameters of the two components are determined, which are M1 = 0.46(±0.02) M⊙, M2 = 1.37(±0.02) M⊙, R1 = 0.94(±0.01) R⊙, R2 = 1.51(±0.01) R⊙, L1 = 1.13(±0.02) L⊙, and L2 = 2.49(±0.03) L⊙. The formation and the evolutionary status of V502 Oph are discussed. All photoelectric and CCD times of light minimum about V502 Oph are gathered and its orbital period variations are analyzed. The results show that the orbital period of V502 Oph is decreasing continuously at a rate of dP/dt = -1.69 × 10-7 d yr-1,which corresponds to a conservative mass transfer rate of dM2/dt = -3.01 × 10- 8 M⊙ yr-1. The light-travel time effect is due to the presence of a close-in tertiary component with a period of P3 = 18.7 yr and an amplitute of 0.00402 d. V502 Oph is an ideal target to test the formation and evolution theories of binary and multiple systems in which the light curves, the O - C curve and spectroscopic observations are comprehensively researched.

  10. Physical properties and evolutionary status of the W-subtype contact binary V502 Oph with a stellar companion

    Science.gov (United States)

    Xiao, Zhou; Shengbang, Qian; Binghe, Huang; Hao, Li; Jia, Zhang

    2016-10-01

    Multi-color (B, V, Rc, Ic) CCD photometric light curves of the contact binary V502 Oph are analyzed using the Wilson-Devinney program. The solutions reveal that V502 Oph is a W-subtype contact (f = 35.3%) binary system. The temperature difference between its two components is 240 K and the more massive star has a lower surface temperature. A cool spot is added in our model to account for the light curves' asymmetry (O'Connell effect) and a third light is detected for the first time in the light curves' modeling. Combining the orbital inclination (i = 76.4°) with the published mass function of V502 Oph, the absolute physical parameters of the two components are determined, which are M1 = 0.46(±0.02) M⊙, M2 = 1.37(±0.02) M⊙, R1 = 0.94(±0.01) R⊙, R2 = 1.51(±0.01) R⊙, L1 = 1.13(±0.02) L⊙, and L2 = 2.49(±0.03) L⊙. The formation and the evolutionary status of V502 Oph are discussed. All photoelectric and CCD times of light minimum about V502 Oph are gathered and its orbital period variations are analyzed. The results show that the orbital period of V502 Oph is decreasing continuously at a rate of dP/dt = -1.69 × 10-7 d yr-1,which corresponds to a conservative mass transfer rate of dM2/dt = -3.01 × 10- 8 M⊙ yr-1. The light-travel time effect is due to the presence of a close-in tertiary component with a period of P3 = 18.7 yr and an amplitute of 0.00402 d. V502 Oph is an ideal target to test the formation and evolution theories of binary and multiple systems in which the light curves, the O - C curve and spectroscopic observations are comprehensively researched.

  11. Adaptive particle swarm optimization for optimal orbital elements of binary stars

    Science.gov (United States)

    Attia, Abdel-Fattah

    2016-12-01

    The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.

  12. Absolute parameters and physical nature of two W-UMa type binaries: V1123 Tau and V1128 Tau

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bin Zhang; An-Bin Ren; Chang-Qing Luo; Yang-Ping Luo

    2011-01-01

    We present high-precision, multi-band CCD photometry of two less-studied close binaries V 1123 Tau and V 1128 Tau. Complete covered light curves and a number of new times of light minima of the two eclipsing systems were obtained, based on which, revised orbital elements and new ephemerides were given. By adopting the Wilson-Devinney method, the light curves were analyzed. The photometric solutions confirm the W UMa-type nature of the binary systems. With the less-massive secondary slightly cooler than the primary, V1123 Tau could be classified as an Atype contact system. While V 1128 Tau is typically considered a W-type W UMa star,the surface temperature of its secondary component is determined to be absolutely higher than the primary by about 270 K. Combining with the results of radial-velocity solutions, we determined absolute parameters of the two systems. The mass, radius and luminosity for each component of V1123 Tau were derived as: 1.36 ± 0.05M☉,1.37 ±- 0.02R☉, and 2.01 ±± 0.07L☉ and 0.40 ± 0.02M☉, 0.80 ± 0.01R☉, and 0.67 ± 0.04L☉, respectively. For V1128 Tau, the absolute parameters were computed to be 1.09 ± 0.03M☉, 1.01 ± 0.01R☉, and 1.34 ± 0.06L☉ and 0.58 ± 0.01M☉,0.76 ±- 0.01R☉, and 0.91 ± 0.05L☉, respectively. Based on these results, the evolutionary status and the physical nature of the two binary systems are discussed, while also connecting with the theoretical models.

  13. Spectroscopy of the extreme-ultraviolet source Feige 24 - The binary orbit and the mass of the white dwarf

    Science.gov (United States)

    Thorstensen, J. R.; Charles, P. A.; Bowyer, S.; Margon, B.

    1978-01-01

    Results are reported for coude spectroscopy of the extreme-ultraviolet white dwarf Feige 24. Radial velocities of the H-alpha, He I 5876-A, and He I 6678-A emission lines, and the underlying M-dwarf absorption features, were determined from spectrograms obtained with the Lick 3-m telescope. The velocities show a binary period of 4.239(+ or - 0.0015) days. The emission-line and absorption-line velocities agree in phase, which indicates that the emission lines originate in the atmosphere of the M-dwarf secondary as a result of reprocessing of the EUV radiation. This effect is modeled, and the observed amplitude of the emission-line variability is used to place a lower limit on the orbital inclination. From these and other data it is shown that the mass of the white dwarf lies between 0.46 and 1.24 solar masses. Some possible implications for the evolution of binary stars are briefly discussed.

  14. The double-lined spectroscopic binary $\\alpha$ Andromedae orbital elements and elemental abundances

    CERN Document Server

    Ryabchikova, T A; Adelman, S J

    1998-01-01

    We performed a spectroscopic study of the SB2 Mercury-Manganese star alpha And. Our measurements of the secondary's radial velocities result in improved orbital elements. The secondary shows abundances typical of the metallic-line stars: a Ca deficiency, small overabundances of the iron-peak elements, and 1.0 dex overabundances of Sr and Ba.

  15. Enriching gender in physics education research: A binary past and a complex future

    Science.gov (United States)

    Traxler, Adrienne

    2017-01-01

    This talk draws on research in physics, science education, and women's studies to propose a more nuanced treatment of gender in physics education research (PER). A growing body of PER has examined gender differences in students' participation, performance, and attitudes toward physics. Though valuable, this body of work often follows a ``binary deficit'' model of gender, where the achievements of men are implicitly taken as the most appropriate standard and where individual experiences and student identities are undervalued. I will discuss more up-to-date viewpoints on gender from other fields, as well as work on the intersection of identities [e.g., gender with race and ethnicity, or with lesbian, gay, bisexual, and transgender (LGBT) status]. A few PER studies examine the intersection of gender and race, and identify the lack of a unitary identity as a key challenge of ``belonging'' in physics. Acknowledging this complexity of identity allows further critique of the binary deficit model, which casts gender as a fixed binary trait and frames research questions around investigating deficiencies in women rather than issues of systemic bias. More nuanced models of gender allow a greater range and fluidity of gender identities, and highlight deficiencies in data that exclude women's experiences. I will conclude by suggesting new investigations that might build on an expanded gender framework in PER.

  16. Orbitally modulated dust formation by the WC7+O5 colliding-wind binary WR140

    CERN Document Server

    Williams, P M; Marston, A P; Moffat, A F J; Varricatt, W P; Dougherty, S M; Kidger, M R; Morbidelli, L; Tapia, M

    2009-01-01

    We present high-resolution infrared (2--18 micron) images of the archetypal periodic dust-making Wolf-Rayet binary system WR140 (HD 193793) taken between 2001 and 2005, and multi-colour (J -- [19.5]) photometry observed between 1989 and 2001. The images resolve the dust cloud formed by WR140 in 2001, allowing us to track its expansion and cooling, while the photometry allows tracking the average temperature and total mass of the dust. The combination of the two datasets constrains the optical properties of the dust. The most persistent dust features, two concentrations at the ends of a `bar' of emission to the south of the star, were observed to move with constant proper motions of 324+/-8 and 243+/-7 mas/y. Longer wavelength (4.68-micron and 12.5-micron) images shows dust emission from the corresponding features from the previous (1993) periastron passage and dust-formation episode. A third persistent dust concentration to the east of the binary (the `arm') was found to have a proper motion ~ 320 mas/y. Extr...

  17. Binary Star Orbits. III. In which we Revisit the Remarkable Case of Tweedledum and Tweedledee

    CERN Document Server

    Mason, Brian D; McAlister, Harold A

    2010-01-01

    Two of the most challenging objects for optical interferometry in the middle of the last century were the close components (FIN 332) of the wide visual binary STF2375 (= WDS 18455+0530 = HIP 92027 = ADS 11640). Each component of the wide pair was found to have subcomponents of approximately the same magnitude, position angle and separation and, hence, were designated by the tongue in cheek monikers "Tweedledum and Tweedledee" by the great visual interferometrist William S. Finsen in 1953. They were later included in a list of "Double Stars that Vex the Observer" by W.H. van den Bos (1958a). While speckle interferometry has reaped a rich harvest investigating the close inteferometric binaries of Finsen, the "Tweedles" have continued to both fascinate and exasperate due to both the great similarity of the close pairs as well as the inherent 180 degree ambiguity associated with interferometry. Detailed analysis of all published observations of the system have revealed several errors which are here corrected, all...

  18. The Banana Project. III. Spin-orbit Alignment in the Long-period Eclipsing Binary NY Cephei

    CERN Document Server

    Albrecht, Simon; Carter, Joshua; Snellen, Ignas; de Mooij, Ernst

    2010-01-01

    Binaries are not always neatly aligned. Previous observations of the DI Her system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here we report on a measurement of the spin-axis orientation of the primary star of the NY Cep system, which is similar to DI Her in many respects: it features two young early-type stars (~6 Myr, B0.5V+B2V), in an eccentric and relatively long-period orbit (e=0.48, P=15.d3). The sky projections of the rotation vector and the spin vector are well-aligned (beta_p = 2 +- 4 degrees), in strong contrast to DI Her. Although no convincing explanation has yet been given for the misalignment of DI Her, our results show that the phenomenon is not universal, and that a successful theory will need to account for the different outcome in the case of NY Cep.

  19. RXJ0806.3+1527 a double degenerate binary with the shortest known orbital period (321s)

    CERN Document Server

    Israel, G L; Covino, S; Campana, S; Appenzeller, I; Gässler, W; Mantel, K H; Marconi, G; Mauche, C W; Munari, U; Negueruela, I; Nicklas, H; Rupprecht, G; Smart, R L; Stahl, O; Stella, L

    2002-01-01

    We carried out optical observations of the field of the X-ray pulsator RXJ0806.3+1527. A blue V=21.1 star was found to be the only object consistent with the X-ray position. VLT FORS spectra revealed a blue continuum with no intrinsic absorption lines. Broad (v~1500 km/s), low equivalent width (about -1/-6A) emission lines from the HeII Pickering series were clearly detected. B, V and R time-resolved photometry revealed the presence of about 15% pulsations at the 321s X-ray period, confirming the identification. These findings, together with the period stability and absence of any additional modulation in the 1min-5hr period range, argue in favour of the orbital interpretation of the 321s pulsations. The most likely scenario is thus that RXJ0806.3+1527 is a double degenerate system of the AM CVn class. This would make RXJ0806.3+1527 the shortest orbital period binary currently known and one of the best candidates for gravitational wave detection.

  20. The Orbit of the L dwarf + T dwarf Spectral Binary SDSS J080531.84+481233.0

    CERN Document Server

    Burgasser, Adam J; Gelino, Christopher R; Sahlmann, Johannes; Gagliuffi, Daniella Bardalez

    2016-01-01

    [abridged] We report four years of radial velocity monitoring observations of SDSS J080531.84+481233.0 that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02$\\pm$0.03 yr, a semi-major axis of 0.76$^{+0.05}_{-0.06}$ AU, and an eccentricity of 0.46$\\pm$0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4$\\pm$0.7 and T5.5$\\pm$1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90$^o\\pm$19$^o$), and deduce a large system mass ratio (M$_2$/M$_1$ = 0.86$^{+0.10}_{-0.12}$), substellar components (M$_1$ = 0.057$^{+0.016}_{-0.014}$ M$_{\\odot}$, M$_2$ = 0.048$^{+0.008}_{-0.010}$ M$_{\\odot}$), and a relatively old system age (minimum age = 4.0$^{+1.9}_{-1.2}$ Gyr). The measured projected rotational velocity of the p...

  1. The LEECH Exoplanet Imaging Survey: Orbit and Component Masses of the Intermediate Age, Late-Type Binary NO UMa

    CERN Document Server

    Schlieder, Joshua E; Maire, Anne-Lise; Desidera, Silvano; Hinz, Philip; Skrutskie, Michael F; Leisenring, Jarron; Bailey, Vanessa; Defrere, Denis; Esposito, Simone; Strassmeier, Klaus G; Weber, Michael; Biller, Beth A; Bonnefoy, Mickael; Buenzli, Esther; Close, Laird M; Crepp, Justin R; Eisner, Josh A; Hofmann, Karl-Heinz; Henning, Thomas; Morzinski, Katie M; Schertl, Dieter; Weigelt, Gerd; Woodward, Charles E

    2015-01-01

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. Our H, K$_s$, and L'-band observations resolve the system at angular separations <0.09". The components exhibit significant orbital motion over a span of ~7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0$\\pm$0.5 primary and K6.5$\\pm$0.5 secondary are 0.83$\\pm$0.02 M$_{\\odot}$ and 0.64$\\pm$0.02 M$_{\\odot}$, respectively. We also derive a system distance of d = 25.87$\\pm$0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ~500 Myr old Ursa Major moving group and it is thus a mass and age benchmark. We compare the masses of the NO UMa bi...

  2. The Orbit of the L Dwarf + T Dwarf Spectral Binary SDSS J080531.84+481233.0

    Science.gov (United States)

    Burgasser, Adam J.; Blake, Cullen H.; Gelino, Christopher R.; Sahlmann, Johannes; Bardalez Gagliuffi, Daniella

    2016-08-01

    SDSS J080531.84+481233.0 is a closely separated, very-low-mass (VLM) binary identified through combined-light spectroscopy and confirmed as an astrometric variable. Here we report four years of radial velocity monitoring observations of the system that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02 ± 0.03 years, a semimajor axis of 0.76{}-0.06+0.05 au, and an eccenticity of 0.46 ± 0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4 ± 0.7 and T5.5 ± 1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90° ± 19°), and deduce a large system mass ratio (M 2/M 1 = {0.86}-0.12+0.10), substellar components (M 1 = {0.057}-0.014+0.016 M ⊙, M 2 = {0.048}-0.010+0.008 M ⊙), and a relatively old system age (minimum age = {4.0}-1.2+1.9 Gyr). The measured projected rotational velocity of the primary ({V}{rot}\\sin i = 34.1 ± 0.7 km s-1) implies that this inactive source is a rapid rotator (period ≲ 3 hr) and a viable system for testing spin-orbit alignment in VLM multiples. Robust model-independent constraints on the component masses may be possible through measurement of the reflex motion of the secondary at wavelengths in which it contributes a greater proportion of the combined luminence, while the system may also be resolvable through sparse-aperature mask interferometry with adaptive optics. The combination of well-determined component atmospheric properties and masses near and/or below the hydrogen minimum mass make SDSS J0805+4812AB an important system for future tests of brown dwarf evolutionary models. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California

  3. Physical parameters and evolutionary route for the LMC interacting binary OGLE 05155332-6925581

    CERN Document Server

    Garrido, Hernán; Djuraŝevic, Gojko; Kołaczkowski, Zbigniew; Niemzcura, Ewa; Mennekens, Nicki

    2012-01-01

    We analyze multicolor light curves and high resolution optical spectroscopy of the eclipsing binary and Double Periodic Variable OGLE 05155332-6925581. According to Mennickent et al., this system shows a significant change in the long non-orbital photometric cycle, a loop in the color-magnitude diagram during this cycle and discrete spectral absorption components that were interpreted as evidence of systemic mass loss. We find that the best fit to the multi-band light curves requires a circumprimary optically thick disc with a radius about twice the radius of the more massive star. The spectroscopy indicates a mass ratio of 0.21+-0.02 and masses for the hot and cool stars of 9.1+-0.5 and 1.9+-0.2 M_sun, respectively. A comparison with synthetic binary-star evolutionary models indicates that the system has an age of 4.76E7 years, is in the phase of rapid mass transfer, the second one in the life of this binary, in a Case-B mass-exchange stage. Donor-subtracted H_alpha profiles show the presence of double emiss...

  4. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Science.gov (United States)

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  5. The Asteroid Impact Mission (AIM): Studying the geophysics of small binaries, measuring asteroid deflection and studying impact physics

    Science.gov (United States)

    Kueppers, Michael; Michel, Patrick; AIM Team

    2016-10-01

    Binary asteroids and their formation mechanisms are of particular interest for understanding the evolution of the small bodies in the solar system. Also, hazards to Earth from impact of near-Earth asteroids and their mitigation have drawn considerable interest over the last decades.Those subjects are both addressed by ESA's Asteroid Impact mission, which is part of the Asteroid Impact & Deflection Assessment (AIDA) currently under study in collaboration between NASA and ESA. NASA's DART mission will impact a projectile into the minor component of the binary near-Earth asteroid (65803) Didymos in 2022. The basic idea is to demonstrate the effect of the impact on the orbital period of the secondary around the primary. ESA's AIM will monitor the Didymos system for several months around the DART impact time.AIM will be launched in aurumn 2020. It is foreseen to arrive at Didymos in April 2022. The mission takes advantage of a close approach of Didymos to Earth. The next opportunity would arise in 2040 only.AIM will stay near Didymos for approximately 6 months. Most of the time it will be placed on the illuminated side of the system, at distances of approximately 35 km and 10 km. AIM is expected to move away from Didymos for some time around the DART impact.The reference payload for AIM includes two visual imagers, a hyperspectral camera, a lidar, a thermal infrared imager, a monostatic high frequency radar, and a bistatic low frequency radar. In addition, AIM will deploy a small lander on the secondary asteroid, and two cubesats that will be used for additional, more risky investigations close to or on the surface of the asteroid.Major contributions from AIM are expected in the study of the geophysics of small asteroids (including for the first time, radar measurements of an interior structure), the formation of binary asteroids, the momentum enhancement factor from the DART impact (through measuring the mass and the change of orbit of the seondary), and impact physics

  6. Enriching gender in physics education research: A binary past and a complex future

    Science.gov (United States)

    Traxler, Adrienne L.; Cid, Ximena C.; Blue, Jennifer; Barthelemy, Ramón

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] In this article, we draw on previous reports from physics, science education, and women's studies to propose a more nuanced treatment of gender in physics education research (PER). A growing body of PER examines gender differences in participation, performance, and attitudes toward physics. We have three critiques of this work: (i) it does not question whether the achievements of men are the most appropriate standard, (ii) individual experiences and student identities are undervalued, and (iii) the binary model of gender is not questioned. Driven by these critiques, we propose a conception of gender that is more up to date with other fields and discuss gender as performance as an extended example. We also discuss work on the intersection of identities [e.g., gender with race and ethnicity, socioeconomic status, lesbian, gay, bisexual, and transgender (LGBT) status], much of which has been conducted outside of physics. Within PER, some studies examine the intersection of gender and race, and identify the lack of a single identity as a key challenge of "belonging" in physics. Acknowledging this complexity enables us to further critique what we term a binary gender deficit model. This framework, which is implicit in much of the gender-based PER, casts gender as a fixed binary trait and suggests that women are deficient in characteristics necessary to succeed. Alternative models of gender allow a greater range and fluidity of gender identities, and highlight deficiencies in data that exclude women's experiences. We suggest new investigations that diverge from this expanded gender framework in PER.

  7. Orbital Period Changes and Their Evolutionary Status for the Weak-Contact Binaries. III. AO Camelopardalis and AH Tauri

    Science.gov (United States)

    Yang, Y.-G.; Wei, J.-Y.; Kreiner, J. M.; Li, H.-L.

    2010-01-01

    In this paper, we presented multicolor photometric observations for two eclipsing binaries, AO Camelopardalis and AH Tauri, obtained on 2008 December 16 and 17. Using the Wilson-Devinney Code, the photometric solution of AH Tau was determined from our new CCD data. The mass ratio and the fill-out factor are q = 0.503(±0.003) and f = 10.8%(±0.1%), respectively. This indicates that AH Tau is in weak contact. For the weak-contact binary AO Cam, BVI light curves clearly show a difference in the heights of the maxima (i.e., the O'Connell effect), which may be explained by spot activity. By analyzing the O - C curves for AO Cam and AH Tau, it is found that the orbital periods appear to show a secular period decrease with a cyclic variation. The observed period modulation is ΔP/P ~ 10-6. For AO Cam, the cyclic oscillation with a short period of 7.63(±0.07) yr and a low amplitude of 0fd0019(±0fd0003) may be preferably attributed to the cyclic magnetic activity. The period and amplitude of the cyclic variation for AH Tau are 45.8(±1.1) yr and 0fd0171(±0fd0005), which may more likely result from the light-time effect via a third body. The secular period decrease rates are dP/dt = -1.26(±0.04) × 10-7 days yr -1 for AO Cam and dP/dt = -6.98(±0.07) × 10-8 days yr -1 for AH Tau. This kind of period decrease can be plausibly explained by the mass transfer from the primary to the secondary, and may result in the system evolving into a deep contact configuration.

  8. Is there a compact companion orbiting the late O-type binary star HD 164816?

    CERN Document Server

    Trepl, L; Pribulla, T; Tetzlaff, N; Chini, R; Neuhäuser, R; Popov, S B; Stahl, O; Walter, F M; Hohle, M M

    2012-01-01

    We present a multi-wavelength (X-ray, $\\gamma$-ray, optical and radio) study of HD 194816, a late O-type X-ray detected spectroscopic binary. X-ray spectra are analyzed and the X-ray photon arrival times are checked for pulsation. In addition, newly obtained optical spectroscopic monitoring data on HD 164816 are presented. They are complemented by available radio data from several large scale surveys as well as the \\emph{FERMI} $\\gamma$-ray data from its \\emph{Large Area Telescope}. We report the detection of a low energy excess in the X-ray spectrum that can be described by a simple absorbed blackbody model with a temperature of $\\sim$ 50 eV as well as a 9.78 s pulsation of the X-ray source. The soft X-ray excess, the X-ray pulsation, and the kinematical age would all be consistent with a compact object like a neutron star as companion to HD 164816. The size of the soft X-ray excess emitting area is consistent with a circular region with a radius of about 7 km, typical for neutron stars, while the emission m...

  9. THE FIRST ORBITAL SOLUTION FOR THE MASSIVE COLLIDING-WIND BINARY HD 93162 (-WR 25

    Directory of Open Access Journals (Sweden)

    R. Gamen

    2008-01-01

    Full Text Available Luego de que, mediante observaciones del satélite EINSTEIN, se descubriera la existencia de intensa emisión de rayos X asociada a HD 93162 (WR 25, reiteradamente se ha supuesto que esta estrella debería formar parte de un sistema binario con colisión de vientos. Sin embargo, hasta ahora no se hablan detectado variaciones de velocidad radial que permitieran demostrar esta hipótesis. Con el objeto de explorar la posible naturaleza binaria de HD 93162, la hemos observado espectroscópicamente desde el año 1994 hasta la fecha, encontrando variaciones periódicas de su velocidad radial que demuestran que WR 25 es un sistema binario de alta excentricidad, con un período orbital cercano a los 208 días.

  10. Radar observations and physical modeling of binary near-Earth asteroid (1862) Apollo

    Science.gov (United States)

    Ford, Thomas F.; Benner, Lance A.; Brozovic, Marina; Leford, Bruce; Nolan, Michael C.; Giorgini, Jon D.; Ostro, Steve J.; Margot, Jean-Luc

    2014-11-01

    Binary asteroid 1862 Apollo has an extensive observational history allowing many of its characteristics to be investigated. Apollo was one of the first objects to show evidence for the YORP effect (Kaasalainen et al. 2007, Nature 446, 420) and its mass has been estimated by detection of the Yarkovsky effect (Nugent et al. 2012, AJ 144, 60; Farnocchia et al. 2013, Icarus 224, 1). We observed Apollo at Arecibo and Goldstone from Oct. 29-Nov. 13, 2005, obtaining a series of echo power spectra and delay-Doppler images that achieved resolutions as high as 7.5 m/pixel. The Arecibo images show that Apollo is a binary system with a rounded primary that has two large protrusions about 120 deg apart in longitude. We used the Arecibo data and published lightcurves to estimate the primary's 3D shape. Our best fit has major axes of ~1.8x1.5x1.3 km and a volume of ~1.6 km^3. The protrusions have lengths of ~300 and 200 m, are on the primary's equator, and give Apollo a distinctly different appearance from the primaries with equatorial ridges seen with other binary near-Earth asteroids. We estimated the pole by starting with the Kaasalainen et al. spin vector of ecliptic (longitude, latitude)=(50 deg, -71 deg) +- 7 deg and letting it float. Our best fit has a pole within 11 deg of (longitude, latitude)=(71, -72). Convex models produced from inversion of lightcurves by Kaasalainen et al. and thermal infrared data by Rozitis et al. (2013, A&A 555, A20) are more oblate than our model, do not show protrusions, and have somewhat different pole directions. The Arecibo images reveal weak but persistent echoes from a satellite on Nov. 1 and 2 but cover only a fraction of its orbit. The images are insufficient to estimate the satellite's shape and yield a rough estimate for its long axis of 190 m. Preliminary fits give an orbital period of ~27.0-27.5 h and a semimajor axis of ~3.5-4.0 km, implying a mass of 2.8-3.9E12 kg and a bulk density of 1.7-2.4 g/cm^3. The density is consistent with

  11. The formation of low-mass helium white dwarfs orbiting pulsars: Evolution of low-mass X-ray binaries below the bifurcation period

    CERN Document Server

    Istrate, Alina; Langer, Norbert

    2014-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs) which have been spun up to high rotation rates via accretion of matter from a companion star in a low-mass X-ray binary (LMXB). However, many details of this recycling scenario remain to be understood. Here we investigate binary evolution in close LMXBs to study the formation of radio MSPs with low-mass helium white dwarf companions (He WDs) in tight binaries with orbital periods P_orb = 2-9 hr. In particular, we examine: i) if such observed systems can be reproduced from theoretical modelling using standard prescriptions of orbital angular momentum losses (i.e. with respect to the nature and the strength of magnetic braking), ii) if our computations of the Roche-lobe detachments can match the observed orbital periods, and iii) if the correlation between WD mass and orbital period (M_WD, P_orb) is valid for systems with P_orb < 2 days. Numerical calculations with a detailed stellar evolution code were used to trace the mass-tra...

  12. A Circumbinary Disk Scenario for the Negative Orbital-period Derivative of the Ultra-compact X-Ray Binary 4U 1820-303

    Science.gov (United States)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2017-03-01

    It is generally thought that an ultra-compact X-ray Binary is composed of a neutron star and a helium white dwarf donor star. As one of the most compact binaries, 4U 1820-303 in globular cluster NGC 6624 was predicted to have an orbital period of \\dot{P}/P∼ 1.1× {10}-7 yr‑1 if the mass transfer is fully driven by gravitational radiation. However, recent analysis of 16 year data from Rossi X-ray Timing Explorer and other historical records has yielded a negative orbital-period derivative in the past 35 years. In this work, we propose an evolutionary circumbinary (CB) disk model to account for this anomalous orbital-period derivative. 4U 1820-30 is known to undergo superburst events caused by runaway thermal nuclear burning on the neutron star. We assume that, for a small fraction of the superbursts, part of the ejected material may form a CB disk around the binary. If the recurrence time of such superbursts is ∼10,000 year and ∼10% of the ejected mass feeds a CB disk, the abrupt angular-momentum loss causes a temporary orbital shrink, and the donor’s radius and its Roche lobe radius do not keep in step. Driven by mass transfer and angular-momentum loss, the binary would adjust its orbital parameters to recover a new stable stage. Based on theoretical analysis and numerical simulation, we find that the required feed mass at the CB disk is approximately ∼10‑8 M ⊙.

  13. Magnetic activity and orbital period variation of the eclipsing binary KV Gem

    Science.gov (United States)

    Zhang, Liyun; Pi, Qingfeng; Yang, Yuangui; Li, Zhongmu

    2014-02-01

    This paper presents new CCD BVRI light curves of a neglected eclipsing binary KV Gem. Our new light curves were obtained in 2010 and 2011 at the Xinglong station of the National Astronomical Observatories, China. By analyzing all available light minimum times, we derived an update ephemeris and found there existed a cyclic variation overlaying a continuous period decrease. This kind of cyclic variation may probably be attributed to the light-time effect via the presence of an unseen third body or magnetic activity cycle. The long-term period decrease suggests that KV Gem is undergoing a mass transfer from the secondary component to the primary component at a rate of 3.4(0.3)×(10-7 M⊙/year for period decrease and a third body (10.3±0.2 years), and 5.5(0.6)×10-7 M⊙/year for decrease and magnetic cycle (8.8±0.1 years). By analyzing the light curves in 2011, photometric solutions and starspots parameters of the system are obtained using Wilson-Devinney program. Based on the photometric solution in 2011, we still could use the spot model to explain successfully our light curves in 2010 and three published light curves. Comparing the starspot longitudes and factors, KV Gem are variable on a long time scale of about years. For the data of KV Gem, the brightness vary with time around phases 0, 0.25, 0.5, and 0.75, which means that there is a possible photospheric active evolution. More data are needed to monitor to detect stellar cycle of KV Gem. For chromospheric activity of KV Gem, we found strong absorption in the observed Hβ,Hγ, and Ca II H & K spectra, and no obvious emission.

  14. Photometric observations of three high mass X-ray binaries and a search for variations induced by orbital motion

    Institute of Scientific and Technical Information of China (English)

    Gordon E.Sarty; László L.Kiss; Kinwah Wu; Bogumil Pilecki; Daniel E.Reichart; Kevin M.Ivarsen; Joshua B.Haislip; Melissa C.Nysewander; Aaron P.LaCluyze; Helen M.Johnston; Robert R.Shobbrook

    2011-01-01

    We searched for long period variation in V-band,IC-band and RXTE X-ray light curves of the High Mass X-ray Binaries (HMXBs) LS 1698/RX J 1037.5-5647,HD 110432/1H 1249-637 and HD 161103/RX J1744.7-2713 in an attempt to discover orbitally induced variation.Data were obtained primarily from the ASAS database and were supplemented by shorter term observations made with the 24-and 40-inch ANU telescopes and one of the robotic PROMPT telescopes.Fourier periodograms suggested the existence of long period variation in the V-band light curvesof all three HMXBs,however folding the data at those periods did not reveal convincing periodic variation.At this point we cannot rule out the existence of long term V-band variation for these three sources and hints of longer term variation may be seen in the higher precision PROMPT data.Long term V-band observations,on the order of several years,taken at a frequency of at least once per week and with a precision of 0.01 mag,therefore still have a chance of revealing long term variation in these three HMXBs.

  15. Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order

    CERN Document Server

    Bernard, Laura; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain

    2016-01-01

    In this paper, we complete our preceding work on the Fokker Lagrangian describing the dynamics of compact binary systems at the fourth post-Newtonian (4PN) order in harmonic coordinates. We clarify the impact of the non-local character of the Fokker Lagrangian or the associated Hamiltonian on both the conserved energy and the relativistic periastron precession for circular orbits. We show that the non-locality of the action, due to the presence of the tail effect at the 4PN order, gives rise to an extra contribution to the conserved integral of energy with respect to the Hamiltonian computed on shell, which was not taken into account in our previous work. We also provide a direct derivation of the periastron advance by taking carefully into account this non-locality. We then argue that the infra-red (IR) divergences in the calculation of the gravitational part of the action are problematic, which motivates us to introduce a second ambiguity parameter, in addition to the one already assumed previously. After f...

  16. Physical properties of the gamma-ray binary LS 5039 through low and high frequency radio observations

    CERN Document Server

    Marcote, B; Paredes, J M; Ishwara-Chandra, C H

    2015-01-01

    We have studied in detail the 0.15-15 GHz radio spectrum of the gamma-ray binary LS 5039 to look for a possible turnover and absorption mechanisms at low frequencies, and to constrain the physical properties of its emission. We have analysed two archival VLA monitorings, all the available archival GMRT data and a coordinated quasi-simultaneous observational campaign conducted in 2013 with GMRT and WSRT. The data show that the radio emission of LS 5039 is persistent on day, week and year timescales, with a variability $\\lesssim 25~\\%$ at all frequencies, and no signature of orbital modulation. The obtained spectra reveal a power-law shape with a curvature below 5 GHz and a turnover at $\\sim0.5$ GHz, which can be reproduced by a one-zone model with synchrotron self-absorption plus Razin effect. We obtain a coherent picture for a size of the emitting region of $\\sim0.85~\\mathrm{mas}$, setting a magnetic field of $B\\sim20~\\mathrm{mG}$, an electron density of $n_{\\rm e}\\sim4\\times10^5~{\\rm cm^{-3}}$ and a mass-los...

  17. Mergers of binary neutron stars with realistic spin

    CERN Document Server

    Bernuzzi, Sebastiano; Tichy, Wolfgang; Bruegmann, Bernd

    2013-01-01

    Simulations of binary neutron stars have seen great advances in terms of physical detail and numerical quality. However, the spin of the neutron stars, one of the simplest global parameters of binaries, remains mostly unstudied. We present the first, fully nonlinear general relativistic dynamical evolutions of the last three orbits for constraint satisfying initial data of spinning neutron star binaries, with astrophysically realistic spins aligned and anti-aligned to the orbital angular momentum. The initial data is computed with the constant rotational velocity approach. The dynamics of the systems is analyzed in terms of gauge-invariant binding energy vs. orbital angular momentum curves. By comparing to a binary black hole configuration we can estimate the different tidal and spin contributions to the binding energy for the first time. First results on the gravitational wave forms are presented. The phase evolution during the orbital motion is significantly affected by spin-orbit interactions, leading to d...

  18. Properties and nature of Be stars 30. Reliable physical properties of a semi-detached B9.5e+G8III binary BR CMi = HD 61273 compared to those of other well studied semi-detached emission-line binaries

    CERN Document Server

    Harmanec, P; Nemravová, J A; Royer, F; Briot, D; North, P; Lampens, P; Frémat, Y; Yang, S; Božić, H; Kotková, L; Škoda, P; Šlechta, M; Korčáková, D; Wolf, M; Zasche, P

    2014-01-01

    Reliable determination of the basic physical properties of hot emission-line binaries with Roche-lobe filling secondaries is important for developing the theory of mass exchange in binaries. It is a very hard task, however, which is complicated by the presence of circumstellar matter in these systems. So far, only a small number of systems with accurate values of component masses, radii, and other properties are known. Here, we report the first detailed study of a new representative of this class of binaries, BR CMi, based on the analysis of radial velocities and multichannel photometry from several observatories, and compare its physical properties with those for other well-studied systems. BR CMi is an ellipsoidal variable seen under an intermediate orbital inclination of ~51 degrees, and it has an orbital period of 12.919059(15) d and a circular orbit. We used the disentangled component spectra to estimate the effective temperatures 9500(200) K and 4655(50) K by comparing them with model spectra. They corr...

  19. RADIATION EFFECTS IN PHYSICAL AGING OF BINARY As-S AND As-Se GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, Roman; Shpotyuk, O.; Kozdras, A.; Riley, Brian J.; Sundaram, S. K.; McCloy, John S.

    2011-01-24

    Radiation-induced physical aging effects are studied in binary AsxS100-x and AsxSe100-x (30 ≤ x ≤ 42) glasses by conventional differential scanning calorimetry (DSC) method. It is shown that γ-irradiation (Co60 source, ~ 3 MGy dose) of glassy AsxS100-x caused a measurable increase in glass transition temperature and endothermic peak area in the vicinity of glass transition region, which was associated with acceleration of structural relaxation processes in these materials. In contrast to sulfide glasses, the samples of As-Se family did not exhibit any significant changes in DSC curves after γ-irradiation. The observed difference in radiation-induced physical aging between sulfides and selenides was explained by more effective destruction-polymerization transformations and possible metastable defects formation in S-based glassy network.

  20. Theoretical Physics Implications of the Binary Black-Hole Merger GW150914

    CERN Document Server

    Yunes, Nicolas; Pretorius, Frans

    2016-01-01

    The gravitational-wave observation GW150914 by Advanced LIGO provides the first opportunity to learn about physics in the extreme gravity of coalescing binary black holes. The LIGO/Virgo collaboration has verified that this observation is consistent with General Relativity, constraining the presence of parametric anomalies in the signal. This paper expands this analysis to a larger class of anomalies, highlighting the inferences that can be drawn on non-standard theoretical physics mechanisms that would affect the signal. We find that GW150914 constrains a plethora of mechanisms associated with the generation and propagation of gravitational waves, including the activation of scalar fields, gravitational leakage into large extra dimensions, the variability of Newton's constant, the speed of gravity, a modified dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Unlike other observations that limit these mechanisms, GW150914 is a direct probe of dynamical strong-field gra...

  1. Orbital and physical properties of the $\\sigma$ Ori Aa,Ab,B triple system

    CERN Document Server

    Simón-Díaz,; Lorenzo, J; Apellániz, J Maíz; Schneider, F R N; Negueruela, I; Barbá, R H; Dorda, R; Marco, A; Montes, D; Pellerin, A; Sanchez-Bermudez, J; Sódor, Á; Sota, A

    2014-01-01

    We provide a complete characterization of the astrophysical properties of the $\\sigma$ Ori Aa,Ab,B hierarchical triple system, and an improved set of orbital parameters for the highly eccentric $\\sigma$ Ori Aa,Ab spectroscopic binary. We compiled a spectroscopic dataset comprising 90 high-resolution spectra covering a total time span of 1963 days. We applied the Lehman-Filh\\'es method for a detailed orbital analysis of the radial velocity curves and performed a combined quantitative spectroscopic analysis of the {$\\sigma$ Ori Aa,Ab,B} system by means of the stellar atmosphere code FASTWIND. We used our own plus other available information on photometry and distance to the system for measuring the radii, luminosities, and spectroscopic masses of the three components. We also inferred evolutionary masses and stellar ages using the Bayesian code BONNSAI. The orbital analysis of the new radial velocity curves led to a very accurate orbital solution of the $\\sigma$ Ori Aa,Ab pair. We provided indirect arguments in...

  2. Variability in the orbital profiles of the X-ray emission of the gamma-ray binary LS I +61 303

    CERN Document Server

    Torres, Diego F; Li, Jian; Rea, Nanda; Caliandro, G Andrea; Hadasch, Daniela; Chen, Yupeng; Wang, Jianmin; Ray, Paul S

    2010-01-01

    We report on the analysis of Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) monitoring observations of the $\\gamma$-ray binary system LS I +61 303, covering 35 full cycles of its orbital motion. This constitutes the largest continuous X-ray monitoring dataset analyzed to date for this source. Such an extended analysis allows us to report: a) the discovery of variability in the orbital profiles of the X- ray emission, b) the existence of a few (recent) short flares on top of the overall behavior typical of the source, which, given the PCA field-of-view, may or may not be associated with LS I +61 303, and c) the determination of the orbital periodicity using soft X-ray data alone.

  3. Binary Planetary Nebulae Nuclei towards the Galactic Bulge. I. Sample Discovery, Period Distribution and Binary Fraction

    CERN Document Server

    Miszalski, B; Moffat, A F J; Parker, Q A; Udalski, A

    2009-01-01

    Binarity has been hypothesised to play an important, if not ubiquitous, role in the formation of planetary nebulae (PNe). Yet there remains a severe paucity of known binary central stars required to test the binary hypothesis and to place strong constraints on the physics of the common-envelope (CE) phase of binary stellar evolution. Large photometric surveys offer an unrivalled opportunity to efficiently discover many binary central stars. We have combined photometry from the OGLE microlensing survey with the largest sample of PNe towards the Galactic Bulge to systematically search for new binaries. A total of 21 periodic binaries were found thereby more than doubling the known sample. The orbital period distribution was found to be best described by CE population synthesis models when no correlation between primary and secondary masses is assumed for the initial mass ratio distribution. A comparison with post-CE white dwarf binaries indicates both distributions are representative of the true post-CE period ...

  4. The role of orbital mechanics in fundamental physics

    Science.gov (United States)

    Exertier, Pierre; Metris, Gilles

    The contribution of space techniques to fundamental physics is at two levels. First, very interesting results have been obtained using precise tracking and orbitography of natural bodies or space probes not initially designed for this aim; this is the case, for example, of the precise estimation of the GM gravitational constant and of some PPN parameters, of the confirmation of the Lense-Thirring effect, and of the test of the strong Equivalence Principle. Second, dedicated missions have been settled to perform in space, experiments which cannot be realized on the ground, at least at the same level of precision; this is in particular the case of the time transfer experiment T2L2 and of the MicroSCOPE mission for the test of the weak EP.

  5. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226

    Science.gov (United States)

    Yunes, Nicolás; Yagi, Kent; Pretorius, Frans

    2016-10-01

    The gravitational wave observations GW150914 and GW151226 by Advanced LIGO provide the first opportunity to learn about physics in the extreme gravity environment of coalescing binary black holes. The LIGO Scientific Collaboration and the Virgo Collaboration have verified that this observation is consistent with Einstein's theory of general relativity, constraining the presence of certain parametric anomalies in the signal. This paper expands their analysis to a larger class of anomalies, highlighting the inferences that can be drawn on nonstandard theoretical physics mechanisms that could otherwise have affected the observed signals. We find that these gravitational wave events constrain a plethora of mechanisms associated with the generation and propagation of gravitational waves, including the activation of scalar fields, gravitational leakage into large extra dimensions, the variability of Newton's constant, the speed of gravity, a modified dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Though other observations limit many of these mechanisms already, GW150914 and GW151226 are unique in that they are direct probes of dynamical strong-field gravity and of gravitational wave propagation. We also show that GW150914 constrains inferred properties of exotic compact object alternatives to Kerr black holes. We argue, however, that the true potential for GW150914 to both rule out exotic objects and constrain physics beyond general relativity is severely limited by the lack of understanding of the coalescence regime in almost all relevant modified gravity theories. This event thus significantly raises the bar that these theories have to pass, both in terms of having a sound theoretical underpinning and reaching the minimal level of being able to solve the equations of motion for binary merger events. We conclude with a discussion of the additional inferences that can be drawn if the lower-confidence observation of an

  6. Constraining stellar physics from red-giant stars in binaries - stellar rotation, mixing processes and stellar activity

    CERN Document Server

    Beck, P G; Pavlovski, K; Palacios, A; Tkachenko, A; García, R A; Mathis, S; Corsaro, E; Johnston, C; Mosser, B; Ceillier, T; Nascimento, J -D do; Raskin, G

    2016-01-01

    The unparalleled photometric data obtained by NASA's Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seism...

  7. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    Science.gov (United States)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be

  8. Gamma Radiation Effects on Physical, Optical, and Structural Properties of Binary As-S glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K.; McCloy, John S.; Riley, Brian J.; Murphy, Mark K.; Qiao, Hong (Amy); Windisch, Charles F.; Walter, Eric D.; Crum, Jarrod V.; Golovchak, Roman; Shpotyuk, O.

    2012-03-01

    Gamma radiation induces changes in physical, optical, and structural properties in chalcogenide glasses., Previous research has focused on As{sub 2}S{sub 3} and families of glasses containing Ge. For the first time, we present composition and dose dependent data on the As-S binary glass series. Binary As{sub x}S{sub 100-x} (x = 30, 33, 36, 40, and 42) glasses were irradiated with gamma radiation using a {sup 60}Co source at 2.8 Gy/s to accumulated doses of 1, 2, 3, and 4 MGy. The irradiated samples were characterized at each dose level for density, refractive index, x-ray diffraction, and Raman spectrum. These results are compared to those of as-made and 1 year aged samples. We report an initial increase in density followed by a decrease as a function of dose that contradicts the expected compositional dependence of molar volume of these glasses. This unusual behavior is explained based on microvoid formation and nanoscale phase-separation induced by the irradiation in these glasses. XRD, Raman, and EPR data provide supporting evidence, underscoring the importance of optimally- or overly-constrained structures for stability under aging or irradiation.

  9. ORBITAL AND PHYSICAL PROPERTIES OF THE σ Ori Aa, Ab, B TRIPLE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Simón-Díaz, S. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Caballero, J. A.; Apellániz, J. Maíz [Centro de Astrobiología (CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Lorenzo, J.; Negueruela, I.; Dorda, R.; Marco, A. [Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Escuela Politécnica Superior, University of Alicante, Apdo. 99, E-03080 Alicante (Spain); Schneider, F. R. N. [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Barbá, R. H. [Departamento de Física, Universidad de La Serena, Benavente 980, La Serena (Chile); Montes, D. [Departamento Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Pellerin, A. [Department of Physics and Astronomy, State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454 (United States); Sanchez-Bermudez, J.; Sota, A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Sódor, Á., E-mail: ssimon@iac.es [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-01121 Budapest (Hungary)

    2015-02-01

    We provide a complete characterization of the astrophysical properties of the σ Ori Aa, Ab, B hierarchical triple system and an improved set of orbital parameters for the highly eccentric σ Ori Aa, Ab spectroscopic binary. We compiled a spectroscopic data set comprising 90 high-resolution spectra covering a total time span of 1963 days. We applied the Lehman-Filhés method for a detailed orbital analysis of the radial velocity curves and performed a combined quantitative spectroscopic analysis of the σ Ori Aa, Ab, B system by means of the stellar atmosphere code FASTWIND. We used our own plus other available information on photometry and distance to the system for measuring the radii, luminosities, and spectroscopic masses of the three components. We also inferred evolutionary masses and stellar ages using the Bayesian code BONNSAI. The orbital analysis of the new radial velocity curves led to a very accurate orbital solution of the σ Ori Aa, Ab pair. We provided indirect arguments indicating that σ Ori B is a fast-rotating early B dwarf. The FASTWIND+BONNSAI analysis showed that the Aa, Ab pair contains the hottest and most massive components of the triple system while σ Ori B is a bit cooler and less massive. The derived stellar ages of the inner pair are intriguingly younger than the one widely accepted for the σ Orionis cluster, at 3 ± 1 Ma. The outcome of this study will be of key importance for a precise determination of the distance to the σ Orionis cluster, the interpretation of the strong X-ray emission detected for σ Ori Aa, Ab, B, and the investigation of the formation and evolution of multiple massive stellar systems and substellar objects.

  10. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  11. On Orbital Period Changes in Nova Outbursts

    CERN Document Server

    Martin, Rebecca G; Schaefer, Bradley E

    2011-01-01

    We propose a new mechanism that produces an orbital period change during a nova outburst. When the ejected material carries away the specific angular momentum of the white dwarf, the orbital period increases. A magnetic field on the surface of the secondary star forces a fraction of the ejected material to corotate with the star, and hence the binary system. The ejected material thus takes angular momentum from the binary orbit and the orbital period decreases. We show that for sufficiently strong magnetic fields on the surface of the secondary star, the total change to the orbital period could even be negative during a nova outburst, contrary to previous expectations. Accurate determinations of pre- and post-outburst orbital periods of recurrent nova systems could test the new mechanism, in addition to providing meaningful constraints on otherwise difficult to measure physical quantities. We apply our mechanism to outbursts of the recurrent nova U Sco.

  12. Swift reveals a ~5.7 day super-orbital period in the M31 globular cluster X-ray binary XB158

    CERN Document Server

    Barnard, R; Murrray, S S

    2015-01-01

    The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical 3D smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29$\\pm$1 times the orbital period, i.e. $\\sim$81$\\pm$3 hr. We conducted a Swift monitoring campaign of 30 observations over ~1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3--10 keV Swift XRT luminosity lightcurve with a sinusoid yielded a period of 5.65+/-0.05 days, and a >5$\\sigma$ improvement in $\\chi^2$ over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods 5.4--5.8 days were detected at a >3$\\sigma$ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ~70\\% l...

  13. Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. I. Detailed analysis of 15 binary stars with known orbital periods

    CERN Document Server

    Abate, C; Karakas, A I; Izzard, R G

    2015-01-01

    AGB stars are responsible for producing a variety of elements, including carbon, nitrogen, and the heavy elements produced in the slow neutron-capture process ($s$-elements). There are many uncertainties involved in modelling the evolution and nucleosynthesis of AGB stars, and this is especially the case at low metallicity, where most of the stars with high enough masses to enter the AGB have evolved to become white dwarfs and can no longer be observed. The stellar population in the Galactic halo is of low mass ($\\lesssim 0.85M_{\\odot}$) and only a few observed stars have evolved beyond the first giant branch. However, we have evidence that low-metallicity AGB stars in binary systems have interacted with their low-mass secondary companions in the past. The aim of this work is to investigate AGB nucleosynthesis at low metallicity by studying the surface abundances of chemically peculiar very metal-poor stars of the halo observed in binary systems. To this end we select a sample of 15 carbon- and $s$-element-en...

  14. The New RS CVn Binary V1034 Her Revisited and the orbital period - Activity relation of Short-period RS CVn binaries using photometric distortion amplitude

    CERN Document Server

    liyun, Zhang

    2011-01-01

    This paper presents new CCD BVRI light curves of the newly discovered RS CVn eclipsing binary V1034 Her in 2009 and 2010, which shapes are different from the previous published results. They show asymmetric outside eclipse and we try to use a spot model to explain the phenomena. Using the Wilson-Devinney program with one-spot or two-spots model, photometric solutions of the system and starspot parameters were derived. Comparing the two results, it shows that the case of two spots is better successful in reproducing the light-curve distortions. For all the spot longitudes, it suggests that the trend towards active longitude belts and each active longitude belts might be switch. Comparing the light curves of 2009 and 2010, it indicates that the light curve changes on a long time scale of one year, especially in phase 0.25. In addition, we also collected the values of the maximum amplitudes of photometric distortion of the short-period RS CVn binary. We found for the first time that there is a trend of increasin...

  15. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period distribution observed in few Myr-old OB binaries.

  16. The spin axes orbital alignment of both stars within the eclipsing binary system V1143Cyg using the Rossiter-McLaughlin effect

    CERN Document Server

    Albrecht, S; Snellen, I; Quirrenbach, Andreas G; Mitchell, D S

    2007-01-01

    Context: The Rossiter-McLaughlin (RM) effect, a rotational effect in eclipsing systems, provides unique insight into the relative orientation of stellar spin axes and orbital axes of eclipsing binary systems. Aims: Our aim is to develop a robust method to analyze the RM effect in an eclipsing system with two nearly equally bright components. This gives access to the orientation of the stellar rotation axes and may shed light on questions of binary formation and evolution. Methods: High-resolution spectra have been obtained both out of eclipse and during the primary and secondary eclipses in the V1143Cyg system, using the high-resolution Hamilton Echelle Spectrograph at the Lick Observatory. The Rossiter-McLaughlin effect is analyzed in two ways: (1) by measuring the shift of the line center of gravity during different phases of the eclipses and (2) by analysis of the line shape change of the rotational broadening function during eclipses. Results: The projected axes of both stars are aligned with the orbital ...

  17. Evolution of intermediate mass and massive binary stars: physics, mass loss, and rotation

    CERN Document Server

    Vanbeveren, D

    2016-01-01

    In the present review we discuss the past and present status of the interacting OB-type binary frequency. We critically examine the popular idea that Be-stars and supergiant sgB[e] stars are binary evolutionary products. The effects of rotation on stellar evolution in general, stellar population studies in particular, and the link with binaries will be evaluated. Finally a discussion is presented of massive double compact star binary mergers as possible major sites of chemical enrichment of r-process elements and as the origin of recent aLIGO GW events.

  18. Canonical Angles In A Compact Binary Star System With Spinning Components: Approximative Solution Through Next-To-Leading-Order Spin-Orbit Interaction for Circular Orbits

    CERN Document Server

    Tessmer, Manuel; Schäfer, Gerhard

    2013-01-01

    This publication will deal with an explicit determination of the time evolution of the spin orientation axes and the evolution of the orbital phase in the case of circular orbits under next-to-leading order spin-orbit interactions. We modify the method of Schneider and Cui proposed in ["Theoreme \\"uber Bewegungsintegrale und ihre Anwendungen in Bahntheorien", Verlag der Bayerischen Akademie der Wissenschaften, volume 212, 2005.] to iteratively remove oscillatory terms in the equations of motion for different masses that were not present in the case of equal masses. Our smallness parameter is chosen to be the difference of the symmetric mass ratio to the value 1/4. Before the first Lie transformation, the set of conserved quantities consists of the total angular momentum, the amplitudes of the orbital angular momentum and of the spins, $L, S_1,$ and $S_2$. In contrary, the magnitude of the total spin $S=|S_1+S_2|$ is not conserved and we wish to shift its non-conservation to higher orders of the smallness para...

  19. The LEECH Exoplanet Imaging Survey: Orbit and Component Masses of the Intermediate-Age, Late-Type Binary NO UMa

    Science.gov (United States)

    Schlieder, Joshua E.; Skemer, Andrew J.; Maire, Anne-Lise; Desidera, Silvano; Hinz, Philip; Skrutskie, Michael F.; Leisenring, Jarron; Bailey, Vanessa; Defrère, Denis; Esposito, Simone; Strassmeier, Klaus G.; Weber, Michael; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Close, Laird M.; Crepp, Justin R.; Eisner, Josh A.; Hofmann, Karl-Heinz; Henning, Thomas; Morzinski, Katie M.; Schertl, Dieter; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, Ks-, and L‧-band observations resolve the system at angular separations Tenerife, an AIP facility jointly operated by AIP and IAC.

  20. Dynamical analyses of the companions orbiting eclipsing binaries II. Z Draconis with four companions close to 6:3:2:1 mean motion resonances

    CERN Document Server

    Yuan, Jinzhao; Selam, Selim O; Gümüş, Damla

    2014-01-01

    All available mid-eclipse times of the short-period eclipsing binary Z Draconis are analysed, and multiple cyclic variations are found. Based on the light-travel time model, we find three companions around Z Draconis, and one or more possible short-period companions. The derived orbital periods suggest that the three outer companions and an inner one are in a near 6:3:2:1 mean-motion resonances. The most outer companion has the minimum mass of $\\sim0.7M_{\\bigodot}$, whereas other companions are M dwarfs. We have studied the stabilities of the companions moving on a series of mutually inclined orbits. The results show that no orbital configurations can survive for 200 yr. We speculate that the instability of the system can be attributed to the uncertainties of the short-period companions, which result from the low-precision mid-eclipse times. Thus, secular CCD observations with much higher precision are needed in the future.

  1. H-alpha observations of the gamma-ray-emitting Be/X-ray binary LSI+61303: orbital modulation, disk truncation, and long-term variability

    CERN Document Server

    Zamanov, R; Marti, J; Tomov, N A; Belcheva, G; Luque-Escamilla, P L; Latev, G

    2013-01-01

    We report 138 spectral observations of the H-alpha emission line of the radio- and gamma-ray-emitting Be/X-ray binary LSI+61303 obtained during the period of September 1998 -- January 2013. From measuring various H-alpha parameters, we found that the orbital modulation of the H-alpha is best visible in the equivalent width ratio EW(B)/EW(R), the equivalent width of the blue hump, and in the radial velocity of the central dip. The periodogram analysis confirmed that the H-alpha emission is modulated with the orbital and superorbital periods. For the past 20 years the radius of the circumstellar disk is similar to the Roche lobe size at the periastron. It is probably truncated by a 6:1 resonance. The orbital maximum of the equivalent width of H-alpha emission peaks after the periastron and coincides on average with the X-ray and gamma-ray maxima. All the spectra are available upon request from the authors and through the CDS.

  2. A numerical investigation of wind accretion in persistent Supergiant X-ray Binaries I - Structure of the flow at the orbital scale

    CERN Document Server

    Mellah, I El

    2016-01-01

    Classical Supergiant X-ray Binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 10$^{35}$ to 10$^{37}$ erg/s. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to characterize the structure of the wind at the orbital scale as it accelerates, from the stellar surface to the vicinity of the accretor. Thanks to the parametrization we retained and the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the $\\alpha$-force multiplier which drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rat...

  3. Precise radial velocities of giant stars. IX. HD 59686 Ab: a massive circumstellar planet orbiting a giant star in a 13.6 au eccentric binary system

    Science.gov (United States)

    Ortiz, Mauricio; Reffert, Sabine; Trifonov, Trifon; Quirrenbach, Andreas; Mitchell, David S.; Nowak, Grzegorz; Buenzli, Esther; Zimmerman, Neil; Bonnefoy, Mickaël; Skemer, Andy; Defrère, Denis; Lee, Man Hoi; Fischer, Debra A.; Hinz, Philip M.

    2016-10-01

    Context. For over 12 yr, we have carried out a precise radial velocity (RV) survey of a sample of 373 G- and K-giant stars using the Hamilton Échelle Spectrograph at the Lick Observatory. There are, among others, a number of multiple planetary systems in our sample as well as several planetary candidates in stellar binaries. Aims: We aim at detecting and characterizing substellar and stellar companions to the giant star HD 59686 A (HR 2877, HIP 36616). Methods: We obtained high-precision RV measurements of the star HD 59686 A. By fitting a Keplerian model to the periodic changes in the RVs, we can assess the nature of companions in the system. To distinguish between RV variations that are due to non-radial pulsation or stellar spots, we used infrared RVs taken with the CRIRES spectrograph at the Very Large Telescope. Additionally, to characterize the system in more detail, we obtained high-resolution images with LMIRCam at the Large Binocular Telescope. Results: We report the probable discovery of a giant planet with a mass of mp sin i = 6.92-0.24+0.18 MJup orbiting at ap = 1.0860-0.0007+0.0006 au from the giant star HD 59686 A. In addition to the planetary signal, we discovered an eccentric (eB = 0.729-0.003+0.004) binary companion with a mass of mB sin i = 0.5296-0.0008+0.0011 M⊙ orbiting at a close separation from the giant primary with a semi-major axis of aB = 13.56-0.14+0.18 au. Conclusions: The existence of the planet HD 59686 Ab in a tight eccentric binary system severely challenges standard giant planet formation theories and requires substantial improvements to such theories in tight binaries. Otherwise, alternative planet formation scenarios such as second-generation planets or dynamical interactions in an early phase of the system's lifetime need to be seriously considered to better understand the origin of this enigmatic planet. Based on observations collected at the Lick Observatory, University of California.Based on observations collected at the

  4. Orbital Architectures of Planet-Hosting Binaries: I. Forming Five Small Planets in the Truncated Disk of Kepler-444A

    CERN Document Server

    Dupuy, Trent J; Kraus, Adam L; Isaacson, Howard; Mann, Andrew W; Ireland, Michael J; Howard, Andrew W; Huber, Daniel

    2015-01-01

    We present the first results from our Keck program investigating the orbital architectures of planet-hosting multiple star systems. Kepler-444 is a metal-poor triple star system that hosts five sub-Earth-sized planets orbiting the primary star (Kepler-444A), as well as a spatially unresolved pair of M dwarfs (Kepler-444BC) at a projected distance of 1.8" (66 AU). We combine our Keck/NIRC2 adaptive optics astrometry with multi-epoch Keck/HIRES RVs of all three stars to determine a precise orbit for the BC pair around A, given their empirically constrained masses. We measure minimal astrometric motion ($1.0\\pm0.6$ mas yr$^{-1}$, or $0.17\\pm0.10$ km s$^{-1}$), but our RVs reveal significant orbital velocity ($1.7\\pm0.2$ km s$^{-1}$) and acceleration ($7.8\\pm0.5$ m s$^{-1}$ yr$^{-1}$). We determine a highly eccentric stellar orbit ($e=0.864\\pm0.023$) that brings the tight M dwarf pair within $5.0^{+0.9}_{-1.0}$ AU of the planetary system. We validate that the system is dynamically stable in its present configurat...

  5. The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits

    CERN Document Server

    Blanchet, Luc; Iyer, Bala R; Sinha, Siddhartha

    2008-01-01

    The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) To provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) To provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contribut...

  6. Orbital and Spin Parameter Variations of Partial Eclipsing Low Mass X-ray Binary X 1822-371

    CERN Document Server

    Chou, Yi; Hu, Chin-Ping; Yang, Ting-Chang; Su, Yi-Hao

    2016-01-01

    We report our measurements for orbital and spin parameters of X 1822-371 using its X-ray partial eclipsing profile and pulsar timing from data collected by the Rossi X-ray Timing Explorer (RXTE). Four more X-ray eclipse times obtained by the RXTE 2011 observations were combined with historical records to trace evolution of orbital period. We found that a cubic ephemeris likely better describes evolution of the X-ray eclipse times during a time span of about 34 years with a marginal second order derivative of $\\ddot{P}_{orb}=(-1.05 \\pm 0.59) \\times 10^{-19}$ s$^{-1}$. Using the pulse arrival time delay technique, the orbital and spin parameters were obtained from RXTE observations from 1998 to 2011. The detected pulse periods show that the neutron star in X 1822-371 is continuously spun-up with a rate of $\\dot{P}_{s}=(-2.6288 \\pm 0.0095) \\times 10^{-12}$ s s$^{-1}$. Evolution of the epoch of the mean longitude $l=\\pi /2$ (i.e. $T_{\\pi / 2}$) gives an orbital period derivative value consistent with that obtaine...

  7. The Mutual Orbit, Mass, and Density of the Large Transneptunian Binary System Varda and Ilmar\\"e

    CERN Document Server

    Grundy, W M; Benecchi, S D; Roe, H G; Noll, K S; Trujillo, C A; Thirouin, A; Stansberry, J A; Barker, E; Levison, H F

    2015-01-01

    From observations by the Hubble Space Telescope, Keck II Telescope, and Gemini North Telescope, we have determined the mutual orbit of the large transneptunian object (174567) Varda and its satellite Ilmar\\"e. These two objects orbit one another in a highly inclined, circular or near-circular orbit with a period of 5.75 days and a semimajor axis of 4810 km. This orbit reveals the system mass to be (2.664 +/- 0.064) x 10^20 kg, slightly greater than the mass of the second most massive main-belt asteroid (4) Vesta. The dynamical mass can in turn be combined with estimates of the surface area of the system from Herschel Space Telescope thermal observations to estimate a bulk density of 1.24 +0.50 -0.35 g cm^-3. Varda and Ilmar\\"e both have colors similar to the combined colors of the system, B-V = 0.886 +/- 0.025 and V-I = 1.156 +/- 0.029.

  8. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K. M.; Ida, S. [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ochiai, H. [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Nagasawa, M., E-mail: nagasawa.m.ad@m.titech.ac.jp [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.

  9. Orbital and Physical Characteristics of Meter-scale Impactors from Airburst Observations

    CERN Document Server

    Brown, P; Clark, D; Tagliaferri, E

    2015-01-01

    We have analysed the orbits and ablation characteristics in the atmosphere of 59 earth-impacting fireballs, produced by meteoroids one meter in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. We find a lower limit of ~10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two ...

  10. The basic physics of the binary black hole merger GW150914

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here those features of the signal visible in these data are used, along with only such concepts from Newtonian and General Relativity as are accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere, in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as 350 km apart and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.

  11. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    Science.gov (United States)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  12. Orbital solution and evolutionary state for the eclipsing binary 1SWASP J080150.03+471433.8

    Science.gov (United States)

    Darwish, M. S.; Elkhateeb, M. M.; Nouh, M. I.; Saad, S. M.; Hamdy, M. A.; Beheary, M. M.; Gadallah, K.; Zaid, I.

    2017-01-01

    We present an orbital solution study for the newly discovered system 1SWASP J080150.03+471433.8 by means of new CCD observations in VRI bands. Our observations were carried out on 25 Feb. 2013 using the Kottamia optical telescope at NRIAG, Egypt. 12. New times of minima were estimated and the observed light curves were analysed using the Wilson-Devinney code. The accepted orbital solution reveals that the primary component of is more massive and hotter than the secondary one by about 30 K. The system is an over-contact one with fillout ratio ∼29% and is located at a distance of about 195 Pc. The evolutionary status of the system is investigated by means of stellar models and empirical data.

  13. Orbital solution and evolutionary state for the eclipsing binary 1SWASP J080150.03+471433.8

    CERN Document Server

    Darwish, M S; Nouh, M I; Saad, S M; Hamdy, M A; Beheary, M M; Gadallah, K; Zaid, I

    2016-01-01

    We present an orbital solution study for the newly discovered system 1SWASP J080150.03+471433.8 by means of new CCD observations in VRI bands. Our observations were carried out on 25 Feb. 2013 using the Kottamia optical telescope at NRIAG, Egypt. 12 new times of minima were estimated and the observed light curves were analysed using the Wilson-Devinney code. The accepted orbital solution reveals that the primary component of is more massive and hotter than the secondary one by about 280K. The system is an over-contact one with fillout ratio ~ 29% and is located at a distance of 195 Pc. The evolutionary status of the system is investigated by means of stellar models and empirical data.

  14. Dynamical Masses of Young M Dwarfs. I. Masses and Orbital Parameters of GJ 3305 AB, the Wide Binary Companion to the Imaged Exoplanet Host 51 Eri

    CERN Document Server

    Montet, Benjamin T; Shkolnik, Evgenya L; Deck, Katherine M; Wang, Ji; Horch, Elliott P; Liu, Michael C; Hillenbrand, Lynne A; Kraus, Adam L; Charbonneau, David

    2015-01-01

    We combine new high resolution imaging and spectroscopy from Keck/NIRC2, Discovery Channel Telescope/DSSI, and Keck/HIRES with published astrometry and radial velocities to measure individual masses and orbital elements of the GJ 3305 AB system, a young (~20 Myr) M+M binary (unresolved spectral type M0) member of the beta Pictoris moving group comoving with the imaged exoplanet host 51 Eri. We measure a total system mass of 1.10 \\pm 0.04 M_sun, a period of 29.16 \\pm 0.65$ yr, a semimajor axis of 9.80 \\pm 0.15 AU, and an eccentricity of 0.19 \\pm 0.02. The primary component has a dynamical mass of 0.65 \\pm 0.05 M_sun and the secondary has a mass of 0.44 \\pm 0.05 M_sun. The recently updated BHAC15 models are consistent with the masses of both stars to within 1.5 sigma. Given the observed masses the models predict an age of the GJ 3305 AB system of 28 +15/-6 Myr. Based on the the observed system architecture and our dynamical mass measurement, it is unlikely that the orbit of 51 Eri b has been significantly alter...

  15. Gravitational waves from spinning eccentric binaries

    CERN Document Server

    Csizmadia, Péter; Rácz, István; Vasúth, Mátyás

    2012-01-01

    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relat...

  16. Tomographic Separation of Composite Spectra. XII. The Physical Properties and Spectral Phase Variability of the Massive Close Binary HD 159176

    Science.gov (United States)

    Penny, Laura R.; Epps, Jacob G.; Snyder, Joseph D.

    2016-12-01

    We present our analysis of the double-lined, O-binary HD 159176 based on observations made with the International Ultraviolet Explorer (IUE). We use cross-correlation methods to obtain radial velocities, confirm the orbital elements, and estimate the UV flux ratio. In addition, we cross-correlate specific regions of the IUE spectra corresponding to Fe v, Fe iv, He ii, N iii, and O iv features to determine the phase dependence of the cross-correlation strength for those features. We tomographically reconstruct the individual component spectra, which we classify as O6.5 V + O7 V. We present the first light-curve analysis of observations from the HIPPARCOS satellite combined with data from Thomas & Pachoulakis and determine an orbital inclination, i=43\\buildrel{\\circ}\\over{.} 5+/- 4\\buildrel{\\circ}\\over{.} 5. Both stars are well within their Roche surfaces. Our derived masses, {M}p/{M}⊙ =46.4{+/- }9.514.3 and {M}s/{M}⊙ =44.{+/- }9.113.6, are constrained by the known distance and reddening to NGC 6383 and the derived optical flux ratio, and agree within errors with predicted evolutionary masses. Both components display phase variations corresponding to the classical Struve-Sahade effect in the UV, Fe iv, N iii, and O iv cross-correlation functions. The Fe v features have remarkably uniform profile strengths except in observations prior to conjunctions, a possible post-quadrature Struve-Sahade effect. The derived orbital elements from the various ions are not affected by the Struve-Sahade variability. Both the spectral variability and derived orbital semi-amplitudes of He ii λ 1640 suggest that this feature is formed preferentially on the inner hemispheres of the component stars.

  17. Revealing the physics of r modes in low-mass X-ray binaries

    NARCIS (Netherlands)

    Ho, W.C.G.; Andersson, N.; Haskell, B.

    2011-01-01

    We consider the astrophysical constraints on the gravitational-wave-driven r-mode instability in accreting neutron stars in low-mass x-ray binaries. We use recent results on superfluid and superconducting properties to infer the core temperature in these neutron stars and show the diversity of the o

  18. Dynamics and Habitability in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Pilat-Lohinger, Elke

    2014-01-01

    Determining planetary habitability is a complex matter, as the interplay between a planet's physical and atmospheric properties with stellar insolation has to be studied in a self consistent manner. Standardized atmospheric models for Earth-like planets exist and are commonly accepted as a reference for estimates of Habitable Zones. In order to define Habitable Zone boundaries, circular orbital configurations around main sequence stars are generally assumed. In gravitationally interacting multibody systems, such as double stars, however, planetary orbits are forcibly becoming non circular with time. Especially in binary star systems even relatively small changes in a planet's orbit can have a large impact on habitability. Hence, we argue that a minimum model for calculating Habitable Zones in binary star systems has to include dynamical interactions.

  19. Intensity of gravitational wave emitted by an oscillating Keplerian binary

    Science.gov (United States)

    Chowdhury, M. N.; Bhuiyan, M. T. H.; Bhuyan, M. D. I.; Faruque, S. B.

    2017-02-01

    This paper attempts to formulate a way for calculating the intensity of gravitational wave from two point masses in Keplerian circular and elliptic orbits. The intensity is calculated with the assumption that the orbital plane of the binary undergoes small oscillation about the equilibrium x-y plane. This problem is simplification of a physically possible orbit where one of the point masses is spinning whereby the spin-orbit force drives the orbital plane to wobble in a complicated manner. It is shown that the total energy of gravitational wave emitted by the binary in this case is dominated by the parameters which take into account the oscillation of the plane. The results presented are in fact a generalization of the classic results of Landau and Lifshitz.

  20. Next-to-next-to-leading order spin-orbit effects in the equations of motion of compact binary systems

    CERN Document Server

    Marsat, Sylvain; Faye, Guillaume; Blanchet, Luc

    2012-01-01

    We compute next-to-next-to-leading order spin contributions to the post-Newtonian equations of motion for binaries of compact objects, such as black holes or neutron stars. For maximally spinning black holes, those contributions are of third-and-a-half post-Newtonian (3.5PN) order, improving our knowledge of the equations of motion, already known for non-spinning objects up to this order. Building on previous work, we represent the rotation of the two bodies using a pole-dipole matter stress-energy tensor, and iterate Einstein's field equations for a set of potentials parametrizing the metric in harmonic coordinates. Checks of the result include the existence of a conserved energy, the approximate global Lorentz invariance of the equations of motion in harmonic coordinates, and the recovery of the motion of a spinning object on a Kerr background in the test-mass limit. We verified the existence of a contact transformation, together with a redefinition of the spin variables that makes our result equivalent to ...

  1. Revised physical elements of the astrophysically important O9.5+O9.5V eclipsing binary system Y Cyg

    CERN Document Server

    Harmanec, P; Wolf, M; Božić, H; Guinan, E F; Kang, Y W; Mayer, P; McCook, G P; Nemravová, J; Yang, S; Šlechta, M; Ruždjak, D; Sudar, D; Svoboda, P

    2014-01-01

    Thanks to its long and rich observational history and rapid apsidal motion, the massive eclipsing binary Y Cyg represents one of the cornestones to critical tests of stellar evolution theory for massive stars. Yet, the determination of the basic physical properties is less accurate than it could be given the existing number of spectral and photometric observations. Our goal is to analyze all these data simultaneously with the new dedicated series of our own spectral and photometric observations from observatories widely separated in longitude. We obtained new series of UBV observations at three observatories separated in local time to obtain complete light curves of Y Cyg for its orbital period close to 3 days. This new photometry was reduced and carefully transformed to the standard UBV system using the HEC22 program. We also obtained new series of red spectra secured at two observatories and re-analyzed earlier obtained blue electronic spectra. Our analyses provide the most accurate so far published value o...

  2. Innermost stable circular orbits around strange stars and kHz QPOs in low-mass X-ray binaries

    CERN Document Server

    Zdunik, J L; Gondek-Rosinska, D; Gourgoulhon, E

    2000-01-01

    Exact calculations of innermost stable circular orbit (ISCO) around rotatingstrange stars are performed within the framework of general relativity.Equations of state (EOS) of strange quark matter based on the MIT Bag Modelwith massive strange quarks and lowest order QCD interactions, are used. Thepresence of a solid crust of normal matter on rotating, mass accreting strangestars in LMXBs is taken into account. It is found that, contrary to neutronstars, above some minimum mass a gap always separates the ISCO and stellarsurface, independently of the strange star rotation rate. For a given baryonmass of strange star, we calculate the ISCO frequency as function of stellarrotation frequency, from static to Keplerian configuration. For masses close tothe maximum mass of static configurations the ISCO frequencies for static andKeplerian configurations are similar. However, for masses significantly lowerthan the maximum mass of static configurations, the minimum value of the ISCOfrequency is reached in the Keplerian...

  3. Rapid Decreasing in the Orbital Period of the Detached White Dwarf-main Sequence Binary SDSS J143547.87+373338.5

    Science.gov (United States)

    Qian, S.-B.; Han, Z.-T.; Soonthornthum, B.; Zhu, L.-Y.; He, J.-J.; Rattanasoon, S.; Aukkaravittayapun, S.; Liao, W.-P.; Zhao, E.-G.; Zhang, J.; Fernández Lajús, E.

    2016-02-01

    SDSS J143547.87+373338.5 is a detached eclipsing binary that contains a white dwarf with a mass of 0.5 M⊙ and a fully convective star with a mass of 0.21 M⊙. The eclipsing binary was monitored photometrically from 2009 March 24 to 2015 April 10, by using two 2.4-m telescopes in China and in Thailand. The changes in the orbital period are analyzed based on eight newly determined eclipse times together with those compiled from the literature. It is found that the observed-calculated (O-C) diagram shows a downward parabolic change that reveals a continuous period decrease at a rate of \\dot{P}=-8.04× {10}-11 s s-1. According to the standard theory of cataclysmic variables, angular momentum loss (AML) via magnetic braking (MB) is stopped for fully convective stars. However, this period decrease is too large to be caused by AML via gravitational radiation (GR), indicating that there could be some extra source of AML beyond GR, but the predicted mass-loss rates from MB seem unrealistically large. The other possibility is that the O-C diagram may show a cyclic oscillation with a period of 7.72 years and a small amplitude of 0.ͩ000525. The cyclic change can be explained as the light-travel-time effect via the presence of a third body because the required energy for the magnetic activity cycle is much larger than that radiated from the secondary in a whole cycle. The mass of the potential third body is determined to be {M}3{sin}{i}\\prime =0.0189(+/- 0.0016) M⊙ when a total mass of 0.71 M⊙ for SDSS J143547.87+373338.5 is adopted. For orbital inclinations {i}\\prime ≥slant 15\\buildrel{\\circ}\\over{.} 9, it would be below the stable hydrogen-burning limit of M3 ˜ 0.072 M⊙, and thus the third body would be a brown dwarf.

  4. Spectral modelling of massive binary systems

    CERN Document Server

    Palate, Matthieu; Koenigsberger, Gloria; Moreno, Edmundo

    2013-01-01

    Aims: We simulate the spectra of massive binaries at different phases of the orbital cycle, accounting for the gravitational influence of the companion star on the shape and physical properties of the stellar surface. Methods: We used the Roche potential modified to account for radiation pressure to compute the stellar surface of close circular systems and we used the TIDES code for surface computation of eccentric systems. In both cases, we accounted for gravity darkening and mutual heating generated by irradiation to compute the surface temperature. We then interpolated NLTE plane-parallel atmosphere model spectra in a grid to obtain the local spectrum at each surface point. We finally summed all contributions, accounting for the Doppler shift, limb-darkening, and visibility to obtain the total synthetic spectrum. We computed different orbital phases and sets of physical and orbital parameters. Results: Our models predict line strength variations through the orbital cycle, but fail to completely reproduce t...

  5. A quintuple star system containing two eclipsing binaries

    Science.gov (United States)

    Rappaport, S.; Lehmann, H.; Kalomeni, B.; Borkovits, T.; Latham, D.; Bieryla, A.; Ngo, H.; Mawet, D.; Howell, S.; Horch, E.; Jacobs, T. L.; LaCourse, D.; Sódor, Á.; Vanderburg, A.; Pavlovski, K.

    2016-10-01

    We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11 arcsec on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclipsing binaries which are resolved within that image at 0.09 arcsec, while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The `A' binary is circular with a 5.1-d period, while the `B' binary is eccentric with a 13.1-d period. The γ velocities of the A and B binaries are different by ˜10 km s-1. That, coupled with their resolved projected separation of 0.09 arcsec, indicates that the orbital period and separation of the `C' binary (consisting of A orbiting B) are ≃65 yr and ≃25 au, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e. 212651213) has an RV and proper motion that differ from that of 212651234 by only ˜1.4 km s-1 and ˜3 mas yr-1. This set of similar space velocities in three dimensions strongly implies that these two objects are also physically bound, making this at least a quintuple star system.

  6. KOI-3278: A Self-Lensing Binary Star System

    CERN Document Server

    Kruse, Ethan

    2014-01-01

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  7. Effect of Temperature and Moisture on the Physical Stability of Binary and Ternary Amorphous Solid Dispersions of Celecoxib.

    Science.gov (United States)

    Xie, Tian; Taylor, Lynne S

    2017-01-01

    The effectiveness of different polymers, alone or in combination, in inhibiting the crystallization of celecoxib (CEX) from amorphous solid dispersions (ASDs) exposed to different temperatures and relative humidities was evaluated. It was found that polyvinylpyrrolidone (PVP) and PVP-vinyl acetate formed stronger or more extensive hydrogen bonding with CEX than cellulose-based polymers. This, combined with their better effectiveness in raising the glass transition temperature (Tg) of the dispersions, provided better physical stabilization of amorphous CEX against crystallization in the absence of moisture when compared with dispersions formed with cellulose derivatives. In ternary dispersions containing 2 polymers, the physical stability was minimally impaired by the presence of a cellulose-based polymer when the major polymer present was PVP. On exposure to moisture, stability of the CEX ASDs was strongly affected by both the dispersion hygroscopicity and the strength of the intermolecular interactions. Binary and ternary ASDs containing PVP appeared to undergo partial amorphous-amorphous phase separation when exposed 94% relative humidity, followed by crystallization, whereas other binary ASDs crystallized directly without amorphous-amorphous phase separation.

  8. He II $\\lambda$4686 emission from the massive binary system in $\\eta$ Car: constraints to the orbital elements and the nature of the periodic minima

    CERN Document Server

    Teodoro, M; Heathcote, B; Richardson, N D; Moffat, A F J; St-Jean, L; Russell, C; Gull, T R; Madura, T I; Pollard, K R; Walter, F; Coimbra, A; Prates, R; Fernández-Lajús, E; Gamen, R C; Hickel, G; Henrique, W; Navarete, F; Andrade, T; Jablonski, F; Luckas, P; Locke, M; Powles, J; Bohlsen, T; Chini, R; Corcoran, M F; Hamaguchi, K; Groh, J H; Hillier, D J; Weigelt, G

    2016-01-01

    {\\eta} Carinae is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He II $\\lambda 4686$ line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He II $\\lambda 4686$ emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of EW(He II $\\lambda 4686$), the line radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW(He II $\\lambda 4686$) variations, combined with other measurements, yield an orbital period $2022.7\\pm0.3$ d. The observed variability of the EW(He II $\\lambda 4686$) was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of ...

  9. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    Science.gov (United States)

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  10. Thermo Physical Properties for Binary Mixture of Dimethylsulfoxide and Isopropylbenzene at Various Temperatures

    Directory of Open Access Journals (Sweden)

    Maninder Kumar

    2013-01-01

    Full Text Available Density, refractive index, speed of sound, and viscosity have been measured of binary mixture dimethylsulfoxide (DMSO + isopropylbenzene (CUMENE over the whole composition range at 298.15, 303.15, 308.15, and 313.15 K and atmospheric pressure. From these experimental measurements the excess molar volume, deviations in viscosity, molar refractivity, speed of sound, and isentropic compressibility have been calculated. These deviations have been correlated by a polynomial Redlich-Kister equation to derive the coefficients and standard error. The viscosities have furthermore been correlated with two or three parameter models, that is, herric correlation and McAllister model, respectively.

  11. Enriching Gender in Physics Education Research: A Binary Past and a Complex Future

    Science.gov (United States)

    Traxler, Adrienne L.; Cid, Ximena C.; Blue, Jennifer; Barthelemy, Ramón

    2016-01-01

    In this article, we draw on previous reports from physics, science education, and women's studies to propose a more nuanced treatment of gender in physics education research (PER). A growing body of PER examines gender differences in participation, performance, and attitudes toward physics. We have three critiques of this work: (i) it does not…

  12. Attempt to explain black hole spin in X-ray binaries by new physics

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)

    2015-01-01

    It is widely believed that the spin of black holes in X-ray binaries is mainly natal. A significant spin-up from accretion is not possible. If the secondary has a low mass, the black hole spin cannot change too much even if the black hole swallows the whole stellar companion. If the secondary has a high mass, its lifetime is too short to transfer the necessary amount of matter and spin the black hole up. However, while black holes formed from the collapse of a massive star with solarmetallicity are expected to have low birth spin, current spin measurements show that some black holes in X-ray binaries are rotating very rapidly. Here we show that, if these objects are not the Kerr black holes of general relativity, the accretion of a small amount of matter (∝2 M{sub s}un) can make them look like very fast-rotating Kerr black holes. Such a possibility is not in contradiction with any observation and it can explain current spin measurements in a very simple way. (orig.)

  13. Physical parameters of the high-mass X-ray binary 4U1700-37

    CERN Document Server

    Clark, J S; Crowther, P A; Kaper, L; Fairbairn, M; Langer, N; Brocksopp, C

    2002-01-01

    We present the results of a detailed non-LTE analysis of the UV and optical spectrum of the O6.5Iaf+ star HD153919 - the mass donor in the high-mass X-ray binary 4U1700-37. Given the eclipsing nature of the system these results allow us to determine the most likely masses of both components of the binary via Monte Carlo simulations. These suggest a mass for HD153919 of 58+/-11M_sun - implying the initial mass of the companion was rather high (>60 M_sun). The most likely mass for the compact companion is found to be 2.44+/-0.27M_sun, with only 3.5 per cent of the trials resulting in a mass less than 2.0M_sun and none less than 1.65M_sun. Our observational data is inconsistent with the canonical neutron star mass and the lowest black hole mass observed (>4.4M_sun; Nova Vel). Significantly changing observational parameters can force the compact object mass into either of these regimes but this results in the O-star mass changing by factors of greater than 2, well beyond the limits determined from its evolutionar...

  14. Confronting uncertainties in stellar physics: calibrating convective overshooting with eclipsing binaries

    CERN Document Server

    Stancliffe, Richard J; Passy, Jean-Claude; Schneider, Fabian R N

    2015-01-01

    As part of a larger program aimed at better quantifying the uncertainties in stellar computations, we attempt to calibrate the extent of convective overshooting in low to intermediate mass stars by means of eclipsing binary systems. We model 12 such systems, with component masses between 1.3 and 6.2 solar masses, using the detailed binary stellar evolution code STARS, producing grids of models in both metallicity and overshooting parameter. From these, we determine the best fit parameters for each of our systems. For three systems, none of our models produce a satisfactory fit. For the remaining systems, no single value for the convective overshooting parameter fits all the systems, but most of our systems can be well described with an overshooting parameter between 0.09 and 0.15, corresponding to an extension of the mixed region above the core of about 0.1-0.3 pressure scale heights. Of the nine systems where we are able to obtain a good fit, seven can be reasonably well fit with a single parameter of 0.15. ...

  15. Low-voltage Power Supply Subsystem for a Sub-Orbital Particle Physic Instrument

    Directory of Open Access Journals (Sweden)

    Hector Hugo Silva Lopez

    2014-01-01

    Full Text Available The Japanese Experiment Module–Extreme Universe Space Observatory (JEM-EUSO is a wide-field (+/-~30°of aperture 2.5m refractor telescope to be installed in the International Space Station (ISS. The instrument looks downward from its orbit, into Earth’s atmosphere, with the main objective of observing ultra-violet (UV fluorescence light generated by Ultra-High Energy Cosmic Rays (UHECR extensive air showers (EAS. It is a frontier particle-physics experiment, the first of its kind. The validation of the technical readiness level of such a complex and unique instrument requires prototypes at several levels of integration. At the highest level, the EUSO-Balloon instrument has been conceived, through French space agency (CNES. At a smaller scale and in suborbital flight, EUSO-Balloon integrates all the sub-systems of the full space JEM-EUSO telescope, allowing end-to-end testing of hardware and interfaces, and to probing the global detection chain and strategy, while improving at the same time our knowledge of atmospheric and terrestrial UV background. EUSO-Balloon will be flown by CNES for the first time from Timmins, Canada; on spring 2014.This article presents the low-voltage power supply (LVPS subsystem development for the EUSO-Balloon instrument. This LVPS is the fully operational prototype for the space instrument JEM-EUSO. Besides design and construction, all performance tests and integration results with the other involved subsystems are shown.

  16. Physical properties and evolution of the two white dwarfs in the Sanduleak-Pesch binary

    Science.gov (United States)

    Greenstein, J. L.; Dolez, N.; Vauclair, G.

    1983-10-01

    An important new binary white dwarf has been found by Sanduleak and Pesch. The stars are analyzed with the data from the Palomar double CCD spectrograph, using continuum fluxes, lines profiles, and Balmer decrements. They have hydrogen atmospheres, are young Population I, age ≈5×108 yr, temperatures of 12500K and 9500K, and the same visual magnitude. The cooler and less luminous star, B, has the larger radius and lower mass; B started its degenerate cooling, more recently, as the brighter of the pair. The estimated cooling times differ by approximately 108 yr. The white dwarfs, with masses 0.80 and 0.43 m_sun;, are descended from progenitors of 8 and 4 m_sun; (or 5 and 3.5 m_sun;).

  17. He II λ4686 Emission from the Massive Binary System in η Car: Constraints to the Orbital Elements and the Nature of the Periodic Minima

    Science.gov (United States)

    Teodoro, M.; Damineli, A.; Heathcote, B.; Richardson, N. D.; Moffat, A. F. J.; St-Jean, L.; Russell, C.; Gull, T. R.; Madura, T. I.; Pollard, K. R.; Walter, F.; Coimbra, A.; Prates, R.; Fernández-Lajús, E.; Gamen, R. C.; Hickel, G.; Henrique, W.; Navarete, F.; Andrade, T.; Jablonski, F.; Luckas, P.; Locke, M.; Powles, J.; Bohlsen, T.; Chini, R.; Corcoran, M. F.; Hamaguchi, K.; Groh, J. H.; Hillier, D. J.; Weigelt, G.

    2016-03-01

    Eta Carinae (η Car) is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He ii λ4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He ii λ4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of the line equivalent width (EW), radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW variations, combined with other measurements, yield an orbital period of 2022.7 ± 0.3 days. The observed variability of the EW was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary’s atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135°-153°, and the longitude of periastron to 234°-252°. It also suggests that periastron passage occurred on {T}0=2456874.4\\quad (+/- 1.3 days). Our model also reproduced EW variations from a polar view of the primary star as determined from the observed He ii λ 4686 emission scattered off the Homunculus nebula. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program numbers 11506, 12013, 12508, 12750, and 13054. Support for program numbers 12013, 12508, and 12750 was provided by NASA

  18. Imaging of Orbital Infections

    OpenAIRE

    Seyed Hassan Mostafavi

    2010-01-01

    Preseptal and orbital cellulitis occur more commonly in children than adults. The history and physical examination are crucial in distinguishing between preseptal and orbital cellulitis. The orbital septum delineates the anterior eyelid soft tissues from the orbital soft tissue. Infections anterior to the orbital septum are classified as preseptal cellulitis and those posterior to the orbital septum are termed orbital cellulitis. "nRecognition of orbital involvement is important not only...

  19. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Orosz, J. A. [Department of Astronomy, San Diego State University, San Diego, CA 92182-1221 (United States); Peters, G. J., E-mail: gies@chara.gsu.edu, E-mail: rmatson@chara.gsu.edu, E-mail: guo@chara.gsu.edu, E-mail: lester@chara.gsu.edu, E-mail: jorosz@mail.sdsu.edu, E-mail: gjpeters@mucen.usc.edu [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States)

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.

  20. Physical parameters and orbital period variation of a newly discovered cataclysmic variable GSC 4560–02157

    Science.gov (United States)

    Han, Zhong-Tao; Qian, Sheng-Bang; Voloshina, Irina; Metlov, Vladimir G.; Zhu, Li-Ying; Li, Lin-Jia

    2016-10-01

    GSC 4560–02157 is a new eclipsing cataclysmic variable with an orbital period of 0.265359 days. By using the published V ‑ and R ‑ band data together with our observations, we discovered that the O ‑ C curve of GSC 4560–02157 may show a cyclic variation with a period of 3.51 years and an amplitude of 1.40 min. If this variation is caused by a light travel-time effect via the existence of a third body, then its mass can be derived as M 3 sin i' ≈ 91.08 M Jup, and it should be a low-mass star. In addition, several physical parameters were measured. The color of the secondary star was determined to be V ‑ R = 0.77(±0.03) which corresponds to a spectral type of K2–3. The secondary star's mass was estimated as M 2 = 0.73(±0.02) M ⊙ by combing the derived V ‑ R value around phase 0 with the assumption that it obeys the mass-luminosity relation for main sequence stars. This mass is consistent with the mass—period relation for CV donor stars. For the white dwarf, the eclipse durations and contacts of the white dwarf yield an upper limit on the white dwarf's radius corresponding to a lower limit on mass of M 1 ≈ 0.501 M ⊙. The overestimated radius and previously published spectral data indicate that the boundary layer may have a very high temperature.

  1. HIDES spectroscopy of bright detached eclipsing binaries from the $Kepler$ field - I. Single-lined objects

    CERN Document Server

    Hełminiak, K G; Kambe, E; Kozłowski, S K; Sybilski, P; Ratajczak, M; Maehara, H; Konacki, M

    2016-01-01

    We present results of our spectroscopic observations of nine detached eclipsing binaries (DEBs), selected from the $Kepler$ Eclipsing Binary Catalog, that only show one set of spectral lines. Radial velocities (RVs) were calculated from the high resolution spectra obtained with the HIDES instrument, attached to the 1.88-m telescope at the Okayama Astrophysical Observatory, and from the public APOGEE archive. In our sample we found five single-lined binaries, with one component dominating the spectrum. The orbital and light curve solutions were found for four of them, and compared with isochrones, in order to estimate absolute physical parameters and evolutionary status of the components. For the fifth case we only update the orbital parameters, and estimate the properties of the unseen star. Two other systems show orbital motion with a period known from the eclipse timing variations (ETVs). For these we obtained parameters of outer orbits, by translating the ETVs to RVs of the centre of mass of the eclipsing ...

  2. Orbits of Six Binary Stars

    Directory of Open Access Journals (Sweden)

    D. Olevic

    2005-01-01

    Full Text Available Se presentan los elementos orbitales de sistemas binarios WDS 03494{1956 = RST 2324, WDS 03513+2621 = A 1830, WDS 04093{2025 = RST 2333, WDS 06485{1226 = A 2935, WDS 07013{0906 = A 671 y WDS 18323{1439 = CHR 73. Se derivan las masas individuales y las paralajes dinámicas para todos los sistemas con excepción de WDS 18323-1439.

  3. Zero initial partial derivatives of satellite orbits with respect to force parameters violate the physics of motion of celestial bodies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Satellite orbits have been routinely used to produce models of the Earth’s gravity field. In connection with such productions, the partial derivatives of a satellite orbit with respect to the force parameters to be determined, namely, the unknown harmonic coefficients of the gravitational model, have been first computed by setting the initial values of partial derivatives to zero. In this note, we first design some simple mathematical examples to show that setting the initial values of partial derivatives to zero is generally erroneous mathematically. We then prove that it is prohibited physically. In other words, set-ting the initial values of partial derivatives to zero violates the physics of motion of celestial bodies.

  4. Zero initial partial derivatives of satellite orbits with respect to force parameters violate the physics of motion of celestial bodies

    Institute of Scientific and Technical Information of China (English)

    XU PeiLiang

    2009-01-01

    Satellite orbits have been routinely used to produce models of the Earth's gravity field. In connection with such productions, the partial derivatives of a satellite orbit with respect to the force parameters to be determined, namely, the unknown harmonic coefficients of the gravitational model, have been first computed by setting the initial values of partial derivatives to zero. In this note, we first design some simple mathematical examples to show that setting the initial values of partial derivatives to zero is generally erroneous mathematically. We then prove that it is prohibited physically. In other words, set-ting the initial values of partial derivatives to zero violates the physics of motion of celestial bodies.

  5. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    Science.gov (United States)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; Stappers, Ben W.; Cordes, James M.; Hessels, Jason W. T.; Lorimer, Duncan R.; Arzoumanian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Cognard, Ismael; Deneva, Julia S.; Faucher-Giguere, Claude-Andre; Gaensler, Bryan M.; Han, JinLin; Jenet, Fredrick A.; Kasian, Laura

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  6. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    CERN Document Server

    Champion, D J; Lazarus, P; Camilo, F; Bassa, C; Kaspi, V M; Nice, D J; Freire, P C C; Stairs, I H; Van Leeuwen, J; Stappers, B W; Cordes, J M; Hessels, J W T; Lorimer, D R; Arzoumanian, Z; Backer, D C; Bhat, N D R; Chatterjee, S; Cognard, I; Deneva, J S; Faucher-Giguere, C -A; Gaensler, B M; Han, J L; Jenet, F A; Kasian, L; Kondratiev, V I; Krämer, M; Lazio, J; McLaughlin, M A; Venkataraman, A; Vlemmings, W

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 ms in a highly eccentric (e = 0.44) 95-day orbit around a solar mass companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster then ejecting it into the Galactic disk or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74+/-0.04 Msun, an unusually high value.

  7. Chaotic zones around gravitating binaries

    CERN Document Server

    Shevchenko, Ivan I

    2014-01-01

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound bodies (a double star, a double black hole, a binary asteroid, etc.) is estimated analytically, in function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the binary periods. The binary's mass ratio, above which such a chaotic zone is universally present, is also estimated.

  8. Physical and optical properties of binary amorphous selenium-antimony thin films

    Science.gov (United States)

    Sharma, Pankaj; Sharma, Ishu; Katyal, S. C.

    2009-03-01

    Amorphous thin films with compositions Se1-xSbx (x =0, 0.025, 0.05, 0.075, and 0.10 at. %) have been deposited by thermal evaporation (at ˜10-4 Pa) from bulk samples. The compositional dependence of their optical properties, refractive index, extinction coefficient, absorption coefficient, and optical band gap with increasing Sb content is investigated using transmission spectra in the range of 400-1200 nm. The refractive-index dispersion has been analyzed on the basis of the Wemple-DiDomenico single-oscillator approach. It has been found that the refractive index increases with increasing Sb content. The behavior of the optical band gap, when the composition of the material is varied, shows, as expected, just the opposite trends. The optical band gap decreases from 2.025 to 1.753 eV with ±0.001 eV uncertainty. Band gap calculated theoretically also shows a decrease with the increase in Sb content. The optical behavior is supported by physical properties, i.e., decrease in optical band gap is supported by the decrease in cohesive energy of the system. Some other physical properties, viz., coordination number, lone-pair electrons, and glass transition temperature, are also investigated theoretically. The optical results may lead to yield more sensitive detectors based on amorphous selenium, and physical properties may be useful in achieving more stable alloys which are favorable in x-ray imaging applications.

  9. Distinguishing between Formation Channels for Binary Black Holes with LISA

    Science.gov (United States)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2016-10-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary black hole (BBH) mergers in the local universe. While ground-based gravitational wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of BBHs in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of BBH populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ∼ 90 % of binaries formed either dynamically or in isolation have eccentricities that are measurable with LISA. Finally, we note how measured eccentricities of low-mass BBHs evolved in isolation could provide detailed constraints on the physics of black hole natal kicks and common-envelope evolution.

  10. LUT observations of the mass-transferring binary AI Dra

    Science.gov (United States)

    Liao, Wenping; Qian, Shengbang; Li, Linjia; Zhou, Xiao; Zhao, Ergang; Liu, Nianping

    2016-06-01

    Complete UV band light curve of the eclipsing binary AI Dra was observed with the Lunar-based Ultraviolet Telescope (LUT) in October 2014. It is very useful to adopt this continuous and uninterrupted light curve to determine physical and orbital parameters of the binary system. Photometric solutions of the spot model are obtained by using the W-D (Wilson and Devinney) method. It is confirmed that AI Dra is a semi-detached binary with secondary component filling its critical Roche lobe, which indicates that a mass transfer from the secondary component to the primary one should happen. Orbital period analysis based on all available eclipse times suggests a secular period increase and two cyclic variations. The secular period increase was interpreted by mass transfer from the secondary component to the primary one at a rate of 4.12 ×10^{-8}M_{⊙}/yr, which is in agreement with the photometric solutions. Two cyclic oscillations were due to light travel-time effect (LTTE) via the presence of two cool stellar companions in a near 2:1 mean-motion resonance. Both photometric solutions and orbital period analysis confirm that AI Dra is a mass-transferring binary, the massive primary is filling 69 % of its critical Roche lobe. After the primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration.

  11. Structural transition and orbital glass physics in near-itinerant CoV2O4

    Science.gov (United States)

    Reig-i-Plessis, D.; Casavant, D.; Garlea, V. O.; Aczel, A. A.; Feygenson, M.; Neuefeind, J.; Zhou, H. D.; Nagler, S. E.; MacDougall, G. J.

    2016-01-01

    The ferrimagnetic spinel CoV2O4 has been a topic of intense recent interest, both as a frustrated insulator with unquenched orbital degeneracy and as a near-itinerant magnet which can be driven metallic with moderate applied pressure. Here, we report on our recent neutron diffraction and inelastic scattering measurements on powders with minimal cation site disorder. Our main new result is the identification of a weak (Δ/a a ˜10-4 ), first order structural phase transition at T*=90 K, the same temperature where spin canting was seen in recent single crystal measurements. This transition is characterized by a short-range distortion of oxygen octahedral positions, and inelastic data further establish a weak Δ ˜1.25 meV spin gap at low temperature. Together, these findings provide strong support for the local orbital picture and the existence of an orbital glass state at temperatures below T*.

  12. RPF: An Extensible, Cross-Platform, Binary File Format for Radiation Physics Data

    Energy Technology Data Exchange (ETDEWEB)

    Ham, C L

    2002-09-10

    Lawrence Livermore National Laboratory's Radiation Technology Group (RTG) uses a number of computer codes for simulation and analysis of radiation data. The number of incompatible data formats that these data presented themselves in have continued to multiply. In the 1980's a Common Data Format (CDF, see Appendix A) was devised for internal use by the RTG. This format represented a single gamma-ray spectrum as ASCII energy/count pairs preceded by an ASCII header. The ASCII representation of the data assured that it was compatible on any computing platform and this format is still in use. In the mid 1990's it became apparent that instrument systems of greater complexity would demand a file format of larger capacity to support systems then on the drawing board, including networks of sensors collecting time series of gamma-ray spectra. These systems were in the planning stage and defined data structures were not available. It became apparent that a new storage format for nuclear measurements data would be needed and it would have to be flexible and extensible to accommodate the requirements of systems of the future. As part of an LDRD, we began to investigate what others were doing, especially in the high-energy physics community, to deal with the large volumes of data being generated. Of particular interest was the very general Hierarchical Data Format (HDF), developed and maintained by the National Center for Supercomputing Applications (NCSA), that we ultimately used to develop the Radiation Physics Format (RPF). The HDF subroutine library provides users with the ability to customize a data file format based on standard calls to the HDF subroutine library. The RPF was developed and deployed on Sun and Hewlett-Packard workstations running their proprietary versions of UNIX.

  13. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Seventh edition)

    CERN Document Server

    Ritter, H

    2003-01-01

    The catalogue lists coordinates, apparent magnitudes, orbital parameters, and stellar parameters of the components and other characteristc properties of 472 cataclysmic binaries, 71 low-mass X-ray binaries and 113 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 635 of the 656 objects, and a cross-reference list of alias object designations. Literature published before 1 January 2003 has, as far as possible, been taken into account. All data can be accessed via the dedicated catalogue webpage at http://www.mpa-garching.mpg.de/RKcat/ (MPA) and http://physics.open.ac.uk/RKcat/ (OU). We will update the information given on the catalogue webpage regularly, initially every six months.

  14. The formation and evolution of wind-capture discs in binary systems

    Science.gov (United States)

    Huarte-Espinosa, M.; Carroll-Nellenback, J.; Nordhaus, J.; Frank, A.; Blackman, E. G.

    2013-07-01

    We study the formation, evolution and physical properties of accretion discs formed via wind capture in binary systems. Using the adaptive mesh refinement (AMR) code AstroBEAR, we have carried out high-resolution 3D simulations that follow a stellar mass secondary in the corotating frame as it orbits a wind producing asymptotic giant branch (AGB) primary. We first derive a resolution criteria, based on considerations of Bondi-Hoyle flows, that must be met in order to properly resolve the formation of accretion discs around the secondary. We then compare simulations of binaries with three different orbital radii (Ro = 10, 15, 20 au). Discs are formed in all three cases, however, the size of the disc and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disc becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with `fluttering' around the bow shock observed. The discs are generally well aligned with the orbital plane after a few binary orbits. We do not observe the presence of any large-scale, violent instabilities (such as the flip-flop mode). For the first time, moreover, it is observed that the wind component that is accreted towards the secondary has a vortex tube-like structure, rather than a column-like one as it was previously thought. In the context of AGB binary systems that might be precursors to pre-planetary nebula (PPN) and planetary nebula (PN), we find that the wind accretion rates at the chosen orbital separations are generally too small to produce the most powerful outflows observed in these systems if the companions are main-sequence stars but marginally capable if the companions are white dwarfs. It is likely that many of the more powerful PPN and PN involve closer binaries than the ones considered here. The results also demonstrate principles of broad relevance to all wind-capture binary systems.

  15. Is the β Pictoris member GJ 3039AB a physical binary? What the rotation periods tell us?

    Science.gov (United States)

    Messina, Sergio; Naves, Ramon; Medhi, Biman J.

    2016-10-01

    We have carried out a multi-band photometric monitoring of the close visual binary GJ 3039, consisting of a M4 primary and a fainter secondary component, and likely member of the young stellar association β Pictoris (24-Myr old). From our analysis we found that both components are photometric variables and, for the first time, we detected two micro-flare events. We measured from periodogram analysis of the photometric time series two rotation periods P = 3.355 d and P = 0.925 d, that we could attribute to the brighter GJ 3039A and the fainter GJ 3039B components, respectively. A comparison of these rotation periods with the period distribution of other β Pictoris members further supports that GJ 3039A is a member of this association. We find that also GJ 3039B could be a member, but the infrared magnitude differences between the two components taken from the literature and the photometric variability, which is found to be comparable in both stars, suggest that GJ 3039B could be a foreground star physically unbound to the primary A component.

  16. Investigation for improving Global Positioning System (GPS) orbits using a discrete sequential estimator and stochastic models of selected physical processes

    Science.gov (United States)

    Goad, Clyde C.; Chadwell, C. David

    1993-01-01

    GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the

  17. An M-dwarf star in the transition disk of Herbig HD142527; Physical parameters and orbital elements

    CERN Document Server

    Lacour, S; Cheetham, A; Greenbaum, A; Pearce, T; Marino, S; Tuthill, P; Pueyo, L; Mamajek, E E; Girard, J H; Sivaramakrishnan, A; Bonnefoy, M; Baraffe, I; Chauvin, G; Olofsson, J; Juhasz, A; Benisty, M; Pott, J -U; Sicilia-Aguilar, A; Henning, T; Cardwell, A; Goodsell, S; Graham, J R; Hibon, P; Ingraham, P; Konopacky, Q; Macintosh, B; Oppenheimer, R; Perrin, M; Rantakyrö, F; Sadakuni, N; Thomas, S

    2015-01-01

    HD 142527A is one of the most studied Herbig Ae/Be stars with a transitional disk, as it has the largest imaged gap in any protoplanetary disk: the gas is cleared from 30 to 90 AU. The HD 142527 system is also unique in that it has a stellar companion with a small mass compared to the mass of the primary star. This factor of $\\approx20$ in mass ratio between the two objects makes this binary system different from any other YSO. The HD142527 system could therefore provides a valuable testbed for understanding the impact of a lower mass companion on disk structure. This low-mass stellar object may be responsible for both the gap and the dust trapping observed by ALMA at longer distances. We have observed this system with the NACO and GPI instruments using the aperture masking technique. Aperture masking is ideal for providing high dynamic range even at very small angular separations. We present here the SEDS for HD 142527A and B from the $R$ band up to the $M$ band as well as the orbital motion of HD 142527B ov...

  18. Fundamental stellar and accretion disc parameters of the eclipsing binary DQ Velorum

    CERN Document Server

    Barría, D; Schmidtobreick, L; Djurasević, G; Kołaczkowski, Z; Michalska, G; Vucković, M; Niemczura, E; 10.1051/0004-6361/201220230

    2013-01-01

    To add to the growing collection of well-studied double periodic variables (DPVs) we have carried out the first spectroscopic and photometric analysis of the eclipsing binary DQ Velorum to obtain its main physical stellar and orbital parameters. Combining spectroscopic and photometric observations that cover several orbital cycles allows us to estimate the stellar properties of the binary components and the orbital parameters. We also searched for circumstellar material around the more massive star. We separated DQ Velorum composite spectra and measured radial velocities with an iterative method for double spectroscopic binaries. We obtained the radial velocity curves and calculated the spectroscopic mass ratio. We compared our single-lined spectra with a grid of synthetic spectra and estimated the temperature of the stars. We modeled the V-band light curve with a fitting method based on the simplex algorithm, which includes an accretion disc. To constrain the main stellar parameters we fixed the mass ratio a...

  19. Observable Priors: Limiting Biases in Estimated Parameters for Incomplete Orbits

    Science.gov (United States)

    Kosmo, Kelly; Martinez, Gregory; Hees, Aurelien; Witzel, Gunther; Ghez, Andrea M.; Do, Tuan; Sitarski, Breann; Chu, Devin; Dehghanfar, Arezu

    2017-01-01

    Over twenty years of monitoring stellar orbits at the Galactic center has provided an unprecedented opportunity to study the physics and astrophysics of the supermassive black hole (SMBH) at the center of the Milky Way Galaxy. In order to constrain the mass of and distance to the black hole, and to evaluate its gravitational influence on orbiting bodies, we use Bayesian statistics to infer black hole and stellar orbital parameters from astrometric and radial velocity measurements of stars orbiting the central SMBH. Unfortunately, most of the short period stars in the Galactic center have periods much longer than our twenty year time baseline of observations, resulting in incomplete orbital phase coverage--potentially biasing fitted parameters. Using the Bayesian statistical framework, we evaluate biases in the black hole and orbital parameters of stars with varying phase coverage, using various prior models to fit the data. We present evidence that incomplete phase coverage of an orbit causes prior assumptions to bias statistical quantities, and propose a solution to reduce these biases for orbits with low phase coverage. The explored solution assumes uniformity in the observables rather than in the inferred model parameters, as is the current standard method of orbit fitting. Of the cases tested, priors that assume uniform astrometric and radial velocity observables reduce the biases in the estimated parameters. The proposed method will not only improve orbital estimates of stars orbiting the central SMBH, but can also be extended to other orbiting bodies with low phase coverage such as visual binaries and exoplanets.

  20. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, H. [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Nagasawa, M. [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  1. WASP light curve of the eclipsing binary VZ CVn

    Directory of Open Access Journals (Sweden)

    Latković O.

    2012-01-01

    Full Text Available The WASP light curve of the eclipsing binary VZ CVn, consisting of more than 14000 individual observations, is analyzed for photometric elements using the modeling code of Đurašević (1992. The spectroscopic parameters are adopted from the recent radial velocity work by Pribulla et al. (2009. The results of the study include new times of minimum light, an improved ephemeris, and the updated physical and orbital parameters of the system.

  2. Structural transition and orbital glass physics in near itinerant CoV2O4

    OpenAIRE

    Reig-i-Plessis, D.; Casavant, D.; Garlea, V. O.; Aczel, A. A.; Feygenson, M.; Neuefeind, J.; Zhou, H. D.; Nagler, S.E.; MacDougall, G. J.

    2015-01-01

    The ferrimagnetic spinel $\\mathrm{CoV_2O_4}$ has been a topic of intense recent interest, both as a frustrated insulator with unquenched orbital degeneracy and as a near-itinerant magnet which can be driven metallic with moderate applied pressure. Here, we report on our recent neutron diffraction and inelastic scattering measurements on powders with minimal cation site disorder. Our main new result is the identification of a weak ($\\frac{\\Delta a}{a} \\sim 10^{-4}$), first order structural pha...

  3. The Formation and Evolution of Wind-Capture Disks In Binary Systems

    CERN Document Server

    Huarte-Espinosa, Martin; Nordhaus, Jason; Frank, Adam; Blackman, Eric G

    2012-01-01

    We study the formation, evolution and physical properties of accretion disks formed via wind capture in binary systems. Using the AMR code AstroBEAR, we have carried out high resolution 3D simulations that follow a stellar mass secondary in the co-rotating frame as it orbits a wind producing AGB primary. We first derive a resolution criteria, based on considerations of Bondi-Hoyle flows, that must be met in order to properly resolve the formation of accretion disks around the secondary. We then compare simulations of binaries with three different orbital radii (10, 15, 20 AU). Disks are formed in all three cases, however the size of the disk and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disk becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with "fluttering" around the bow shock observed. The disks are generally well aligned with the orbital plane after a few binary orbit...

  4. Modeling the Formation and Evolution of Wind-Capture Disks In Binary Systems

    Science.gov (United States)

    Huarte-Espinosa, M.; Carroll-Nellenback, J.; Nordhaus, J.; Frank, A.; Blackman, E.

    2014-04-01

    In this talk I will present results of recent models of the formation, evolution and physical properties of accretion disks formed via wind capture in binary systems. Using the AMR code AstroBEAR, we have carried out high resolution 3D simulations that follow a stellar mass secondary in the co-rotating frame as it orbits a wind producing AGB primary. A resolution criteria, based on considerations of Bondi-Hoyle flows, must be met in order to properly resolve the formation of accretion disks around the secondary. We then compare simulations of binaries with three different orbital radii (10, 15, 20 AU). Disks are formed in all three cases, however the size of the disk and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disk becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with "fluttering" around the bow shock observed. The disks are generally well aligned with the orbital plane after a few binary orbits. We do not observe the presence of any large scale, violent instabilities (such as the flip-flop mode). For the first time it is observed that the wind component that is accreted towards the secondary has a vortex tube-like structure. In the context of AGB binary systems that might be precursors to Pre-Planetary and Planetary Nebula, we find that the wind accretion rates at the chosen orbital separations are generally too small to produce the most powerful outflows observed in these systems if the companions are main sequence stars but marginally capable if the companions are white dwarfs. It is likely that many of the more powerful PPN and PN involve closer binaries than the ones considered here.

  5. Complex Variability of the H$\\alpha$ Emission Line Profile of the T Tauri Binary System KH 15D: The Influence of Orbital Phase, Occultation by the Circumbinary Disk, and Accretion Phenomenae

    CERN Document Server

    Hamilton, Catrina M; Mundt, Reinhard; Herbst, William; Winn, Joshua N

    2012-01-01

    We have obtained 48 high resolution echelle spectra of the pre-main sequence eclipsing binary system KH~15D (V582 Mon, P = 48.37 d, $e$ $\\sim$ 0.6, M$_{A}$ = 0.6 M$_{\\odot}$, M$_{B}$ = 0.7 M$_{\\odot}$). The eclipses are caused by a circumbinary disk seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingress and egress events. The H$\\alpha$ line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to "edge effects" and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the H$\\alpha$ emission line profile changes from an inverse P Cygni type profile during ingress to an enhanced d...

  6. Coevolution of Binaries and Gaseous Discs

    CERN Document Server

    Fleming, David P

    2016-01-01

    The recent discoveries of circumbinary planets by $\\it Kepler$ raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disc, and how the disc and binary interact and change as a result. The central binary excites resonances in the surrounding protoplanetary disc that drive evolution in both the binary orbital elements and in the disc. To probe how these interactions impact binary eccentricity and disc structure evolution, N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary discs surrounding binaries based on Kepler 38 were run for $10^4$ binary periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disc via a parametric instability and excite disc eccentricity growth. Eccentric binaries strongly couple to the disc causing eccentricity growth for both the disc and binary. Discs around sufficiently eccentri...

  7. Discs in misaligned binary systems

    CERN Document Server

    Rawiraswattana, Krisada; Goodwin, Simon P

    2016-01-01

    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-...

  8. Efimov physics and universal trimers in spin-orbit-coupled ultracold atomic mixtures

    Science.gov (United States)

    Shi, Zhe-Yu; Zhai, Hui; Cui, Xiaoling

    2015-02-01

    We study the two-body and three-body bound states in ultracold atomic mixtures with one of the atoms subjected to an isotropic spin-orbit (SO) coupling. We consider a system of two identical fermions interacting with one SO-coupled atom. It is found that there can exist two types of three-body bound states, Efimov trimers and universal trimers. The Efimov trimers are energetically less favored by the SO coupling, which will finally merge into the atom-dimer threshold as increasing the SO-coupling strength. Nevertheless, these trimers exhibit a discrete scaling law incorporating the SO-coupling effect. On the other hand, the universal trimers are more favored by the SO coupling. They can be induced at negative s -wave scattering lengths and with smaller mass ratios than those without SO coupling. These results are obtained by both the Born-Oppenheimer approximation and exact solutions from three-body equations.

  9. Evolution of Binaries in Dense Stellar Systems

    CERN Document Server

    Ivanova, Natalia

    2011-01-01

    In contrast to the field, the binaries in dense stellar systems are frequently not primordial, and could be either dynamically formed or significantly altered from their primordial states. Destruction and formation of binaries occur in parallel all the time. The destruction, which constantly removes soft binaries from a binary pool, works as an energy sink and could be a reason for cluster entering the binary-burning phase. The true binary fraction is greater than observed, as a result, the observable binary fraction evolves differently from the predictions. Combined measurements of binary fractions in globular clusters suggest that most of the clusters are still core-contracting. The formation, on other hand, affects most the more evolutionary advanced stars, which significantly enhances the population of X-ray sources in globular clusters. The formation of binaries with a compact objects proceeds mainly through physical collisions, binary-binary and single-binary encounters; however, it is the dynamical for...

  10. Spectral modeling of circular massive binary systems: Towards an understanding of the Struve--Sahade effect?

    CERN Document Server

    Palate, Matthieu

    2011-01-01

    Context: Some secondary effects are known to introduce variations in spectra of massive binaries. These phenomena (such as the Struve--Sahade effect, difficulties to determine properly the spectral type,...) have been reported and documented in the literature. Aims: We simulate the spectra of circular massive binaries at different phases of the orbital cycle and accounting for the gravitational influence of the companion star on the shape and physical properties of the stellar surface. Methods: We use the Roche potential to compute the stellar surface, von Zeipel theorem and reflection effects to compute the surface temperature. We then interpolate in a grid of NLTE plan-parallel atmosphere model spectra to obtain the local spectrum at each surface point. We finally sum all the contributions (accounting for the Doppler shift, limb-darkening, ...) to obtain the total spectrum. The computation is done for different orbital phases and for different sets of physical and orbital parameters. Results: Our first mode...

  11. Extensive study of HD 25558, a long-period double-lined binary with two SPB components

    OpenAIRE

    Sodor, A.; De Cat, P.; Wright, D J; Neiner, C.; Briquet, M.; Lampens, P.; Dukes, R. J.; Henry, G. W.; Williamson, M.H.; Brunsden, E.; Pollard, K.R.; Cottrell, P. L.; Maisonneuve, F.; Kilmartin, P.M.; Matthews, J

    2014-01-01

    We carried out an extensive observational study of the Slowly Pulsating B (SPB) star, HD 25558. The ~2000 spectra obtained at different observatories, the ground-based and MOST satellite light curves revealed that this object is a double-lined spectroscopic binary with an orbital period of about 9 years. The observations do not allow the inference of an orbital solution. We determined the physical parameters of the components, and found that both lie within the SPB instability strip. Accordin...

  12. Binary pulsar with a very small mass function

    Science.gov (United States)

    Dewey, R. J.; Maguire, C. M.; Rawley, L. A.; Stokes, G. H.; Taylor, J. H.

    1986-08-01

    Radiotelescope pulse-arrival-time (PAT) data of PSR1831-00, primarily at 390 MHz, were collected to characterize the evolution of the binary pulsars. The data were used to calculate, the right ascension and declination, pulsar and orbital periods, dispersion measure, semi-major axis, eccentricity, and time of periastron. The orbital period and semi-major axis are used to calculate the mass function. Comparisons are made with other binary and millisecond pulsars, noting the high degree of similarity with the other objects. The limitations imposed on the evolution of the objects by the observed physical characteristics lead to two possible evolutionary models: mass transfer after or during the formation of the neutron star, or no mass transfer. The first model would have required a contact phase during evolution of the primary. The second model posits a three solar mass primary which was also in contact during its evolution and which went to supernova.

  13. The Aid of Optical Studies in Understanding Millisecond Pulsar Binaries

    CERN Document Server

    Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus

    2016-01-01

    A large number of new "black widow" and "redback" energetic millisecond pulsars with irradiated stellar companions have been discovered through radio and optical searches of unidentified \\textit{Fermi} sources. Synchrotron emission, from particles accelerated up to several TeV in the intrabinary shock, exhibits modulation at the binary orbital period. Our simulated double-peaked X-ray light curves modulated at the orbital period, produced by relativistic Doppler-boosting along the intrabinary shock, are found to qualitatively match those observed in many sources. In this model, redbacks and transitional pulsar systems where the double-peaked X-ray light curve is observed at inferior conjunction have intrinsically different shock geometry than other millisecond pulsar binaries where the light curve is centered at superior conjunction. We discuss, and advocate, how current and future optical observations may aid in constraining the emission geometry, intrabinary shock and the unknown physics of pulsar winds.

  14. A Detached Eclipsing Binary near the Turnoff of the Open Cluster NGC 6819 and Determining Age Using Kepler

    DEFF Research Database (Denmark)

    Brewer, Lauren; Sandquist, E. L.; Mathieu, R. D.

    2013-01-01

    Measurements of the mass and radius of detached eclipsing binaries (DEB) can be used to accurately determine the ages of clusters if an eclipsing star is evolved enough and sits near the cluster turnoff on the color-magnitude diagram (CMD). Multiple DEBs in a cluster can constrain the age even more...... star is physically orbiting the eclipsing binary based on radial velocities and eclipse timing variations. The stars that make up the detached eclipsing binary are almost identical in temperature, with eclipses that are only clearly distinguishable using Kepler photometry. A new astrometric study...

  15. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  16. Imaging of Orbital Infections

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Mostafavi

    2010-05-01

    Full Text Available Preseptal and orbital cellulitis occur more commonly in children than adults. The history and physical examination are crucial in distinguishing between preseptal and orbital cellulitis. The orbital septum delineates the anterior eyelid soft tissues from the orbital soft tissue. Infections anterior to the orbital septum are classified as preseptal cellulitis and those posterior to the orbital septum are termed orbital cellulitis. "nRecognition of orbital involvement is important not only because of the threatened vision loss associated with orbital cellulitis but also because of the potential for central nervous system complications including cavernous sinus thrombosis, meningitis, and death. "nOrbital imaging should be obtained in all patients suspected of having orbital cellulitis. CT is preferred to MR imaging, as the orbital tissues have high con-trast and the bone can be well visualized. Orbital CT scanning allows localization of the disease process to the preseptal area, the extraconal or intraconal fat, or the subperiosteal space. Axial CT views allow evaluation of the medial orbit and ethmoid sinuses, whereas coronal scans image the orbital roof and floor and the frontal and maxillary sinuses. If direct coronal imaging is not possible, reconstruction of thin axial cuts may help the assessment of the orbital roof and floor. Potential sources of orbital cellulitis such as sinusitis, dental infection, and facial cellulitis are often detectable on CT imaging. "nIn this presentation, the imaging considerations of the orbital infections; including imaging differentiation criteria of all types of orbital infections are reviewed.

  17. Physical parameters and the projection factor of the classical Cepheid in the binary system OGLE-LMC-CEP-0227

    CERN Document Server

    Pilecki, B; Pietrzyński, G; Gieren, W; Thompson, I B; Freedman, W L; Scowcroft, V; Madore, B F; Udalski, A; Soszyński, I; Konorski, P; Smolec, R; Nardetto, N; Bono, G; Moroni, P G Prada; Storm, J; Gallenne, A

    2013-01-01

    A novel method of analysis of double-lined eclipsing binaries containing a radially pulsating star is presented. The combined pulsating-eclipsing light curve is built up from a purely eclipsing light curve grid created using an existing modeling tool. For every pulsation phase the instantaneous radius and surface brightness are taken into account, being calculated from the disentangled radial velocity curve of the pulsating star and from its out-of-eclipse pulsational light curve and the light ratio of the components, respectively. The best model is found using the Markov Chain Monte Carlo method. The method is applied to the eclipsing binary Cepheid OGLE-LMC-CEP-0227 (P_puls = 3.80 d, P_orb = 309 d). We analyze a set of new spectroscopic and photometric observations for this binary, simultaneously fitting OGLE V-band, I-band and Spitzer 3.6 {\\mu}m photometry. We derive a set of fundamental parameters of the system significantly improving the precision comparing to the previous results obtained by our group. ...

  18. Orbiter Flight Deck Redesign (A Physical Layout for a Futuristic Flight Deck)

    Science.gov (United States)

    Khorsandi, Mehrzad

    1996-01-01

    The purpose of this summer project was to develop a set of schematic drawings for redesign of the Space Shuttle flight deck from which three dimensional computer drawings can be built and viewed in a virtual environment. In order to achieve this goal, first recommendations for overall redesign of Space Shuttle previously made by experts in the field were reviewed and relevant information was extracted and delineated. Original drawings of the Space Shuttle made by Rockwell were obtained and carefully examined. In order to implement and assess any modifications in terms of space saving parameters, it was determined that the drawings alone could not achieve this objective. As a complement, physical measurements of the mockup of Space Shuttle flight deck were made and the information was categorized and properly labeled on the original drawings. Then, spacesaving redesign ideas, as motivated by expert recommendations on such things as information display panel upgrade by technologically advanced flat display units, were implemented. Next, the redesign ideas were executed on the Forward flight deck, Overhead Console, Right and Left Console, and Center Console. A new 3-D computer drawing of this was developed by modifying the existing drawing on the in-house developed software (PLAID). Finally, the drawing was transported to a Virtual Environment and observed.

  19. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  20. Fundamental physics and absolute positioning metrology with the MAGIA lunar orbiter

    Science.gov (United States)

    Dell'Agnello, Simone; Lops, Caterina; Delle Monache, Giovanni O.; Currie, Douglas G.; Martini, Manuele; Vittori, Roberto; Coradini, Angioletta; Dionisio, Cesare; Garattini, Marco; Boni, Alessandro; Cantone, Claudio; March, Riccardo; Bellettini, Giovanni; Tauraso, Roberto; Maiello, Mauro; Porcelli, Luca; Berardi, Simone; Intaglietta, Nicola

    2011-10-01

    MAGIA is a mission approved by the Italian Space Agency (ASI) for Phase A study. Using a single large-diameter laser retroreflector, a large laser retroreflector array and an atomic clock onboard MAGIA we propose to perform several fundamental physics and absolute positioning metrology experiments: VESPUCCI, an improved test of the gravitational redshift in the Earth-Moon system predicted by General Relativity; MoonLIGHT-P, a precursor test of a second generation Lunar Laser Ranging (LLR) payload for precision gravity and lunar science measurements under development for NASA, ASI and robotic missions of the proposed International Lunar Network (ILN); Selenocenter (the center of mass of the Moon), the determination of the position of the Moon center of mass with respect to the International Terrestrial Reference Frame/System (ITRF/ITRS); this will be compared to the one from Apollo and Lunokhod retroreflectors on the surface; MapRef, the absolute referencing of MAGIA's lunar altimetry, gravity and geochemical maps with respect to the ITRF/ITRS. The absolute positioning of MAGIA will be achieved thanks to: (1) the laboratory characterization of the retroreflector performance at INFN-LNF; (2) the precision tracking by the International Laser Ranging Service (ILRS), which gives two fundamental contributions to the ITRF/ITRS, i.e. the metrological definition of the geocenter (the Earth center of mass) and of the scale of length; (3) the radio science and accelerometer payloads; (4) support by the ASI Space Geodesy Center in Matera, Italy. Future ILN geodetic nodes equipped with MoonLIGHT and the Apollo/Lunokhod retroreflectors will become the first realization of the International Moon Reference Frame (IMRF), the lunar analog of the ITRF.

  1. Time and frequency requirement for the earth and ocean physics applications program. [characteristics and orbital mechanics of artificial satellites for data acquisition

    Science.gov (United States)

    Vonbun, F. O.

    1972-01-01

    The application of time and frequency standards to the Earth and Ocean Physics Applications Program (EOPAP) is discussed. The goals and experiments of the EOPAP are described. Methods for obtaining frequency stability and time synchronization are analyzed. The orbits, trajectories, and characteristics of the satellites used in the program are reported.

  2. Precise radial velocities of giant stars IX. HD 59686 Ab: a massive circumstellar planet orbiting a giant star in a ~13.6 au eccentric binary system

    CERN Document Server

    Ortiz, Mauricio; Trifonov, Trifon; Quirrenbach, Andreas; Mitchell, David; Nowak, Grzegorz; Buenzli, Esther; Zimmerman, Neil; Bonnefoy, Mickael; Skemer, Andy; Defrère, Denis; Lee, Man Hoi; Fischer, Debra; Hinz, Philip

    2016-01-01

    Context: For over 12 years, we have carried out a precise radial velocity survey of a sample of 373 G and K giant stars using the Hamilton \\'Echelle Spectrograph at Lick Observatory. There are, among others, a number of multiple planetary systems in our sample as well as several planetary candidates in stellar binaries. Aims: We aim at detecting and characterizing substellar+stellar companions to the giant star HD 59686 A (HR 2877, HIP 36616). Methods: We obtained high precision radial velocity (RV) measurements of the star HD 59686 A. By fitting a Keplerian model to the periodic changes in the RVs, we can assess the nature of companions in the system. In order to discriminate between RV variations due to non-radial pulsation or stellar spots we used infrared RVs taken with the CRIRES spectrograph at the Very Large Telescope. Additionally, to further characterize the system, we obtain high-resolution images with LMIRCam at the Large Binocular Telescope. Results: We report the likely discovery of a giant plane...

  3. SWIFT OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY IGR J16283-4838 UNVEIL A 288 DAY ORBITAL PERIOD

    Energy Technology Data Exchange (ETDEWEB)

    Cusumano, G.; Segreto, A.; La Parola, V. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146, Palermo (Italy); D' Aì, A. [Dipartimento di Fisica, Università di Palermo, via Archirafi 36, I-90123, Palermo (Italy); Masetti, N. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129, Bologna (Italy); Tagliaferri, G., E-mail: cusumano@ifc.inaf.it [INAF-Brera Astronomical Observatory, via Bianchi 46, I-23807, Merate (Italy)

    2013-09-20

    We report on the temporal and spectral properties of the high-mass X-ray binary IGR J16283-4838 in the hard X-ray band. We searched the first 88 months of Swift Burst Alert Telescope (BAT) survey data for long-term periodic modulations. We also investigated the broad band (0.2-150 keV) spectral properties of IGR J16283-4838 complementing the BAT dataset with soft X-ray data from the available Swift-XRT pointed observations. The BAT light curve of IGR J16283-4838 revealed a periodic modulation at P{sub o} = 287.6 ± 1.7 days (with a significance higher than 4 standard deviations). The profile of the light curve folded at P{sub o} shows a sharp peak lasting ∼12 days over a flat plateau. The long-term light curve also shows a ∼300 day interval of prolonged enhanced emission. The observed phenomenology suggests that IGR J16283-4838 has a Be nature, where the narrow periodic peaks and the ∼300 day outburst can be interpreted as Type I and Type II outbursts, respectively. The broad band 0.2-150 keV spectrum can be described with an absorbed power-law and a steepening in the BAT energy range.

  4. Accretion and Magnetic Reconnection in the Classical T Tauri Binary DQ Tau

    Science.gov (United States)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries (a archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  5. Observing binary inspiral with LIGO

    CERN Document Server

    Finn, L S

    1994-01-01

    Gravitational radiation from a binary neutron star or black hole system leads to orbital decay and the eventual coalescence of the binary's components. During the last several minutes before the binary components coalesce, the radiation will enter the bandwidth of the United States Laser Inteferometer Gravitational-wave Observatory (LIGO) and the French/Italian VIRGO gravitational radiation detector. The combination of detector sensitivity, signal strength, and source density and distribution all point to binary inspiral as the most likely candidate for observation among all the anticipated sources of gravitational radiation for LIGO/VIRGO. Here I review briefly some of the questions that are posed to theorists by the impending observation of binary inspiral.

  6. Evolution Of Binary Supermassive Black Holes In Rotating Nuclei

    CERN Document Server

    Rasskazov, Alexander

    2016-01-01

    Interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary's orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary's orbital eccentricity as well. We present a general treatment of this problem based on the Fokker-Planck equation for f, defined as the probability distribution for the binary's orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker-Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: 1) the orientation of the binar...

  7. HIDES spectroscopy of bright detached eclipsing binaries from the Kepler field - I. Single-lined objects

    Science.gov (United States)

    Hełminiak, K. G.; Ukita, N.; Kambe, E.; Kozłowski, S. K.; Sybilski, P.; Ratajczak, M.; Maehara, H.; Konacki, M.

    2016-09-01

    We present results of our spectroscopic observations of nine detached eclipsing binaries (DEBs), selected from the Kepler Eclipsing Binary Catalog, that only show one set of spectral lines. Radial velocities (RVs) were calculated from the high-resolution spectra obtained with the HIgh-Dispersion Echelle Spectrograph (HIDES) instrument, attached to the 1.88-m telescope at the Okayama Astrophysical Observatory, and from the public Apache Point Observatory Galactic Evolution Experiment archive. In our sample, we found five single-lined binaries, with one component dominating the spectrum. The orbital and light-curve solutions were found for four of them, and compared with isochrones, in order to estimate absolute physical parameters and evolutionary status of the components. For the fifth case, we only update the orbital parameters, and estimate the properties of the unseen star. Two other systems show orbital motion with a period known from the eclipse timing variations (ETVs). For these we obtained parameters of outer orbits, by translating the ETVs to RVs of the centre of mass of the eclipsing binary, and combining with the RVs of the outer star. Of the two remaining ones, one is most likely a blend of a faint background DEB with a bright foreground star, which lines we see in the spectra, and the last case is possibly a quadruple bearing a sub-stellar mass object. Where possible, we compare our results with literature, especially with results from asteroseismology. We also report possible detections of solar-like oscillations in our RVs.

  8. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Ivan I., E-mail: iis@gao.spb.ru [Pulkovo Observatory of the Russian Academy of Sciences, Pulkovskoje ave. 65, St. Petersburg 196140 (Russian Federation)

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  9. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M⊙ star and a 6 M⊙ star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  10. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    黄润乾; 曾艺蓉

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M star and a 6 M star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  11. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    CERN Document Server

    Bluhm, P; Vanzi, L; Soto, M G; Vos, J; Wittenmyer, R A; Olivares, F; Drass, H; Mennickent, R E; Vuckovic, M; Rojo, P; Melo, C H F

    2016-01-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions.The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between $\\sim$ 97-1600 days and eccentricities of between $\\sim$ 0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a diffe...

  12. First Orbital Solution and Evolutionary State for the Newly Discovered Eclipsing Binaries USNO-B1.0 1091-0130715 and GSC-03449-0680

    CERN Document Server

    Elkhateeb, M M; Nelson, R H

    2014-01-01

    First photometric study for the newly discovered systems USNO-B1.0 1091-0130715 and GSC-03449-0680 were applied by means of recent windows interface version of the Wilson and Devinney code based on model atmospheres by Kurucz (1993). The accepted models reveal some absolute parameters for both systems, which used in adopting the spectral type of the systems components and follow their evolutionary status. Distances to each systems are and physical properties are estimated. Comparisons of the computed physical parameters with stellar models are discussed.

  13. Observational Evidence for Tidal Interaction in Close Binary Systems

    CERN Document Server

    Mazeh, Tsevi

    2008-01-01

    This paper reviews the rich corpus of observational evidence for tidal effects in short-period binaries. We review the evidence for ellipsoidal variability and for the observational manifestation of apsidal motion in eclipsing binaries. Among the long-term effects, circularization was studied the most, and a transition period between circular and eccentric orbits has been derived for eight coeval samples of binaries. As binaries are supposed to reach synchronization before circularization, one can expect finding eccentric binaries in pseudo-synchronization state, the evidence for which is reviewed. The paper reviews the Rossiter-McLaughlin effect and its potential to study spin-orbit alignment. We discuss the tidal interaction in close binaries that are orbited by a third distant companion, and review the effect of pumping the binary eccentricity by the third star. We then discuss the idea that the tidal interaction induced by the eccentricity modulation can shrink the binary separation. The paper discusses t...

  14. In search of RR Lyrae type stars in eclipsing binary systems. OGLE052218.07-692827.4: an optical blend

    CERN Document Server

    Prsa, A; Devinney, E J; Engle, S G

    2008-01-01

    During the OGLE-2 operation, Soszynski et al. (2003) found 3 LMC candidates for an RR Lyr-type component in an eclipsing binary system. Two of those have orbital periods that are too short to be physically plausible and hence have to be optical blends. For the third, OGLE052218.07-692827.4, we developed a model of the binary that could host the observed RR Lyr star. After being granted HST/WFPC2 time, however, we were able to resolve 5 distinct sources within a 1.3" region that is typical of OGLE resolution, proving that OGLE052218.07-692827.4 is also an optical blend. Moreover, the putative eclipsing binary signature found in the OGLE data does not seem to correspond to a physically plausible system; the source is likely another background RR Lyr star. There are still no RR Lyr stars discovered so far in an eclipsing binary system.

  15. Multiwavelength Studies of gamma-ray Binaries

    Science.gov (United States)

    Aragona, Christina

    2011-01-01

    High mass X-ray binaries (HMXBs) consist of an O or B star orbited by either a neutron star or a black hole. Of the 114 known Galactic HMXBs, a handful of these objects, dubbed gamma-ray binaries, have been observed to produce MeV-TeV emission. The very high energy emission can be produced either by accretion from the stellar wind onto a black hole or a collision between the stellar wind and a relativistic pulsar wind. Both these scenarios make gamma-ray binaries valuable nearby systems for studying the physics of shocks and jets. Currently, the nature of the compact object and the high energy production mechanism is unknown or unconfirmed in over half of these systems. My goal for this dissertation is to constrain the parameters describing two of these systems: LS 5039 and HD 259440. LS 5039 exhibits gamma-ray emission modulated with its orbital period. The system consists of an ON6.5V((f)) star and an unidentified compact companion. Using optical spectra from the CTIO 1.5m telescope, we found LS 5039 to have an orbital period of 3.90608 d and an eccentricity of 0.337. Spectra of the Halpha line observed with SOAR indicate a mass loss rate of ˜ 1.9x10 -8 M yr-1. Observations taken with ATCA at 13 cm, 6 cm, and 3 cm indicate radio fluxes between 10--40 mJy. The measurements show variability with time, indicating a source other than thermal emission from the stellar wind. HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Using optical spectra from the KPNO CF, KPNO 2.1m, and OHP telescopes, we find a best fit stellar effective temperature of 27500--30000 K, a log surface gravity of 3.75--4.0, a mass of 13.2--19.0 Msolar, and a radius of 6.0--9.6 Rsolar. By fitting the spectral energy distribution, we find a distance between 1.1--1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long

  16. Radiation reaction in binary systems in general relativity

    Science.gov (United States)

    Kennefick, Daniel John

    1997-09-01

    This thesis is concerned with current problems in, and historical aspects of, the problem of radiation reaction in stellar binary systems in general relativity. Part I addresses current issues in the orbital evolution due to gravitational radiation damping of compact binaries. A particular focus is on the inspiral of small bodies orbiting large black holes, employing a perturbation formalism. In addition, the merger, at the end of the insprial, of comparable mass compact binaries, such as neutron star binaries is also discussed. The emphasis of Part I is on providing detailed descriptions of sources and signals with a view to optimising signal analysis in gravitational wave detectors, whether ground- or space- based interferometers, or resonant mass detectors. Part II of the thesis examines the historical controversies surrounding the problem of gravitational waves, and gravitational radiation damping in stellar binaries. In particular, it focuses on debates in the mid 20th-century on whether binary star systems would really exhibit this type of damping and emit gravitational waves, and on the 'quadrupole formula controversy' of the 1970s and 1980s, on the question whether the standard formular describing energy loss due to emission of gravitational waves was correctly derived for such systems. The study shed light on the role of analogy in science, especially where its use is controversial, on the importance of style in physics and on the problem of identity in science, as the use of history as a rhetorical device in controversial debate is examined. The concept of the Theoretician's Regress is introduced to explain the difficulty encountered by relativists in closing debate in this controversy, which persisted in one forms or another for several decades.

  17. Heat Redistribution and Misaligned Orbit Models in PHOEBE

    Science.gov (United States)

    Horvat, Martin; Prsa, Andrej; Conroy, Kyle E.

    2017-01-01

    Reflection and aligned Roche geometry have been long supported in modeling codes that synthesize light and radial velocity curves of eclipsing binary stars. However, recent advances in observational data, mostly in terms of precision and temporal baseline, demonstrated that the assumptions of these two effects are frequently violated. Reflection treatment neglected the energy absorbed by the irradiated star, and Roche geometry assumed aligned vectors of spin and orbital angular momentum. Observations of night- and day-side brightness variation of cooler stellar and substellar companions point to a clear deficiency in treating heat redistribution, and the break in symmetry of the Rossiter-McLaughlin effect points to misaligned stellar spins w.r.t. orbital plane. The framework of existing codes did not allow for revising these effects while keeping the rest of the logic intact, which prompted a complete rewrite of the modeling code PHOEBE (PHysics Of Eclipsing BinariEs). Here we present the basic considerations and proof-of-concept examples of the revised reflection effect and misaligned spin-orbit support. Reflection has been extended with heat absorption and consequent redistribution, which can be local, longitudinal or global. Misaligned spin-orbit vectors are supported by deriving the equation of the Roche potential that allows misaligned rotational axes and are provided by the corresponding Euler angles. This research is supported by the NSF grant #1517474.

  18. A Massive Pulsar in a Compact Relativistic Binary

    CERN Document Server

    Antoniadis, John; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G; 10.1126/science.1233232

    2013-01-01

    Many physically motivated extensions to general relativity (GR) predict significant deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 +/- 0.04 solar mass pulsar in a 2.46-hr orbit with a 0.172 +/- 0.003 solar mass white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

  19. Searching for Pulsars in Close Binary Systems

    CERN Document Server

    Jouteux, S; Stappers, B W; Jonker, P; Van der Klis, M

    2001-01-01

    We present a detailed mathematical analysis of the Fourier response of binary pulsar signals whose frequencies are modulated by circular orbital motion. The fluctuation power spectrum of such signals is found to be \

  20. THE STUDY OF MENTAL MODEL ON N-HEXANE-METHANOL BINARY SYSTEM (THE VALIDATION OF PHYSICAL CHEMISTRY PRACTICUM PROCEDURE

    Directory of Open Access Journals (Sweden)

    Albaiti Albaiti

    2016-04-01

    Full Text Available N-hexane and methanol systen is one example of a binary system that shows the solubility properties of reciprocity. This study aimed to assess the mental model of a n-hexane-methanolbinary system. Interaction at the submicroscopic level between n-hexane and methanol molecules is described in the form of mental model. Penelitian ini menggunakan cloud point method untuk memperoleh data kesetimbangan cair-cair sistem n-heksana-metanol. This study used a cloud point method to obtain data on liquid-liquid equilibrium on the system of n-hexane-methanol. Research data showed the maximum critical temperature (above the consolute temperature of this system was at 42.95 °C with Xmethanol = 0.475 (P= 715 mmHg. Data from the laboratory observations was representedas a symbolic level in the form of the curve of correlation between mole fraction of methanol with temperature in a phase diagram system of n-hexane-methanol. The curve that was formed was asymmetric. It indicated that the solubility of n-hexane in methanol was relatively small compared to the solubility of methanol in n-hexane. Mental model of the binary system of n-hexane-methanol in four curve areasin the form of visualization of the interaction between n-hexane and methanol molecules through London force. In thermodynamics, each component had the same chemical potential inboth phases at equilibrium state. This study results could have a contribution to form a mental model on the student as the prospective chemistry subject teachers.

  1. Quaternary ammonium room-temperature ionic liquid including an oxygen atom in side chain/lithium salt binary electrolytes: ab initio molecular orbital calculations of interactions between ions.

    Science.gov (United States)

    Tsuzuki, Seiji; Hayamizu, Kikuko; Seki, Shiro; Ohno, Yasutaka; Kobayashi, Yo; Miyashiro, Hajime

    2008-08-14

    Interactions of the lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) complex with N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME), 1-ethyl-3-methylimidazolium (EMIM) cations, neutral diethylether (DEE), and the DEMETFSA complex were studied by ab initio molecular orbital calculations. An interaction energy potential calculated for the DEME cation with the LiTFSA complex has a minimum when the Li atom has contact with the oxygen atom of DEME cation, while potentials for the EMIM cation with the LiTFSA complex are always repulsive. The MP2/6-311G**//HF/6-311G** level interaction energy calculated for the DEME cation with the LiTFSA complex was -18.4 kcal/mol. The interaction energy for the neutral DEE with the LiTFSA complex was larger (-21.1 kcal/mol). The interaction energy for the DEMETFSA complex with LiTFSA complex is greater (-23.2 kcal/mol). The electrostatic and induction interactions are the major source of the attraction in the two systems. The substantial attraction between the DEME cation and the LiTFSA complex suggests that the interaction between the Li cation and the oxygen atom of DEME cation plays important roles in determining the mobility of the Li cation in DEME-based room temperature ionic liquids.

  2. Binary Formation in Planetesimal Disks II. Planetesimals with Mass Spectrum

    CERN Document Server

    Kominami, Junko D

    2014-01-01

    Many massive objects have been found in the outer region of the Solar system. How they were formed and evolved has not been well understood, although there have been intensive studies on accretion process of terrestrial planets. One of the mysteries is the existence of binary planetesimals with near-equal mass components and highly eccentric orbits. These binary planetesimals are quite different from the satellites observed in the asteroid belt region. The ratio of the Hill radius to the physical radius of the planetesimals is much larger for the outer region of the disk, compared to the inner region of the disk. The Hill radius increases with the semi major axis. Therefore, planetesimals in the outer region can form close and eccentric binaries, while those in the inner region would simply collide. In this paper, we carried out $N$-body simulations in different regions of the disk and studied if binaries form in the outer region of the disk. We found that large planetesimals tend to form binaries. A signific...

  3. Secular Effect of Evolution of the Orbits of Binaries Induced by the Variation of Gravitational Constant with Time (The Case for the Elliptical Orbit)%引力常数随时间变化对双星轨道演变的长期效应(椭圆轨道情形)

    Institute of Scientific and Technical Information of China (English)

    李林森

    2011-01-01

    The solutions of the equations with the variable gravitational constant are given by taking the eccentric anomaly as independent variable. The solutions include the secular and periodic variations in semi-major axis, and other orbital elements only exhibit periodic variations in the first-order solutions. The longitude of periastron and mean longitude exhibit secular variations in the second-order solutions. The numerical estimations for the case of evolution of the orbits of six binaries are given. The results are discussed and concluded.%给出了以偏近点角为自变量的变引力常数的摄动方程组的解.解包括轨道半长轴的长期和周期变化项,其他轨道根数在一阶解中无长期项,只有周期项.近星点经度和平经度在二阶解中显示长期项变化.给出了由于引力常数变化对双星轨道演变情况的数值估计,对结果做了讨论并给出结论.

  4. The analysis of SuperWASP photometric data for the overcontact binary QW Gem

    Directory of Open Access Journals (Sweden)

    Cséki A.

    2013-01-01

    Full Text Available The paper presents an analysis of photometric observations of the eclipsing binary QW Gem. The orbital and physical parameters of the system are derived using the modeling code by G. Djurašević. Photometric observations are obtained from the SuperWASP public archive and the spectroscopic elements are adopted from a recently published radial velocity study. The results suggest that QW Gem is a binary in overcontact configuration, consisting of two stars of similar surface brightness but in different evolutionary stages.

  5. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  6. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

    Science.gov (United States)

    Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-03-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  7. Structural distortions, orbital ordering and physical properties of double perovskite R2CoMnO6 calculated by first-principles

    Science.gov (United States)

    Zhou, Hai Yang; Chen, Xiang Ming

    2017-04-01

    The structural distortions, orbital ordering, magnetic and electronic properties of double perovskite R2CoMnO6 (R  =  rare-earth element) have been systematically calculated by first-principles. Structural distortions, including Co–O and Mn–O bond length splitting, the antiferroelectric motions of R ions, the tilting of octahedral (the resulted Co–O–Mn bond angle) are obviously affected by the rare-earth ions’ radius. The bond length splitting behavior of Co–O and Mn–O are rather different because of the Jahn–Teller active ion Co2+ and the Jahn–Teller nonactive ion Mn4+. Taking Gd2CoMnO6 as an example, the t 2g orbitals of Co ions are predicted to be orbital ordered. That is, the spin down channel of d xz orbital for one Co ion and d yz orbital for another Co ion are basically vacant. Finally, the physical properties, including the magnetic Curie temperature and electronic band gap of R2CoMnO6 are almost linear dependent on the average value of cos2 θ (θ is the Co–O–Mn exchange-angle).

  8. "Complete" gravitational waveforms for black-hole binaries with non-precessing spins

    CERN Document Server

    Ajith, P; Husa, S; Chen, Y; Brügmann, B; Dorband, N; Müller, D; Ohme, F; Pollney, D; Reisswig, C; Santamaria, L; Seiler, J

    2009-01-01

    We present the first analytical inspiral-merger-ringdown gravitational waveforms from black-hole (BH) binaries with non-precessing spins. By matching a post-Newtonian description of the inspiral to a set of numerical calculations performed in full general relativity, we obtain a waveform family with a conveniently small number of physical parameters. The physical content of these waveforms includes the "orbital hang-up" effect, when BHs are spinning rapidly along the direction of the orbital angular momentum. These waveforms will allow us to detect a larger parameter space of BH binary coalescence, to explore various scientific questions related to GW astronomy, and could dramatically improve the expected detection rates of GW detectors.

  9. A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves

    CERN Document Server

    Farr, Benjamin; Farr, Will M; O'Shaughnessy, Richard

    2014-01-01

    Ground-based gravitational wave detectors are sensitive to a narrow range of frequencies, effectively taking a snapshot of merging compact-object binary dynamics just before merger. We demonstrate that by adopting analysis parameters that naturally characterize this 'picture', the physical parameters of the system can be extracted more efficiently from the gravitational wave data, and interpreted more easily. We assess the performance of MCMC parameter estimation in this physically intuitive coordinate system, defined by (a) a frame anchored on the binary's spins and orbital angular momentum and (b) a time at which the detectors are most sensitive to the binary's gravitational wave emission. Using anticipated noise curves for the advanced-generation LIGO and Virgo gravitational wave detectors, we find that this careful choice of reference frame and reference time significantly improves parameter estimation efficiency for BNS, NS-BH, and BBH signals.

  10. Stability of binaries. Part II: Rubble-pile binaries

    Science.gov (United States)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  11. Orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  12. $\\delta$-invariant for Quasi-periodic Oscillations and Physical Parameters of 4U 0614+09 binary

    CERN Document Server

    Titarchuk, L G; Titarchuk, Lev; Osherovich, Vladimir

    2000-01-01

    The recently formulated Two Oscillator (TO) model interprets the lowest of the kilohertz frequencies of the twin peak quasi-periodic oscillations in X -ray binaries as the Keplerian frequency nu_K. The high twin frequency nu_h in this model holds the upper hybrid frequency relation to the rotational frequency of the neutron star's magnetosphere Omega: nu_h^2=nu_K^2+ 4(Omega/2pi)^2. The vector Omega is assumed to have an angle delta with the normal to the disk. The first oscillator in the TO model allows one to interpret the horizontal branch observed below 100 Hz as the lower mode of the Keplerian oscillator under the influence of the Coriolis force, with frequency nu_L being dependent on nu_h, nu_K and delta. For some stars such as 4U 0614+09, Sco X-1 and 4U 1702-42, nu_h, nu_K and nu_L have been observed simultaneously providing the opportunity to check the central prediction of the TO model: the constancy of delta for a particular source. Given the considerable variation of each of these three frequencies,...

  13. The photometric investigation of the newly discovered W UMa type binary system GSC 03122-02426

    Science.gov (United States)

    Zhou, X.; Qian, S.-B.; He, J.-J.; Zhang, J.; Zhang, B.

    2016-10-01

    The B V Rc Ic bands light curves of the newly discovered binary system GSC 03122-02426 are obtained and analyzed using the Wilson-Devinney (W-D) code. The solutions suggest that the mass ratio of the binary system is q = 2.70 and the less massive component is 422 K hotter than the more massive one. We conclude that GSC 03122-02426 is a W-subtype shallow contact (with a contact degree of f = 15.3 %) binary system. It may be a newly formed contact binary system which is just under geometrical contact and will evolve to be a thermal contact binary system. The high orbital inclination (i = 81 .6∘) implies that GSC 03122-02426 is a total eclipsing binary system and the photometric parameters obtained by us are quite reliable. We also estimate the absolute physical parameters of the two components in GSC 03122-02426, which will provide fundamental information for the research of contact binary systems. The formation and evolutionary scenario of GSC 03122-02426 is discussed.

  14. The photometric investigation of the newly discovered W UMa type binary system GSC 03122-02426

    CERN Document Server

    Zhou, X; He, J -J; Zhang, J; Zhang, B

    2016-01-01

    The $B$ $V$ $R_c$ $I_c$ bands light curves of the newly discovered binary system \\astrobj{GSC 03122-02426} are obtained and analyzed using the Wilson-Devinney (W-D) code. The solutions suggest that the mass ratio of the binary system is $q = 2.70$ and the less massive component is $422K$ hotter than the more massive one. We conclude that \\astrobj{GSC 03122-02426} is a W-subtype shallow contact (with a contact degree of $f = 15.3\\,\\%$) binary system. It may be a newly formed contact binary system which is just under geometrical contact and will evolve to be a thermal contact binary system. The high orbital inclination ($i = 81.6^{\\circ}$) implies that \\astrobj{GSC 03122-02426} is a total eclipsing binary system and the photometric parameters obtained by us are quite reliable. We also estimate the absolute physical parameters of the two components in \\astrobj{GSC 03122-02426}, which will provide fundamental information for the research of contact binary systems. The formation and evolutionary scenario of \\astro...

  15. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    CERN Document Server

    Forgan, Duncan H

    2016-01-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycle...

  16. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    CERN Document Server

    Breivik, Katelyn; Larson, Shane L; Kalogera, Vassiliki; Rasio, Frederic A

    2016-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity of binary black holes in the LISA frequency band can be used discriminate between binaries formed in isolation in galactic fields, and those formed in dense stellar environments such as globular clusters. In this letter, we explore the differences in orbital eccentricities of binary black hole populations as they evolve through the LISA frequency band. Overall we find that there are three distinct populations of orbital eccentricities discernible by LISA. We show that, depending on gravitational-wave frequency, anywhere fro...

  17. 低质量X射线双星的长期监测和吸积物理%Monitoring Observations of Low Mass X-ray Binary and Accretion Physics

    Institute of Scientific and Technical Information of China (English)

    闫震

    2011-01-01

    brightehard states are permitted by physics and can be observed in the Galactic X-ray binaries, and these phenomena might have been observed in ultra-luminous X-ray sources in nearby galaxies. We then have statistically studied the rise timescales of outbursts in low-mass X-ray binary transients during the past more than ten years. The results shows the rise timescales are nearly constant with large scatter in different outbursts, which supports the positive correlation between the rate-of-increase of luminosity and peak luminosity. We also found that the mean value of rise timescale is about several days and weakly correlates with the orbital period. Our results indicate that the rise timescale may correspond to the viscous timescale at some outer radius in the accretion disc, and somehow correlates with the size of the accretion disc.We have also performed the analysis of the multi-wavelength observations (including ultraviolet, optical and X-ray) cross the state transition during the 2010 outburst of GX 339-4 by Swift. We found that the UV flux positively correlates with the 0.6-10 keV X-ray in a form of fuv ∝ f0.52±0.04 X, and 10 days before the hard-to-soft state transition, UV flux shows a rapid drop, during which the X-ray flux still increases. We argued that the UV emission was dominated by jet during this outburst, and the optically thick spectrum can extend to higher frequency in a more powerful jet in a hard state. The drop in UV flux indicates the jet starts to switch off before hard-to-soft state transition, and could be used to predict the occurrence of the hard-to-soft transition.%本论文基于X射线空间卫星的多波段监测数据,研究明亮的低质量X射线双星的X射线能谱的演化和态跃迁过程,暂现源在爆发过程中的一些性质以及不同波段的光度的演化和相关关系.暂现源的爆发所涉及的光度范围很大,这对于研究吸积物理具有不可比拟的重要性,可以研究不同的吸积率下的吸积

  18. Twin Binaries: Studies of Stability, Mass Transfer, and Coalescence

    CERN Document Server

    Lombardi, James C; Dooley, Katherine L; Gearity, Kyle; Kalogera, Vassiliki; Rasio, Frederic A

    2010-01-01

    Motivated by suggestions that binaries with almost equal-mass components ("twins") play an important role in the formation of double neutron stars and may be rather abundant among binaries, we study the stability of synchronized close and contact binaries with identical components in circular orbits. In particular, we investigate the dependency of the innermost stable circular orbit on the core mass, and we study the coalescence of the binary that occurs at smaller separations. For twin binaries composed of convective main-sequence stars, subgiants, or giants with low mass cores (M_c ~0.15M), we find that stable contact configurations exist at all separations down to the Roche limit, when mass shedding through the outer Lagrangian points triggers a coalescence of the envelopes and leaves the cores orbiting in a central tight binary. We discuss the implications of our results to the formation of binary neutron stars.

  19. Dynamical mass transfer in cataclysmic binaries

    Science.gov (United States)

    Melia, Fulvio; Lamb, D. Q.

    1987-01-01

    When a binary comes into contact and mass transfer begins, orbital angular momentum is stored in the accretion disk until the disk couples tidally to the binary system. Taam and McDermott (1987) have suggested that this leads to unstable dynamical mass transfer in many cataclysmic variables in which mass transfer would otherwise be stable, and that it explains the gap between 2 and 3 h in the orbital period distribution of these systems. Here the consequences of this hypothesis for the evolution of cataclysmic binaries are explored. It is found that systems coming into contact longward of the period gap undergo one or more episodes of dynamical mass transfer.

  20. Coevolution of binaries and circumbinary gaseous discs

    Science.gov (United States)

    Fleming, David P.; Quinn, Thomas R.

    2017-01-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disc and how the disc and binary interact and change as a result. The central binary excites resonances in the surrounding protoplanetary disc which drive evolution in both the binary orbital elements and in the disc. To probe how these interactions impact binary eccentricity and disc structure evolution, N-body smooth particle hydrodynamics simulations of gaseous protoplanetary discs surrounding binaries based on Kepler 38 were run for 104 binary periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disc via a parametric instability and excite disc eccentricity growth. Eccentric binaries strongly couple to the disc causing eccentricity growth for both the disc and binary. Discs around sufficiently eccentric binaries which strongly couple to the disc develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance which corresponds to an alignment of gas particle longitude of periastrons. All systems display binary semimajor axis decay due to dissipation from the viscous disc.

  1. Modified evolution of stellar binaries from supermassive black hole binaries

    Science.gov (United States)

    Liu, Bin; Wang, Yi-Han; Yuan, Ye-Fei

    2017-04-01

    The evolution of main-sequence binaries resided in the galactic centre is influenced a lot by the central supermassive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic centre, perturbed by another distant SMBH. Geometrically, such a four-body system is supposed to be decomposed into the inner triple (SMBH-star-star) and the outer triple (SMBH-stellar binary-SMBH). We survey the parameter space and determine the criteria analytically for the stellar mergers and the tidal disruption events (TDEs). For a relative distant and equal masses SMBH binary, the stars have more opportunities to merge as a result from the Lidov-Kozai (LK) oscillations in the inner triple. With a sample of tight stellar binaries, our numerical experiments reveal that a significant fraction of the binaries, ∼70 per cent, experience merger eventually. Whereas the majority of the stellar TDEs are likely to occur at a close periapses to the SMBH, induced by the outer Kozai effect. The tidal disruptions are found numerically as many as ∼10 per cent for a close SMBH binary that is enhanced significantly than the one without the external SMBH. These effects require the outer perturber to have an inclined orbit (≥40°) relatively to the inner orbital plane and may lead to a burst of the extremely astronomical events associated with the detection of the SMBH binary.

  2. Nonspinning searches for spinning binaries in ground-based detector data: Amplitude and mismatch predictions in the constant precession cone approximation

    CERN Document Server

    Brown, D; O'Shaughnessy, R

    2012-01-01

    Current searches for compact binary mergers by ground-based gravitational-wave detectors assume for simplicity the two bodies are not spinning. If the binary contains compact objects with significant spin, then this can reduce the sensitivity of these searches, particularly for black hole--neutron star binaries. In this paper we investigate the effect of neglecting precession on the sensitivity of searches for spinning binaries using non-spinning waveform models. We demonstrate that in the sensitive band of Advanced LIGO, the angle between the binary's orbital angular momentum and its total angular momentum is approximately constant. Under this \\emph{constant precession cone} approximation, we show that the gravitational-wave phasing is modulated in two ways: a secular increase of the gravitational-wave phase due to precession and an oscillation around this secular increase. We show that this secular evolution occurs in precisely three ways, corresponding to physically different apparent evolutions of the bin...

  3. New code for equilibriums and quasiequilibrium initial data of compact objects. II. Convergence tests and comparisons of binary black hole initial data

    CERN Document Server

    Uryu, Koji; Grandclement, Philippe

    2012-01-01

    COCAL is a code for computing equilibriums or quasiequilibrium initial data of single or binary compact objects based on finite difference methods. We present the results of supplementary convergence tests of COCAL code using time symmetric binary black hole data (Brill-Lindquist solution). Then, we compare the initial data of binary black holes on the conformally flat spatial slice obtained from COCAL and KADATH, where KADATH is a library for solving a wide class of problems in theoretical physics including relativistic compact objects with spectral methods. Data calculated from the two codes converge nicely towards each other, for close as well as largely separated circular orbits of binary black holes. Finally, as an example, a sequence of equal mass binary black hole initial data with corotating spins is calculated and compared with data in the literature.

  4. Magnetic braking in ultracompact binaries

    CERN Document Server

    Farmer, Alison

    2010-01-01

    Angular momentum loss in ultracompact binaries, such as the AM Canum Venaticorum stars, is usually assumed to be due entirely to gravitational radiation. Motivated by the outflows observed in ultracompact binaries, we investigate whether magnetically coupled winds could in fact lead to substantial additional angular momentum losses. We remark that the scaling relations often invoked for the relative importance of gravitational and magnetic braking do not apply, and instead use simple non-empirical expressions for the braking rates. In order to remove significant angular momentum, the wind must be tied to field lines anchored in one of the binary's component stars; uncertainties remain as to the driving mechanism for such a wind. In the case of white dwarf accretors, we find that magnetic braking can potentially remove angular momentum on comparable or even shorter timescales than gravitational waves over a large range in orbital period. We present such a solution for the 17-minute binary AM CVn itself which a...

  5. Formation of discs around super-massive black hole binaries

    Science.gov (United States)

    Goicovic, Felipe G.; Cuadra, Jorge; Sesana, Alberto

    2016-02-01

    We model numerically the evolution of 104 M ⊙ turbulent molecular clouds in near-radial infall onto 106 M ⊙, equal-mass supermassive black hole binaries, using a modified version of the SPH code gadget-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.

  6. Formation of discs around super-massive black hole binaries

    CERN Document Server

    Goicovic, Felipe G; Sesana, Alberto

    2015-01-01

    We model numerically the evolution of $10^4M_\\odot$ turbulent molecular clouds in near-radial infall onto $10^6M_\\odot$, equal-mass super-massive black hole binaries, using a modified version of the SPH code GADGET-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.

  7. An improved catalog of halo wide binary candidates

    CERN Document Server

    Allen, Christine

    2014-01-01

    We present an improved catalog of halo wide binaries, compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. (2004), and Chanam\\'e \\& Gould. (2004) but we have also included binaries from the lists of Ryan (1992) and Zapatero-Osorio \\& Martin (2004). All binaries were carefully checked and their distances and systemic radial velocities are included, when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries we ended up with 211 probable halo binaries, for 150 of which radial velocities are available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law $f...

  8. Busting Up Binaries: Encounters Between Compact Binaries and a Supermassive Black Hole

    CERN Document Server

    Addison, Eric; Larson, Shane

    2015-01-01

    Given the stellar density near the galactic center, close encounters between compact object binaries and the supermassive black hole are a plausible occurrence. We present results from a numerical study of close to 13 million such encounters. Consistent with previous studies, we corroborate that, for binary systems tidally disrupted by the black hole, the component of the binary remaining bound to the hole has eccentricity ~ 0.97 and circularizes dramatically by the time it enters the classical LISA band. Our results also show that the population of surviving binaries merits attention. These binary systems experience perturbations to their internal orbital parameters with potentially interesting observational consequences. We investigated the regions of parameter space for survival and estimated the distribution of orbital parameters post-encounter. We found that surviving binaries harden and their eccentricity increases, thus accelerating their merger due gravitational radiation emission and increasing the p...

  9. Binary Popldation Synthcsis Study

    Institute of Scientific and Technical Information of China (English)

    HAN Zhanwen

    2011-01-01

    Binary population synthesis (BPS), an approach to evolving millions of stars (including binaries) simultaneously, plays a crucial role in our understanding of stellar physics, the structure and evolution of galaxies, and cosmology. We proposed and developed a BPS approach, and used it to investigate the formation of many peculiar stars such as hot subdwarf stars, progenitors of type la supernovae, barium stars, CH stars, planetary nebulae, double white dwarfs, blue stragglers, contact binaries, etc. We also established an evolution population synthesis (EPS) model, the Yunnan Model, which takes into account binary interactions for the first time. We applied our model for the origin of hot subdwarf stars in the study of elliptical galaxies and explained their far-UV radiation.

  10. Extrasolar Binary Planets I: Formation by tidal capture during planet-planet scattering

    CERN Document Server

    Ochiai, H; Ida, S

    2014-01-01

    We have investigated i) the formation of gravitationally bounded pairs of gas-giant planets (which we call "binary planets") from capturing each other through planet-planet dynamical tide during their close encounters and ii) the following long-term orbital evolution due to planet-planet and planet-star {\\it quasi-static} tides. For the initial evolution in phase i), we carried out N-body simulations of the systems consisting of three jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing and this fraction is almost independent of the initial stellarcentric semi-major axes of the planets, while ejection and merging rates sensitively depend on the semi-major axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by ...

  11. Planet Scattering Around Binaries: Ejections, Not Collisions

    CERN Document Server

    Smullen, Rachel A; Shannon, Andrew

    2016-01-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically effects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Asid...

  12. On the dynamical evolution and end states of binary centaurs

    Science.gov (United States)

    Brunini, A.

    2014-01-01

    In this paper, we perform a numerical integration of 666 fictitious binary Centaurs coming from the trans Neptunian space. Our population is restricted to tight binaries whose components have sizes between 30 and 100 km. We included the dynamical perturbations from the giant planets, Kozai Cycles induced by the Sun and tidal friction on the orbits of the binaries. We found that most binaries are disrupted during one of the close planetary encounters, making the mean lifetime of binary Centaurs much shorter than the one of single Centaurs. Nearly 10 per cent of the binaries reach a very tight circular orbit, arguing in favour of the existence of a non-negligible population of contact Centaurs. Another 10 per cent survive as a binary during their lifetime as Centaur. Our simulations favour the existence of a small population of very tight binary Centaurs.

  13. Space-based Microlens Parallax Observation as a Way to Resolve the Severe Degeneracy between Microlens-parallax and Lens-orbital Effects

    Science.gov (United States)

    Han, C.; Udalski, A.; Lee, C.-U.; Gould, A.; Bozza, V.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Kim, S.-L.; Cha, S.-M.; Jung, Y. K.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Ryu, Y.-H.; Shin, I.-G.; Yee, J. C.; The KMTNet Collaboration

    2016-08-01

    In this paper, we demonstrate the severity of the degeneracy between the microlens-parallax and lens-orbital effects by presenting the analysis of the gravitational binary-lens event OGLE-2015-BLG-0768. Despite the obvious deviation from the model based on the linear observer motion and the static binary, it is found that the residual can be almost equally well explained by either the parallactic motion of the Earth or the rotation of the binary-lens axis, resulting in the severe degeneracy between the two effects. We show that the degeneracy can be readily resolved with the additional data provided by space-based microlens parallax observations. By enabling us to distinguish between the two higher-order effects, space-based microlens parallax observations will not only make it possible to accurately determine the physical lens parameters but also to further constrain the orbital parameters of binary lenses.

  14. Space-based Microlens Parallax Observation As a Way to Resolve the Severe Degeneracy between Microlens-parallax and Lens-orbital Effect

    CERN Document Server

    Han, C; Lee, C -U; Gould, A; Bozza, V; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M; Albrow, M D; Chung, S -J; Kim, S -L; Cha, S -M; Jung, Y K; Kim, D -J; Lee, Y; Park, B -G; Ryu, Y -H; Shin, I -G; Yee, J C

    2016-01-01

    In this paper, we demonstrate the severity of the degeneracy between the microlens-parallax and lens-orbital effects by presenting the analysis of the gravitational binary-lens event OGLE-2015-BLG-0768. Despite the obvious deviation from the model based on the the linear observer motion and the static binary, it is found that the residual can be almost equally well explained by either the parallactic motion of the Earth or the rotation of the binary lens axis, resulting in the severe degeneracy between the two effects. We show that the degeneracy can be readily resolved with the additional data provided by space-based microlens parallax observations. Enabling to distinguish between the two higher-order effects, space-based microlens parallax observations will make it possible not only to accurately determine the physical lens parameters but also to further constrain the orbital parameters of binary lenses.

  15. Dynamical Evolution of Wide Binaries

    Directory of Open Access Journals (Sweden)

    Esmeralda H. Mallada

    2001-01-01

    Full Text Available We simulate numerically encounters of wide binaries with field stars and Giant Molecular Clouds (GMCs by means of the impulse approximation. We analyze the time evolution of the distributions of eccentricities and semimajor axes of wide binaries with given initial conditions, at intervals of 109 yr, up to 1010 yr (assumed age of the Galaxy. We compute the fraction of surviving binaries for stellar encounters, for GMC encounters and for a combination of both, and hence, the dynamical lifetime for different semimajor axes and different masses of binaries (0.5, 1, 1.2, 1.5, 2.5, and 3 Msolar. We find that the dynamical lifetime of wide binaries considering only GMCs is half than that considering only stars. For encounters with GMCs we analyze the influence of the initial inclination of the orbital plane of the binary with respect to the plane perpendicular to the relative velocity vector of the binary and the GMC. We find that the perturbation is maximum when the angle is minimum.

  16. Variability in the Milky Way: Contact binaries as diagnostic tools

    CERN Document Server

    de Grijs, Richard; Deng, Licai

    2016-01-01

    We used the 50 cm Binocular Network (50BiN) telescope at Delingha Station (Qinghai Province) of Purple Mountain Observatory (Chinese Academy of Sciences) to obtain simultaneous $V$- and $R$-band observations of the old open cluster NGC 188. Our aim was a search for populations of variable stars. We derived light-curve solutions for six W Ursae Majoris (W UMa) eclipsing-binary systems and estimated their orbital parameters. The resulting distance to the W UMas is independent of the physical characteristics of the host cluster. We next determined the current best period--luminosity relations for contact binaries (CBs; scatter $\\sigma < 0.10$ mag). We conclude that CBs can be used as distance tracers with better than 5\\% uncertainty. We apply our new relations to the 102 CBs in the Large Magellanic Cloud, which yields a distance modulus of $(m-M_V)_0=18.41\\pm0.20$ mag.

  17. Deep, Low Mass Ratio Overcontact Binary Systems. XIV. A Statistical Analysis of 46 Sample Binaries

    Science.gov (United States)

    Yang, Yuan-Gui; Qian, Sheng-Bang

    2015-09-01

    A sample of 46 deep, low mass ratio (DLMR) overcontact binaries (i.e., q≤slant 0.25 and f≥slant 50%) is statistically analyzed in this paper. It is found that five relations possibly exist among some physical parameters. The primary components are little-evolved main sequence stars that lie between the zero-age main sequence line and the terminal-age main sequence (TAMS) line. Meanwhile, the secondary components may be evolved stars above the TAMS line. The super-luminosities and large radii may result from energy transfer, which causes their volumes to expand. The equations of M-L and M-R for the components are also determined. The relation of P-Mtotal implies that mass may escape from the central system when the orbital period decreases. The minimum mass ratio may preliminarily be {q}{min}=0.044(+/- 0.007) from the relations of q-f and q-Jspin/Jorb. With mass and angular momentum loss, the orbital period decreases, which finally causes this kind of DLMR overcontact binary to merge into a rapid-rotating single star.

  18. Spin supplementary conditions for spinning compact binaries

    CERN Document Server

    Mikóczi, Balázs

    2016-01-01

    We consider the different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conservative quantities and the dissipative part of relative motion during the gravitational radiation of each SSCs. We give the orbital elements and observed quantities of the SO dynamics, for instance the energy and the orbital angular momentum losses and waveforms and discuss their SSC dependence.

  19. Detection of gravity modes in the massive binary V380 Cyg from Kepler spacebased photometry and high-resolution spectroscopy

    CERN Document Server

    Tkachenko, A; Pavlovski, K; Southworth, J; Degroote, P; Debosscher, J; Still, M; Bryson, S; Molenberghs, G; Bloemen, S; de Vries, B L; Hrudkova, M; Lombaert, R; Neyskens, P; Papics, P I; Raskin, G; Van Winckel, H; Morris, R L; Sanderfer, D T; Seader, S E

    2012-01-01

    We report the discovery of low-amplitude gravity-mode oscillations in the massive binary star V380 Cyg, from 180 d of Kepler custom-aperture space photometry and 5 months of high-resolution high signal-to-noise spectroscopy. The new data are of unprecedented quality and allowed to improve the orbital and fundamental parameters for this binary. The orbital solution was subtracted from the photometric data and led to the detection of periodic intrinsic variability with frequencies of which some are multiples of the orbital frequency and others are not. Spectral disentangling allowed the detection of line-profile variability in the primary. With our discovery of intrinsic variability interpreted as gravity mode oscillations, V380 Cyg becomes an important laboratory for future seismic tuning of the near-core physics in massive B-type stars.

  20. New orbits based on speckle interferometry at SOAR

    CERN Document Server

    Tokovinin, Andrei

    2016-01-01

    Orbits of 55 visual binary stars are computed using recent speckle interferometry data from the SOAR telescope: 33 first-time orbits and 22 revisions of previous orbit calculations. The orbital periods range from 1.4 to 370 years, the quality of orbits ranges from definitive to preliminary and tentative. Most binaries consist of low-mass dwarfs and have short periods (median period 31 years). The dynamical parallaxes and masses are evaluated and compared to the Hipparcos parallaxes. Using differential speckle photometry, binary components are placed on the color-magnitude diagram.

  1. Memory effect from spinning unbound binaries

    CERN Document Server

    De Vittori, Lorenzo; Gupta, Anuradha; Jetzer, Philippe

    2014-01-01

    We present a recently developed prescription to obtain ready-to-use gravitational wave (GW) polarization states for spinning compact binaries on hyperbolic orbits. We include leading order spin-orbit interactions, invoking 1.5PN-accurate quasi-Keplerian parametrization for the radial part of the orbital dynamics. We also include radiation reaction effects on $h_+$ and $h_{\\times}$ during the interaction. In the GW signals from spinning binaries there is evidence of the memory effect in both polarizations, in contrast to the non-spinning case, where only the cross polarizations exhibits non-vanishing amplitudes at infinite time. We also compute 1PN-accurate GW polarization states for non-spinning compact binaries in unbound orbits in a fully parametric way, and compare them with existing waveforms.

  2. Quantum simulation of 2d topological physics using orbital-angular-momentum-carrying photons in a 1d array of cavities

    CERN Document Server

    Luo, Xi-Wang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-01-01

    Orbital angular momentum (OAM) of light is a fundamental optical degree of freedom that has recently motivated much exciting research in diverse fields ranging from optical communication to quantum information. We show for the first time that it is also a unique and valuable resource for quantum simulation, by demonstrating theoretically how \\emph{2d} topological physics can be simulated in a \\emph{1d} array of optical cavities using OAM-carrying photons. Remarkably, this newly discovered application of OAM states not only reduces required physical resources but also increases feasible scale of simulation. By showing how important topics such as edge-state transport and topological phase transition can be studied in a small simulator with just a few cavities ready for immediate experimental exploration, we demonstrate the prospect of photonic OAM for quantum simulation which can have a significant impact on the research of topological physics.

  3. The Massive Wolf-Rayet Binary HDE318016 (=WR 98)

    CERN Document Server

    Gamen, R C; Gamen, Roberto C.; Niemela, Virpi S.

    2002-01-01

    We present the discovery of OB type absorption lines superimposed to the emission line spectrum, and the first double-lined orbital elements for the massive Wolf-Rayet binary HDE 318016 (=WR 98), a spectroscopic binary in a circular orbit with a period of 47.825 days. The semiamplitudes of the orbital motion of the emission lines differ from line to line, indicating mass ratios between 1 and 1.7 for MWR/MOB.

  4. LASIP-III, a generalized processor for standard interface files. [For creating binary files from BCD input data and printing binary file data in BCD format (devised for fast reactor physics codes)

    Energy Technology Data Exchange (ETDEWEB)

    Bosler, G.E.; O' Dell, R.D.; Resnik, W.M.

    1976-03-01

    The LASIP-III code was developed for processing Version III standard interface data files which have been specified by the Committee on Computer Code Coordination. This processor performs two distinct tasks, namely, transforming free-field format, BCD data into well-defined binary files and providing for printing and punching data in the binary files. While LASIP-III is exported as a complete free-standing code package, techniques are described for easily separating the processor into two modules, viz., one for creating the binary files and one for printing the files. The two modules can be separated into free-standing codes or they can be incorporated into other codes. Also, the LASIP-III code can be easily expanded for processing additional files, and procedures are described for such an expansion. 2 figures, 8 tables.

  5. Study on the Physical Parameters of the Contact Binary Based On ASAS Survey Data%基于ASAS巡天数据研究相接双星的物理参数

    Institute of Scientific and Technical Information of China (English)

    李桐安; 张立云

    2015-01-01

    相接双星物理参数的研究不仅是恒星物理领域的热点课题,也是国际天体物理界非常重视的研究方向,并且我们的课题组在国内已经成功地开展这个领域的研究工作.本文根据从ASAS巡天数据中下载的相接双星数据,利用国际上求解食双星物理参数工具(不断更新的Wil-son-Devinney程序)对相接双星的物理参数进行计算,第一次得到ASAS巡天数据中13颗相接双星的物理参数,利用这些物理参数,求解这些相接双星理论值与观测值的光变曲线以及结构图.最后根据获得的这些相接双星物理参数、理论与实测的光变曲线以及结构图,进行分析并得出对应的结论.%The study of the physical parameters of the earth is not only a hot issue in the field of stellar physics, but also the research direction of the international astrophysics,and our research group has successfully carried out the research in this field in China. According to the download contact binary data from ASAS survey data, the adjoining binary physical parameters calculation was carried out by using the solving food binary physical pa-rameters of the most famous( constantly updated Wilson-devinney program)tools,for the first time 13 star con-nected physical parameter of the binary in ASAS survey data were obtained,using these parameters,these bina-ries theory value and observations of light curves and structure diagram were successfully solved. According to the physical parameters,the theoretical and the measured curves of the binary star,and the structure of the sys-tem,the conclusion was drawn and analyzed.

  6. Discrete absorption components in the massive LBV Binary MWC 314

    CERN Document Server

    Lobel, A; Corcoran, M; Groh, J H; Frémat, Y

    2014-01-01

    We investigate the physical properties of large-scale wind structures around massive hot stars with radiatively-driven winds. We observe Discrete Absorption Components (DACs) in optical He I P Cygni lines of the LBV binary MWC 314 (Porb=60.8 d). The DACs are observed during orbital phases when the primary is in front of the secondary star. They appear at wind velocities between -100 km/s and -600 km/s in the P Cyg profiles of He I lam5875, lam6678, and lam4471, signaling high-temperature expanding wind regions of enhanced density and variable outflow velocity. The DACs can result from wave propagation linked to the orbital motion near the low-velocity wind base. The He I lines indicate DAC formation close to the primary's surface in high-temperature wind regions in front of its orbit, or in dynamical wind regions confined between the binary stars. We observed the DACs with Mercator-HERMES on 5 Sep 2009, 5 May 2012, and 6 May 2014 when the primary is in front of the secondary star. XMM-Newton observations of 6...

  7. Orbital motions in binary protostellar systems

    Directory of Open Access Journals (Sweden)

    L. F. Rodríguez

    2004-01-01

    Full Text Available Mediante observaciones de alta resoluci on con el VLA en m ultiples epocas hemos detectado movimientos orbitales en varios sistemas protobinarios de baja luminosidad en los complejos moleculares de Taurus y Ophiuchus. Las masas que se obtienen con la tercera ley de Kepler son del orden de 0.5 a 2M , como se espera para protoestrellas de baja masa. Las luminosidades bolom etricas -relativamente altas- de estos sistemas j ovenes corroboran el concepto de que las protoestrellas derivan su luminosidad principalmente de la acreci on, y no de las reacciones nucleares. Adem as, en una de las fuentes estudiadas (un sistema m ultiple en Taurus una estrella j oven de baja masa ha mostrado un cambio dr astico en su orbita, despu es de un encuentro cercano con otra componente del sistema, que supuestamente es una binaria. El gran movimiento propio adquirido por esta protoestrella de baja masa (20 km s1 sugiere una expulsi on del sistema.

  8. Orbital motions in binary protostellar systems

    OpenAIRE

    L. F. Rodríguez

    2004-01-01

    Mediante observaciones de alta resoluci on con el VLA en m ultiples epocas hemos detectado movimientos orbitales en varios sistemas protobinarios de baja luminosidad en los complejos moleculares de Taurus y Ophiuchus. Las masas que se obtienen con la tercera ley de Kepler son del orden de 0.5 a 2M , como se espera para protoestrellas de baja masa. Las luminosidades bolom etricas -relativamente altas- de estos sistemas j ovenes corroboran el concepto de que las protoestrellas de...

  9. Binary stars observed with adaptive optics at the starfire optical range

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, Jack D. [Air Force Research Laboratory, Directed Energy Directorate, RDSAM, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

    2014-03-01

    In reviewing observations taken of binary stars used as calibration objects for non-astronomical purposes with adaptive optics on the 3.5 m Starfire Optical Range telescope over the past 2 years, one-fifth of them were found to be off-orbit. In order to understand such a high number of discrepant position angles and separations, all previous observations in the Washington Double Star Catalog for these rogue binaries were obtained from the Naval Observatory. Adding our observations to these yields new orbits for all, resolving the discrepancies. We have detected both components of γ Gem for the first time, and we have shown that 7 Cam is an optical pair, not physically bound.

  10. On the Properties of Hypermassive Neutron Stars Formed in Mergers of Spinning Binaries

    CERN Document Server

    Kastaun, Wolfgang

    2014-01-01

    We present numerical simulations of binary neutron star (BNS) mergers, comparing irrotational binaries to binaries of NSs rotating aligned to the orbital angular momentum. For the first time, we study spinning BNSs employing nuclear physics equations of state (EOS), namely the ones of Lattimer & Swesty as well as Shen & Horowitz & Teige. We study mainly equal mass systems leading to a hypermassive neutron star (HMNS), and analyze in detail its structure and dynamics. In order to exclude gauge artifacts, we introduce a novel coordinate system used for post-processing. The results for our equal mass models show that the strong radial oscillations of the HMNS modulate the instantaneous frequency of the gravitational wave (GW) signal to an extend that leads to separate peaks in the corresponding Fourier spectrum. In particular, the high frequency peaks which are often attributed to combination frequencies can also be caused by the modulation of the m=2 mode frequency in the merger phase. As a conseque...

  11. Modelling gravitational waves from precessing black-hole binaries: Progress, challenges and prospects

    CERN Document Server

    Hannam, Mark

    2013-01-01

    The inspiral and merger of two orbiting black holes is among the most promising sources for the first (hopefully imminent) direct detection of gravitational waves (GWs), and measurements of these signals could provide a wealth of information about astrophysics, fundamental physics and cosmology. Detection and measurement require a theoretical description of the GW signals from all possible black-hole-binary configurations, which can include complicated precession effects due to the black-hole spins. Modelling the GW signal from generic precessing binaries is therefore one of the most urgent theoretical challenges facing GW astronomy. This article briefly reviews the phenomenology of generic-binary dynamics and waveforms, and recent advances in modelling them.

  12. Orbital inflammation: Corticosteroids first.

    Science.gov (United States)

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  13. A photometric study of the close binary Delta Orionis A

    Science.gov (United States)

    Koch, R. H.; Hrivnak, B. J.

    1981-08-01

    Green and blue photoelectric light curves show the historical intrinsic variability of the Delta Ori A close binary superposed on the interaction and eclipse effects. There is a considerable measure of agreement between spectrographic and photometric determinations of the rate of apsidal advance. The determinacy of orbital eccentricity, however, is confused because few minima of indifferent precision exist to check the spectrographic value. No physical mechanism can be found to account for a possible diminution of orbital eccentricity, and this is probably best attributed to unrecognized complications of at least one of the existing light curves. After numerous trials, a less-than-perfect theoretical representation of the light curve was achieved and shows the system to be detached. The absolute stellar parameters make clear that both components have evolved substantially. A mean stellar structure constant k2 is derived but cannot be compared usefully to existing theoretical values. The importance of the recently discovered visual companion, hz 42, is emphasized.

  14. A Search for Collision Orbits in the Free-Fall Three-Body Problem. I. Numerical Procedure

    Science.gov (United States)

    Tanikawa, Kiyotaka; Umehara, Hiroaki; Abe, Hiroshi

    1995-12-01

    A numerical procedure is devised to find binary collision orbits in the free-fall three-body problem. Applying this procedure, families of binary collision orbits are found and a sequence of triple collision orbits are positioned. A property of sets of binary collision orbits which is convenient to search triple collision orbits is found. Important numerical results are formulated and summarized in the final section.

  15. Terrestrial Planet Formation in Binary Star Systems

    Science.gov (United States)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  16. Orbital cellulitis

    Science.gov (United States)

    ... hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and ... in the space around the eye. An orbital cellulitis infection can get worse very quickly. A person with ...

  17. Binary star formation: gravitational fragmentation followed by capture

    Science.gov (United States)

    Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.

    1995-11-01

    intervene, provided the binary components are well matched (i.e. of comparable mass) and the third body is not too massive, such interventions will - more often than not - harden the orbit further. In two appendices we describe the code used in the simulations presented in this and the companion paper, and the tests performed to demonstrate the code's ability to handle the physical processes involved.

  18. Orbital Motion During Gravitational Lensing Events

    CERN Document Server

    Di Stefano, Rosanne

    2014-01-01

    Gravitational lensing events provide unique opportunities to discover and study planetary systems and binaries. Here we build on previous work to explore the role that orbital motion can play in both identifying and learning more about multiple-mass systems that serve as gravitational lenses. We find that a significant fraction of planet-lens and binary-lens light curves are influenced by orbital motion. Furthermore, the effects of orbital motion extend the range of binaries for which lens multiplicity can be discovered and studied. Orbital motion will play an increasingly important role as observations with sensitive photometry, such as those made by the space missions Kepler, Transiting Exoplanet Survey Satellite, (TESS), and WFIRST discover gravitational lensing events. Similarly, the excellent astrometric measurements made possible by GAIA will allow it to study the effects of orbital motion. Frequent observations, such as those made possible with the Korean Microlensing Telescope Network, KMTNet, will al...

  19. Tearing up a misaligned accretion disc with a binary companion

    CERN Document Server

    Doğan, Suzan; King, Andrew; Price, Daniel J

    2015-01-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X--ray binaries.

  20. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

    Science.gov (United States)

    Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.

    2017-02-01

    Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the

  1. Results from Binary Black Hole Simulations in Astrophysics Applications

    Science.gov (United States)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  2. Stability of multiplanet systems in binaries

    Science.gov (United States)

    Marzari, F.; Gallina, G.

    2016-10-01

    Context. When exploring the stability of multiplanet systems in binaries, two parameters are normally exploited: the critical semimajor axis ac computed by Holman & Wiegert (1999, AJ, 117, 621) within which planets are stable against the binary perturbations, and the Hill stability limit Δ determining the minimum separation beyond which two planets will avoid mutual close encounters. Both these parameters are derived in different contexts, i.e. Δ is usually adopted for computing the stability limit of two planets around a single star while ac is computed for a single planet in a binary system. Aims: Our aim is to test whether these two parameters can be safely applied in multiplanet systems in binaries or if their predictions fail for particular binary orbital configurations. Methods: We have used the frequency map analysis (FMA) to measure the diffusion of orbits in the phase space as an indicator of chaotic behaviour. Results: First we revisited the reliability of the empirical formula computing ac in the case of single planets in binaries and we find that, in some cases, it underestimates by 10-20% the real outer limit of stability and it does not account for planets trapped in resonance with the companion star well beyond ac. For two-planet systems, the value of Δ is close to that computed for planets around single stars, but the level of chaoticity close to it substantially increases for smaller semimajor axes and higher eccentricities of the binary orbit. In these configurations ac also begins to be unreliable and non-linear secular resonances with the stellar companion lead to chaotic behaviour well within ac, even for single planet systems. For two planet systems, the superposition of mean motion resonances, either mutual or with the binary companion, and non-linear secular resonances may lead to chaotic behaviour in all cases. We have developed a parametric semi-empirical formula determining the minimum value of the binary semimajor axis, for a given

  3. Tidal capture formation of Low Mass X-Ray Binaries from wide binaries in the field

    CERN Document Server

    Michaely, Erez

    2015-01-01

    We present a potentially efficient dynamical formation scenario for Low Mass X-ray Binaries (LMXBs) in the field, focusing on black-hole (BH) LMXBs. In this formation channel LMXBs are formed from wide binaries $(>1000$ AU) with a BH component and a stellar companion. The wide binary is perturbed by fly-by's of field stars and its orbit random-walks and changes over time. This diffusion process can drive the binary into a sufficiently eccentric orbit such that the binary components tidally interact at peri-center and the binary evolves to become a short period binary, which eventually evolves into an LMXB. The formation rate of LMXBs through this channel mostly depends on the number of such BH wide binaries progenitors, which in turn depends on the velocity kicks imparted to BHs (or NSs) at birth. We consider several models for the formation and survival of such wide binaries, and calculate the LMXB formation rates for each model. We find that models where BHs form through direct collapse with no/little natal...

  4. Eccentricity distribution of wide binaries

    CERN Document Server

    Tokovinin, Andrei

    2015-01-01

    A sample of 477 solar-type binaries within 67pc with projected separations larger than 50AU is studied by a new statistical method. Speed and direction of the relative motion are determined from the short observed arcs or known orbits, and their joint distribution is compared to the numerical simulations. By inverting the observed distribution with the help of simulations, we find that average eccentricity of wide binaries is 0.59+-0.02 and the eccentricity distribution can be modeled as f(e) ~= 1.2 e + 0.4. However, wide binaries containing inner subsystems, i.e. triple or higher-order multiples, have significantly smaller eccentricities with the average e = 0.52+-0.05 and the peak at e ~ 0.5. We find that the catalog of visual orbits is strongly biased against large eccentricities. A marginal evidence of eccentricity increasing with separation (or period) is found for this sample. Comparison with spectroscopic binaries proves the reality of the controversial period-eccentricity relation. The average eccentr...

  5. Binary star astrometry with milli and sub-milli arcsecond precision

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2014-01-01

    Full Text Available The past several decades have seen accelerating progress in improving binary stars fundamental parameters determinations, as new observational techniques have produced visual orbits of many spectroscopic binaries with a milli arcsecond precision. Modern astrometry is rapidly approaching the goal of sub-milli arcsecond precision, and although presently this precision has been achieved only for a limited number of binary stars, in the near future this will become a standard for very large number of objects. In this paper we review the representative results of techniques which have already allowed the sub-milli arcsecond precision like the optical long baseline interferometry, as well as the precursor techniques such as speckle interferometry, adaptive optics and aperture masking. These techniques provide a step forward from milli to sub-milli arcsecond precision, allowing even short period binaries to be resolved, and often resulting in orbits allowing precisions in stellar dynamical masses better than 1%. We point out that such unprecedented precisions should allow for a significant improvement of our comprehension of stellar physics and other related astrophysical topics.

  6. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  7. Long time-scale variability of X-ray binaries with late type giant companions

    CERN Document Server

    Filippova, E; Parkin, E R

    2013-01-01

    In this paper we propose and examine a physical mechanism which can lead to the generation of noise in the mass accretion rate of low mass X-ray binaries on time-scales comparable to the orbital period of the system. We consider modulations of mass captured by the compact object from the companion star's stellar wind in binaries with late type giants, systems which usually have long orbital periods. We show that a hydrodynamical interaction of the wind matter within a binary system even without eccentricity results in variability of the mass accretion rate with characteristic time-scales close to the orbital period. The cause of the variability is an undeveloped turbulent motion (perturbed motion without significant vorticity) of wind matter near the compact object. Our conclusions are supported by 3D simulations with two different hydrodynamic codes based on Lagrangian and Eulerian approaches -- the SPH code GADGET and the Eulerian code PLUTO. In this work we assume that the wind mass loss rate of the second...

  8. Blind iterative deconvolution of binary star images

    CERN Document Server

    Saha, S K

    1997-01-01

    The technique of Blind Iterative De-convolution (BID) was used to remove the atmospherically induced point spread function (PSF) from short exposure images of two binary stars, HR 5138 and HR 5747 obtained at the cassegrain focus of the 2.34 meter Vainu Bappu Telescope(VBT), situated at Vainu Bappu Observatory (VBO), Kavalur. The position angles and separations of the binary components were seen to be consistent with results of the auto-correlation technique, while the Fourier phases of the reconstructed images were consistent with published observations of the binary orbits.

  9. Wobbling Ancient Binaries - Here Be Planets?

    CERN Document Server

    Horner, Jonathan; Hinse, Tobias; Marshall, Jonathan; Mustill, Alex

    2014-01-01

    In the last few years, a number of planets have been proposed to orbit several post main-sequence binary star systems on the basis of observed variations in the timing of eclipses between the binary components. A common feature of these planet candidates is that the best-fit orbits are often highly eccentric, such that the multiple planet systems proposed regularly feature mutually crossing orbits - a scenario that almost always leads to unstable planetary systems. In this work, we present the results of dynamical studies of all multiple-planet systems proposed to orbit these highly evolved binary stars, finding that most do not stand up to dynamical scrutiny. In one of the potentially stable cases (the NN Serpentis 2-planet system), we consider the evolution of the binary star system, and show that it is highly unlikely that planets could survive from the main sequence to obtain their current orbits - again casting doubt on the proposed planets. We conclude by considering alternative explanations for the obs...

  10. Accretion Disks Around Binary Black Holes: A Quasistationary Model

    CERN Document Server

    Liu, Yuk Tung

    2010-01-01

    Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during th...

  11. The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

    Science.gov (United States)

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2017-04-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

  12. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  13. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  14. Discovery of a 66 mas Ultracool Binary with Laser Guide Star Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Siegler, N; Close, L; Burgasser, A; Cruz, K; Marois, C; Macintosh, B; Barman, T

    2007-02-02

    We present the discovery of 2MASS J21321145+1341584AB as a closely separated (0.066'') very low-mass field dwarf binary resolved in the near-infrared by the Keck II Telescope using laser guide star adaptive optics. Physical association is deduced from the angular proximity of the components and constraints on their common proper motion. We have obtained a near-infrared spectrum of the binary and find that it is best described by an L5{+-}0.5 primary and an L7.5{+-}0.5 secondary. Model-dependent masses predict that the two components straddle the hydrogen burning limit threshold with the primary likely stellar and the secondary likely substellar. The properties of this sytem - close projected separation (1.8{+-}0.3AU) and near unity mass ratio - are consistent with previous results for very low-mass field binaries. The relatively short estimated orbital period of this system ({approx}7-12 yr) makes it a good target for dynamical mass measurements. Interestingly, the system's angular separation is the tightest yet for any very low-mass binary published from a ground-based telescope and is the tightest binary discovered with laser guide star adaptive optics to date.

  15. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Directory of Open Access Journals (Sweden)

    Blanchet Luc

    2006-06-01

    Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.

  16. The low mass ratio contact binary system V728 Herculis

    CERN Document Server

    Erkan, Naci

    2015-01-01

    We present the orbital period study and the photometric analys of the contact binary system V728 Her. Our orbital period analysis shows that the period of the system increases (dP/dt=1.92x10^-7dyr^-1) and the mass transfer rate from the less massive component to more massive one is 2.51x10^-8M_suny^-1. In addition, an advanced sinusoidal variation in period can be attributed to the light-time effect by a tertiary component or the Applegate mechanism triggered by the secondary component. The simultaneous multicolor BVR light and radial velocity curves solution indicates that the physical parameters of the system are M1=1.8M_sun, M2=0.28M_sun, R1=1.87R_sun, R2=0.82R_sun, L1=5.9L_sun, and L2=1.2L_sun. We discuss the evolutionary status and conclude that V728 Her is a deep (f=81%), low mass ratio (q=0.16) contact binary system.

  17. Apsidal motion in the massive binary HD152218

    CERN Document Server

    Rauw, G; Noels, A; Mahy, L; Schmitt, J H M M; Godart, M; Dupret, M -A; Gosset, E

    2016-01-01

    Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a separating code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of 19.8 +/- 1.5 and 15.0 +/- 1.1 solar masses. Combining radial velocity measurements from over 60 years, we show that the system displays apsidal motion at a rate of (2.04^{+.23}_{-.24}) degree/year. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal moti...

  18. Observations of Binary and Millisecond Pulsars at Xinjiang Astronomical Observatory

    Indian Academy of Sciences (India)

    Jingbo Wang; Na Wang; Jianping Yuan; Zhiyong Liu

    2014-09-01

    We present the first results of radio timing observations of binary and millisecond pulsars in China. We have timed four binary pulsars for 9 years, using Nanshan 25-m radio telescope. The long time span has enabled us to determine their rotation and orbital parameters.

  19. Long-Term Stability of Planets in Binary Systems

    CERN Document Server

    Holman, M; Holman, Matthew; Wiegert, Paul

    1999-01-01

    A simple question of celestial mechanics is investigated: in what regions of phase space near a binary system can planets persist for long times? The planets are taken to be test particles moving in the field of an eccentric binary system. A range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the system's center of mass, are examined. From the results, empirical expressions are developed for both 1) the largest orbit around each of the stars, and 2) the smallest orbit around the binary system as a whole, in which test particles survive the length of the integration (10^4 binary periods). The empirical expressions developed, which are roughly linear in both the mass ratio mu and the binary eccentricity e, are determined for the range 0.0 <= e <= 0.7-0.8 and 0.1 <= mu <= 0.9 in both regions, and can be used to guide searches for planets in binary systems. After consideri...

  20. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1832 Eclipsing Binaries in the First Data Release

    CERN Document Server

    Prsa, Andrej; Slawson, Robert W; Doyle, Laurance R; Welsh, William F; Orosz, Jerome A; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G; Conroy, Kyle; Jenkins, Jon M; Caldwell, Douglas A; Koch, David G; Borucki, William J

    2010-01-01

    The Kepler space mission is devoted to finding Earth-size planets in habitable zones orbiting other stars. Its large, 105-deg field-of-view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data which are publicly available through MAST as of 6/15/2010. The catalog contains 1832 unique objects. For each object we provide its Kepler ID (KID), ephemeris (BJD0, P0), morphology type, physical parameters (Teff, log g, E(B-V), crowding), and principal parameters (T2/T1, q, fillout factor and sin i for overcontacts, and T2/T1, (R1+R2)/a, e sin(w), e cos(w), and sin i for detached binaries). We present statistics based on the determined periods and measure an average occurence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further dis...

  1. Low autocorrelation binary sequences

    Science.gov (United States)

    Packebusch, Tom; Mertens, Stephan

    2016-04-01

    Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.

  2. Orbital Plots Using Gnuplot

    Science.gov (United States)

    Moore, Brian G.

    2000-06-01

    The plotting program Gnuplot is freely available, general purpose, easy to use, and available on a variety of platforms. Complex three-dimensional surfaces, including the familiar angular parts of the hydrogen atom orbitals, are easily represented using Gnuplot. Contour plots allow viewing the radial and angular variation of the probability density in an orbital. Examples are given of how Gnuplot is used in an undergraduate physical chemistry class to view familiar atomic orbitals in new ways or to generate views of orbital functions that the student may have not seen before. Gnuplot may also be easily integrated into the environment of a Web page; an example of this is discussed (and is available at http://onsager.bd.psu.edu/~moore/orbitals_gnuplot). The plotting commands are entered with a form and a CGI script is used to run Gnuplot and display the result back to the browser.

  3. Millisecond and Binary Pulsars as Nature's Frequency Standards; 3, Fourier Analysis and Spectral Sensitivity of Timing Observations to Low-Frequency Noise

    CERN Document Server

    Kopeikin, S M; Kopeikin, Sergei M.; Potapov, Vladimir A.

    1998-01-01

    Millisecond and binary pulsars are the most stable natural frequency standards which admits to introduce modified versions of universal and ephemeris time scales based correspondingly on the intrinsic rotation of pulsar and on its orbital motion around barycenter of a binary system. Measured stability of these time scales depends on numerous physical phenomena which affect rotational and orbital motion of the pulsar and observer on the Earth, perturb propagation of electromagnetic pulses from pulsar to the observer and bring about random fluctuations in the rate of atomic clock used as a primary time reference in timing observations. On the long time intervals the main reason for the instability of the pulsar time scales is the presence of correlated, low-frequency timing noise in residuals of times of arrivals (TOA) of pulses from the pulsar which has both astrophysical and geophysical origin. Hence, the timing noise can carry out the important physical information about interstellar medium, interior structu...

  4. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...... effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...

  5. The binary white dwarf LHS 3236

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  6. Binary pulsars as dark-matter probes

    CERN Document Server

    Pani, Paolo

    2015-01-01

    During the motion of a binary pulsar around the galactic center, the pulsar and its companion experience a wind of dark-matter particles that can affect the orbital motion through dynamical friction. We show that this effect produces a characteristic seasonal modulation of the orbit and causes a secular change of the orbital period whose magnitude can be well within the astonishing precision of various binary-pulsar observations. Our analysis is valid for binary systems with orbital period longer than a day. By comparing this effect with pulsar-timing measurements, it is possible to derive model-independent upper bounds on the dark-matter density at different distances $D$ from the galactic center. For example, the precision timing of J1713+0747 imposes $\\rho_{\\rm DM}\\lesssim 10^5\\,{\\rm GeV/cm}^3$ at $D\\approx7\\,{\\rm kpc}$. The detection of a binary pulsar at $D\\lesssim 10\\,{\\rm pc}$ could provide stringent constraints on dark-matter halo profiles and on growth models of the central black hole. The Square Kil...

  7. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    Science.gov (United States)

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  8. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  9. A Galactic Binary Detection Pipeline

    Science.gov (United States)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  10. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares.

    Science.gov (United States)

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-21

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  11. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    Science.gov (United States)

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-01

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  12. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    CERN Document Server

    Hayasaki, Kimitake

    2015-01-01

    Galaxy mergers produce binaries of supermassive black holes, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  13. The state of globular clusters at birth - II. Primordial binaries

    Science.gov (United States)

    Leigh, Nathan W. C.; Giersz, Mirek; Marks, Michael; Webb, Jeremy J.; Hypki, Arkadiusz; Heinke, Craig O.; Kroupa, Pavel; Sills, Alison

    2015-01-01

    In this paper, we constrain the properties of primordial binary populations in Galactic globular clusters. Using the MOCCA Monte Carlo code for cluster evolution, our simulations cover three decades in present-day total cluster mass. Our results are compared to the observations of Milone et al. using the photometric binary populations as proxies for the true underlying distributions, in order to test the hypothesis that the data are consistent with a universal initial binary fraction near unity and the binary orbital parameter distributions of Kroupa. With the exception of a few possible outliers, we find that the data are to first-order consistent with the universality hypothesis. Specifically, the present-day binary fractions inside the half-mass radius can be reproduced assuming either high initial binary fractions near unity with a dominant soft binary component as in the Kroupa distribution combined with high initial densities (104-106 M⊙ pc-3), or low initial binary fractions (˜5-10 per cent) with a dominant hard binary component combined with moderate initial densities near their present-day values (102-103 M⊙ pc-3). This apparent degeneracy can potentially be broken using the binary fractions outside the half-mass radius - only high initial binary fractions with a significant soft component combined with high initial densities can reproduce the observed anticorrelation between the binary fractions outside the half-mass radius and the total cluster mass. We further illustrate using the simulated present-day binary orbital parameter distributions and the technique first introduced in Leigh et al. that the relative fractions of hard and soft binaries can be used to further constrain both the initial cluster density and the initial mass-density relation. Our results favour an initial mass-density relation of the form r_h ∝ M_clus^{α } with α < 1/3, corresponding to an initial correlation between cluster mass and density.

  14. The Evolutionary Outcomes of Expansive Binary Asteroid Systems

    Science.gov (United States)

    McMahon, Jay W.

    2016-10-01

    Singly synchronous binary asteroid systems have several evolutionary end-states, which depend heavily on the BYORP effect. In the case of expansive BYORP, the binary system could evolve to become a wide asynchronous binary system (Jacobson, et al 2014), or the system could expand far enough to become disrupted to form a heliocentric pair (Vokrouhlicky et al 2008). Cuk et al (2011) found that upon expanding the secondary will quickly become asynchronous, and will end up re-establishing synchronous rotation with the opposite attitude, causing the binary orbit to subsequently contract. The distinction between these outcomes depends on whether the secondary asteroid stays synchronized, which keeps the BYORP effect active and the orbit expanding. As the orbit expands, the secondary libratation will expand, and the libration will also causes large variations in the binary orbit due to the elongation of the secondary. If the eccentricity and libration are bound to small enough values the system can expand significantly. This work discusses the stability of the libration and orbital motion as a binary expands from a wide variety of simulation runs with various parameters. We investigate how the strength of tides and BYORP change the stability of the librational motion; an important factor is the speed of BYORP expansion as slower expansion allows tides to have a more stabilizing effect. We also investigate the effect of heliocentric orbit semimajor axis and eccentricity. We find that resonances between the coupled orbit-libration frequencies and the heliocentric orbit cause instability in the binary orbit eccentricity which produces a strong preference for wide binary production, especially amongst retrograde binary systems. This instability also becomes stronger with large heliocentric eccentricities. Prograde binaries are more stable and can possible grow to become asteroid pairs. We find that even in the presence of tides, reestablishment of synchronous spin into a

  15. Close supermassive binary black holes

    Science.gov (United States)

    Gaskell, C. Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  16. Dynamical mass ejection from binary neutron star mergers

    Science.gov (United States)

    Radice, David; Galeazzi, Filippo; Lippuner, Jonas; Roberts, Luke F.; Ott, Christian D.; Rezzolla, Luciano

    2016-08-01

    We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ˜60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae.

  17. OMC/INTEGRAL photometric observations of pulsating components in eclipsing binaries and characterization of DY Aqr

    Science.gov (United States)

    Alfonso-Garzón, J.; Montesinos, B.; Moya, A.; Mas-Hesse, J. M.; Martín-Ruiz, S.

    2014-10-01

    We present the search for eclipsing binaries with a pulsating component in the first catalogue of optically variable sources observed by Optical Monitoring Camera (OMC)/INTEGRAL, which contains photometric data for more than 1000 eclipsing binaries. Five objects were found and a detailed analysis of one of them, DY Aqr, has been performed. Photometric and spectroscopic observations of DY Aqr were obtained to analyse the binary system and the pulsational characteristics of the primary component. By applying the binary modelling software PHOEBE to the OMC and ground-based photometric light curves, and to the radial velocity curve obtained using echelle high-resolution spectroscopy, the physical parameters of the system have been determined. Frequency analysis of the residual data has been performed using Fourier techniques to identify pulsational frequencies. We have built a grid of theoretical models to classify spectroscopically the primary component as an A7.5V star (plus or minus one spectral subtype). The best orbital fit was obtained for a semidetached system configuration. According to the binary modelling, the primary component has Teff = 7625 ± 125 K and log g = 4.1 ± 0.1 and the secondary component has Teff = 3800 ± 200 K and log g = 3.3 ± 0.1, although it is too faint to isolate its spectral features. From the analysis of the residuals, we have found a main pulsation frequency at 23.37 d-1, which is typical of a δ Scuti star. In the O-C diagram, no evidence of orbital period changes over the last 8 yr has been found.

  18. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  19. The influence of binary stars on dwarf spheroidal galaxy kinematics

    CERN Document Server

    Hargreaves, J C; Annan, J D

    1995-01-01

    We have completed a Monte-Carlo simulation to estimate the effect of binary star orbits on the measured velocity dispersion in dwarf spheroidal galaxies. This paper analyses previous attempts at this calculation, and explains the simulations which were performed with mass, period and ellipticity distributions similar to that measured for the solar neighbourhood. The conclusion is that with functions such as these, the contribution of binary stars to the velocity dispersion is small. The distributions are consistent with the percentage of binaries detected by observations, although this is quite dependent on the measuring errors and on the number of years over which measurements have been taken. For binaries to be making a significant contribution to the dispersion measured in dSph galaxies, the distributions of the orbital parameters would need to be very different from those of stars in the solar neighbourhood. In particular more smaller period orbits with higher mass secondaries would be required. The shape...

  20. Discovery of the spectroscopic binary nature of six southern Cepheids

    CERN Document Server

    Szabados, L; Kiss, L L; Kovács, J; Anderson, R I; Kiss, Cs; Szalai, T; Székely, P; Christiansen, J L; 10.1093/mnras/stt027

    2013-01-01

    We present the analysis of photometric and spectroscopic data of six bright Galactic Cepheids: GH Carinae, V419 Centauri, V898 Centauri, AD Puppis, AY Sagittarii, and ST Velorum. Based on new radial velocity data (in some cases supplemented with earlier data available in the literature), these Cepheids have been found to be members in spectroscopic binary systems. V898 Cen turned out to have one of the largest orbital radial velocity amplitude (> 40 km/s) among the known binary Cepheids. The data are insufficient to determine the orbital periods nor other orbital elements for these new spectroscopic binaries. These discoveries corroborate the statement on the high frequency of occurrence of binaries among the classical Cepheids, a fact to be taken into account when calibrating the period-luminosity relationship for Cepheids. We have also compiled all available photometric data that revealed that the pulsation period of AD Pup, the longest period Cepheid in this sample, is continuously increasing with Delta P ...

  1. Evaporative Instability in Binary Mixtures

    Science.gov (United States)

    Narayanan, Ranga; Uguz, Erdem

    2012-11-01

    In this talk we depict the physics of evaporative convection for binary systems in the presence of surface tension gradient effects. Two results are of importance. The first is that a binary system, in the absence of gravity, can generate an instability only when heated from the vapor side. This is to be contrasted with the case of a single component where instability can occur only when heated from the liquid side. The second result is that a binary system, in the presence of gravity, will generate an instability when heated from either the vapor or the liquid side provided the heating is strong enough. In addition to these results we show the conditions at which interfacial patterns can occur. Support from NSF OISE 0968313, Partner Univ. Fund and a Chateaubriand Fellowship is acknowledged.

  2. Toward Complete Statistics of Massive Binary Stars: Penultimate Results from the Cygnus OB2 Radial Velocity Survey

    CERN Document Server

    Kobulnicky, Henry A; Lundquist, Michael J; Burke, Jamison; Chapman, James; Keller, Erica; Lester, Kathryn; Rolen, Emily K; Topel, Eric; Bhattacharjee, Anirban; Smullen, Rachel A; Alvarez, Carlos A Vargas; Runnoe, Jessie C; Dale, Daniel A; Brotherton, Michael M

    2014-01-01

    We analyze orbital solutions for 48 massive multiple-star systems in the Cygnus OB2 Association, 23 of which are newly presented here, to find that the observed distribution of orbital periods is approximately uniform in log P for P 45 d, even after correction for completeness, indicating either a lower binary fraction or a shift toward low-mass companions. A high degree of similarity (91% likelihood) between the Cyg OB2 period distribution and that of other surveys suggests that the binary properties at P<25 d are determined by local physics of disk/clump fragmentation and are relatively insensitive to environmental and evolutionary factors. Fully 30% of the unbiased parent sample is a binary with period P < 45 d. Completeness corrections imply a binary fraction near 55% for P < 5000 d. The observed distribution of mass ratios 0.2

  3. Determining the Age of the Kepler Open Cluster NGC 6819 With a New Triple System and Other Eclipsing Binary Stars

    CERN Document Server

    Brewer, Lauren N; Mathieu, Robert D; Milliman, Katelyn; Geller, Aaron M; Jeffries, Mark W; Orosz, Jerome A; Brogaard, Karsten; Platais, Imants; Bruntt, Hans; Grundahl, Frank; Stello, Dennis; Frandsen, Soeren

    2016-01-01

    As part of our study of the old (~2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVRcIc) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses M_B =1.090+/-0.010 Msun and M_C =1.075+/-0.013 Msun, and radii R_B =1.095+/-0.007 Rsun and R_C =1.057+/-0.008 Rsun. The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is M_A =1.251+/-0.057 Msun. A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and pl...

  4. Structure and fate of binary WR stars: Clues from spectropolarimetry

    CERN Document Server

    Hoffman, Jennifer L

    2015-01-01

    Because most massive stars have been or will be affected by a companion during the course of their evolution, we cannot afford to neglect binaries when discussing the progenitors of supernovae and GRBs. Analyzing linear polarization in the emission lines of close binary systems allows us to probe the structures of these systems' winds and mass flows, making it possible to map the complex morphologies of the mass loss and mass transfer structures that shape their subsequent evolution. In Wolf-Rayet (WR) binaries, line polarization variations with orbital phase distinguish polarimetric signatures arising from lines that scatter near the stars from those that scatter far from the orbital plane. These far-scattering lines may form the basis for a "binary line-effect method" of identifying rapidly rotating WR stars (and hence GRB progenitor candidates) in binary systems.

  5. Binary dynamics near a massive black hole

    CERN Document Server

    Hopman, Clovis

    2009-01-01

    We analyze the dynamical evolution of binary stars that interact with a static background of single stars in the environment of a massive black hole (MBH). All stars are considered to be single mass, Newtonian point particles. We follow the evolution of the energy E and angular momentum J of the center of mass of the binaries with respect to the MBH, as well as their internal semi-major axis a, using a Monte Carlo method. For a system like the Galactic center, the main conclusions are the following: (1) The binary fraction can be of the order of a few percent outside 0.1 pc, but decreases quickly closer to the MBH. (2) Within ~0.1 pc, binaries can only exist on eccentric orbits with apocenters much further away from the MBH. (3) Far away from the MBH, loss-cone effects are the dominant mechanism that disrupts binaries with internal velocities close to the velocity dispersion. Closer to the MBH, three-body encounters are more effective in disrupting binaries. (4) The rate at which hard binaries become tighter ...

  6. On the diversity and similarity of outbursts of symbiotic binaries and cataclysmic variables

    CERN Document Server

    Skopal, Augustin

    2015-01-01

    Outbursts in two classes of interacting binary systems, the symbiotic stars (SSs) and the cataclysmic variables (CVs), show a number of similarities in spite of very different orbital periods. Typical values for SSs are in the order of years, whereas for CVs they are of a few hours. Both systems undergo unpredictable outbursts, characterized by a brightening in the optical by 1 - 3 and 7 - 15 mag for SSs and CVs, respectively. By modelling the multiwavelength SED of selected examples from both groups of these interacting binaries, I determine their basic physical parameters at a given time of the outburst evolution. In this way I show that the principal difference between outbursts of these objects is their violence, whereas the ionization structure of their ejecta is basically very similar. This suggests that the mechanism of the mass ejection by the white dwarfs in these systems is also similar.

  7. Spectroscopy of Low Mass X-Ray Binaries: New Insights into Accretion. Revised

    Science.gov (United States)

    DilVrtilek, Saeqa; Mushotzky, Richard (Technical Monitor)

    2001-01-01

    This project is to observe two low mass X-ray binaries, chosen for their X-ray brightness, low column density, and diversity of accretion behavior. The high spectral resolution of the RGS, the broad energy range and tremendous collecting power of EPIC, and simultaneous optical monitoring with the OM are particularly well-suited to these studies. observation of one of the two objects has taken place and the data were received in late November. The second object is yet to be observed. Over the next year we will: investigate the physical conditions of the emitting gas using emission and recombination line diagnostics to determine temperatures, densities, elemental abundances, and ionization structure; study the behavior of emission features as a function of binary orbit; and test and improve models of X-ray line emission developed by us over the past decade. We will gain insight on both the geometry of the accretion flow and on the evolutionary history of LMXBs.

  8. Spectroscopy of Low Mass X-Ray Binaries: New Insights into Accretion

    Science.gov (United States)

    Vrtilek, Saeqa Dil; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    This project is to observe two low mass X-ray binaries, chosen for their X-ray brightness, low column density, and diversity of accretion behavior. The high spectral resolution of the RGS, the broad energy range and tremendous collecting power of EPIC, and simultaneous optical monitoring with the OM are particularly well-suited to these studies. The second of two objects was not observed until September of 2002. Data analysis for the new observation is underway. over the next year we will: investigate the physical conditions of the emitting gas using emission and recombination line diagnostics to determine temperatures, densities, elemental abundances, and ionization structure; study the behavior of emission features as a function of binary orbit; and test and improve models of X-ray line emission developed by us over the past decade. We will gain insight on both the geometry of the accretion flow and on the evolutionary history of LMXBs.

  9. Asiago eclipsing binaries program. I. V432 Aur

    CERN Document Server

    Siviero, A; Sordo, R; Dallaporta, S; Zwitter, T; Marrese, P M; Milone, E F

    2003-01-01

    The orbit and physical parameters of the previously unsolved eclipsing binary V432 Aur, discovered by Hipparcos, have been derived with errors better than 1% from extensive Echelle spectroscopy and B, V photometry. Synthetic spectral analysis of both components has been performed, yielding T_eff and log g in close agreement with the orbital solution, a metallicity [Z/Z_sun]=-0.6 and rotational synchronization for both components. Direct comparison on the theoretical L, T_eff plane with the Padova evolutionary tracks and isochrones for the masses of the two components (1.22 and 1.08 M_sun) provides a perfect match and a 3.75 Gyr age. The more massive and cooler component is approaching the base of the giant branch and displays a delta-Sct pulsation activity with an amplitude of Delta V = 0.075 mag and Delta rad.vel. = 1.5 km/sec. With a T_eff = 6080 K it is one of the coolest delta-Sct known, falling well to the red of the instability strip edge. Orbital modeling reveals a large and bright surface spot on it. ...

  10. Fundamental properties of High-Mass X-ray Binaries

    CERN Document Server

    González-Galán, A

    2015-01-01

    The aim of this PhD Thesis is to characterize a representative sample of Supergiant X-ray Binaries (SGXBs) formed by 4 sources: XTE J1855-026, a classical SGXB with long-term stable X-ray flux; AX J1841.0-0535 and AX J1845.0-0433, two supergiant fast X-ray transients (SFXTs) with the X-ray emission mostly dominated by flaring; and IGR J00370+6122, something in between these 2 sub-groups. The physical processes that produce these observable differences are still a matter of debate. In this PhD Thesis I performed a study of these 4 different systems to provide new data to constrain the models. This study consists of:(i) the determination of the orbital solution,(ii) a systematic study of the wind behavior along the orbit by the measure of Halpha variations,(iii) a model of stellar atmospheres of the donor star,(iv) establish whether there are X-ray flux variations modulated by the orbital period. The study of the wind shows that Halpha variations are dominated by intrinsic wind processes. The stellar atmosphere...

  11. Formation of Kuiper Belt Binaries

    CERN Document Server

    Goldreich, P; Sari, R; Goldreich, Peter; Lithwick, Yoram; Sari, Re'em

    2002-01-01

    It appears that at least several percent of large Kuiper belt objects are members of wide binaries. Physical collisions are too infrequent to account for their formation. Collisionless gravitational interactions are more promising. These provide two channels for binary formation. In each, the initial step is the formation of a transient binary when two large bodies penetrate each other's Hill spheres. Stabilization of a transient binary requires that it lose energy. Either dynamical friction due to small bodies or the scattering of a third large body can be responsible. Our estimates favor the former, albeit by a small margin. We predict that most objects of size comparable to those currently observed in the Kuiper belt are members of multiple systems. More specifically, we derive the probability that a large body is a member of a binary with semi-major axis of order a. The probability depends upon sigma, the total surface density, Sigma, the surface density of large bodies having radius R, and theta=10^-4, t...

  12. Migration into a Companion's Trap: Disruption of Multiplanet Systems in Binaries

    CERN Document Server

    Touma, Jihad R

    2015-01-01

    Most exoplanetary systems in binary stars are of S--type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Gravitational forcing of a single planet by a sufficiently inclined binary orbit can induce large amplitude oscillations of the planet's eccentricity and inclination through the Kozai-Lidov (KL) instability. KL cycling was invoked to explain: the large eccentricities of planetary orbits; the family of close--in hot Jupiters; and the retrograde planetary orbits in eccentric binary systems. However, several kinds of perturbations can quench the KL instability, by inducing fast periapse precessions which stabilize circular orbits of all inclinations: these could be a Jupiter--mass planet, a massive remnant disc or general relativistic precession. Indeed, mutual gravitational perturbations in multiplanet S--type systems can be strong enough to lend a certain dynamical rigidity to their orbital planes. Here we present a new and faster process that is driven by t...

  13. 3D models of radiatively driven colliding winds in massive O+O star binaries - III. Thermal X-ray emission

    CERN Document Server

    Pittard, J M

    2009-01-01

    The X-ray emission from the wind-wind collision in short-period massive O+O-star binaries is investigated. The emission is calculated from three-dimensional hydrodynamical models which incorporate gravity, the driving of the winds, orbital motion of the stars, and radiative cooling of the shocked plasma. Changes in the amount of stellar occultation and circumstellar attenuation introduce phase-dependent X-ray variability in systems with circular orbits, while strong variations in the intrinsic emission also occur in systems with eccentric orbits. The X-ray emission in eccentric systems can display strong hysteresis, with the emission softer after periastron than at corresponding orbital phases prior to periastron, reflecting the physical state of the shocked plasma at these times. Furthermore, the rise of the luminosity to maximum does not necessarily follow a 1/D law. Our models further demonstrate that the effective circumstellar column can be highly energy dependent. We simulate Chandra and Suzaku observat...

  14. Planet scattering around binaries: ejections, not collisions

    Science.gov (United States)

    Smullen, Rachel A.; Kratter, Kaitlin M.; Shannon, Andrew

    2016-09-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary star and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically affects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Systems similar to the only observed multiplanet circumbinary system, Kepler-47, can arise from much more tightly packed, unstable systems. Only extreme initial conditions introduce differences in the final planet populations. Thus, we suggest that any intrinsic differences in the populations are imprinted by formation.

  15. Stability of multiplanet systems in binaries

    CERN Document Server

    Marzari, F

    2016-01-01

    When exploring the stability of multiplanet systems in binaries, two parameters are normally exploited: the critical semimajor axis ac computed by Holman and Wiegert (1999) within which planets are stable against the binary perturbations, and the Hill stability limit Delta determining the minimum separation beyond which two planets will avoid mutual close encounters. Our aim is to test whether these two parameters can be safely applied in multiplanet systems in binaries or if their predictions fail for particular binary orbital configurations. We have used the frequency map analysis (FMA) to measure the diffusion of orbits in the phase space as an indicator of chaotic behaviour. First we revisited the reliability of the empirical formula computing ac in the case of single planets in binaries and we find that, in some cases, it underestimates by 10-20% the real outer limit of stability. For two planet systems, the value of Delta is close to that computed for planets around single stars, but the level of chaoti...

  16. The super-orbital variability of LS I +61 303 at all frequencies

    Science.gov (United States)

    Torres, Diego F.; Hadasch, Daniela; Li, Jian

    2016-07-01

    Detected from radio to TeV gamma rays, the gamma-ray binary LS I + 61 303 is highly variable across all frequencies. Beside its variability due to the modulation of its emission at the 26.496-day orbital period, the system also presents variability consistent with the so-called superorbital period, of 1667 days. Short and highly luminous X-ray bursts, reminiscent of typical magnetar behavior, have been also detected. I will summarize this phenomenology and present recent analysis of LSI +61 303 using data taken with the Fermi Large Area Telescope, putting it in a multi-wavelength context. I will show that the super-orbital modulation of the GeV data is obvious, and that is more prominently seen at orbital phases around apastron. I will also show that the super-orbital evolution also exists in TeV data. Finally, I will present correlation studies between TeV, GeV, X-ray, optical, and radio data and comment on a physical, pulsar-based scenario which could explain the general behavior of this enigmatic binary.

  17. Three-dimensional orbits of the triple-O stellar system HD 150136

    CERN Document Server

    Sana, H; Mahy, L; Absil, O; De Becker, M; Gosset, E

    2013-01-01

    Context. HD 150136 is a triple hierarchical system and a non-thermal radio emitter. It is formed by an O3-3.5 V + O5.5-6 V close binary and a more distant O6.5-7 V tertiary. So far, only the inner orbital properties have been reliably constrained. Aims. To quantitatively understand the non-thermal emission process, accurate knowledge of the physical and orbital properties of the object is crucial. Here, we aim to investigate the orbital properties of the wide system and to constrain the inclinations of the inner and outer binaries, and with these the absolute masses of the system components. Methods. We used the PIONIER combiner at the Very Large Telescope Interferometer to obtain the very first interferometric measurements of HD 150136. We combined the interferometric observations with new and existing high resolution spectroscopic data to derive the orbital solution of the outer companion in the three-dimensional space. Results. The wide system is clearly resolved by PIONIER, with a projected separation on ...

  18. Component masses of young, wide, non-magnetic white dwarf binaries in the SDSS DR7

    CERN Document Server

    Baxter, R B; Parker, Q A; Casewell, S L; Lodieu, N; Burleigh, M R; Lawrie, K A; Kulebi, B; Koester, D; Holland, B R

    2014-01-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA+DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M~0.6 Msun. We identify an excess of ultra-massive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final sta...

  19. The Tarantula Massive Binary Monitoring: I. Observational campaign and OB-type spectroscopic binaries

    CERN Document Server

    Almeida, L A; Taylor, W; Barbá, R; Bonanos, A; Crowther, P; Damineli, A; de Koter, A; de Mink, S E; Evans, C J; Gieles, M; Grin, N J; Hénault-Brunet, V; Langer, N; Lennon, D; Lockwood, S; Apellániz, J Maíz; Moffat, A F J; Neijssel, C; Norman, C; Ramírez-Agudelo, O H; Richardson, N D; Schootemeijer, A; Shenar, T; Soszyński, I; Tramper, F; Vink, J S

    2016-01-01

    Massive binaries (MBs) play a crucial role in the Universe and knowing the distributions of their orbital parameters (OPs) is important for a wide range of topics, from stellar feedback to binary evolution channels, from the distribution of supernova types to gravitational wave progenitors. Yet, no direct measurements exist outside the Milky Way. The Tarantula Massive Binary Monitoring was designed to help fill this gap by obtaining multi-epoch radial velocity monitoring of 102 MBs in the 30 Dor. In this paper, we analyse 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined and 31 double-lined spectroscopic binaries. Overall, the OPs and binary fraction are remarkably similar across the 30 Dor region and compared to existing Galactic samples (GSs). This indicates that within these domains environmental effects are of second order in shaping the properties of MBs. A small difference is found in the distribu...

  20. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...